Minimal polynomials of algebraic numbers with rational parameters
 Joint with Karl Dilcher and Rob Noble (Dalhousie University)

Chris Smyth (U. Edinburgh)

Three special classes of polynomials

We study three classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ of polynomials with rational coefficients, and irreducible.

Three special classes of polynomials

We study three classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ of polynomials with rational coefficients, and irreducible.

- \mathcal{C}_{1} is the class of such polynomials that are minimal polynomials of an algebraic number having rational real part;

Three special classes of polynomials

We study three classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ of polynomials with rational coefficients, and irreducible.

- \mathcal{C}_{1} is the class of such polynomials that are minimal polynomials of an algebraic number having rational real part;
- \mathcal{C}_{2} is the class of such polynomials that are minimal polynomials of an algebraic number having rational imaginary part;

We study three classes $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ of polynomials with rational coefficients, and irreducible.

- \mathcal{C}_{1} is the class of such polynomials that are minimal polynomials of an algebraic number having rational real part;
- \mathcal{C}_{2} is the class of such polynomials that are minimal polynomials of an algebraic number having rational imaginary part;
- \mathcal{C}_{3} is the class of such polynomials that are minimal polynomials of an algebraic number having rational modulus.

For simplicity of exposition, will only discuss polynomials where the rational parameter is nonzero:

- \mathcal{C}_{1} is the class of such polynomials that are minimal polynomials of an algebraic number having nonzero rational real part;
- \mathcal{C}_{2} is the class of such polynomials that are minimal polynomials of an algebraic number having positive rational imaginary part;
- \mathcal{C}_{3} is the class of such polynomials that are minimal polynomials of an algebraic number having rational modulus.

For simplicity of exposition, will only discuss polynomials where the rational parameter is nonzero:

- \mathcal{C}_{1} is the class of such polynomials that are minimal polynomials of an algebraic number having nonzero rational real part;
- \mathcal{C}_{2} is the class of such polynomials that are minimal polynomials of an algebraic number having positive rational imaginary part;
- \mathcal{C}_{3} is the class of such polynomials that are minimal polynomials of an algebraic number having rational modulus.

What form must such polynomials take?

Forms for polynomials in $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$

We can give a general form for polynomials of these classes:

Forms for polynomials in $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$

We can give a general form for polynomials of these classes:

- Polynomials in \mathcal{C}_{1} are of the form $Q\left((z-r)^{2}\right)$, where $r \in \mathbb{Q}$, $Q \in \mathbb{Q}[z]$ is irreducible and has a negative real root $-\beta$.

Forms for polynomials in $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$

We can give a general form for polynomials of these classes:

- Polynomials in \mathcal{C}_{1} are of the form $Q\left((z-r)^{2}\right)$, where $r \in \mathbb{Q}$, $Q \in \mathbb{Q}[z]$ is irreducible and has a negative real root $-\beta$. Then such a polynomial has $r+i \sqrt{\beta}$ as a root.

Forms for polynomials in $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$

We can give a general form for polynomials of these classes:

- Polynomials in \mathcal{C}_{1} are of the form $Q\left((z-r)^{2}\right)$, where $r \in \mathbb{Q}$, $Q \in \mathbb{Q}[z]$ is irreducible and has a negative real root $-\beta$. Then such a polynomial has $r+i \sqrt{\beta}$ as a root.
- Polynomials in \mathcal{C}_{2} are of the form $Q(z+i r) Q(z-i r)$, where $0<r \in \mathbb{Q}, Q \in \mathbb{Q}[z]$ is irreducible and has a real root β.

Forms for polynomials in $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$

We can give a general form for polynomials of these classes:

- Polynomials in \mathcal{C}_{1} are of the form $Q\left((z-r)^{2}\right)$, where $r \in \mathbb{Q}$, $Q \in \mathbb{Q}[z]$ is irreducible and has a negative real root $-\beta$. Then such a polynomial has $r+i \sqrt{\beta}$ as a root.
- Polynomials in \mathcal{C}_{2} are of the form $Q(z+i r) Q(z-i r)$, where $0<r \in \mathbb{Q}, Q \in \mathbb{Q}[z]$ is irreducible and has a real root β.
Then such a polynomial has $\beta+i r$ as a root.

Forms for polynomials in $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$

We can give a general form for polynomials of these classes:

- Polynomials in \mathcal{C}_{1} are of the form $Q\left((z-r)^{2}\right)$, where $r \in \mathbb{Q}$, $Q \in \mathbb{Q}[z]$ is irreducible and has a negative real root $-\beta$. Then such a polynomial has $r+i \sqrt{\beta}$ as a root.
- Polynomials in \mathcal{C}_{2} are of the form $Q(z+i r) Q(z-i r)$, where $0<r \in \mathbb{Q}, Q \in \mathbb{Q}[z]$ is irreducible and has a real root β. Then such a polynomial has $\beta+i r$ as a root.
- Polynomials in \mathcal{C}_{3} are of the form $Q(z / R+R / z)$, where $0<R \in \mathbb{Q}, Q \in \mathbb{Q}[z]$ is irreducible and has a real root β in $(-2,2)$.

Forms for polynomials in $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$

We can give a general form for polynomials of these classes:

- Polynomials in \mathcal{C}_{1} are of the form $Q\left((z-r)^{2}\right)$, where $r \in \mathbb{Q}$, $Q \in \mathbb{Q}[z]$ is irreducible and has a negative real root $-\beta$. Then such a polynomial has $r+i \sqrt{\beta}$ as a root.
- Polynomials in \mathcal{C}_{2} are of the form $Q(z+i r) Q(z-i r)$, where $0<r \in \mathbb{Q}, Q \in \mathbb{Q}[z]$ is irreducible and has a real root β. Then such a polynomial has $\beta+i r$ as a root.
- Polynomials in \mathcal{C}_{3} are of the form $Q(z / R+R / z)$, where $0<R \in \mathbb{Q}, Q \in \mathbb{Q}[z]$ is irreducible and has a real root β in $(-2,2)$.
Then such a polynomial has α of modulus R as a root, where α is a root of $\alpha / R+R / \alpha=\beta$.

Observations

- For polynomials $P(z) \in \mathcal{C}_{1}, P$ determines r.

Observations

- For polynomials $P(z) \in \mathcal{C}_{1}, P$ determines r.
- For polynomials $P(z) \in \mathcal{C}_{2}, P$ determines $r>0$.

Observations

- For polynomials $P(z) \in \mathcal{C}_{1}, P$ determines r.
- For polynomials $P(z) \in \mathcal{C}_{2}, P$ determines $r>0$.
- For polynomials $P(z) \in \mathcal{C}_{3}, P$ determines R.

Observations

- For polynomials $P(z) \in \mathcal{C}_{1}, P$ determines r.
- For polynomials $P(z) \in \mathcal{C}_{2}, P$ determines $r>0$.
- For polynomials $P(z) \in \mathcal{C}_{3}, P$ determines R.
- For polynomials $P(z) \in \mathcal{C}_{1}, P^{\prime}(r)=0$.

Intersecting the three classes

Are there any polynomials in more than one, or indeed all three, of $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$?

Intersecting the three classes

Are there any polynomials in more than one, or indeed all three, of $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$?

Certainly: for example the minimal polynomial of $3+4 i$.
To avoid such trivialities, we confine our attention to polynomials of degree at least 3 .

Intersecting the three classes

Are there any polynomials in more than one, or indeed all three, of $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$?

Certainly: for example the minimal polynomial of $3+4 i$.
To avoid such trivialities, we confine our attention to polynomials of degree at least 3 .

We can describe $\mathcal{C}_{1} \cap \mathcal{C}_{2}$:
Polynomials in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ are of the form
$Q\left(\left(z-r^{\prime}+i r\right)^{2}\right) Q\left(\left(z-r^{\prime}-i r\right)^{2}\right)$, where $r, r^{\prime} \in \mathbb{Q}, Q \in \mathbb{Q}[z]$ is irreducible and has a positive real root β and a negative real root $-\beta^{\prime}$.

Intersecting the three classes

Are there any polynomials in more than one, or indeed all three, of $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$?

Certainly: for example the minimal polynomial of $3+4 i$.
To avoid such trivialities, we confine our attention to polynomials of degree at least 3 .

We can describe $\mathcal{C}_{1} \cap \mathcal{C}_{2}$:
Polynomials in $\mathcal{C}_{1} \cap \mathcal{C}_{2}$ are of the form $Q\left(\left(z-r^{\prime}+i r\right)^{2}\right) Q\left(\left(z-r^{\prime}-i r\right)^{2}\right)$, where $r, r^{\prime} \in \mathbb{Q}, Q \in \mathbb{Q}[z]$ is irreducible and has a positive real root β and a negative real root $-\beta^{\prime}$.
Then such a polynomial has $\left(r^{\prime}+\sqrt{\beta}\right)+i r$ and $r^{\prime}+i\left(r+\sqrt{\beta^{\prime}}\right)$ amongst its roots.

Detour: the special rational function $\ell(z)$

For positive rational numbers t, let H_{t} denote the subgroup of G generated by $t-z$ and $1 / z$.
Lemma
The subgroup H_{t} of G is infinite in all cases except

$$
H_{1}=\left\{z, \frac{1}{z}, 1-z, \frac{1}{1-z}, \frac{z}{z-1}, \frac{z-1}{z}\right\} .
$$

Furthermore

$$
\frac{1}{2} \sum_{h \in H_{1}} h^{2}=\ell(z)^{2}+\frac{21}{4}
$$

where

$$
\begin{equation*}
\ell(z)=\frac{(z-2)\left(z-\frac{1}{2}\right)(z+1)}{z(z-1)} \tag{1}
\end{equation*}
$$

More on $\ell(z)$
$\ell(z)$ is related to the classical j-invariant $j(\lambda)$ of the general elliptic curve in Legendre form

$$
Y^{2}=X(X-1)(X-\lambda)
$$

Indeed,

$$
j(\lambda)=2^{8} \frac{\left(\lambda^{2}-\lambda+1\right)^{3}}{\lambda^{2}(\lambda-1)^{2}}=256 \ell(\lambda)^{2}+1728
$$

Polynomials in $\mathcal{C}_{1} \cap \mathcal{C}_{3}$

With the help of $\ell(z)$ we can describe $\mathcal{C}_{1} \cap \mathcal{C}_{3}$:
Theorem
Let P be a polynomial of degree at least 3. Then $P \in \mathcal{C}_{1} \cap \mathcal{C}_{3}$ if and only if P is irreducible and $P(z)$ or $P(-z)$ is given by

$$
(R z)^{2 n}(z-R)^{2 n} Q\left(\ell(z / R)^{2}\right)
$$

for some positive $R \in \mathbb{Q}$ and monic irreducible polynomial $Q(z) \in \mathbb{Q}[z]$ of degree n that has a negative real root.
Furthermore, $r= \pm R / 2$.

Polynomials in $\mathcal{C}_{2} \cap \mathcal{C}_{3}$

Theorem
Let P be a polynomial of degree at least 3 . Then $P \in \mathcal{C}_{2} \cap \mathcal{C}_{3}$ if and only if P is irreducible and has the form

$$
P(z)=(R z)^{2 n}\left(z^{2}+R^{2}\right)^{n} Q(-i \ell(i z / R)) Q(i \ell(-i z / R))
$$

for some positive $R \in \mathbb{Q}$ and monic irreducible polynomial $Q(z) \in \mathbb{Q}[z]$ of degree n that has a nonzero real root. Furthermore, $r=R / 2$.

Another group of Möbius transformations

Lemma

The group H of Möbius transformations generated by $1-z$ and $\frac{\frac{i}{2} z+\frac{3}{4}}{z+\frac{i}{2}}$, is given by

$$
\begin{aligned}
H= & \left\{z, \frac{2 i z-3}{-4 z+2 i}, \frac{(-4+2 i) z+1}{-4 z+4+2 i}, \frac{(-2+4 i) z-i}{4 i z-2-4 i}, \frac{-2 z+3 i}{4 i z-2},\right. \\
& \frac{-2 i z-3+2 i}{4 z-4+2 i}, \frac{(4-2 i) z-3+2 i}{4 z+2 i}, \frac{(-2+2 i) z-1-3 i}{(-4+4 i) z+2-2 i}, \\
& \left.\frac{(2+2 i) z+1-3 i}{(4+4 i) z-2-2 i}, \frac{-2 i z+3+2 i}{-4 z+4+2 i}, \frac{(-4-2 i) z+3+2 i}{-4 z+2 i}, 1-z\right\} .
\end{aligned}
$$

Also,

$$
\sum_{h \in H} h^{2}=\frac{v^{3}+3 v^{2}+36 v+12}{v^{2}+4}
$$

where $v=w-1 / w$ with $w=\frac{1}{2}(2 z-1)^{2}$.

Polynomials in $\mathcal{C}_{1} \cap \mathcal{C}_{2} \cap \mathcal{C}_{3}$

Theorem

Let P be a polynomial of degree at least 3. Then $P \in \mathcal{C}_{1} \cap \mathcal{C}_{2} \cap \mathcal{C}_{3}$ if and only if P is irreducible and $P(z)$ or $P(-z)$ is given by

$$
\begin{aligned}
& (R z / 2)^{4 n}(z-R)^{4 n}\left(\left(z^{2}+R^{2}\right)\left(z^{2}-2 R z+2 R^{2}\right)\left(2 z^{2}-2 R z+R^{2}\right)\right)^{2 n} \\
& \quad \times Q\left(s\left(\frac{1}{2}(2 z / R-1+i)^{2}\right)\right) Q\left(s\left(\frac{1}{2}(2 z / R-1-i)^{2}\right)\right)
\end{aligned}
$$

for some positive $R \in \mathbb{Q}$ and monic irreducible polynomial $Q(z) \in \mathbb{Q}[z]$ of degree n that has a real root, where

$$
s(w)=\frac{v^{3}+3 v^{2}+36 v+12}{v^{2}+4}, \quad v=w-1 / w .
$$

In this case, P has a root with rational modulus R.
Furthermore $r= \pm R / 2$.

An example of $P \in \mathcal{C}_{1} \cap \mathcal{C}_{2} \cap \mathcal{C}_{3}$

Example

Let $Q(z)=z$, and so, using the theorem above,

$$
\begin{aligned}
P(z) & =16 z^{24}-192 z^{23}+1200 z^{22}-5104 z^{21}+16644 z^{20}-44472 z^{19} \\
& +100856 z^{18}-197028 z^{17}+333669 z^{16}-492808 z^{15}+640944 z^{14} \\
& -743916 z^{13}+780398 z^{12}-743916 z^{11}+640944 z^{10}-492808 z^{9} \\
& +333669 z^{8}-197028 z^{7}+100856 z^{6}-44472 z^{5}+16644 z^{4} \\
& -5104 z^{3}+1200 z^{2}-192 z+16
\end{aligned}
$$

has four roots with real part $\frac{1}{2}$, two roots with imaginary part $\frac{1}{2}$ and four roots of modulus 1 . It is irreducible, and $P \in \mathcal{C}_{1} \cap \mathcal{C}_{2} \cap \mathcal{C}_{3}$.

