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We evaluate gcd∞

m=1
a(nm) for a certain family of sequences, which include the

Fourier coefficients of some modular forms. In particular, we compute gcd∞

m=1
τ(nm) for

all positive integers n for Ramanujan’s τ -function. As a consequence, we obtain many
congruences – for instance that τ(1000m) is always divisible by 64000. We also determine,
for a given prime number p, the set of n for which τ(pn−1) is divisible by n. Further, we
give a description of the set {n ∈ N : n divides τ(n)}.

We also survey methods for computing τ(n). Finally, we find the least n for which
τ(n) is prime, complementing a result of D.H. Lehmer, who found the least n for which
|τ(n)| is prime.
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1. Introduction

This paper has four main aims. In Section 2 we evaluate the gcd of every nth term

of an integer sequence belonging to a certain family. This family includes those

sequences coming from modular forms. In Section 3, we recall a recently-described

method for specifying increasing sequences of integers. The method involves de-

scribing, for each number n of the sequence, the multiplying set Pn of those primes

that can multiply n to produce another member of the sequence. Numbers in the

sequence that cannot be produced in this way from smaller numbers of the sequence
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are called basic. This method is applied to two increasing sequences coming from

modular forms (Theorems 3.3 and 3.5). In Section 7, we survey methods for com-

puting Ramanujan’s τ -function, while in Section 8 we find the smallest n for which

τ(n) is prime. Sections 4 contains the preliminaries for the proofs of the Theorems.

The proofs themselves are in Section 5.

2. Sequences from modular forms

In this section we discuss sets of integers that arise when one considers divisibility

properties of certain Fourier coefficients of a modular form. Our first theorem, how-

ever, can be stated for more general sequences having certain special properties.

Our specific application will be to sequences of coefficients of modular forms.

2.1. The greatest common divisor of every nth term of special

sequences

Suppose that k ∈ N is given, and that (a(n))n∈N is a sequence of integers, not all

0, with the following properties:

a(p) = 0 or pk ∤ a(p) for each prime p; (2.1)

a(nm) = a(n)a(m) for n, m ∈ N with gcd(n, m) = 1; (2.2)

a(pr+1) = a(p)a(pr) − p2k−1a(pr−1) for each prime p and r ≥ 1. (2.3)

Note that these properties immediately imply that a(1) = 1, as is seen by

choosing a(n) 6= 0 and m = 1 in (2.2). Also, (a(n))n∈N is completely determined

by its values a(p) at primes p. A prime p is called nonordinary for a if p | a(p).

Further, if a sequence satisfies

|a(p)| ≤ 2pk− 1

2 (2.4)

for a prime p > 3, then, as is easily seen, it satisfies (2.1) for that particular p. Thus

it is sufficient for (2.1) to be true for all primes p that it holds for p = 2 and p = 3,

and that (2.4) holds for primes p ≥ 5.

Now for p prime and a(p) 6= 0 define fp ≥ 0 by pfp ||a(p). Also, define

C(n) =
∞

gcd
m=1

a(nm),

the gcd of the a(nm) for m ∈ N. Then we can state our first result.

Theorem 2.1. Suppose that the sequence (a(n))n∈N satisfies equations (2.1), (2.2)

and (2.3). Then, writing n =
∏

p pep , we have

C(n) =
∏

p|n
a(p) 6=0

pepfp ·
∏

p|n
a(p)=0

pe′

p(2k−1), (2.5)

where e′p = ⌊ ep+1
2 ⌋.
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2.2. Modular forms

Let k be a positive integer. A function f : H → C is called a modular form of

weight 2k if it is holomorphic in H = {z ∈ C : ℑ(z) > 0} as well as at ∞ and

satisfies f(z + 1) = f(z) and f(−1/z) = z2kf(z). From the periodicity we have a

Fourier series expansion f(z) =
∑∞

n=0 anqn for f , where q = e2πiz. If a0 = 0 (i.e.,

f(∞) = 0) then f is called a cusp form.

For each n ∈ N, there is an operator T (n) called the Hecke operator that maps

modular forms to modular forms and cusp forms to cusp forms. If there exists a

modular form f such that

T (n)f = λ(n)f, for each n ≥ 1,

then f is called a Hecke eigenform, with eigenvalues (λ(n))n∈N.

Let f(z) =
∑∞

n=1 anqn be a cuspform, and Hecke eigenform of weight 2k, k > 0,

with a1 = 1. Then it is known [12, p. 102] that the sequence (an)n∈N satisfies (2.2),

(2.3) and (2.4).

Next, define Ramanujan’s τ -function for z ∈ H by

∆(z) = q

∞
∏

j=1

(1 − qj)24 =

∞
∑

n=1

τ(n)qn. (2.6)

The function (2π)12∆(z) is the discriminant function for the complex elliptic curve

C/〈1, z〉. For k ≥ 2 define (see Serre [12, p. 92])

E2k(z) = 1 − 4k

B2k

∞
∑

n=1

σ2k−1(n)qn,

where B2k is the (2k)-th Bernoulli number, and σ2k−1(n) =
∑

d|n d2k−1. Then

([12, p. 105]) E2k(z) is a modular form of weight 2k. Also, because 4k/B2k is

an integer for 2k = 4, 6, 8, 10 and 14, the cusp forms ∆12 = ∆, ∆16 = ∆E4,

∆18 = ∆E6, ∆20 = ∆E8, ∆22 = ∆E10 and ∆26 = ∆E14 all have integer coefficients.

They are known to be Hecke eigenforms, of weights 12, 16, 18, 20, 22, 26, respectively.

Put ∆2k =
∑∞

n=1 τ2k(n)qn so that, in particular, τ12(n) = τ(n). Then for n ∈ N

and 2k = 12, 16, 18, 20, 22, 26, the coefficients τ2k(n) are integers, with τ2k(1) = 1.

Thus the coefficient sequences of these cusp forms all satisfy (2.2), (2.3) and (2.4).

This last bound was a conjecture of Ramanujan for the τ -function, generalised

by Petersson (The Ramanujan-Petersson Conjecture), proved by Deligne [1] as a

consequence of his proof of the Weil conjectures. (See also the Math Review by

Nicholas Katz of this paper, where the connection between the τ -function and the

Weil conjectures is clearly outlined.) Furthermore, from the tables in Gouvêa [4],

all the τ2k satisfy (2.1) for p = 2 and 3 and hence, by the remark in Section 2.1

above, for all primes p. This gives the following corollary.

Corollary 2.2. Suppose that C2k(n) = gcd∞
m=1 τ2k(nm), where 2k ∈ {12, 16, 18, 20,
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22, 26}, and n =
∏

p pep . Then

C2k(n) =
∏

p|n
τ2k(p) 6=0

pepfp ·
∏

p|n
τ2k(p)=0

pe′

p(2k−1), (2.7)

where e′p = ⌊ ep+1
2 ⌋.

Note that C2k(n) is a product of nonordinary primes for τ2k. Of course its for-

mula would be simpler if, as suspected, τ2k(p) is never 0. Indeed, Atkin conjectured

that, for any ε > 0, |τ2k(p)| ≫ε p(k−3)/2−ε on simple heuristic grounds – see Serre

[13, p. 15].

Corollary 2.3. For n, m ∈ N and 2k ∈ {12, 16, 18, 20, 22, 26} with τ2k(n) 6= 0 we

have

τ2k(nm) ≡ 0 (mod
∏

p|n
pepfp).

2.3. Nonordinary primes for τ

We denote by Pnon the set of so-called nonordinary primes for τ(n), namely those

primes p for which τ(p) is divisible by p. It has been proved that there are only six

primes less than 1010 in Pnon, namely, 2, 3, 5, 7, 2411, 7758337633 – see [3,9]. Using

the heuristic that τ(p) has ‘probability’ 1/p of being divisible by p, and the fact that
∑

p prime
1
p is divergent, one might expect from the converse of the Borel-Cantelli

Lemma that Pnon is an infinite (albeit very sparse) set [9]. On the other hand,

the convergence of
∑

p prime
1
p2 suggests that there are only finitely many primes

p for which τ(p) is divisible by p2. For a nonordinary prime p with τ(p) 6= 0, we

have fp > 0 where, as above, pfp ||τ(p). Then for the six known nonordinary primes

f2 = 3, f3 = 2, while fp = 1 for the other four known nonordinary primes – see [9]

for the factorization of τ(7758337633). Indeed, it may be that 2 and 3 are the only

nonordinary primes p with fp > 1.

For example, Corollary 2.2 shows that (2k = 12), τ(1000m) is divisible by 23·3 ·
53·1 = 64000 for all m, while τ(512m) is divisible by 29·3 = 227.

3. The subsequence of an increasing sequence that is divisible by

its index

3.1. Describing sequences

To start with, we describe one way of specifying a strictly increasing sequence of

positive integers, S say. This was first used in [14]. For each s ∈ S we define a set

Ps(S), the multiplying set of s, to be the set of primes p for which ps ∈ S. Further,

we say that an element s of S is basic if there is no prime p such that s/p is in

S. Denote the set of basic elements of S by B(S). The smallest element of S is

clearly basic, so that B(S) is always nonempty. It is clear that then S is completely
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specified by the sets B(S) and {Ps(S)}s∈S . It can be visualised as an edge-labelled

directed graph whose vertices are the elements of S, with a directed edge s
p−→ s′

from vertex s to vertex s′ when s′/s is a prime p, with p the label for that edge.

One can place the vertices at levels 0, 1, 2, . . . , with the basic elements at level 0.

For k ≥ 1 the elements of S at level k are those elements of S that are a product

bp1p2 . . . pk, where b ∈ B(S), p1 ∈ Pb(S), p2 ∈ Pbp1
(S),. . . , pk ∈ Pbp1p2...pk−1

(S).

(One should place a vertex s at the lowest possible level, by choosing b so that in

the representation s = bp1p2 . . . pk the level k is minimised.) One obtains a minimal

spanning tree for this digraph by choosing, for a given nonbasic s′, the unique edge

pointing to s′ as the edge s
p−→ s′, where p is the largest prime factor of s′ with the

property that p ∈ Ps for some s ∈ S. One advantage of this way of describing a set

S is that, for a given bound X , there is an obvious algorithm for finding all elements

of S that do not exceed X . The algorithm uses two sets U and V , initialised by

U := ∅ and V := {b ∈ B(S) : b ≤ X}. Then repeat the following until V = ∅:

• U := U ∪ V and then V := {np : n ∈ V, p ∈ Pn and p ≤ X/n}.

Let P denote the set of all primes.

Example 3.1. Take S to be the set of squarefree integers. Then 1 is the only basic

element, and for each n ∈ S the set Pn(S) = {p ∈ P : p ∤ n}.

Example 3.2. Take S to be the set of nonsquarefree integers. Then B(S) = {p2 :

p ∈ P}, and for each n ∈ S the set Pn = P .

The above description of our set S depends for its usefulness on the structure

of the sets B(S) and Pn(S). For instance, for S the set of all squares, all elements

of S are basic and all Pn(S) are empty, which tells us little about S.

3.2. The operator I: indices n that divide the nth sequence

element

Given an integer sequence S = (s(n))n∈N, we define a new, increasing sequence IS

by

IS = {n ∈ N : n divides s(n)}.

3.3. The sequence Iτ

Our next result concerns the sequence Iτ of those n ∈ N for which n divides τ(n).

Theorem 3.3. The sequence B(Iτ) of basic elements of Iτ is given by

B(Iτ) = {1, 4147, 14191, 23276, 28957, 29095, 40733, 52371, 186208, 552343,

625807, 727375, 867031, 983411, . . .}.
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For n in Iτ , the set Pn(Iτ) is the set of primes p with the following property:
{

p | τ(n) or p | τ(p) if p ∤ n;

n′ | τ(n′) and
(

pe+1 | τ(n′) or p | τ(p)
)

if p | n.

Here n = n′pe, where p ∤ n′.

The elements of B(Iτ) listed are all those that are at most 106. The number 3246

of elements of Iτ that are at most 106 is much bigger than the 14 basic elements

in that range, given above. We have, however, no reason to suppose that the set

B(Iτ) is finite.

A table of τ(n) for n ≤ 106 is available at

http://www.maths.ed.ac.uk/∼chris/tauout.out
More generally, one can define I(j)τ to be the set of those n ∈ N for which

nj divides τ(n). Then I(2)τ has 333 elements not exceeding 106, of which three,

1, 66339 and 329280, are basic, while I(3)τ has 33 elements not exceeding 106, of

which two, 1 and 276480, are basic. The number 1 is the only element of I(4)τ not

exceeding 106.

3.4. The sequence IC2k

Now, for 2k ∈ {12, 16, 18, 20, 22, 26}, let IC2k be the set of all n ∈ N for which n

divides C2k(n), defined by (2.7). Clearly IC12 ⊂ Iτ , since C12(n) | τ(n).

Corollary 3.4. The sequence IC2k for 2k ∈ {12, 16, 18, 20, 22, 26} consists of all

numbers that are a product only of (powers of) nonordinary primes for τ2k.

3.5. The divisibility by their indices of Lucas sequences coming

from (a(n))n∈N

Given integers P and Q, let α and β be the roots of the equation

x2 − Px + Q = 0.

Then the well-known Lucas sequence of the first kind L(P, Q) = (un)n≥0 is given by

u0 = 0, u1 = 1 and un+2 = Pun+1 −Qun for n ≥ 0, or explicitly by Binet’s formula

un =
αn − βn

α − β

when D = (α − β)2 = P 2 − 4Q 6= 0, and un = nαn−1 when D = 0.

Given a prime p, denote by A(p, a) the sequence (a(pn−1))n∈N = {1, a(p), . . .}.
From (2.3) we see that this is the Lucas sequence L(τ(p), p2k−1). Our next result

describes the sequence

IA(p, a) = {n ∈ N : n divides a(pn−1)}
in the manner given in Section 3.1 above.

Theorem 3.5. Let p be any prime. The only basic elements of IA(p, a)) are
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• 1 and 6 if a(p) ≡ 3 (mod 6), p 6= 2 or 3;

• 1 and 12 if a(p) ≡ ±1 (mod 6), p ≡ −1 (mod 6);

• 1 only, otherwise.

For n in IA(p, a)), the set Pn(IA(p, a))) consists of the set of primes dividing

a(pn−1)D, where D = a(p)2 − 4p2k−1.

4. Preliminaries for the proofs

4.1. Divisibility of terms in Lucas sequences by their index

For all pairs (P, Q), let IL(P, Q) be the set of all n ≥ 1 for which n divides un. The

following are the propositions which we shall be using in the course of this note.

Proposition 4.1 (Smyth [14]).

(i) For n ∈ IL = IL(P, Q), the set Pn(IL) is the set of primes dividing unD.

(ii) Every element of IL can be written in the form bp1p2 · · · pr for some r ≥ 0,

where b ∈ B(IL) is basic and, for i = 1, 2, · · · r, the number bp1p2 · · · pi−1 are

also in IL, and pi is in Pbp1p2···pi−1
(IL)

(iii) The basic elements of IL are

• 1 and 6 if P ≡ 3 (mod 6), Q ≡ ±1 (mod 6);

• 1 and 12 if P ≡ ±1 (mod 6), Q ≡ −1 (mod 6);

• 1 only, otherwise.

Note that the primes pi in (ii) need not be distinct.

Proposition 4.2 ([14]). If n ∈ IL(P, Q) and all prime factors of m divide unD,

then nm ∈ IL(P, Q).

Proposition 4.3 ([14]). Let n ∈ IL(P, Q), n > 1, with pmax its largest prime

factor. Then, except in the case that P is odd and n is of the form 2l · 3 for some

l ≥ 1, we have n/pmax ∈ IL(P, Q).

4.2. A lemma needed for the proofs

Lemma 4.4. Let (a(n))n∈N be a sequence satisfying (2.1), (2.2) and (2.3), and let

p and q be primes.

(i) If q 6= p and q | a(pℓ) for some ℓ ≥ 1, then q ∤ a(pℓ−1) and q ∤ a(pℓ+1);

(ii) If p | a(pℓ) for some ℓ ≥ 1 then p | a(p);

(iii) If q | a(n) then either

• q | n and q | a(q)

or

• q ∤ a(nm) for some m ∈ N with m | n;

(iv) If a(p) 6= 0 and pf ||a(p) then pef ||a(pe).

(v) If a(p) = 0 then for all r ≥ 0 we have a(p2r) = (−1)rp(2k−1)r and a(p2r+1) = 0.
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Proof.

(i) Take q 6= p with q | a(pℓ). Suppose that q | a(pℓ−1), and that r is the greatest

index in {0, 1, . . . , ℓ − 2} such that q ∤ a(pr). Then ℓ ≥ 2, as q ∤ a(1). Fur-

ther, because q | a(pr+1), we have q | a(pr+2) and so, using (2.3), obtain a

contradiction. Hence q ∤ a(pℓ−1) and so, using (2.3) again, we have q ∤ a(pℓ+1).

(ii) From a(1) = 1 and (2.3) we have by induction that

a(pr) ≡ a(p)r (mod p).

Hence if p | a(pr) then p | a(p).

(iii) Assume q | a(n), with n =
∏

p pep say, so that q | a(pep) for p in a nonempty

set, Qq say, of primes. If q ∈ Qq we have q | n and q | a(q) by (ii). If q 6∈ Qq

then, by (i), q ∤ a(pep+1). Hence q ∤ a(nm) with m =
∏

p∈Qq
p.

(iv) Suppose pf ||a(p), where f ≥ 0. From (2.1) we know that f < k. We use

induction on e. The result is true for e = 0 (as a(1) = 1) and for e = 1. Now take

e ≥ 1 and assume that the result is true for e and e− 1. Now p(e+1)f ||a(p)a(pe)

and p2k−1+(e−1)f ||p2k−1a(pe−1), with 2k−1+(e−1)f = (e+1)f +2k−1−2f >

(e + 1)f. Hence, from (2.3) we have p(e+1)f ||a(pe+1), so that the result is true

for e and e + 1. This completes the induction.

(v) This comes immediately from a(1) = 1, a(p) = 0 and a(pr+2) = −p2k−1a(pr)

from (2.3).

5. Proofs

5.1. Proof of Theorem 2.1

Proof. Suppose that p | C(n). If p ∤ n then by Lemma 4.4(iii), p ∤ a(nm), for some

m | n, which contradicts p | C(n). If p ∤ a(p), then by Lemma 4.4(ii), p ∤ a(pep).

Since p | C(n), we get p | a(n/pep). By Lemma 4.4(iii) there exists m | (n/pep) such

that p ∤ a(nm/pep). Therefore, p ∤ a(nm), which contradicts p | C(n). Hence we

have proved, if p | C(n) then p | n and p | a(p).

Note that, given n ∈ N, there is always a m0 ∈ N such that a(nm0) 6= 0.

Specifically, we can take m0 =
∏

pe||n:
a(pe)=0

p, and use Lemma 4.4(v). Thus not all the

a(nm) are 0, so that the definition of C(n) makes sense. Also, note that a(nm) = 0

for all m with m0 ∤ m, since, for such m, pe||nm for some prime p with a(pe) = 0.

Hence C(nm0) = C(n) and so, by replacing n by nm0 in what follows, we can

assume that a(n) 6= 0. Note that this new n has the same values of ep, as the old

one for a(pe) 6= 0, and the values ep + 1 in place of ep, when a(pe) = 0.

We distinguish two cases.

(a) The case a(p) 6= 0.

By Lemma 4.4(iv), we get pepfp ||a(pep), where pfp ||a(p). Hence pepfp | C(n).

If p | a(n/pep) then by Lemma 4.4(iii), there exists m | (n/pep) such that

p ∤ a(nm/pep). Therefore, pepfp+1 ∤ a(nm). Hence we get pepfp ||C(n).
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(b) The case a(p) = 0.

By Lemma 4.4(v), p(2k−1)e′

p | a(pep). Suppose ep is odd. Then

p(2k−1)e′

p ||a(pep+1). By Lemma 4.4(v), p(2k−1)e′

p | C(n). If p | a(n/pep) then by

Lemma 4.4(iii), p ∤ a(nm/pep), for some m | (n/pep). Therefore, p(2k−1)e′

p+1 ∤

a(nmp). Therefore, p(2k−1)e′

p ||C(n)

If ep is even then p(2k−1)e′

p ||a(pep). By Lemma 4.4(v), p(2k−1)e′

p | C(n). As

in last paragraph we can show, p(2k−1)e′

p + 1 ∤ a(nm), for some m | (n/pep).

Hence again p(2k−1)e′

p ||C(n).

5.2. Proof of Theorem 3.3

Proof. Take n ∈ Iτ , so that n | τ(n). To find the primes p ∈ Pn = Pn(Iτ), i.e.,

those for which np | τ(np), we distinguish three cases:

(a) The case p ∤ n. Then from (2.2) we have

τ(np) = τ(n)τ(p),

so that if p | τ(np) then p | τ(n) or p | τ(p).

Conversely, if p | τ(n) or p | τ(p) then p | τ(np) and, since n | τ(n) and

p ∤ n, we have that np | τ(n) if p | τ(n), while np | τ(n)τ(p) if p | τ(p). So

np | τ(n)τ(p) = τ(np) in either case.

(b) The case e ≥ 1, n = n′pe, p ∤ n′, p | τ(p). Then τ(n) = τ(n′)τ(pe). By

Lemma 4.4(iv),(v), it follows that pe | τ(pe), and as n ∈ Iτ, n′ | τ(n′)τ(pe).

But if n′ ∤ τ(n′) then we have q | τ(pe) for some q | n′ which, by Lemma

4.4(i), gives q ∤ τ(pe+1) and hence n′ ∤ τ(np). So we must have n′ | τ(n′). Then

np = n′pe+1 | τ(n′pe+1) = τ(n′)τ(pe+1), since pe+1 | τ(pe+1), again by Lemma

4.4(iv).

Conversely, suppose that n′ | τ(n′). Then pe+1 | τ(pe+1). Therefore,

np = n′pe+1 | τ(n′)τ(pe+1) = τ(np). Hence p ∈ Pn.

(c) The case e ≥ 1, n = n′pe, p ∤ n′, p ∤ τ(p). So pe | τ(n′)τ(pe), giving

pe | τ(n′) by Lemma 4.4(ii). We assume that np | τ(np) = τ(n′)τ(pe+1). As in

Case (b) this implies that n′ | τ(n′). Also, since p ∤ τ(pe+1) by Lemma 4.4(ii),

we in fact have pe+1 | τ(n′).
Conversely, suppose n′ | τ(n′) and pe+1 | τ(n′). Since p ∤ n′, we have np =

n′pe+1 | τ(n′) and τ(n′) | τ(n′pe+1) = τ(np). Hence p ∈ Pn.

5.3. Proof of Corollary 3.4

Proof. Since C2k(n) is a product of nonordinary primes for τ2k, every element

of IC2k) must also be a product of nonordinary primes for τ2k. Let n be such a

product, say n =
∏

p pep , where pfp ||τ2k(p) with all fp ≥ 1. We need to show that

pep | C2k(n) for all such p. This is immediate from (2.7) when τ2k(p) 6= 0. For

τ2k(p) = 0, we have

ep ≤ 2e′p < (2k − 1)e′p,
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as 2k ≥ 12.

5.4. Proof of Theorem 3.5

Proof. The proof is a straightforward application of Proposition 4.1. Fix a prime

p and consider the sequence un = a(pn−1) for n ≥ 1. So u1 = a(1) = 1, u2 = a(p),

u3 = a(p2), . . . .

Therefore, we have from (2.3) that

un+1 = a(p)un − p2k−1un−1 for n > 1. (5.1)

Put P = a(p), Q = p2k−1 so that for n ≥ 3

un = Pun−1 − Qun−2.

Hence the sequence (un)n≥1 is a Lucas sequence of the first kind with these param-

eters P , Q, and with D = P 2 − 4Q = a(p)2 − 4p2k−1. Also p2k−1 ≡ ±1 (mod 6)

except for p = 2 or 3, and p2k−1 ≡ −1 (mod 6) if and only if p ≡ −1 (mod 6).

Hence Theorem 3.5 follows straight from Proposition 4.1(iii).

6. Example

Example 6.1. The set IA(p, τ). We take a(n) = τ(n), Ramanujan’s τ -function.

Note that D = τ(p)2 − 4p11. Since τ(n) ≡ σ11(n) (mod 28) for all positive odd

integers n, we see τ(p) is even for any odd prime p, and so D is even. Since τ(2) =

−24, τ(p) is even for every prime p. Therefore 2 ∈ P1(IA(p, τ)), for any choice of

p. Furthermore, by Theorem 4.3, the only basic element is 1. Note that p | D if and

only if p | τ(p), and so p ∈ IA(p, τ) if and only if p is nonordinary for τ . Also, 4.1(i)

P1(IA(p, τ)) contains precisely the prime factors of τ(1)D = D.

Now restricting to the particular case p = 2, we have D = −7616 = −26 · 7 ·
17. Hence P1(IA(2, τ)) = {2, 7, 17}. Therefore, by Proposition 4.2 it follows that

2k7l17m ∈ Sτ for any choice of k, l, m ∈ N ∪ {0}. One can easily observe using

Proposition 4.3 that, if n ∈ IA(2, τ) then the minimal prime divisor of n has to

belong to the set {2, 7, 17}.
Proposition 4.3 is useful in the sense that if we know n ∈ IA(2, τ) and neither

2 nor 7 divides n, then n is not divisible by any prime q with 7 < q < 17.

7. Computation of τ(n)

The efficient computation of τ(n) is an interesting question. To compute τ(n) for a

particular value of n, one way is to use Niebur’s formula [10]

τ(n) = n4σ(n) − 24

n−1
∑

k=1

k2(35k2 − 52kn + 18n2)σ(k)σ(n − k)
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for all n ≥ 1. Here σ(n) is the sum of the divisors of n. We remark that, by averaging

the summand over k and n − k, we readily get the formula

τ(n) = n4σ(n)−M −24

⌊(n−1)/2⌋
∑

k=1

(

n4 + 70k2(n − k)2 − 20n2k(n − k)
)

σ(k)σ(n−k),

having only half the number of terms of Niebur’s formula. Here

M =

{

(

9
2

)

n4σ
(

n
2

)2
if n is even;

0 if n is odd.

For formulas like Niebur’s for computing τ2k(n) for 2k = 16, 18, 20, 22 and 26, see

Gouvêa [4].

When composing a table of τ(n), for 1 ≤ n ≤ N say, one can use Ramanujan’s

first recursion [11, p. 152]: τ(1) = 1 and

τ(n) = − 24

n − 1

n−1
∑

k=1

σ(n − k)τ(k),

for n > 1. A more efficient (O(N3/2)) method is to use Ramanujan’s second recur-

sion.

Lemma 7.1 ([11, p. 152] – see also D. H. Lehmer [6, p. 145]). We have

τ(1) = 1 and, for n > 1,

τ(n) =
1

n − 1

⌊√2n− 1

2⌋
∑

j=1

(−1)j(2j + 1)
(

9
2j(j + 1) − n + 1

)

τ
(

n − 1
2j(j + 1)

)

. (7.1)

We give some more details of the proof, since Ramanujan and Lehmer gave only

the essential (cunning!) idea.

Proof. Write

f(x) = ∆(x)/x =

∞
∏

k=1

(1 − xk)24 =

∞
∑

n=0

τ(n + 1)xn,

and

f3(x) =
∞
∏

k=1

(1 − xk)3 =
∞
∑

n=0

(−1)n(2n + 1)xn(n+1)/2,

the latter equality being Jacobi’s identity. Then on logarithmically differentiating

the identity f(x) = (f3(x))8 we obtain f ′(x)f3(x) = 8f(x)f ′
3(x). Next, comparing

the coefficients of xn of both sides, we readily obtain (7.1), albeit with j satisfying

j ≥ 1 and j(j + 1)/2 ≤ n− 1. While the latter inequality gives j ≤ 1
2 (
√

8n − 7− 1),

we can replace this bound by the slightly simpler one
√

2n − 1
2 , since there are no

integers in the half-open interval (1
2 (
√

8n− 7 − 1),
√

2n − 1
2 ].
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7.1. Computation of τ(p)

Lygeros and Rosier [9] gave an algorithm of similar order, which uses Hurwitz

class numbers to compute τ(p) for p prime. We reproduce their impressively short

PARI/GP code from [9] here:

tau(p) = {
tmax=floor(2*sqrt(p)); s10=0;

for (t=1, tmax, s10+=(t^10)*qfbhclassno(4*p-t*t));

return (p+1)*(42*p^5-42*p^4-48*p^3-27*p^2-8*p-1)-s10;

}

Recently, in a major breakthrough, Edixhoven et al. [2] have described how to

compute τ(p) in polynomial time (i.e., in time bounded by a power of log p) for p

prime.

8. The least n for which τ(n) is prime

D.H. Lehmer [8] in 1965 claimed that the smallest n for which τ(n) is prime is for

n0 = 63001 = 2512, with τ(n0) = p0, where p0 = 80561663527802406257321747

is prime. Actually n0 is only the smallest value of n for which |τ(n)| is prime,

because in fact τ(n0) = −p0. In his proof he worked to exclude the possibility that

τ(n0) = −2, so it is clear that he was in fact studying the primality of |τ(n)|. His

method can readily be used to solve the original problem, showing that the smallest

n for which τ(n) is prime is for n1 = 474 = 4879681, with τ(n1) = p1, where

p1 = 4705942878159923138262416607648599521. Lehmer shows that the least n for

which τ(n) is an odd prime is for n an even power of an odd prime. Thus we only

needed to search through τ(n) for such increasing n until we encountered a prime.

To show that there is no smaller n for which τ(n) = 2, Lehmer shows that any

such n must be a prime p ≡ 1 (mod 32 · 691). There are no primes of this form less

than 63001, which is all Lehmer needs for his proof. We, however, need to extend

this to primes less than 474. To do this we make use of some extra congruences.

Firstly, we use the Lehmer’s congruence τ(n) ≡ nσ9(n) (mod 7) [7], [15, p.4] to

give

2 = τ(p) ≡ pσ9(p) ≡ p(1 + p9) ≡ p
(

1 +
(p

7

))

(mod 7),

giving p ≡ 1 (mod 7). Finally, we use the congruence τ(n) ≡ σ11(n) (mod 211) for

n ≡ 1 (mod 8) [5], [15, p.4] to give

2 = τ(p) ≡ σ11(p) ≡ 1 + p11 (mod 211),

so that p11 ≡ 1 (mod 211). Combining this with p210 ≡ 1 (mod 211) (Euler) we get

p = p210−11·93 ≡ 1 (mod 211). Hence p ≡ 1 (mod 7 · 691 · 211). Since 7 · 691 · 211 >

474, we have the result.
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