A DETERMINANT ASSOCIATED TO AN INTEGER LINEAR EQUATION

CHRIS SMYTH

Suppose that $n \geq 2$ and we are given a nonzero n-tuple $\underline{a}=\left(a_{1}, \ldots, a_{n}\right)$ of integers with $\operatorname{gcd}\left(a_{1}, \ldots, a_{n}\right)=g$. We take a basis $\underline{u}_{2}, \ldots, \underline{u}_{n}$ for the sublattice in \mathbb{Z}^{n} of the integer solutions to the equation $\sum_{i=1}^{n} a_{i} x_{i}=0$. We define the determinant $D_{\underline{a}}$ to be the determinant $\operatorname{det}\left(\left(\underline{a}, \underline{u}_{2}, \ldots, \underline{u}_{n}\right)^{T}\right)$. It is clear that the modulus of $D_{\underline{a}}$ is independent of the choice of this basis.

Our result is as follows.
Theorem 1. We have $\left|D_{\underline{a}}\right|=\frac{1}{g} \sum_{i=1}^{n} a_{i}^{2}$.
Proof. First of all, we note that we can assume that $g=1$, as the result for arbitrary g then follows easily. We can also assume that all the a_{i} are nonnegative, as again the general case then follows easily. We use strong induction on $m=\min \left(a_{1}, \ldots, a_{n}\right)$. Our induction hypothesis is that there is an $\varepsilon= \pm 1$ such that for $i=1, \ldots, n$ the cofactor A_{i} of the i th element a_{i} of the top row of $D_{\underline{a}}$ is equal to εa_{i}. Then the result follows on expanding $D_{\underline{a}}$ by its top row: $D_{\underline{a}}=\sum_{i=1}^{n} a_{i} A_{i}$.

For the base case $m=1$, we can assume without loss of generality that $a_{1}=1$. Then $x_{2}, \ldots, x_{n} \in \mathbb{Z}$ can be chosen arbitrarily, giving $x_{1}=-\sum_{i=1}^{n} a_{i} x_{i}$. Thus we can take as a basis of solutions the vectors

$$
\underline{u}_{j}=\left(-a_{j}, 0, \ldots, 0,1,0, \ldots, 0\right)(j=2, \ldots, n),
$$

where the ' 1 ' is in the j th place. Hence we see that $A_{1}=1=a_{1}$ while for $j \geq 2$ we have

$$
A_{j}=(-1)^{j-1}\left|\begin{array}{ccccccccc}
-a_{2} & 1 & & & & & & & \\
-a_{3} & & 1 & & & & & & \\
\cdot & & & \cdot & & & & & \\
\cdot & & & & \cdot & & & & \\
\cdot & & & & \cdot & & & & \\
-a_{j-1} & & & & & 1 & & & \\
-a_{j} & & & & & 1 & & & \\
-a_{j+1} & & & & & & 1 & & \\
\cdot & & & & & & & & \\
\cdot & & & & & & & & \\
\cdot & & & & & & & & \\
-a_{n} & & & & & & & & \\
\hline
\end{array}\right|
$$

Date: 11 July 2017.
2010 Mathematics Subject Classification. 11R06.
Key words and phrases. Linear equation, determinant.
where the blank entries are 0 . From this we readily obtain $A_{j}=a_{j}$. (So $\varepsilon=1$ for our particular choice of basis.)

Now assume that $m \geq 2$ and that the induction hypothesis holds for all \underline{a} with minimum element strictly less than m. Consider an integer vector \underline{a} with minimum element equal to m. Without loss of generality we can assume that $a_{1}=m$. Furthermore, since not all the a_{i} are divisible by m we can assume, again without loss of generality, that $a_{2}=k a_{1}+r$, where $1 \leq r<m$. Now consider our equation

$$
\begin{equation*}
a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n}=0 \tag{1}
\end{equation*}
$$

which we can write as

$$
\begin{equation*}
a_{1} x_{0}+r x_{2}+a_{3} x_{3}+\cdots+a_{n} x_{n}=0 \tag{2}
\end{equation*}
$$

where $x_{0}=x_{1}+k x_{2}$. Then, by the induction hypothesis, we can assume that for the vector $\underline{a}^{\prime}=\left(a_{1}, r, a_{3}, \ldots, a_{n}\right)$ that the i th cofactor A_{i}^{\prime} of $D_{\underline{a}^{\prime}}$ with respect to its top row is, for some $\varepsilon= \pm 1$, equal to $\varepsilon a_{i}(i \neq 2)$ and εr for $i=2$. Now, using $x_{1}=x_{0}-k x_{2}$, we see that for each basis solution $\underline{u}^{\prime}=\left(u_{0}, u_{2}, u_{3}, \ldots, u_{n}\right)$ of (2) there is a basis solution $\underline{u}=$ $\left(u_{0}-k u_{2}, u_{2}, u_{3}, \ldots, u_{n}\right)$ of (1). Thus the cofactors A_{i} of (1) are given by $A_{1}=A_{1}^{\prime}=\varepsilon a_{1}$, while for $j=3, \ldots, n$ we have $A_{j}=A_{j}^{\prime}$ again, obtained by adding k times the j th column of A_{j} to its first column. Finally, taking the signs of A_{1}^{\prime} and A_{2}^{\prime} into account, we have $A_{2}=A_{2}^{\prime}+k A_{1}^{\prime}=\varepsilon\left(r+k a_{1}\right)=\varepsilon a_{2}$. This proves the inductive step.

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3FD, Scotland, U.K.

E-mail address: C.Smyth@ed.ac.uk

