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Abstract—In the present paper, we consider products of lengths of algebraic numbers whose
sum or product is a chosen algebraic number. These products are used to construct a new
height function for algebraic numbers. With the help of this function, a metric on the set of
all algebraic numbers, which induces the discrete topology, is introduced.
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1. INTRODUCTION

Let the symbols N, Z, Q, Q, Q
∗
denote the set of positive integers, the ring of integers, the

field of rationals, the field of algebraic numbers, and the multiplicative group of nonzero algebraic
numbers, respectively. Denote by L(α) the length of an algebraic number α , i.e., the sum of the
absolute values of the coefficients in the minimal polynomial of α in Z[x] . The function L(f) is
a very convenient height function on the set of all polynomials with complex coefficients, because
the inequalities L(f + g) ≤ L(f) + L(g) and L(fg) ≤ L(f)L(g) always hold. However, these
properties of the length L(α) fail to hold on the set of all algebraic numbers Q .
In [1, 2], new height functions for algebraic numbers were considered (these functions use the

Mahler measure and the ordinary height of an algebraic number). Applying these functions, one can
construct a metric on some quotient groups of the group Q

∗
. Recall that by theMahler measure of

an algebraic number α one means the product of the leading coefficient of its minimal polynomial
in Z[x] and of all roots of the polynomial whose absolute value exceeds one. Denote the Mahler
measure of α by M(α) and the logarithmic Weil height of a number α by h(α) = (1/d) logM(α) ,
where d = degα . Earlier, Schmidt [3] noticed that h(α/β) is a metric (on the quotient group
Q

∗
/Ω) defining a distance between αΩ and βΩ, where Ω is the multiplicative group of all roots

of unity. We had shown in [1] how to construct a metric on the same set by using the so-called
metric Mahler measure. The topology on Q

∗
/Ω thus obtained is discrete if and only if the Lehmer

conjecture1 is valid. Later on, the same idea was used to construct a metric height based on the
ordinary height of an algebraic number (see [2, 4]).
The aim of the present paper is to construct a metric by using the length L . The construction

seems to be a most natural one, because the distance is introduced on Q rather than on some
quotient group of Q

∗
. Indeed, for any α ∈ Q , we introduce L(α) by the formula

L(α) = minL(α1)L(α2) · · ·L(αm),

1Translator’s note: This conjecture claims that the set of nontrivial values of the Mahler measure is bounded
away from 1 .
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where the minimum is taken over any m ∈ N and any α1 , α2 , . . . , αm ∈ Q such that

α1 + α2 + · · ·+ αm = α.

One can readily see that, in this case, the function

�(α, β) = logL(α − β)

defines a distance on Q . It is clear that this metric induces a discrete topology, because the
distance between two distinct algebraic numbers is ≥ log 2 .
It is sometimes more convenient to consider representations of α in the form of products of

algebraic numbers rather than in the form of their sums. To define a distance function, we subtract
one from the length and define a multiplicative analog of this metric on the quotient group Q

∗
/U ,

where U is a multiplicative group of all roots of unity of degree 2m , m = 0, 1, 2, . . . . Let us
define the value L∗(α) by the formula

L∗(α) = min
(
L(α1)− 1

)(
L(α2)− 1

) · · · (L(αm)− 1
)
,

where the minimum is taken over all m ∈ N and α1 , α2 , . . . , αm ∈ Q such that α1α2 · · ·αm = α .
In this case, the function

�∗(αU , βU) = logL∗
(

α

β

)

defines a distance on Q
∗
/U . (Indeed, the triangle inequality is obvious, and the condition L(α) = 2

is equivalent to the condition α ∈ U .) It is of importance that this metric also induces the discrete
topology, because the distance between two distinct cosets αU and βU , where α, β �= 0 and
α/β /∈ U , is always ≥ log 2 .

2. MAIN RESULTS

It is clear that L(α) ≤ L(α) and L∗(α) ≤ L(α) − 1 . How small can the quantities L(α) and
L∗(α) be? The example given by the number β = (−2)−1/d −1/N , where d ∈ N and N is a large
odd positive integer, shows that

L(β) ≤ L((−2)−1/d)L
(
− 1

N

)
= 3(N + 1).

Moreover, L(β) = 2(N + 1)d + Nd , and hence the number L(α) can be significantly less than
L(α) . The following theorem gives bounds for the quantities L(α) and L∗(α) .

Theorem 1. If α is an algebraic number of degree d , then

L(α)1/d ≤ L(α) ≤ L(α),
(
L(α)− 1)1/d ≤ L∗(α) ≤ L(α)− 1.

Moreover, L(α) ≥ α + 1 and L∗(α) ≥ α .

Here α stands for the maximal absolute value among those of all conjugates of the number α
over the field Q .
As was already noted above, the inequalities L(α) ≤ L(α) and L∗(α) ≤ L(α)− 1 are obvious.

The inequality L(α) ≥ L(α)1/d follows from the first part of the following theorem.
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Theorem 2. If m ∈ N , α1 , α2 , . . . , αm ∈ Q , and α = α1+α2+· · ·+αm is a number of degree d ,
then

L(α1 + α2 + · · ·+ αm)1/d ≤ L(α1)L(α2) · · ·L(αm).

If α = α1α2 · · ·αm is a number of degree d , then

21−1/dL(α1α2 · · ·αm)1/d ≤ L(α1)L(α2) · · ·L(αm).

The proofs of Theorems 1 and 2 are presented in Sec. 4.
Note that if d = 1, i.e., α ∈ Q , then it follows from Theorem 1 that L(α) = L(α) and

L∗(α) = L(α)− 1 . For d = 1, Theorem 2 implies the following corollary.

Corollary. If a number r ∈ Q is represented in the form of a sum or a product of arbitrary
algebraic numbers, then the product of their lengths does not exceed the length of the number r .

We face an interesting question: To what extent are the bounds

L(α) ≥ L(α)1/d and L∗(α) ≥ (L(α)− 1)1/d

sharp? Our example of the number β shows that if the inequality L(α) ≥ cdL(α)1/d holds, then
cd ≤ 31−1/d . Moreover, if d is a power of 2 , then the polynomial xd + 1 is irreducible in the
ring Z[x] . For each of the roots ζ ∈ U of this polynomial, we have the inequality L(ζ) ≤ L(ζ) = 2.
Hence cd ≤ 21−1/d if d is a power of 2 . It is also clear that

L∗(ζ) ≤ L(ζ)− 1 = 1 and L∗(ζ) ≥ (L(ζ)− 1)1/d = 1.

Thus, the inequality L∗(α) ≥ (L(α) − 1)1/d in Theorem 1 is sharp if d is an integer power of 2 .
In the other cases, the example γ = 21/d shows that c∗d ≤ 21−1/d if the inequality L∗(α) ≥
c∗d(L(α) − 1)1/d holds. Apparently, the inequality L(α) ≥ cdL(α)1/d , where cd = 21−1/d for
d = 2s and cd = 31−1/d for d �= 2s , and also the inequality L∗(α) ≥ c∗d(L(α) − 1)1/d , where
c∗d = 2

1−1/d for d �= 2s , are valid.

3. AUXILIARY RESULTS

Lemma 1. If α ∈ Q
∗
, then M(α) ≤ L(α)− 1 .

Proof. Let
adx

d + · · ·+ a1x+ a0 ∈ Z[x]

be the basic polynomial of the number α . By the Gonçalves inequality (see, e.g., [5, p. 244] or [6],
where a simpler version of this inequality is presented), we have

(
M(α) + |ada0|M(α)−1

)2 − 2|ada0| = M(α)2 + |ada0|2M(α)−2 ≤ |ad|2 + · · ·+ |a1|2 + |a0|2.
We write S = |ad−1|2 + · · ·+ |a1|2 . It follows from the inequality that

M(α) ≤ 1
2
(√

S + (|ad|+ |a0|)2 +
√

S + (|ad| − |a0|)2
)
.

By the inequality √
S ≤ |ad−1|+ · · ·+ |a1| = L(α)− |ad| − |a0|,

we can readily see that the first square root does not exceed L(α) and the other does not exceed
the value

√
S +

∣∣|ad| − |a0|
∣∣ ≤ L(α)− |ad| − |a0|+

∣∣|ad| − |a0|
∣∣ = L(α)− 2min{|ad|, |a0|

}
.

Thus,
M(α) ≤ L(α)−min{|ad|, |a0|

} ≤ L(α)− 1. �
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Lemma 2. If r ∈ Q and if α ∈ Q is of degree d , then

L(r + α)1/d ≤ L(r)L(α)1/d and L(rα)1/d ≤ M(r)L(α)1/d.

Proof. Since L(0) = M(0) = 1, the inequalities are obvious if r = 0 or α = 0. Let r = u/v �= 0,
where u and v are coprime integers. In this case, L(r) = |u|+ |v| and M(r) = max{|u|, |v|} .
If adx

d+ · · ·+ a1x+ a0 ∈ Z[x] is the basic polynomial of the number α , then u/v+α is a root
of the polynomial

Q(x) = ad(vx − u)d + · · ·+ a1v
d−1(vx − u) + a0v

d ∈ Z[x].

Since deg(u/v + α) = degα = d , it follows that the basic polynomial of the number u/v + α is
either Q(x) or a divisor of Q(x) of degree d . Therefore,

L
(u

v
+ α

)
≤ L(Q) ≤ |ad|

(|v|+ |u|)d + · · ·+ |a1| |v|d−1
(|v|+ |u|)+ |a0| |v|d

≤ (|ad|+ · · ·+ |a1|+ |a0|
)(|v|+ |u|)d = L(α)L

(u

v

)d

.

Extracting the root of degree d , we obtain the first inequality.
In the other case, the number uα/v is a root of the polynomial

R(x) = adv
dxd + · · ·+ a1vud−1x+ a0u

d ∈ Z[x].

Hence, as above,

L
(uα

v

)
≤ L(R) ≤ |ad| |v|d + · · ·+ |a1| |v| |u|d−1 + |a0| |u|d

≤ (|ad|+ · · ·+ |a1|+ |a0|
)
max

{|u|, |v|}d = L(α)M
(u

v

)d

.

Extracting the root of degree d , we obtain the other inequality. �
Lemma 3. If α ∈ Q , then L(α) ≥ α + 1 .

Proof. If α and α′ are conjugate algebraic numbers, i.e., if both numbers are roots of the basic
polynomial for α , adx

d+ · · ·+ a1x+ a0 ∈ Z[x] , then L(α) = L(α′) . Therefore, it suffices to prove
the inequality

L(α) ≥ |α|+ 1.
This is obvious for α = 0 and for 0 < |α| ≤ 1 . Suppose that |α| > 1 . It follows from the relation
−ad = ad−1/α+ ad−2/α2 + · · ·+ a0/αd that

|ad| ≤
∣∣∣∣ad−1

α

∣∣∣∣+
∣∣∣∣ad−2

α2

∣∣∣∣+ · · ·+
∣∣∣∣ a0

αd

∣∣∣∣ ≤ |ad−1|+ · · ·+ |a0|
|α| .

This implies that

L(α) = |ad|+ |ad−1|+ · · ·+ |a0| ≥ |ad|+ |ad| |α| ≥ |α|+ 1.

The proof of the lemma is complete. �
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4. LOWER BOUNDS FOR PRODUCTS OF LENGTHS

Let us begin with the proof of the inequality

L(α1 + α2 + · · ·+ αm)1/d ≤ L(α1)L(α2) · · ·L(αm),

where α = α1 + α2 + · · ·+ αm is an algebraic number of degree d . If at least one of the numbers
α1 , α2 , . . . , αm is rational, then, using the inequality L(r+α)1/d ≤ L(r)L(α)1/d given in Lemma 2,
we can apply the induction on m . We therefore, assume that m ≥ 2 and α1 , α2 , . . . , αm ∈ Q\Q .
Denote the degrees of the numbers α1 , α2 , . . . , αm by d1 , d2 , . . . , dm ≥ 2 . Using the well-known
inequality L(α) ≤ 2dM(α) and the inequality

h(α1 + α2 + · · ·+ αm) ≤ h(α1) + h(α2) + · · ·+ h(αm) + logm

(see, e.g., [7, Lemma 3.7]), we see that

L(α1 + α2 + · · ·+ αm)1/d ≤ 2M(α1 + α2 + · · ·+ αm)1/d

≤ 2mM(α1)1/d1M(α2)1/d2 · · ·M(αm)1/dm .

However, by Lemma 1,

M(αj)1/dj ≤ M(αj)1/2 ≤ (
L(αj)− 1

)1/2 ≤ L(αj)
2

for any j = 1, 2, . . . , m . Hence

L(α1 + α2 + · · ·+ αm)1/d ≤ 2m
2m

L(α1)L(α2) · · ·L(αm),

which proves the desired inequality, since 2m ≤ 2m for m ≥ 2 .
To prove the inequality

21−1/dL(α1α2 · · ·αm)1/d ≤ L(α1)L(α2) · · ·L(αm),

where α = α1α2 · · ·αm is an algebraic number of degree d , we note first that this inequality is
obvious if α = 0 or m = 1. If α �= 0, then all numbers α1 , α2 , . . . , αm are also nonzero. If at
least one of the numbers α1 , α2 , . . . , αm , say, αm , is rational, then

L(α1α2 · · ·αm)1/d ≤ M(αm)L(α1 · · ·αm−1)1/d ≤ (
L(αm)− 1

)
L(α1α2 · · ·αm−1)1/d

by Lemmas 1 and 2. Hence

21−1/dL(α1α2 · · ·αm)1/d < 21−1/dL(αm)L(α1α2 · · ·αm−1)1/d ,

and the desired inequality can readily be obtained by induction on m . We therefore, assume that
m ≥ 2 and α1 , α2 , . . . , αm are algebraic numbers of degrees d1 , d2 , . . . , dm ≥ 2 , respectively. In
this case, using the inequalities L(α) ≤ 2dM(α) and

h(α1α2 · · ·αm) ≤ h(α1) + h(α2) + · · ·+ h(αm)

(see [7, Property 3.3]), we can readily see that

L(α1α2 · · ·αm)1/d ≤ 2M(α1α2 · · ·αm)1/d ≤ 2M(α1)1/d1M(α2)1/d2 · · ·M(αm)1/dm .
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As above,
M(αj)1/dj ≤ M(αj)1/2 ≤ (

L(αj)− 1
)1/2

for any j = 1, 2, . . . , m , and, therefore,

L(α1α2 · · ·αm)1/d ≤ 2
((

L(α1)− 1
)(

L(α2)− 1
) · · · (L(αm)− 1

))1/2

for any m ≥ 2 and any α1 , α2 , . . . , αm ∈ Q \ Q . The desired inequality follows now from the
estimates (

L(αj)− 1
)1/2 ≤ L(αj)

2
,

where j = 1, 2, . . . , m , m ≥ 2 , because

21−1/d · 2 · 2−m = 22−m−1/d < 1.

Thus, the proof of Theorem 2 is complete. It follows from the first inequality of Theorem 2 and
from the definition of L(α) that L(α)1/d ≤ L(α) ≤ L(α) . The inequality L∗(α) ≤ L(α) − 1 is
obvious. Since L∗(αζ) = L∗(α) for any ζ ∈ U , it follows that, in order to prove the inequality
L∗(α) ≥ (L(α)− 1)1/d , it suffices to establish the inequality

(
L(α1α2 · · ·αm)− 1

)1/d ≤ (
L(α1)− 1

)(
L(α2)− 1

) · · · (L(αm)− 1
)

for any α1 , α2 , . . . , αm /∈ U . Here α = α1α2 · · ·αm is an algebraic number of degree d . This
inequality is obvious if α = 0 or m = 1. Moreover, as above, without loss of generality we can
assume that all numbers α1 , α2 , . . . , αm are irrational, because if αm ∈ Q , then

(
L(α1α2 · · ·αm)− 1

)1/d
< L(α1α2 · · ·αm)1/d ≤ (

L(αm)− 1
)
L(α1α2 · · ·αm−1)1/d.

However, the inequality L(α1α2 · · ·αm)1/d ≤ 2((L(α1) − 1) · · · (L(αm) − 1))1/2 had been already
proved under these assumptions. Since αj /∈ U ∪ {0} , it follows that L(αj) ≥ 3 for any index
j = 1, 2, . . . , m . Hence (L(αj)− 1)1/2 ≤ (L(αj)− 1)/

√
2 , and

(
L(α1α2 · · ·αm)− 1

)1/d
< L(α1α2 · · ·αm)1/d ≤ 21−m/2

(
L(α1)− 1

) · · · (L(αm)− 1
)
.

This proves the desired inequality, because m ≥ 2 .
To complete the proof of Theorem 1, it remains to show that L(α) ≥ α +1 and L∗(α) ≥ α .

If
L(α) = L(α1)L(α2) · · ·L(αm), where α = α1 + α2 + · · ·+ αm ,

then the assumption that every number conjugate to α , say, α′ , can be represented as the sum of
numbers conjugate to α1 , α2 , . . . , αm , respectively, implies the relation L(α) = L(α′) . Similarly,
L∗(α) = L∗(α′) .
Therefore, to prove the first inequality, it suffices to show that L(α) ≥ |α|+ 1. To this end, we

use Lemma 3 and apply the representation α = α1 + α2 + · · ·+ αm . We obtain

L(α) = L(α1)L(α2) · · ·L(αm) ≥
(|α1|+ 1

)(|α2|+ 1
) · · · (|αm|+ 1)

≥ |α1 + α2 + · · ·+ αm|+ 1 = |α|+ 1.
The inequality L∗(α) ≥ α follows from the inequality L∗(α) ≥ |α| , which can be established in
a similar way; namely, if

L∗(α) = (L(α1)− 1)(L(α2)− 1) · · · (L(αm)− 1), where α = α1α2 · · ·αm ,

then
L∗(α) =

(
L(α1)− 1

)(
L(α2)− 1

) · · · (L(αm)− 1
) ≥ |α1| |α2| · · · |αm| = |α|.
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