Length of the Sum and Product of Algebraic Numbers

A. Dubickas and C. J. Smyth

Received April 2, 2004

Abstract

In the present paper, we consider products of lengths of algebraic numbers whose sum or product is a chosen algebraic number. These products are used to construct a new height function for algebraic numbers. With the help of this function, a metric on the set of all algebraic numbers, which induces the discrete topology, is introduced.

Key words: algebraic number, length function, height function, Mahler measure, Lehmer conjecture.

1. INTRODUCTION

Let the symbols $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \overline{\mathbb{Q}}, \overline{\mathbb{Q}}^{*}$ denote the set of positive integers, the ring of integers, the field of rationals, the field of algebraic numbers, and the multiplicative group of nonzero algebraic numbers, respectively. Denote by $L(\alpha)$ the length of an algebraic number α, i.e., the sum of the absolute values of the coefficients in the minimal polynomial of α in $\mathbb{Z}[x]$. The function $L(f)$ is a very convenient height function on the set of all polynomials with complex coefficients, because the inequalities $L(f+g) \leq L(f)+L(g)$ and $L(f g) \leq L(f) L(g)$ always hold. However, these properties of the length $L(\alpha)$ fail to hold on the set of all algebraic numbers $\overline{\mathbb{Q}}$.

In [1, 2], new height functions for algebraic numbers were considered (these functions use the Mahler measure and the ordinary height of an algebraic number). Applying these functions, one can construct a metric on some quotient groups of the group $\overline{\mathbb{Q}}^{*}$. Recall that by the Mahler measure of an algebraic number α one means the product of the leading coefficient of its minimal polynomial in $\mathbb{Z}[x]$ and of all roots of the polynomial whose absolute value exceeds one. Denote the Mahler measure of α by $M(\alpha)$ and the logarithmic Weil height of a number α by $h(\alpha)=(1 / d) \log M(\alpha)$, where $d=\operatorname{deg} \alpha$. Earlier, Schmidt [3] noticed that $h(\alpha / \beta)$ is a metric (on the quotient group $\left.\overline{\mathbb{Q}}^{*} / \Omega\right)$ defining a distance between $\alpha \Omega$ and $\beta \Omega$, where Ω is the multiplicative group of all roots of unity. We had shown in [1] how to construct a metric on the same set by using the so-called metric Mahler measure. The topology on $\overline{\mathbb{Q}}^{*} / \Omega$ thus obtained is discrete if and only if the Lehmer conjecture ${ }^{1}$ is valid. Later on, the same idea was used to construct a metric height based on the ordinary height of an algebraic number (see [2, 4]).

The aim of the present paper is to construct a metric by using the length L. The construction seems to be a most natural one, because the distance is introduced on $\overline{\mathbb{Q}}$ rather than on some quotient group of $\overline{\mathbb{Q}}^{*}$. Indeed, for any $\alpha \in \overline{\mathbb{Q}}$, we introduce $\mathcal{L}(\alpha)$ by the formula

$$
\mathcal{L}(\alpha)=\min L\left(\alpha_{1}\right) L\left(\alpha_{2}\right) \cdots L\left(\alpha_{m}\right),
$$

[^0]where the minimum is taken over any $m \in \mathbb{N}$ and any $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}}$ such that
$$
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}=\alpha
$$

One can readily see that, in this case, the function

$$
\varrho(\alpha, \beta)=\log \mathcal{L}(\alpha-\beta)
$$

defines a distance on $\overline{\mathbb{Q}}$. It is clear that this metric induces a discrete topology, because the distance between two distinct algebraic numbers is $\geq \log 2$.

It is sometimes more convenient to consider representations of α in the form of products of algebraic numbers rather than in the form of their sums. To define a distance function, we subtract one from the length and define a multiplicative analog of this metric on the quotient group $\overline{\mathbb{Q}}^{*} / \mathcal{U}$, where \mathcal{U} is a multiplicative group of all roots of unity of degree $2^{m}, m=0,1,2, \ldots$. Let us define the value $\mathcal{L}^{*}(\alpha)$ by the formula

$$
\mathcal{L}^{*}(\alpha)=\min \left(L\left(\alpha_{1}\right)-1\right)\left(L\left(\alpha_{2}\right)-1\right) \cdots\left(L\left(\alpha_{m}\right)-1\right)
$$

where the minimum is taken over all $m \in \mathbb{N}$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}}$ such that $\alpha_{1} \alpha_{2} \cdots \alpha_{m}=\alpha$. In this case, the function

$$
\varrho^{*}(\alpha \mathcal{U}, \beta \mathcal{U})=\log \mathcal{L}^{*}\left(\frac{\alpha}{\beta}\right)
$$

defines a distance on $\overline{\mathbb{Q}}^{*} / \mathcal{U}$. (Indeed, the triangle inequality is obvious, and the condition $L(\alpha)=2$ is equivalent to the condition $\alpha \in \mathcal{U}$.) It is of importance that this metric also induces the discrete topology, because the distance between two distinct cosets $\alpha \mathcal{U}$ and $\beta \mathcal{U}$, where $\alpha, \beta \neq 0$ and $\alpha / \beta \notin \mathcal{U}$, is always $\geq \log 2$.

2. MAIN RESULTS

It is clear that $\mathcal{L}(\alpha) \leq L(\alpha)$ and $\mathcal{L}^{*}(\alpha) \leq L(\alpha)-1$. How small can the quantities $\mathcal{L}(\alpha)$ and $\mathcal{L}^{*}(\alpha)$ be? The example given by the number $\beta=(-2)^{-1 / d}-1 / N$, where $d \in \mathbb{N}$ and N is a large odd positive integer, shows that

$$
\mathcal{L}(\beta) \leq L\left((-2)^{-1 / d}\right) L\left(-\frac{1}{N}\right)=3(N+1)
$$

Moreover, $L(\beta)=2(N+1)^{d}+N^{d}$, and hence the number $\mathcal{L}(\alpha)$ can be significantly less than $L(\alpha)$. The following theorem gives bounds for the quantities $\mathcal{L}(\alpha)$ and $\mathcal{L}^{*}(\alpha)$.

Theorem 1. If α is an algebraic number of degree d, then

$$
L(\alpha)^{1 / d} \leq \mathcal{L}(\alpha) \leq L(\alpha), \quad(L(\alpha)-1)^{1 / d} \leq \mathcal{L}^{*}(\alpha) \leq L(\alpha)-1
$$

Moreover, $\mathcal{L}(\alpha) \geq \boxed{\alpha}+1$ and $\mathcal{L}^{*}(\alpha) \geq \boxed{\alpha}$.
Here $\lceil\alpha$ stands for the maximal absolute value among those of all conjugates of the number α over the field \mathbb{Q}.

As was already noted above, the inequalities $\mathcal{L}(\alpha) \leq L(\alpha)$ and $\mathcal{L}^{*}(\alpha) \leq L(\alpha)-1$ are obvious. The inequality $\mathcal{L}(\alpha) \geq L(\alpha)^{1 / d}$ follows from the first part of the following theorem.

Theorem 2. If $m \in \mathbb{N}, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}}$, and $\alpha=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}$ is a number of degree d, then

$$
L\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}\right)^{1 / d} \leq L\left(\alpha_{1}\right) L\left(\alpha_{2}\right) \cdots L\left(\alpha_{m}\right)
$$

If $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{m}$ is a number of degree d, then

$$
2^{1-1 / d} L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq L\left(\alpha_{1}\right) L\left(\alpha_{2}\right) \cdots L\left(\alpha_{m}\right)
$$

The proofs of Theorems 1 and 2 are presented in Sec. 4.
Note that if $d=1$, i.e., $\alpha \in \mathbb{Q}$, then it follows from Theorem 1 that $\mathcal{L}(\alpha)=L(\alpha)$ and $\mathcal{L}^{*}(\alpha)=L(\alpha)-1$. For $d=1$, Theorem 2 implies the following corollary.

Corollary. If a number $r \in \mathbb{Q}$ is represented in the form of a sum or a product of arbitrary algebraic numbers, then the product of their lengths does not exceed the length of the number r.

We face an interesting question: To what extent are the bounds

$$
\mathcal{L}(\alpha) \geq L(\alpha)^{1 / d} \quad \text { and } \quad \mathcal{L}^{*}(\alpha) \geq(L(\alpha)-1)^{1 / d}
$$

sharp? Our example of the number β shows that if the inequality $\mathcal{L}(\alpha) \geq c_{d} L(\alpha)^{1 / d}$ holds, then $c_{d} \leq 3^{1-1 / d}$. Moreover, if d is a power of 2 , then the polynomial $x^{d}+1$ is irreducible in the ring $\mathbb{Z}[x]$. For each of the roots $\zeta \in \mathcal{U}$ of this polynomial, we have the inequality $\mathcal{L}(\zeta) \leq L(\zeta)=2$. Hence $c_{d} \leq 2^{1-1 / d}$ if d is a power of 2 . It is also clear that

$$
\mathcal{L}^{*}(\zeta) \leq L(\zeta)-1=1 \quad \text { and } \quad \mathcal{L}^{*}(\zeta) \geq(L(\zeta)-1)^{1 / d}=1
$$

Thus, the inequality $\mathcal{L}^{*}(\alpha) \geq(L(\alpha)-1)^{1 / d}$ in Theorem 1 is sharp if d is an integer power of 2 . In the other cases, the example $\gamma=2^{1 / d}$ shows that $c_{d}^{*} \leq 2^{1-1 / d}$ if the inequality $\mathcal{L}^{*}(\alpha) \geq$ $c_{d}^{*}(L(\alpha)-1)^{1 / d}$ holds. Apparently, the inequality $\mathcal{L}(\alpha) \geq c_{d} L(\alpha)^{1 / d}$, where $c_{d}=2^{1-1 / d}$ for $d=2^{s}$ and $c_{d}=3^{1-1 / d}$ for $d \neq 2^{s}$, and also the inequality $\mathcal{L}^{*}(\alpha) \geq c_{d}^{*}(L(\alpha)-1)^{1 / d}$, where $c_{d}^{*}=2^{1-1 / d}$ for $d \neq 2^{s}$, are valid.

3. AUXILIARY RESULTS

Lemma 1. If $\alpha \in \overline{\mathbb{Q}}^{*}$, then $M(\alpha) \leq L(\alpha)-1$.
Proof. Let

$$
a_{d} x^{d}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]
$$

be the basic polynomial of the number α. By the Gonçalves inequality (see, e.g., [5, p. 244] or [6], where a simpler version of this inequality is presented), we have

$$
\left(M(\alpha)+\left|a_{d} a_{0}\right| M(\alpha)^{-1}\right)^{2}-2\left|a_{d} a_{0}\right|=M(\alpha)^{2}+\left|a_{d} a_{0}\right|^{2} M(\alpha)^{-2} \leq\left|a_{d}\right|^{2}+\cdots+\left|a_{1}\right|^{2}+\left|a_{0}\right|^{2}
$$

We write $S=\left|a_{d-1}\right|^{2}+\cdots+\left|a_{1}\right|^{2}$. It follows from the inequality that

$$
M(\alpha) \leq \frac{1}{2}\left(\sqrt{S+\left(\left|a_{d}\right|+\left|a_{0}\right|\right)^{2}}+\sqrt{S+\left(\left|a_{d}\right|-\left|a_{0}\right|\right)^{2}}\right)
$$

By the inequality

$$
\sqrt{S} \leq\left|a_{d-1}\right|+\cdots+\left|a_{1}\right|=L(\alpha)-\left|a_{d}\right|-\left|a_{0}\right|
$$

we can readily see that the first square root does not exceed $L(\alpha)$ and the other does not exceed the value

$$
\sqrt{S}+\left|\left|a_{d}\right|-\left|a_{0}\right|\right| \leq L(\alpha)-\left|a_{d}\right|-\left|a_{0}\right|+\left|\left|a_{d}\right|-\left|a_{0}\right|\right|=L(\alpha)-2 \min \left\{\left|a_{d}\right|,\left|a_{0}\right|\right\}
$$

Thus,

$$
M(\alpha) \leq L(\alpha)-\min \left\{\left|a_{d}\right|,\left|a_{0}\right|\right\} \leq L(\alpha)-1
$$

Lemma 2. If $r \in \mathbb{Q}$ and if $\alpha \in \overline{\mathbb{Q}}$ is of degree d, then

$$
L(r+\alpha)^{1 / d} \leq L(r) L(\alpha)^{1 / d} \quad \text { and } \quad L(r \alpha)^{1 / d} \leq M(r) L(\alpha)^{1 / d}
$$

Proof. Since $L(0)=M(0)=1$, the inequalities are obvious if $r=0$ or $\alpha=0$. Let $r=u / v \neq 0$, where u and v are coprime integers. In this case, $L(r)=|u|+|v|$ and $M(r)=\max \{|u|,|v|\}$.

If $a_{d} x^{d}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$ is the basic polynomial of the number α, then $u / v+\alpha$ is a root of the polynomial

$$
Q(x)=a_{d}(v x-u)^{d}+\cdots+a_{1} v^{d-1}(v x-u)+a_{0} v^{d} \in \mathbb{Z}[x]
$$

Since $\operatorname{deg}(u / v+\alpha)=\operatorname{deg} \alpha=d$, it follows that the basic polynomial of the number $u / v+\alpha$ is either $Q(x)$ or a divisor of $Q(x)$ of degree d. Therefore,

$$
\begin{aligned}
L\left(\frac{u}{v}+\alpha\right) & \leq L(Q) \leq\left|a_{d}\right|(|v|+|u|)^{d}+\cdots+\left|a_{1}\right||v|^{d-1}(|v|+|u|)+\left|a_{0}\right||v|^{d} \\
& \leq\left(\left|a_{d}\right|+\cdots+\left|a_{1}\right|+\left|a_{0}\right|\right)(|v|+|u|)^{d}=L(\alpha) L\left(\frac{u}{v}\right)^{d}
\end{aligned}
$$

Extracting the root of degree d, we obtain the first inequality.
In the other case, the number $u \alpha / v$ is a root of the polynomial

$$
R(x)=a_{d} v^{d} x^{d}+\cdots+a_{1} v u^{d-1} x+a_{0} u^{d} \in \mathbb{Z}[x]
$$

Hence, as above,

$$
\begin{aligned}
L\left(\frac{u \alpha}{v}\right) & \leq L(R) \leq\left|a_{d}\right||v|^{d}+\cdots+\left|a_{1}\right||v||u|^{d-1}+\left|a_{0}\right||u|^{d} \\
& \leq\left(\left|a_{d}\right|+\cdots+\left|a_{1}\right|+\left|a_{0}\right|\right) \max \{|u|,|v|\}^{d}=L(\alpha) M\left(\frac{u}{v}\right)^{d}
\end{aligned}
$$

Extracting the root of degree d, we obtain the other inequality.
Lemma 3. If $\alpha \in \overline{\mathbb{Q}}$, then $L(\alpha) \geq \widehat{\alpha}+1$.
Proof. If α and α^{\prime} are conjugate algebraic numbers, i.e., if both numbers are roots of the basic polynomial for $\alpha, a_{d} x^{d}+\cdots+a_{1} x+a_{0} \in \mathbb{Z}[x]$, then $L(\alpha)=L\left(\alpha^{\prime}\right)$. Therefore, it suffices to prove the inequality

$$
L(\alpha) \geq|\alpha|+1
$$

This is obvious for $\alpha=0$ and for $0<|\alpha| \leq 1$. Suppose that $|\alpha|>1$. It follows from the relation $-a_{d}=a_{d-1} / \alpha+a_{d-2} / \alpha^{2}+\cdots+a_{0} / \alpha^{d}$ that

$$
\left|a_{d}\right| \leq\left|\frac{a_{d-1}}{\alpha}\right|+\left|\frac{a_{d-2}}{\alpha^{2}}\right|+\cdots+\left|\frac{a_{0}}{\alpha^{d}}\right| \leq \frac{\left|a_{d-1}\right|+\cdots+\left|a_{0}\right|}{|\alpha|}
$$

This implies that

$$
L(\alpha)=\left|a_{d}\right|+\left|a_{d-1}\right|+\cdots+\left|a_{0}\right| \geq\left|a_{d}\right|+\left|a_{d}\right||\alpha| \geq|\alpha|+1
$$

The proof of the lemma is complete.

4. LOWER BOUNDS FOR PRODUCTS OF LENGTHS

Let us begin with the proof of the inequality

$$
L\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}\right)^{1 / d} \leq L\left(\alpha_{1}\right) L\left(\alpha_{2}\right) \cdots L\left(\alpha_{m}\right),
$$

where $\alpha=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}$ is an algebraic number of degree d. If at least one of the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ is rational, then, using the inequality $L(r+\alpha)^{1 / d} \leq L(r) L(\alpha)^{1 / d}$ given in Lemma 2, we can apply the induction on m. We therefore, assume that $m \geq 2$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}} \backslash \mathbb{Q}$. Denote the degrees of the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ by $d_{1}, d_{2}, \ldots, d_{m} \geq 2$. Using the well-known inequality $L(\alpha) \leq 2^{d} M(\alpha)$ and the inequality

$$
h\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}\right) \leq h\left(\alpha_{1}\right)+h\left(\alpha_{2}\right)+\cdots+h\left(\alpha_{m}\right)+\log m
$$

(see, e.g., [7, Lemma 3.7]), we see that

$$
\begin{aligned}
L\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}\right)^{1 / d} & \leq 2 M\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}\right)^{1 / d} \\
& \leq 2 m M\left(\alpha_{1}\right)^{1 / d_{1}} M\left(\alpha_{2}\right)^{1 / d_{2}} \cdots M\left(\alpha_{m}\right)^{1 / d_{m}}
\end{aligned}
$$

However, by Lemma 1,

$$
M\left(\alpha_{j}\right)^{1 / d_{j}} \leq M\left(\alpha_{j}\right)^{1 / 2} \leq\left(L\left(\alpha_{j}\right)-1\right)^{1 / 2} \leq \frac{L\left(\alpha_{j}\right)}{2}
$$

for any $j=1,2, \ldots, m$. Hence

$$
L\left(\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}\right)^{1 / d} \leq \frac{2 m}{2^{m}} L\left(\alpha_{1}\right) L\left(\alpha_{2}\right) \cdots L\left(\alpha_{m}\right)
$$

which proves the desired inequality, since $2 m \leq 2^{m}$ for $m \geq 2$.
To prove the inequality

$$
2^{1-1 / d} L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq L\left(\alpha_{1}\right) L\left(\alpha_{2}\right) \cdots L\left(\alpha_{m}\right),
$$

where $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{m}$ is an algebraic number of degree d, we note first that this inequality is obvious if $\alpha=0$ or $m=1$. If $\alpha \neq 0$, then all numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are also nonzero. If at least one of the numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$, say, α_{m}, is rational, then

$$
L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq M\left(\alpha_{m}\right) L\left(\alpha_{1} \cdots \alpha_{m-1}\right)^{1 / d} \leq\left(L\left(\alpha_{m}\right)-1\right) L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m-1}\right)^{1 / d}
$$

by Lemmas 1 and 2. Hence

$$
2^{1-1 / d} L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d}<2^{1-1 / d} L\left(\alpha_{m}\right) L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m-1}\right)^{1 / d}
$$

and the desired inequality can readily be obtained by induction on m. We therefore, assume that $m \geq 2$ and $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are algebraic numbers of degrees $d_{1}, d_{2}, \ldots, d_{m} \geq 2$, respectively. In this case, using the inequalities $L(\alpha) \leq 2^{d} M(\alpha)$ and

$$
h\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right) \leq h\left(\alpha_{1}\right)+h\left(\alpha_{2}\right)+\cdots+h\left(\alpha_{m}\right)
$$

(see [7, Property 3.3]), we can readily see that

$$
L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq 2 M\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq 2 M\left(\alpha_{1}\right)^{1 / d_{1}} M\left(\alpha_{2}\right)^{1 / d_{2}} \cdots M\left(\alpha_{m}\right)^{1 / d_{m}}
$$

As above,

$$
M\left(\alpha_{j}\right)^{1 / d_{j}} \leq M\left(\alpha_{j}\right)^{1 / 2} \leq\left(L\left(\alpha_{j}\right)-1\right)^{1 / 2}
$$

for any $j=1,2, \ldots, m$, and, therefore,

$$
L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq 2\left(\left(L\left(\alpha_{1}\right)-1\right)\left(L\left(\alpha_{2}\right)-1\right) \cdots\left(L\left(\alpha_{m}\right)-1\right)\right)^{1 / 2}
$$

for any $m \geq 2$ and any $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in \overline{\mathbb{Q}} \backslash \mathbb{Q}$. The desired inequality follows now from the estimates

$$
\left(L\left(\alpha_{j}\right)-1\right)^{1 / 2} \leq \frac{L\left(\alpha_{j}\right)}{2},
$$

where $j=1,2, \ldots, m, m \geq 2$, because

$$
2^{1-1 / d} \cdot 2 \cdot 2^{-m}=2^{2-m-1 / d}<1 .
$$

Thus, the proof of Theorem 2 is complete. It follows from the first inequality of Theorem 2 and from the definition of $\mathcal{L}(\alpha)$ that $L(\alpha)^{1 / d} \leq \mathcal{L}(\alpha) \leq L(\alpha)$. The inequality $\mathcal{L}^{*}(\alpha) \leq L(\alpha)-1$ is obvious. Since $\mathcal{L}^{*}(\alpha \zeta)=\mathcal{L}^{*}(\alpha)$ for any $\zeta \in \mathcal{U}$, it follows that, in order to prove the inequality $\mathcal{L}^{*}(\alpha) \geq(L(\alpha)-1)^{1 / d}$, it suffices to establish the inequality

$$
\left(L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)-1\right)^{1 / d} \leq\left(L\left(\alpha_{1}\right)-1\right)\left(L\left(\alpha_{2}\right)-1\right) \cdots\left(L\left(\alpha_{m}\right)-1\right)
$$

for any $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \notin \mathcal{U}$. Here $\alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{m}$ is an algebraic number of degree d. This inequality is obvious if $\alpha=0$ or $m=1$. Moreover, as above, without loss of generality we can assume that all numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$ are irrational, because if $\alpha_{m} \in \mathbb{Q}$, then

$$
\left(L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)-1\right)^{1 / d}<L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq\left(L\left(\alpha_{m}\right)-1\right) L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m-1}\right)^{1 / d} .
$$

However, the inequality $L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq 2\left(\left(L\left(\alpha_{1}\right)-1\right) \cdots\left(L\left(\alpha_{m}\right)-1\right)\right)^{1 / 2}$ had been already proved under these assumptions. Since $\alpha_{j} \notin \mathcal{U} \cup\{0\}$, it follows that $L\left(\alpha_{j}\right) \geq 3$ for any index $j=1,2, \ldots, m$. Hence $\left(L\left(\alpha_{j}\right)-1\right)^{1 / 2} \leq\left(L\left(\alpha_{j}\right)-1\right) / \sqrt{2}$, and

$$
\left(L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)-1\right)^{1 / d}<L\left(\alpha_{1} \alpha_{2} \cdots \alpha_{m}\right)^{1 / d} \leq 2^{1-m / 2}\left(L\left(\alpha_{1}\right)-1\right) \cdots\left(L\left(\alpha_{m}\right)-1\right) .
$$

This proves the desired inequality, because $m \geq 2$.
To complete the proof of Theorem 1, it remains to show that $\mathcal{L}(\alpha) \geq \sqrt{\alpha}+1$ and $\mathcal{L}^{*}(\alpha) \geq \boxed{\alpha}$. If

$$
\mathcal{L}(\alpha)=L\left(\alpha_{1}\right) L\left(\alpha_{2}\right) \cdots L\left(\alpha_{m}\right), \quad \text { where } \quad \alpha=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m},
$$

then the assumption that every number conjugate to α, say, α^{\prime}, can be represented as the sum of numbers conjugate to $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}$, respectively, implies the relation $\mathcal{L}(\alpha)=\mathcal{L}\left(\alpha^{\prime}\right)$. Similarly, $\mathcal{L}^{*}(\alpha)=\mathcal{L}^{*}\left(\alpha^{\prime}\right)$.

Therefore, to prove the first inequality, it suffices to show that $\mathcal{L}(\alpha) \geq|\alpha|+1$. To this end, we use Lemma 3 and apply the representation $\alpha=\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}$. We obtain

$$
\begin{aligned}
\mathcal{L}(\alpha) & =L\left(\alpha_{1}\right) L\left(\alpha_{2}\right) \cdots L\left(\alpha_{m}\right) \geq\left(\left|\alpha_{1}\right|+1\right)\left(\left|\alpha_{2}\right|+1\right) \cdots\left(\left|\alpha_{m}\right|+1\right) \\
& \geq\left|\alpha_{1}+\alpha_{2}+\cdots+\alpha_{m}\right|+1=|\alpha|+1 .
\end{aligned}
$$

The inequality $\mathcal{L}^{*}(\alpha) \geq|\alpha|$ follows from the inequality $\mathcal{L}^{*}(\alpha) \geq|\alpha|$, which can be established in a similar way; namely, if

$$
\mathcal{L}^{*}(\alpha)=\left(L\left(\alpha_{1}\right)-1\right)\left(L\left(\alpha_{2}\right)-1\right) \cdots\left(L\left(\alpha_{m}\right)-1\right), \quad \text { where } \quad \alpha=\alpha_{1} \alpha_{2} \cdots \alpha_{m},
$$

then

$$
\mathcal{L}^{*}(\alpha)=\left(L\left(\alpha_{1}\right)-1\right)\left(L\left(\alpha_{2}\right)-1\right) \cdots\left(L\left(\alpha_{m}\right)-1\right) \geq\left|\alpha_{1}\right|\left|\alpha_{2}\right| \cdots\left|\alpha_{m}\right|=|\alpha| .
$$

ACKNOWLEDGMENTS

The research of the first author was supported in part by the Lithuanian State Science and Studies Foundation.

REFERENCES

1. A. Dubickas and C. J. Smyth, "On the metric Mahler measure," J. Number Theory, 86 (2001), 368-387.
2. A. Dubickas and C. J. Smyth, "On metric heights," Period. Math. Hungar., 42 (2003), 135-155.
3. W. Schmidt, "Heights of points on subvarieties of \mathbb{G}_{m}^{n}," Contemp. Math., 210 (1998), 97-99.
4. A. Dubickas, "Asymptotic density of surds with stable height," Acta Appl. Math., 78 (2003), 99-102.
5. A. Schinzel, Polynomials with Special Regard to Reducibility, Cambridge Univ. Press, Cambridge, 2000.
6. N. I. Fel'dman, Approximations of Algebraic Numbers [in Russian], Moskov. Gos. Univ., Moscow, 1981.
7. M. Waldschmidt, Diophantine Approximation on Linear Algebraic Groups, Springer-Verlag, BerlinNew York, 2000.
(A. Dubickas) Institute of Mathematics and Informatics, Vilnius State University
E-mail: arturas.dubickas@maf.vu.lt
(C. J. Smyth) Department of Mathematics and Statistics, University of Edinburgh
E-mail: chris@maths.ed.ac.uk

[^0]: ${ }^{1}$ Translator's note: This conjecture claims that the set of nontrivial values of the Mahler measure is bounded away from 1 .

