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Abstract: We give a complete classification of all pairs of cyclotomic polynomials whose zeros interlace on the unit circle,
making explicit a result essentially contained in work of Beukers and Heckman. We show that each such pair
corresponds to a single polynomial from a certain special class of integer polynomials, the 2-reciprocal disc-
bionic polynomials. We also show that each such pair also corresponds (in four different ways) to a single Pisot
polynomial from a certain restricted class, the cyclogenic Pisot polynomials. We investigate properties of this
class of Pisot polynomials.
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1. Introduction

As usual, let Φn(z) denote the cyclotomic polynomial whose zeros are the primitive nth roots of unity. Suppose that P(z)and Q(z) are cyclotomic polynomials, which for us (following [3]) means that each is a product of one or more of thepolynomials Φn(z). We say that the pair {P,Q} is an interlacing (cyclotomic) pair if P(z) and Q(z) are coprime, all theirzeros are simple, and these zeros interlace on the unit circle (in the sense that between every pair of zeros of P(z) thereis a zero of Q(z), and between every pair of zeros of Q(z) there is a zero of P(z)). In particular, P(z) and Q(z) must havethe same degree, and both 1 and −1 must appear amongst the zeros of P(z)Q(z). Thus one of P and Q, say P(z), is
∗ E-mail: James.McKee@rhul.ac.uk
† E-mail: C.Smyth@ed.ac.uk
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a reciprocal polynomial, and the other (Q(z)) is z − 1 times a reciprocal polynomial. As PQ has no repeated zeros, it isa product of polynomials Φn for distinct values of n. Finally, we say that the interlacing pair {P(z), Q(z)} is imprimitiveif both are polynomials in zl for some l > 1. Otherwise the pair is primitive. It is known (see [11], or Corollary 2.3 below)that if {P(z), Q(z)} is an interlacing pair then so is {P(zk ), Q(zk )} for any k ∈ N. Conversely, if {P(zk ), Q(zk )} is aninterlacing pair for some k , then so is {P(z), Q(z)}. We also need to remark that {P(z), Q(z)} is an interlacing pair ifand only if {P(−z), Q(−z)} is an interlacing pair. Thus to describe all interlacing pairs it is clearly enough to describeall primitive interlacing pairs, and in fact only one of the two interlacing pairs {P(z), Q(z)} and {P(−z), Q(−z)}.The following result is essentially contained in the paper [1] of Beukers and Heckman, although a little work is neededto extract itsee Section 8.
Theorem 1.1.
The primitive interlacing cyclotomic pairs are the pairs {P(z), Q(z)} and {P(−z), Q(−z)}, where one of these pairs is
given in Table 1 (two infinite families) or Table 2 (26 sporadic cases).
The proof of Theorem 1.1 uses, among other results, the Shephard–Todd classification of finite irreducible complexreflection groups.Bober [2] also extracted something similar from the Beukers–Heckman work in the context of integral factorial ratiosequences. His Tables 1 and 2 of integral factorial ratio sequences correspond to our (shorter) Tables 1 and 2 of primitiveinterlacing cyclotomic pairs. (The reason that our tables are shorter is that we combine the entries for {P(z), Q(z)} and
{P(−z), Q(−z)}.)In our paper we have produced a number of bijections between the set of all interlacing cyclotomic pairs and certain setsof polynomials (including the set of 2-reciprocal disc-bionic polynomials). Thus, each such bijection maps a cyclotomicinterlacing pair {P(z), Q(z)} to a single polynomial in the target set. Then application of Theorem 1.1 enables us todescribe these sets precisely. These bijections in turn imply the existence of other bijections between these sets ofpolynomials. We describe many of these bijections explicitly.
Table 1. The two infinite families of primitive interlacing cyclotomic pairs, with the disc-bionic polynomials associated to them by Theorem 2.1.

Family 1 2
P(z) zn+1 − 1

z − 1 zn + 1
Q(z) (zj − 1)(zn+1−j − 1)

z − 1 (zj − 1)(zn−j + 1)
Range of n, j n ≥ 1, gcd(j, n+1) = 1, 1 ≤ j ≤ n+ 12 n ≥ 3, gcd(j, 2n) = 1, 1 ≤ j < n

disc-bionic polynomial 2zn+1 − zn+1−j − zj
z − 1 2zn − zn−j + zj

[1] # 1, Table 8.3 Theorem 5.8A
In Section 2 we give a bijection between interlacing cyclotomic pairs {P(z), Q(z)} and what we call 2-reciprocal disc-bionic polynomials. In Section 3 we define the set C of cyclogenic Pisot polynomials, which we partition in two ways:

C = Cjust ∪ Cstrictly = C≤2 ∪ C≥2.
In Sections 4 and 5 we produce various explicit bijections, as indicated in Figure 1.
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Table 2. The 26 sporadic cases of primitive interlacing cyclotomic pairs. The numbers in the P(z), Q(z) columns refer to products of cyclotomic poly-
nomials n↔ Φn. The final column refers to [1, Table 8.3]. Also, P−(z), Q−(z) are (−1)degPP(−z), (−1)degQQ(−z), if necessary interchanged
so that Q−(1) = 0.

Label Degree P(z) Q(z) P−(z) Q−(z) [1]A 4 12 1·2·3 12 1·2·6 37B 6 3·12 1·2·8 6·12 1·2·8 45C 6 3·12 1·2·5 6·12 1·2·10 46D 6 9 1·2·4·6 18 1·2·3·4 47E 6 9 1·2·8 18 1·2·8 48F 6 9 1·2·5 18 1·2·10 49G 7 2·18 1·3·12 2·6·12 1·9 58H 7 2·18 1·3·5 2·6·10 1·9 59I 7 2·18 1·7 2·14 1·9 60J 7 2·14 1·3·12 2·6·12 1·7 61K 7 2·14 1·3·5 2·6·10 1·7 62L 8 30 1·2·18 15 1·2·9 63M 8 30 1·2·3·12 15 1·2·6·12 64N 8 30 1·2·3·8 15 1·2·6·8 65O 8 30 1·2·4·5 15 1·2·4·10 66P 8 30 1·2·3·5 15 1·2·6·10 67Q 8 30 1·2·7 15 1·2·14 68R 8 30 1·2·4·12 15 1·2·4·12 69S 8 30 1·2·4·8 15 1·2·4·8 70T 8 20 1·2·3·12 20 1·2·6·12 71U 8 20 1·2·3·8 20 1·2·6·8 72V 8 20 1·2·7 20 1·2·14 73W 8 20 1·2·9 20 1·2·18 74X 8 24 1·2·4·5 24 1·2·4·10 75Y 8 24 1·2·7 24 1·2·14 76Z 8 24 1·2·9 24 1·2·18 77

Interlacing cyclotomicpairs

C≤2 C≥2 Cjust Cstrictly
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Figure 1. Various bijections

In Section 6 we find the cyclogenic Pisot polynomials corresponding to {P(−z), Q(−z)} and {P(zl), Q(zl)} in termsof the cyclogenic Pisot polynomial corresponding to {P(z), Q(z)}. In Section 7 we prove that the largest cyclogenicPisot number is 3. In Section 8 we prove Theorem 1.1. Finally, in Section 10 we describe how all primitive interlacingcyclotomic pairs arise naturally from the study of rooted bipartite cyclotomic signed graphs.
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2. The bionic polynomial bijection

For any polynomial F (z) we denote by F ∗(z) its reciprocal polynomial zdegFF (1/z). Note that (zrF (z))∗ = F ∗(z):multiplying F by a power of z does not affect its reciprocal polynomial. Note too that we always have F (z) = zdegFF ∗(1/z)(though not always F (z) = zdegF∗F ∗(1/z)). We say that a polynomial F (z) is 2-reciprocal if F (z) ≡ F ∗(z) (mod 2), i.e.,all the coefficients of F (z)− F ∗(z) are even. It is clear that if F (z) is 2-reciprocal, then so is F (zl) for every l ≥ 1. Wesay that F (z) is primitive if it is not of the form F1(zl) for any polynomial F1 and integer l > 1.We call a nonconstant polynomial with integer coefficients bionic if its leading coefficient is 2. We call a bionic polynomial
disc-bionic if all its zeros lie in the open unit disc {z : |z| < 1}. It is easy to see that a disc-bionic polynomial mustbe either of the form 2zn for some n ≥ 1, or the product of an irreducible disc-bionic polynomial and a nonnegativepower of z. Also, it is clear that a 2-reciprocal disc-bionic polynomial H(z) must be divisible by a positive power of z.Furthermore, then (−1)degHH(−z) and H(zl), l ≥ 1, are also 2-reciprocal disc-bionic.A Garsia polynomial (see Garsia [7], Brunotte [5], Hare [9]) is a nonconstant monic polynomial with integer coefficients,all of whose zeros have modulus greater than 1, and with the product of the zeros being ± 2. Disc-bionic polynomials andGarsia polynomials are closely related: if G(z) is a Garsia polynomial then (−1)degGG∗(z) is a disc-bionic polynomial.The converse is almost true: if H(z) is disc-bionic, then either H∗(z) is the constant polynomial 2, or (−1)degHH∗(z) is aGarsia polynomial.
Theorem 2.1.
There is a bijection between the set of pairs {P,Q} of interlacing cyclotomic polynomials and the set of 2-reciprocal
disc-bionic polynomials H. It is given explicitly by

H(z) = P(z) +Q(z).
In the other direction,

P(z) = H(z) +H∗(z)2 , (1)
Q(z) = H(z)−H∗(z)2 . (2)

Proof. Let {P,Q} be a pair of interlacing cyclotomic polynomials of degree n, with say Q(1) = 0. Then, P + Q hasleading term 2 and, by [13, Proposition 9.3], all its zeros inside the unit circle. Hence H(z) = P(z)+Q(z) is a disc-bionicpolynomial. Further,
H∗(z) = P(z)−Q(z),

so that H(z)− H∗(z) = 2Q(z), showing that H(z) is also 2-reciprocal. Note, too, that then P and Q are given in termsof H and H∗ by (1) and (2).Conversely, let H(z) be a 2-reciprocal disc-bionic polynomial of degree d say, with 2Q(z) = H(z) − H∗(z) having allcoefficients even. Then 2P(z) = H(z) + H∗(z) also has all coefficients even. We claim that P and Q, so defined, areinterlacing cyclotomic polynomials. We consider the rational function R(z) = H(z)/H∗(z). Now |R(z)| = 1 for |z| = 1,and R(1) = 1, since Q(1) = 0. Also, R has d zeros and no poles in |z| < 1. So as z winds once around the unitcircle, anticlockwise, R(z) performs d circuits of the unit circle. Hence R(z) takes the value 1 at least d times, andsimilarly the value −1 at least d times. But for any λ with |λ| = 1 the polynomial H(z) − λH∗(z) has degree d, so infact R(z) takes the value λ exactly d times. Hence as z winds once around the unit circle, R(z) winds monotonicallyaround the circle (no doubling back). Thus R(z) must take each of the values 1 and −1 exactly d times, and the valuesof z where R(z) = 1 must interlace on the unit circle with the values of z where R(z) = −1. Hence {P,Q} forms a pairof interlacing cyclotomic polynomials.
Thus, corresponding to primitive interlacing cyclotomic pairs, there are primitive 2-reciprocal disc-bionic polyno-mials. Also, we make a canonical choice between such a polynomial H(z) and (−1)degHH(−z), as follows. If
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H(z) = (−1)degHH(−z), then there is no choice to make. Otherwise H has a term of lowest even degree and a termof lowest odd degree. These two terms have the same signs in exactly one of H(z) and (−1)degHH(−z). We choose Hcanonically to be the one where these two terms have the same sign.We can list all canonical 2-reciprocal disc-bionic polynomials. Combining Theorem 2.1 with Theorem 1.1, we obtain thefollowing.
Corollary 2.2.
The canonical 2-reciprocal disc-bionic polynomials consist of the following:

• the infinite family (2zn+m− zn− zm)/(z−1) for all m,n ∈ N with n ≥ m and gcd(m,n) = 1;

• the infinite family 2zn+m + (−1)nmzn + zm for all m,n ∈ N with n > m and gcd(m,n) = 1;

• the 26 polynomials in Table 3.

Since gcd(n,m) = 1, n and m are not both even. In the first case, the coefficients are a (nonempty) string of 2’s followedby a (possibly empty) string of 1’s, then a (nonempty) string of 0’s, the smallest-degree such example being 2z.
Proof. The disc-bionic polynomials corresponding to the infinite families can be read off from Table 1. For the firstinfinite family we put m = j and replace n+ 1− j by n to obtain the first bullet point of the corollary.For the second infinite family we note that j is odd. If n is also odd then n − j is even, so that, on replacing zby −z and multiplying by −1 the disc-bionic polynomial of the second family becomes 2zn + zn−j + zj . Putting m = jand replacing n − j by n we have (−1)nm = 1, so that this disc-bionic polynomial becomes 2zn+m + zn + zm =2zn+m + (−1)nmzn + zm, which is canonical. If n is even then n − j is odd, so that 2zn − zn−j + zj is canonical. Againputting m = j and replacing n − j by n, this becomes 2zn+m − zn + zm = 2zn+m + (−1)nmzn + zm. So in each case weget the second bullet point of the corollary.
The following result is an immediate consequence of Theorem 2.1 and the fact that if H(z) is a 2-reciprocal disc-bionicpolynomial then so is H(zl) for every l ≥ 1.
Corollary 2.3.
If {P(z), Q(z)} is an interlacing cyclotomic pair, then so is {P(zl), Q(zl)} for every l ≥ 1.

3. Cyclogenic Pisot polynomials

A Pisot number is a real algebraic integer θ > 1, all of whose Galois conjugates 6= θ have modulus strictly less than 1.As in [13], we define a Pisot polynomial to be a monic integer polynomial having one real zero > 1, with all otherzeros in |z| < 1. It is thus the minimal polynomial of a Pisot number, possibly multiplied by a power of z. For aPisot polynomial A(z) of degree d we say that it is cyclogenic if 2A′(1) ≥ (d− 2)A(1). It is easy to check that a Pisotpolynomial A is cyclogenic if and only if z2A(z) − A∗(z) is positive on the interval (1,∞). Also, we say that a Pisotnumber is cyclogenic if it is the zero of some cyclogenic Pisot polynomial. It turns out that the largest cyclogenic Pisotnumber is 3, see Proposition 7.1. For our purposes we need to extend the cyclogenic Pisot polynomials a little: wedefine C to be the set of all cyclogenic Pisot polynomials, plus the polynomials zr and zr(z− 1) for r ≥ 0. (So we includethe constant polynomial 1.)We take C≥2 to be the polynomials in C whose largest zero is in (2,∞), along with the polynomial z(z− 2) ∈ C, and C≤2to be the polynomials in C having no zero in [2,∞), along with the polynomial z− 2 ∈ C. We have C = C≤2 ∪ C≥2, adisjoint union. In fact, as we shall see in Proposition 7.1, the largest cyclogenic Pisot number is 3, so that one couldreplace ∞ by 3 in these definitions without changing the sets that have been defined.
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#

A
2z4 +

z3 −
z2 −

z
(z2 −

z
−

1)z2
1.618

0
z3 −

z2 −
3z−

2
2.511

51/5
B

2z6 +
z5 −

z4 −
z3 +

z2 +
z

z6 −
2z5 −

2z4 +
z3 +

2z2 −
z
−

2
2.551

9
(z3 −

z
−

1)z2
1.324

73
−

C
2z6 −

2z5 +
z3

z6 −
3z5 +

2z4 −
z2 +

z
−

1
2.143

1
z5 −

2z4 +
z2 −

1
1.784

61
−

D
2z6 +

z5 +
z4 −

z3 −
z2 −

z
(z3 −

z2 −
1)z3

1.465
6

z5 −
z4 −

2z3 −
4z2 −

3z−
2

2.587
81/1

1
E

2z6 −
z4 +

z3 +
z2

z6 −
2z5 −

z4 +
z3 −

z
−

1
2.297

3
z5 −

z4 −
z3 +

z2 −
1

1.443
33

−
F

2z6 −
z5 −

z3 +
z

z6 −
3z5 +

z4 +
z2 +

z
−

2
2.540

2
(z3 −

z2 −
1)z2

1.465
61

G
2z7 +

z6 −
z5 −

2z4 +
z2 +

z
z7 −

2z6 −
2z5 +

3z3 +
z2 −

z
−

2
2.592

3
(z3 −

z
−

1)z3
1.324

72
H

2z7 +
2z6 +

z5 −
z4 −

z3 −
z2

z7 −
z6 −

z5 −
z4 +

z3 −
1

1.747
5

z6 −
2z4 −

4z3 −
4z2 −

3z−
1

2.220
12/1

3
−

I
2z7 −

z6 +
z4 −

z3 +
z

z7 −
3z6 +

z5 +
z4 −

2z3 +
z2 +

z
−

2
2.548

8
(z4 −

z3 −
1)z2

1.380
32

J
2z7 −

z5 −
z4 +

z3 +
z2

z7 −
2z6 −

z5 +
2z3 −

z
−

1
2.292

9
z6 −

z5 −
z4 +

z2 −
1

1.501
62

K
2z7 +

z6 +
z5 −

z2 −
z

(z5 −
z4 −

z2 −
1)z2

1.570
1

z6 −
z5 −

2z4 −
3z3 −

3z2 −
3z−

2
2.533

42/1
3

L
2z8 +

z7 −
z6 −

2z5 −
z4 +

z2 +
z

z8 −
2z7 −

2z6 +
2z4 +

2z3 +
z2 −

z
−

2
2.608

2
(z3 −

z
−

1)z4
1.324

71
M

2z8 +
2z7 −

z6 −
3z5 −

z4 +
z3 +

z2
z8 −

z7 −
3z6 −

z5 +
3z4 +

3z3 −
2z−

1
2.185

7
z7 −

2z5 −
2z4 −

z
−

1
1.804

21/5
N

2z8 +
2z7 −

2z5 −
z4

z8 −
z7 −

2z6 −
z5 +

2z4 +
2z3 −

z
−

1
1.914

5
z7 −

2z5 −
3z4 −

2z3 −
2z2 −

2z−
1

2.068
61/1

1
O

2z8 +
2z7 +

z6 −
z4 −

2z3 −
z2

z8 −
z7 −

z6 +
z2 −

1
1.573

7
z7 −

2z5 −
4z4 −

5z3 −
5z2 −

3z−
1

2.289
61/1

9
P

2z8 +
3z7 +

2z6 −
z4 −

2z3 −
2z2 −

z
(z3 −

z
−

1)z5
1.324

7
z7 −

3z5 −
6z4 −

7z3 −
7z2 −

5z−
2

2.614
31/2

9
Q

2z8 +
2z7 −

z5 −
z4 −

z3
z8 −

z7 −
2z6 +

z4 +
z3 +

z2 −
z
−

1
1.832

6
z7 −

2z5 −
3z4 −

3z3 −
3z2 −

2z−
1

2.124
11/1

3
R

2z8 +
z7 −

z6 −
z5 −

z4 −
z3 +

z2 +
z

z8 −
2z7 −

2z6 +
z5 +

z4 +
z3 +

2z2 −
z
−

22.
5354

(z5 −
z3 −

z2 −
z
−

1)z2
1.534

21/3
−

S
2z8 −

z7 +
z5 −

z4 +
z3 −

z
(z6 −

2z5 +
z4 −

z2 +
z
−

1)z2
1.561

8
z7 −

2z6 −
z5 −

2z3 −
z
−

2
2.534

51/7
−

T
2z8 −

z7 −
2z6 +

2z5 +
z4 −

2z3 +
z

z8 −
3z7 +

4z5 −
2z4 −

3z3 +
3z2 +

z
−

22
.5469

(z5 −
z4 −

z3 +
z2 −

1)z2
1.443

31
U

2z8 +
z7 −

z6 −
z5 +

z4 +
z3 −

z2 −
z

(z6 −
z5 −

z4 +
z2 −

1)z2
1.501

6
z7 −

z6 −
3z5 −

2z4 −
z2 −

3z−
2

2.546
01/1

1
V

2z8 +
z7 −

z6 +
z4 −

z2 −
z

(z5 −
z4 −

z3 +
z2 −

1)z3
1.443

3z
7 −

z6 −
3z5 −

2z4 −
z3 −

2z2 −
3z−

22
.5904

1/13
−

W
2z8 −

2z6 −
z5 +

z4 +
z3

z8 −
2z7 −

z6 +
z5 +

z4 −
1

2.153
2

z7 −
z6 −

2z5 +
2z3 +

z2 −
z
−

1
1.758

31
X

2z8 +
z7 +

z6 +
z5 −

z4 −
z3 −

z2 −
z

(z4 −
z3 −

1)z4
1.380

3z
7 −

z6 −
2z5 −

3z4 −
5z3 −

4z2 −
3z−

22.
6078

1/19
Y

2z8 +
z7 −

z4 −
z

(z7 −
z6 −

z5 +
z2 −

1)z
1.545

2z
7 −

z6 −
2z5 −

2z4 −
3z3 −

2z2 −
2z−

22.
4455

1/13
−

Z
2z8 −

z6 −
z5 −

z4 +
z3 +

z2
z8 −

2z7 −
z6 +

z4 +
2z3 −

z
−

1
2.290

7
z7 −

z6 −
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z2 −
1

1.545
21
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For A ∈ C of degree d we say that A is just cyclogenic if 2A′(1) = (d− 2)A(1), and strictly cyclogenic if 2A′(1) >(d− 2)A(1). We define Cjust and Cstrictly to be respectively the set of just cyclogenic polynomials and strictly cyclogenicpolynomials. We define the Boyd number of A ∈ C of degree d to be d−2−2A′(1)/A(1) (compare Boyd [3, equation (17)]).In particular zr(z− 1), r ≥ 0, is defined to have the Boyd number +∞. So the Boyd number is 0 for A ∈ Cjust, andpositive for A ∈ Cstrictly, with the exception that zr , r ≥ 0, has the Boyd number −(r+2). The significance of the Boydnumber lies in the following proposition, which is immediate from the fact that if A(z) has the Boyd number b then zA(z)has the Boyd number b− 1.
Proposition 3.1.
Suppose that α is a cyclogenic Pisot number with minimal polynomial Aα (z) having the Boyd number b. Then zkAα (z)
is a cyclogenic Pisot polynomial precisely for k = 0, . . . , bbc. Further, zkAα (z) is a just cyclogenic Pisot polynomial if
and only if b is an integer and k = b.

Note that this proposition concerns all cyclogenic Pisot polynomials, apart from the exceptional ones zr and zr(z− 1)whose zeros are not (cyclogenic) Pisot numbers.
Table 4. The cyclogenic Pisot polynomials associated via Theorem 4.3 to the two infinite families of interlacing cyclotomic pairs given in Table 1.

Family Cyclogenic Pisot Boyd number
1 Just zn+1 − 2zn − zn+1−j + zn−j − zj + zj−1 + 1

z − 1 0
1 Strictly zn+1 − 2zn + zn−j + zj−1 − 1(z − 1)2

∞ if j = 1,
n+ 1(j− 1)n− j2 + j − 1 if j ≥ 2

2 Just zn − 2zn−1 − zn−j + zn−1−j + zj − zj−1 − 1 0
2 Strictly zn − 2zn−1 + zn−1−j − zj−1 + 1

z − 1
∞ if j = 1,1
j − 1 if j ≥ 2

4. Cyclogenic Pisot polynomial bijections

Our first result in this section is the following.
Theorem 4.1.
There is a bijection between the set of 2-reciprocal disc-bionic polynomials H(z) and the set Cjust given explicitly by

A(z) = 12
{(1− 2

z

)
H(z)−H∗(z)}. (3)

In the other direction it is given by
H(z) = z(z− 1)2 {(2z− 1)A(z)− A∗(z)}. (4)

Proof. Given a 2-reciprocal disc-bionic polynomial H, define A by (3). Now |(1− 2/z)H(z)| > |H∗(z)| for |z| = 1,
z 6= 1. Since A(1) = −H(1) 6= 0, A(z) has, by Rouché’s Theorem, the same number of zeros inside the unit circle as
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(1− 2/z)H(z), namely (using the fact that H is disc-bionic) degA − 1. Since H does not change sign on [1,∞), wehave A(1) < 0. As H is 2-reciprocal, (1− 2/z)H(z)−H∗(z) has all coefficients even. Hence A ∈ Z[z] and is monic. Thusit is a Pisot polynomial. Direct calculation shows that 2A′(1)− (degA− 2)A(1) = 0, so that A is just cyclogenic.Conversely, given a polynomial A ∈ Cjust, define H by (4). By applying Rouché’s Theorem to λ(2z− 1)A(z) − A∗(z)for λ > 1 and then letting λ→ 1 we see that H has at least degA zeros in |z| < 1, with the remaining zeros on the unitcircle, which must be at z = 1. Since A ∈ Cjust, both (2z− 1)A(z)−A∗(z) and its derivative are zero at z = 1, and we seethat H, as defined by (4), is a polynomial with all its zeros inside the unit circle. Moreover, H has leading coefficient 2.We now show that H is 2-reciprocal. Let a = degA. Then degH∗ < degH = a. Now
zaH

(1
z

) = 1/z(1/z − 1)2
{(2

z − 1)zaA(1
z

)
− zaA∗

(1
z

)}
,

giving
H∗(z) = −zA(z) + (z− 2)A∗(z)(z− 1)2 . (5)

Hence H(z) − H∗(z) = 2{z2A(z) − A∗(z)}/(z− 1)2. Thus H is 2-reciprocal. An easy check shows that (3) and (4) aremutually inverse maps.
Theorem 4.2.
The bijection between the set of 2-reciprocal disc-bionic polynomials H(z) and the set of polynomials B ∈ Cstrictly is
given explicitly by

B(z) = 12(z− 1)
{(1− 2

z

)
H(z) +H∗(z)}. (6)

Furthermore, the Boyd number of B is 2H(1)2H ′(1)− (degH+2)H(1) .
In the other direction the bijection is given by

H(z) = z
z − 1 {(2z− 1)B(z)− B∗(z)}. (7)

The proof of this theorem is similar to that of Theorem 4.1. The computation of the Boyd number is straightforward,using (6) and the fact that d = degH = degB + 1 = dB + 1, say. We note the following formulae:
2B(1) = (d+2)H(1)− 2H ′(1),4B′(1) = (d2−d− 4)H(1)− 2(d− 3)H ′(1),
H(1) = 2B′(1)− (d− 3)B(1) = 2B′(1)− (dB− 2)B(1),
H ′(1) = (dB+3)B′(1)− d2

B +dB− 42 B(1).
(8)

Theorem 4.3.
Suppose that {P,Q} is an interlacing pair of cyclotomic polynomials, with say (z− 1) |Q. Then(i) there is a bijection between such pairs {P,Q} and polynomials A in Cjust. This bijection is given explicitly in one

direction for A by

P(z) = zA(z)− A∗(z)
z − 1 , Q(z) = z2A(z)− A∗(z)(z− 1)2 . (9)

In the other direction it is given by
zA(z) = (z− 1)Q(z)− P(z). (10)
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(ii) There is a bijection between such pairs {P,Q} and polynomials B in Cstrictly. This bijection is given explicitly in
one direction by

P(z) = z2B(z)− B∗(z)
z − 1 , Q(z) = zB(z)− B∗(z). (11)

In the other direction it is given by

zB(z) = P(z)− Q(z)
z − 1 . (12)

(iii) For A and B as in (i) and (ii), one of them is in C≤2 and the other is in C≥2.
Proof. The proof is by composing the bijections in Theorems 2.1 and 4.1.(i) We obtain (9) by substituting (4) and (5) into (1). Then elimination of A∗ from (9) gives (10).(ii) From (6) we obtain via z 7→ 1/z and degB = degH − 1 that

H∗(z) = zB(z) + (z− 2)B∗(z)
z − 1 . (13)

Then substituting (6) and (13) into (1) we obtain (11). Elimination of B∗ from (11) gives (12). Then proceed as in (i).(iii) We see that A(2) = Q(2) − P(2), while B(2) = P(2) − Q(2). So if each of A and B are Pisot polynomials witha zero in [1, 2) ∪ (2, 3], or of the form za with a ≥ 0 then the result follows immediately. If A has 2 as a zero, it mustbe A(z) = z(z− 2) ∈ C≥2, which corresponds using (4) to H(z) = 2z − 1. Then, using (6), we see that H correspondsto B(z) = z − 2 ∈ C≤2.
Proposition 4.4.
For the two cyclogenic Pisot polynomials A ∈ Cjust and B ∈ Cstrictly corresponding to the same pair of interlacing
cyclotomic polynomials we have

B = (z2− 3z+1)A(z)− (z− 2)A∗(z)(z− 1)3 , A = (z2− 3z+1)B(z)− (z− 2)B∗(z)
z− 1 . (14)

Proof. We apply equations (4) and (7), and eliminate H to obtain
(2z− 1)A(z)− A∗(z) = (z− 1)((2z− 1)B(z)− B∗(z)). (15)

Noting that degB = degH − 1 = degA− 1, we replace z by 1/z in (15) and multiply by zdegA to obtain
zA(z) + (z− 2)A∗(z) = −(z− 1)(zB(z) + (z− 2)B∗(z)). (16)

Then we obtain (14) by successively eliminating one of A∗ and B∗ from (15) and (16).
5. Bijections involving C≤2 and C≥2
There are similar bijections between pairs of interlacing cyclotomic polynomials and polynomials in C≤2, and alsopolynomials in C≥2. These follow readily from our earlier results.
Theorem 5.1.
Suppose that {P,Q} is an interlacing pair of cyclotomic polynomials, with say (z − 1) |Q. Then
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(i) there is a bijection between such pairs {P,Q} and polynomials A in C≤2. This bijection is given explicitly in one
direction for A strictly cyclogenic by

P(z) = z2A(z)− A∗(z)
z − 1 , Q(z) = zA(z)− A∗(z),

and by

P(z) = zA(z)− A∗(z)
z − 1 , Q(z) = z2A(z)− A∗(z)(z− 1)2

if A is just cyclogenic. In the other direction it is given by

zA(z) =
P(z)− Q(z)

z− 1 if P(2) ≥ Q(2),(z− 1)Q(z)− P(z) if P(2) < Q(2);
(ii) there is a bijection between such pairs {P,Q} and polynomials B in C≥2. This bijection is given explicitly in one

direction for B strictly cyclogenic by

P(z) = zB(z)− B∗(z)
z− 1 , Q(z) = z2B(z)− B∗(z)(z− 1)2 ,

and by

P(z) = z2B(z)− B∗(z)
z− 1 , Q(z) = zB(z)− B∗(z)

if B is just cyclogenic. In the the other direction it is given by

zB(z) =
(z− 1)Q(z)− P(z) if P(2) ≥ Q(2),
P(z)− Q(z)

z− 1 if P(2) < Q(2).
Theorem 5.2.
The bijection between the set of 2-reciprocal disc-bionic polynomials H(z) and the set of polynomials C (z) ∈ C≤2 is
given explicitly by

C (z) = {A(z) given by (3) if H(1/2) > 0,
B(z) given by (6) if H(1/2) ≤ 0.

In the other direction H(z) is given by (4) if C is just cyclogenic (with C replacing A in (4)), or by (7) if C is strictly
cyclogenic (with C replacing B in (7)).
The significance of H(1/2) comes from equations (3) and (6), from which we see that it determines the sign of A(2)and B(2), and thus whether the associated Pisot number is less than, equal to, or greater than 2.Note that, since H(z) has no zeros in the interval (0, 1/2), H(1/2) is positive if and only if the coefficient of the lowest-degree monomial in H is +1. So this coefficient is −1 if and only if H(1/2) ≤ 0. Thus, for instance, as a check,we see that in Table 3 the just cyclogenic Pisot numbers greater (less) than 2 correspond to the polynomials H withsmallest-degree coefficient positive (negative).
Theorem 5.3.
The bijection between the set of 2-reciprocal disc-bionic polynomials H(z) and the set of polynomials C (z) ∈ C≥2 is
given explicitly by

C (z) = {B(z) given by (6) if H(1/2) > 0,
A(z) given by (3) if H(1/2) ≤ 0.

In the other direction H(z) is given by (7) if C is just cyclogenic (with C replacing B in (7)), or by (4) if C is strictly
cyclogenic (with C replacing A in (4)).
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The following is a consequence of Proposition 4.4.
Corollary 5.4.
For the two cyclogenic Pisot polynomials A ∈ C≤2 and B ∈ C≥2 corresponding to the same pair of interlacing cyclotomic
polynomials we have

B = (z2− 3z+1)A(z)− (z− 2)A∗(z)(z− 1)eA , A = (z2− 3z+1)B(z)− (z− 2)B∗(z)(z− 1)eB , (17)
where the exponent eA (respectively eB) is 3 or 1 depending on whether A (respectively B) is just cyclogenic or strictly
cyclogenic.

Proof. This follows easily from Proposition 4.4. From (14) we see that for A and B as in Proposition 4.4 wehave A(2) = −B(2). Also, A(z) = z(z− 2) if and only if B(z) = z − 2. Since we have specified that z − 2 ∈ C≤2and z(z− 2) ∈ C≥2, we see that one of A,B in (14) is in C≤2 and the other is in C≥2. Thus (17) gives the requiredbijection.
6. The relationship between cyclogenic Pisot polynomials from {P(z), Q(z)}
and those from {P(−z), Q(−z)} and {P(zl), Q(zl)}
Suppose that A(z) is the just cyclogenic polynomial related to the interlacing cyclotomic pair {P(z), Q(z)}, as de-scribed in Theorem 4.3. Then what is the just cyclogenic polynomial A−(z) related to the interlacing cyclotomic pair
{P(−z), Q(−z)}? More accurately, A−(z) is related to the pair {P(−z), Q(−z)} only if P and Q have even degree. Iftheir degree is odd, then we must take the pair {−Q(−z),−P(−z)} so that the polynomials are monic, and the secondone is divisible by z − 1. (The factors z − 1 and z + 1 always occur in PQ, and are the only ones of odd degree. So if
P and Q have even degree then Q is divisible by z2 − 1, while if they have odd degree then P is divisible by z+ 1 and
Q is divisible by z − 1.)The following result describes A− in terms of A, and B− in terms of B.
Theorem 6.1.(i) Given a just cyclogenic Pisot polynomial A(z), the polynomial

A−(z) =


(z2− 2z− 1)A(−z)− 2A∗(−z)(z+1)2 if A has even degree,

−(z2− z− 1)A(−z)− zA∗(−z)(z+1)2 if A has odd degree,

is also a just cyclogenic Pisot polynomial. Moreover, if A is related to the interlacing cyclotomic pair P(z), Q(z),
as described in Theorem 4.3, then A−(z) is related to the pair {P(−z), Q(−z)} if P and Q have even degree, and
to the pair {−Q(−z),−P(−z)} if P and Q have odd degree.

(ii) Given a strictly cyclogenic Pisot polynomial B(z), the polynomial

B−(z) =


(z2− z− 1)B(−z) + zB∗(−z)
z2 − 1 if B has even degree,

−(z2− 2z− 1)B(−z) + 2B∗(−z)
z2 − 1 if B has odd degree,

(18)
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is also a strictly cyclogenic Pisot polynomial. Its Boyd number is


−4B(−1)2B′(−1) + (dB+2)B(−1) if B has even degree,

−B(−1)2B′(−1) + dBB(−1) if B has odd degree.

(Here dB = degB.) Moreover, if A is related to the interlacing cyclotomic pair {P(z), Q(z)}, as described
in Theorem 4.3, then A−(z) is related to the pair {P(−z), Q(−z)} if P and Q have even degree, and to the
pair {−Q(−z),−P(−z)} if P and Q have odd degree.

Proof. For (i): From (10) we see that
zA−(z) = {(z− 1)Q(−z)− P(−z) if A has even degree,

Q(−z)− (z− 1)P(−z) if A has odd degree. (19)
We then replace z by −z in the formulae (9) for P and Q, and substitute into (19). The proof for (18) of (ii) is similar.The formula for the Boyd number is a routine calculation using (18).
Theorem 6.2.(i) Suppose that A is the just cyclogenic Pisot polynomial corresponding to the interlacing cyclotomic pair {P(z), Q(z)}.

Then for any l ∈ N the just cyclogenic Pisot polynomial Al corresponding to the interlacing cyclotomic
pair {P(zl), Q(zl)} is given by

Al(z) = zl−1(zl+1− 2zl +1)A(zl) + (zl−1− 1)A∗(zl)(zl− 1)2 .

(ii) Suppose that B is the strictly cyclogenic Pisot polynomial corresponding to the interlacing cyclotomic
pair {P(z), Q(z)}. Then for any l ∈ N the strictly cyclogenic Pisot polynomial Bl corresponding to the inter-
lacing cyclotomic pair {P(zl), Q(zl)} is given by

Bl(z) = zl−1(zl+1− 2zl+1)B(zl) + (zl−1− 1)B∗(zl)(z− 1)(zl− 1) . (20)
Furthermore, writing b for the Boyd number of B(z), the Boyd number of Bl(z) is

1
l(1+1/b)− 1 .

(So, in particular, it is 1/(l− 1) if b =∞.)(iii) As l→∞, the Pisot number zeros of both Al(z) and Bl(z) tend to 2.

Proof. (i) From (3) we have, first on replacing z by zl and then on replacing H(z) by H(zl), that
A(zl) = 12

{(1− 2
zl

)
H(zl)−H∗(zl)}, Al(z) = 12

{(1− 2
z

)
H(zl)−H∗(zl)}.

Taking the reciprocal of the first of these equations, and using the fact that A and H have the same degree, we obtain
A∗(zl) = (1− 2zl)H∗(zl)−H(zl)2 .
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We now eliminate H(zl) and H∗(zl) from these three equations to obtain the result.(ii) Similarly, we obtain from (6) that
B(zl) = 12(zl− 1)

{(1− 2
zl

)
H(zl) +H∗(zl)}, Bl(z) = 12(z− 1)

{(1− 2
z

)
H(zl) +H∗(zl)},

B∗(zl) = (2zl− 1)H∗(zl)−H(zl)2(zl− 1) .
(21)

For the third equation we have used the fact that degB = degH − 1. Again, elimination of H(zl) and H∗(zl) from thesethree equations gives the result. The calculation of the Boyd number of Bl is routine, if tedious, using its definitionand (20). Alternatively, one can use (21) along with the formulae from (8).(iii) Suppose that A(z) = zd + · · ·+azk , where a 6= 0 and k ≥ 0, so that A∗(z) = azd−k + · · ·+1. Take δ 6= 0 small andput z = 2+δ. Now for fixed real z > 1 we let l→∞ and have A(zl) = zdl+O(z(d−1)l) and A∗(zl) = az(d−k)l+O(z(d−k−1)l).We then see that
zl−1(zl+1− 2zl+1)A(zl) + (zl−1− 1)A∗(zl) = z2l−1δ(zdl +O(z(d−1)l)) + (1+a)z(d+1)l−1 +O(zdl−1)= z(d+2)l−1δ +O(z(d+1)l−1).

Hence for l sufficiently large Al(z), and, similarly, Bl(z), has a zero in the interval (2− |δ|, 2+ |δ|), which of course mustbe the Pisot number zero of Al(z) or Bl(z).
7. The largest cyclogenic Pisot number is 3
Proposition 7.1.
The largest cyclogenic Pisot number is 3. All other cyclogenic Pisot numbers have norm at most 2, the largest of norm 2
being 1 +√3 = 2.7320 . . . , and the largest of norm 1 being 1 +√2 = 2.4142 . . .
For the proof, we need the following simple lemma.
Lemma 7.2.
Let u1, u2, . . . , un be a sequence of n ≥ 1 nonnegative numbers. Then

∏
i

1− ui1 + ui
≥ 1−∑i ui1 +∑i ui

.

This lemma is the instance f(x) = log((1− x)/(1+ x)) of the general inequality ∑i f(ui) ≥ f
(∑

i ui
), valid for all setsof ui in a subinterval of (0,∞) and all f where f(x)/x is decreasing on that intervalsee [8, § 103 p. 83].

Proof of Proposition 7.1. Suppose that the cyclogenic polynomial A has a zero α > 3, and that its other zerosare the αi. From the identity 11− z + 11− z = 1 + 1− |z|2
|1− z|2we have that

d− 2A′(1)
A(1) = d+ 2

α − 1 −∑
αi 6=α

21− αi = 2 + 3− α
α − 1 −∑

αi∈R

1 + αi1− αi −∑αi /∈R 1− |αi|2
|1−αi|2 ≤ 2 + 3− α

α − 1 , (22)
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which is less than 2 for α > 3. Hence, as A(1) < 0, 2A′(1) < (d− 2)A(1) for α > 3, showing that A is not cyclogenic. Onthe other hand, it is easily checked that z − 3 is cyclogenic.We shall also need from (22) and the cyclogenic condition the fact that
3− α
α − 1 ≥ ∑

αi∈R

1 + αi1− αi + ∑
αi /∈R

1− |αi|2
|1−αi|2 ≥ ∑αi∈R 1− |αi|1 + |αi| + ∑

αi /∈R

1− |αi|2(1+ |αi|)2 = ∑
αi 6=α

1− |αi|1 + |αi| . (23)
Now for αi 6= α put ri = |αi|, ui = (1− ri)/(1+ ri), so that also ri = (1−ui)/(1+ui), and thus (23) gives

3− α
α − 1 ≥∑

i
ui.

Suppose that α < 3. Then Norm α = α
∏

i ri ≤ 2. So if N = Norm α = 1 or 2 then
N
α = ∏

i
ri = ∏

i

1− ui1 + ui
≥ 1−∑i ui1 +∑i ui

≥ α − 2,
using Lemma 7.2 and (22). Hence α (α− 2)−N ≤ 0, giving the rest of the result.
8. Proof of Theorem 1.1

For the proof, we first recall some definitions from [1]. Let a = (a1, . . . , an), and b = (b1, . . . , bn) ∈ C∗n be complexparameters, and pa(t) = (t−a1) · · · (t−an), pb(t) = (t−b1) · · · (t−bn), with A,B ∈ Cn×n being the companion matricesof pa and pb respectively. Then a hypergeometric group H(a; b) is any group conjugate inside GLn(C) to the group 〈A,B〉generated by A and B, see [1, 3.1, 3.5]. A matrix C ∈ GLn(C) is a complex reflection if C − I has rank 1. Now
A−1B − I = A−1(B − A) has rank 1, provided that A 6= B, so that A−1B is a complex reflection. The complex reflectionsubgroup Hr(a; b) of H = H(a; b) is the subgroup generated by all complex reflections Ak−1BA−k for k ∈ Z, [1, 3.5, 5.2].We are interested in the case where pa and pb are both cyclotomic polynomials, and with the additional property thattheir zeros interlace on the unit circle.A subgroup G of GLn(C) acts reducibly on Cn if there is a nonzero proper subspace of Cn that is invariant under theaction of G. Otherwise G is called irreducible. Further, G is called imprimitive if there is a direct sum decompositionof Cn as V1⊕V2⊕ · · · ⊕Vd into more than one nonzero subspace Vi such that the action of G permutes the Vi. Otherwise
G is called primitive.By [1, Theorem 4.8], we know that we are looking for H finite, this being a necessary and sufficient condition for paand pb to have interlacing zeros. We separate three cases:(i) The case when Hr acts reducibly on Cn. By [1, Theorem 5.3], Hr is imprimitive, and further (for the moment viewing
a and b as sets) ζa = a, ζb = b for some primitive lth root of unity ζ with l > 1, where l is taken to be maximal, givingthe interlacing pair P∗(zl), Q∗(zl), where P∗ and Q∗ are a primitive cyclotomic interlacing pair.(ii) The case H primitive. By [1, Theorem 7.1], (ii) holds precisely for the first infinite family, see [1, Table 8.3, # 1]),and the 26 sporadic examplessee final column of Table 2 above.(iii) The case Hr irreducible and H imprimitive. By [1, Theorem 5.8], we then know that the interlacing cyclotomicpolynomials P(z), Q(z) must be of the form (up to interchanging) P(z) = zn − bjcn−j , Q(z) = (zj − bj )(zn−j − cn−j ),where gcd(j, n) = 1. In particular j and n − j are not both even, so, by interchanging j and n − j if necessary, wecan assume that j is odd. As P and Q are cyclotomic, bj = ± 1 and cn−j = ± 1. If bj = 1, then cn−j must be −1 inorder that (z − 1)2 - Q(z), giving P(z) = zn + 1, Q(z) = (zj − 1)(zn−j + 1). If bj = −1, then cn−j must be (−1)n in orderthat (z+ 1)2 - Q(z), giving P(z) = zn + (−1)n, Q(z) = (zj + 1)(zn−j − (−1)n). Now replacing z by −z and multiplying thepolynomials by (−1)n gives P(z) = zn + 1, Q(z) = (zj − 1)(zn−j + 1) again. So in either case P and Q are in the secondinfinite family in Table 2.
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9. Small cyclogenic Pisot numbers

As is well known, Siegel [15] showed that the smallest element of the set S of Pisot numbers is 1.3247 . . . , with minimalpolynomial z3−z−1. All elements of S in an interval not containing a limit point of S can be found, using the Dufresnoy–Pisot–Boyd algorithm [4]. This algorithm can easily be tweaked to compute also the Boyd number of all Pisot numbersfound. Thus we find that the smallest ten Pisot numbers are cyclogenic. The eleventh smallest, 1.5911843 . . . , withminimal polynomial z9 − z8 − z7 + z2 − 1, is noncyclogenic.As another example, Boyd [4, p. 1252] determined using this algorithm that the interval (1.755, 1.839) contains 165 Pisotnumbers. The largest of their degrees is 31. Of these Pisot numbers, 38 of their minimal polynomials are cyclogenic(i.e., have nonnegative Boyd number), with 19 being just cyclogenic (i.e., having Boyd number 0), 13 have Boyd numberin the interval (0, 1), while five have Boyd number 1 (so, by Proposition 3.1, z times their minimal polynomial is justcyclogenic). The polynomial z6 − z4 − 2z3 − 2z2 − 2z − 1, with Boyd number 8/7, is the only one having Boyd numbergreater than 1.The smallest element of S′ is the cyclogenic Pisot number 1.618033989 . . . , the golden ratio, with minimal polynomial
z2− z−1. It is a limit point both of the cyclogenic Pisot numbers having minimal polynomials (zn(z2− z− 1)+1)/(z− 1)and the noncyclogenic Pisot numbers having minimal polynomials zn(z2− z− 1) + z2 − 1. This shows that the set ofnoncyclogenic Pisot numbers is not closed.The smallest noncyclogenic element of S′ is 1.90516616775 with minimal polynomial z4−z3−2z2+1. It is a limit point onlyof noncyclogenic Pisot numbers, for instance of the sequence with minimal polynomials zn(z4− z3− 2z2 +1)+z3+z2−z−1.This shows that the set of noncyclogenic Pisot numbers contains some but not all of its limit points.The noncyclogenic Pisot number 1.933184981899, with minimal polynomial z5 − 2z4 + z − 1, is the limit point of thesequence of (just) cyclogenic Pisot numbers having minimal polynomials zn(z5− 2z4 + z− 1)− z4 + z3 − 1, showing thatthe set of cyclogenic Pisot numbers is not closed, either. It is also the limit point of the sequence of noncyclogenic Pisotnumbers having minimal polynomials zn(z5− 2z4 + z− 1) − z4 + z − 1, showing that the set of Pisot numbers that arelimit points both of the set of cyclogenic Pisot numbers and of the set of noncyclogenic Pisot numbers contains bothcyclogenic Pisot numbers and noncyclogenic Pisot numbers.
10. Interlacing cyclotomic polynomials from graphs and signed graphs

In this section we remark that all primitive interlacing cyclotomic pairs can also be produced from graphs or signedgraphs. The method is as follows. Suppose that A is an n×n integer symmetric matrix with characteristic polynomial
χA(x). For some i delete the ith row and column of A, to obtain A′, with characteristic polynomial χA′ (x). Then byCauchy’s Interlacing Theorem (see Fisk [6] for a slick proof) the eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn of A and the eigenvalues
µ1 ≤ µ2 ≤ . . . ≤ µn−1 of B interlace, so that they satisfy

λ1 ≤ µ1 ≤ λ2 ≤ µ2 ≤ . . . ≤ µn−1 ≤ λn.
We now assume that χA(x) is an even or odd function of x. This occurs, for instance, when A is the adjacency matrixof a bipartite graph or signed graph. Then also A has all entries 0 or 1 (respectively 0, 1 or −1). We assume furtherthat A has all its eigenvalues in [−2, 2]. Then it is readily checked [11] that the pair of polynomials zn/2χA(√z + 1/√z)and (z− 1)z(n−1)/2χA′ (√z + 1/√z), when deprived of any common factor, is a pair of interlacing cyclotomic polynomials.Table 5, with Figure 2, gives a graph or signed graph with a distinguished vertex for every primitive cyclotomicpair {P(z), Q(z)}. Take A to be the adjacency matrix of the (signed) graph, and A′ to be the adjacency matrix ofthe (signed) graph with the distinguished vertex removed. Then the construction above gives the pair {P(z), Q(z)} ofinterlacing cyclotomic polynomials.
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Figure 2. The distinguished-vertex signed graphs S1, . . . , S8 used in Table 5. The solid edges correspond to an entry 1 in the adjacency matrix,
while the broken edges correspond to an entry −1. The distinguished vertices are circled.
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Theorem 11.1.
Let f(z) ∈ C[z] be a polynomial of degree d ≥ 1 satisfying(i) |z| = 1 ⇒ f(z) 6= 0,(ii) |z| = 1 ⇒ <(zf ′(z)/f(z)) > 0.

Suppose that f(z) has n zeros in the open disc |z| < 1. Then n ≥ 1. Furthermore, for any two distinct complex numbers
λ1 and λ2 of modulus 1, both polynomials

pi(z) = zd
(
f(z)− λif(1

z

))
, i = 1, 2,

have exactly 2n zeros on the unit circle. Furthermore, these zeros are simple, and the two sets of zeros interlace.

Before giving the proof, we make some remarks. The conditions on f(z) are reminiscent of (although not identical to)those for star-like functions, introduced by Robertson in 1936 [14]. If f(z) is a disc-bionic polynomial (or indeed anypolynomial having all its zeros in the open unit disc), then it satisfies the hypotheses of the theorem, for if |z| = 1, thensumming over all zeros α of f , we have
<
(
z f
′(z)
f(z)

) = ∑
α
<
(

z
z − α

) = ∑
α

<(z(z−α))
|z−α|2 = ∑

α

1−<(αz)
|z−α|2 ≥

∑
α

1− |α|
|z−α|2 > 0.

897

Author c
opy



Single polynomials that correspond to pairs of cyclotomic polynomials with interlacing zeros

Table 5. Graphs associated to the two infinite families of Table 1 and the 26 sporadic cases of interlacing cyclotomic pairs of Table 2. The second
column refers to the graphs of [12, Figures 2,3,5] and the signed graphs Si of Figure 2.

Family [12]1 An(j, n+1− j)2 Dn+1(j, n+1− j)Label [12]
A Ẽ6(1)B E6(1)C E6(2)
−D E7(3)
−E E7(5)
−F E7(1)G E7(6)H E7(4)I E7(7)J S1K Ẽ8(1)L E8(7)M E8(6)N E8(5)O E8(4)P E8(3)Q E8(2)R E8(1)S E8(8)T S2U S3V S4W S5X S6Y S7Z S8

It is interesting to compare Theorem 11.1 with Theorem 2.1: there the coefficients of H and H∗ are added together toproduce P; here the coefficients of f and −λif∗ are concatenated to produce pi.One can relax the hypothesis (and conclusion) to work with rational functions rather than polynomials, interpreting nas the difference between the number of zeros and poles of f in the unit disc. One could formulate a partial converse,and see also [13] for other variants.A partial version of Theorem 11.1 appears in [10, Theorem 1], where all zeros of f are assumed to lie in the open unitdisc, and only one value of λ is considered (so no interlacing).
Proof of Theorem 11.1. Let f(z) be a polynomial that satisfies the hypotheses, and suppose that n = 0, so thatall zeros of f are in |z| > 1. Then the Residue Theorem tells us that, on the unit circle, the mean of zf ′(z)/f(z) is

12π
∫ 2π

0
eitf ′(eit)
f(eit) dt = 12πi

∫
|z|=1

f ′(z)
f(z) dz = 0,

contradicting condition (ii). So n ≥ 1.
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Now define g(t) = arg f(eit) = = log f(eit), for 0 ≤ t < 2π. (Here we pick any choice of g(0) = arg f(1), and thenlet g vary continuously as t increases.) We observe that g(t) is strictly increasing, for g′(t) = =(ieitf ′(eit)/f(eit)) =
<
(
eitf ′(eit)/f(eit)) > 0. It follows that as t increases from 0 to 2π, the function f(z) winds n times monotonicallycounterclockwise round the origin, with no doubling back. Also f(eit)/f(e−it) is of modulus 1 and of argument 2g(t), andso, for the same t, it winds around the unit circle 2n times. Thus it assumes the values arg λ1 and arg λ2 alternately, 2ntimes each.To prove simplicity of the zeros of pi, note that at z = eit we have d/dt = izd/dz and so

= iz d
dz

(
pi(z)

zdf(1/z)
) = = d

dt

(
f(eit)
f(e−it) − λi

) = 2g′(t) > 0,
showing that pi(z)/zdf(1/z), and hence pi(z), has no repeated zeros on the unit circle.

References

[1] Beukers F., Heckman G., Monodromy for the hypergeometric function nFn−1, Invent. Math., 1989, 95(2), 325–354[2] Bober J.W., Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc., 2009, 79(2),422–444[3] Boyd D.W., Small Salem numbers, Duke Math. J., 1977, 44(2), 315–328[4] Boyd D.W., Pisot and Salem numbers in intervals of the real line, Math. Comp., 1978, 32(144), 1244–1260[5] Brunotte H., On Garcia numbers, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 2009, 25(1), 9–16[6] Fisk S., A very short proof of Cauchy’s interlace theorem, Amer. Math. Monthly, 2005, 112(2), 118[7] Garsia A.M., Arithmetic properties of Bernoulli convolutions, Trans. Amer. Math. Soc., 1962, 102(3), 409–432[8] Hardy G.H., Littlewood J.E., Pólya G., Inequalities, 2nd ed., Cambridge University Press, Cambridge, 1952[9] Hare K.G., Panju M., Some comments on Garsia numbers, Math. Comp., 2013, 82(282), 1197–1221[10] Lalín M.N., Smyth C.J., Unimodularity of zeros of self-inversive polynomials, Acta Math. Hungar., 2013, 138(1-2),85–101[11] McKee J., Smyth C.J., There are Salem numbers of every trace, Bull. London Math. Soc., 2005, 37(1), 25–36[12] McKee J., Smyth C.J., Salem numbers, Pisot numbers, Mahler measure and graphs, Experiment. Math., 2005, 14(2),211–229[13] McKee J., Smyth C.J., Salem numbers and Pisot numbers via interlacing, Canad. J. Math., 2012, 64(2), 345–367[14] Robertson M.I.S., On the theory of univalent functions, Ann. of Math., 1936, 37(2), 374–408[15] Siegel C.L., Algebraic integers whose conjugates lie in the unit circle, Duke Math. J., 1944, 11(3), 597–602

899

Author c
opy


	Introduction
	The bionic polynomial bijection
	Cyclogenic Pisot polynomials
	Cyclogenic Pisot polynomial bijections
	Bijections involving C<=2 and C>=2
	The relationship between cyclogenic Pisot polynomials from {P(z),Q(z)} and those from {P(-z),Q(-z)} and {P(zl),Q(zl)}
	The largest cyclogenic Pisot number is 3
	Proof of Theorem 1.1
	Small cyclogenic Pisot numbers
	Interlacing cyclotomic polynomials from graphs and signed graphs
	Acknowledgements
	References

