
WALL-CROSSING IMPLIES BRILL-NOETHER
APPLICATIONS OF STABILITY CONDITIONS ON SURFACES

AREND BAYER

ABSTRACT. Over the last few years, wall-crossing for Bridgeland stability conditions has led to a
large number of results in algebraic geometry, particular on birational geometry of moduli spaces.

We illustrate some of the methods behind these result by reproving Lazarsfeld’s Brill-Noether
theorem for curves on K3 surfaces via wall-crossing. We conclude with a survey of recent applica-
tions of stability conditions on surfaces.

The intended reader is an algebraic geometer with a limited working knowledge of derived cate-
gories. This article is based on the author’s talk at the AMS Summer Institute on Algebraic Geometry
in Utah, July 2015.
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1. INTRODUCTION

Merely following the logic of wall-crossing naturally leads one to reprove Lazarsfeld’s Brill-
Noether theorem for curves on K3 surfaces. I hope that explaining this proof will serve to illustrate
the methods underlying many of the recent applications of wall-crossing for Bridgeland stability
conditions on surfaces, in particular to the birational geometry of moduli spaces of sheaves.

To state our concrete goal, let (X,H) be a smooth polarised K3 surface.
Assumption (*): H2 divides H.D for all curve classes D on X .

Theorem 1.1 ([Laz86]). Let (X,H) be a polarised K3 surface satisfying Assumption (*). Let C
be any smooth curve in the linear system |H|. Then the Brill-Noether variety W r

d (C) has expected
dimension ρ(r, g, d); in particular, it is empty if and only if ρ(r, g, d) < 0.
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Here g is the genus of C, ρ(r, d, g) is the Brill-Noether number, and W r
d (C) denotes the variety

of globally generated degree d line bundles L on C with at least r + 1 global sections; see Section
5 for more details. This, of course, is closely related to the space of morphisms C → Pr, and thus
Lazarsfeld’s theorem answers one of the most basic questions about the projective geometry of C.
The corresponding statements for arbitrary generic curves was famously proved by degeneration
in [GH80]; Lazarsfeld’s proof instead uses vector bundles on the K3 surface and does not need
degeneration.

We will prove a slightly more precise statement, allowing for singular curves and arbitrary pure
torsion sheaves, see Theorem 5.2 and the discussion at the end of Section 5.

Background. Over the last few years, stability conditions and wall-crossing have produced many
results in birational geometry completely unrelated to derived categories; we conclude this article
with a survey of such results. While this development may have come as a surprise to many,
myself included, it is, as often, quite a logical development in hindsight—as well as perhaps in the
foresight of a few, more on that below.

There are many famous conjectures (due to Bondal, Orlov, Kawamata, Katzarkov, Kuznetsov,
...) predicting precise relations between the derived category of a variety and its birational geom-
etry. But below the surface, wall-crossing is much closer connected to vector bundle techniques
as introduced in the 1980s, and as used in Lazarsfeld’s proof. I hope that this direct comparison
will illuminate the additional insights coming from the derived category, stability conditions and
wall-crossing.

Intended reader. I assume that the reader is an algebraic geometer with a passing familiarity
of basic facts about the bounded derived category Db(X) = Db(CohX) of coherent sheaves
on smooth projective varieties X; for references, the reader may consult [Wei94, Chapter 10] or
[Huy06, Chapters 1–2].

Omissions and apologies. This survey does not say anything on stability conditions on higher-
dimensional varieties. It is also ignorant of applications of wall-crossing and stability conditions to
Donaldson-Thomas theory (see [Tod14]), to the derived category itself (as e.g. in [BB13]), and of
connections to mirror symmetry (see [Bri09]).

The survey would also like to apologise for not actually giving a definition of stability conditions
(instead it only describes the construction of some stability conditions on a K3 surface). We refer
the interested reader to the original articles [Bri07, Bri08], or to [Huy11, Bay10, MS16] for surveys.

Acknowledgements. Such a survey may be the right place to try to appropriately thank Aaron
Bertram, who stubbornly convinced me and others of the power of wall-crossing for questions in
birational geometry, and whose foresight influenced my approach to the topic to great extent. Of
course, I am also very much indebted to Emanuele Macrı̀—this article is directly inspired by our
joint work, and greatly benefitted from a number of additional conversations with him. I am also
grateful for comments by Izzet Coskun, Gavril Farkas, Soheyla Feyzbakhsh, Davesh Maulik and
Kota Yoshioka.

The author was supported by ERC starting grant no. 337039 “WallXBirGeom”.
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Plan of the paper. Sections 2, 3 and 4 review properties of stability conditions on K3 surfaces and
moduli space of stable objects; the key results are Proposition 2.3, Theorem 3.1 and Theorem 4.1.
Section 5 recalls the basics about Brill-Noether for curves in K3 surfaces and the associated moduli
space of torsion sheaves. The proof of Theorem 1.1 is contained in Sections 6 and 7. Section 8
reinterprets the results as a statement of the birational geometry of the moduli space of torsion
sheaves. Section 9 systematically reviews results on birational geometry of moduli space obtained
via wall-crossing, as well as other applications of stability conditions on surfaces.

2. THE HEART OF THE MATTER

The one key derived category technique that we will need is the construction of a certain abelian
subcategory Cohβ X ⊂ Db(X) of two-term complexes, see Proposition 2.3. More technically, we
will construct a bounded t-structure which has Cohβ X as its heart. In addition to H , it depends
on a choice of real number β.

We recall the slope of a coherent sheaf E, for later convenience shifted by β ∈ R:

µβ(E) :=

{
H.c1(E)

rk(E) − β if rk(E) > 0

+∞ otherwise

The following slight modification (which I learned from Yukinobu Toda) of the definition of slope-
stability implicitly accounts correctly for torsion sheaves:

Definition 2.1. We say that E ∈ CohX is slope-(semi)stable if for all subsheaves A ⊂ E, we
have µβ(A) < (≤) µβ(E/A).

Every sheaf E has a (unique and functorial) Harder-Narasimhan (HN) filtration: a sequence
0 = E0 ↪→ E1 ↪→ . . . ↪→ Em = E of coherent sheaves where Ei/Ei−1 is slope-semistable for
1 ≤ i ≤ m, and with

µ+
β (E) := µβ (E1/E0) > µβ (E2/E1) > · · · > µ−β (E) := µβ (Em/Em−1) .

Moreover, if E,F are slope-semistable with µβ(E) > µβ(F ), then Hom(E,F ) = 0.
We use the existence of HN filtrations to break the abelian category of coherent sheaves into two

pieces T β, F β ⊂ CohX:

T β =
{
T : µ−β (E) > 0

}
=
{
T : all HN-factors of T satisfy µβ( ) > 0

}
=
{
T : all quotients T � E satisfy µβ(E) > 0

}
=
〈
T : T is slope-semistable with µβ(T ) > 0

〉
F β =

{
T : µ+

β (E) ≤ 0
}

=
{
T : all HN-factors of T satisfy µβ( ) ≤ 0

}
=
{
T : all subobjects A ↪→ T satisfy µβ(A) ≤ 0

}
=
〈
T : T is slope-semistable with µβ(T ) ≤ 0

〉
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Here 〈·〉 denotes the extension-closure, i.e., the smallest subcategory of CohX containing the
given objects and closed under extensions. The equivalence of the above formulations follows
from the existence of Harder-Narasimhan filtrations, and the Hom-vanishing between stable objects
mentioned above.

The formal properties of this pair of subcategories can be summarised as follows:

Proposition 2.2. The pair (T β, F β) is a torsion pair, i.e.:
(a) For T ∈ T β, F ∈ F β , we have Hom(T, F ) = 0.
(b) Each E ∈ CohX fits into a (unique and functorial) short exact sequence

0→ T (E)→ E → F (E)→ 0

with T (E) ∈ T β and F (E) ∈ F β .

Proof. Given a non-zero element f ∈ Hom(T, F ), we have a surjection T � im f and therefore
µβ(im f) > 0; but we also have an injection im f ↪→ F (E) and therefore µβ(im f) ≤ 0. This
contradiction proves (a).

As for (b), consider the HN filtration of E, and let i be maximal such that µβ(Ei/Ei−1) > 0;
then T (E) := Ei satisfies the claim. �

For us, the most important result on derived categories is the following Proposition; thereafter,
all our arguments will live completely within the newly constructed abelian category.

Proposition 2.3 ([Bri08, HRS96]). The following (equivalent) characterisations define an abelian
subcategory of Db(X):

Cohβ X =
〈
T β, F β[1]

〉
=
{
E : H0(E) ∈ T β, H−1(E) ∈ F β, H i(E) = 0 for i 6= 0,−1

}
=
{
E : E ∼= F−1 d−→ F 0, ker d ∈ F β, cok d ∈ T β

}
Rather than giving a proof, I will try to give as good an intuition about the behaviour of this

abelian category as possible. To begin with, short exact sequences in Cohβ X are exactly those
exact triangles A → E → B → A[1] in Db(X) for which all of A,E,B are in Cohβ X; then A
is the subobject, and B is the quotient. In particular, every object E ∈ Cohβ fits into a short exact
sequence

(1) H−1(E)[1] ↪→ E � H0(E).

The isomorphism class of E is determined by the extension class Ext1(H0(E), H−1(E)[1]) =
Ext2(H0(E), H−1(E)).

More generally, every short exact sequence in Cohβ X gives a six-term long exact sequence in
cohomology (with respect to CohX)

(2) 0→ H−1(A)→ H−1(E)→ H−1(B)→ H0(A)→ H0(E)→ H0(B)→ 0

with H−1( ) ∈ F β and H0( ) ∈ T β .
The following observation already illustrates how closely the abelian category Cohβ X is related

to classical vector bundle techniques.
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Proposition 2.4. Let E ∈ T β , considered as an object of Cohβ X . To give a subobject A ↪→ E
of E (with respect to the abelian category Cohβ X) is equivalent of giving a sheaf A ∈ T β with a
map f : A→ E whose kernel (as a map of coherent sheaves) satisfies ker f ∈ F β .

Proof. Given a subobject A ↪→ E, consider the associated long exact cohomology sequence (2).
We immediately see that H−1(A) = 0, and therefore A = H0(A) is a sheaf. The map f : A→ E,
considered as a map of coherent sheaves, has kernel ker f = H−1(B) ∈ F β .

Conversely, assume we are given a map f : A→ E as specified. Let B be the cone of f , which
is the two-term complex with B−1 = A,B0 = E, and the differential given by f . Then there

is an exact triangle A
f−→ E → B. By assumption, H−1(B) = ker f ∈ F β; on the other hand,

H0(B) is a quotient of A ∈ T β , and therefore is also in T β . This shows that B ∈ Cohβ X; hence
A→ E → B is a short exact sequence and f is injective as a map in Cohβ X . �

We conclude this section with a tangential observation on Cohβ X . One of the features of the
derived category is that cohomology classes of coherent sheaves become morphisms:

γ ∈ Hk(X,G) = Hom(OX , G[k]).

However, this feature is only useful with additional structures on Db(X); the abelian category
Cohβ X can precisely play this role. For example, if k = 1, β < 0 (hence OX ∈ T β ⊂ Cohβ X)
and G ∈ F β , then γ becomes a morphism OX → G[1] in the abelian category Cohβ X . This
immediately gives additional methods: one can consider the image of γ, or one can try to deduce
its vanishing from stability; see [AB11] for an example of this type of argument, in this case
reproving Reider’s theorem for adjoint bundles on surfaces. If instead k = 2, then γ becomes
an extension Ext1(OX , G[1]) between two objects within the same abelian category, and thus
produces a corresponding object in Cohβ X . One can, for example, try to determine stability of this
object (or study its HN filtration when it is unstable); see [BBMT14] for a conjectural application
of this idea towards Fujita’s conjecture for threefolds.

3. GEOMETRIC STABILITY

The goal of this section is to fully explain the meaning of the following result:

Theorem 3.1 ([Bri08]). Let (X,H) be a polarised K3 surface. For each α, β ∈ R with α > 0,
consider the pair σα,β :=

(
Cohβ X,Zα,β

)
with Cohβ X as constructed in Proposition 2.3, and

with Zα,β : K(Db(X))→ C defined by

Zα,β(E) =
〈
e
√
−1αH+βH , v(E)

〉
.

This pair defines a Bridgeland stability condition on Db(X) if ReZα,β(δ) > 0 for all roots δ ∈
H∗alg(X,Z) of the form (r, rβ, s) with r > 0 and s ∈ Z arbitrary; in particular this holds for
α2H2 ≥ 2.

Moreover, the family of stability conditions σα,β varies continuously as α, β vary in R>0 × R.

We begin by explaining the notation. The Mukai vector of an object E ∈ Db(X) given by

v(E) = (v0(E), v1(E), v2(E)) := ch(E) ·
√

tdX = (ch0(E), ch1(E), ch2(E) + ch0(E))
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lies in the algebraic cohomology H∗alg(X,Z). The pairing 〈 , 〉 is the Mukai pairing

〈v(E), v(F )〉 = −χ(E,F ) =
∑
i

(−1)i dim Hom(E,F [i])

= v1(E)v1(F )− v0(E)v2(F )− v2(E)v0(F ).

It equips H∗alg(X,Z) with the structure of an even lattice of signature (2, ρ(X)), where ρ(X) is the
Picard rank of X . Roots in this lattice are classes δ with δ2 = −2.

Explicitly, the central charge Zα,β is given by

Zα,β(E) =
√
−1αH

(
v1(E)− βH rk(E)

)
(3)

− v2(E) + βHv1(E) +
α2H2 − β2H2

2
v0(E)

For a sheafE, we have=Zα,β(E) ≥ 0 if and only if µβ(E) ≥ 0. Using the short exact sequence
(1) and Zα,β(F [1]) = −Zα,β(F ), one can immediately conclude

Lemma 3.2. If E ∈ Cohβ X , then =Zα,β(E) ≥ 0.

In other words, =Zα,β behaves like a rank function on the abelian category Cohβ X: it is a
non-negative function on its set of objects that is additive on short exact sequences. We want to
define a notion of slope by using the real part <Zα,β as a degree:

(4) E ∈ Cohβ X 7→ να,β(E) =
−<Zα,β(E)

=Zα,β(E)
.

To make this well-behaved, we need one further observation:

Lemma 3.3. Assume α, β satisfy the assumptions of Theorem 3.1. If 0 6= E ∈ Cohβ X satisfies
=Zα,β(E) = 0, then <Zα,β(E) < 0.

Proof. The short exact sequence (1) shows that

=Zα,β
(
H−1(E)

)
= 0 = =Zα,β

(
H0(E)

)
.

It follows that if H0(E) is non-trivial, then it is a zero-dimensional torsion sheaf, in which case
<Zα,β(H0(E)) = − ch2(E) < 0. If H−1(E) 6= 0, then it must be a slope-semistable sheaf with
µβ
(
H−1(E)

)
= 0. It is enough to consider the case that it is stable. Then with v := v

(
H−1(E)

)
we have v2 ≥ −2 by Hirzebruch-Riemann-Roch and Serre duality. If v2 = −2, the claim follows
from our assumptions on α, β. Otherwise, if v2 ≥ 0, then

<Zα,β(v) =
〈
<e
√
−1αH , e−βHv

〉
=

〈(
1, 0,−α

2H2

2

)
, (r, 0, s)

〉
= −s+

α2H2 · r
2

Since r > 0 and −2rs =
(
e−βHv

)2
= v2 ≥ 0 we have

<Zα,β
(
H−1(E)

)
= −<Zα,β(v) < 0

proving the claim. �
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FIGURE 1. Walls as semi-circles in the upper half plane, or as lines in the projec-
tive plane

This finally leads to a notion of stability for objects in Db(X): we say that E ∈ Db(X) is σα,β-
semistable if some shift E[k] is contained in the abelian category Cohβ X , and if that object E[k]
is slope-semistable with respect to the slope-function να,β . We need one more result to conclude
that (Cohβ X,Zα,β) is a stability condition (which we state without proof):

Proposition 3.4. Any E ∈ Cohβ X admits a HN filtration: a filtration whose quotients are να,β-
semistable objects of decreasing slopes.

Finally, we need to explain what we mean by a continuous family of stability conditions. The
technical underlying notion here is the support property; it implies that for small variations of the
central charge Z, the variation of the phases φ( ) = 1

π cot−1 ν( ) of all semistable objects can be
bounded simultaneously. What we need is the following consequence:

Corollary 3.5. Given a class v ∈ H∗alg(X,Z), there is a chamber decomposition induced by a
locally finite set of walls in R × R>0 with the following property: for objects of Mukai vector v,
being σα,β-stable (or semistable) is independent on the choice of (β, α) in any given chamber.

Remark 3.6. Locally, such walls are given by the condition that Z(A) and Z(E) are aligned,
where E is of class v and A ↪→ E is a semistable subobject. In the (β, α)-plane, this condition is
given by a semi-circle. It is sometimes easier to visualise the walls if we think of central charges
as being characterised by their kernel. For example, if ρ(X) = 1, then the kernel of Zα,β is a line
inside the negative cone in R3 ∼= H∗alg(X,Z)⊗R; our formula for Zα,β is the natural identification
of the upper half plane with the projectivization of the negative cone inside P2

R. The condition that
Z(A) and Z(E) are aligned is equivalent to the condition that the kernel is contained in the rank
two sublattice spanned by v(A) and v = v(E); thus all walls become lines in (the image of the
negative cone inside) P2

R going through the point corresponding to R · v, see fig. 1.
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4. MODULI SPACES OF STABLE OBJECTS

The most important result on moduli spaces of stable sheaves on K3 surfaces is that they have
expected dimension, and that they are non-empty whenever this dimension is non-negative and the
Mukai vector v satisfies some obvious assumptions. The same holds for moduli spaces of stable
objects in the derived category (in which case we can in fact also drop all assumptions on v):

Theorem 4.1 (Mukai, Yoshioka, Toda, . . . ). Consider a primitive vector v ∈ H∗alg(X,Z), and
let σ = σα,β be a stability condition that is generic1 with respect to v. Then the coarse moduli
space Mσ(v) of σα,β-stable objects of Mukai vector v exists as a smooth projective irreducible
holomorphic symplectic variety.

It is non-empty iff v2 ≥ −2, and its dimension is given by dimMσ(v) = v2 + 2.

This is the deepest ingredient in our arguments, and it comes from various sources. The exis-
tence of the moduli space as an algebraic space was proved in [Tod08]. An crucial observation
in [MYY11a] (generalised to our situation in [BM14b]) uses a Fourier-Mukai transform to reduce
all the statements above to the case of Gieseker-stable sheaves. It follows immediately from Serre
duality and Hirzebruch-Riemann-Roch that for v2 < −2, the moduli space is empty. If it is non-
empty, Mukai’s arguments in [Muk84] shows that the moduli space is smooth and symplectic of
the given dimension. The most difficult statement is the non-emptiness for v2 ≥ −2; its proof uses
deformation to elliptic K3 surfaces followed by Fourier-Mukai transforms to reduce to the case of
Hilbert schemes, see [Yos01b, Theorem 8.1] as well as [KLS06, Section 2.4].

Assume for simplicity that Mσ(v) is a fine moduli space, i.e. that it admits a universal family
E ∈ Db(Mσ(v) × X); let p, q denote the projections from the product to Mσ(v) and X , respec-
tively. Let F ∈ Db(X) be an object with (v, v(F )) = 0. Then the determinant line bundle
construction det of [KM76] produces a line bundle on Mσ(v) via

det
(
p∗RHom(E , p∗F )

)
.

Theorem 4.2 ([Yos01b, Sections 7 and 8]). Assume that v is primitive with v2 > 0, and that σ is
generic with respect to v. Then the determinant line bundle construction induces an isomorphism

(5) θv : v⊥ → NSMσ(v)

where v⊥ denotes the orthogonal complement of v inside the algebraic cohomology H∗alg(X,Z).

We will call θv the Mukai isomorphism.

Remark 4.3. In addition, θv identifies the restriction of the Mukai pairing in H∗alg(X,Z) with the
Beauville-Bogomolov-pairing on the Néron-Severi group of the moduli space; however, we will not
need that fact for the proof of Theorem 1.1, only in the concluding sections 8 and 9 on birational
geometry of moduli spaces.

Consider equations (3) and (4) for α � 0; then the slope να,β(E) is approximately given by
− α
µβ(E)

. This observation, combined with Proposition 2.4 (as well as the bound on Mukai vectors
of stable objects in Theorem 4.1) leads to the following result:

1This means that σ is not on any of the walls for the wall-and-chamber decomposition described in Corollary 3.5.
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Theorem 4.4. Let v = (v0, v1, v2) be a primitive class in H∗alg(X,Z) having either positive rank
v0 > 0, or satisfying v0 = 0 with v1 being effective. Then there exists α0 such that for all α ≥ α0

and all β > H.v1
H2v0

(or β > v2
H.v1

in case v0 = 0), the moduli space Mσα,β (v) is equal to the moduli
spaceMH(v) ofH-Gieseker-stable sheaves of class v. More precisely, an objectE ∈ Db(X) with
v(E) = v is σα,β-stable if and only if it is the shift of a Gieseker-stable sheaf.

5. BRILL-NOETHER AND THE MODULI SPACE OF TORSION SHEAVES

From now on, let (X,H) be a polarised K3 surfaces satisfying Assumption (*), and let d ∈ Z be
a degree. The natural moduli space related to Brill-Noether is MH(v) for v = (0, H, d+ 1− g): it
parameterises purely one-dimensional sheaves F of Euler characteristic d + 1 − g whose support
|F | is a curve in |H|. By [Bea91], the map

(6) π : MH(v)→ |H| ∼= Pg, F 7→ |F |
is a Lagrangian fibration, called the Beauville integrable system. The fibre over a smooth curve
C ⊂ |H| is the Picard variety Picd(C), and the restriction of the symplectic form to any fibre
vanishes.

We will make all our definitions in the context of MH(v). In particular, let Td(C) = π−1(C) be
the moduli space of pure torsion sheaves supported on C and with Euler characteristic d+ 1− g.

Definition 5.1. We define the following constructible subsets of Td(C).
• W r

d (C) is the set of globally generated sheaves with at least r + 1 global sections;
• W r

d(C) is as above, but without the assumption of being globally generated;
• V r

d (C) is the set of sheaves with exactly r + 1 sections.

The expected dimension for each of them is given by the Brill-Noether number

ρ(r, d, g) = g − (r + 1)(g − d+ r).

Our wall-crossing methods most naturally deal with V r
d (C); we will prove:

Theorem 5.2. Assume (X,H) satisfies Assumption (*), and that C ∈ |H| is an arbitrary curve
(possibly singular). If r, d satisfy 0 < d ≤ g − 1 and r ≥ 0, then dimV r

d (C) = ρ(r, d, g).

We will briefly explain how Theorem 1.1 implies 5.2. Since ρ(r, d, g) is a strictly decreasing
function of r in our range d ≤ g − 1, and since

W
r
d(C) = V r

d (C) \
⋃
r′>r

V r′
d (C),

we conclude dimW
r
d(C) = ρ(r, d, g) for all d ≤ g − 1. Similarly,

W
r
d(C) = W r

d (C) ∪
⋃
d′<d

Bd′

where Bd′ parametrises the sheaves whose global sections generate a subsheaf of Euler character-
istic d′ + 1 − g. Since C is assumed to smooth, we have Bd′ ⊂ W

r
d′(C) × Symd−d′(C), and

thus
dimBd′ ≤ ρ(r, d′, g) + d− d′ < ρ(r, d, g),



10 AREND BAYER

where the last inequality used the assumption r ≥ 1 of Theorem 1.1. This proves dimW r
d (C) =

ρ(r, d, g) as claimed. Finally, the case d > g − 1 follows via Serre duality on C.

6. HITTING THE WALL

We now consider wall-crossing for the moduli space Mσα,β (v), with v = (0, H, d + 1 − g) as
above. By Theorem 4.4, we have Mσα,β (v) = MH(v) for α � 0, and we want to find the wall
bounding this Gieseker-chamber.

Consider β = 0. In this case =Zα,0(OX) = 0; by Theorem 3.1, this means we have stability
conditions for

α > α0 :=

√
2

H2
.

For these stability conditions, note thatOX [1] is an object of Coh0X with =Zα,0(OX [1]) = 0, i.e.
of slope +∞; therefore it is automatically semistable. Applying Proposition 2.4 in fact shows that
it has no subobjects in Coh0X , and so OX [1] is stable for β = 0. (This also shows that the bound
of Theorem 3.1 is sharp: we have Zα,0(OX [1]) → 0 as α → α0, and the central charge of stable
objects can never become zero.)

Lemma 6.1. For α > α0 and β = 0, we have an isomorphism Mσα,0(v) = MH(v) identifying
the stable objects with stable sheaves.

In other words, there is no wall intersecting the line segment β = 0, α = ( 2
H2 ,+∞).

Proof. This is a direct consequence of Assumption (*): the objects in MH(v) have “rank one” in
Cohβ X , and thus can never be destabilised.

To elaborate, consider equation (3). We have =Zα,β=0(E) = αH.c1(E) ∈ Z≥0αH
2 for all

E ∈ Coh0X . Any L ∈ MH(v) has =Zα,β=0(L) = αH2. If L were semistable, each of its
Jordan-Hölder factors Ai would have to have =Zα,β=0(Ai) > 0 (otherwise it could not have
the same slope as L), and thus =Zα,β=0(Ai) ≥ αH2. This is a contradiction. Combined with
Corollary 3.5, this means they remain stable along the entire path. �

The key observation linking Brill-Noether to wall-crossing is the following Lemma; the case
d = g − 1 is one of the first wall-crossings studied in the literature, see [AB13].

Lemma 6.2. There is a wall bounding the Gieseker-chamber whereZα,β(OX) aligns withZα,β(v).
The sheaves L ∈ Mσα,β (v) getting destabilised are exactly those with h0(L) > 0, and the desta-
bilising short exact sequences are given by

(7) O⊕h
0(L)

X ↪→ L�W

for some object W that remains stable at the wall.

Proof. This is perhaps most easily explained using the visualisation of walls as lines in the projec-
tive plane discussed in Remark 3.6. The locus where the central charges of all objects in (7) are
aligned is the line segment between v and v(OX); in the upper half-plane picture, it is the arc of
a circle ending at (0, α0). Now consider the path in the upper half plane as in fig. 2 that starts at
β = 0, α � 0, goes straight to a point (0, α0 + ε) just slightly above (0, α0), and then turns left
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(0, α0)

β = 0

σ

α� 0

(0, α0)

v

σ

FIGURE 2. From the large volume limit to σ. No walls in the shaded region!

until it hits the above semi-circle. The visualisation of walls via lines shows immediately that if
this path would hit any other wall beforehand, then that wall would also intersect the straight line
segment β = 0, α ∈ (α0,+∞) in contradiction to Lemma 6.1. Also, OX cannot be destabilised
along this path: for (β, α) near (0, α0), we have |Zα,β(OX)| � 1, and it is the only stable object
with that property.

Let σ = (Cohβ X,Z) be the stability condition at the wall. In the abelian category of σ-
semistable objects with central charge aligned with Z(v), the object OX is a simple object; hence
the natural map O⊕h

0(L)
X → L must necessarily be an injective map, and the quotient W must be

semistable.
It remains to prove that W is stable. Note the Hom(W,OX) = 0 as W is a quotient of L.

Moreover, Hom(OX ,W ) = 0 follows by applying Hom(OX , ) to the short exact sequence
defining W . Hence stability of W follows from the following Lemma. �

Lemma 6.3. Let σ be a stability condition on the wall constructed above. Let W be an object of
class v − tv(OX) for some t ∈ Z, and assume that W is σ-semistable. Then W is stable if and
only if Hom(OX ,W ) = Hom(W,OX) = 0.

Proof. Assume first that ρ(X) = 1, and consider the Mukai vector a of any Jordan-Hölder factor
A ofW . It must be contained in the rank two sublattice generated by v and s := v(OX), otherwise
its central charge would not be aligned with Z(v). Further, since Z(a) must be on the same ray as
Z(v), there is a half-plane in this rank two sublattice containing s,v and a, see fig. 3

On the other hand, if A 6= OX , then (s,a) = −χ(OX , A) ≥ 0; since s2 = −2 and (s,v) > 0
this cuts out a second half-plane with configuration as in fig. 3: a must lie in the shaded area of the
figure.

It follows that either a = s, or a = av + bs with a > 0. But since s and v are a basis for this
rank two lattice we must have a ≥ 1; it follows that either a = 1 or A = OX . Hence all but one of
the Jordan-Hölder factors of W are isomorphic toOX ; soOX is either a subobject or a quotient of
W , a contradiction.
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Z(a) aligned with Z(v)

(s,a) ≥ 0

v

s

FIGURE 3. Jordan-Hölder factors of W

When ρ(X) > 1, the same arguments apply if we replace all Mukai vectors a = v(A) with the
vector

(
rk(A), 1

H2H.c1(A), v2(A)
)
∈ Z3; note again that Assumption (*)is essential here. �

Let wr = v− (r+1)v(OX) = (−(r + 1), H, d− g − r)) be the Mukai vector of W . Note that
w2
r = 2ρ(r, d, g)− 2. As in [Laz86], this immediately leads to the first conclusion:

Corollary 6.4. If ρ(r, d, g) < 0, then V r
d (C) = ∅ for all C ∈ |H|.

Proof. If V r
d (C) is non-empty, then by Lemma 6.2 there exists a σ̄-stable object of class wr; by

Theorem 4.1 this implies w2
r ≥ −2. �

Let us now write σ+ for a stability condition on the path of fig. 2 just before hitting the wall at
σ. We will prove a converse to Lemma 6.2:

Lemma 6.5. Let W ∈M stable
σ̄ (wr) be an object is σ-stable. Consider any extension of the form

Or+1
X → E →W

induced by an (r + 1)-dimensional subspace of Ext1(W,OX). Then E is σ+-stable.

Proof. Evidently,E is σ-semistable. IfE is not σ+-stable, then the destabilising subobjectA ↪→ E
would necessarily be in the abelian category σ-semistable of the same slope as E. But since OX
and W are simple objects in that category, we can determine all subobjects of E: they are all of the
form OdX for some d < r + 1. But OX has smaller slope than E, a contradiction. �

However, note that by the previous Lemmas, σ+ is in the Gieseker-chamber: Mσ+(v) =
MH(v). Hence such an E is automatically a torsion sheaf in MH(v), with h0(E) = r + 1,
i.e. E ∈ V r

d (|H|)! To confirm the existence of such E, we need one more result:

Lemma 6.6. If ρ(r, d, g) ≥ 0, then the set of σ̄-stable objects in Mσ+(wr) is open and non-empty.
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Proof. By Theorem 4.1, the moduli spaceMσ+(wr) is non-empty of dimension w2
r +2 = 2ρ ≥ 0;

each of its objects are σ-semistable of class wr. Consider the Jordan-Hölder factors of such an
object W . It cannot haveOX as a quotient - otherwise W would not be σ+-stable. By Lemma 6.3,
it is either stable, or has OX as a subobject.

By induction, it follows just as in Lemma 6.2 that the Jordan-Hölder filtration of W is of the
form OdX ↪→ W � W ′, where W ′ is σ-stable. We want to compute the dimension of the space
of such extension for all such d (if it is non-empty). We write s := v(OX) as before, and set
e := (wr, v(OX)); note e > 0. Since OX and W ′ are σ-stable of the same phase, we have
Hom(W ′,OX) = 0 = Hom(OX ,W ′) and therefore dim Ext1(W ′,OX) = (s, v(W ′)). From
this, we compute the dimension of the space of extensions as

dimM stable
σ (wr − ds) + dim

(
Gr(d,Ext1(W ′,OX))

)
= w2

r − 2de− 2d2 + 2 + dim
(
Gr(d, (s,wr − ds))

)
= w2

r − 2de− 2d2 + 2 + d(e+ d) = w2
r + 2− de− d2 < dimMσ+(wr).

Therefore, there is an open subset of Mσ+(wr) not contained in any of these loci. �

Corollary 6.7. The set V r
d (|H|) is a Grassmannian-bundle2 over M stable

σ (wr), and its dimension
is

dimV r
d (|H|) = ρ(r, d, g) + g.

Proof. As we already hinted at above, the first statement follows from Lemma 6.2, Lemma 6.5
(observe that by the long exact cohomology sequence, E as in that Lemma automatically satisfies
h0(E) = r + 1), and the identification Mσ+(v) = MH(v).

By Lemma 6.6, this bundle is non-empty. As in the previous Lemma, we can use stability with
respect to σ to compute

dim Ext1(W,OX) = −χ(W,OX) = (wr, v(OX)) = 2r + 1 + g − d

for all W ∈M stable
σ (wr); the dimension of the Grassmannian-bundle is therefore

dimV r
d (|H|) = dimM stable

σ (wr) + dim Gr(r + 1, 2r + 1 + g − d)

= w2
r + 2 + (r + 1)(r + g − d) = ρ(r, g, d) + g.

�

Comparison. When the line bundle L is globally generated, then the object W is the shift ML[1]

of the kernel ML of the evaluation map Oh
0(L)
X � L (which is surjective as a map of sheaves,

but injective in our abelian category Cohβ X). The Lazarsfeld-Mukai bundle is of course central
to Lazarsfeld’s approach in [Laz86], and has been studied extensively since. One new ingredient
coming from stability conditions is that even without Assumption (*), it is completely automatic
that the object W is σ-semistable, see the argument in the proof of Lemma 6.2.

2When M stable
σ (wr) is a fine moduli space, i.e. it admits a universal family, then this bundle will be Zariski-locally

trivial; in general it will be locally trivial in the étale topology.
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The other difference is that wall-crossing immediately gives a global description of V r
d (|H|),

whereas the approach in [Laz86] is based on an infinitesimal analysis. (For us, the only infini-
tesimal argument will be Lemma 7.2 in the following section.) This is also the reason that we
can prove existence of special divisor (i.e., reprove [KL72]) and the bound on the dimension (i.e.,
reprove [GH80, Laz86]) at the same time.

7. CONCLUSION

Corollary 6.7 is a family version of the Brill-Noether theorem in the form of Theorem 5.2. To
make conclusions about each individual curve, we will use additional input from the restriction of
the Beauville integrable system (6). It gives a map π : V r

d (|H|)→ Pg; and it remains to prove that
all its fibres have the same dimension ρ(r, d, g) = dim(V r

d (|H|)) − g. We will prove this using
fairly standard arguments for maps between holomorphic symplectic varieties, as well as one more
categorical ingredient.

Consider the following diagram of maps:

(8) V r
d (|H|) �

� //

φ
��

π

&&

MH(v)

π

��
M stable
σ̄ (wr) Pg

Lemma 7.1. There is no compact curve D ⊂ V r
d (|H|) that is contracted by both π and by φ.

Proof (sketch). Since the Grassmannian has Picard rank one, all curves contracted by φ are propor-
tional (in the group of curves in MH(v) modulo numerical equivalence) to the line in the Grass-
mannian given as one of the fibres. If π were to contract any such curve, it would contract all of
them, and so π would factor via φ.

There are various ways to see that this is not possible. For example, using the description
of the Néron-Severi group of MH(v) in Theorem 4.2 one can compute both the class of L :=
π∗(OPg(1)) ∈ NS(MH(v)), and the class of the line l in one of the fibres of φ; then one sees
easily that L.l 6= 0. Alternatively, the moduli space M stable

σ̄ (wr) contains objects of the form
V[1] where V is a vector bundle whose dual V∨ is globally generated; that means that varying the
extension subspace in Ext1(V[1],OX) = Hom(OX ,V∨) will result in varying the support of the
line bundle in V r

d (|H|). �

Let ω denote the symplectic form on MH(v). Recall that π is a Lagrangian fibration; in partic-
ular, the restriction of ω to any fibre V r

d (C) of π vanishes. On the other hand:

Lemma 7.2. The restriction ω|V rd (|H|) is the pull-back φ∗ω of the symplectic form onM stable
σ̄ (wr).

Proof. The proof is very similar to arguments in [Muk84].

Consider L ∈ V r
d (|H|), and writeOr+1

X
α−→ L

β−→W for the associated short exact sequence (7).
Recall that the tangent space of MH(v) at L is Hom(L,L[1]). The subspace tangent to V r

d (|H|)
are all f ∈ Hom(L,L[1]) that provide no obstructions to lifting global sections to the associated
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extensions. This means f ◦ α = 0, or, equivalently, f = g ◦ β for some g ∈ Hom(W,L[1]). Let
fW = β[1] ◦ g ∈ Hom(W,W [1]) denote the associated deformation class of W .

A choice of symplectic form on X makes the Serre duality Hom(A,B)× Hom(B,A[2])→ C
on Db(X) canonical and bi-functorial in both arguments. That choice determines the symplectic
form on MH(v) using the Serre duality pairing

Hom(L,L[1])×Hom(L[1], L[2])→ C

via ω(f, f ′) = 〈f, f ′[1]〉; analogously for M stable
σ (wr). Now assume we are given f, g, fW as

above, and f ′, g′, f ′W analogously, see diagram (9) below for illustration. We can compute

ω(f, f ′) = 〈f, f ′[1]〉 = 〈g ◦ β, g′[1] ◦ β[1]〉 = 〈β[1] ◦ g ◦ β, g′[1]〉 = 〈β[1] ◦ g, β[2] ◦ g′[1]〉
= 〈fW , f ′W 〉 = ω(fW , f

′
W ),

which is precisely the claim.

(9) Or+1
X

α //

0
��

L
β //

f

��

W

g

}}
fW
��

Or+1
X [1]

α[1] //

0
��

L[1]
β[1] //

f ′

��

W [1]

g′

}}
f ′W
��

Or+1
X [2]

α[2] // L[2]
β[2] // W [2]

�

Proof of Theorem 5.2. By Lemma 7.1, we have

dimV r
d (C) = dimπ−1(C) = dimφ

(
π−1(C)

)
.

On the other hand, we know that V r
d (C) ⊂ MH(v) is isotropic, as it is a subset of the Lagrangian

subvariety π−1(C); by Lemma 7.2, the same holds true for φ (V r
d (C)) ⊂M stable

σ̄ (wr).
Therefore,

(10) dimV r
d (C) = dimφ (V r

d (C)) ≤ 1

2
dimMσ̄(wr) = ρ(r, d, g).

Equality, including the non-emptiness of V r
d (C), follows from classical results [KL72], but it can

also be deduced in our context. Recall that

W
r
d(|H|) =

⋃
r′≥r

V r′
d (|H|)

is a closed subvariety of MH(v), and thus projective. Combining Corollary 6.7 with (10) (for all
r′ ≥ r) we see that in the map W r

d(|H|) → |H| ∼= Pg, all fibres have at most expected dimension
ρ(r, g, d) = dimW

r
d(|H|)−dimPg. Therefore, all fibres have exactly expected dimension. Again

applying the inequality (10), this time for all r′ > r, it follows that we must have equality. �
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8. GEOMETRY OF THE BRILL-NOETHER LOCUS AND BIRATIONAL GEOMETRY OF THE
MODULI SPACE

Our proof of Theorem 1.1 in fact provides a geometric description of the Brill-Noether locus

BNd(|H|) =
{
L ∈MH(v) : h0(L) > 0

}
.

We have shown that in the natural stratification

(11) BNd(|H|) =
⋃
r≥0

{
L ∈MH(v) : h0(L) = r + 1

}
=
⋃
r

V r
d (|H|),

each stratum is a Grassmannian-bundle of (r + 1)-dimensional subspaces in a 2r + 1 + g −
d-dimensional space over a holomorphic symplectic variety of dimension 2ρ(r, g, d). This re-
covers a result by Markman [Mar01] and Yoshioka ([Yos99, Lemma 2.4 and Theorem 2.5] and
[Yos01a, Theorem 4.17]). One advantage in our description is that we need not distinguish between
Gieseker-stable sheaves in MH(wr) that are locally free versus those that are just torsion-free: our
discussion in the previous sections shows that instead, Mσ(wr) is the right moduli space to con-
sider. One can show that Mσ+(wr) consists of shifts W = V ∨[1] of derived duals of Gieseker-
stable sheaves V of appropriate class. Such a derived dual can be a locally free sheaf (when V is
locally free), or a non-trivial complex W with H0(W ) being a 0-dimensional torsion sheaf. The
support of W is simultaneously the locus where the corresponding line bundle in V r

d (|H|) is not
globally generated, and where V is not locally free.

Moduli spaces of Gieseker-stable sheaves come equipped with ample line bundles constructed
via GIT. The closest analogue for moduli spaces of Bridgeland-stable objects comes from the fol-
lowing result:

Positivity Lemma 8.1 ([BM14b]). Let σ be a stability condition on Db(X) for a smooth projective3

variety X , and assume we are given a family E of σ-semistable objects parameterised by a variety
S. Then this induces a real nef divisor class4 lσ ∈ NS(S)⊗R on S. Moreover, for a curve C ⊂ S
we have lσ.C = 0 if and only if the objects parameterised by C are S-equivalent to each other.

Any σ-semistable objects has a Jordan-Hölder filtration: a filtration whose factors are σ-stable
of the same slope. Two semistable objects are called S-equivalent if their Jordan-Hölder filtrations
have the same stable quotients. In practice, this often means that the Positivity Lemma not only
produces nef divisors, but also dually extremal curves describing a boundary facet of the nef cone.

The line bundle can be constructed as follows: we can always normalise the central charge to
satisfy Z(v) = −1. Via the Mukai pairing, the imaginary part =Z of the central charge can be
identified with an element of v⊥ ⊗ R ⊂ H∗alg(X,R). Then lσ = θv(=Z), where θv is the Mukai
isomorphism of Theorem 4.2.

We now apply the Positivity Lemma in our situation. Let us again fix v = (0, H, d+ 1− g), and
assume for simplicity that the moduli spaceMH(v) of torsion sheaves has a universal family. (This
assumption is satisfied when H2 and d + 1 − g are coprime; otherwise one can descend the line

3See [BCZ16] for a generalisation to singular quasi-projective varieties and moduli spaces of objects with compact
support.

4To be precise, when S is singular we obtain a numerical Cartier divisor class.
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bundle constructed in the following from an étale cover of the moduli space that admits a universal
family.) We now consider its universal family as a family of σ0-semistable objects. The Positivity
Lemma produces a nef line bundle lσ0 on MH(v). Using Remark 4.3, one can additionally show
that its volume is positive, and hence that lσ0 is big. Since M is K-trivial, the base point free
theorem says that lσ0 is globally generated, and so it produces a birational contraction

φ0 : MH(v)→M.

To understand the contracted locus, we have to understand S-equivalence for objects in MH(v)
with respect to σ0. By Lemma 6.2, the Jordan-Hölder filtration of L ∈ MH(v) is trivial when
h0(L) = 0; otherwise, its filtration quotients are given by OX with multiplicity h0(L), and by
the quotient W in the short exact sequence (7). In other words, two objects L,L′ are S-equivalent
if and only if h0(L) = h0(L′), i.e. L,L′ ∈ V r

d (|H|) for some r, and if they are in the same
Grassmannian fibre of the map φ in (8). In summary, we have proved (see also [Yos01a, Section
4]):

Theorem 8.2. Assume that (X,H) satisfy assumption (*), that v = (0, H, d + 1 − g) for some
0 < d ≤ g − 1. Then the moduli space MH(v) of torsion sheaves admits a birational contraction
φ : MH(v) → M , whose exceptional locus is the Brill-Noether locus BNd(|H|). The natural
stratification of BNd(|H|) by the number of global section corresponds to the stratification induced
by φ: each stratum is a Grassmannian-bundle over its image in M .

Note that in the context of this Theorem, Lemma 7.2 becomes a well-known statement, see
e.g. [Kal06, Lemma 2.9].

9. BIRATIONAL GEOMETRY OF MODULI SPACES OF SHEAVES: A QUICK SURVEY

Many of the statements we have shown so far can be proved in much bigger generality: given
a K3 surface X and a primitive class v ∈ H∗alg(X,Z), once can describe the location of all walls
for v in the entire space of stability conditions, and then in turn use that to completely describe the
birational geometry of the moduli space MH(v) of Gieseker-stable sheaves.

The idea is simple. Let E be an object of Mukai vector v that is strictly semistable with respect
to a stability condition σ on a general point of a given wall. We consider its Jordan-Hölder factors.
If a1, . . . ,am are their Mukai vectors, then

• v = a1 + · · ·+ am;
• the wall is locally described by the condition that the central charges Z(ai) all lie on the

same ray;
• by Theorem 4.1 we have a2

i ≥ −2 for all i; and
• all ai are contained in a common rank two sublattice of H∗alg(X,Z).

One can in fact prove the converse: if all four conditions above are satisfies, then the stability
conditions lies on a wall for v. (The main complication comes from “totally semistable walls”:
there might not exist any object of class ai that is stable on the wall; in this case, we have to use
a different decomposition of v within the same rank two sublattice.) Further, one can determine
when there exist curves of S-equivalent objects, and thus whether the wall induces a birational
contraction.
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This analysis is the main content of [BM14a]. It leads, for example, to a complete descrip-
tion of the nef cones of all birational models of MH(v) inside the NS (MH(v)) ⊗ R. To ex-
plain that description, we first need to recall a few basic facts about birational geometry and the
Beauville-Bogomolov form on irreducible holomorphic symplectic varieties. It is a quadratic form
on NS(MH(v)) of signature (1, ρ−1). The cone defined by (D,D) > 0 thus has two components;
one of them contains the ample cone, and we will call this component the positive cone. The vol-
ume of a divisorD is, up to a constant factor, given by (D,D)n where 2n = dimMH(v), and thus
the cone of movable divisors is contained in the positive cone. The cone of movable divisors admits
a chamber decomposition whose chambers correspond one-to-one to smooth, K-trivial birational
models g : MH(v) 99K N of MH(v): the chamber is given as g∗Nef(N); see [HT09].

Theorem 9.1 ([BM14a, Theorem 12.1]). Inside the positive cone of MH(v), each chamber of the
movable cone is cut out by hyperplanes of the form θv(v⊥ ∩ a⊥) for all a ∈ H∗alg(X,Z) satisfying

a2 ≥ −2 and |(v,a)| ≤ v2

2 .

In other words, given the arrangement of hyperplanes of the form θv(v⊥ ∩ a⊥) for all a as
above, each such chamber is a connected component of the complement. Combined with a similar
description of the movable cone (which is due to Markman [Mar11], but can also be reproved
with the methods discussed here) this leads to a complete list of all birational of MH(v); the only
necessary ingredient is the Picard lattice of X .

In any given example, one can also attempt to study the birational geometry of the contraction
in order to obtain a result analogous to Theorem 8.2; this has been done systematically up to
dimension 10 in [HT15] (along with other applications).

For an analogue of Theorem 9.1 for the singular O’Grady spaces of dimension 10, see [MZ14].

Deformations. Using either twistor deformations [Mon13] or deformation theory of rational curves
in families of irreducible holomorphic symplectic manifolds (IHSM) [BHT15] one can deform
Theorem 9.1 to an analogue for all IHSM deformation-equivalent to Hilbert schemes on K3 sur-
faces; this concludes a programme started in [HT01]. Thus, indirectly, the methods discussed here
lead to a description of the birational geometry of varieties that (currently) have no interpretation
as a moduli space.

Other surfaces. In the case of abelian surfaces, or K3 surfaces of Picard rank one, the Positivity
Lemma was first proved in [MYY11a, MYY11b] using Fourier-Mukai transforms. Yoshioka then
deduced in [Yos12] a description of nef cones of (Kummer varieties associated to) moduli spaces
of sheaves on abelian surfaces, obtaining a result completely analogous to Theorem 9.1.

Extending this result to other surfaces is, to some extent5, much more difficult. Even for
Gieseker-stable sheaves, it is in general unknown for which Chern classes there exist Gieseker-
stable sheaves, i.e. there is no analogue of Theorem 4.1. Even when it exists, as in the case

5The main difficulty specific to K3 surfaces is essentially due to the large group of autoequivalences of Db(X): they
produce many walls where every objects in a given moduli space becomes strictly semistable. The easiest example is
the analogue of our situation for d ≥ g: the wall corresponding to Lemma 6.2 now destabilises all torsion sheaves. The
wall-crossing still induces a birational transformation of the moduli spaces, but on the common open subset each stable
object gets replaced via its image under the auto-equivalence given by the spherical twist at OX .
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of P2, the answer [DLP85] is quite intricate. Moreover, the answer changes as we move from
Gieseker-stability to Bridgeland stability conditions, making the wall-crossing analysis much more
of a moving target.

For an Enriques surfaces S, one can circumvent some of these difficulties by using the pull-back
map π∗ where π : X → S is the associated 2:1-covering by a K3 surfaces; this induces a finite map
between corresponding moduli spaces, and can be used to show that the nef divisors produced by
the Positivity Lemma are actually ample. The results are especially powerful for unnodal Enriques
surfaces (i.e., not containing a smooth rational curve); see [Nue14].

Projective plane. The entire story had in fact started with the case of P2: in [ABCH13], the authors
observed the correspondence between walls for stability conditions and birational transformations
of the Hilbert scheme of n points on P2 in many examples—for example, including all walls for
all n ≤ 9; they conjectured the correspondence between stable base loci and destabilised objects
in general. This paper was the original motivation behind all the developments discussed here, and
in particular directly motivated the Positivity Lemma above.

The correspondence of [ABCH13] was generalised to all Gieseker-moduli spaces and proved
in [BMW13]; a different argument in [CH14b] treated the case of torus fixed points in the Hilbert
scheme. It was upgraded to a birational correspondence (by proving that all Bridgeland moduli
spaces appearing in the wall-crossing for the Hilbert scheme are irreducible) in [LZ13]. The authors
also extended their results to commutative deformations of Hilbn(P2) using stability conditions on
the derived category of non-commutative deformations of P2.

From this correspondence, one can deduce a description of the nef cone of Gieseker-moduli
spaces, see [CC15, Woo13] for torsion sheaves, and [CH14a] for small rank or large discriminant:
again the idea is to apply the Positivity Lemma at a wall, producing a nef divisor and, dually, a
contracted extremal curve of S-equivalent objects.

But due to the difficulties hinted at above, it took additional effort to understand the entire
picture, including the nef cones of birational models. One needed to understand for which wall
a moduli space of stable objects of given Chern character becomes empty. This turns out to be
closely related to another classical problem:

Heuristic 9.2. For any class v ∈ H∗(P2), determining the “last wall”, i.e. the wall after which
Mσ(v) becomes empty, is equivalent to determining the boundary of the effective cone of MH(v).

The reasoning behind this heuristic goes as follows. Consider the nef divisor lσ given by the
Positivity Lemma for σ lying on this “last wall”; in particular, this means every object becomes
strictly semi-stable with respect σ. Then one can expect every point in the moduli space to lie on
a curve of objects that are S-equivalent with respect to σ; in other words, lσ is dual to a moving
curve in the Mori cone. This implies that lσ is on the boundary of the effective cone.6

6This is a heuristic argument only for two reasons: even if every object is strictly semistable, some or all of them
could be the unique non-trivial extensions in their S-equivalence class. Moreover when all objects become strictly
semistable, that does not a priori preclude the existence of new stable objects on the other side of the wall; in that case,
the wall corresponds to the boundary of the effective cone, but is not the “last wall”.
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The problem of determining the effective cone was solved in [Hui13, Hui12] for the Hilbert
scheme, in [CC15, Woo13] for one-dimensional torsion sheaves, and in [CHW14] for all Gieseker-
moduli spaces; see [CH15a] for a survey of the results and the arguments, and the relation to the
interpolation problem. The recent preprint [LZ16] then made the above heuristic reasoning precise,
and used it to give a complete description of the decomposition of the movable cone into chambers
corresponding to nef cones of birational models. I would like to explain one more consequence of
their results:

Proposition 9.3 ([LZ13, Theorem 0.1], [LZ16, Corollary 0.3], building on essentially all the other
results mentioned in this section). Let v ∈ H∗(P2) be a primitive class, let M(v) be the moduli
space of Gieseker-stable sheaves of Chern character v, and letM 99KM(v) be a birational model
corresponding to an open chamber in the movable cone of M(v). Then M is smooth.

To explain the argument, let us briefly recall why M(v) is smooth. For F ∈ M(v), we have
to show Ext2(F, F ) = 0; by Serre duality, Ext2(F, F ) = Hom(F, F (−3))∨; since F, F (−3) are
both slope-semistable with µ(F ) > µ(F (−3)), the claim follows.

To generalise this to birational models of M(v), we first use their interpretation as moduli
spaces. As indicated previously, we know that M ∼= Mσ(v) where σ = σα,β lies in an open
chamber of the space of stability conditions. As above, for E ∈ Mσ(v), we have Ext2(E,E) =
Hom(E,E(−3))∨. However, Bridgeland stability is not invariant under ⊗ O(−3); instead, all
we know a priori is that E(−3) is σα,β−3-stable. The key argument of [LZ13, LZ16] now shows
that as we follow the natural path from σα,β−3 to σα,β , we can control the phases of the semistable
factors appearing in the Harder-Narasimhan filtration of E(−3), and conclude that they all have
smaller phase than that of E; then the Hom-vanishing thus follows again from stability.

General surfaces. Similar results for the the Hilbert scheme on other rational surfaces were ob-
tained in [BC13], for example including nef cones of all Hilbert schemes points on Hirzebruch
surfaces. In the case of P1 × P1, the effective cone of many moduli spaces of sheaves have been
determined in [Rya16], and in all cases where c1 is symmetric in [Abe16].

Two recent articles show that one can make at least some of the arguments simultaneously for all
surfaces. For example, one of the main results of [BHL+15] shows that for a surface of Picard rank
one and n� 0, one can determine the nef cone of Hilbn(X). The assumption of n� 0 is needed
to ensure that an effective curve C of minimal degree has non-empty W 1

n(C); the associated map
C → P1 produces the curve of S-equivalent objects dual to the nef divisor class coming from the
Positivity Lemma. Similarly, in [CH15b] the authors show that if one fixes the rank r and the first
Chern character c, then for s� 0 one can determine the nef cone of the moduli space of Gieseker-
stable sheaves on X of Chern character (r, c, s) if one knows the set of Chern classes of semistable
bundles on X . (In other words, the assumption s � 0 circumvents the problem of knowing when
moduli spaces σ-stable objects become empty.)

Other applications. We list a few more relations between stability conditions and classical ques-
tions that have appeared in the literature, and may lead to more applications in the future:

• The contraction from the Gieseker-moduli space to the Uhlenbeck space of slope-semistable
vector bundles can be induced by wall-crossing [LQ11, Lo12] (i.e., there is a wall for
which the associated line bundle induces this contraction).
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• Similarly, the Thaddeus-flips constructed in [MW97] relating Gieseker-moduli spaces for
different polarisations are induced by a sequence of walls [Yos14, BM15].
• Flips of secant varieties can be shown to arise naturally in the wall-crossing for moduli

spaces of torsion sheaves on P2 [Mar13].
• One can induce the minimal model programme of a surfaceX via wall-crossing in Db(X)

[Tod12]; yet the moduli space becomes reducible if one tries to contract other curves of
self-intersection less than -2 [Tra15].
• There is a a close relation between the location of the wall where a given ideal sheaf in

Hilbn(P2) gets destabilised and its Castelnuovo-Mumford regularity [CHP16].

Some recent developments have already lead to new results.
In [AM14], the authors combine stability conditions with Fourier-Mukai techniques to determine

precisely which line bundles on an abelian surface of Picard rank one are k-very ample.
Finally, returning to a topic closely related to the main content of this survey, consider a globally

generated line bundle L ∈ V r
d (|H|), and its Mukai-Lazarsfeld bundle ML (where ML

∼= W [−1]
with W as given in Lemma 6.2). In [Fey16], the author uses stability conditions in order to prove
ordinary slope-stability of the restriction of ML to any curve in |H|. This leads to many new
counter-examples to Mercat’s conjecture, which was a proposed bound for the analogue of the
Clifford index for slope-stable vector bundles on curves in terms of the Clifford index for line
bundles.
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