TIE OESTRJCTION TO FINDING A BOUNDMRY FOR AN OPE MANITOLD OF DITENSION GREATER MTAN FIVE

Laurence C. Siebenamn

Abstract

For dimensions greater than five the main theorem gives necessary and sufficient conditions that a smooth open manifold W be the interior of a smooth compact manifold with boundary.

The basic necessary condition is that each end ε of W be tame. Tameness consists of two parts (a) and (b): (a) The system of fundamental groups of connected open neighborhoods of ε is stable. This means thet (with any base points and comecting paths) there exists a cofinal sequence $G_{1}<\frac{f_{1}}{\leftarrow} G_{2}<\frac{f_{2}}{<}$... so that isomorphisms are induced $\operatorname{Image}\left(f_{1}\right) \stackrel{\cong}{\cong} \operatorname{Image}\left(f_{2}\right) \longleftarrow \ldots$
(b) There exist arbitrarily small open neighborhoods of e that are dominated each by a finite complex.

Tameness for ε clearly depends only on the topology of w. It is shown that if \vec{W} is connected and of dimension ≥ 5, its ends ars $21 l$ tame in and oniy if $W \times S^{1}$ is the interior of a smooth compact ranifold. However examples of smooth open manifolds W are constricted in each dimension ≥ 5 so that W itself is rot the intorion or a smooth compact manifold although $W>S^{1}$ is.

When (a) holds for ε, the projective class group $\tilde{K}_{0}\left(n_{1} \varepsilon\right)$ oi $\pi_{1}(\varepsilon)=7 i n j G_{j}$ is well deinned up to canonical isomorphism. Fren ε is tame an invariant $\sigma(\varepsilon) \in \widetilde{K}_{0}\left(\pi_{1} \epsilon\right)$ is defined using the smoothnsss structure as well as the topology of W . It is closeiy reiated to Wall's obstruction to finitoness for C.W. complexes (Annais of Yatio. 81(1965) pp. 56-69).

Mein Theorem. A smooth open manifold $W^{n}, n>5$, is the interior of a smooth compact manifold if and only if W has finitely many connected components, and each end ε of W is tame with invariant $\sigma(\varepsilon)=0$. (This generalizes a theorem of Browder, Levine, and Livesay, A.K.S. Notices 12, Jan. 1955, 619-205).

For the study of $\sigma(\epsilon)$, a sum theorem and a product theorem are established for C.T.C. Wall's related obstruction.

Analysis of the different ways to fit a boundary onto W shows that there exist smooth contractible open subsets W of R^{n}, n odd, $n>5$, and diffeomorphisms of W onto itself that are smoothly psoudo-isotopic but not smoothly isotopic.

The main theorem can be relativized. A useful consequence is Pronosition: Suppose W is a smooth open manifold of dimension $\geq S$ and N is a smoothly and properly imbedded submanifold of codimension $k \neq 2$. Suppose that W and N separately admit completions. If $k=1$ suppose N is 1-connected at each end. Then there exists a compact manifold pair (\bar{W}, \bar{N}) such that $W=$ Int \bar{W}, $N=\operatorname{Int} \bar{N}$.

If W^{n} is a smocth open manifold hombomorphic to $M>(0,1)$ whear M is a closed cornected topologicel ($n-1$)manifold, then Whas two ends ε_{-}and ε_{+}, both tame. With $\pi_{1}\left(\varepsilon_{-}\right)$and $\pi_{1}\left(\varepsilon_{+}\right)$ identified with $\pi_{1}(W)$ there is a duality $\sigma\left(\epsilon_{+}\right)=(-1)^{n-1} \overline{\sigma\left(\varepsilon_{-}\right)}$ where the bas denotes a certain involution of the projective class group $\tilde{\mathrm{F}}_{0}\left(\mathrm{~T}_{1} \mathrm{~W}\right)$ analogous to ore defined by J.W. Ninor for Whitehead groups. Hera are two corollaries. If M^{m} is a stably smoothable closod topological manifold, the obstruction $\sigma(M)$ to M having
the homotopy type of a finite complex has the symmetiry $\sigma(M)=(-1)^{n g(M)}$. If ε is a tame end of an open topological manifold W^{n} and ε_{1}, ϵ_{2} aro the corresponding smooth ends for two sroothings of W , then the difference $\sigma\left(\varepsilon_{1}\right)-\sigma\left(\varepsilon_{2}\right)=\sigma_{0}$ satisfies $\sigma_{0}=(-1)^{n} \sigma_{0}$. Waming: In case evary compact topological manifold has the homotopy type of a finite complex all three duality statements above are $0=0$.

It is widely believed that all the handleoody tecmiques used in this thesis have counterparts for piecervise-linear manifolds. Granting this, $2 l l$ the above results can be restated for piecewiseIinear manifolds with one slight exception. For the proposition on pairs (W, N) one must insist that N be locally unionotted in W in case it has codimension ona.

Intmonction

The starting point for this thesis is a problem broached by W. Browier, J. Levine and G.R. Livesay in [1]. They characterize those smooth open manifolds $W^{W}, w>5$ that form the interior of some smooth compact manifold \bar{W} with a simpiy connected boundary. Cif course, manifolds are to be Hausdorff and paracomact. Beyond this, the conditions are
(A) There exist arbitrarily lange compact sets in W with 1-connecied complement.
(B) H_{*} (V) is finitely generated as an abilian group.

I exiend this characterization and give conditions that W ba the interior of any smooth compact manifold. For the purposes oi this introcuction let W^{W} be a connected smcoth open manifold, that has one end -- i.e. such that the complement of any compact set has exactly one unbounded component. Tnis end -- call it ε -- may be identified with the collection of neighborhoods of ∞ in . $\quad \in$ is said to be tame if it satisfies two conditions analogous to (A) and (B):
a) $\quad \pi_{1}$ is stable at ε.
b) Tnere exist ariotrarily small neighborhoods of ε, each ciominated by a finite complex.

When ϵ is tame an invariant $\sigma(\varepsilon)$ is defined, and for this definition, no restriction on the dimension w of W is required. The main theorem states that if $w>5$, the necessary and sufficient concitions that W be the interior of a smooth compact manifold are that ϵ be tame and the invariant $\sigma(\epsilon)$ be zero. Examples are
consiructed in each dimension ≥ 5 where ϵ is tame but $v(\varepsilon) \neq 0$. For dirensions $\geq 5, \epsilon^{-}$is tame if and only if $W \times S^{1}$ is tha interior of a smooth cormact manifold.

The stability of π_{1} at ϵ can be tested by examining the fundamental group system for any convenient sequence $Y_{1} \supset Y_{2} \supset \ldots$ oi open connected neighborhoods of ε with \cap_{i} closure $\left(Y_{i}\right)=\varnothing$. If π_{1} is stable at $\epsilon, \quad \pi_{1}(\epsilon)=7 \mathrm{im}_{\mathrm{i}} \pi_{1}\left(Y_{i}\right)$ is well defined up to isomorphism in a preferred conjugacy class.

Condition b) can be tested as follows. Let V be any closed connected neighborhood of ε which is a topological manifold (with boundary) and is small enough so that $\pi_{1}(\epsilon)$ is a retract of $\pi_{1}(V)$ - i.e. so that the natural homomorphism $\pi_{1}(\epsilon) \longrightarrow \pi_{1}(V)$ has a lefi inverse. (Stability of π_{1} at ε guarantees that such a neighborhood exists.) It turns out that condition b) holds if and only if V is dominated by a finite complex. No condition on the homotopy type of $i v$ can replace b), for there exist contractible W such that a) holds and $\pi_{1}(\varepsilon)$ is even finitely presented, but ε is, In spite of this, not tare. On the other hand, tameness clearly cepends only on the topolozy of W.

The invariant $\sigma(\varepsilon)$ of a tame end ε is an element of the sroup $\widetilde{K}_{0}\left(\Pi_{i} \varepsilon\right)$ of stable isomorphism classes of finitely generated zrojective modules over $\pi_{1}(\epsilon)$. If, in testing b) one chooses the neighborhood V of ϵ (above) to be a smooth submanifold, then

$$
\sigma(\varepsilon)=r_{*} \sigma(V)
$$

הhere $\sigma(V) \in \tilde{K}_{0}\left(\pi_{1} V\right)$ is up to sign C.T.C. Wall's obstruction [2] to V having the homotopy type of a finite complex, and r_{*} is
induced by a retraction of $\pi_{1}(V)$ onto $\pi_{1}(\varepsilon)$. Note that $\sigma(\varepsilon)$ seems to depend on the smoothness structure of W. For example, every tame end of dimension at least 5^{\dagger} has arbitrarily small open neighborinods each homotopy equivalent to a finite complex (use 8.6 \& 6.5). The discussion of tameness and of the definition for $\sigma(\epsilon)$ is scattered in various chapters. The main references are: 3.6, $4.2,4.3,4.4,6.11,7.7$, pages 107-108, 11.6.

The proof of the main theorem applies the theory of non-simplyconnected handlebodies as expourded by Barden [31] and Wall [3] to find a collar for $\epsilon-$ viz. a closed neighboriood V which is a smooth submanifold diffeomorphic with $\mathrm{Bd} \mathrm{V} \times[0,1)$. In dimension 5, the proof breaks down only because Whitney's famous device fails to untangle 2-spheres in 4 manifolds (c.f. page 40). In dimension 2, łameness alone ensures that a collar exists (see Kerekjarto [26, p. 171]. It seoms possible that the same is true in dimension 3 (modulo the Poincaré Conjecture) -- c.f. Wall [30]. Dimension 4 is a complete mystery.

There is a striking parallelism between the theory of tame eads developed here and the well known theory of h-cobordisms. For example the main theorem corresponds to the s-cobordism theorem of 3. Sazar [34][3]. The relationship can be explained thus. For a time end ε of dimension ≥ 6 the invariant $\sigma(\varepsilon) \in \tilde{K}_{0}\left(\pi_{1} \epsilon\right)$ is the obstruction to finding a collar. When a collar exists, parallel families of collars are classified relative to a fixed collar by torsions $\tau \in W h\left(\pi_{i} \varepsilon\right)$ of certain h-cobordisms (c.f. 9.5). Roughly stated, σ is tie obstruction to capping ε with a boundary and τ then classifies the different ways of fitiing a boundary on.

Since $F_{\Omega}\left(\pi_{1} \varepsilon\right)$ is a quotient of $K_{1}\left(\pi_{1} \varepsilon\right)$ [17], the situation is very reminiscent of classical obstruction theory.
A. closer analysis of the ways of fitting a boundary onto an open manifold gives the first counterexamples of any kind to the conjecture that pseudo-isotopy of diffeomorphisms implies (smooth) isotopy. Unfortunately open (rather than closed) manifold are involved.

Cnapters VI and VII give sum and product theorems for Wall's obstruction to finiteness for C.W. complexes. Here are two simple consequences for a smooth open manifold W with one end ε. If ε is tame, then Wall's obstruction $\sigma(W)$ is defined and $\sigma(W)=$ $i_{x} \sigma(\epsilon)$ where $i: \pi_{1}(\epsilon) \longrightarrow \pi_{1}(W)$ is the natural map. If N is any closed smooth manifold then the end $\epsilon<N$ of $W>N$ is tame if and only if ϵ is tame. When they are tame

$$
\sigma(\epsilon>N)=\chi(N) j_{*} \sigma(\epsilon)
$$

Where j is the natural inclusion $\pi_{1}(\epsilon) \rightarrow \pi_{1}(\epsilon>N)=\pi_{1}(\epsilon)$ $x \pi_{1}(N)$ and $X(N)$ is the Euler characteristic of N. Then, if $\chi(i)=0$ and $W>N$ has dimension >5, the main theorem says that $W>N$ is the interior of a smooth compact renifold.

The sum and product theorems for Wall's obstruction mentioned above have counterparts for thitohead torsion (pages 56, 63; [19]). Iikemise the relativized theorem in Chapter X and the duality theoren in Cnapter XI have counterparts in the theory of h-cobordisms. Proiessor línor has pointed out that examples exist where the standard diality involution on $\tilde{K}_{0}(\pi)$ is not the identity. In contrast no such example has been given for. Wh (π). The examples are for $\pi=$ Z_{229} and Z_{257}; thej stom from the remarkable research of E.E. Kurmer. (See the appendix.)

It is impression that the P.L. ($=$ piecewise-linear) version of the main theorem is valid. This opinion is based on the general consensus that hendlebody theory works for P.L. manifolds. J. Stajlings seems to have worked out the details for the s-cobordism theorem in 1962-63. B. Nazur's paper [35] (to appear) may be helpful. The theory should be formally the same as Wall's exposition [3] with P.L. justifications for the individual steps.

For the same reason it should be possible to translate for the P.L. category viriually all other theorems on manifolds given in this thesis. However the theorems for pairs 10.3-10.10 must be re-6xamined since tubular neighborhoods are used in the proofsand K. Hirsch has recently shown that tubular neighborhoods do not generally exist in the P.L. category. For 10.3 in cadimension ≥ 3 it seems that a more complicated argument employing only regular neighborhoods does succeed. It makes use of Fhdson and Zeeman [30́, Cor. 1.4, p. 73]. İ also succeeds in codimension 1 if one assumes that the given P.L. imbedding $N^{n-1} \propto W^{n}$ is Iocally unknotted [36, p. 72]. I do not know in 10.6 holds in the P.I. category. Thus 10.8 and 10.9 are undecided. But it seems 10.7 and 10.10 can be selvaged.

Professor J.N. Ninnor mentioned to me, in November 1964, certain grounds for believing that an obstruction to finding a boundary should 7ie in $\widetilde{K}_{0}\left(\pi_{1} \epsilon\right)$. The suggestion was fruitful. He has contributed materially to miscellaneous algebraic questions. The appendix, Ior example, is his ow idea. I wish to express my deep gratitude For all this and for the numerous interesting and helpful questions ne has raised while supervising this thesis.

Abstract

vi I have had several helpful conversations with Professor William Erowder, who was perhaps the first to attack the problem of finding a boundary [51]. I thank him and also Jon Sondow who suggested that the zain theorem (relativized) could be applied to manifold pairs. I am grateful to Dr. Charles Giffen for his assistance in preparing the manuscript.

Contents

Ahstract p. (1)
Introduction 1
Chapter I. Ends in Ceneral 1
Chapter II. Completions, Collars and O-Noighborhoods 8
Chapter III. Stiability of π_{1} at an End. 11
Chapter IV. Finding Small (n-3)-Neighborhoods for
a Tame End 22
Chapter V. The Obstruction to Finding a Collar Neighborinood 32
Chapter VI. A Sum Theorem for Wall's Obstruction 44
Chapter VII. A Procuct Theorem for Wall's Obstruction 59
Chapter VIII. The Construction of Strange Ends 69
Chapter IX. Classif̂ying Completions 90
Chapter X. The Vain Theorem Relativized and Applications to Manifold Pairs 107
Chapter XI. A Duality Theorem and the Question of
Topological Invariance for $\sigma(\varepsilon)$ 118
Appendix. The Duality Involution in $\tilde{K}_{0}(\pi)$ for π
a Oyclic Group of Prime Order 127
Bibliography 135

Some iotation

```
\approx ciffeomorphism.
\simeq horotopy equivalence.
XGY inclusion map of }X\mathrm{ into }Y\mathrm{ .
is frontier of the subspace S.
#N \: boundary. of the manifold M.
Y(i) zopping cylinder of f.
X universal covering of X.
Z Eiler characteristic.
() the class of Hausdorif spaces with the homotopy type of a
        C.N. complex and dominated by a finite C.W. complex.
E.g. finitely generated.
N
        Over the group \pi
\mp@subsup{\tilde{X}}{0}{\prime}}(\pi)\mathrm{ group of stable isomorphism classes of finitely generated
    projective modules over the group \pi}\pi\mathrm{ .
[P] the stable isomorphism class of the module [P].
#Nolcgical manifold ... Hausdorff and paracompact topological manifold.
gmoer man ... conimuous map such that the preimage of every com-
    pact set is compact.
rice Ymse function ... Monse function such that the value of critical
    points is an increasing function of incex.
```

The interval (0,1) has two (open) ends while $[0,1$) has one. We must make this idea procise. Following Freudenthal [5] wh define the ends of an arbitrary Hausdorff space X in terms of opon sets having compact frontier. Consider collections \in of subsats of X so that:
(i) Each $G \in \in$ is a comected open nonmempty seti with compact frontier $b G=\bar{G}-G$;
(ii) If $G, G^{\prime} \in \in$, there exists $G^{\prime \prime} \in \varepsilon$ with $G^{\prime \prime} \subset G \cap G^{3}$; (iii) $\cap\{\bar{G} \mid G E \varepsilon\}=\varnothing$.

Adding to ε every open connected non-empty set, HCD with bin compact such that $G \in H$ for some $G \in E$, we produce a collection e^{\prime} satisfying (i), (ii), (iii), which we cail the end of X determined by ϵ.

Ioman 1.1. With e as above, let H be any sat with compact frontier. Than thare exists $G \in \in$ so small that eitiner $\bar{G} \subset H$ or $\bar{G} \cap H=\emptyset$.

Proof: Since bH is compact, there exisis $G \in G$ so small that $\bar{G} \cap b H=\emptyset$ (by (ii) and (iii)). Since G is comnected, $\bar{G} \subset H$ or else $\bar{G} \cap H=\emptyset$ as asserted. \square

It follows that if $\varepsilon_{1} \supset \varepsilon$ also satisfies (i), (ii), (iji), then every momber H of ε_{1} contains a wembor of ε, i.e. $H \in \varepsilon^{\prime}$. For, tho alternative $\bar{G} \cap H=\emptyset$ in the lema is hece raled out. Thus $\varepsilon^{\prime} \supset \varepsilon_{1} \supset \varepsilon$, and so we can make the more diract

Definition 1.2. An end of a Hausdorfi space X is a collection ε of subsets of X which is maximal with respect to the properties (i), (ii), (iii) above.

From tiis point epsilon will always denote an end.

Defintion 1.3. A neighborhood of an end c is any sot $N \subset X$ tist contains some member of ε.

As the neighborhoods of ϵ are closed under intersection ard infinite union, the definition is justified. Suppose in fact wa add to X and idaal point $\omega(\epsilon)$ for each end ϵ and let $\{\hat{G} \mid G \in \varepsilon\}$ bo a basis of noighborhoods of $\omega(\epsilon)$, where $\hat{G}=G$ $u\left\{\omega\left(\varepsilon^{\prime}\right)\left\{G \in \varepsilon^{\prime}\right\}\right.$. Then a topological space \hat{X} results. It is Eausdorif bacause

Laモַ 1.4. Distinct ends ε_{1}, ε_{2} of X have disjoint neighborhoods.

Proos: If $G_{1} \in \epsilon_{1}$, by Lenma 1.1 , for all sufficiently small G_{2} $\epsilon \varepsilon_{2}$, either $G_{1} \supset \bar{G}_{2}$ or $G_{1} \cap \bar{G}_{2}=\emptyset$. The first alternative coes not always hold since that would imply $\varepsilon_{1} \supset \varepsilon_{2}$, henca $\varepsilon_{1}=\varepsilon_{2}$. \square

Coservation 1) If N is a noighborinood of an end ε of X, $\vec{C} \subset i f$ for sufficiontly small $G \in \in$ (by Lemea 1.1). Thus \in determines a unique end of N.

```
CSgemetion 2) If Y\subsetX is closed with compact frontier bY,
and \mp@subsup{\varepsilon}{}{\prime}}\mathrm{ is an end of Y, then }\mp@subsup{\epsilon}{}{\prime}\mathrm{ dotermines an end }\epsilon\mathrm{ of X.
Fuminer }Y\mathrm{ is a neighborhood or e and e datermines the end
E of Y as in Observation 1).
    (Explicity, if G\in\epsilon' is sufficientiy smali, the closure
O= G (in Y) does not meot the coimpact set bY. Then as a sub-
set oi X, G is non-empty, open and connectod with bG compact.
Sucin GGE' determine the end \varepsilon of X.)
```

Dafinition 1.5. An end a of X is isolated if it has a member in that bolongs to no other end.

From the above observations it Iollows that \bar{H} has one and only ora end.

Erample: The universal covar of the figure 8 has $2^{\text {Ko }}$ ends, none isolated.

Cbserve that a compact Hausdorfi space X has no ends. For, as $\cap\{\vec{G} \mid G \in \epsilon\}=\varnothing$, we could find $G \in \epsilon$ so smail that $\bar{G} \cap X=\varnothing$ which contradicts $\phi \neq G C X$. Even a noncompact connected Hausdorff space X may have no ends -- for example an infinite collection of ccpies of $[0,1]$ with all initial points identified.

Eowever accoraing to the theorem below, every noncompact conracted manifold (separable, topological) has at least one end. For example R has two ends and $R^{n}, n \geq 2$, has one end. Also a compact manifold M minus k connected boundary components N_{1}, \ldots, N_{k} has oxactiy k ends $\epsilon\left(N_{1}\right), \ldots, \epsilon\left(N_{k}\right)$. The neighborhoods of $\epsilon\left(N_{i}\right)$ ara the sets $0-\bigcup_{j=1}^{k} N_{j}$ where O is a neighborhood of N_{i} in M.

Tnsozen 1.6 (Frucionthal [5]). A non-compact but σ-compact, connected Eaiscorff space X that is locally compact and locally connected has at least one ord.

P-2ze: Notice that the above example satisfies all conditions
except local compactness.

Proof: By a familiar argument one can produce a cover $\mathrm{J}_{1}, \mathrm{U}_{2}, \mathrm{U}_{3}, \ldots$ so that \bar{U}_{i} is compact, \bar{U}_{i} is connectod and meets oniy finitoly mang $\sigma_{j}, j \neq i$. Tinen $\cap_{n} V_{n}=\emptyset$ where $V_{n}=0_{n} \cup \sigma_{n+1} \cup \ldots$. Each component W of V_{n} apparentily is the union of a certain subcollection of the comacted open sets U_{n}, U_{n+1}, \ldots. In particular W is open and $b W \cap V_{n}=\emptyset$. Then $b W$ is compact since it must Lio in $X-V_{n} \subset \bar{U}_{1} \cup \ldots \cup \bar{U}_{n-1}$ which is compact. Now bN $\neq \emptyset$ or else W, being open and connected, is 171 of the connected space X. If $b W \neq \emptyset$, soma $U_{j} \subset W$ meets $U_{1} \cup \ldots \cup U_{n}$. Ey construction this can happen for only finitely many J_{j}. Hence there can be only finitely many components W in V_{n}. It follows that at least ona comonent of $V_{n}-$ call it $W-$ is urbounded (i.e. has noncompact closura).

Now $W \cap V_{n+1}$ is a union of some of the finitaly many components of V_{n+1}. So, of these, at least one is unbounded. It is ciear now that we can inductively define a sequence

$$
\begin{equation*}
\varepsilon: W_{1} \supset W_{2} \supset W_{3} \supset \cdots \tag{*}
\end{equation*}
$$

whore W_{n} is an urioundad component of V_{n}. Thon ε satisfies (i), (ii), (iii) and cotermines an and of $X, 0$

The above proof can be usad to establish much more than Theorem 1.ó. Vary briefly wo indicate some

Conolyaries of the proof: 1.7. It follows that an infinite sequence in X oither has a cluster point in X, or else has a subsequence that convarges to an end determined by a sequence (\%). Also, an
inifinite sequence of end points always has a cluster point. Assuming now that X is seoarable we see \hat{X} is compact. One can see that every end of X is determined by a sequance (*). Then the end points $\sum=\hat{X}-X$ are the inverse limit of a system of finite sots, namoly tine unbounded components of $V_{n}, n=1,2, \ldots$. From Eilenberg and Ste日mrod [6, p. 254, Ex. B.1] it follows that E is compact and totally disconnacted.

With X as in Theorem 1.6 let X range over all open subsots of X with \bar{U} compact. Let $\theta(U)$ denote the nomber of noncompact components of $X-U$, and let e denote the number of ends of X. (Wo don't distinguish types of infinity.) Using Freudenthal's thaorem it is not hard to show:

Lema 1.8. \quad Iub $\theta(J)=0$.
Assume now that X is a topological mantfold (always separable) or else a locally finite simplicial complex. Let $H_{e}^{*}(X)$ be the cohorology of singular cochains on X modulo cochains with compact support. Coafficients are in some field.
mesorem 1.9. The dimension of the vector space $H_{\theta}^{O}(X)$ is equal to the number of ands of X or both are infinite.

Tra proof uses the abova leйma. (Sae Epstein [7, Theorem i, p. 110]).

The universal covering of the figure 8 is contractible, but for manifolds, infinitaly many ends implies infinftely generated homology.

Theorem 1.10. If W^{n} is a connected combinatorial or smooth mani-: fold with compact boundary and ends,

$$
\theta \leq \operatorname{rank}\left\{H_{n-1}(W, B d W)\right\}+1
$$

(Again we confuse types of infinity.)
Proof: Let \hat{W} be W compactified by adding the end points E (c.f. 1.7). From the exact Coch cohomology sequence

$$
\longrightarrow H^{0}(\hat{W}) \longrightarrow H^{0}(E) \longrightarrow H^{1}(\hat{W}, E) \longrightarrow
$$

we deduce

$$
e=\operatorname{rank} H^{0}(E) \leq \operatorname{rank} H^{1}(\hat{W}, E)+1,
$$

since \hat{W} is comnected and E is totaily disconnected. By a form of Alexander-Lefschetz duality

$$
H^{1}(\hat{W}, E) \cong H_{n-1}(W, B d W)
$$

with Coch cohomology and singular homology. This gives the desired rosult.

To verify this duality let $U_{1} \subset U_{2} \subset \ldots$ be a sequence of compact n-subranifolds with Bd $W \subset U_{i}, W=U_{i} U_{i}$. Let \hat{V}_{n} bo \hat{w} - Int D_{n}. Then the following diagram commites:

where e is excision, P is Poincare duality and i_{*}, f^{*} are induced
by inclusions. Now $\lim _{\rightarrow} H^{1}\left(\hat{W}, \hat{\hat{V}}_{i+1}\right) \cong H^{1}(\hat{W}, \Sigma)$ by the continuity of Čach tinary [ó, p. 261]. Also $\xrightarrow{\lim } H_{n-1}\left(U_{i}, B d W\right) \cong H_{n-1}(W, B d W)$. Tius (\dagger) is estabiished. $[$

Chater II. Condetions. Cotins and 0-Motghboronts.

Suppose W is a smooth non-compact manifolid with compact possibly empty toundary Bd W.

Definition 2.1. A comletion for W is a smooth imbedaing i: $W \rightarrow \bar{W}$ of W into 2 swoth compact manifold so that $\bar{W}-i(W)$ consists of some of the boundary components of \bar{W}.

Now let ε be an end of the manifold W above.

Dafinition 2.2. A collar for ε (or a collar noighborhood of e) is a connacted naighborhood V of ε which is a smeoth'subranifold of With compact boundary so that $V \approx \operatorname{Rd} V \times[0,1) \quad(\approx$ mans "is diffeororphie to").

The following proposition is evident from the collar noighborhood theoram, kinnor [4, p. 23]:

Proposition 2.3. A smooth manifold W has a completion if and only if $B d W$ is compact and W has finitoly wany onds each of which has a collar. $[$

Thus tise question whother a given smooth open manifold W is diffeomorphic to the interior of soma smooth compact manifold is ramead to a question abcut the ends of W, nambly, "When does a given ond ε of W hava a collar?" Our goal in Cnapters II to V is to ansror this question for dimensions greater than 5. We romaris imadiately that the answar is dotorainod by an arbitrarily small neighborhood of 6 . Hence it is roloss of generality to
assur: alvavs that ε is an end of an oosn manifold (rather than a non-compact manifold with compact boundary).

We will set up progressivaly stronger conditions which guarantee the existence of aroitrarily small neighborhoods of ε that share progressively more of the proparties of a collar.

Remaris: "Arbitrarily small" means inside any prescribed neighborhood of ε, or, equivalentily, in the complemant of any prescribed compact subset of W.

Dafinition 2.4. A O-ngighborhood of ε is a neighborhood V of ϵ which is a smooth connected manifold having a compact connected boundary and just one end.

Remark: We will eventually dafine k-neighborhoods for any $k \geq 0$. Roughly, a k-neighborhood is a collar so far as k-dimensional homotopy type is concerned.

Theorem 2.5. Every isolated end ε of a smooth open manifold W has arbitrarily small 0-neighborhoods.

Proof: Lat K be a given compact set in W, and let $G \in \in$ be a namber of no other end. Choose a proper Morse function $f: W \longrightarrow[0, \infty)$, Binor [8, p. 36]. Since $U_{n} f^{-1}[0, n)=W$ there exists an integer n so large that $(K \cup b \in) \cap f^{-1}[n, \infty)=\phi$. As $f^{-1}[0, n]$ is compact. ore of tha components V_{n} of $f^{-1}[n, \infty)$ is a neighboriood of ϵ. As V_{n} is connected, necessarily $V_{n} \subset G$, and so V_{n} has just one end. If $E d V_{n}$ is not connected, $d i n>1$ and we can join tino of the compononts of $E d V_{n}$ by an arc D^{1} smoothly imbedded in ∇_{n} thit zeats $B d V_{n}$ transvorsely. (In dimonsions ≥ 3, Wintney's
imbedding theorem will apply. In dimension 2 one can use the HopfRinow thooram -- see Vingor [8, p. 62].) If we now excise from V_{n} an open tubular neighboriood T of D^{1} in V_{n} and round off the comers (see the note below), the resulting manifold V_{n} has ons less boundary component, is still cornected with compact boundary and satisfies $V_{i n} \cap K=\varnothing$. Hence after finitely many steps we obtain a O-raighborhood V of ε with $V \cap K=\varnothing$. $]$

Note on rounding comers: In the above situation, temporarily cinange tho smoothness structure on $V_{n}-T$ smoothing tha comors by the mathod of Milnow [9]. Then let $h: B d\left(V_{n}-T\right) \times[0,1) \rightarrow\left(V_{n}-T\right)$ bo a smooth collaring of the boundary. For any $\lambda \in(0,1)$, $h\left[B d\left(V_{n}-T\right)>\lambda\right]$ is a smooth submanifold of $\operatorname{Int}\left(V_{n}-T\right) C W$. Wo dofine $V_{n}^{\prime}=\left(V_{n}-T\right)-h\left\{\operatorname{Ba}\left(V_{n}-T\right)>[0, \lambda)\right\}$. Clearly V_{n} is diffeomorphic to $V_{n}-T$ (smoothed). And the old $V_{n}-T C W$ is V_{n} with a topological collar added in W.

If one wishes to round off the comers of $V_{n}-T$ so that tise difierence of $V_{n}-T$ and V_{n} lies in a given noighborhood N of the cornors there is an obvious way to accomplish this with the collaring h and a smooth function $\lambda: B d\left(V_{n}-T\right) \longrightarrow[0,1)$ zero outsida N and positiva near tho comer set.

Henceiorth we assuma that this sort of davice is applied whenever rounding of comers is callod for.

Chapter III. Stability of π_{1} at an End.

 $G_{1}<\frac{\sum_{1}}{<} G_{2}<\frac{i_{2}}{2} \ldots$ are conjugate if thore exist elements $G_{i} \in G_{i}$ so that $\hat{i}_{i}^{\prime}(x)=g_{i}^{-1} f_{i}(x) g_{i}$. (Wa say f_{i}^{\prime} is conjugato to f_{i}.) \quad Ey a subsequence of $G_{1}<1$
$G_{n_{1}}<G_{2}<\ldots$ $\operatorname{map} G_{n_{i}}<G_{n_{i+1}}$ irom the first sequence.

For two soquances $\xi: G_{1}<\frac{f_{1}}{<} G_{2}<\frac{I_{2}}{\square} \ldots$ and $\hat{e}^{\prime}: G_{1}^{\prime}<\frac{f_{1}^{\prime}}{} G_{2}^{!}<\frac{f_{2}^{\prime}}{} \ldots$ consider the following three possibilities. G_{0} and g^{\prime} are isomorphic; they are conjugate; one is a subsequence of the othsz.

Eatinition 3.2. Conjugate eoutvalence of inverse sequences of groups is the equivalonce relation genezated by the above three relations. Thus G is conjugato equivalsut to g iff thone exists a finite chatir $g_{j}=g_{1}, \xi_{2}, \ldots, g_{1}=g_{y}$ of inverse sequences so that adjacent sequances bear any gere of the above three relations to each other.

$$
\text { Suppose } X \text { is a separable topological marifold and } \epsilon \text { is }
$$ ain erì of X. Lot $X_{1} \supset X_{2} \supset \ldots, Y_{1} \supset Y_{2} \supset \ldots$ be two sequences of path-ccanacted noighborinoods or ε so that $\cap_{i} \bar{X}_{i}=\phi=\Lambda_{i} \bar{Y}_{i}$. Choosing tho base points $x_{i} \in X_{i}$ and base paths x_{i+1} to x_{i} in z_{i} wo got an inverse saquence

$$
G: \pi_{1}\left(x_{1}, x_{1}\right) \ll \pi_{1}\left(x_{2}, \pi_{2}\right) \ll \ldots
$$

Si-ilazly Pom

$$
H: \pi_{1}\left(y_{1}, y_{1}\right)<\pi_{1}\left(x_{2}, y_{2}\right)<\ldots \ldots
$$

Leta 3.3. \mathcal{G} is conjugate equivalent to \mathcal{K}.
Proofs: This is easy if $X_{i}=Y_{i}$, hence also easy if $\left\{Y_{i}\right\}$ is a subsequence of $\left\{X_{i}\right\}$. For the general case wa can find a sequence

$$
X_{r_{1}} \supset Y_{s_{1}} \supset X_{r_{2}} \supset Y_{s_{2}} \supset \ldots, r_{1}<r_{2}<\ldots, s_{1}<s_{2}<\ldots
$$

This sequence has the subsequence $\left\{X_{r_{1}}\right\}$ in common with $\left\{X_{i}\right\}$ and tho subsequence $\left\{y_{s_{i}}\right\}$ in common with $\left\{y_{i}\right\}$. The result follows. 0 Definition 3.4. An inverse sequence
 so that isomorphisms $\operatorname{Im}\left(f_{1}^{\prime}\right) \cong \operatorname{Im}\left(f_{2}^{0}\right) \cong \ldots$ are induced. Qamerk: If $G_{1} \longleftarrow G_{2} \longleftarrow \ldots$ is stable it is certainly con-
 Taos lama below inion that conversely if $G_{1} \longleftarrow G_{2} \longleftarrow \ldots$ conjugate equivalent to a constant sequence $G \ll \frac{i d}{G}<\frac{\text { id }}{\text {... }}$ then $G_{1}<G_{2}<\ldots$ stable. Let $G: G_{1}<\frac{f_{1}}{<} G_{2}<\frac{f_{2}}{<} \ldots, g^{\prime}: G_{1}^{\prime} \stackrel{f_{1}^{\prime}}{<} G_{2}^{\prime} \stackrel{f_{2}^{\prime}}{\longleftrightarrow} \ldots$ ba t :oo inverse sequences of groups.

2-2a 3.5. Suppose \mathcal{G} is conjugate equivalent to \mathcal{G}. If g \therefore stable so is g and

$$
\lim G \cong \lim G \cdot
$$

Pron:: If G is isomorphic to g ' or g is a subsequence of g^{\prime} or g^{\prime} of \mathcal{G}, the proposition is obvious. So it will suffice to prove tho lemma when \mathcal{G} is conjugate to g '. Taking subsequences
wo may assuma that \mathcal{G} induces isoinorphisms $\operatorname{Im}\left(f_{1}\right)<I_{m}\left(f_{2}\right)<\ldots \ldots$ \therefore ni wo stijl have $f_{i}^{\prime}(x)=\bar{g}_{i} f_{i}(x) g_{i}{ }^{-1}$ for soma $g_{i} \in G_{i}\left(=G_{i}^{j}\right)$. \therefore Kix $\operatorname{Im}\left(f_{1}^{\prime}\right)=g_{1} \operatorname{Im}\left(f_{1}\right) g_{1}^{-1}$, and $\operatorname{Im}\left(f_{2}^{\prime}\right)=g_{2} \operatorname{In}\left(f_{2}\right) g_{2}^{-1}$. Clearly f_{i} is (1-1) on $\operatorname{Im}\left(f_{2}^{\prime}\right)$; so f_{1}^{\prime} is also. But $f_{1}\left(\operatorname{Im}\left(f_{2}^{\prime}\right)\right)=\operatorname{Im}\left(f_{1}\right)$ sinee $f_{1}\left(g_{2}\right) \in \operatorname{Im}\left(f_{1}\right)$. Thus $f_{1}^{\prime}\left(\operatorname{Im}\left(f_{2}^{\prime}\right)\right)=g_{1} \operatorname{Im}\left(f_{1}\right) g_{1}^{-1}=\operatorname{Im}\left(f_{1}^{\prime}\right)$. This ostablishos that f_{1}^{\prime} induces $\operatorname{Im}\left(f_{1}^{\prime}\right)<$ Im (f_{2}^{\prime}). The same argarant mozks for $f_{2}^{\prime}, f_{3}^{\prime}$, otc. Thon \mathcal{G} ' is stable and

$$
\operatorname{\operatorname {Im}} G=\operatorname{Im}\left(\dot{I}_{1}\right)=\operatorname{In}\left(i_{1}\right)=\operatorname{Im} g \cdot 0
$$

2seark: If g is conjugate equivalent to g, but not necessarily
 a simple example contributed by Professor iilnor. Consider the sequence

$$
F_{1} \supset F_{2} \supset F_{3} \supset \ldots
$$

wiana F_{n} is froe on genaratore x_{n}, x_{n+1}, \ldots and y. The inverse $12 \operatorname{lin}^{2}$ ($=$ intarsection) is infinite cyclic. Now consider the conjuagto sequance

$$
F_{1}<\frac{f_{1}}{<} F_{2}<\frac{f_{2}}{<} F_{3} \ll f_{3} \ldots
$$

 the invorso limit is $\bigcap_{n} f_{1} f_{2} \cdots F_{n} F_{n+1} \subset F_{1}$. Now an element $\eta \in F_{1}$ t int lios in $f_{1} f_{2} \cdots f_{n} F_{n+1}$ has the form $x_{1} x_{2} \cdots x_{n}{ }^{5} x_{n}^{-1} \cdots x_{2}^{-1} x_{1}^{-1}$ Were $\xi \in F_{\mathrm{n}+1}$. As ξ doos not involvo x_{1}, \ldots, x_{n} the (unique) Facieced word for η certainly involvas x_{1}, \ldots, x_{n} or elso is tha identity, Mo reduced word can involve infinitely many generators. Fins the secord invorse linet is the identity.

Again let E ba an end of the topological manifold X.

Dafinition 3.6. π_{1} is stable at ε if there exists a sequence of path connected neighborhoods of $\epsilon, X_{1} \supset X_{2} \supset \ldots$ with $\cap \bar{X}_{i}=\phi$ such that (with base points and base paths chosen) the sequence

$$
\pi_{1}\left(X_{1}\right)<\frac{f_{1}}{<} n_{1}\left(X_{2}\right)<\frac{f_{2}}{-} \ldots
$$

irciuces isomorphisms

$$
\operatorname{Im}\left(f_{1}\right)<\cong \operatorname{Im}\left(I_{2}\right)<\cong
$$

Eemas 3.3 and 3.5 show that if π_{1} is stable at ε and $Y_{1} \supset Y_{2} \supset \ldots$ is any path connected sequence of neighborhoods of e so that $\cap \bar{Y}_{i}=\emptyset$, then for any choice of base points and base paths, the inverse sequance $G: \pi_{1}\left(Y_{1}\right)<\frac{g_{1}}{-} \pi_{1}\left(Y_{2}\right)<\frac{g_{2}}{<} \ldots$ is stabla. And convarsoly if G is stable π_{1} is obviously stable at e. Eenco to maasura stability of π_{1} at ε we.can look at any ons sequence g.

Eainition 3.7. Ir π_{1} is stable at ϵ, define $\pi_{1}(\epsilon)=$ in Q foi soma inxed systom ℓ as above.

Ey Lomeas 3.3, 3.5, $\pi_{1}(\varepsilon)$ is dotomined up to isomorphism. If Y^{\prime} is a similar systom for ϵ, one can show that thare is a
 that is V is any path comected noighborhood, the ajagram

conmios for suitably chosen j, j ' in the natural conjugacy classes dotornined by Enclusions. Tinis shows for example that the statement that $\pi_{1}(\varepsilon) \longrightarrow \pi_{1}(V)$ is an isomorphism (or onto, or 1-1) is indepencent of tho parificular choice of G to define $\pi_{1}(\epsilon)$. The paon uses the iceas of 3.3 and 3.5 again. I omit it.

2-nole: If G is $z<\frac{x 2}{} 2 \ll 2<2<2$... or z_{2} onto z_{4} onto z_{8} onto ..., \bar{T}_{1} camot bo stable at ε. The first sequence occurs naturailly foz the complement of the cyadic solenoid inbodded in $s^{n}, n \geq 4$.

Therie: If W is fomed by deleting a boundary compont M from a comact topological manifold \bar{W}, thon Π_{1} is stable at the ona cai ε of W since X_{1}, X_{2}, \ldots can be a sequence of collars intwasected with W. (See tio cofiar theorom of M. Brown [15].) Fu_itaz $\pi_{1}(\varepsilon) \cong \pi_{1}(N)$ is finitaly presonted. For M, boing a coronact absoluto neighborhood zetract (sea [16]) that inbods in cuciicaan space, is dominated by a finite complex. Then π_{1} (A) As at least a zatract of a Sinitely presented group. But

Eate 3.8 (proved in Wall [2, Lesca 1.3]). A ratract of a finitoly posorted group is firitoly prosentod. []

Ist W bo a smooth open manifold and ε an ond of W. 2atetion 3.9. A 1-reighboriood V of ε is a 0-naighborhood

1) Tro natural maps $\pi_{1}(\epsilon) \longrightarrow \Pi_{1}(V)$ aro isomompisms;
2) $\mathrm{Ba} V \subset \nabla$ gives an isomorphism $\pi_{1}(\mathrm{Bd} V) \longrightarrow \pi_{1}(V)$.

Here is the important result of this chapter.

Thoomen 3.10. Lot w^{n} be a smooth open manilold, $n \geq 5$, and ε an isolatod ond of W. If π_{1} is stable at ε and $\pi_{1}(\varepsilon)$ is inintoly presented, then there oxist arbitrarily small 1-naighborboods OIE.

Problem: Is this theorem valid with $n=3$ or $n=4$?

Exnole: The condition that $\pi_{1}(\varepsilon)$ be innitely prosentod is not socundant. Given a countable presentation $\{x ; r\}$ of a non-finitolypassentablo group G wa can construct a smooth open marifold W of dimonsion $n \geq 5$ with one end so that for a suitable ssquence of path connectad noighborinoods $X_{1} \supset X_{2} \supset \ldots$ of ∞ with $\cap \bar{X}_{i}=\emptyset$, tion conresponding sequance of finnamental groups is $G<\underline{i d} G<i d$ Ono simply takes the n-disk and attaches infinitoly many 1-hanales ard 2-inandios as tho prosontation $\{x ; x\}$ domands, thickening at oach تtop. (Keep the growing hardlabody orientable so that procuct neighbovioous for attaching 1-spiores always oxist.) If we let X_{i} be ino complemoni of the ith handlobody, $\pi_{1}\left(X_{i}\right) \longrightarrow \pi_{1}(W) \cong G$ is an isconomism bacause to obtain W fron X_{i} wo attach (cial) handles ai ainension $(n-2),(n-1)$ and one of dimension n.

Bant of Thooren 3.10: Lot $V_{1} \supset V_{2} \supset \ldots$ be a sacuonce of 0-noighVoinocts of c with $\cap V_{i}=\phi$ and $V_{i+1} \subset$ Int V_{i}. Since π_{1} is $\sin 10$ at ϵ, artor choosing a suitabie stiosequance wo may assume $\pi_{i}\left(V_{i}\right)<\stackrel{i_{1}}{\leftarrow} \pi_{1}\left(V_{2}\right) \stackrel{f_{2}}{\leftarrow} \ldots$ is such that if $H_{i}=f_{i} \pi_{1}\left(V_{i+1}\right) \subset \pi_{1}\left(V_{i}\right)$ *non tho inciucod maps $\mathrm{H}_{1}<-\mathrm{H}_{2}<\ldots$ are isomorphisms.

Furtinor if X is a proscribod compact set in W we may assume
$Z \cap V_{1}=\emptyset$. We will produce a 1-noighborhood V of s witia $V \subset V_{1}$. Sssamion 1) There exists a 0-neighborhood $V^{\prime} \subset V_{3}$ such that the ingas of $\pi_{1}\left(2 a V^{3}\right) \longrightarrow \pi_{1}\left(V_{3}\right)$ contains H_{3} (equivalently, the i-ago of $\pi_{1}($ Ba $V \cdot) \rightarrow \pi\left(V_{2}\right)$ equals $\left.H_{2}\right)$.

P-oos: V' will be V_{4} roctified by 'trading i-handies" along Ed V_{4}. Tor convenience we may assime that the base points for V_{1}, \ldots, V_{4} $\therefore=029$ the one point $* \in \operatorname{Bd} V_{4}$. Ess a nicely imbedded, based 1-disk In V_{3} attachod to $\mathrm{Bd} V_{4}$ we will mean a triple ($D, h, h^{\prime \prime}$) consisting of an oriented smothly iriooddad 1-disk D in Int V_{3} that meots记 ∇_{4} in its tro end points, transversely, and two paths h, h^{\prime} i: $3 \mathrm{X}_{4}$ from * to the regative and positive end points of D. Lot $\left\{y_{i}\right\}$ be a fintite set of generators for $H_{3} \cong r_{1}(\epsilon)$. Cacing each y_{i} can bo reprosented by a disk $\left(D_{i}, h_{i}, h_{i}^{0}\right)$ that is riceiy imoedded axcept possibly that Int D_{i}^{R} meots $B \dot{d} V_{4}$ in ALEteiy zany -- say $x_{i}-$ points, transvorsely. Eut then it is ciear inw to give $x_{i} \div 1$ nicely imbedded 1-disks representing elemonts $u_{i}^{(1)}, \ldots, u_{i}^{\left(r_{i}+1\right)}$ in $\pi_{1}\left(\nabla_{3}\right)$ with $\nabla_{i}=u_{i}^{(1)} \ldots u_{i}^{\left(r_{i}+1\right)}$.

In this way wo obtain finitely many nicely imboddad based 1-Ësks $12 \quad V_{3}$ attachod to 过 V_{4} coprosenting olemants in $\pi_{1}\left(V_{3}\right)$
 İ.3 i-cisks are disjoint and then construct disjoint tubular noighiosionis $\left\{T_{j}\right\}$ for tivar, each T_{j} a tubular nosghoorituod in V_{4} $0 \therefore$ in V_{3} - Int V_{4}. If F_{j} is in V_{4}. subtract tio opon tubular
 to \dddot{i}_{i}, Raving done this for each T_{j}, smooth the resulting submañoan mith comors (c.r. p. 10) and call it Vv. Apparontiy

Assertion 2) There oxists a 0-naighbornood $V \subset$ Int V_{2} such that $\pi_{1}($ Rd $V) \rightarrow \pi_{1}\left(V_{2}\right)$ is (1-1) onto H_{2}; and any such V is a 1-maighborhood of ϵ.
$\xrightarrow{\text { Proon: }}$ We begin with the last statement. Since π_{1} (Bd V) $\longrightarrow H_{2} \xrightarrow{\cong}$ $\xrightarrow{\cong} H_{1} \subset \pi_{1}\left(V_{1}\right)$ is (1-1) onto $H_{1}, \pi_{1}\left(\right.$ Ba V) $\longrightarrow \pi_{1}\left(V_{1}-\operatorname{Int} V\right)$ and $\pi_{1}(\mathrm{Ed} V) \longrightarrow \pi_{1}(V)$ aro both (1-1); so by Van Kampen's theorem $\pi_{1}(V) \longrightarrow \pi_{1}\left(V_{1}\right)$ is $(1 \sim 1)$. Ent, since $\mathrm{Bd} V \subset V, \pi_{1}(V) \longrightarrow \pi_{1}\left(V_{1}\right)$ is onto H_{1}. This estabilisies

1) $\pi_{1}(V) \longrightarrow \pi_{1}\left(V_{1}\right)$ is (i-1) onto H_{1}
2) $\pi_{1}($ Ra $V) \longrightarrow \pi_{1}(V)$ is an isomorphism.

Choose k so large that $V_{k} \subset V$. Then as $H_{1} \cong H_{k}$,
ve see $\pi_{1}\left(V_{k}\right) \longrightarrow \pi_{1}(V)$ sands $H_{k}(1-1)$ onto $\pi_{1}(V)$ using 1). So 1) Tns map $\pi_{1}(\varepsilon) \longrightarrow \pi_{1}(V)$ is an isomomphism.

This establishas the second statekent.
The naighborhood V will be obtained by trading 2-handies Glong EA V^{\prime}, where V is the neighborhood of Assertion 1). The following leman shows that

$$
\theta: \pi_{1}\left(\text { Ra } V^{0}\right) \xrightarrow{\text { cotoo }} H_{2} \subset \pi_{1}\left(V_{2}\right)
$$

inn becomo an isomorphism in we 'kill' just finitely many olements z_{1}, \ldots, z_{k} of the kernel.

Ina 3.11. Suppose $\theta: G \longrightarrow$ II is a hozororphism of a group G onto a group H. Lot $\{x ; x\}$ and $\{y ; s\}$ be prosantations for G and E witi $|x|$ genomators for G and $|s|$ relators for H. Gion Komal (9) can bo expressed as the least nomal suogroup containing (i.e. the romal closure of) a set of $|x|+|s|$ elements.

Proof: Lot ξ be a (suitably indoxed) set of words so that $\theta(x)=$ $=\frac{\xi}{\zeta}(y)$ in H. Since θ is onto thare exists a set of words η so that $y=\eta(\theta(x))$ in H. Then Tietze transformations give the EOIloming isomorphisms:

$$
\begin{aligned}
\{y ; s\} & \cong\{x, y ; x=\xi(y), s(y)\} \\
& \cong\{x, y ; x=\xi(y), s(y), r(x), y=\eta(x)\} \\
& \cong\{x, y ; x=\xi(\eta(x)), s(\eta(x)), r(x), y=\eta(x)\} \\
& \cong\{x ; x=\xi(\eta(x)), s(\eta(x)), x(x)\}
\end{aligned}
$$

Sirea θ is specified in terms of the last presentation by the corrosponance $x \rightarrow x$, it is clear that Kornel (θ) is the normal closure of the $|x|+|s|$ elements $\xi(\eta(x))$ and $s(\eta(x))$. \square

Boturming to the proof of Assertion 2) we represent z_{1} by \therefore ofiented circle S (with base path) imboded in Pd V'. Since $g\left(z_{i}\right)=0$ and $B A V$ is 2-sidad wo can find a 2-cisk D imbedded in V_{I} so that D intorsects $B d V$ transversely, in $S=B d D$ and inritoly meny circles in Int D.

If wo are Iortunato, $D \cap E A V=E A D$. Then take a tubular
 ritu D ilos. II D is in V^{\prime} subtract ${ }^{T}$ froa V. If T is in V_{2}-Int $V \prime$ acd T to $V '$. Round oin tha comars and call UK rasilt V_{1}. For short ne say wo have tradad D 2long Rd V. . Non wo Eava tha cominative diagram

whero tho maps aro intinced by inclusions and $\left(z_{1}\right)$ donotes the normi closure of z_{1}. Since $\bar{n} \geq 5, j_{1^{*}}$ is an fsomorphism. Hence Komol ($i_{i^{*}}$) is the nomtal closura of $q z_{2}, \ldots, q_{k}$ in $\pi_{1}\left(B d V_{1}\right)$, Fhe:o $q=j_{1 *}{ }^{-1} j_{* *}$. Tmus z_{1} has boen killed and we can start ovor again with V_{1}.

If wo are not fortunate, Int D meots $E d V^{\circ}$ in circles S_{1}, \ldots, S_{3} and soma proliminary trading is roquired before z_{1} can bo inilled. Lat S_{1} be an innomost circle in Int D so that S_{1} Eunics a disk $D_{1} C$ Int D. Trado D_{1} along EdV'. This kills in elemont winich, happily, is in ker θ, and changes V so that it moots. D in ons less circle. (D is unchangad.) After trading 2 timos wa hava again the more fortunato situation and D itsolf con finally ba traced to kill z_{1} or, wora oxactly, the image of z_{1} in tionom $\pi_{1}\left(V^{v}\right)$.

Whon z_{1}, \ldots, z_{k} have all beon killed as above wa have produced a manifole V so that

$$
\nabla_{1}(v) \longrightarrow \pi_{1}\left(v_{2}\right)
$$

\therefore (1-1) onto a_{2}. This completes the proof of Assertion 2) and 200020 $3.10 .[$

Eora is a fact about 1-noighiorioots of the sort wa will ofiten こevopt whtout proof.
3.12. In V_{1}, V_{2} ars 1-naighborioocis of $\varepsilon, V_{2} \subset$ Int V_{1} Ghon with $X=V_{1}$ - Int V_{2}, all of the following inclusions give

3-not: Tho comontaitivo diagran

sions that $V_{2} C V_{1}$ givas a π_{1}-iscmorphisu. The rost iollows easily. \square

Chaptor IV. Finding Smily ($n-3$) Noighborhoods for a Tama End.

Fron this point we will always be vorking with spaces which aso toplogical manifolds or C.W. cotolezes. So the usurl theozy of covoring spaces will apply. \tilde{X} will rogularly donote a universal covoring of X with projoction $p: \widetilde{X} \longrightarrow X$. If an inclusion $Y \subset X$ is a 1 -equivalonce thon $p^{-1}(Y)$ is a univorsal covering \tilde{Y} of Y. In this situation wo say $Y G X$ is k-conngctad $(k \geq 2)$ if $H_{i}(\widetilde{X}, \widetilde{Y})=0$, $0 \leq i \leq k$, with integer coofficiants. If $f: Y$, $\longrightarrow X$ is any 1-aquivalence wo say that I is k-connocted $(k \geq 2)$ if $Y(G(f)$ is k -comocted where $\mathrm{M}(\mathrm{f})$ is ine mapping cyinnder of f. Note that, ir f is an inclusion, tha doinnitions agree.

2-msic: Enmology is more suitable for handlobody theory than horotopy. So wis usually ignore higher homotopy groups.

Mefation t.1. A space X is derinated by a finite complex K E. thoro aro maps $K \underset{\underset{i}{\longrightarrow}}{\underset{\sim}{\longrightarrow}} X$ so that roi is homotopic to the Eientitiy 1_{X}. D. will denote tha class of spaces of tha homotopy typa of a C.W. complex, that are dominated by a finite complex.

Lá e be an isolatod ond of a szooth opon mamirole W^{2}, $\therefore \geq 5, ~ s 0$ thet π_{1} is stablo at ε and $\pi_{1}(\epsilon)$ is finitely prosented.

SEntion 4.2. e is called tare in, in addition, overy 1-noighboriood $0 i \varepsilon$ is in D.
-‥ns: It woulc be ricu if tamoress of tho ond e ware grarantead Ey somo sestriction on the homotopy typa of W . If $\pi_{1}(\varepsilon)=1$,
tinis is tine cas3. Tha rastizction is that H_{H} (ii) bo finitely gonoratod
 contractiblo smooth manifolds w, ($m \geq 8$) with ore and e so that π_{1} is stable at ϵ and $\pi_{i}(\varepsilon)$ is finitoly eresonted and novertioloss e 土s not 亡amo.

To clatify tho notion of tamanoss one can prove, Eoculo a insorem of Chaptar Th, tion

Eaposition 4.3. With W and ϵ as introduced for tho definition of tamsness, thore are implications 1) $\Rightarrow 2) \Longrightarrow 3) \Longrightarrow 4$) where 1),...4) 2:0 tha staterants: (Ravorso implications 1) $\Longleftarrow 2$) ${ }^{*}$ $\Leftarrow 3)<4$) ara obvious.)
i) Tacoro axists an opon connactod raigioorhood U of s in 8$)$ such that tha netural map i: $\pi_{1}(\varepsilon) \longrightarrow \Pi_{1}(U)$ has a laft invorsa r, ritil roi $=1$. (Since r_{1} is stablo at ε, r wili opist whenever \ddot{u} is sufiticiently smain.)
2) Ona 1-naignborhood of ε is in θ.
3) Eva: i-raighioninood of ε is in D.
i) Zroy 0-naighborhood oi ϵ is in \mathcal{A}. Horo genoraliy, if V is a reighoortoou of ε wish is a topological manfoid so that

Ene: Appiy tha iollowing Theorom. In proving 3) \Rightarrow 4) use a is a sixeomiox, and recail that even compact topalogical manifold

yona (Complomant to tha Sin insorem 6.6). Supposa a C.V. complex
X is tho union of tino subcomplexes X_{1}, X_{2} with intorsaction X_{0}.
(a) $X_{0}, x_{1}, x_{2} \in D \Rightarrow x \in \mathscr{D}$;
(0) $x_{0}, x \in \mathscr{A} \Rightarrow x_{1}, x_{2} \in \mathscr{D}$ piovided that $\pi_{1}\left(x_{1}\right) \longrightarrow \pi_{1}(x)$ and $\pi_{1}\left(X_{2}\right) \longrightarrow \pi_{1}(X)$ havo leit inverses (i.0. $\pi_{1}\left(X_{1}\right), \pi_{1}\left(X_{2}\right)$ are retracts of $\left.\pi_{1}(X)\right)$. $[$

Aiter tha abova proposition wo can give a concise dafinition of tateness, which wo adopt for $a l l$ dimensions.

Combinad Dofinition 4.4. An end ε of a smooth open manifold W is teme if

1) π_{1} is stable at $\epsilon-$ viz. thero is a soquence of connectod opon roighbozhoods $x_{1} \supset x_{2} \supset \ldots$ of ϵ with $\cap_{i} \bar{x}_{i}=\phi$ so that (with soma base points and baso paths)

$$
\pi_{1}\left(x_{1}\right) \stackrel{\tilde{r}_{1}}{\leftarrow} \pi_{1}\left(x_{2}\right) \stackrel{\tilde{r}_{2}}{\leftarrow} \ldots
$$

まーineo isomorinjsms

$$
\operatorname{Im}\left(I_{1}\right)<\cong \operatorname{Im}\left(f_{2}\right) \lessdot \ldots
$$

2) Taero is a connoctod open naighoorhood V of $\dot{\varepsilon}$ in \mathscr{D} so s.an that $V \subset X_{2}$.

Notajy, tho hypotiosis tint $\pi_{1}(e)$ lo finitoly prasontod \therefore Lacisng. Bat as $V \subset X_{2}, \quad \Gamma_{1}(\varepsilon) \cong I\left(i_{1}\right)$ is a ratract of tho \therefore-atoly prosented group $\Pi_{1}(V)$ heneo is nocossarily fintitoly procantid by 3.8. Also, by moorem 1.10, $V \in \mathscr{O}$ has only finitely many onis. So ε must bo an isolatod end of W.

Suppose ε is an end of a stooth opon manifold W, such $\because 2 \pi_{1}$ is stable at ε.

Z-atem 4.5. A noighboriood V of e is a k-natodborhood $(k \geq 2)$
iت it is a 1－ngighborhood and $H_{i}(\widetilde{V}, \mathrm{Bd} \widetilde{\mathrm{V}})=0,0 \leq i \leq k$.

Tio main rosult of this chapter is：

5somen 4．5．In ε is a tame end of dinension ≥ 5 ，there oxist

2nase：It turns out that a（ $n-2$ ）－neighborhood V would be a collar reighborkood，1．e．$V \approx E d V>[0,1)$ ．In the next chapter wo show خint，in V is an（ $n-3$ ）－noighborhood，$H_{n-2}(\tilde{V}, \mathrm{BA} \tilde{V})$ is a finitely generated projectiva mocule over $\pi_{1}(\varepsilon)$ and its class modulo froe $\bar{F}_{1}(\varepsilon)$－zodules is the obstruction to finding a collar neigaborhood of e． \underline{Z} 4．6．Let i：$K \longrightarrow X$ be a map from a finito comples to E $E S$ that is a 1－equivalenco．Suppose \geq is（ $k-1$ ）－connected，
 ニニ ニ ミ．

2000：Lot $\Sigma=X^{k-1}$ if $k \geq 3$ or K^{2} if $k=2$ ．Then $L G K$ is a 1－acuivalance sad（ $k-1$ ）connected．Thus the composition $\therefore: I C X \xrightarrow{?} X$ is（k－1）－comected．Up to homotopy type we may $\therefore=\boxed{-i} \mathcal{I}$ is an inclusion．According to Wall［2，Thoorsm A］$\dot{F}_{k}(\tilde{X}, \tilde{I})$ \therefore E．g．ovor $\Pi_{1}(X)$ ．But for tha triple $(\tilde{X}, \tilde{K}, \tilde{L})$ wo havo

$$
E_{k}(\tilde{X}, \tilde{J}) \longrightarrow H_{k}(\tilde{X}, \tilde{K}) \longrightarrow H_{K-1}(\tilde{K}, \tilde{L})=0
$$

 coicon ${ }^{3} x$ holds with $x=k-1,2 \leq k \leq n-3$ ．（Notice that

2. There exist arbitrarily swall x-neigiborhoods of ϵ.

Givon a compact set C wa must constract a k-naighboriood that does not meat C. Cioose a (ic-1)-neighboriood V with V $\cap C=\phi$. Zy Ioma 4.6, $\mathrm{K}_{\mathrm{K}}(\tilde{\mathrm{V}}, \mathrm{BA} \tilde{V})$ is a f.g. $\pi_{1}(\varepsilon)$ module. So wo can take a Sinito genorating set $\left\{x_{1}, 9, \cdots, x_{n}\right\}$ with tho least possible numbez of olenents. Wo will carve il thichened k-disks from V to produce a k-nejghborhood.

Djgintion 4.7: A nicoly imoedded based k-disk representing $x \in$ $\left.\epsilon{\underset{F}{K}}^{(V, B d} \bar{V}\right)$ is a pair (D, h) consisting of a smoothly imbedded ofientod k-disk $D \subset V$ that intersects $B d V$ in $B d D, t r a n s v a r s e l y$, and a pata h from the base point to D, so that the lift $\tilde{D} \subset \tilde{V}$ $0: D$ by b represents x. (Since \tilde{D} is a smootily imbodded oriontod k-disk in \tilde{V} with $B d \tilde{D} \subset E d \tilde{V}$, this makes good sense.)

Eng-rontan Lerma 4.8. II V is a (k-1)-noighborhood, $2 \leq k \leq n-3$, $3_{\mathrm{K}-1}$ inplies that thare is a nicely inbocied k-disk representing ag sivos $x \in H_{k}(\tilde{V}, B d \tilde{V})$.

Conisegin of payof of Tneonen 4.5 (assuming 4.8): Lat (D,h) ro2ancout x_{1}, tavo a tubular noigroonhood of D in V, subtrast \because opan tunutar roishborinood irom V rounding tha comors, and call Uno =esut V^{0}. Wo tay supposa $V^{i} C \operatorname{Int} V$ so that V - Int $V^{V}=$ $=U$ ins $\operatorname{EA} V \cup D$ as dofomation ratract.

First nota tiset V is at loast a 1-noighoorizood. For V亿as $V^{2} \cup D^{\prime}$ as doforantion rotraci where D^{\prime} is a ($n-k$)-disk of ? intanvoze to D. Since $(n-k) \geq 3 \quad \pi_{1}\left(V^{9}\right) \longrightarrow \pi_{1}(V)$ is an

and $B C V G$ give π_{1}-isomorphisms. (When $k=2 \quad D$ is trivially attaciod). This easily implies $\pi_{1}\left(B d V^{\prime}\right) \longrightarrow \pi_{1}\left(V^{\prime}\right)$ is an isomopphism.

Next we establish that V^{v} is really better than V.
$\mathrm{E}_{*}(\tilde{\mathrm{U}}, 2 \mathrm{Zd} \tilde{\mathrm{V}})=2 \mathrm{~J}_{1}(\varepsilon)$, and (D, h) represents a generator \bar{x}_{1} such that $i_{i} \bar{x}_{1}=x_{1},{ }^{\bullet} i:(\tilde{U}, B d \tilde{V}) \subset(\tilde{V}, B d \tilde{V})$. From the sequence of $(\tilde{V}, \tilde{0}, \mathrm{Bd} \tilde{V})$ see that $H_{*}(\tilde{V}, \tilde{U}) \cong H_{*}\left(\tilde{V}, B d \tilde{V}^{v}\right)$ is zero in dimensions $<k$ ard in dimension k is generated by the (m-1) irages of x_{2}, \cdots, x_{m} undar $j_{*}, j:(\tilde{V}, \operatorname{Bd} \tilde{V}) G(\tilde{V}, \tilde{V})$.

Thus V^{\prime} is a ($k-1$)-neighborhood and $H_{*}\left(\tilde{V}^{\prime}\right.$, Ba $\left.\tilde{V}^{\prime}\right)$ has (m-1) generators. After exactly if steps we obtain a k-neighborhood. This estainlishes P_{k} and completes the induction for Theorem 4.5.0] Prof of the Fundarental Lorma 4.3: We begin with

Assertion: There exists a (k-1)-neighborhood V'C Int V so small that x is represented by a cycle in \tilde{U} mod $B d \tilde{V}$, where $U=V$ - Int \dot{V}.

Proof: x is represented by a singalar cycle and the singular simplices all map into a compact set $c \subset \tilde{V}$. There exists a ($k-1$) neigiboricood V'C Int V so small that the projection of C lies in $U=V$ - Int V. Then \tilde{V} contains C and the assertion follows. $]$

Niow the exact sequence of $(\tilde{V}, \tilde{U}, B d \tilde{V})$ shows that $B d V C U$ is ($k-2$)-comectod. Eence there exists a nice Morse function f and a gradiont-like vector field ξ on the manifold triad $c=$ $=\left(U ; E d V, B d V^{\prime}\right)$ with critical points of index $\lambda, \max (2, k-1) \leq$ $\leq \lambda \leq n-2$ only. See Wall [3, Theorem 5.5, p. 24]. In other words $c=c_{k-1} c_{k} \cdots c_{n-3^{n-2}}^{c_{n-2}}$ whare $c_{\lambda}=\left(U_{\lambda} ; B_{\lambda}, B_{\lambda+1}\right)$ is a triad having
critical points of indor λ oniy and B_{λ} is a levol manifold of f. Liso e_{k-1} is a product if $k=2$.

We resall row some facts irom handlebody theory using tha Zanguage of Milsor [4]. For each critical point p of indox λ
 coing to p, and a 'right hand' $(n-\lambda)$-disk $D_{R}(p)$ in U_{λ} is formad加tha 乡-trajoctorios going from p. According to kilnor [4, p. 46]
 raots oach right band sphere pi $D_{R}^{\lambda-1}(q)=S_{R}(q)$ transvorsely, in a finite number or points.
 patiss fron * to each critical point of f; and choose an orientation for each leit hard disk. For $P \in S_{L}(p) \cap S_{R}(q)$ the chararacistie oloment g_{p} is the class or the path formod by the baso path * to p, tha trajoctozy p to q through P and the reversed buso patí q to *. (Sae Figuro 4.1). With naturally dofined ori-
 an aneroection muber $e_{P}= \pm 1$ of $S_{R}(q)$ with $S_{L}(p)$ at P.

Figura 4.1.

Notice that $H_{\lambda}\left(\tilde{U}_{\lambda}, \tilde{B}_{\lambda}\right)$ is a frea $\pi_{1}(0)$-mojule concentrated in temansion λ and has basis elements that comrospond naturally to the ossad oinented dis'ss $\left\{D_{\Sigma}(p) ; p\right.$ critical of indax $\left.\lambda\right\}$. Accoring to :Sinor $[4, p, 90]$, if the dafina $C_{\lambda}=H_{\lambda}\left(\tilde{\sigma}_{\lambda}, \widetilde{B}_{\lambda}\right)$ and i: $0_{\lambda} \longrightarrow C_{\lambda-1}$ by $E_{\lambda}\left(\tilde{U}_{\lambda}, \widetilde{B}_{\lambda}\right) \xrightarrow{\text { d }} H_{\lambda-1}\left(\tilde{B}_{\lambda}\right) \xrightarrow{i_{i}} H_{\lambda-1}\left(\tilde{U}_{\lambda-1}, \tilde{B}_{\lambda-1}\right)$ than $H_{4}(\tilde{U}, 2 \pm \tilde{V}) \cong H_{H}(C)$. Further, by Wall [3, Thaorom 5.1, p. 23] d is expressea geometrically by the fomma

$$
\partial p_{L}^{\lambda}(p)=\sum_{p} \varepsilon_{p} g_{p} \frac{p_{L}^{\lambda-1}}{}(q(p))
$$

whers $\sum_{L}^{\hat{\lambda}}(p), \tilde{H}_{L}^{-1}(q(P))$ stand for the basis elements represented Gy thess based ofiented tisks and $P \in S_{R}(q(P)) \cap S_{L}(P)$ ranges over all intursection points of $S_{L}(p)$ with right hand spheres.

Eare is a fact wa sili use later on. Supposa an orientation is specified at $* \in U$. Then using the base paths wo can naturally oficnt 217 tha right bend disks, and giva nomal bundles of tho left tani disis cormospaxing orientations. With this system of orientitions thero is a nar intorsection muber ϵ_{p}^{\prime} dotermined for each $P \in S_{2}(\theta) \cap S_{L}(p)$. It is stmaighiforward to varify that

$$
\epsilon_{p}^{?}=(-1)^{\lambda} \operatorname{sig}\left(g_{p}\right) e_{p}
$$

Vino $\hat{A}= \pm n d e x p$ ard $\operatorname{sign}\left(g_{p}\right)$ is +1 or -1 aecording as z_{z} is oricntation proserving or oxiontation reversing. The now chancterisita elezent for g is clearly $g_{p}^{*}=g_{p}^{-1}$.
 ミッosoxt \bar{z} by a chain

$$
\varepsilon=\sum_{p} \sim(p) n_{L}^{k}(p)
$$

流的 p rangos over critical points of incox k and $r(p) \in Z \pi_{1}(0)$. Introduce a complementary ($=$ auxiliary) pair p_{0}, o_{0} of critical points of incors k and $k+1$ using Milnor [4, p. 101] (c.f. Wall [3, p. 17]). The effect on C_{*} is to introduce two now basis elements $D_{L}\left(p_{0}\right) \in C_{k}$ and $D_{L}\left(q_{0}\right) \in c_{k+1}$ so that $\partial D_{L}\left(q_{0}\right)=D_{L}\left(p_{0}\right)$ (with ssitiable basa paths and orientations) while d is otherwise unchanged. In particular $\partial \eta_{L}\left(p_{0}\right)=0$ so that \bar{x} is represented by $p_{L}\left(p_{0}\right)+c$. 13:s wo can apply Wall's Handle Addition Theorem [3, p. 17] repeatedry changing the Morse function (or handile decomposition) to alter the basis of G_{k} so that the now based oriented left-hand disks represent $D_{\mathrm{L}}\left(P_{0}\right)+c$ and the old basis elorionts $D_{L}(p)$ with $p \neq p_{0}$. (We sto that the prooi -- not tho statament - of the "Rasis Theorem' of :innor [4, p. 92] can bo strengthened to give this rasule.)

Wa now have a critical poiat p_{1} so that $D_{L}\left(p_{1}\right)$ is a cycle zorosonting $\overline{\mathrm{x}}$. If $\mathrm{k}=2$, the rost of tho argumont is easy. (is $n=5$, the only case in quastion is $2=k=n-3$.) Ein the outsot, thore were no critical points of indax <2. Tais :uans that tho trajoctories in U going to p_{1} fora a disk $p_{1}\left(p_{1}\right)$ Wen is $\eta_{L}\left(P_{1}\right)$ witin a collar addad. It is oasy to soe that $p_{L}\left(p_{1}\right)$ uite the oniontation and bsse path of $D_{L}\left(p_{1}\right)$ is a nicoly irbodded
 Gcanily, for $k=2$, or orea $2 k+1 \leq n$, ono can iniod a suitriblo Nase cirectiv, without handlobody theory.)

If $3 \leq k \leq n-3$, (and herca $n \geq 6$) argue as foillows. Stico $\delta I_{L}\left(p_{1}\right)=0$ the points of intersection of $D_{L}\left(p_{1}\right)$ with any
 $z_{2}=\delta_{Q}$ and $\varepsilon_{P}=-\varepsilon_{Q}$ (sao tha formula on pago 29). Tako a loop.
I corsisting of an are P to Q in $S_{L}\left(p_{1}\right)$ then Q to P in $S_{R}(c)$. It is contractibio in R_{k} becausa $g_{P}=g_{Q}$. So L can ba spaned by a 2-dish and tho device of thitney peraits us to eliminate tha tiro intorsection points P, Q by deforming $S_{L}\left(p_{1}\right)$. Theorem 6.6 of EEnor [4] explains all this in detail.

Fian in inntoly many steps we can arrange that $S_{L}\left(p_{1}\right)$ moets ros zight Lana spheras (c.f. Pifror [4, §4.7]). Now observe that tion teajectories in 0 going to p_{1} form a disk $D^{\prime}\left(p_{1}\right)$ winch is $D_{i}\left(p_{1}\right)$ plus a collar. $D^{\prime}\left(p_{1}\right)$ is a based oriented and nicely incediea k-ijsik that apparentily represents $\bar{x} \in H_{K}(\tilde{U}, \mathrm{Bd} \tilde{V})$ and hence $z \in E_{k}(\tilde{V}, B d \tilde{V}) . \square$

Chaptor V. The Obstruction to Finding a Collar Noighborhood.

This chapter brings us to the Main Theorem (5.7), which we bave been working towards in Chapters II, III and IV. What remains of the proof is broken into two parts. The first (5.1) is an elementary observation that serves to isolate the obstruction. The second (5.6) proves that when the obstruction vanisios, one can find 2 collar. It is the heart of the theorem.

As usual ε is an end of a smooth open manifold W^{n}.

Pooposition 5.1. Suppose $n \geq 5, \pi_{1}$ is stable at ϵ, and $\pi_{1}(\varepsilon)$ is finitely presentod. If V is a ($n-3$)-noighborhood of ε, then $H_{i}(\tilde{V}, B d \tilde{V})=0, \quad i \neq n-2$ and $H_{n-2}(\tilde{V}, B d \tilde{V})$ is projective over $\pi_{1}(\varepsilon)$. Erark: If ε is tame, by $4.6 H_{n-2}(\tilde{V}, B d \tilde{V})$ is $f \cdot g$. over $\pi_{1}(\varepsilon)$. Corollayy 5.2. If V is a (n-2)-neighborhood of $\varepsilon_{q} \quad H_{*}(\tilde{V}, \mathrm{Bd} \tilde{\mathrm{V}})=0$ so that $B d V G V$ is a homotopy equivalence. If in addition there are arbitrarily small ($n-2$) -neighborhoods of c, then V is a collar naighborhood.

Donof of Compliaty: The first statement is clear. The second folloñ from tha invertibility of h-cobordisms. For $n=5$ this seams to require the Engulfing Thaorem (see Stallings [10]). D

Proo of Pronosition: Since Bd VCV is (n-3)-connacted $H_{i}(\tilde{V}, \mathrm{Bd} \tilde{\mathrm{V}})=$ $=0,1 \leq n-3$. It romains to show that $H_{i}(\tilde{\nabla}, B d \tilde{V})=0$ for $i \geq n-1$ and projective over $\pi_{1}(s)$ for $i=n-2$.

By Thooren 3.10 wa can find a sequence $v=V_{0} \supset V_{1} \supset V_{2} \supset \ldots$ of i-neighborhoods of ε with $\cap_{n} V_{n}=\phi$, and $V_{i+1} \subset$ Int V_{i}.

If $U_{i}=V_{i}-\operatorname{Int} V_{i r 1}, \quad 3 d V_{i} \subset U_{i}$ and $\operatorname{Rd} V_{i+1} \subset U_{i}$ give $\pi_{1}-$ isozophisms. Put a Norse function $f_{i} \& U_{i} \xrightarrow{\text { onto }}[i, i+1]$ on each triad ($\left.J_{i} ; B d V_{i}, B d V_{i+1}\right)$.

Following the proof of Minnor [4, Theorem 8.1, po 100] wo can arrange that f_{1} has no criticel points of index $0,1, n$ and n-1. (This is also the effect of Wall [3, Theorem 5.1]:) Plece the inorse functions $f_{0}, \tilde{I}_{1}, f_{2}, \ldots$ togother to give a proper Morse $f: v \xrightarrow{\text { onto }}[0, \infty)$ with $f^{-1}(0)=\operatorname{BdV}$.

It follows from the woll known lema given below that ($V, \mathrm{Bd} V$) is hozotopy equivaient to ($\mathrm{K}, \mathrm{Bd} \mathrm{V}$) where K is $\mathrm{Bd} V$ with cells of dirension $\lambda, 2 \leq \lambda \leq n-2$ attached. Thus $H_{i}(\tilde{V}, \operatorname{Bd} \tilde{V})=0$, $\pm \geq n-1$. Furtber the cellular structure of ($\mathrm{K}, \mathrm{Bd} V$) gives a Seas $\pi_{1}(\varepsilon)$-complex for $H_{*}(\tilde{K}, \mathrm{Bd} \tilde{V})$

$$
0 \rightarrow c_{k-2}(\tilde{\mathrm{~K}}, \mathrm{Bd} \tilde{\mathrm{~V}}) \rightarrow c_{\mathrm{k}-3}(\tilde{\mathrm{~K}}, \mathrm{Bd} \tilde{\mathrm{~V}}) \longrightarrow \ldots \rightarrow c_{2}(\tilde{H}, \mathrm{Bd} \tilde{\mathrm{~V}}) \longrightarrow 0
$$

Since the homology is isolated in dimension ($k-2$) it follows easily that $H_{k-2}(\tilde{K}, B d \tilde{V})$ is projective. []

Iaria 5.3. Suppose V is a smooth manifold and $f: V \longrightarrow[0, \infty)$ is a proper Horse function with $f^{-1}(0)=$ Bd V . Then there exists a C.in. complex I, consisting of Bd V (trianguiated) uith one coll of dimonsion λ in K - Bd V for each index λ critical point, and such that there is a homotopy equivalence $f: K \longrightarrow V$ fixing Bd V.

3002: Lot $a_{0}=0<a_{1}<a_{2}<\ldots$ ba, an umbounded sequence of rororitical points. Since f is proper $f^{-1}\left[a_{1}, a_{1+1}\right]$ is a swooth conpact manifold and can contain oniy finitely many critical points. Adjusting i slightly (by Milnor [4, p. 17 or p. 37]) we may assme
tisa critical lovals in $\left[a_{i}, a_{i+1}\right]$ are distinct. Then there is a rafinewent $\cdot b_{0}=0<b_{1}<b_{2}<\ldots$ of $a_{0}<a_{1}<\ldots$ so that b_{i} is nomeritical and $f^{-1}\left[b_{i}, b_{i+1}\right]$ contains at most one critical point.

We will construct a nested sequence of c.W. complexes $K_{0}=$ $=\operatorname{EdV} \subset X_{1} \subset K_{2} \subset \ldots, K=\cup K_{i}$, and a sequence of homotops squivaionces $i_{i}: U_{i} \longrightarrow K_{i}, U_{i}=f^{-1}\left[0, b_{i}\right], f_{0}=1_{B d V}$, so that $f_{i+1} \mid U_{i}$ agrees with f_{i}. Then $f_{0}, f_{1}, f_{2}, \ldots$ define a contimuous map $f: V \longrightarrow K$ which induces an isomorphism of all homotopy groups. By Whitehead's theorem [11] it will be the required homotopy equivalence.

Suppose inductively that f_{1}, K_{1} are defined. If $f\left[b_{1}, b_{1+1}\right]$ contains no critical point it is a collar and no problem arises. Oikerwise let $工: \sigma_{1+1} \longrightarrow U_{i} \cup D_{L}$ be a deformation retraction Fhore D_{L}, is the lert hand disk of the one critical point (c.f. Xinor [4, p. 28]). By Kilnor [8, Lemma 3.7, p. 21] fi extends to a homotopy equivalence

$$
f_{i}^{\prime}: U_{i} \cup D_{L} \longrightarrow X_{i} \cup_{\varphi} D_{L}^{\prime}
$$

whore D_{L} is a copy of D_{L} attached by the map $f_{i} \mid B d A_{L}=\varphi$. Ii $\varphi^{\prime} \simeq \varphi$ is a colluiar approximation, by [4, Loma 3.6, p. 20] tha identity map of K_{i} extends to a homotopy equivalence

$$
g: K_{i} u_{\varphi} D_{i} \longrightarrow K_{i} u_{\varphi}, D_{L}^{\prime} .
$$

Eatina $K_{i+1}=K_{i} U_{\varphi,} D_{L}^{\prime}$ and let $f_{i+1}=$ gof $f_{i}{ }^{\circ}$. Then f_{i+1} is a bonotopy equivalence and $f_{i+1} \mid K_{i}$ agrees with $f_{i} \cdot \square$

Next we prove a leman needod for the second main proposition. Lat A, B, C be free fi.g. modules over a group π with proferred
bases a, b, c respectively. If $C=A \in B$ we ask whether there exists a basis $c_{1} \sim c$ (i.e. c_{1} is dexived from c by repeatodly acilig to one basis element a $Z[\pi]$-mitiple of a different basis elemant.) so that some of the elexents of c° generate A and the rast generato B. This js stably true. Let $B^{\prime}=86 \mathrm{~F}$ where \vec{F} is a iree m-module with preferred basis I. Lot $C^{\prime}=A \oplus B^{\prime}$ ard let the enlarged bases for B^{\prime} and C^{\prime} be $b^{\prime}=b f$ and $c^{\prime}=c f$. Iema 5.4. If ranik $F \geq$ rank C there exists a basis $c^{n} \sim c^{\prime \prime}$ for C' such that some of the elements of $c^{\prime \prime}$ generate A and the rest generate B^{\prime}.

Proof: The matrix that expresses ab" in tems of the basis $c^{\prime \prime}$ jooks Ithe

Notice that multiplication on the right by an 'elementary' matrix ($I+E$) whers E is zero but foz one off-diagonal element in $2[T]$ and I is the identity, corresponds to adding to one basis element of c a $7[\pi]$ maltiple of a different basis element. Suppose ijirst that rank $F=$ rank C. Then $\left(\begin{array}{ll}X & 0 \\ 0 & I\end{array}\right)\left(\begin{array}{cc}X^{-1} & 0 \\ 0 & M\end{array}\right)=\left(\begin{array}{ll}I & 0 \\ 0 & M\end{array}\right)$. But the right hand side of
$\left(\begin{array}{cc}M^{-1} & 0 \\ 0 & M\end{array}\right)=\left(\begin{array}{cc}I & M^{-1} \\ 0 & I\end{array}\right)\left(\begin{array}{cc}I & 0 \\ I-M & I\end{array}\right)\left(\begin{array}{cc}I & -I \\ 0 & I\end{array}\right)\left(\begin{array}{cc}I & 0 \\ I-M^{-1} & I\end{array}\right)$ is cieariy a product of elementaxy matrices. So the Lemma is established in this case. In the gereral case just ignore the last. [rank F - rank C] elements of \mathfrak{i}. \square

Dofinition 5.5. Let G be a group. Two Gmodules A, B ay stably isomorphic (writton $A \sim B$) if $A \oplus F \cong B \oplus F$ for some f.g. froe G-mocule F. A f.g. Gmodule is called stably free if it is etably isomorphic to a free module.

Proposition 5.6. Suppose ε is a tame end of dimension $n \geq 5$: If V is a ($n-3$)-neighborhood of ϵ, the stable isomorphism class of $H_{n-2}(\tilde{V}, \operatorname{Bd} \tilde{V})$ (as a $\left.\pi_{1}(\epsilon)-m o d u l e\right)$ is an invariant of c. If $H_{n-2}(\tilde{V}, 8 d \tilde{V})$ is stably free and $n \geq 6$, there exists a ($n-2$)-neighborhood $V_{0} \subset \operatorname{Int} V$.

Any f.g. projective module is a direct summand of a f.g. free module. Thus the stable isomorphism classes of f.g. Gmodules form an abelian group. It is called the projective class group $\tilde{\mathbb{Z}}_{0}(G)$. Apparently the class containing stably free mocules is the zero element.

Comoining Proposition 5.1, Corollary 5.2 and Proposition 5.6
wo hava our

Kin Theoren 5.7. If ε is a tame end of dimension ≥ 6 there is an obstruction $\sigma(\varepsilon) \in \tilde{X}_{0}\left(\pi_{1} \sigma\right)$ that is zoro if and only if ε has a collar.

In Chaptor Vili we construct exarples where $\sigma(\varepsilon) \neq 0$. At the ond of this chaptor we draw a few conclusions from 5.7.

Proof of Proposition 5.6: The structure of $H_{n-2}(\tilde{V}, B d \tilde{V})$ as a $\pi_{1}(c)$ Eodile is detomined only up to conjugation by elements of $\pi_{1}(\varepsilon)$. Trus if one action is denoted by juxtaposition another equally good action is $g .2=x^{-1} g x a$ whore $x \in \pi_{1}(\varepsilon)$ is fixed and $g \in \pi_{1}(\varepsilon)$, $a \in Z_{n-2}(\tilde{V}, B d \tilde{V})$ vary. Nevertheless the new $\pi_{1}(\varepsilon)$-module structure is isomorpic to the old under the mapping

$$
a \longrightarrow x^{-1} a .
$$

i's conclude that the isomorphism class of $H_{n-2}(\tilde{V}, B d \tilde{V})$ as a $\pi_{1}(s)$ تمcile is independent of the particular base point of V and covering base point of \tilde{V}, and of the particular isomorphism $\pi_{1}(s) \longrightarrow \pi_{1}(V)$ (in the preferred conjugacy class). We have to establish further that the stable isomorphism class of $H_{n-2}(\tilde{V}, B d \tilde{V})$ is an invariant of ε, i.0. does not depend on the particular ($n-3$)-neighborhood V. Tuis ifill become clear during the quest of a ($n-2$)-neighbornood $V \cdot \subset$ Int V that we now launch.

Since $H_{n-2}(\tilde{V}, B d \tilde{V})$ is f.g. over $\pi_{1}(s)$, there exists a ($n-3$)-neighboriood $V^{\prime} \subset$ Int V so small that with $U=V$ - Int V. $M=3 \mathrm{~d} V$ and $\mathrm{V}=\mathrm{Bd} V^{\prime}$, the map

$$
i_{*}: H_{n-2}(\tilde{U}, \widetilde{M}) \longrightarrow H_{n-2}(\tilde{V}, \widetilde{M})
$$

is ozto. By inspscting the exact sequence for $(\tilde{V}, \tilde{U}, \tilde{M})$
$0 \longrightarrow E_{n-2}(\tilde{U}, \tilde{R}) \xrightarrow{\dot{i}_{*}} H_{n-2}(\tilde{V}, \tilde{H}) \longrightarrow H_{n-2}(\tilde{V}, \tilde{U}) \xrightarrow{\dot{a}} H_{n-3}(\tilde{U}, \tilde{M}) \longrightarrow 0$
20 sea that i_{*} and d are isomorphisms. Since the middle terms aro f.g. projockive $\pi_{1}(\epsilon)$ modules so are $H_{n-2}(\tilde{U}, \tilde{M}), H_{n-3}(\tilde{U}, \tilde{M})$.

Since $M \subset U$ is $(n-4)$-connected and $N G J$ gives a $\pi_{1}-i$ somorphism we can put a self-indexing Morse fanction f with a gradientLike vector field ξ (see Minnor [4, p. 20, p. 44]) on the triad $c=(0 ; M, N)$ so that f has critical points of index $(n-3)$ and $(n-2)$ only (Wall [3, Theorem 5.5]).

We provide f with the usual equipment: base points * for U and * ovor * for \tilde{U}; base paths from * to the critical points; oriontations for the left hand disks. And we can assume that left and right hand speres intersect transpersely $[4, \$ 4.6]$.

Now we have a well defined based, free $\pi_{1}(\varepsilon)$-complex C_{*} Ior $B_{*}(\tilde{U}, \tilde{M})$ ("based" means with distinguished basis oyer $H_{1}(s)$). It may be written

Whoro wa have inserted kornels and images.

We have shown F_{n-3} is projective, so B_{n-3} is too and $C_{n-3}=Z_{n-3} \bigcirc B_{n-3}, C_{n-2}=B_{n-3}$ \# H_{n-2} (ths second sumands natural). It PO.110ws that $H_{n-2} \sim H_{n-3}$, hence $H_{n-2}\left(\tilde{V}_{n} B d \tilde{V}\right) \sim H_{n-2}\left(\tilde{V}^{\prime}\right.$, Ed $\left.\tilde{V}^{r}\right)$ (~ denotes stable 1.00morphism). This makes it clear that the stable isomirphism ciass of $H_{n-2}(\tilde{V}, B d \tilde{V})$ does not depend on the particular (r-3)-neighhortood V . So the first assertion of Proposition 5.6 is established.

Уow suppose $H_{n-2}(\tilde{V}, B d \widetilde{V}) \sim H_{n-2} \sim H_{n-3}$ is stably iree。 Inen $\mathrm{B}_{n-3}^{\eta} \cong \mathrm{B}_{n-3}$ is also stably fiee. For convenience identify $B_{n-3}^{\prime \prime}$ with a fixed subgsoup in C_{n-2} that maps isomorphicaliy onto $B_{n-3} \subset C_{n-3}$, and derine $E_{n-3} \subset C_{n-3}$ similariy. Then C_{*} is

$$
\ldots<0 \ll H_{n-3} \oplus B_{n-3} \ll B_{n-3} \oplus H_{n-2} \lll \ll
$$

Coserve: 1) If we add an auciliary ($=$ complementary)pair of index ($n-3$) and ($n-2$) critical points, then a $2\left[n_{1} \varepsilon\right]$ summand is added to B_{n-3} ard to B_{n-3}^{\prime}. (Seo Milnor [4, p. 101], Wall [3, p. 17].) 2) If we add an auriliary pair as above and delete the auxiliary (n-3)-disk (thickened) from V, then a $Z\left[\pi_{1} \in\right]$ summand has been adced to E_{n-2}.

In the alteration 2$) V$ chanzes. But $i_{*}: H_{n-2}(\tilde{U}, \tilde{M}) \longrightarrow H_{n-2}(\tilde{V}, \tilde{M})$ is still onto. For, as one easily verifies, the effect of 2) is to add a $Z\left[\pi_{1} \varepsilon\right]$ summand to both oithese modules and extond i_{i} by Earing generators correspond.

Fron 1) and 2) it follows that it is no loss of generality to assume that the stebly free modules $\mathrm{B}_{\mathrm{n}-3}$ and $\mathrm{H}_{\mathrm{n}-2}$ are actually froe. What is more, Lerma 5.4, together with the Eandle Addition

Theorem (Wall [3, p. 17], c.f. Chapter IV, p. 30) shows that, after applying 1) sufficientiy often, the Morse function can be altered so that some of the basis elements of C_{n-2} generate H_{n-2} and the rest generato $\mathrm{B}_{\mathrm{n}-3}^{\prime}{ }^{\bullet}$

We have reached the one point of the proof where we must have $n \geq 6$. Let D_{L} be an oriented left hand disk with base path, for one of those basis elements of C_{n-2} that lie in H_{n-2}. We want to say that, because $\partial D_{L}=0$, it is possible to isotopically deform the left hand ($n-3$)-sphere $S_{L}=B d D_{L}$ to miss all the right hand 2 -spheres in $f^{-1}\left(n-2 \frac{1}{2}\right)$. First try to proceed exactiy as in Chapter IV on page 30. Notice that the intersection points of $S_{L_{0}}$ with any one right hand 2-sphere can be arranged in pairs (P, Q) so that $g_{p}=g_{Q}$ and $\varepsilon_{P}=-\varepsilon_{Q}$. Form the loop L and attempt to apply Theorem 6.6 of Mifinor [4] (which requires $(n-1) \geq 5$). This fails bacause the dimension restrictions are not quite satisfied. Eut fortunately they are satisfied after we replace f by -if and correspondingly interchange tangent and normal orientations. We note that the new intersection nubers $e_{P}^{\prime}, \varepsilon_{Q}^{\prime}$ are still opposite aril that the new characteristic elements $g_{p}^{p}, g_{Q}^{\dot{Q}}$ are still equal (say Chaptar IV, p. 29). For a davice to show that the condition on tho fundamental groups in [4, Theoren 6.6] is satisfied, see Wall [3, p. 23-24]. After applying this argument sufficiently often we have a smooth isotopy that sweops S_{L} clear of 211 right hand 2-spheres. Change ξ (and hence D_{L}) accordingly [4, S 4.7].

Now D_{L} can be enlarged by adding the collar swopt out by trajoctories from M to S_{L}. This gives a nicely imbedded disk represonting the class of D_{L} in $H_{n-2}(\tilde{U}, \tilde{M})$ (c.f. Dofinition 4.7).

Now alter i according to ifiror [4, Leman 4.1, p. 37], to reduce tine level of the critical point of D_{L} to $\left(n-3 \frac{1}{4}\right)$.

When this operation has been carried out for each basis element of C_{n-2} in E_{n-2}, the level diagram for i looks like

$$
\begin{aligned}
& x \text { - represents index }\left\{\begin{array}{l}
n-3 \\
n-2
\end{array} \quad\right. \text { critical point }
\end{aligned}
$$

Observe tinct $U^{\prime}=f^{-1}\left[-\frac{1}{2}, n-3 \frac{1}{8}\right] \quad U$ can be deformed over itself onto Ed $V=i f$ with based ($n-2$)-disks attached which, in \tilde{U} mod \tilde{M}, give a basis for $H_{n-2}(\tilde{J}, \tilde{M})$ and so for $H_{n-2}(\tilde{V}, \tilde{M})$. Thus i_{*} is an isomorphism, in the sequence of $(\tilde{V}, \tilde{U}, \tilde{M})$:
$\ldots \rightarrow 0 \rightarrow H_{n-2}(\tilde{U}, \tilde{M}) \xrightarrow[\dot{i}_{m}]{\cong} H_{n-2}(\tilde{V}, \tilde{M}) \longrightarrow H_{n-2}\left(\tilde{V}, \tilde{U^{0}}\right) \longrightarrow H_{n-3}(\tilde{U}, \tilde{M})=0$
It Follows that $E_{*}(\tilde{V}, \tilde{U} \cdot)=0$
We assert that $\nabla_{0}=V$. Int U^{\prime} is a ($n-2$)-neighborhood of ε. It will suffice to show that V_{0} is a i-naighborhood. For in that casa excision shews $H_{*}\left(\tilde{V}_{0}, B d \tilde{V}_{0}\right)=H_{*}\left(\tilde{V}, \tilde{\sigma}{ }^{9}\right)=0$. Now Bd $V_{0} \subset V_{0}$ clearly gives a π_{i}-isomorphism.

Clain: $B d V_{0} C V$ gives a π_{1}-isomorphism.
Granting thits we see $V_{0} C V$ gives a π_{1}-isomorphism and hence $\pi_{1}(\varepsilon)$ $\longrightarrow \pi_{1}\left(V_{0}\right)$ is an isomorphism - which proves that V_{0} is a i-noighborhood.

To prove the claim simply observe that Bd $Y_{0} C \cdot U$ - Int U' gives a π_{1}-isomorphism, that (U - Int U^{\prime}) $\subset U$ does too because $N \subset U$ and $N G(U-\operatorname{Int} D)$ do, and finally that $U G V$ gives a π_{1}-isomorphism.

We have discovered a ($n-2$)-neighborhood V_{0} in the interior of the original (n-3)-neighborhood. Thus Proposition 5.6 is established. \square

To conclude this chapter we give some corollaries of the Kain Theorem 5.7. By Proposition 2.3 we have:

Theorom 5.8. Suppose W is a smooth connected open manifold of dimension ≥ 6. If W. has finitoly many ends c_{1}, \ldots, c_{k}, each tame, with invariant zero, then W is the interior of a smooth compact manifold \bar{W}. The converse is obvious.

Assuming 1-connectedness at each end we get the main theorem of Erowder, Levine and Livesay [1] (sightly elaborated).

Thoorem 5.9. Suppose W is a smooth open manifold of dimension ≥ 6 with $H_{4} W$ finitely generated as an abelian group. Then W has finitely many ends $\varepsilon_{1}, \ldots, \varepsilon_{k}$. If π_{1} is stable at each ε_{i}, and $\pi_{1}\left(s_{i}\right)=1$ then W is the intorior of a smooth compact manfold.

[^0]is a 1-naignborhood of $\varepsilon_{i}, \pi_{1}(V)=1$, and $H_{*}(V)$ is finitely generated since $H_{*} W$ is. By an elementary argument, V has the type of a finite complex (c.f: Wail [2]). Thus ϵ_{i} is tame. The obstriction $\sigma\left(e_{i}\right)$ is zero because every subgroup of a free abelian group is free. []

Theoren 5.10. Lot $W^{n}, n \geq 6$, be a swooth comectod manifold with compact boundary and one end e. Suppose

1) Sd WCW is ($n-2$)-comnected,
2) π_{1} is stable at ε and $\pi_{1}(\varepsilon) \longrightarrow \pi_{1}(W)$ is an isomorphism. Than w^{n} is diffeomorphte to $\mathrm{Bd} W \times[0,1)$.

Prof: By 5.2; Bd $W \subset W$ is a homotopy equivalence. Since W is a 1 -neighborhood ϵ is tame. Since W is a $(n-2)$-neighborhood $\sigma(\varepsilon)=0$ (Proposition 5.6). By the Main Theoren, e has a collar. Tien 5.2 shows that W itself is diffeomorphic to $B d W \times[0,1) .0]$

En-ars: The above theorem indicates some overlap of our result with Stillings' Engulfing Theorem, which wauld give the same conclusion for $n \geq 5$ with 1), 2) replaced by

1) EdWCW is ($n-3$)-connected,
2.) For overy compact $C \subset W$, there is a compact $D \supset B d W$ contatning C so that $(N-D) \subset W$ is 2-connected.

Sas Stallings [12]. A smoothed version of the Engulfing Theorem appaars in [13].

Chaoter VI. A Sum Theorem for Wall's Obstruction.

For path-comected spaces X in the class D of spaces of the homotopy type of a C.W. complex that are dominated by a finite complex, C.T.C. Wall defines in [2] a cartain obstruction $\mathcal{O}(X)$ lying in $\tilde{K}_{0}\left(\pi_{1} X\right)$, the group of stabie isomorphism classes (page 36) of leit $\pi_{1}(X)$-modules. The obstruction $\sigma(X)$ is an invariant of the bomotopy type of X, and $\sigma(X)=0$ if and only if X is homotopy equivalent to a finite corplex. The obstruction of our Main Tneorem 5.7 is, up to sign, $\sigma(V)$ for any 1-neighborhood V of the tame end e. (See page 57. We will choose the sign for our obstruction $\sigma(\varepsilon)$ to agree with that of $\sigma(V)$.) The main result of this chapter is a sum formia for Wall's obstruction, and a complement that was useful already in Chapter IV (page 23).

Raceil that \tilde{X}_{0} gives a covariant functor from the category of groups to the category of abolian groups. If $f: G \longrightarrow H$ is a group homomorphism, $f_{*}: \tilde{K}_{0}(G) \longrightarrow \tilde{K}_{0}(H)$ is dofined as follows. Suppose givon an olerent $[P] \in \tilde{K}_{0}(G)$ represented by a $\tilde{\text { I }}$.g. projective Left G-mocule P. Then $f_{*}[P]$ is rapresented by the left H-module $Q=2[H] \otimes_{G} P$ where the right action of G on $2[j]$ for the tensor procket is that given by $f: G \longrightarrow B$.

The following lema justifies our omission of base point in witing $\tilde{\mathrm{K}}_{0}\left(\pi_{i} \bar{X}\right)$.
in-a 6.1. The composition of functors $\tilde{K}_{0} \pi_{1}$ determines up to natural ceivilenco a covariant functor from tho catogory of path connactad spacas inithopt pase posint and contimous maps, to abelian groups (c.f. page 61).

Pase: After an argument familiar for higher homotopy groups, it
suffices to show that the antomorphism θ_{x} of $\tilde{K}_{0}\left(\pi_{1}(x, p)\right)$ incaced by the inner automorphism $g \longrightarrow x^{-1} g x$ of $\pi_{1}(x, p)$ is the idantity for all x. If P is a f.g. projective, $\theta[P]$ is by dafinfition represented by

$$
p^{\prime}=z\left[\pi_{1}(X, p)\right] \otimes_{\pi_{1}}(X, p) p
$$

whera the group ring has the right $\pi_{1}(X, p)$-action $r \cdot g=x x^{-1} g x$. From the definition of the tensor product

$$
g \otimes p=1 \otimes x g x^{-1} p
$$

Thus the map $\varphi: P \longrightarrow p^{\prime}$ given by $\varphi(p)=1 \otimes$ xp, for $p \in P$, satisfies $\varphi(g p)=1 \otimes x g p=1 \otimes x g x^{-1}(x p)=g \otimes x p=g \varphi(p)$, for $g \in \pi_{1}(X, p)$ and $p \in P$. So φ gives a $\pi_{1}(X, p)$-rodule isbumphism $P \longrightarrow P P^{\prime}$ as required. \square

If X has path components $\left\{x_{i}\right\}$ we define $\tilde{X}_{0}\left(\pi_{1} X\right)=$ $=\sum_{i} \tilde{X}_{0}\left(\pi_{i} X_{i}\right)$. This cleariy extends $\tilde{X}_{0} \pi_{1}$ to a covariant fuctor from the category of all topological spaces and contimuous maps to abolian groups. Thus for any $x \in D$ with path components X_{1}, \ldots, x_{r} wa can doinino $\sigma(X)=\left(\sigma\left(X_{1}\right), \ldots, \sigma\left(X_{r}\right)\right)$ in $\tilde{K}_{0}\left(\pi_{1} X\right)=\tilde{X}_{0}\left(\pi_{1} X_{1}\right)>\ldots$ $\ldots \times \tilde{X}_{0}\left(\Pi_{1} X_{r}\right)$. And we notica that $\sigma(X)$ is, as it should be, tina obstruction to X having the homotopy type of a finite complex.

For path-comected $X \in D$ the invariant $\sigma(X)$ may bo defined as forlows (c.f. Wall [2]). It turns out that one can find a finite complex X^{n} for some $n \geq 2$, and a $n-$ connected map $f: K^{n} \rightarrow X$ that has a horotopy right inverse, i.e. a map $g: Z \longrightarrow K^{n}$ so that $\tilde{i}_{g} \simeq 1_{X}$. For any such map $H_{i}\left(\tilde{M}(f), \tilde{K}^{n}\right)=0, \quad i \neq n+1$, and
$H_{n+1}\left(\tilde{M}(\rho), \tilde{K}^{n}\right)$ is i.g. projective over $\pi_{1}(X)$. The invariant $\sigma(X)$ is $(-1)^{n+1}$ the class of this module in $\tilde{K}_{0}\left(\pi_{1} X\right)$. (We have reversed the sign used by Wa11.)

We will need the following notion of (cellular) surgery on a map $f: X \rightarrow X$ where K is a C.W. complex and X has the homotopy type of one. If more than one path component of K maps into a given path component of X, one can join these componants by attaching 1-cells to K, then extend f to a map $K \cup\{1-c e 11 s\} \rightarrow X$. Suppose from now on that K and X are path connected with fixed base points. If $\left\{x_{1}\right\}$ is a set of generators of $\pi_{1}(X)$ one can attach a wedge $V_{i} S_{1}$ of circles to K and extend if in a natural way to a map gi $K \cup\left\{V_{i} S_{i}\right\} \rightarrow X$ that gives a π_{1}-epimorphism. If \hat{i} gives a π_{1}-epimorphism from the outset and $\left\{y_{i}\right\}$ is a set In $\pi_{1}(K)$ Whose normal closure is the kermel of $I_{*}: \pi_{1}(K) \longrightarrow \Pi_{1}(X)$, then one can attach one 2-cell to K for each Y_{i} and extend f to a 1-equivalence $K \cup\{2-c e l i s\} \rightarrow X$. Next suppose $f ; K \longrightarrow X$ is $(n-1)$-connected, $n \geq 2$, and f is a i-equivalence (in case $n=2$). If $\left\{z_{i}\right\}$ is a set of generators of $H_{n}(\tilde{M}(f), \tilde{K}) \cong \pi_{n}(\tilde{M}(f), \tilde{K}) \cong$ $\cong \pi_{n}(N(f), X)$ as a $\pi_{1}(X)$-rodule, then up to homotopy there is a natural way to attach one $n-\operatorname{cell}$ to K for each z_{i} and extend f to a n-connectod map $K \cup\{n-\operatorname{coll} s\} \rightarrow X$ (see wall [2; p. 59]). of course wo always assume that the attaching maps are cellular so that $\AA \cup\{n-\operatorname{cells}\}$ is a complex, Also, if X is a complex and f is cellulaz wo can assume the extension of f to the enlarged complex is cellular. (See the cellular approximation theorem of Whitehead [11].)

Here is a lema we will frequentily use.

Lema 6.2. Suppose X is a connected C.W. oomplex and $f: X \rightarrow X$ is a rap of a finite complex to X that is a 1-equivalence. If $H_{*}(\tilde{M}(\Omega), \tilde{X})=P$ is a f.g. projective $\pi_{1}(X)$-zodule isolated in one dimanstion m, then $X \in \mathcal{D}$ and $\sigma(X)=(-1)^{m}[P]$.

Proof: Geariy it is encugh to consider the case where K and X are connected. The argument for Theorem E of [2, p. 63] shows that X is homotopy eçivivalent to K with infinitely nany cells of dirension m and $m+1$ attachod. Hence X has the type of a complex of dimension max (dim K, m+1) .

Cboose finitely many generators x_{1}, \ldots, x_{r} for $H_{m}(\tilde{M}(f), \tilde{K})$. Parfoz tise corresponding surgery, attaching r m-cells to X and extendirs 1 to a m-connected map

$$
I^{\prime}: K^{\prime}=X \cup\{m-\operatorname{cellis}\} \longrightarrow X .
$$

If to homotopy we may assume that KCK'CX. Then the homology sequene of $\tilde{X} \subset \tilde{K} \cdot \subset \tilde{X}$ shows that $H_{m+1}\left(\tilde{M}\left(f^{\prime}\right), \tilde{K} \tilde{K}^{\prime}\right)=Q$ where $P \ominus Q=\Lambda^{\pi}, \Lambda=2\left[\pi_{1} X\right]$, and that $H_{i}\left(\tilde{M}\left(f^{v}\right), \tilde{K}^{v}\right)=0, \quad i \neq m+1$. Hotice tiat Q has class $-[P]$.

After finitely many such stops we get a finite complex L of dimansion $n=\max (d i m K, m+1)$ and a n-connoctod map

$$
g: L^{n} \longrightarrow X
$$

such that $\left.E_{*} \tilde{N}(g), \tilde{I}\right)$ is f.g. projective isolated in dimension $n+1$ and has class $(-1)^{n+1-m[p]}$. According to [2, Lomma 3.1] B has a tonotopy right inverse. Thus $X \in D$ and

$$
\sigma(X)=(-1)^{n+1}(-1)^{n+1-m_{[P}}[P]=(-1)^{m}[P] \cdot \square
$$

Ine Following are established by Wall in [2].

Lemma 6.3 [2, Theorems E and F]. Each $X \in D$ is homotopy equivalent to a finito dimensional complex.
I.erma 6.4 [2, Lemma 2.1 and Theorem E] (c.f. 5.1). If X is homotopy equivalent to an m-complex and $f: I^{n-1} \longrightarrow X, n \geq 3, n \geq m$, is a ($n-1$-connected map of an ($n-1$-complex to x, then $H_{f}(\tilde{M}(f), \tilde{X})$ is a projective $\pi_{1}(X)$-module isolated in dimension n.

The Sum Theorem 6.5. Suppose that a comected C.W. complex X is a union of two connected subcomplexes X_{1} and $X_{2} \cdot$ If $X, X_{1}, X_{2} \ldots \ldots$, and $x_{0}=x_{1} \cap X_{2}$ are in D, then

$$
\sigma(x)=j_{1^{*}} \sigma(x)+j_{2^{*}} \sigma(x)-j_{0^{*}} \sigma(x)
$$

where $j_{K^{*}}$ is incuiced by $X_{K} \subseteq X, k=0,1,2$.
Complement 6.6. (a) $X_{0}, X_{1}, X_{2} \in \mathcal{D}$ implies $x \in \mathcal{D}$.
(b) $x_{0}, x \in D$ implies $x_{1}, x_{2} \in D$ provided $\pi_{1}\left(x_{i}\right) \longrightarrow \pi_{1}(X)$ has a loit inverse, $1=1,2$.

Remark 1: Notice that X_{0} is not in general connected. Written in full the last term of the sum formula is

$$
j_{0 *} \sigma(X)=j_{0^{*}}^{(1)} \sigma\left(Y_{1}\right)+\ldots+j_{0^{*}}^{(s)_{\sigma}\left(Y_{s}\right)}
$$

where Y_{1}, \ldots, Y_{s} are the components of X_{0}. We have assumed that X, X_{1} and X_{2} are connacted. Notice that 6.6 part (b) makes sense oniy when X, X_{1} and X_{2} are connected. But the assumption is unnocessary for 6.5 and 6.6 part (a). In fact by repeatodly applying the given versions one easily deduces the more general versions.

Bamark 2: In the Coraplement, part (b), some restriction on fundamental groups is certainly necessary.

For a first example let X_{1} be the complement of an infinite string in R^{3} that has an infinite sequence of knots tied in it. Let X_{1} be a 2-disk cutting the string. Then $X_{0}=x_{1} \cap x_{2} \simeq s^{1}$, and $X=X_{1} \cup X_{2}$ is contractible since $r_{1}(X)=1$. Thus X_{0} and X are in D. However $X_{1} \notin D$ bacause $\pi_{1}(x)$ is not finitely generated. To see this observe that $\pi_{1}(X)$ is an infinite free proanct with amalgamation over Z

$$
\cdots \stackrel{*}{2}^{G}-1 \frac{*}{2} G_{0}{ }_{2}^{*} G_{1} \stackrel{*}{2} G_{2} \underset{2}{*} \cdots
$$

(2 comesponds to a small loop arond the string and G_{i} is the Group of the i-th knot). Thus $\pi_{1}\left(X_{1}\right)$ has an infinite ascencing sequance $H_{1} q G_{2} q H_{3} q \cdots$ of Eubgroups. And this cleariy shows that $\pi_{1}\left(x_{1}\right)$ is not finitely generatad.

For examples where the fundamental groups are all finitely prosanted see the contractible manifolds constructed in Chapter VIII.

Quastion: Is it enough to assume in 6.6 part (b), that $\pi_{1}\left(X_{i}\right) \longrightarrow$ $\pi_{i}(X)$ is (1-1), for $i=1,2$?

Page of 6.5: To reep notation simple we assume for the proof that X_{0} is connoctad. At the end of the proof we point out the changes racsssary when for is not connected.

Ey Lovma 6.3 we can suppose that X_{0}, X_{1}, X_{2}, X are all equivalent to complexes of dimension $\leq n, n \geq 3$. Using the surgery process with Lomas 3.8 and 4.6 we can find a ($n-1$)-connected cellular map $I_{0}: \ddot{x}_{0} \longrightarrow X_{0} \cdot$ Surgering the composed map $K_{0} \longrightarrow X_{0} \subset X_{i}$ for
$i=1,2$, we get finite ($n-1$) -complexes K_{1}, K_{2} with $K_{1} \cap K_{2}=K_{0}$ and ($n-1$)-connectod cellular maps $f_{1}: K_{1} \longrightarrow X_{1}, f_{2}: K_{2} \longrightarrow X_{2}$ that coincide with f_{0} on K_{0}. Together they give a $(n-1)$-comected map $f: K=K_{1} \cup K_{2} \longrightarrow X=X_{1} \cup X_{2}$. For f gives a $\pi_{1}-i$ somoxphism by Van Kampen's theorem; and f is ($n-1$)-connacted according to the homology or the following short exact sequence.
$0 \longrightarrow c_{*}\left(\bar{M}\left(f_{0}\right), \overline{\mathrm{K}}_{0}\right) \xrightarrow{\varphi} c_{*}\left(\overline{\mathrm{M}}\left(\mathrm{I}_{1}\right), \overline{\mathrm{X}}_{1}\right) \oplus \mathrm{C}_{*}\left(\overline{\mathrm{M}}\left(\mathrm{I}_{2}\right), \overline{\mathrm{I}}_{2}\right) \xrightarrow{\Psi} \mathrm{c}_{*}(\tilde{\mathrm{M}}(\rho), \tilde{\mathrm{K}}) \longrightarrow 0$ Here \bar{S} denotes $p^{-1}(S), p: \tilde{M}(f) \longrightarrow M(f)$ being the universal cover of the mapping cyiinder. Also $\varphi(c)=(c, c)$ and $\Psi\left(c_{1}, c_{2}\right)=$ $=c_{1}-c_{2} \cdot T$ be specific let the chain complexes be for cellular thoory. Each is a froe $\pi_{1}(X)$-complex.

Let us take a closer look at the above exact sequence. For brovity write it:

$$
\begin{equation*}
0 \longrightarrow \overline{\mathrm{c}}(0) \longrightarrow \overline{\mathrm{c}}(1) \oplus \overline{\mathrm{c}}(2) \longrightarrow \tilde{\mathrm{c}} \longrightarrow 0 . \tag{t}
\end{equation*}
$$

We will establish below that

$$
\begin{align*}
& \text { For } k=0,1,2, H_{i} \bar{C}(k)=0,1 \neq n, \text { and } H_{n} \bar{C}(k) \text { is } \tag{3}\\
& \text { f.g. projective of class }(-1)^{n} j_{k^{*}} \sigma\left(X_{k}\right) \text {. }
\end{align*}
$$

Trom this the sum formula follows easily. Since we assumed X is equivalent to a complex of dirension $\leq n$, Lamas 6.4, 4.6, 6.2 toll us that $H_{i}(\tilde{C})=H_{i}(\tilde{M}(f), \tilde{K})=0$ if $i \neq n$, and $H_{n}(\tilde{C})$ is f.g. projective of class $(-1)^{n} \sigma(X)$. Thas the homologr sequence of (t) is

$$
0 \longrightarrow H_{n} \bar{C}(0) \longrightarrow H_{n} \bar{C}(1) \oplus H_{n} \bar{C}(2) \longrightarrow H_{n} \tilde{C} \longrightarrow 0
$$

and tite sequence splits giving the desired formula.

To prove (() consider
Lerma $6.7 \cdot \bar{C}(k)=Z\left[\pi_{1} X\right] \theta_{\pi_{1}\left(X_{k}\right)} \bar{C}(k), \quad k=0,1,2$, where $\tilde{C}(k)=$ $=C_{*}\left(\tilde{X}\left(f_{k}\right), \tilde{X}_{k}\right)$, and for the tensor product $Z\left[\pi_{1} X\right]$ has the right $\pi_{1}\left(X_{k}\right)$-roaule structure given by $\pi_{1}\left(X_{k}\right) \longrightarrow \pi_{1}(x)$.
:ow recall that $H_{*}(\tilde{C}(k))$ is f.g. projective of class $(-1)^{n} \sigma\left(X_{k}\right)$ and concentrated in dimension n. Then 6.7 shows that $H_{i}(\bar{C}(k))=0$, i立 n, and $H_{n}(\bar{C}(k))=Z\left(\pi_{1} X\right) \otimes_{\pi_{1}}\left(X_{k}\right) H_{n}(\tilde{C}(k))$, which is f.g. projective over $\pi_{1}(X)$ of class $(-1)^{n} j_{k^{*}} \sigma\left(X_{k}\right)$. (Use the universal coefincient theorem [42, p. 113] or argue directly.) This establishes (3) and the Sum Theorem moculo a proof of 6.7.

Proof of Ierma 6.7: Fix k as 0,1 or 2 . The map $j_{k}: \pi_{1}\left(X_{k}\right)$ $\longrightarrow \pi_{1}(X)$ factors through: Image $\left(j_{k}\right)=G$. Then

$$
Z\left[\pi_{1} X\right] \otimes_{\pi_{1}}\left(X_{k}\right) \tilde{C}(k)=Z\left[\pi_{1} X\right] \otimes_{G} G \otimes_{\pi_{1}}\left(x_{k}\right) \tilde{C}(k)
$$

Steo 1) Let $\left(\hat{M}\left(f_{k}\right), \hat{X}_{k}\right)$ be the component of ($\left.\left(\bar{M}_{k}\right), \bar{X}_{k}\right)$ containing the base point. Apparently it is the G-fold regular covering corresponding to $n_{1}\left(X_{k}\right) \longrightarrow G$. Then $\hat{C}(k)=C_{*}\left(\hat{M}\left(f_{k}\right), \hat{X}_{k}\right)$ is a free C-moille with one generator for each cell e of $M\left(f_{k}\right)$ outside z_{r}. Choosing one covering cell \hat{a} for each, we get a preferred casis for $\hat{C}(k)$. Now the universal covering $\left(\tilde{M}\left(f_{k}\right), \tilde{X}_{k}\right)$ is naturally a covar of $\left(\hat{M}\left(f_{k}\right), \hat{X}_{k}\right)$. So in choosing a free $\pi_{1}\left(X_{k}\right)$-basis for $\tilde{C}(k)$ He can choose the cell $\tilde{\theta}$ over e to líe above \hat{e}. Suppose the bourdary fomula for $\tilde{C}(k)$ reads $\partial_{i=1}^{n}=\sum_{j} r_{i j} \tilde{\theta}_{j}^{n-1}$ where $r_{i j}$ E $\left[-T_{i} X_{k}\right]$. Then one can verify that the boundary formala for $\hat{C}(k)$ roads $\partial \hat{\theta}_{i}^{n}=\sum_{j} \theta\left(r_{i j}\right) \theta_{j}^{n-1}$ where θ is the map of $Z\left[\pi_{1} X_{k}\right]$ onto $2[0]$. $]_{j}$ inspecting the definitions we see that this means $\hat{C}(k)=0 \theta_{T_{1}}\left(X_{k}\right) \tilde{c}(k)$.

Ston 2) We claim $\overline{\mathrm{C}}(k)=2\left[\pi_{1} X\right] \otimes_{G} \hat{C}(k)$.
$\bar{C}(k)$ is a free $\pi_{1}(X)-z o d u l e$ and we may assume that the distinguished cell $\tilde{\theta}$ over any cell e in $M\left(f_{k}\right)$ coincides with $\hat{\theta}$ in $\hat{H}\left(f_{k}\right) \subset \tilde{M}\left(f_{k}\right)$. Then if the boundary formia for $\hat{C}(k)$ raads

$$
d_{i}^{A n}=\Sigma_{j} s_{i j} \hat{\theta}_{j}^{n-1} \quad s_{1 j} \in z[G]
$$

the boundary formula for $\bar{C}(k)$ is exactly the same except that $s_{i j}$ is to be regarded as an element of the larger ring $2\left[\pi_{1} X\right]$. Coing back to the dafinitions again we see this verifies our claim. This completes the proof of Lemma 6.7. \square

Ramarks on the general case of 6.5 where X_{0} is not connected: Let X_{0} have components Y_{1}, \ldots, Y_{s}. We pick base points $p_{i} \in Y_{i}$, $i=1, \ldots, s$ and let p_{1} be the common base point for X_{1}, X_{2} and X. Choose a path γ_{i} from p_{i} to p_{1} to diffine homomorphisms $j_{0}^{(i)}: \pi_{1}\left(y_{i}\right) \rightarrow \pi_{1}(X), i=1, \ldots, s$. (By Lemana 6.1 the homomorphism $j_{0^{*}}^{(i)}: \tilde{K}_{0}\left(\pi_{1} Y_{i}\right) \longrightarrow \tilde{X}_{0}\left(\pi_{1} X\right)$ does not depend on the choice of $\left.\gamma_{i}\right)$. Now consider again tha proof of 6.5. Everything said up to Leman 6.7 remains valid. Notice that

$$
\bar{C}(0)=C_{*}\left(\bar{M}\left(f_{0}\right), \bar{X}_{0}\right)=\sigma_{i=1}^{s} C_{*}\left(\bar{M}\left(g_{i}\right), \bar{L}_{i}\right)
$$

whare L_{i} is the component of K_{0} corresponding to the component Y_{i} of X_{0} undor f_{0}, and $g_{i}: L_{i} \longrightarrow Y_{i}$ is the map given by f_{0}. For short wa write this $\bar{C}(0)=0_{i=1}^{s} \bar{C}(0, i)$. For $k=0$, the assortion of Lemma 6.7 should be changed to (**)

$$
\bar{C}(0, i)=Z\left[\pi_{1} X\right] \otimes_{\pi_{1}}\left(Y_{i}\right) \widetilde{C}(0, i j, \quad i=1, \ldots, s
$$

where $\tilde{C}(0, i)=C_{*}\left(\tilde{M}\left(g_{i}\right), \tilde{L}_{i}\right)$ and for the i-th tensor product, $Z\left[\pi_{1} X\right]$ has the right $\pi_{1}\left(Y_{i}\right)$ action given by the map $\pi_{1}\left(Y_{i}\right) \longrightarrow \pi_{1}(X)$.

Granting this, an obpious adjustiment of the original argument will establish ($\$$). The argument given for Leama 6.7 establishes (**) with slight change. Here is the beginning. We fix $1,0 \leq 1 \leq 3$, and let H be the image of $\pi_{1}\left(X_{i}\right) \longrightarrow \pi_{1}(X)$. © Then

$$
2\left[\pi_{1} X\right] \otimes_{\pi_{1}\left(Y_{i}\right)} \tilde{C}(0, i)=2\left[\pi_{1} X\right] \otimes_{H} H \otimes_{\pi_{1}}\left(Y_{i}\right) \widetilde{C}(0, i) .
$$

Step 1) Let $\left(\hat{M}\left(g_{i}\right), \hat{Y}_{i}\right)$ be the component of $\left(\bar{M}\left(g_{i}\right), \bar{Y}_{i}\right)$ containing the Ifft \hat{p}_{i} in $M(f)$ of p_{i} by the path γ_{i}^{-1} from p_{1} to p_{i}. Apparentily it is the E-fold reguiar covering comesponding to $\pi_{1}\left(X_{1}\right)$ $\xrightarrow{\text { onto }}$ H. The rest of Step 1) and Step 2) give no new difficulties. They prove respectively that $C\left(\hat{M}\left(\xi_{1}\right), \hat{Y}_{i}\right)=H \otimes_{\pi_{1}}\left(Y_{i}\right) \tilde{C}(0, i)$ and $\bar{C}(0, i)=2\left[\pi_{1} Z\right] \otimes_{H} C\left(\hat{M}\left(g_{i}\right), \hat{Y}_{i}\right)$, and thus establish $(* *)$. This come pletes the exposition of the Sum Theoram 6.5.[]

Proof of Complement 6.6, part (a): We mast show $x_{0}, x_{1}, x_{2} \in \mathcal{D}$ implies $x \in \mathcal{D}$. The proof is based on

Le耳E 6.8. Suppose X_{0} has the type of a complex of dimension \leq $n-1, n \geq 3$; and X_{1}, X_{2} have the type of a complex of cimenstion $\leq n$. Taen X has the homotopy type of a complex of dimension $\leq n$.

Fnoof: Let K_{0} be a complex of dimension $\leq n-1$ so that there is a homotopy equivalence $f_{0}: K_{0} \longrightarrow X_{0}$. Surgering f_{0} we can enlarge K_{0} and extend f_{0} to a $(n-1)$-connected map of a $(n-1)$ complex $f_{1}: \ddot{x}_{1} \longrightarrow X_{1}$. Similarly form $f_{2}: K_{2} \longrightarrow X_{2}$. According to Lema 6.3 the groups $\left.H_{n}\left(\tilde{M}_{\left(f_{i}\right.}\right), \widetilde{K}_{i}\right),{ }^{\circ} \dot{i}=1,2$, are projective $\pi_{1}\left(Z_{1}\right)$-comiles. Then surgering f_{1}, f_{2}, we can add ($n-1$)-cells and n-cells to K_{1}, K_{2} and extend f_{1}, f_{2} to homotopy equivalences $\sigma_{1}: I_{1}^{n} \longrightarrow X_{1}, g_{2}: L_{2}^{n} \longrightarrow X_{2}$. (See the proof of Theorem E
on p. 63 of Wall [2]). Since $I_{1} \cap I_{2}=K_{0}$ and g_{1}, g_{2} coincide with f_{0} on K_{0}, we have a map $g: I=I_{1} \cup I_{2} \longrightarrow X=X_{1} \cup X_{2}$ which is apparentily a homotopy equivalence of the n-complex L with $X . \square$

For the proof of 6.6 part (a), we simply look back at the proof of the sum theorem and omit the assumption that $X \in D$. By the above Lemma we can still assume X_{0}, X_{1}, X_{2}, X are equivalent to complexes of dimencion $\leq n,(n \geq 3)$. Lema 6.4 says that $H_{*}(\tilde{C})$ is projective and isolated in dimension n. The exact homology sequence shows that $H_{n}(\tilde{C})$ is $\mathrm{f} . \mathrm{g}$. Then Lomma 6.2 says $x \in \mathcal{D} .0$

Proof of complement 6.6 part (b): We must show that $X_{0}, X \in \mathcal{D}$ implies $X_{1}, X_{2} \in \mathcal{D}$. provided $\pi_{1}\left(X_{j}\right)$ is a retract of $\pi_{1}(X)$, $j=1,2$. Let X_{0} have components Y_{1}, \ldots, Y_{s} and nse the notations on page 52 .

$$
\text { Since } \pi_{1}(X) \text { is finitely presented so are } \pi_{1}\left(X_{1}\right), \pi_{1}\left(X_{2}\right)
$$

by Lemaa 3.8. This shows that the following proposition P_{x} holds with $x=1$.
$\left(p_{X}\right)$: There exists a finite complex K^{x} (or K^{2} if $x=1$) that is a union of subcomplexes K_{1}, K_{2} with intersection K_{0}, and a map $f: K \longrightarrow X$ so that, restricted to K_{k}, f gives a map $f_{k}: K_{k} \rightarrow X_{k}, k=$ $=0,1,2$, winich is x-connected and a i-equivalence if $x=1$.

Suppiose for induction that P_{n-1} holds, $n \geq 2$, and considar the exact sequance
$0 \rightarrow c_{*}\left(\bar{M}\left(f_{0}\right), \bar{K}_{0}\right) \longrightarrow c_{*}\left(\bar{M}\left(f_{1}\right), \bar{K}_{1}\right) \oplus c_{*}\left(\bar{M}\left(f_{2}\right), \bar{K}_{2}\right) \rightarrow c_{*}(\tilde{M}(f), \tilde{K}) \longrightarrow 0$
Where $\bar{S}=p^{-1}(S), p: M(f) \longrightarrow M(f)$ being the universal cover.

For scort we write

$$
0 \longrightarrow \overline{\mathrm{c}}(0) \xrightarrow{\varphi} \overline{\mathrm{c}}(1) \otimes \overline{\mathrm{C}}(2) \xrightarrow{\Psi} \tilde{\mathrm{c}} \longrightarrow 0 .
$$

Part of the associatad homology sequences is

Now $H_{A}(\tilde{C})$ is f.g. over $\pi_{1}(X)$ by Lemm 4.6. Sindlarly, for each componsnt I_{1} of X_{0}, the corresponding summand $H_{n}(\tilde{c}(0, i))$ of $H_{n}(\tilde{C}(0))=H_{n}\left(\tilde{M}\left(I_{0}\right), \widetilde{K}_{0}\right)$ is f.g. over $\pi_{1}\left(Y_{i}\right)$. Since

$$
\bar{C}(0,1)=2\left[\pi_{1} X\right] \otimes_{\pi_{1}\left(Y_{i}\right)} \tilde{C}(0, i) \quad \text { (this is }(* *) \text { on page } 52 \text {) }
$$

and since $\tilde{C}(0, \dot{j})$ is acyclic below dimension n, the right exactness of \otimes shows that $H_{n} \bar{C}(0,1)=2\left[\pi_{1} X\right] \theta_{\Pi_{1}}\left(Y_{1}\right) H_{n} \tilde{C}(0,1)$. Hence $E_{\bar{C}} \bar{C}(0)=\theta_{i=1}^{s} H_{n}(\bar{C}(0, i))$ is finitely generated over $\pi_{1}(X)$. Thus (手) siows that $H_{n}\left(\bar{C}(j)\right.$) is $f . g$. over $\pi_{1}(X), j=1,2$. (Tnis uses the fact that ψ_{*} is ontol.)

Fie would like to conclude that $H_{n} \widetilde{C}(j)$ is f.g. $. j=1,2$. In fact we have

$$
\begin{equation*}
H_{n} \widetilde{C}(j)=2\left[\pi_{1} X_{j}\right] \theta_{\pi_{1}}(X) H_{n} \bar{C}(j) \tag{*}
\end{equation*}
$$

Fore a retraction $\pi_{1}(X) \longrightarrow \pi_{1}\left(X_{j}\right)$ makes $Z\left[\pi_{1} X_{j}\right]$ a $\pi_{1}(X)=$:0.210. Fo: $H_{n} \vec{C}(j)=2\left[\pi_{1} X\right] \otimes_{\pi_{1}}\left(X_{j}\right) H_{n} \tilde{C}(j)$ and $Z\left[\pi_{1} X_{j}\right] Q_{\pi_{1}}(X) \quad Z\left[\pi_{1} X\right]=Z\left[\pi_{1} X_{j}\right]$. So (*) is varified by substituting Acr $E_{n} \bar{C}(\jmath)$.

Since $H_{n} \tilde{C}(k)$ are fog., $k=0,1,2$, we can surger f to estábish P_{n}. This completos the induction. The proof that X_{1},
$X_{2} \in D$ is completed as follows. We can suppose that X_{0} and X have the homotopy type of an n-dimensional complex (Lemras 6.3), and that $f: K \longrightarrow X$ is a $(n-1)$-connected map as in P_{n-1}. Then in the exact sequence (\dagger) on page $55 \quad H_{*} \bar{C}(0)$ and $H_{*} \widetilde{C}$ are feg. projective and concentrated in dimension n. It follows that $H_{*} \bar{C}(j)$ is $f . g$. projective and concentrated in dimension n for $j=1,2$. Then by the argument of the previous paragraph $H_{*} \tilde{C}(j)$ is f.g. projective over $\pi_{1}\left(X_{j}\right)$ and concentrated in dimension $n, j=1,2$. By Lemma $6.2 x_{j} \in 丹, j=1,2$. This completes the proof of Complement 6.6.0

In passing we point out the analogous sum theorem for Whitehead torsion.

Tnsorem 6.9. Let $X, X '$ be two finite connected complexes each the union of two connected subcomplexes $X=X_{1} \cup X_{2}, X^{\prime}=X_{1} \cup X_{2}$. Let $f: X \longrightarrow X i$ be a map that restricts to give maps $f_{1}: X_{1} \longrightarrow X_{i}^{p}$, $\tilde{I}_{2}: X_{2} \rightarrow X_{2}$ and so $f_{0}: X_{0}=X_{1} \cap X_{2} \rightarrow X_{0}=X_{1} \cap X_{2}^{r}$. If f_{0}, f_{1}, f_{2}, f are all homotopy equivalences then

$$
\tau(f)=j_{1^{*}} \tau\left(f_{1}\right)+j_{2 *^{*}} \tau\left(f_{2}\right)-\sum_{i=1}^{s} j_{0^{*}}^{(i)}\left(f_{0}^{(i)}\right)
$$

where $j_{k^{*}}$ is incuced by $X_{k} \subseteq X, k=1,2, X_{0}^{(1)}, \ldots, X_{0}^{(s)}$ aro tioe coraponants of X_{0} and $j_{0^{*}}^{(i)}$ is incuced by $x_{0}^{(i)} \varsigma X, i=1, \ldots, s$.

Complement 6.10. If f_{0}, f_{1}, f_{2} are homotopy equivalences so is f. If f_{0} and f are homotopy equivalences so are f_{1} and f_{2} prom viced that $\Pi_{1}\left(X_{i}\right) \longrightarrow \Pi_{1}(X)$ has a left inverse, $i=1,2$.

We leave the proof on one side. It is similar to and rather easier that that for Wall's obstruction. A special case is proved by Kwun and Szezarba [19].

With the Sum Theorem 6.5 established we are in a position to relate our invariant for tame ends to Wall's obstruction. Lemma 6.2 and Proposition 5.6 togethor show that if ε is a tame ond of dimension ≥ 5 and v is a ($n-3$)-neighborbood of ε, then up to sign (which we never actually specified), $\sigma(\varepsilon)$ corresponds to $\sigma(V)$ under the natoral identification of $\tilde{K}_{0}\left(\pi_{1} \varepsilon\right)$ with $\tilde{\mathrm{K}}_{0}\left(\pi_{1} V\right)$. Let us agree that $\sigma(\varepsilon)$ is to be the class $(-1)^{n-2}\left[H_{n-2}(\tilde{V}, B d \tilde{V})\right] \epsilon$ $\in \tilde{\mathbb{X}}_{0}\left(\Pi_{1} \varepsilon\right)$ (compare 5.6). Then signs correspond.

Here is a dofinition of $\sigma(\varepsilon)$ in terms of Wall's obstruction. ε is a tame end of dimension ≥ 5. Suppose V is a closed neighborhood of ε that is a smooth submantiold with compact frontior and one end, so small that

$$
\pi_{1}(\varepsilon) \longrightarrow \pi_{1}(V)
$$

has a leift inverse r.

Proof: Take a ($n-3$)-neighborhood $V \cdot C$ Int V. Then V - Int V is a compact smooth manifold. So the sum theorem says $\sigma(V)=i_{*} \sigma(V)$ where i is the map $\pi_{1}\left(V^{0}\right)=\pi_{1}(\varepsilon) \longrightarrow \pi_{1}(V)$. Since $r_{*^{1}}{ }^{(} \sigma\left(V^{0}\right)=$ $=\sigma\left(V^{\prime}\right)$ we get $r_{*} \sigma(V)=\sigma(V)=\sigma(\varepsilon) . \square$

A direct consequence of the Sum Theorem is that if W^{n}, $n \geq 5$ is a smooth manifold with $B d W$. compact that has finitely many ends $\varepsilon_{1}, \ldots, \varepsilon_{k}$, all tame, then ${ }^{\prime}$

$$
\sigma(W)=j_{1^{*}} \sigma\left(\varepsilon_{1}\right)+\ldots+j_{k^{*}} \sigma\left(\varepsilon_{k}\right)
$$

witare $j_{s}: \pi_{1}\left(\varepsilon_{s}\right) \longrightarrow \pi_{1}(W)$ is the natural map, $s=1, \ldots, k$.

Notice that $\sigma(W)$ may be zero while some of $\sigma\left(\varepsilon_{1}\right), \ldots, \sigma\left(\varepsilon_{k}\right)$ are nonzero. One can use the constructions of Chapter IIII to give examples. On the other hand, if there is just ono and $\varepsilon_{1}, \sigma(W)=j_{1 *} \sigma(\varepsilon)$; so if $j_{1^{*}}$ is an isomorphismi $\sigma(W)$ determines $\sigma\left(\varepsilon_{1}\right)$. In thia situation $o\left(\varepsilon_{1}\right)$ is a topological invariant of W since $\sigma(W)$ and $f_{1 *}$ are. Theorem 6.12 below points out 2 large class of examples. In general I am anable to decide whether the invariant of a tame end doperds on the smoothness structure as woll as the topological structure. (See Chapter $\overline{X I}$)

Thoorsm 6.12. Suppose W is a smooth open manifold of dimension ≥ 5 that is homeomorphic to $X>R^{2}$ where X is an open topological manifold in D. Then W has one end c and c is tame. Further $j: \pi_{1}(\epsilon) \longrightarrow \pi_{1}(W)$ is an isomorphism.

Proof: Identify W with $X>R^{2}$ and consider complements of suts $K \gg D$ whare $K \subset X$ is compact and D is a closed disk in R^{2}. The complement is a connected smooth open neighborhood of ∞ that is the union of $W \times\left(R^{n}-D\right)$ and $(W-X) \times R^{n}$. Applying Van Kampan's theorem one finds that $\pi_{1}(W-K>D) \longrightarrow \pi_{1}(W)$ is an isomorphism. We conclude that W has one end $6, \pi_{1}$ is stable at ε, and $j s \nabla_{1}(e) \longrightarrow \pi_{1}(W)$ is an isomorphism. Since $W \in D$ $\pi_{1}(W)$ is finitely presented (c.1. 3.8). Thus ϵ has small 1-neighborhoods by 3.10. By 6.6 part (b) each is in D. Hence s is tace. \square

Chapter VII. A Pronuct Theorem for Wall's Obstruction.

The Procuct Theorem 7.2 takes the wonderiully simple form $\rho\left(x_{1}>x_{2}\right)=\rho\left(x_{1}\right) \otimes \rho\left(x_{2}\right)$ if for path connected x in θ wo define the composite invariant $\rho(X)=\sigma(X) \oplus X(X)$ in the Grothendieck groud $X_{0}\left(\pi_{1} X\right) \cong \tilde{K}_{0} \pi_{1} X \notin Z$. I introctuce ρ for aestheific reasons. We could get by with fewer words using or and $\widetilde{\mathrm{K}}_{0}$ aione.

The Grothondieck group $K_{0}(G)$ of finitoly generated (f.g.) projective mochules over 3 group G may be defined 23 follors. Let $T(G)$ be the abolian monoid of isomorphism classes of P.g. projective G mocuies with addition given by diract sum. We write (P^{\prime}, P) ~. $\left(Q^{\prime}, Q\right)$ for elemants of $P(G) \times(P(G)$ if there exdsts free $R \in P(G)$ so that $P^{\prime}+Q+R=P+Q^{\prime}+R$. This is an equivalence rolation, and $P(G) \times P(G) / \sim$ is the abolian group $K_{0}(G)$.

Lat $\varphi: P(G) \longrightarrow K_{0}(G)$ be the natural horomorphisa given by $P \longrightarrow(0, P)$. It is apparent that $\varphi(P)=\varphi(Q)$ if and only if $P+F=Q+F$ for some $f \cdot g$. free module F. For conventence wa will write $\varphi(P)=\bar{P}$; we will avan write \bar{P}_{0} for φ applied to tive isomophism class of a givon f.g. projective moule P_{0}.
$\mathcal{Y}: P(G) \longrightarrow K_{0}(G)$ has the following universal property. If $f: P(G) \longrightarrow A$ is any homomorphism there is a uniqua homozorphism g: $K(G) \longrightarrow A$ so that $f=g \varphi$. As an application suppose $\theta_{i} G$ \longrightarrow II is any group homomorphism. There is a unique induced homo=orpisa $P(G) \longrightarrow P(H)$ (c.f. page 44). Ey the untrersal property of φ tiare is a unique homomorphism θ_{*} that makes the diagram on the next page comate. In thts way K_{0} gives a covariant functor Erom groups to abelian groups.

 Now 1-mocules are just abolian groups; so $K_{0}(1) \cong Z$. Notice that $r_{*}: K_{0}(G) \longrightarrow Z$ is induced by assigning to $P \in P(G)$ the rank of P, i.e. the rank of $Z \otimes_{G} P$ as abolian group (here Z has the tirivial action of G on the right). Next observe that by associating to a class $[P] \in \tilde{K}_{0}(G)$ the element $\vec{P}-\bar{F}_{p} \in \operatorname{kernel}\left(x_{*}\right)$, where F_{p} is free on $p=\operatorname{rank}\left\{Z \theta_{G} P\right\}$ generators,one gets a natural isomorphism $\tilde{X}_{0}(G) \cong$ kernel $\left(r_{*}\right)$. Thus we have

$$
X_{0}(G) \cong \tilde{x}_{0}(G) \oplus Z
$$

and for convonience we regard $\widetilde{X}_{0}(G)$ and 2 as subgroups.
The comatative diagram

shours that the map $\theta_{*}: K_{0}(G) \longrightarrow K_{0}(H)$ indaces $2 \operatorname{map} \theta_{*}: \tilde{K}_{0}(G)$ $\longrightarrow \tilde{K}_{0}(H)$; and the latter detormines the former because the Z sumand is mapped by a natural isomorphism. The lattor is of course tha map described on page 44.

$$
\text { If } G \text { and } H \text { are two groups, a pairing }
$$

$$
{ }^{\prime} Q^{\prime}: \mathrm{K}_{0}(G) \times \mathrm{K}_{0}(\mathrm{H}) \longrightarrow \mathrm{K}_{0}(G \times \mathrm{H})
$$

is incuced by tensoring projectivas. (Rocall that if $A \otimes B$ is 2 tomsor promet of abollen groups, and A has a loft G action while 3 has a left H action, then $A \otimes B$ inherits a leit $G>P$ action.) This pairing carrias komal $\left(r_{*}\right)>\operatorname{kemel}\left(r_{*}\right)$ into kernel $\left(r_{*}\right)$ 2ra 50 a paizring

$$
\because \because: \widetilde{K}_{0}(G)>\tilde{Z}_{0}(H) \longrightarrow \tilde{K}_{0}(G>H)
$$

is incuced. Thus in $P \in P(G), Q \in P(B)$ tise class $[P] \cdot[Q] \in \tilde{K}_{0}(G \times H)$ is $\left(\bar{P}-\bar{F}_{p}\right) \otimes\left(\bar{Q}-\bar{F}_{q}\right)=\bar{P} \otimes \bar{Q}-\bar{F}_{p} \otimes \bar{Q}-\bar{P} \otimes \bar{F}_{q}+\bar{F}_{p} \otimes \bar{F}_{q}$, whers F_{p} is free ovar G on $p=r_{*}(\bar{P})$ generators and F_{q} is free over H on $\mathrm{q}=r_{*}(\bar{Q})$ generators.

Since an inner automorphism of G givas the identity map of $P(G)$ (a.f. Lena 6.1) and so of $K_{0}(G)$ (and $\tilde{K}_{0}(G)$), it follows that the composition of functors $K_{0} \pi_{1}$ (or $\tilde{K}_{0} \pi_{1}$) determines a corariant functor from path connected topological spaces to abelian groups. Nore precisely wo mast fix some base point for each path cornected space X to define $K_{0} \pi_{1} X$ (or $\widetilde{K}_{0} \pi_{1} X$), but a different choice of base points leads to a naturally equivalent functor. This is the pracise meaning of 6.1 for $\tilde{K}_{0} \pi_{1}$.

Iefinition 7.1. If $K \in \mathcal{D}$ is path connected, define $\rho(X) \in K_{0}\left(\pi_{1} X\right) \cong$ $\tilde{Z}_{0}\left(\pi_{1} X\right) \ominus z$ to be $\sigma(X) \ominus X(X)$ where $X(X)=\Sigma_{i}(-1)^{i} \operatorname{rank} H_{i}(X)$ is the Dular characteristic of X (it is well derined since $X \in \mathbb{A}$).

If X is a space with path components $\left\{X_{1}\right\}$ wo define $K_{0} K_{1} X=$ $\theta_{i} X_{0} \pi_{1} X_{i}$. This extands $X_{0} \pi_{1}$ to a functor on all topological spaces. Than if $x \in D$ has path components X_{1}, \ldots, X_{s} wo derine $\rho(X)=\left(\rho\left(X_{1}\right), \ldots, \rho\left(X_{3}\right)\right)$ in $K_{0} \pi_{1} X=K_{0} \pi_{1} X_{1} \oplus \ldots\left(X_{0} \pi_{1} X_{s}\right.$.

Suppose X_{1} and X_{2}, are path connected. Then $X_{1}>X_{2}$ is path conneoted and $\pi_{1}\left(X_{1} \times X_{2}\right)=\pi_{1} X_{1}>\pi_{1} X_{2}$. Hence we have a pairing

$$
\text { ' } \theta^{\prime}: X_{0} \pi_{1} X_{1}>K_{0} \pi_{1} X_{2} \longrightarrow K_{0} \pi_{1}\left(X_{1}>X_{2}\right)
$$

This pairing extends naturally to the situation where X_{1} and X_{2} are not path comnected.

Procuct Theorem 7.2. Let X_{1}, X_{2} and $X_{1} \times X_{2}$ be comected C.W. complexes. If x_{1}, x_{2} and $x_{1}>x_{2}$ are in D, then

$$
\begin{equation*}
\rho\left(x_{1} \times x_{2}\right)=\rho\left(x_{1}\right) \otimes \rho\left(X_{2}\right) . \tag{*}
\end{equation*}
$$

In terms of the obstruction σ this says

$$
\begin{equation*}
\sigma\left(x_{1}>x_{2}\right)=\sigma\left(X_{1}\right) \cdot \sigma\left(X_{2}\right)+\left\{x\left(X_{2}\right) j_{1^{*}} \sigma\left(X_{1}\right)+X\left(X_{1}\right) j_{2^{*}} \sigma\left(X_{2}\right)\right\} . \tag{d}
\end{equation*}
$$

Complement 7.3. If X_{1}, X_{2} are any spaces,

$$
x_{1}, x_{2} \in \mathscr{D} \Longleftrightarrow x_{1} \times x_{2} \in D
$$

Pemark 1) We can inmediately weaken the assumptions of 7.2 in two ways: (a) Since σ and ρ are invariants of homotopy type, it is enough to assume that X_{1}, X_{2} and (hence) $X_{1} \times X_{2}$ are path connected spaces in D in ordar to get (*) and (\dagger).
(b) Furchor, if X_{1}, X_{2} are any spaces in D (*) concimues to. hold with the extended pairing Q (bocause of the way \otimes is extendod). Eat note that (\dagger) has to be rovised since $K_{0} \pi_{1} X \neq \tilde{K}_{0} \pi_{1} X \theta z$ when X is not connected.

Ramark 2) The Idea for the product forma comes from Kirun and Suczarba
[19] (Jamury 1965) who proved a prochuct formala for the Whitohead torsion of $1 \times 1_{X_{2}}$ where $I: X_{1} \longrightarrow X_{i}$ is a homotopy equivalence of ifnite comoctod complexes and y_{2} is any finite connectod complex; na:01y

$$
\begin{equation*}
\tau\left(1 \times 1_{X_{2}}\right)=\chi\left(X_{2}\right) j_{1^{*}} \tau(f) \tag{T}
\end{equation*}
$$

where $j_{1 *}$ is induced by $X_{1} \subset X_{1} \times X_{2}$. This corresponds to the basic case of (*) with $\sigma\left(X_{2}\right)=0$; namely

$$
\begin{equation*}
\sigma\left(x_{1} \times x_{2}\right)=\chi\left(x_{1}\right) j_{1^{*}} \sigma\left(x_{2}\right) \tag{S}
\end{equation*}
$$

Stoven Gerston [20] has incependentily derived (S). 酐s proof is puraly 27 gobraic so does not use the Sum Theorem. It was Professor iniror whop proposed the corract general form of the product formula and the use ot 9 . Alreact in 1964, M.R. Mather had a (purely geom metrical) proof that for $X \in A, X \times S^{1}$ is homotopy ounvalext to a finite complex.

Yoof of 7.3: Fortunately the prool of the Complement 7.3 is trivial (Gilike Comlement 6.6). If $K_{j}, 1=1,2$, are finite complexes aric $r_{1}: X_{i} \longrightarrow X_{i}$ are maps with left homotopy inversas δ_{i}, $i=1,2, \quad r_{1}>r_{2}: Z_{1}>X_{2} \longrightarrow X_{1}>X_{2}$ has laft homotopy inverse $s_{1} X s_{2}$. Tais gives the implication \Longrightarrow. For the revarse inm piscation noto that $X_{1}>I_{2} \in D$ dominates X_{1}, which implies. $\ddot{z}_{i} \in \mathscr{B}, \quad i=1,2.0$

300\% 92.2: The proof is based on the Sum Thaorem 6.5 and divides =aturally into three stops. Since $X\left(x_{1} \times x_{2}\right)=\chi\left(x_{1}\right) \chi\left(x_{2}\right)$, it \cdots ril sufice to establish the socond formola (t).
I) The ease $X_{2}=s^{n}, n=1,2,3, \ldots$. Suppose inductively that
(\dagger) holds for $X_{2}=s^{k}, 1 \leq x<n$. Let $s^{n}=V_{-}^{n} U D_{+}^{n}$ bo the usual decomposition of S^{n} into closed northem and southern hemispheres with intersection s^{n-1}. Thon apply the sum theorem to the partition $X_{1}>s^{n}=X_{1} \gg D_{-}^{n} \cup X_{1}>D_{+}^{n} \cdot \square$
II) Tha case $\cdot X_{2}=$ a finite complox. Since X_{2} is connoctod, wo can assume it has a single $0-c e l l$. We assume inductively that (T) has boen verified for such X_{2} having $<n$ cells. Consider X_{2} with exactily n cells. Then $X_{2}=Y U_{f} D^{k}, k \geq 1$, where $f: S^{k-1} \longrightarrow Y$ is an attaching map and Y has $n-1$ cells. Up to homotopy type we can assume f is an imbedding and $Y \cap D^{k}$ is a ($k-1$)-sphere. Now apply the sum theoren to the partition $X_{1} \times X_{2}=X_{1} \gg Y \cup X_{1} \times D^{k}$. The inductivo assumption and (for $k \geq 2$) the case I) complete the induction. \square
III) The general case. We insert a lemma needed for the proof.

Loma 7.4. Suppose that (X, Y) is a connectod C.W. pair with X and Y in θ. Suppose that $Y G X$ gives a π_{1}-isorrorphism and $H_{*}(\tilde{X}, \tilde{Y})$ is $\pi_{1}(X)$-projective and isolated in dimension n. Then $\chi(X)-X(Y)=(-1)^{n} \operatorname{rank}\left\{Z \otimes_{\pi_{1}}(X) H_{n}(\tilde{X}, \widetilde{Y})\right\}$.

Proof: Since $C_{*}(X, Y)=Z \otimes_{\pi_{1}}(X) C_{*}(\tilde{X}, \tilde{Y})$, the universal coefficient thoorem shows that $H_{*}(X, Y)=2 \theta_{\pi_{1}}(X) H_{*}(\tilde{X}, \tilde{Y})$. The leman now follows frow the exact sequence of (\mathbb{Z}, \bar{Y}). \square

Proof of III): Replacing X_{1}, X_{2} by honotopy equivalent complexes we may assume that X_{1}, X_{2} have flnite dimension $\leq n$ say, and that
there are finite ($n-1$) -subcomplexes $K_{i} \subset X_{i}, i=1,2$, such that tho inclusions give isomorphisms of fundamental groups and $E_{*}\left(\tilde{X}_{i}, \widetilde{X}_{i}\right)$ are f.g. projective $\pi_{1}\left(X_{i}\right)$-modules P_{i} concentrated in dimension n. Let $Z=X_{1}>X_{2}$.

Since the complex $Y=X_{1}>K_{2} \cup K_{1}>X_{2}$ has dimension $\leq 2 n$, there exdsts a finite $(2 n-1)$-iomplex K and a map $f ; K \longrightarrow Y$, giving a π_{1}-isomorphism, such that $H_{*}(\tilde{M}(f), \tilde{K})$ is a f.g. projectivo $\pi_{1}(X)$-module P conentrated in dimension 20 . Replacing I by $K(i)$ we nay assume that $K \subset Y \subset X=X_{1} \times X_{2}$. Now the exact sequence of the triple $\tilde{X} \subset \tilde{Y} \subset \tilde{X}$ is

Henca $E_{*}(\tilde{X}, \tilde{K})$ is $P \oplus\left(P_{1} \otimes P_{2}\right)$ concentrated in dimansion $2 n$. But $\sigma(Y)=X\left(K_{2}\right) j_{1^{*}}\left(X_{1}\right)+\chi\left(X_{1}\right) j_{2^{*}} \sigma\left(X_{2}\right)$ by II) and the Sum Theorem. Lonee $\sigma(X)=[P]+\left[P_{1} \otimes P_{2}\right]=\left[P_{1} \otimes P_{2}\right]+\left\{\chi\left(K_{2}\right) j_{1^{*}} \sigma\left(X_{1}\right)+\chi\left(K_{1}\right) j_{2^{*}} \sigma\left(X_{2}\right)\right\}$. As an equation in $X_{0}(X)=\widetilde{K}_{0}(X) \otimes Z$ this says

$$
\begin{equation*}
\sigma(X)=\left\{\bar{P}_{1} \otimes \bar{p}_{2}-\bar{F}_{1} \otimes \bar{F}_{2}\right\}+\left\{\sigma\left(x_{1}\right) \otimes \chi\left(K_{2}\right)+\chi\left(x_{1}\right) \otimes \sigma\left(x_{2}\right)\right\} \tag{3}
\end{equation*}
$$

where $, F_{1}, F_{2}$ are free modules over $\pi_{1} X_{1}, \pi_{1} X_{2}$ of the same rank
as P_{1}, P_{2}. Notice that the first bracket can be rewritten

$$
\left(\bar{P}_{1}-\bar{F}_{1}\right) \otimes\left(\bar{P}_{2}-\bar{F}_{2}\right)+\left(\bar{P}_{1}-\bar{F}_{1}\right) \otimes \bar{F}_{2}+\bar{F}_{1} \otimes\left(\bar{P}_{2}-\bar{F}_{2}\right)
$$

But accoriing to Lema 7.4, $(-1)^{n} \bar{F}_{i}=\chi\left(X_{i}\right)-\chi\left(K_{i}\right), 1=1,2$. Also $(-1)^{n}\left(\bar{P}_{i}-\bar{F}_{i}\right)=(-1)^{n}\left[P_{i}\right]=\sigma\left(X_{i}\right)$. Hence on substituting in ((8) wo got

$$
\sigma(x)=\left(\bar{P}_{1}-\bar{F}_{1}\right) \otimes\left(\bar{P}_{2}-\bar{F}_{2}\right)+\sigma\left(x_{1}\right) \otimes x\left(X_{2}\right)+x\left(x_{1}\right) \otimes \sigma\left(x_{2}\right)
$$

which is the formala (t. This completes the proof of the Prodact Theorem. \square

Here is an attractive corollary of the Product Theorem 7.2 and 7.3. Let M^{n} be a fixed closed smooth manifold with $X(M)=0$. (The circle is the simplest example.) Lot ϵ be an end of a smooth opon manifold.

Theoren 7.5. Suppose $\operatorname{dim}(W>M) \geq 6$. The end c is tame if and only if the end $\epsilon>M$ of $W M M$ has a collar.

Our dofinition of tameness (4.4 on page 24) makes sense for any dimansion. But so far we have had no theorems that apply to a taice end of dimension 3 or 4. (A tame end of dimension 2 always has a collar - c.f. Kerékjártó [26, p. 171].) Now we know that the tameness conditions for such an end are equivalent, for example, to $6>s^{3}$ having a collar.

It is perhaps worth pointing out now that the invariant σ can be defined for a tame end ϵ of any dimonsion. Since c is isolated there exist artitramily small closed neighborinoods v of
ϵ that are swooth subranirolds with compact boundary and one end. Since π_{1} is stable at ε, we can find sueh a V so small that $\pi_{1}(\epsilon) \longrightarrow \pi_{1}(V)$ has a left inverse r.

Proposition 7.6. $V \in \mathcal{D}$ and $r_{*} \sigma(V) \in \tilde{K}_{0} \pi_{1} \in$ is an invariant of ε.
Detinition 7.7. $\sigma(\kappa)=r_{*} \sigma(V)$.
sotice that, by 6.9, this agrees with our original dofinition of $\sigma(s)$ for dimension ≥ 5.

Proof of Proposition 7.6: We begin by showing that $V \in D$. Since we do not know that - ε has arbitrarily smali 1 -neigiborioods we employ an interesting device. Consider the end $\in<M$ where M is a comected smooth closed manifold so that $\operatorname{dim}(\varepsilon \times M) \geq 5$. (S^{5} rould always do.) By 7.3 we know that $V \in \mathcal{A}$ if and only if $V>X \in \mathcal{A}$. Also $\in>X$ is a tame and of dimension ≥ 5 and so has arbitrarily small 1-naighborhoods. Notice that $r^{\prime \prime}=r>1 d\left(\pi_{1} M\right)$ gives a right inverse for $\pi_{1}(\epsilon>M) \longrightarrow \pi_{1}(V>M)$. Applying Proposition 4.3 we ses that $V>M \in \mathcal{D}$. So $V \in \mathcal{D}$ by 7.3.

To prove that $r_{m} \sigma(V)$ is independent of the choice of V and of r use 6.5 and the existance of neighborhoods $V^{\prime} \subset V$ with the properties of V and so small that $j: \pi_{1}\left(V^{\prime}\right) \rightarrow \pi_{1}(V)$ has image $\pi_{1} \in E \pi_{1}(V)$ (--whence $r \cdot j$ is independent of the choice of r). \square
3mank: In Chapter VIII we construct tame ends of dimension ≥ 5 with prescribad invariant. I do not know any tare end ε of dimension 3054 with $\sigma(\varepsilon) \neq 0$. Such an end would be very surprising in cimension 3.

As $2 n$ exercise with the product theorem one can calculate
the invariant for the end of the product of two open manifolds. Notice that if c is a tame ond oin a smooth open manifold W^{n}, $n \geq 5$, thare is a natural way to dafine

$$
\rho(\varepsilon)=\rho(\varepsilon) \oplus X(\varepsilon) \in \tilde{K}_{0}\left(\pi_{1} \varepsilon\right) \oplus 2=K_{0}\left(\pi_{1} \varepsilon\right)
$$

In fact let $X(\varepsilon)$ be $\chi(B d V)$ where V is any 0-naighborbood of $e_{\text {. }}$ Notice that $\chi(B d V)=0$ for n even and that $\mathcal{X}(B d V)$ is independent of V for in odd. Also observe that as $n \geq 5$, there are arbitrarily small 1-neighborhoods V of ε so that $\chi(V, B d V)=0$, i.e. $\chi(\varepsilon)=\chi($ Bd $v)=\chi(v)$.

Theorem 7.8. Suppose W and W are smooth comected open manifolds of dinension ≥ 5 with tame ends ε and 6^{\prime} respectively. Then $W^{\prime} \times W^{\prime}$, has a single, tame end $\bar{\varepsilon}$ and

$$
\rho(\bar{\varepsilon})=i_{1^{*}}\left\{\rho(\varepsilon) \otimes \rho\left(W^{\prime}\right)\right\}+i_{2^{*}}\left\{\rho(W) \otimes \rho\left(\varepsilon^{0}\right)\right\}-i_{0 *}\left\{\rho(\varepsilon) \otimes \rho\left(\varepsilon^{0}\right)\right\}
$$

for naturally defined homomorphisms $i_{0 *}, i_{1^{*}}, i_{2^{*}}$.
Pronf: Consicier the complement of $U \times U$ in $W>W^{\prime}$ where $V=W-U, V^{\prime}=W^{\prime}-U^{\prime}$ are 1-neighborhoods of ε and e^{\prime} with $\chi(\varepsilon)=\chi(V), \mathcal{X}\left(\varepsilon^{v}\right)=\chi\left(V^{v}\right)$. Then apply the Sum Theoren and Prociact Theozem. (The sum formula looks the same for σ and ρ_{0}) The readar can check the detajls. \square

Saser: If W has soveral ends, all tame $c=\left\{\varepsilon_{1}, \ldots \ldots, \epsilon_{r}\right\}$, and W^{\prime} has tama ends $\varepsilon^{\prime}=\left\{\varepsilon_{1}^{\prime}, \ldots, \epsilon_{5}^{\prime}\right\}$ then $W \times W^{\prime}$ still has just one tame end. And if we define $\rho(\varepsilon)=\left(\rho\left(\varepsilon_{1}\right), \ldots, \rho \rho\left(\varepsilon_{r}\right)\right)$ in $E_{0} \pi_{1} \varepsilon_{i} \theta$... $K_{0} \pi_{1} \varepsilon_{r}$ and $\rho\left(\varepsilon^{\prime}\right)$ similarly, the above formila remains valid. Also, with the help of definition 7.7 one can elindnate the assumption of dimension ≥ 5.

Chaptor VIII. The Construction of Strange Ends.

The first task is to produce tame ends e of dimension ≥ 5 witi $\sigma(\varepsilon) \neq 0$. Such ends deserve the epithet strange because $\varepsilon \times S^{1}$ has a collar while e itself doas not (Theorem 7.5). At the ord of tois chapter (page 83) we construct the contractible manifolds promised in Chaptor IV on page 23.

We begin with 2 crude but simple construction for strange ends. Let a closed sanooth manifold $M^{n-1}, n \geq 6$, be given together anth a f.g. projective $\pi_{1}(M)$ - motule P that is not stably free. Such $2 P$ oxists if. $\pi_{1}(M)=Z_{23}$ since $\tilde{K}_{0}\left(Z_{23}\right) \neq 0$. (For a rosume of what is known about $\tilde{Z}_{0}(G)$ for various G see Wall [2, p. 671.) Eutid up a swooth manifold W^{M} with $\mathrm{Bd} W=\mathrm{M}$ by attaching infinitely many (trivial) 2-inandlos and (nontrivial) 3-handles so that the comesponding free $\pi_{1}(M)$-complex C_{*} for $H_{*}(\tilde{W}, \tilde{M})$ has the fozt

wisere F is a froe $\pi_{1}(f)$-module on infinitely many generators, crd ∂ is onto with kernel P. For example, if $P \in Q$ is $f \cdot g$. and free, d can be tia natural projection $F \cong P \oplus Q \oplus P \oplus Q \oplus \ldots$ $\longrightarrow 0 \in Q \in P \in Q \in \ldots \cong \tilde{F}^{0}$. The analogous construction for $h-$ cobordisms of dirension ≥ 6 with prescribed torsion is explained. in MiInor [17, §9]. The problem of suitably attaching handles is the same kere, Of course, we must add infinitely many handles.

But we can add them one at a time thickening at each stage. Before adding a 3-handle we add all the 2-handles involved in its boundary. W is then an infinite union of finite handlebodies on M. Lemma 8.2 below can be used to show rigorously that $H_{*}(\tilde{W}, \tilde{M})=H_{*}(C)$.

We proceed to give a more delicate construction for strange ends which has three attractive features:
(a) It proves that strange ends exist in dimension 5.
(b) The manifold W itself can provide a ($n-4$)-neighborhood of ε.
(c) W is an open subset of $M \times[0,1)$.

The construction is best.motivated by an analogous construction for h-cobordisms. Given $M^{n-1}, n \geq 6$, and a $d>d$ matrix T over $Z\left[\pi_{1} M\right]$ we are to find an h-cobordism $c=\left(V ; M, M^{\prime}\right)$ with torsion $\tau \in W h\left(\pi_{1} M\right)$ represented by T. Take the product cobordism $M>[0,1]$ and insert $2 d$ complementary ($=$ auxiliary pairs of critical points of index 2 and 3 in the projection to $[0,1]$ (c.f. [4, p. 101]). If the resulting Morse fuction f is suitably equipped, in the corresponding complex

$$
\ldots \rightarrow 0 \rightarrow c_{3} \xrightarrow{d} c_{2} \longrightarrow 0 \rightarrow 0
$$

d is given by the $2 \mathrm{~d} \times 2 \mathrm{~d}$ identity matrix I. By [17, p. 2] elementary row or columan operations serve to change I to $\left(\begin{array}{cc}\text { T } & 0 \\ 0 & T^{-1}\end{array}\right)$: Each elementary operation can be realized by a change of f (c.f. [3, p. 17]). Aftor using Whitney's devica as on pages 30-31 we can lower the level of the first d critical points of index 3 and raise the level of the last d critical points of index 2 so that $M>[0,1]$ is split as the product of two h-cobordisms
c, c^{\prime} with torsions $\tau(c)=[T]=\tau$ and $\tau\left(c^{\prime}\right)=\left[T^{-1}\right]=-\tau$. The corresponding construction for strange onds succeeds oven in dinension 5 because Whitney's device is not used.

Before giving this delicate construction we introduce some necessary geometry and algebra.

Let $f: W \longrightarrow[0, \infty)$ be a proper Morse function with gradientlike vector field 5 , on a smooth manifold W having $B d W=f^{-1}(0)$. Suppose that a base point $* \in B X W$ has been chosen together with base paths from * to each critical point. At each critical point p we fix an orientation for the index (p)-dimensional subspace of the tangent space $T W_{p}$ to W at p that is defined by trajectories of.ξ converging to p from below. Now i is called an eguipned proper K orse function. The equipment consists of ξ, *, base paths, and orientations.

When f has infinitely many critical points we cannot hope to make I nice in the sense that the level of a critical point is an increasing function of its index. But we can still put conditions on f which guarantee that it determines a free $\pi_{1}(W)$ complex for $H_{*}(\tilde{W}, \mathrm{Bd} \tilde{W})$.

Definition 8.1. We say that f is nicely equipoed (or that ξ is rice) if the following two conditions on ξ hold: i) If p and q are critical points and $f(p)<f(q)$, but indəx $(p)>$ index (q), then no ξ-trajectory goes from p to q. This guarantees that if for any non-critical level a, f restricted to $f^{-1}[0, a]$ can be adjusted without changing ξ to a nice Morse function g (see [4, §ิ 4.1]).
2) Any such $g: f^{-1}[0, a] \longrightarrow[0,2]$ has the property that for overy index λ and for every level between index λ and index $\lambda+1$, the left hand λ-spheres in $g^{-1}(b)$ intersect the right hand ($n-\lambda-1$)-spheres transversely, in a finite number of points. In fact 2) is a property of ξ alone, for it is equivalent to the following property 2"). Noto that for every (opsn) trajectory I from a critical point p of index A to a critical point q of index $\lambda+1$ and for every $x \in T$, the trajectories from p dotermine a $(n-\lambda)$-subspace $V_{x}^{n-\lambda}(p)$ of the tangent space $T W_{x}$ and the trajectories to q determine a $(\lambda+1)$-subspace $V_{x}^{\lambda+1}(q)$ of $T N_{x}$.
2) For every such T and for one (and hence all) points x in $I \quad V_{x}^{n-\lambda}(p) \cap V_{x}^{\lambda+1}(q)$ is the $\operatorname{lin} \theta$ in $T W_{x}$ determined by T.

Parark: Any gradient-like vector field for f can be approximated by a rice one (c.f. Milnor [4, \& 4.4, S 5.2]). We will not use this fact.

We say that a Morse function f on a compact triad ($W ; V, V$) is nicely ecuipogd if it is nicely equipped on $W-V$ ' in the sense of 3.1. This simply means that f can be made nice without changing the gradient-Iike vector field and that when this is done left hand λ-spheres meet right hand ($n-\lambda+1$)-spheres transversely in any level betrieen index λ and $\lambda+1$.

Suppose that $f: W \xrightarrow{\text { onto }}[0, \infty)$ is a nicely equipped proper Norse function on the noncompact smooth manifold with $\mathrm{Bd} W=f^{-1}(0)$. We axplain now how P gives a free $\pi_{1}(W)$-complex for $H_{*}(\tilde{W}, \mathrm{Bd} \tilde{W})$. Let a be a noncritical level and adjust f to a nice Morse function
f^{\prime} on $f^{-1}[0, a]$ without changing ξ. From the discussion in Chapter IV (pages 28-29) one can see that the equipment for i completoly deteruines a based, froe $\pi_{1}(W)$-complex $C_{*}(b)$ for $f^{\prime \prime}$ with homology $H_{*}\left(p^{-1} f^{-1}[0, a], B d \tilde{W}\right)$, where $p: \tilde{W} \longrightarrow W$ is the universal cover. Then it is claar that $C_{*}(a)$ is independent of the particular choice of $i^{\prime \prime}$, and that if $b>a$ is another non-critical level, there is a natural inelusion $C_{*}(\mathbb{G}) C_{C} C_{*}(b)$ of based $\Pi_{1}(W)$-complexes. Let $0=a_{0}<a_{1}<a_{2}<a_{3}<\ldots$ be an unbounded sequence of nonexitical lavals of f. Then $C_{*}=U_{i} C_{*}\left(\alpha_{i}\right)$ is defined, and from its structure we see that it depends oniy on the equipment of f, 1.e. It is the sawe for any other proper Morse function with the saus equipment. There is one generator for each critical point, and the boundary operator is given in terms of geometrically defined charactoristic elements and intersection numbers as on page 29.
proposition 8.2. In tho abovo situation $H_{*}\left(C_{*}\right)=H_{*}(\tilde{W}, \mathrm{Bd} \tilde{W})$.

Froof: There is no problem when f bas only fimitely many critical points. For if a is very large $C_{*}=C_{*}(a)$ and $H_{*}\left(C_{*}(x)\right) \cong$ $H_{*}\left(p^{-1} f^{-1}[0, a], B d \tilde{W}\right) \cong H_{*}(\tilde{W}, \operatorname{Bd} \tilde{W})$ where the last isomorphism holds because W is $f^{-1}[0, a]$ with an open collar attached. Thus we can assuna from tizis point that f has infinitely many oritical points.

We can adjust $\{$ without changing ξ so that at most one critical point lies at a given leval; so we may assume that for the sequance $a_{0}<a_{1}<\ldots$ above $f^{-1}\left[a_{1}, a_{i+1}\right]$ always contains exactiy one critical point. Also, arrange that $a_{1}=n+1$.

$$
\text { Notice that } X_{*}\left(C_{*}\right) \cong H_{*}\left(U_{n} C\left(a_{n}\right)\right) \cong \underset{n}{\operatorname{Iim}} H_{*}\left(C\left(a_{n}\right)\right) \text {. We will }
$$

We define a sequence of $f_{0}, f_{1}, f_{2}, \ldots$ of proper Horse functions each with the same equipment as i. Let $f_{0}=f$. Suppose inductively that wa have defined a Korse function f_{n} having tine equipment of f so that f_{n} is nice on $f^{-1}\left[0, a_{n}\right]$ and coincides with f elsewhere. Suppose also that the level of f_{n} for index λ in $f^{-1}\left[0, \alpha_{n}\right]$ is $\lambda+\frac{1}{2}$. Define f_{n+1} by adjusting f_{n} on $f^{-1}\left[0,2_{n+1}\right]$ without changing ξ, so as to lower the level of the critical point p in $f^{-1}\left[a_{n}, a_{n+1}\right]$ to the level index $(p)+\frac{1}{2}$. (See Milnor $[4,8$ 4.1].) By incuction the sequence $f_{0}, f_{1}, f_{2}, \ldots$ is now woll defined.

There is a filtration of $f^{-1}\left[0, z_{n}\right]$ determined by f_{n} : Bd $W=X_{-1}^{(n)} \subset X_{0}^{(n)} \subset \ldots \subset X_{W}^{(n)}, \quad w=$ dim W, where $X_{\lambda}^{(n)}=f_{n}^{n}[0, \lambda+1]$. Tra chain corplex for the 'Ififted' filltration $p^{-1} X_{-1}^{n} \subset p^{-1} X_{0}^{n} \subset \ldots$. $C p^{-1} X_{W}^{n}$ of $p^{-1} \mathcal{S}^{-1}\left[0, a_{n}\right] \subset \tilde{W}$ is naturally isomorphic with the complex $C_{*}\left(a_{n}\right)$. And the homology for the filtration complex is $H_{*}\left(p^{-1} f^{-1}\left[0, a_{n}\right], 2 d \tilde{W}\right)$. Now notice that the inclusion is $f^{-1}\left[0, a_{n}\right]$ $G f^{-1}\left[0, a_{n+1}\right]$ respects filtrations. In fact, if the now critical point has inder $\lambda, X_{i}^{(n+1)}=X_{i}^{(n)}$ for $i<\lambda$, and for $i \geq \lambda$, $x_{i}^{(n+i)} \partial x_{i}^{(n)}$ is up to homotopy $X_{i}^{(n)}$ with a λ-hardle attached. Ona can verify in a straightforward way that the incucad map $j_{\frac{\mu}{7}}$: $c_{*}\left(a_{n}\right) \longrightarrow c_{*}\left(a_{n+1}\right)$ of filtration complexes is just the natural inclusion $C\left(a_{n}\right) G C\left(a_{n+1}\right)$ noted on page 73. Thus the comantativity of

$$
\begin{gathered}
H_{*}\left(C\left(a_{n}\right)\right) \xrightarrow{J_{\# *}} \xrightarrow{\cong} H_{*}\left(C\left(a_{n+1}\right)\right) \\
E_{*}\left(p^{-1} P^{-1}\left[0, a_{n}\right], B a \tilde{W}\right) \xrightarrow{J_{*}} H_{*}\left(p^{-1} f^{-1}\left[0, a_{n+1}\right], B d \tilde{W}\right)
\end{gathered}
$$

(wiore the vertical arrows are the natural isomorphisms), tolls us that $\xrightarrow{\mathrm{Iim}} \mathrm{H}_{*}\left(\mathrm{C}\left(a_{n}\right)\right)=\xrightarrow{\mathrm{Iim}} \mathrm{H}_{*}\left(\mathrm{p}^{-1} \mathrm{f}^{-1}\left[0, \mathrm{E}_{\mathrm{n}}\right], \mathrm{Bd} \tilde{W}\right)=\mathrm{H}_{*}(\tilde{W}, \mathrm{Bd} \tilde{W})$ as required. []

Next come sone algebraic preparations. Let Λ be a group ring $\langle[G]$ and considor infinito 'elemontary' matrices $E=E(x ; i, j)$ in $\operatorname{GL}(\Lambda, \infty)=\underset{\mathrm{n}}{\mathrm{Iim}} \operatorname{GL}(\Lambda, n)$ that have 1 's on the diagon21, the . elament $r \in \Lambda$ in tha i, j position ($i \neq j$) and zeros elsewhere. Suppose F is a free Λ-module with a given basis $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ incexed on the natural mumbers $<N$ where N may be finite or ∞. Then provided i and j are less than $N, E(r ; i, j)$ determines the elementayy oporation on α that adds to the j-th basis element of $\alpha, \quad \bar{t}$ tinas the i-th basis element -- i.e. $E(r ; i, j) \alpha=\left\{\alpha_{1}\right.$, $\left.\alpha_{2}, \ldots, \alpha_{j-1}, \alpha_{j}+r \alpha_{i}, \alpha_{j+1}, \ldots\right\}$. In this way elementary matrices are identified with elementary operations.

Suppose now that F is an infinitely generated free Λ-mocula and let $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ and $\beta=\left\{\beta_{1}, \beta_{2}, \ldots\right\}$ be two bases. It is convenient to write the sabmodule of F generated by elements $\gamma_{1}, \gamma_{2}, \ldots$ as $\left(\gamma_{1}, \gamma_{2}, \ldots\right)^{\cdot}$ - with round brackets.

Lemra 8.3. There exists an infinite sequence of elementary operations $E_{1}, E_{2}, E_{3}, \ldots$ and a sequence of integers $0=N_{0}<N_{1}<N_{2}<\ldots$ so that for each integer k, the following statement holds:
(*) $n \geq N_{k}$ fmplies that $E_{n} E_{n-1} \ldots E_{1} \alpha$ coincides with β for $2 t$ least the first k elements.

Romark: (*) implies that for $n \geq M_{k}, E_{n}=E(r ; 1, j)$ with $j>k$
(or $r=0$). Bat $i<k$ is certainly allowable.

Proof: Suppose inductively that $N_{0}, N_{1}, \ldots, N_{x-1}$ and $E_{1}, E_{2}, \ldots, E_{N_{x-1}}$ have been defined so that (*) holds for $k \leq x-1$. (The induction bogins with $H_{0}=0$ and no $\left.E \cdot s_{0}\right)$ Then $E_{N_{x-1}} \ldots E_{1} \alpha=\left\{\beta_{1}, \ldots A_{0}\right.$, $\left.\beta_{x-1}, \gamma_{x}, \gamma_{x+1}, \ldots\right\}$ for some $\gamma_{x}, \gamma_{x+1}, \ldots$. Set $\gamma_{i}=\beta_{i}, i=1$, ..., x-1.

Suppose that β_{x} is expressed in terms of the basis $E_{x_{x-1}} \ldots$ $\ldots E_{1} \alpha=\gamma$ by $\beta_{x}=b_{1} \gamma_{1}+\ldots+b_{y} \gamma_{y}, b_{i} \in \Lambda, \quad y>x$. Then the composed map $p:\left(\gamma_{1}, \ldots, \gamma_{y}\right) G F \xrightarrow[p_{1}]{ }\left(\beta_{1}, \ldots, \beta_{x-1}, \beta_{x}\right)$, where p_{1} is the natural projection determined by the basis β, is certainly onto. Hence $\left(\gamma_{1}, \ldots, \gamma_{y}\right)$ is the direct sum of two submodules:

$$
\left(\gamma_{1}, \ldots, \gamma_{y}\right)=\left(\beta_{1}, \ldots, \beta_{x}\right) \oplus \operatorname{Ker}(p) .
$$

This says that Ker (p) is stably froo. One can verify that the resolt of increasing y by one is to add a free sumand to $\operatorname{Ker}(p)$. Thus, after making y sufficientiy large wo can assume . Ker (p) is free. 'Choose a basis $\left(\gamma_{x+1}^{\prime}, \cdots, \gamma_{y}^{\prime}\right)$ for $\operatorname{Ker}(p)$. (Note that this basis necessamily has $\operatorname{rank}\left\{2 \otimes_{\Lambda} \operatorname{Ker}(p)\right\}=y-x$ elements.)

How constider the matrix whose rows express $\gamma_{1}, \ldots, \gamma_{y}$ in tems of $\beta_{1}, \ldots, \beta_{x-1}, \hat{\beta}_{x}, \gamma_{x+1}, \ldots, \gamma_{y}^{\prime}$.

Tha upper right rectangle clearly contains onif zaros. Notice that elementary row operations correspond to elementary operations on the basis $\gamma_{1}, \ldots, \gamma_{y}-$ and hence on γ.

Reance the lower leit rectangle to zeros by adding suitable multiples of the first $x-1$ rows to the last $y-x+1$. Now adjoin to each basis the elements $y_{y+1}, \gamma_{y+2}, \cdots, \gamma_{y+x+1}$ so that the lower right box has the form $\left(\begin{array}{ll}A & 0 \\ 0 & I\end{array}\right)$ where I is an identity matrix of the same dimension as N. By the proof of Leman 5.4 there are further row operations that change this box to $\left(\begin{array}{ll}I & 0 \\ 0 & N\end{array}\right)$ (and don't involve the first $x-1$ zows). Clearly we have procucad a finite sequence of elementary operations on $\gamma, E_{A_{x-1}}+1 r \cdot{ }^{5} x_{x}$, so that ($*$) now holds for $k \leq x$. This completes the induction. \square What wo actualiy need is a mild generalization of Lemma 8.3. Suppose that $F \cong G \oplus H$ where G, like F, is a copy of Λ^{∞}. Pogard G and H as submodules of F and lot $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$, $\beta=\left\{\beta_{1}, \beta_{2}, \cdots\right\}$ be bases for F and G respectively.

Lerse 8.4. In this situation too, the assortion of Lemma 8.3 is true.
Prose: Again suppose inductivoly that N_{0}, \ldots, N_{x-1} and E_{1}, \ldots, $E_{N_{x-1}}$ have bean defined to that (*) hoids for $k \leq n-1$. Sineo $\left(\beta_{x+1}, \beta_{x+2}, \ldots\right) \oplus H \cong G \oplus H \cong \Lambda^{\infty}$ there is a basis $\beta^{\prime}=\left\{\beta_{1}, \ldots\right.$, $\left.\beta_{x-1}, \beta_{x}, \beta_{x+1}, \beta_{x+2}^{\prime}, \cdots\right\}$ for F. Now we can repeat the argument of Lexuna 8.3 with β, in place of β to complete the induction. \square

Thaorem [3, p. 17]. Suppose ($W ; V, V \cdot$) is a compact smooth triad with a nicely equipped Morse function f that has critical points p_{1}, \ldots, p_{n} all of index $\lambda, 3 \leq \lambda \leq n-2$. The complex c_{*} for \tilde{i} has tine form

$$
\ldots \longrightarrow 0 \rightarrow c_{\lambda} \rightarrow 0 \rightarrow \ldots
$$

wicere $c_{\lambda} \cong n_{\lambda}(\widetilde{W}, \tilde{V})$ is free over $\pi_{1}(W)$ with one generator $e\left(p_{i}\right)$ for each critical point p_{i}. Suppose $f\left(p_{1}\right)>f\left(p_{2}\right)$. Let g π_{1} (ii) io prescribed, together with a real number $\varepsilon>0$ and a $\operatorname{sign} \pm 1$ 。

Proposition 8.5. By altering the gradient-like vector field on $\tilde{f}^{-1}\left[f\left(p_{1}\right)-\varepsilon, f\left(p_{1}\right)-\frac{\varepsilon}{2}\right]$ only, it is possible to give C_{λ} the basis $\theta\left(p_{1}\right), \theta\left(p_{2}\right) \pm g e\left(p_{1}\right), \theta\left(p_{3}\right), \ldots, \theta\left(p_{m}\right)$.

Reverk: A composition of such operations gives any elementary operation $E(r ; 1,2), r \in Z\left[\pi_{1} W\right]$. And by permating indices we see that $\theta\left(p_{i}\right)$ and $\theta\left(p_{j}\right)$ could replace $\dot{\theta}\left(p_{1}\right)$ and $\theta\left(p_{2}\right)$ if $f\left(p_{i}\right) \geq f\left(p_{j}\right)$.

Proof: The construction is essentially the same as for the Basis Thaorea [4, §7.6]. We point out that the choice of $g \in \pi_{1}(W)$ domands a special choice of the imbedding " $\varphi_{1}:(0,3) \longrightarrow V_{0}$ " on on $p .96$ of [4]. Also, f is never changed during our construction. Tre proof in $[4, \S 7.6]$ that the construction accomplishes what one interds is not difficult to generalizo to this sitnation. \square

Finally we are ready to ontablish

Existerce Treorem 8.6. Suppose given

1) $x^{x-1}, w \geq 5$, a spooth closed manifold
2) k, an integer with $2 \leq k \leq w-3$
3) $P, 2$ f.g. projective $\pi_{1}(M)$-roctulo.

Then there exists a smooth mantfold $W^{\mathbf{w}}$, with one tame end ε, which is an open subset of $M \times[0,1)$ with $B d W=M \times 0$, such that
(a) Inclusions incuce isomorphisus

$$
\pi_{1}(M .<0) \stackrel{\cong}{\rightrightarrows} \pi_{1}(W)<n_{1}(\epsilon)
$$

(b) $\quad \sigma(\varepsilon)=(-1)^{k} \quad[P] \in \tilde{K}_{0}\left(\pi_{1}(M>0)\right)$
(c) $M \times 0 G W$ is a $(k-1)$-squivalence. Further $H_{k}(\tilde{W}, B d \tilde{W}) \cong p$ and $H_{k}(\tilde{W}, \operatorname{Bd} \tilde{F})=0,1 \neq k$ 。

Remark: After an adequate existence theorem there follows logically the question of classifying strange ends. It is surely one that should have sorre interesting answers. I ignors it simply because I have only begun to consider it.

Proof: By construction W will be an open subset of $M>[0,1)$ that adrits a nicely equipped proper Morse function $f: \psi \xrightarrow{o n t a}\left[0, \frac{1}{2}\right)$ with $f^{-1}(0)=M>0$. Only index k and index $k+1$ critical points will occur. Then according to Theorem 1.10 W can have just ons end ε. The left-hand sphere of each critical point of index k will be contractible in $M>0$. Tmus $M>0$ will be a ($k-1$)-equivalence. If $k<n-3, \pi_{1}$ is automaticaliy tame at ε, and $\Pi_{1}(\varepsilon) \longrightarrow \pi_{1}(W)$ is an iscmorphtsm. If $k=n-3$ wө will have to check this curing the construction. Tne complex C_{*} for f will be so chosen that $H_{*}(C r)=H_{*}(\tilde{W}, \operatorname{Bd} \tilde{W})$ is isomorphic to P and concentrated in ömension k. This (c) will follow. Then the tameness of ε and condition (b) will follow from (c) and Lami 6.2.

With this much introduction we begin the proof in serious. Consider the free $A=Z[\pi(M \times 0)]-$ complex

where $F \simeq \Lambda^{\infty}$, and ∂ corresponds to the identity map of F. There exists an integer r and a Λ-module Q so that $P \oplus Q \cong \Lambda^{r}$.
Than $\mathrm{I} \cong(P \in Q) \oplus(P \oplus Q) \oplus \ldots \cong P \oplus(Q \oplus P) \oplus \ldots \cong P \oplus F$. So we have $F \cong G \oplus P$ where $G \cong \Lambda^{\infty}$ 。 Regard G and P as submocules of F and choose bases $\alpha=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ and $\beta=\left\{\beta_{1}, \beta_{2}, \ldots\right\}$ for F and G respectively.

Considar the subcomplex oir C_{*}

ware ∂ corresponds to the inclusion $G G F$. Let α give the basis for c_{k+1}, c_{k} and c_{k}^{\prime}; and let β give the basis for c_{k+1}^{\prime}. We will cenote the based complexes by C and C^{\prime} (without *). Ey a segment of C we will mean the based subcomplex of C corresponding to a segzent $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{r}\right\}$ of α.

Dy Lemea 8.4 there exists a sequence $E_{1}, E_{2}, E_{3}, \ldots$ of elementary operations and a sequence $0=N_{0}<N_{1}<N_{2}<\ldots$ of integers so that, for $n \geq N_{s}$, the first s basis elements of $E_{n} E_{n-1} \ldots E_{1} \alpha$ coincicie mith $\beta_{i}, \ldots, \beta_{s}$. We let $E_{i}, E_{2}, E_{3}, \ldots$ act on α as a basis of C_{k+1} and in this way on the based complex C. For each integer s choose a segment $C(s)$ of C so large that $\beta_{1}, \ldots, \beta_{s} \in$ $C_{i+1}(s)$ and $E_{1}, \ldots, E_{N_{s}}$ act on $C(s)$.

Let $C^{\prime}(s)$ be the based suocomplex of $E_{N_{s}} \ldots E_{1} C(s)$ consisting of $c_{k}(s)$ and the span of $\beta_{1}, \ldots, \ddot{\beta}_{s}$ in $c_{k+1}(s)$ (with basis $\left.\beta_{1}, \ldots, \beta_{s}\right)$. Notice that $C^{\prime}(s)$ is a based subcomplex of c^{\prime} and $c^{\prime}=U_{s} c^{\prime}(s)$.

Choose any sequeriee $0=a_{0}<a_{1}<a_{2}<\ldots$ of real numbers converging to $\frac{1}{2}$. We will construct a sequence $f_{1}, f_{2}, f_{3}, \ldots$ of ancely equipped Korse functions

$$
M>[0,1] \xrightarrow{\text { onto }}[0,1]
$$

so that, for $n \geq m, f_{n}$ coincides with f_{m} on $f_{m}^{-1}\left[0, a_{m}\right]$. The based free f.g. $\pi_{1}(M>0)$-complex for f_{n} is to be $E_{N_{n}} \ldots E_{1} c(n)$ and for f_{n} restricted to $f_{n}^{-1}\left[0, a_{n}\right]$ it is to be $C^{\prime}(n)$.

Notice that such a sequence $f_{1}, f_{2}, \tilde{r}_{3}, \ldots$ determines a nicely equipped proper Korse function f on $W=U_{n} f_{n}^{-1}\left[0, a_{n}\right]$ mapping onto $\left[0, \frac{1}{2}\right)$; and its complex is $C^{\prime}=U_{n} C^{\prime}(n)$. The left hand sphere S_{L}^{k-1} in $M \times 0$ of any critical point of index k is contractible since it is contractible in $M>[0,1]$ and $M \times 0 G$ $M x[0,1]$ is a homotopy equivalence. In case $k=n-3$ we now varify that $f_{n}^{-1}\left(\alpha_{n}\right) G M \times[0,1]$ and $f_{n}^{-1}\left[0,2_{n}\right] G M \times[0,1]$ give π_{1}-isomorphisms. For this oasily implies that π_{1} is stable at the and ε of W and that $\Pi_{1}(\varepsilon) \longrightarrow \Pi_{1}(W)$ is an isomorphism. Now $f_{n}^{-1}\left[0, a_{n}\right]$ contains all critical points of f_{n} of indax k so, evan when $k=2, f_{n}^{-1}\left[0, a_{n}\right] G M \times[0,1]$ and $f^{-1}\left(a_{n}\right) G f^{-1}\left[a_{n}, 1\right]$ give π_{1}-isomorphisms. Also $f^{-1}\left[a_{n}, 1\right] G M>[0,1]$ gives a $\pi_{1}-$ isomorphism since $M \times 1 G M \times[0,1]$ and $M \times 1 G f^{-1}\left[a_{n}, 1\right]$ do. Thus $f^{-1}\left(a_{n}\right) G K>[0,1]$ doos too, and our verisication is comploto.

In view of our introductory remarks on page 21 it now remains only to construct the sequence $f_{1}, f_{2}, f_{3}, \ldots$ as advertized in the second last paragraph above. Here are the details. Insert enough complementary pairs of index k and $k+1$ critical points (c.f. $[4, \$ 8.2])$ in the projection $M \gg[0,1] \xrightarrow{\text { onto }}[0,1]$ to get a Morse furction that, winon suitably equipped, realizes the segment $C(1)$ of C. Apply the elementary operations $E_{1}, \ldots, E_{N_{1}}$ to $C(1)$ and alter tie Morse function accordingly using the Fandle Addition Theorem of Hall [3, p. 17, p. 19]. Now lower the critical points represented in C (1) $C \sum_{N_{1}} \ldots E_{1} C(1)$ to levels $<a_{1}$ without changing the gradientlike vector field or the rest of the equipment. Tris is possible because all the critical points of index k are in $C^{\prime}(1)$. Call the rasulting Norse function \hat{s}_{1}. Adjust the gradient-like vector field $\xi[4, S 4.4, \$ 5.2]$ so that f_{1} is nicely equipped.

Niext, suppose inductively that a nicely equipped Norse function I_{n} has been defined realiting $E_{N_{n}} \ldots E_{1} C(n)$ on $M \gg[0,1]$ and $C(n)$ on $I_{n}^{-1}\left[0,2_{n}\right]$. Enlarge $E_{n} \ldots E_{1} C(n)$ to $E_{N_{n}} \ldots E_{1} C(n+1)$ and insert corresponding complementary pairs in $f_{n}^{-1}\left[a_{n}, 1\right]$. Now apply $E_{E_{n}}+1, \ldots, E_{n+1}$. We assert that the equipped Norse function can be adjusted correspondingly. At first sight this just requires tha Harde Addition Tneorem again. But wo must leave f_{n} (and its equipment) unchanged on $f_{n}^{-1}\left[0, a_{n}\right]$; so we apply Proposition 8.5. Any elementary operation we have to realize is of the form $E(r ; 1, j)$ where $j>n$, whicn means that r times the i-th basis element $\theta\left(p_{i}\right)$ is to be addad to the $j-t h$ basis element $\theta\left(p_{j}\right)$ where p_{j} Lies in $f_{n}^{-1}\left[a_{n}, 1\right]$. Change tio present Norse function f_{n} on
$\dot{I}_{n}^{-1}\left[a_{n}, 1\right]$ increasing the level of p_{j} so that $f_{n}\left(p_{j}\right)-\varepsilon=d$, $(\varepsilon>0)$ exceeds $f^{\prime}\left(p_{i}\right), \hat{a}_{n}$, and the levels of the index k critical points. Temporarily change f_{n}^{\prime} on $f_{n}^{-1}[0, d]$ to a nice Morse function and lei c be a lovel botween index k and $k+1$. Applying Proposition 3.5 on $\mathrm{s}^{-1}[c, 1]$ we can now make the required change of basis merely by aitering ξ on $f_{n}^{-1}\left[d, d+\frac{\varepsilon}{2}\right]$. By $[4,84.4, \xi 5.2]$ we can assume that ξ is stili nice. Next wo can let f_{n}^{\prime} return to its original form on $f_{n}[0, d]$ without changing ξ. (Tris shows that Wo djon"t raally have to change $f_{n}^{\prime \prime}$ on $f_{n}^{-1}[0, d]$ in the first place.) After repeating this performance often enough we get a nicely equipped Yorse function - still called $f_{n}^{\prime} \rightarrow$ that realizes $E_{n+1} \ldots E_{1} C(n+1)$ $\supset c^{\prime}(n+1)$ and coincides with f_{n} on $f_{n}^{-1}\left[0, z_{n}\right]$. Changing f_{n}^{\prime} on $f_{n}^{-1}\left[a_{n}, 1\right]$ adjust to values in $\left(a_{n}, a_{n+1}\right)$ the levels of cifitical ponts of f_{n}^{\prime} that lie in $C^{\prime}(n+1)$ but do not lie in $C^{\prime}(n)$ (i.e. co not lie in $f_{n}^{-1}\left[0,2_{n}\right]$). Since all index k critical points of in $_{n}^{\prime \prime}$ are included in $c^{\prime}(n+1)$ this is certainly possible. Wo call the resulting nicely equipped Korse function f_{n+1}.

Apparently f_{n+1} realizes the complex, $E_{N_{n}} \ldots E_{1} C(n+1)$ on $N>[0,1]$ and realizes $C^{\prime}(n+1)$ when restricted to $f_{n+1}^{-1}\left[0, a_{n+1}\right]$. Tha inuluctive definition of the desired jorse functions $f_{1}, f_{2}, f_{3}, \ldots$ is rov complete. Thus Theorem 8.6 is established. \square

In the Iast part of this chapter we construct the contractible manifolds promised in Chapter IV. That the reader may keep in mind just what ze want to accomplish we state
p-oposition 8.7. Let π be a finitely presented perfect group that has a ifinita nontrivial quotiont group. Then for $w \geq 8$ thore oxists
a contractible open manifold W such that π_{1} is stable at the one and ε of W and $\pi_{1}(\varepsilon)=\pi$, but 6 is nevertheless not tame. Remark: Such examples should axist with $w \geq 5$ at least for suitable π.

Let $\{x ; r\}$ ba a finite presentation for a perfect group π, and form a 2-complex K^{2} realizing $\{x ; r\}$. Since $H_{2}\left(K^{2}\right)$ must bo free abelian, one can attach finitely many 3-cells to K^{2} to form a complex L^{3} with $H_{i}(L)=0,1 \geq 2$. Since $H_{1}(L)=H_{1}(K)$ $=\pi /[\pi, \pi]=1$, I has the homology of a point. If wo imbed L in $S^{w}, w \geq 7$, or rather imbed a smooth handlebody $H \simeq I$ that has one handle for each cell of L, then $M^{W}=S^{W}$ - Int H is a swooth compact contractible manifold with $\pi_{1}(\mathrm{Bd} M)=\pi$. The construction is cure to M.H.A. Newman [27].

Pemark: If one uses a homologically trivial presentation, $H_{*}\left(X^{2}\right)$ $=H_{*}$ (point) and one can get by with $w \geq 5$. Some examples ace $\left\{a, b ; 2^{5}=(a b)^{2}=b^{3}\right\}$, which gives the binary icosahedral group of 120 elemants, and $P_{n}=\left\{a, b ; a^{n-2}=(a b)^{n-1}, b^{3}=\left(b a^{-2} b a^{2}\right)^{2}\right\}$ with n any integer. The presentations P_{n}, are given by Curtis and Kuun [24]. For n even ≥ 6 there is a homororphism of the group P_{n} orito tine alternating group A_{n} on n lotters. (See Coxater-Koser [21, p. 67].) Unfortunately we will actually need $w \geq 8$ for difiecent reasons.

Let π be a group and $\theta: \pi \longrightarrow \pi_{0}$ a homomorphism of π onto a finite group π_{0} of ordier $p \neq 1$. Let $\sum \in 2[\pi]$ be $\left(g_{1}+\right.$ $\ldots+g_{p}$) there g_{1}, \ldots, g_{p} are some elements so that $\theta g_{1}, \ldots, \theta g_{p}$ aro the p distinct olenents of π_{0}. Consider the following froe
complex C over $Z[\pi]$
$c: 0 \rightarrow c_{4} \xrightarrow{\partial} c_{3} \xrightarrow{\partial} c_{2} \rightarrow 0$
whare C_{2} has one free generator a, C_{3} has tivo free generators b_{1} and b_{2} with

$$
\begin{aligned}
& \partial b_{1}=\operatorname{ma} \quad \text { (in an integer) } \\
& \partial b_{2}=\Sigma_{a}
\end{aligned}
$$

2rid C_{4} has one free generator e with

$$
\partial c=\Sigma b_{1}-m b_{2}
$$

Le: -3 8.8. Suppose m is prime to p. Thon $Z \otimes_{\pi} C$ is acyclic, knt $\mathrm{H}_{2}(\mathrm{C})$ is nonzero.

Proof: Pensoring C with the trivial right π-rocule Z has the effact oi roplacirg each group element in $2[\pi]$ by 1 . If we let $\bar{a}=10 a$ and defing \bar{b}_{1}, \bar{b}_{1} and \bar{c} similarly, then

$$
\begin{aligned}
& \partial \bar{b}_{1}=m \bar{z} \\
& \partial \bar{o}_{2}=p \bar{a} \\
& \partial \bar{c}=p \bar{b}_{1}-\overline{m b_{2}} .
\end{aligned}
$$

So we easily soe that $2 \theta_{\pi} C$ is acyclic.
To show that $H_{2}(C) \neq 0$ is to show that the ideal in $Z[\pi]$ generatod bj and Σ is not the whole ring. If it were, there would be $r, s \in Z[\pi]$ so that $m+s \Sigma=1$. Letting primes denota images unier $\theta: Z[\pi] \longrightarrow Z\left[\Pi_{1}\right]$ we would have

$$
m r^{\prime}+s^{\prime} \Sigma^{\prime}=1 \in 2\left[\pi_{0}\right]
$$

Now $s^{\prime \prime} \Sigma^{\prime}=k \Sigma^{\prime}$ for sowe integer k since $g \Sigma^{\prime \prime}=\Sigma^{\prime}$ for each $g \in \pi_{0}$. Thus we have

$$
\pi r^{\prime}=1-k \Sigma^{\prime}
$$

witich is impossible because $m\left(\frac{1}{r} 1\right)$ cannot divide both $i-k$ (the coofficieat of 1 in $1-k \Sigma$) and slso $-k$ (the coefficient of other elaments of π_{0} in $1-k \Sigma$). This contradiction completes the proof. \square

How we are ready to construct the contractibie manfiold W. Let π be the perfect group given in Proposition 8.7. Take a complex C provided by Lemma 8.8 and let C be the direct sum of infinitely many copies of C. Then $Z \otimes_{\pi} C$ is acyclic but H_{2} (C) is infinitely generated over $2[\pi]$. Let $\mathrm{M}^{\mathrm{F}}, \mathrm{w} \geq 8$. be a contractiole manifold with $\pi_{1}(\operatorname{Bd} M)=\pi$. To form W wo attach one at a time infinitely many 2,3 , and 4 -handles to M thickening after each step. The attaching 1-sphere of each 2-handle is to be contractible. Then W has one end and π_{1} is stabla at ε with $\pi_{1}(\varepsilon) \longrightarrow \pi_{1}(W-M)=\pi$ an isomorphism. The handles are to be so arranged that there is a nicely equipped Morse function (see page 72) $I: V=V-\operatorname{Int} X \rightarrow[0, \infty)$ with $f^{-1}(0)=E d M$ having associated irea $\pi_{1}(E d H)=\pi$-complex precisely C^{\prime}. By Lemma $8.2 H_{2}(\tilde{V}, B d \tilde{M})$ $=E_{2}\left(C^{\prime}\right)$. Eit $\bar{E}_{2}\left(C^{\prime}\right)$ is infinitely generated over π and V is a 1-neighboriood of ε. So 4.4 and 4.6 say that ε cannot be tara. However $H_{*}(W, M)=H_{*}(V, B d M)=H_{*}\left(Z \otimes_{\pi} C^{\prime}\right)=0$, and the exact sequasee of (W,H) then shows that W has the homology of a point. Since $\pi_{1}(W)=1, W$ is contractible by Hilton [23, p. 98].

It remains now to add handles to M realizing C (as claimed. Each λ-handle added is, to be precise, an elementary cobordism of Index λ. It is equipped with Morse function, gradient field, orientation for the left hand disk, and base path to the critical point. It contiributos une generator to the complex for i. We order the free generators $z_{1} ; z_{2}, \ldots$ of C so that z_{i} involves only z_{j} with $j<i$, then add corresponding handles in this order.

Suppose inductively that we have constructed a finite handlebody W' on M and formed a nicely equipped Morse function on W^{*} - Int M that realizes the subcomplex of C^{\prime} generated by z_{1}, \ldots, z_{n-1}. We suppose also that W^{\prime} is parallelizable, that the attaching 1-spheres For $27 l$ 2-handles are spanned by disks in $B d M$ and that the 3 bandles 271 have a certain dasirable property that wo state precisely balow.

Since we are building a contractible (hence parailelieable) manifold wa ment certainly keep each handlebody parallalizable. Now in the proof of Theorem 2 in Winor [14, p. 47] it is shown how to take a given homotopy class in $\pi_{k}\left(\mathrm{Bd} \mathrm{W}^{\circ}\right), k<\frac{\mathrm{H}}{2}$, and paste on a handlo with attaching sphore in the given class so that WU \{handie\} is still pazallelizable. We agree that handles are $a 11$ to be attachod in this way.

Without changing the gradient-like vector field ξ, temporarily make the Korse function nice so that W - Int M is a product $c_{2} c_{3} c_{4}$ of cobordisms $c_{\lambda}=\left(X_{\lambda} ; B_{\lambda-1}, B_{\lambda}\right), \lambda=2,3,4$, with critical points of one index λ only.

Figure 8.1.
If z_{n} is in dimension 2 we add a smail trivial handle at Da in so that tie (contractible) attaching sphere spans a 2-disk in $\mathrm{Ed} \mathrm{Wh}^{\prime}$ which translates along ξ-trajectories to $B d M$.

If z_{n} is in dimension 3, $\partial_{z_{n}}$ datermines a unique element of $\tilde{E}_{2}\left(\tilde{X}_{2}, \widetilde{B}_{1}\right) \cong \pi_{2}\left(X_{2}, B_{1}\right)$, bence a unique element of $\pi_{2}\left(B_{2}\right) \cong \pi_{2}\left(X_{2}\right) \cong$ $\pi_{2}\left(X_{2}, B_{1}\right) \oplus \pi_{2}\left(B_{1}\right)$. (The last isomorphism holds because the 2-handles are capped by disks in $\left.B_{1}=B d M.\right)$ Realize this element of $\pi_{2}\left(B_{2}\right)$ by an intecided oriented 2-sphere S with base path in B_{2}. Slide S to general position in B_{2}; translate it along ξ-trajectories to 3 d i' and add a suitable 3-handle with this attaching 2-sphere.

His assume incuctively that for each 3-handle the attaching 2-spinere in B_{2} gives a class in the surmand $\pi_{2}\left(X_{2}, B_{1}\right)$ of $\pi_{2}\left(B_{2}\right)$. This is the cesirable feature we mentioned above. Notice that the now 3-iarile has this property. We will need this property presently. if the dironsion of z_{n} is $4, \partial z_{n}$ gives a unique class in $E_{3}\left(\tilde{\tilde{H}}_{3}, \tilde{E}_{2}\right)$. We want an imbedded oriented 3-spiere S with base path in z_{3} so that the class of S in $H_{3}\left(X_{3}\right)$ goos to $\partial z_{n} \in$ $\tilde{E}_{3}\left(\tilde{X}_{3}, \tilde{B}_{2}\right)$. Now ∂z_{n} is in the kemel of the composed map to $H_{2}\left(\tilde{X}_{2}, \tilde{B}_{1}\right)$

$$
\begin{aligned}
& : H_{3}\left(\tilde{X}_{3}, \tilde{B}_{2}\right) \xrightarrow{d} H_{2}\left(\tilde{B}_{2}\right) \xrightarrow{\cong} \underset{\| 2}{H_{2}}\left(\underset{\|}{\left(\tilde{x}_{2}\right)} \rightarrow H_{2}\left(\tilde{X}_{2}, \tilde{B}_{1}\right)\right. \\
& \pi_{2}\left(B_{2}\right) \longrightarrow \pi_{2}\left(X_{2}\right) \longrightarrow \pi_{2}\left(X_{2}, B_{1}\right)
\end{aligned}
$$

The property assumed for 3-handles guarantees that Image(d) lies in the sumand $H_{2}\left(\tilde{X}_{2}, \tilde{B}_{1}\right)$ of $E_{2}\left(\tilde{B}_{2}\right)$, i.e. Image (d) goes (1-1) into $H_{2}\left(\tilde{X}_{2}, \tilde{B}_{1}\right)$. Thas $\partial\left(\partial z_{n}\right)=0$ implies $d\left(\partial z_{n}\right)=0$. From tine exact sequence of $\left(\tilde{X}_{3}, \tilde{B}_{2}\right)$ we see that ∂z_{n} is in the image of an alement in $H_{3}\left(\tilde{X}_{3}\right)$. Now the Hurewicz map $\pi_{3}\left(B_{3}\right) \cong \pi_{3}\left(X_{3}\right) \cong$ $\pi_{3}\left(\tilde{X}_{3}\right) \rightarrow H_{3}\left(\tilde{X}_{3}\right)$ is onto. (See [23, p. 167].) So there is a homotopy class s in $\pi_{3}\left(B_{3}\right)$ that goes to $d_{z_{n}} \in H_{3}\left(\tilde{X}_{3}, \tilde{B}_{2}\right)$. Since $\operatorname{dim}\left(B_{3}\right)=w-1 \geq 7$ we can represent s by an imbedded oriented 3-sphore S in B_{3} with base path. This is the desired attaching sphere. We slide it to general position, translate it to Bd W' and add the desired 4-handle with this attaching sphere.

We conclude that with any dimension 2 ; 3 or 4 for z_{n} wo can add a handle at Bd W^{\prime} and extend the Morse function and its equipment to the handle so the subcomplex of C^{\prime} generated by z_{1}, \ldots, z_{n} is raalized, and 211 inductiva assumpitions still hold. Thms the required construction has been defined to establish 8.7. [

Romack 8.9: M^{W} was a smooth compact submanifold of S^{W}. It is easy to add all the required 2, 3 and 4 -handies to M inside s^{w}. Then W will be a contractible open subset of S^{4}.

Chapter IX. Classifying Complotions.

Recall that a completion of a smooth open manifold W is a smooth imbedding i of W onto the interior of a smooth compact manffold \vec{W}. Our Main Theorem 5.7 gives necessary and sutficient conditions for the existence of a completion when dim $W \geq 6$. If a complation does exist one would like to classify the different ways of completing W. We give two classifications by Whitehead torsion corresponding to two notions of equivalence between completions - isotopy equivalence and pseudo-isotopy equivalence. As a corrollary we iind that there exdst diffeomorphisms of contractible open subsets of euclidean space that are pseudo-isotopic but not isotopic. According to J. Cerf this cannot happen for diffeomorphisms of closed 2-connected smooth manifolds of dimension ≥ 6.

For the arguments of this chapter we will frequently need the following

Collaring Unioueness Theorem 9.1. Let V be a smooth manifold with compact boundary M. Suppose h and h, are collarings of M in $V=\nabla i z$. smooth imbeddings of $M>[0,1]$ into V so that $h(x, 0)=h^{\prime}(x, 0)=x$ for $x \in M$. Then there exists a affeomorphisis i of V onto itself, fixing M and points outside some compact risigiborhood of M, so that $h^{\prime}=f o h$.

Tha proof follows directly from the proof of the tubular neighborhood neighborhood uniqueness theorem in Milnor [25, p. 22]. To apply the latter directiy one oan extend h and h to bicollars ($=$ tubular neighborhoods) of M in the double of V.

Definition 9.2. Two collars V, V of a smooth end ε are called parallel if there exists a thixd collar noighborhood $V^{\prime \prime} \subset$ Int $V \cap$ Int y^{\prime} such that the cobordisms V - Int $V^{\prime \prime}$ and V^{\prime} - Int $V^{\prime \prime}$ are diffeomorphic to $B d V^{v} \times[0,1]$.

Iomma 9.3. If V and V are parallel collars and $V \cdot C$ Int V, then $V-\operatorname{Int} \cdot V: \operatorname{Bd} V>[0,1]$.

Proof: Lot $V^{\prime \prime} C$ Int $V \cap$ Int V be as in 9.2. Then V^{*} - Int $V^{\prime \prime}$ is a collar neighborhood of Bad V' in V - Int V". By the collaring uniqueness theorem 9.1 there is a diffeomorphism of V - Int V^{n} onto itself that carries. V^{\prime} - $V^{\prime \prime}$ onto a small standard collar of Bd V' and hence V - Int V ' onto the complement of the small standard collar. Since the 'standard" collar can be so chosen that its complemont is diffeomorphic to $\mathrm{Bd} V>[0,1]$, the Lemma is established. \square

Definition-9.4. If V and V 'are any two collars of e, the difference torsion $\tau(V, V) \in \operatorname{Wh}\left(n_{1} \varepsilon\right)$ is determined as follows. Let $V^{\prime \prime}$ be a collar parallel to V so small that $V^{\prime \prime} C$ Int V. Then (V - Int $V^{\prime \prime} ; \mathrm{Bd} V, \mathrm{Bd} \mathrm{VII}^{\prime \prime}$) is easily seen to be a h -cobordisn. Its torsim is $\tau\left(V, V^{\circ}\right)$.

It is a trivial matter to verify that $\tau\left(V, V^{\prime}\right)$ is well defined and depends only on the parallel classes of V and V. Notice that $\tau\left(V^{\prime}, V\right)=-\tau\left(V, V^{\prime}\right)$ and $\tau\left(V^{\prime}, V^{\prime \prime}\right)=\tau\left(V, V^{\prime}\right)+\tau\left(V^{\prime}, V^{n}\right)$ if Vn is a third coilar. (See kilnor [17, § 11].)

An immediate consequence of Stallings' classification of h -cobordisms (Milnor [17]) is

Theorem 9.5. If $\operatorname{dim} W \geq 6$ and one collar V_{0} of is given,
then the difference torsions $\tau\left(V_{0}, V\right)$, for collars 92 the classes of parallel collars of ε of 6 put the elements of $W h\left(\pi_{1} \varepsilon\right)$.

If W is an open manifold that has a completion and V is a closed neighborhood of ∞ that is a smooth submanifold with $V \approx$ Bd $V \times[0,1)$ we call V a collar of ∞. Apparently the components of V give one collar for each end of W. Thus there is a natural notion of parallelism for collars of ω and Lemma 9.1 holds good. Observe that a completion i: $W \longrightarrow \bar{W}$ of a smooth open mani. fold W determines a unique parallel class of collars of each end ε of W. (This uses collaring uniqueness again.) Conversely if a collar V of ω is specified in W, form \bar{W} from the disjoint union of W and $\mathrm{Bd} V>[0,1]$ by identifying $V \subset W$ with Bd V $x[0,1)$ under a diffeomorphism. Then $1: W G \bar{W}$ is a completion and tie parallel class of collars it determines certainly includes V.

Let $1: W \longrightarrow \bar{W}$ and i' $^{\prime}: W \longrightarrow \bar{W}^{\circ}$ be two completions of tine smooth open manifold W. If $f: \bar{W} \longrightarrow \bar{W}$ is a diffeomorphism $i^{\prime \prime}$ the induced diffeororphism $f^{\prime}: W \rightarrow W$ is defined by $f^{\prime}(x)=$

Proposition 9.6. Tao completions i and il determine the same class of parallel collars of ∞ if and only if for any prescribed compact set $K \subset W$ there exists a diffeomorphism $f: \bar{W} \longrightarrow \bar{W}$. so that the induced diffeomorphism of W fixes K.

Proof: Lot $K C W$ be a given compact set. Let \bar{V} be a collar of $\mathrm{Ed} \bar{W}$ so small that $V=1^{-1}(\bar{V})$ does not meet K. If i and
i. determine the same class of collars at each ond of W, the closure \bar{V}, of $i^{\prime}(V)$ in \bar{W}^{\prime} is a collar of Bd $\overline{W^{\prime}}$. Lat $f_{0}:$ Int $\bar{W} \longrightarrow$ Int \bar{W} ' bo the diffecmorphism given by $f_{0}(x)=i^{\prime} 0^{-1}(x)$. Let C be a collar of $i(B d V)$ in \vec{V}. The collaring uniqueness theorea 9.1 shows that the map $f_{0} \mid C$ extends to a diffeomorphismim $f_{1}: \bar{V}$ $\longrightarrow \overline{\mathrm{V}}$. Now define $\mathrm{f}: \overline{\mathrm{W}} \longrightarrow \overline{W^{r}}$ to be f_{0} on $(\bar{W}-\overline{\mathrm{V}}) \cup \mathrm{c}$ and f_{1} on \vec{V}. Since f_{0} coincides with f_{1} on C, f is a diffeomorphism. The induced map $f: W \longrightarrow W$ fixes $W-V$ and nence K.

The reverse implication is easy. If V is a coilar of in the class determined by i, choose a diffeomorphism if $\bar{W} \longrightarrow$ \bar{W} ' so that the incuced map $\mathrm{F}^{\prime}: \mathrm{W} \longrightarrow \mathrm{W}$ fixes $\mathrm{W}-$ Int V : Then. $f^{\prime}(v)=V$ is a coller in the class for i'. $[0$

Let 1: $W \longrightarrow \bar{W}$ and $1:: W \longrightarrow \bar{W}^{*}$ be tro complations of the swooth opon manifold W. By 9.4 and the discussion preceeding Proposition 9.6 there is a natural way to define a difference torsion $\tau\left(i, i^{\prime}\right) \in W h\left(\pi_{1} \varepsilon_{1}\right) \times \ldots \times \operatorname{Wh}\left(\pi_{1} \varepsilon_{k}\right)$ where $\varepsilon_{1}, \ldots, \varepsilon_{k}$. are the oxds of W. Combining Thooram 9.5 and Proposition 9.6 we got

Theorgm 9.7. If dim $w \geq 6, \tau(i, \pm)=0$ if and oniy if given any compact $K C W$ there exists a diffeomorphism $f: \bar{W} \longrightarrow \bar{W}^{\prime}$ so that the induced 山iffeomorphism $f \prime: W \longrightarrow W$ fixes x. Furthor, if i is fixad, evary possible torsion occurs as in varies. []

Recall that two diffeoworphisms f and g of a swooth manifold W onto itself are called (smoothly) isotopic [respectively psoudo-isotopic] if there exists a level preserving [respectively not nocessarily lovel preserving ciffeomorphism F: W $\times[0,1] \longrightarrow$ $W \times[0,1]$ so that $F \mid W>0$ gives $f>0$ and $F \mid W>1$ gives $g>1$.

Dofinition 9.8. Let i: $W \longrightarrow \bar{W}$ and i': $W \longrightarrow \bar{W}, ~ 94$ tions oi the smooth open manifold W. W be two compleaient [resp, osoudo-isotopr We say i is isotopy equivdisieozorphism $f, \bar{W} \longrightarrow \bar{W}$. solvalent] to i if there exists a $f^{\prime}: W \longrightarrow W$ is isotopi so that the induced diffeomorphism AIso say i a Also, we say i and i' are perfectly equivalent if there exists a difieomorphism $f: \bar{W} \longrightarrow \bar{W}$ so that the induced diffeomorphism $f^{\prime}: W \longrightarrow W^{\prime}$ is the identity - or equivalently so that $1^{\prime}=f_{\circ i}$. We examine perfect equivalence first. The completions i an i^{\prime} are apparentily perfoctly equivalent if and only if the map $I_{0}:$ Int $\bar{W} \longrightarrow$ Int $\bar{W} r$ given by $f_{0}(x)=i^{\prime}\left(i^{-1}(x)\right)$ extends to a diffeomorphism $\bar{W} \longrightarrow \bar{W}^{\prime}$. Notice that if the map f_{0} extends to a continuous map $f_{1}: \bar{W} \longrightarrow \bar{W}$, this map is unique. Thus i and i" are perfectiy equivalent precisely when f_{1} exists and turns out to bo smooth, 1-1 and smoothly invertible.

Although perfect equivalence is perhaps the most natural of the tiree above it is unreasonably stringent at least from the point of vien of algebraic topology. For example we easily form uncountably many completions of Int D^{2} (or Int $D^{n}, n \geq 2$) as follows. If S is a segnent on $B d D^{2}$ lat i: Int $D^{2} \longrightarrow D^{2}$ be any completion which is the restriction of a swooth map $g: D^{2} \xrightarrow{\text { onto }} D^{2}$ that collapses S to a point but maps $D^{2}-S$ diffeomorphically. (Such a map is easy to construct.;

Figure 9.1.

Let r_{θ} be the rotation of Int D^{2} through an angle θ. Then for distinct argles θ_{1}, θ_{2} the completions ior θ_{1}, ior θ_{2} are distinct. In fact the induced map Int $D^{2} \longrightarrow$ Int D^{2} does not extend to a contimous map $D^{2} \longrightarrow D^{2}$. Apparently these completions would not even be perfectly equivalent in the topological category.

For a somewhat less obvious reason, there are uncountably rany completions of Int $D^{1}=(-1,1)$ no two of which are perfectiy equivalent. If i and i^{\prime} are two completions $(-1,1) \longrightarrow[-1,1]$ there is certainly an induced homeomorphism f_{1} of $[-1,1]$ onto itself that extends the monotone smooth function $f^{\prime}(t)=i^{\prime}\left(i^{-1}(t)\right)$. Up to a perfect equitralence we can assume that $i(t) \longrightarrow 1$ and $i^{\prime}(t) \longrightarrow 1$ as $t \longrightarrow 1$. Let $h:(-1,1) \longrightarrow(0, \infty)$ be the map $h(t)=(1+t) /(1-t)$ and form the functions $g(t)=h \circ i(t)$; $g^{\prime}(t)=h_{0} i^{\prime}(t)$. In case i and i^{\prime} are perfectly equivalont f_{1} is a diffeomorphisa and one can verify that $g(t) / g^{\prime}(t)$ has Ifinit $D f_{1}(1)$ as $t \longrightarrow 1$ and Iimit $1 / D f_{1}(-1)$ as $t \longrightarrow-1$. (Hint: $\operatorname{DfP}^{\prime}(t)=\left(D_{i}{ }^{\prime}\left(i^{-1}(t)\right)\right) /\left(D_{i}\left(i^{-1}(t)\right)\right)$ is shown to have the same limit as $\left\{g(t) / g^{\prime}(t)\right\} \pm 1$ when $t \longrightarrow \pm 1$ by applying 1"Hospital's rule.) For any positive real number α consider the completion $i_{\alpha}(t)=h^{-1}\left(h(t)^{\alpha}\right)$ and the map $g_{\alpha}(t)=h\left(i_{\alpha}(t)\right)=h(t)^{\alpha}$. When α and β are distinct positive real numbers

$$
\frac{g_{\alpha}(t)}{g_{\beta}(t)}=\frac{h(t)^{\alpha}}{h(t)^{\beta}}=h(t)^{\alpha-\beta}
$$

does not converge to a finito non-zero value as $t \longrightarrow \pm 1$. Thus the above discussion shows that i_{α} and i_{β} cannot be perfectly oquivalent.

Using the idea of our first example one can show that if a smooth open manifold $W\left(\neq D^{1}\right)$ has one completion, then it has $2^{x_{0}}$ completions no two of which are perfectiy equivalent. In fact up to perfect equivalencethere are exactly $2^{x 0}$ completions. To show there are no more observe that
(s) If \bar{W} is fixed there are at most $2^{N_{0}}$ completions is W $\longrightarrow \bar{W}$, since there are only $2^{K 0}$ continuous maps $W \rightarrow \bar{W}$.
(b) There are only $2^{\mathcal{N O}_{0}}$ diffeomorphsim classes of amooth manifolds since each smooth manifold is imbeddable as a closed smooth sabmanifold of a euclidean space.

We have already studied isotopy oquivalence in another gaise.

Proposition 9.9. The classification of completions up to isotopy oquivalence is just classification according to the corresponding farilies of parallel collars of $*$

Proof: Let $i: W \longrightarrow \bar{W}, I^{\prime}: W \longrightarrow \bar{W}^{\prime}$ be two completions and $f: \bar{W} \longrightarrow \bar{W}$ a diffeomorphism so that the induced diffeomorphism $I^{\prime}: W \longrightarrow W$ is isotopic to the identity. We show that collars $V, V:$ of ∞ corrasponding to i, i " are necessarily parallel. Wo know that $f^{\prime \prime}(V)$ is parallel to V^{\prime}. Consider the isotopic deFomation of $j: B A V G W$ induced by the isotopy of f " to $1_{W}{ }^{\prime \prime}$ Using Tana's Isctopy Extonsion Theorem [25] we can extond this to an isotopy $b_{t}, 0 \leq t \leq 1$ of 1_{W} that ifizes points outside some compact set K. If wo choose V so small that V, $\cap K=\phi$, h_{t} fires V^{\prime}. Now $h_{1}(V)=f^{\prime}(V)$ and $h_{1}\left(V^{\prime}\right)=V^{\prime}$ so V - Int V^{\prime} $\approx h_{1}\left(V-\operatorname{Int} V^{\prime}\right)=h_{1}(V)-\operatorname{Int} V^{\prime}=f^{\prime}(V)-\operatorname{Int} V^{\prime} \approx B d^{\prime} V^{\prime}>[0,1]$ which means V and V are parallel.

To prove the opposite tmplication suppose V CW is a collar of ∞ for both 1 and i^{-}. Thus there are diffeomorphisms:

$$
\begin{aligned}
& h: i(V) \cup B d \bar{W} \longrightarrow \operatorname{Bd} V>[0,1] \\
& h^{\prime}: i^{\prime}(V) \cup \mathrm{Bd} \bar{W}^{*} \longrightarrow \operatorname{Bd} V \times[0,1] .
\end{aligned}
$$

Using the collaring uniqueness theorem 9.1 we see that h can be altered so that $h^{\prime} \cdot h^{-1}$ fixes points near $\mathrm{dd} V>0$. Define $f: \bar{W} \longrightarrow \vec{W}{ }^{0}$ by

$$
f(x)= \begin{cases}i^{\prime}\left(i^{-1}(x)\right) & \text { for } x \notin i \text { (Int V) } \\ h^{-1} h(x) & \text { for } x \in i(V) \cup B d \bar{W}\end{cases}
$$

Then f is a diffeomorphism such that the induced diffeomorphism $f^{\prime}: W \longrightarrow W$ fixes a neighborhood of W - Int V. The following lerma provides a smooth isotopy of f ' to 1_{W} that actually fixos a naighborhood of W - Int Y. $[$

Lerma 9.10. Let M be a closed smooth manifoid and g be a diffeomorphism of $M>[0,1)$ that fixes a neighborhood of $M \times 0$. Then there exists an isotopy $g_{t}, 0 \leq t \leq 1$, of the identity of $M>[0,1)$ to g that fixes a noighborhood of $M>0$. Proof: The isotopy is $g_{t}(m, x)=\left\{\begin{array}{ll}(n, x) & \text { if } t=0 \\ \operatorname{tg}\left(m, \frac{x}{t}\right) & \text { if } t \neq 0\end{array}\right.$ where $(m, x) \in A x[0,1) .0]$

We now discuss the looser pseudo-isotepy equivalence between completions. For simplicity we initially suppose that the smooth open manifold W^{n} has just one end ε. Then if i: $W \longrightarrow \bar{W}$ and $i^{\prime}: W \longrightarrow W^{\prime}$ are two completions there is by 9.5 and 9.9 a difference
torsion $\tau\left(i, i^{\prime}\right) \in W_{n}\left(\pi_{1} \varepsilon\right)$ that is an invariant of isotopy equivalence, and, provided $n \geq 6$, classifies completions i' as i" varies while i remains fixed. Here $\tau\left(i, 1^{9}\right)=\tau\left(V, V^{\prime}\right)$ where V and V ' are collars corresponding to i and i ".

Theorem 9.11. Suppose the manifold W^{n} above has dimension $n \geq 5$. If the completion i is pseudo-isotopy equivalent to i ", then $\tau\left(i, i^{\prime}\right)=\tau_{0}+(-1)^{n-1} \tau_{0}$ where $\tau_{0} \in W h\left(\pi_{1} \varepsilon\right)$ is an element so that $j_{*}\left(\tau_{0}\right)=0 \in W_{n}\left(\pi_{1} W\right)$. If $n \geq 6$ the converse is true. (Here j_{*} is the inclusion induced map $W h\left(\pi_{1} \epsilon\right) \rightarrow W h\left(\pi_{1} W\right)$ and $\bar{\tau}_{0}$ is the conjugate of τ_{0} under the involution of $W h\left(\pi_{1} c\right)$ discussed by filnor in $[17$, p. 49 and pp. 55-56].)

Proof of Theorem 9.11: First we explain the construction that gives the key to the proof. Given a smooth closed manifold $M^{m}, m \geq 4$, we form the unique (relative) h-cobordism X with left end $M>[0,1]$ that has torsion $\tau \in \operatorname{Wn}\left(\pi_{1} M\right)$. It is understood that X is to give prociact cobordisms X_{0} and X_{1} over $M>0$ and $M>1$.

Figure 9.30

The construction in Minor [17, p. 58] applies with only obvious : changes needed because $\times[0,1]$ has a boundary. We will call X the wedge over $M>[0,1]$ with torsion τ.

Notice that the right hand end $d_{+} X$ of X gives a $h-c o-$ bordism between the right hand ends $\partial_{+} X_{0}$ and $\partial_{+} X_{1}$ of X_{0} and X_{1} • The torsion of $\partial_{+} X_{0} G X$ is τ and the torsion of $\partial_{+} X G X$ is $(-1)^{m+1} \bar{\tau}$ by the duality theorem of Minor [17]. It follows that the torsion of $\partial_{+} X_{0} c \partial_{+} X$ is $\tau-(-1)^{m+1} \bar{\tau}=\tau+(-1)^{m / \tau}$ by [17, p. 35].

Observe also that, as a cobordism X_{0} to X_{1}, X has a two-sided inverse, namely the wedge over $M>[0,1]$ with torsion $-\tau$. Then the infinite product argument of Stallings [10] shows that $X-X_{0} \approx X_{1} \times[0,1)$.

We now prove the first statement of the theorem, Suppose that there exists a diffeororphism $f: \bar{W} \longrightarrow \bar{W}^{0}$ so that there is a pseudoisotopy F of the induced map $f^{\prime}: W \longrightarrow W$ to the identity. The pseudo-isotopy F is a diffeomorphism of $W>[0,1]$ that gives the identity on $W>0$ and $f^{\prime \prime}>1$ on $W>1$. It will be convenient to identify W with $i(W) \subset \bar{W}$.

Figure 9.4.

If V is a collar neighborhood for i, the closure \bar{V} of V in \bar{W}; is a collar of $\mathrm{Bd} \bar{W}$, and the closure $F(V \times[0,1]) \subset B d \bar{W}$ $x[0,1]$ of $F(V \times[0,1])$ in $\bar{W} \times[0,1]$ is a wedge over $\bar{V}<0$ with torsion τ_{0} say. Now $f^{\prime}(V)$ is a collar V corresponding to 1^{\prime}. So the end of the wedge $f^{\prime}(V)>1 U \mathrm{Bd} \bar{W}>1 \subset \bar{W}>1$ gives a h -cobordism with torsion $-\tau\left(i, i^{\prime}\right)=\tau_{0}+(-1)^{n-1} \bar{\tau}_{0}$. Since the product cobordism $\bar{W} \times[0,1]$ is the union of the wedge over $\overline{\mathrm{V}}>0$ with torsion τ_{0} and another product, the Sum Theorem for Wiatehead Torsion 6.9 says that $j_{*}\left(\tau_{0}\right)=0 \in \mathrm{~Wh}\left(\pi_{1} W\right)$. This completes the proof of the first statement.

To prove the converse assertion suppose that $\mathcal{T}\left(i, i^{\prime}\right)$ has the form $\tau_{0}+(-1)^{n-1} \bar{\tau}_{0}$, where $j_{*}\left(\tau_{0}\right)=0 \in W h(\pi W)$. As above W is identified with $i(W)=$ Int \bar{W}, \bar{V} is a collar of Bd \bar{W} and $V=\bar{V}-\mathrm{Bd} \bar{W}$ is a collar of ε. Form the wedge over $\overline{\mathrm{V}}$ with torsion τ_{0}, choosing X_{0} over AdV (not $B d \bar{W}$). From X and $W>[0,1]$ form a completion 2 of $W>[0,1]$ (in the sense of 10.2) by identifying $X-X_{1} \approx X_{0} \times[0,1)$ with $V>[0,1] \approx \operatorname{Bd} V>[0,1]$. $x[0,1)$ under a diffieomorphism that is the identity on the last factor $[0,1)$, and matches X_{0} with $\operatorname{Bd} V>[0,1]$ in the natural way. $W \times 1$

Figure 9.5.

Now Z is a compact h-cobordism from a manifold we can identify with \bar{W} to a manifold we call $\overline{W^{\prime \prime}}$. We claim that the completion $1^{\prime \prime}: W \xrightarrow{i d>1} W>1 G \bar{W}^{\prime \prime}$ is isotopy equivalent to $1^{\prime \prime}$. For $d_{+} X=V>1 \cup$ Bd $\overline{W^{\prime \prime}}$ is a h-cobordism with torsion $\tau_{0}+$ $(-1)^{m^{m}} \tau_{0}$. So $-\tau\left(i, i^{n}\right)=\tau_{0}+(-1)^{n-1} \tau_{0}=-\tau\left(i, i^{\prime}\right)$. Thus $\tau\left(i^{\prime}, i^{n}\right)=0$. Since $n \geq 6$ our claim is verified.

Also $\left(Z ; W, W^{n \prime \prime}\right)=0$, since Z is the union of a product cobordism and the wedge \dot{X} with torsion τ_{0} satisfying $j_{*} \tau_{0}=0$. (c.f. 6.9). By the s-cobordism theorem (Wall [2]), $z \approx \bar{W}>[0,1]$. Any such product structure gives a diffeororphism $\bar{W} \longrightarrow \bar{W}^{n \prime}$ and a pseudo-isotopy to the identity of the induced map $W \longrightarrow W$ (since $2-X_{1}$ is by construction $\left.W \times[0,1]\right)$. As i and $i^{\prime \prime}$ are isotopy equivalent there is a diffeomorphism $\bar{W} \longrightarrow \bar{W}$ and an isotopy to the identity of the induced map $W \longrightarrow W$. Thus the composed diffeomorphism $\bar{W} \longrightarrow \bar{W} \longrightarrow \bar{W}$. induces a map which is psordoisotopic to the identity. This completes the proof. \square

Remark 1) If instead of one end ε, W has a finite set of onds $\varepsilon=\left\{\varepsilon_{1}, \ldots, \varepsilon_{k}\right\}$, Theoren 9.11 generalizes almost word for word. In the statement, Wh $\left(\pi_{1} \varepsilon\right)$ is $W h\left(\pi_{1} \varepsilon_{1}\right)>\ldots \times W_{i}\left(\pi_{1} \varepsilon_{k}\right)$ and j_{*} is induced by the maps $\pi_{1}\left(\epsilon_{i}\right) \longrightarrow \pi_{1}(W), i=1, \ldots, k$.

Remark 2) As a furthor generalization one can consider the problem of completing only a subset ε of all the ends of W while leaving the other ends open. Thus a completion for ε is a smooth imbedding of W onto the interior of a swooth manifold W^{\prime} so that the components of a collar for Ed W' give collars for onds in c (and no others.) With the obvious definition of pseudo-isotopy equivalence
9.11 is generalized by substituting a quotient $\mathrm{Wh}\left(\pi_{1} \mathrm{~W}\right) / \mathrm{N}$ for $W h\left(\pi_{1} W\right)$. Here N is the subgroup generated by the images of the maps $W h\left(\pi_{1} \epsilon_{i}\right) \longrightarrow W h\left(\pi_{1} W\right)$ where ε_{i} ranges over the ends not in the set ε. This is justified by the following theorem.

Let W^{\prime} be a smooth manifold with $\mathrm{Bd} \mathrm{W}^{\prime}$ compact so that Wo admits a completion. An h-cobordism on W is by definition a relative (non-compact) cobordism ($V ; W^{\prime \prime}, W^{\prime \prime}$) so that V has a completion \bar{V} (in the sense of 10.2) which gives a compact relative h-cobordism $\left(\bar{V} ; \bar{W}^{\prime}, \bar{W}^{\prime \prime}\right)$ between a completion $\bar{W}^{\prime \prime}$ of W^{\prime} and a completion $\overline{W^{\prime \prime}}$ of $W^{\prime \prime}$. The h-cobordism is understood to be a product over $B d \bar{W}^{\top}$. Let N be the subgroup of $W h\left(\pi_{1} W^{\prime}\right)$ generated by the images of the maps $W h\left(\pi_{1} \varepsilon^{0}\right) \longrightarrow W h r_{1} W$ as ε^{\prime} ranges over the ends of W^{\prime}.

Theorem 9.12. If din $W^{\prime} \geq 5$, the h-cobordisms on W^{\prime} are classified up to diffeomorphism fixding W^{\prime} by the elements of $W\left(\pi_{1} W^{\prime}\right) / N$.

I omit the proof. It is not difficult to derive from Stallings, classification of (relative) h-cobordisms (c.f. [17, p. 58].) with the help of the wedges described on page 99. The torsion for ($\mathrm{V} ; \mathrm{W}^{\prime}, \mathrm{H}^{\mathrm{n}}$) above is the coset $\tau\left(\overline{\mathrm{V}} ; \bar{T}^{\prime}, \bar{W}^{\prime \prime}\right)+\mathrm{N}$.

Jean Cerf has recently established that pseudo-isotopy implies isotopy on smooth closed n-manifolds, $n \geq 6$, that are 2-connectod (c.f. [28]). Thaorem 9.13 shows this is false for open manifolds .- oven contractible opon subsets of ouclidean space.

Theorem 9.13. For $n \geq 2$ there exists a contractiole smooth open manifold $W^{2 n+1}$ that is the interior of a smooth compact manifold
and an infinite sequence $f_{1}, f_{2}, f_{3}, \ldots$ of diffeomorphisms of W onto itself such that all are pseudo-isotopic to $1_{\text {W }}$ but no two are smocithly isotopic. Furtiner for each $n \geq 2$ this occurs with iniinitely many topologically distinct contractible manifolds like W, each of which is an open subset of $\mathrm{R}^{2 \mathrm{n}+1}$.

Pemark 1) The maps $x_{k}>1_{R}: W>R \longrightarrow W \not C R, k=1,2, \ldots$ are ail smcothly isotopic.

Pron of Pemare: If $W \approx \operatorname{Int} \bar{W}, W \times R \approx \operatorname{Int}(\bar{W} \times[0,1])$. But $V \times[0,1]$ (with comers smoothed) is a contractible smooth manifold with simpiy connected boundary - - hence is a smooth ($2 n+1$)-disk by [4, §9.1]. Tmus $W \times R \approx R^{2 n+1}$ and it is well known that any tro orientation preserving diffeomorphisms of $R^{2 n+1}$ are isotopic (see $[4, \mathrm{p}, 60]$). \square

Estark 2) To extend 9.13 to allow even dimensions (≥ 6) for W, I would need a torsion τ with $\bar{\tau} \neq \tau$, (for the standard involution), and none is knom for any group. However using the example Wh $\left(z_{8}\right)$ with $\tau^{*}=-\tau[17, p .56]$ one can distinguish isotopy and psendo-isotopy on a suitable non-orientable $W=\operatorname{Int} \bar{W}^{2 n}, n \geq 3$, where \bar{W} is smooth and corcpact with $\pi_{1}(W)=z_{2}, \quad \pi_{1} B d \bar{W}=z_{8}$.
Pemark 3) I do not know whother pseudo-isotopy implies isotopy for diffeomomisms of open manifolds that are interiors of compact manifolds with 1-connectad boundary. Also it seems important to decide this for diffeomorphisms of closed smooth manifolds that are not 2-comected.

Proof of Theorem 9.13: We suppose first that n is ≥ 3. Form
a contractible smooth compact manifold $\bar{W}^{2 n+1} \subset s^{2 n+1}$ with $\pi_{1} B d \bar{W}$ $=\pi$ tine binary icosahedral group $\left\{a, b ; a^{5}=b^{3}=(a b)^{2}\right\}$ (see page 84), and let $W=\operatorname{Int} \vec{W}$. In Lema 9.14 belos we shor that there is a mapping $\varphi: Z_{5} \rightarrow \pi$ so that $\varphi_{*}: W h\left(Z_{5}\right) \rightarrow W h(\pi)$ is $1-1$. Ey ininor $[17, p .26] \mathrm{Wh}\left(\mathrm{Z}_{5}\right)=\mathrm{Z}$ and $\tau=\bar{\tau}$ for all $\tau \in \mathrm{Wh}\left(\mathrm{Z}_{5}\right)$ - hence for all elements of $\varphi_{*} W h\left(Z_{5}\right)$. Let β be a generator of $p_{*} \dot{\operatorname{wn}}\left(Z_{5}\right)$ and Eorm completions $i_{k}: W \longrightarrow \bar{W}_{k}$ of $W, k=1,2, \ldots$ such inat $\tau\left(\dot{i}, \dot{1}_{k}\right)=k \beta+(-1)^{2 n \bar{k} \bar{\beta}}=2 k \beta$ where i: $W G \bar{W}$. Since $\pi_{1} W=1,9.11$ says that i and f_{k} are pseudo-isotopy equivalent i.e. there exists a diffeomorphism $g_{k}: W \longrightarrow \vec{W}_{k}$ so that the induced diffeonorphism $f_{k}: W \longrightarrow W$ is pseudo-isotopic to 1_{W}, $k=1,2, \ldots$. If f_{j} were isotopic to $f_{k}, j \neq k, f_{k} \circ f_{j}^{-1}, W$ \longrightarrow iN would be isotopic to 1_{W}. Aut $f_{k}^{-1} \circ f_{j}$ is induced by $g_{k} \cdot g_{j}^{-1}: W_{j} \longrightarrow W_{k}$. Hence i_{j} and i_{k} would be isotopy equivalent in contradiction to $\tau\left(i_{j}, i_{k}\right)=2(k-j) \beta \neq 0$.

When $n=2$, i.e. $d i m W=5$, the above argument breaks down in two spots. It is not apparent that i_{k} exists with $\tau\left(i, i_{k}\right)$ $=2 k^{3}$. And when j_{k} is constructod it is not clear that it is pseudo-isotopy equivalent to i. Repair the arganent as follows. If V is a collar corresponding to i, let V_{k} Int V be a colLar such that the n-cobordisn $V-$ Int V_{k} is diffeomorphic to the rigint end of the wedge over $\operatorname{Bd} V>[0,1]$ with torsion k, Thon $\gamma\left(V, V_{k}\right)=k \beta+(-1)^{4} k \beta=2 k \beta$. So $\gamma\left(i, i_{k}\right)=2 k \beta$ if we let $i_{k}{ }^{2}$ $W \rightarrow \bar{W}_{k}$ be a completion for which V_{k} is a collar. To show that this particular i_{k} is pseudo-isotopy equivalent to i we try to folion the proof for the second statement of 9.11 taking $i^{\prime \prime}=i_{k}$ and $\tau_{0}=k \beta$. What needs to be adjusted is the proof on page 101 that
$i^{\prime \prime}$ and 土' ($^{\prime}=i_{k}$) are isotopy equivalent. Now, if $V^{\prime \prime} \subset$ Int V is a collar for $i^{\prime \prime}$, it is clear that V - Int $V^{\prime \prime}$ is diffeomorphic to $d_{+} X$, the right hand end of the wedge over $\mathrm{Bd} V \times[0,1]$ with torsion $\tau_{0}=k \beta$. But in our situation V - Int V_{k} is by construction diffeomorphic to $\partial_{+} X$. Eecause $\partial_{+} X$ is an invertible h-cobordism (page 99), $V^{\prime \prime}$ and V_{k} are parallel collars. Thus 9.9 says that $i^{\prime \prime}$ and $i^{\prime \prime}=\boldsymbol{I}_{k}$ are isotopy equivalent. The rest of the argument on page 101 establisies that i and $i^{\prime}=i_{k}$ are pseudo-isotopy equivalent.

Finally wo give infinitoly many topologically distinct contractible manifolds like $W \subset R^{2 n+1}$. Let W_{s} be the interior of the connected sum along the boundary of s copies of $\bar{W}, s=1,2, \ldots \ldots$ Now $W^{2 n+1} \subset n^{2 n+1}=s^{2 n+1}-\{$ point $\}$, and the comnected sum can cleariy be formed inside $R^{2 n+1}$. Hence we can suppose $W_{s} \subset R^{2 n+1}$. W_{S} is distinguished topologically from $W_{r}, \quad r \neq s$, by the fundariental group of the enci which is the s-fold free prodact of π. As Wh is a functor Whrt is a natural sumand of $\mathrm{Wh}(\pi * \ldots * \pi)$. Eence the argument for W will also work for W_{S}. This completes the proof of 9.13 modilo Lemma 9.14. $[$

Lema 9.14. There is a homomorphism $\varphi: Z_{5} \longrightarrow \pi=\left\{a, b ; a^{5}=\right.$ $\left.b^{3}=(a b)^{2}\right\}$ so that $\varphi_{*}: \ln \left(z_{5}\right) \longrightarrow \operatorname{Wa}(\pi)$ is $1-1$.

Proof: By [17, p. 26] $\mathrm{Wn}\left(z_{5}\right)$ is infinite cyclic with generator α represented by the unit $\left(i+t^{-1}-1\right) \in Z\left[Z_{5}\right]$ where t is a genorator of Z_{5}. The quotiont $\left\{a, b: a^{5}=b^{3}=(a b)^{2}=1\right\}$ of π is the rotation group A_{5} of the icosahedron (see [21, pp. 67-69]). π has order 120 and A_{5} has order 60 so $a^{10}=1$ in π. Thus
ze can define $\varphi(t)=a^{2} \in \pi$.
To show that φ_{*} is $1-1$ in $W h(\pi)$ it will suffice to give
a komomorphtsm

$$
h: \pi \longrightarrow 0(3)
$$

so that in we apply h to $\varphi\left(t+t^{-1}-1\right)=a^{2}+a^{-2}-1$ we get a matrix K with determinant not equal to ± 1. For by Milnor [17, p. 36-40] h determines a homomorphism h_{*} from Wh(π) to the multiplicative group of positive real numbers, and $h_{*} Y_{*}(\alpha)=\mid$ dot $M \mid$.

The homomorphism we choose is the composite

$$
\pi \longrightarrow A_{5} \longrightarrow 0(3)
$$

winere the second map is an inclusion so chosen that $a \in A_{5}$ is a rotation about the zaxis through angie $\theta=72^{\circ}$. Trus

$$
h(a)=\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)
$$

and $\dot{a}\left(a^{2}+a^{-2}-1\right)=\left(\begin{array}{ccc}2 \cos 2 \theta-1 & 0 & 0 \\ 0 & 2 \cos 2 \theta-1 & 0 \\ 0 & 0 & 1\end{array}\right)$
wincic ias determinant $\neq \pm 1$. $[$

Chapter X.- The Main Theorem Relativized and

Apolications to Mandfold Pairs.

We consider smooth manifolds W^{n} such that $B d W$ is a manifold without boundary that is diffeomorphic to the interior of 2 smooth compact manifold. A simple example is the closed upper half plane. An end ε of W is tane if it is isolated and satisfies conditions 1) and 2) of Definition 4.4 on page 24. In defining a k-neighborhood V of an end ϵ of W, $k=0,1,2, \ldots$, we must insist that V be a closed submanifold of W so that $V^{*}=V \cap B d W$ is a swooth, possibly empty, submanifiold of $B d W$ with $V: \neq B d V \cdot$ $x[0, \infty)$. The frontier $b V$ of V in W mast be a smooth compact submanifold of W that noets $\mathrm{Bd} W$ transversely; in $\mathrm{Bd}(\mathrm{bV})=\mathrm{Ad} V$. Otherwise the definition of k-neighborhood is that given in 2.4 , 3.9 and 4.5 , with frontier substituted for boundary. To show that an isolated end ε of W has arbitrarily small 0 -neighborhoods. form a proper smooth map

$$
f: W \longrightarrow[0, \infty)
$$

so that

1) $f \mid \mathrm{Bd} W$ is a proper Morso function with onily finitely many critical points.
2) f is the restriction of a proper Morse furction f on the double DW.
(To do this ons first fixes $f \mid B d W$; then construets f^{\prime} by the methods of Vilnor [4, §2].) Then follow the argament of 2.5 to the desired conclusion remembering that frontier should replace boundaries.

If ε is an isolated end of W so that π_{1} is stable at ε and $\pi_{1}(\varepsilon)$ is finitely presented, then ϵ has arbitrarily small 1-neighborhoods. (The proof of 3.9 is easily adapted.) Thus we can give the following definition of the invariant $\sigma(\varepsilon)$ of a tame end ε. Consider a connected neighborhoods V of ε that is a smooth submanifold (possibly with corners) having compact frontier and one end. If V is so small that $\pi_{1}(\varepsilon) \longrightarrow \pi_{1}(V)$ has a left inverse r then $v \in D$ and

$$
r_{*} \sigma(v) \in \widetilde{K}_{0}\left(\pi_{1} \varepsilon\right)
$$

is an invariant of ε (see Proposition 7.6). Define $\sigma(\varepsilon)=x_{*} \sigma(V)$. A collar for an end ε of W is a connected neighborhood ∇ of ε that is a closed submanifold W such that the frontier $b V$ • of V is a compact smooth submanifold of W (possibly with boundary), and V is diffeomorphic to $b V>[0, \infty)$.

Relativized Rain Theorem 10.1. Suppose $W^{n}, n \geq 6$, is a smooth mantiold such that $B d W$ is diffeomorphic to the interior of a compact manifold. If ϵ is a tane end of W the invariant $o(\varepsilon)$ $\widetilde{K}_{0}\left(\pi_{1} \epsilon\right)$ is zero if and only if ϵ has a collar noighborhood.

Proof: We have already observed that ε has arbitrarily small 1neighoorhoods. To complete the proof one has to go back and generalize the argument of Chapters IV and V. There is no difficulty in doing this; one has only to keep in mind that frontiers of k-neighborhoods are now to replace boundaries, and that all handle operations are to be performed away from Bd W. This should be sufficient proof. [

Suppose again that W. is a smooth manifold such that Bd W is diffeomorphic to the interior of a compact smooth manifold.

Defintion 10.2. A completion of W is a smooth imbedding is W $\longrightarrow \bar{W}$ of W onto a compact smooth manifold so that i (Int W) $=$ Int \bar{W} and the closure of $i(B d W)$ is a compact smooth manifold with interior i (Bd W). If NI is a properly imbedded submanifold so that Bd N is compact and N meets Bd W in Bd N , transversely, we say i gives a completion of (W, N) if the closure of $i(N)$ in \bar{W} is a compact submanifold \bar{N} that mests $B d W$ in $B d N$, transversely.

When W has a completion a collar of es is a neighborhood V of so that $b V$ is a smooth compact submanifold and $V \approx b V$ $\times[0,1)$. Notice that W has a completion if (and only if) it has finitely many ends, each with a collar. The natural construction for \bar{W} (c.i. page 92) yields a manifold $\bar{W} \supset W$ that has corners at the frontier of $\mathrm{Ed} W$. Of course they can be smoothed as in 2ifno: [9].

For the purposes of the theorem below observe that if the end ε of the Pelativized Main Theorem has one collar, then one can easily find another collar V of ε so that $V \cap B d W$ is a prescribed collar of the ends of $\mathrm{Bd} W$ contained by ε.

The following theorem isapartial generalization of unknotting theoress for H^{k} in $R^{n}, n-k \neq 2$. (See Theorem 10.7.) It might be called a 'peripheral unknotting theorem'. The notion of tameress and the invariant σ are essential in the proof but obligingly disappear in the statement.

Theorem 10.3. Let W be a smooth open manifold of dimension $n \geq 6$ and N a smooth properly imbedded submanifold (without boundary). Suppose W and N separately admit a boundary. If N has codinension ≥ 3 or else has codimension one and is 1-connected at each end, then there exists a compact pair (\bar{W}, \bar{N}) such that $W=$ Int \bar{W}, $N=\operatorname{Int} \bar{N}$.

Complement 10.4. It is a corollary of the proof we give and of the observation above that \bar{N} can be chosen to determine a prescribed collar of ∞ in N.

Remarks: A counterexample for codimension 2 is provided by an infinite string K in R^{3} that has evenly spaced trefoil knots.

(R^{3} - K has non-finitely generated fundamental group -- see page 49). The boundary of a tubular neighborhood of K gives an example for codimension 1 showing that a restriction on the ends of N is necessary. To get examples in any dimension ≥ 3 consider $\left(R^{3}, K\right) \nless R^{k}, \quad k=0,1,2, \ldots$.

Proof of 10.3: Let W^{\prime} be W with the interior of a tubular neighborinood T of N removed. Apparently it will suffice to show that (T, N) and W both have completions., , ,

Let $U \approx \operatorname{Bd} U>[0, \infty)$ be a collar of ∞ in N. Then the part IU of the smooth disk bundle T over O is smoothly equivalent to the bundle $\{T \mid B d U\} \times[0, \infty)$ over $\mathrm{Bd} U>[0, \infty) \approx U$. One can deduce this from a smooth version of Theorem 11.4 in Steenrod [29]. It follows that (T, N) has a completion.

By the method suggested on page 107 form a proper Morse function $f: H \longrightarrow[0, \infty)$ so that $\cdot f \mid N$ has no critical point on a collar $U=$ vin $f^{-1}[a, \infty) \approx \operatorname{Bd} U>[a ; \infty)$, and so that, when restricted to $T \mid U \approx$ $T \mid B d U \times[a, \infty), f$ gives the obvious map to $[a, \infty)$. Then for $b>a, \quad V_{b}=f^{-1}[b, \infty)$ meets T in a collar T_{b} of in T. Consider $V_{b}=V_{b}$ - Int $T=V_{b} \cap W^{0}$ for any b noncritical, $b>a$. If N has codimension $\geq 3,1: V_{b} G V_{b}$ is a 1-equivalence by a general position argument. Since V_{b} and $V_{b} \cap T_{b}$ are in \mathcal{D}, so is V_{b} by 6.6. and $0=\sigma\left(V_{b}\right)=i_{*} \sigma\left(V_{b}^{\prime}\right)$ by the Sum Theorem 6.5; as i_{*} is an isomorphism $\sigma\left(V_{b}^{0}\right)=0 \%$ This shows that for each end ε° of W there is a unique contained end ε^{\prime} of $\cdot W^{0}$ and that ϵ^{\prime} (like ε) is tame with $\sigma\left(\epsilon^{\prime}\right)=0$. Thus the Relativized Main Tneorem says that W, has a completion. This completes the proof if N has codimension ≥ 3.

For codinension 1 we will reduce the proof that (W, N) has a completion to

Proposition 10.5. Let W be a smooth manifold of dimension ≥ 6 so that Bd W is diffeomorphic to the interior of a compact manifold, and let N be a smooth properly imbedded submanifold of codimension 1 so that $\mathrm{Bd} N$ is compact and N moots Bd W in $\mathrm{Bd} N$, transversely. Sippose that W and N both have one end and separately admit a completion. If $\pi_{1}\left(\epsilon_{N N}\right)=1$, then the pair (W, N) admits a completion.

The proof appears below. Observe that Proposition 10.5 contimes to hold if N is replaced by several disjoint submanifolds N_{1}, \ldots, N_{k} each of which enjoys the properties postulated for N. For we can apply Proposition 10.5 with $N=N_{1}$, then replace W. by W minus a small open tubular neighborhood of N_{1} (with resulting comers smoothed), and apply Proposition 10.5 again with $N=N_{2}$. Eventually we deduce that W minus small open tubular neighborhoods of N_{1}, \ldots, N_{k} (with resulting corners smoothed) admits a completion -- which implies that ($W, N_{1} \cup \ldots \cup N_{k}$) admits a completion as required.

Applying Proposition 10.5 thus extended, to the pair ($\left.V_{b}, N \cap V_{b}\right)$, we see immediately that the pair (W, N) of Theorem 10.3 has a completion when N has codimension 1 .

Proof of Proposition 10.5. If T is a tubular neighborhood of N in W we know that (T, N) admits a completion. With the help of Lemma 1.8 one sees that $W^{\prime}=W-O_{T}$ has at most two ends, (where T I denotes the open 1-disk bundle of T). Consider a sequence V_{1}, V_{2}, \ldots of 0 -neighborhoods of ∞ in W (constructed with the help of a suitable proper Morse function; c.f. page 111) so that

1) $\quad V_{i+1} \subset$ Int V_{i} and $\cap V_{i}=\varnothing$.
2) $\quad T_{i}=V_{i} \cap T$ is T / N_{i} where N_{i} is a collar of ∞ in N. After roplacing V_{1}, V_{2}, \ldots by a subsequence we may assume
(i) $\pi_{i}\left(\varepsilon_{H}\right) \longrightarrow \pi_{1}\left(V_{i}\right)$ is an imbedding and $\pi_{1}\left(V_{i+1}\right) \longrightarrow \pi_{1}\left(V_{i}\right)$ has inage $\pi_{1}\left(\epsilon_{N}\right) \subset \pi_{1}\left(V_{i}\right)$ for all i (c.f. 4.4).
(ii) If Wr has two ends,ε_{i} and ε_{2}, then $V_{i}=V_{i}-\frac{O}{T}$ has two components A_{i} and B_{i} that are, respectively, neighborhoods of ε_{1} and $\epsilon_{2}, i=1,2, \ldots$. If W^{\prime} has one end then V_{i} is comrected.

Case A) W' has two ends $\epsilon_{1}, \epsilon_{2}$.

$$
\text { Since } \pi_{1}\left(T_{i}\right)=\pi_{1}\left(\epsilon_{N}\right)=1, \quad \pi_{1}\left(V_{i}\right)=\pi_{1}\left(A_{i}\right) * \pi_{1}\left(B_{i}\right)
$$

Thus with suitably choson base points and base paths the system $V_{:} \pi_{1}\left(V_{1}\right)<\frac{\nabla_{1}}{{ }_{2}} \pi_{1}\left(v_{2}\right) \stackrel{\nabla_{2}}{\sim} \ldots$ is the free product of $a_{2} \pi_{1}\left(A_{1}\right)$ $\stackrel{a^{2}}{\leftarrow} \pi_{1}\left(A_{2}\right)<a_{2} \ldots$ with $B_{:} \pi_{1}\left(B_{1}\right) \stackrel{b_{1}}{\longleftarrow} \pi_{1}\left(B_{2}\right) \stackrel{b_{2}}{\longleftrightarrow} \ldots$ Obserfe that Irage $\left(v_{i}\right)$ intersects $\pi_{1}\left(A_{i}\right)$ in Image $\left(a_{i}\right)$ and intersects $\pi_{1}\left(B_{j}\right)$ in Image $\left(b_{j}\right)$. Thus if Q or 13 were not stable \mathscr{Y} would not bo stable. As \mathcal{V} is stable both a and 13 must bo. Now $\pi_{1}\left(\epsilon_{1}\right)$ is a retract of $\pi_{1}\left(B_{i}\right)$ for i large and $\pi_{1}\left(B_{i}\right)$. is a retract of $\pi_{1}\left(V_{i}\right)$, which is finitely presented. Hence $\pi_{1}\left(\varepsilon_{1}\right)$ and sizalarly $\pi_{1}\left(\varepsilon_{2}\right)$ is finitely prosented by Lomma 3.8. By 3.10 (relativized) we can assume that A_{i}, B_{i} are 1-noighborhoods of $\epsilon_{1}, \varepsilon_{2}$, so that $\pi_{1}\left(\varepsilon_{W}\right) \cong \pi_{1}\left(V_{i}\right) \cong \pi_{1}\left(A_{i}\right) * \pi_{1}\left(B_{i}\right) \cong \pi_{1}\left(\varepsilon_{1}\right) * \pi_{1}\left(\varepsilon_{2}\right)$.
how $V_{i}, T_{i} \in D$ implios $A_{i}, B_{i} \in \mathcal{D}$ by 6.6 , and $0=\sigma\left(\varepsilon_{W}\right)$ $=i_{1 *} \sigma\left(\varepsilon_{1}\right)+i_{2^{*}} \sigma\left(\varepsilon_{2}\right)$. Since \tilde{K}_{0} is functorial, $i_{1^{*}}, i_{2^{*}}$ imbed $\tilde{X}_{0}\left(\pi_{1} \varepsilon_{1}\right), \tilde{Z}_{0}\left(\pi_{1} \varepsilon_{2}\right)$ as summands of $\widetilde{K}_{0}\left(\pi_{1} \varepsilon_{W}\right)$. We conclude that $\sigma\left(\varepsilon_{1}\right)=0, \sigma\left(\varepsilon_{2}\right)=0$. Thus W^{\prime} adrits a complation. As (W, N) does too Proposition 10.5 is establishod in Case A).

Case B) W' has just one end ϵ^{\prime}.
There exists a smooth loop Y_{1} in V_{1} that intersects N just once, transversely. Since $\pi_{1}\left(T_{1}\right)=1, \pi_{1}\left(V_{1}\right)=\pi_{1}\left(V_{1}\right) * Z$ where $1 \in Z$ is represented by γ_{1}. Since γ_{1} could lie in V_{2} we may assume $\left[\gamma_{1}\right] \in$ Image $\pi_{1}\left(V_{2}\right)=\pi_{1}\left(\epsilon_{W}\right) \subset \pi_{1}\left(V_{1}\right)$. The:: γ_{1} can be deformed to a sequence of loops $\gamma_{2}, \gamma_{3}, \ldots$ so that $\left[\gamma_{1}\right]$ $\in \pi_{1}\left(\epsilon_{W}\right) \subset \pi_{1}\left(V_{i}\right)$ and γ_{i} 'cuts N just once. Thus with suitable base points and patis $\sqrt{2} \pi_{1}\left(V_{1}\right)<\pi_{1}\left(V_{2}\right)<\ldots \ldots$ is the free proctuct of $V^{\prime}: \pi_{1}\left(V_{1}^{\prime}\right)<\pi_{1}\left(V_{2}^{\prime}\right) \ll \ldots$ with the trivial system $2 \ll 12<1$ The remainder or the proof is similar to Case A) but easier, as the reader can verify. This completes the proof of Proposition 10.5, and hence of Theorem 10.3. \square

The analogue of Theorem 10.3 in the theory of h-cobordisms is

Theorem 10.6. Let M and V be smooth closed manifolds and suppose $N=M \times[0,1]$ is smoothly imbedded in $W=V>[0,1]$ so that N meets $B d W$ in $M>0 \subset V>0$ and $M>1 \subset V \times 1$, transversely. If W has dimension ≥ 6 and N has codimension ≥ 3, then (W, N) is diffeomorphic to $(V \times 0, M \times 0)>[0,1]$. The same is trueif N has codimension 1 , provided each component of V is simpiy connected.

Proof: Lot W be W with an open tubular neighborhood $\underset{T}{o}$ of N in W deleted. One shows that W gives a product cobordism from $V>0-T_{0}$ to $V>1-T_{0}$ using the $s-c o b o r d i s m$ theorem. For codimension ≥ 3 see Wall [3, p. 27]. For codimension 1 , the argument is somewhat similar to that for Theorem 10.3 but more straightforward. \square

The canonically simple application of Theorem 10.3 and 10.6 is the proof that R^{k} unknots in $R^{n}, n \geq 6, n-k \neq 2$. This is alreajy well know. In fact it is true for anj n except for the single case $n=3, k=2$ where the result is falsel See Comali, Montgowery and Yang [13], and Stallings [10].

Thacren 10.7. . If $\left(R^{n}, N\right)$ is a pair consisting of a copy N of R^{k} smoothiy and properly imbedded in R^{n}, then $\left(R^{n}, N\right)$ is diffeomorphic to the standard pair $\left(R^{n}, R^{k}\right)$ provided $n \geq 6$ and $n-k \neq 2$.

Proof: By Theoren 10.3 and its Complement 10.4 we know that ($\mathrm{R}^{\mathrm{n}}, \mathrm{N}$) is the interior of a compact pair (\bar{R}, \bar{N}) where \bar{N} is a copy of D^{k}. We ostablish the theorem by showing (\bar{R}, \bar{N}) is diffeomorphic to the standard pair $\left(D^{n}, D^{k}\right)$. Choose a small ball pair $\left(D_{0}^{n}, D_{0}^{k}\right)$ in D^{n} so that $D_{0}^{k}=D_{0}^{n} \cap N$ is concentric with $N \approx D^{k}$. By the h-cooordism theoren \bar{R} - Int D_{0}^{n} is an annulus. Thus, applying Theoren 10.6, we find that (\bar{R}, \bar{N}) is $\left(D_{0}^{n}, D_{0}^{k}\right)$ with a (relative) procuct coboridsun attached at the boundary. This completes the proof. $[$

The Isotopy Extension Theorem of Thom (Minor [25]) shows that if N is a smootbly properly imbodded submanifold of an open manifold W and $h_{t}, 0 \leq t \leq i$, is a smooth isotopy of the inclusion map $i G W$ then h_{t} extends to an ambient isotopy of W provided h_{t} fixes points outsida some compact set. The standard example to stiow that this proviso is necossary involves a knot in a string that moves to in ike a wave disturbance. N can be the center of the string (codizension 2) or its surface (codimension 1).

Do counterexamples occur only in codimension 2 or 17 Here is an attempt to say yes.

Theorem 10.8. Suppose N^{k}, is a smooth open manifold smoothly and properly imbedided in a smooth open manifold $W^{n}, n \geq 6, n-k \neq 2$. Suppose that N and W both admit a completion, and if $n-k=1$, suppose N is 1-connected at each end. Let H be a smooth proper isotopy of the inclusion NGW, i.e. a smooth level preserving proper imbedding $H: N>[0,1] \longrightarrow W \times[0,1]$, that fixes $N \times 0$. Then H extends to an ambient pseudo-isotopy -- i.e. to a diffeomoxphism $H: W>[0,1] \longrightarrow W \times[0,1]$ that is the identity on $W>0$.

Corollary 10.9. The pair (W, N) is difieomorphic to the pair ($W_{3} N_{\lambda}$) if N_{1} is the defomed image of $N-$ i.e. $N_{1}=h_{1}(N)$ where $h_{t}, \quad 0 \leq t \leq 1$, is defined by $H(t, x)=\left(t, h_{t}(x)\right), t \in[0,1]$, $x \in N$.

Proof (in outline): Observe that $N^{\prime}=H(N \times[0,1])$ and $W^{\prime}=$ $W \times[0,1]$ both admit completions that are products with $[0,1]$. By Theorem 10.3 (relativized) there exists a compact pair (\bar{W}, \bar{N}) with $W^{\prime}=$ Int $\overline{W^{\prime}}, N^{\prime}=$ Int \bar{N}^{\prime}. By the Complement 10.4 (relativized), we can assume $\overline{N^{\prime}}$ is a product $\bar{N} \times[0,1]$, the product structure agreeing on N with that given by H. Furthermore, after attaching a suitable (relative) h-cobordism at the boundary of ($\bar{W}^{1}, \bar{N}^{\prime}$)
we ray assume \bar{W}. is also a product with $[0,1]$.
Apilying Thoorem 10.6 we find ($\mathrm{Bd} \overline{\mathrm{W}}^{1}, \mathrm{Bd} \overline{\mathrm{N}}^{\prime}$) is a product with $[0,1]$. Applying Theorem 10.6 again (now in a relativized form) we find ($\bar{W}, \bar{N}^{\prime}$) is a product. What is more, if we nor go back and apply the relativizad s-cobordism theorem we see that the given product structure $\overline{\mathrm{N}}$. $\overline{\mathrm{N}} \times[0,1]$ can be extended to a promet structure on \bar{W}^{-}(Wall [3, Theorem 6.2]). Pestricted

For amisement we unknot a whole forest of $R^{k} \cdot s$ in $R^{n}, n-k \neq 2$.
Theoren 10.10. Suppose N is a union of s disjoint copies of R^{k}, swoothly and properly imbeddad in $\mathrm{F}^{n}, \mathrm{n} \geq 6, \mathrm{n}-\mathrm{k} \neq 2$. Then ($R^{n}, i^{i k}$) is diffeomorphic to a standard pair consisting of the cosets $R^{k}+(0, \ldots, 0, i) \subset \mathbb{R}^{n}, \quad i=1,2, \ldots, s$.

Proof: There always exists a smoothly, properly imbedded copy of R^{1} that meets each component of N in a single point, transversely. Thus after a diffeomorphism of R^{n} we can assume that the component N_{i} of $I V$ mests the last co-ordinate axis in ($0, \ldots, i$), transversely, $i=1, \ldots, 5$. Using $[4, \S 5.6]$ we see that after another diffeomorphism of R^{n} ws can assume that N_{i} coincides with $R^{k}+(0, \ldots, 0, i)$ near $(0, \ldots, 0, t)$. A smooth proper isotopy of N in f^{n} makes N^{\prime} coinctie with the standard cosets. Now apply 10.9. \square

Chapter XI. A Duality Theorem and the Question of
Topological Invariance for $\sigma(\epsilon)$.

We give here a brief exposition of a duality between the two ends ε and ϵ_{+}of a smooth manifold W^{n} homeomorphic to $M>$ $(0,1)$ where M is a closed topological manifold. The ends ϵ_{-} and ϵ_{+}are necessarily tame and the duality reads $\sigma\left(\epsilon_{+}\right)=(-1)^{n-1}$ $\overline{\sigma\left(\epsilon_{-}\right)}$where the bar denotes a certain involution of $\tilde{K}_{0}\left(\pi_{1} W\right)$-that is the analogue of the involution of $W h\left(\pi_{1} W\right)$ defined by Milnor in [17]. Keep in mind that, by the Sum Theorem, $\sigma\left(\varepsilon_{+}\right)+\sigma\left(\varepsilon_{-}\right)=$ $\sigma(W)=\sigma(M)$, which is zero if M is equivalent to a finite complex. I unfortunately do not know any example where $\sigma\left(\epsilon_{+}\right) \frac{1}{7} 0$. If I did some compact topological manifold (with boundary) would cemtainly be non-triangulable - namely the closure \bar{V} in $M><0,1]=W$ oŕ a 1-neighboriood V of ϵ_{+}in W. When W is orientable the involution 'bar' depends on the group $\pi_{1}(W)$, alone. Prof. Nilnor has established that this standard involution is in general non-trivial. There exists non-zero $x, y \in \widetilde{K}_{0}\left(Z_{Z \zeta ?}\right)$ so that $\bar{x}=x$ and $\bar{y}=-y \neq y$. The appendix explains this (pags 127).

Suppose $h: W \longrightarrow W$ is a homeomorphism of a smooth open manifold W onto a smooth open manifold W that cariles and end ε of W to the end ϵ^{\prime} of W. From Dafinition 4.4 it follows. that ε is tame if and only if ε ' is. For tame ends we ask whether

$$
h_{*} \sigma(\varepsilon)=\sigma\left(\varepsilon^{\prime}\right)
$$

The duality theorem shows that the diffarence $h_{*} \sigma(\varepsilon)-\sigma\left(\varepsilon^{0}\right)=\sigma_{0}$ satisfies the restriction

$$
\sigma_{0}+(-1)^{n-1} \bar{\sigma}_{0}=0, \quad n=\operatorname{dim} W
$$

Tris is far fron the answor that $\sigma_{0}=0$. An example with $\sigma_{0} \neq 0$ would again involve a non-triangulable manifold.

A related question is "Does every tame end have a topological collar neighborhood?" This may be just as difficult to answer as "Is every smooth h-cobordism topologically a product cobordism?" It seems a safe guess that the answer to both these questions is no. But proof is lacking.

The same duality $\sigma\left(\varepsilon_{+}\right)=(-1)^{n-1} \overline{\sigma\left(\varepsilon_{-}\right)}$holds for the ends ϵ_{+}and $\epsilon_{\text {_ }}$ of a manifold W^{n} that is an infinite cyclic covering of a srootin compact manifold .-. provided these ends are tame. The proof is like that for $K \times R$. It can safely be left to the reader. Cuestion: Let ϵ be a tame end of dimension $\geqslant 5$ with $\sigma(\epsilon) \neq 0$, and let A be the boundary of a collar for $e \times S^{1}$. Does the infinite cyclic cover $0 \hat{i}$ in coresponding to the cokernel $\pi_{1}(M) \rightarrow Z$ of the natural map $\pi(\varepsilon) \rightarrow$ $\pi_{1}(\mathrm{n}) \cong \pi_{1}\left(\epsilon \times S^{1}\right)$ provide a non-trivial example of this duality?

To explain duality we need some algebra. Let R be an associative ring with one-element 1 and a given anti-automorphism 'bar' $: R \longrightarrow R$ of period two. Thus $\overline{r+s}=\bar{r} \div \bar{s}, \overline{r s}=\bar{s} \bar{r}$ and $\overline{\bar{r}}=r$ for $r, s \in R$. Modules are understood to be left. R modules: For any module A, the anti-homomorphisms from A to R -- cenoted \bar{A} or $\overline{\operatorname{Hom}}_{R}(A, R)$-. form a left $R-m o d u l e$ (Nota that $\operatorname{Hom}_{R}(A, R)$ would be a right $\left.R-m o c t u l e.\right)$ thus $\alpha \in \bar{A}$ is an adcitive map $A \longrightarrow R$ so that $\alpha(r a)=\alpha(a) \bar{r}$ for $a \in A, \quad r \in R$. And $(s \alpha)(a)=s(\alpha(a))$ for $a \in A, s \in R$. I leave it to the reader to verify that $P \longrightarrow \bar{P}$ gives an additive involution on .
the isomorphism classes $P(R)$ of $f . g$. projective R-modules.and hence addtive involutions (that wo also call 'bar') on $K_{0}(R)$ and $\widetilde{K}_{0}(2)$.

If $c: \ldots \longrightarrow C_{\lambda} \xrightarrow{\partial} C_{\lambda-1} \longrightarrow \ldots$ is a chain complex
we deinine \bar{C} to be the cochain complex
$\ldots<\bar{c}_{\lambda} \stackrel{\bar{\delta}}{\leftarrow} \bar{c}_{\lambda-1} \longleftarrow \ldots$.
where $\overline{\mathrm{O}}$ is defined by the rule
$(\bar{\partial} \bar{c})(\theta)=(-1)^{\lambda} \bar{c}(\partial \theta)$
for $e \in C_{\lambda}$ and $\bar{c} \in \bar{c}_{\lambda-1}$.
For our purposes R will be a group ring $Z[G]$ where G is a furdarental group of a manifold and the anti-automorphism "bar" is that incuced by sending g to $\theta(g) g^{-1}$ in $Z[G]$, where $\theta(g)$ $= \pm 1$ accoriting as g gives an orientation preserving or orientation reversing homeomorphism of the universal cover. If the manifold is orientable $\theta(\mathrm{g})$ is always +1 and 'bar' then depends on G alone and is cailed the standard involution.

Let ($\left.V^{n} ; V, V\right)$ be a smooth manifold triad with self-indexing Vorse function f. Provide the usual equipment: base point p for if base paths to the critical points of f; gradient-like vector field for f; orientations for the left hand disks. Then a based free $\pi_{1} \tilde{W}$. complex C_{*} for $H_{*}(\tilde{W}, \tilde{V})$ is well defined (Chapter IV, page 29).
inen we specify an orientation at p, geometrically dual equipzent is determined for the Korse function -f and hence a geometricaily dual complex C_{*} for $H_{*}\left(\tilde{W}, \tilde{V}^{*}\right)$. With the help of the
formula $\varepsilon_{P}^{\prime}=(-1)^{\lambda} \operatorname{sign}\left(g_{P}\right) \varepsilon_{P}$ on page 29, one shows that

$$
c_{*}=\bar{c}_{n-*}
$$

i。e, C_{*}^{\prime} is the cochain complex $\overline{\mathrm{C}}_{*}$ with the grading suitably reversed. Duality Theorem for $M>$? 11.1. Suppose that W is a smooth open manifold of dimension $n \geq 5$ that is homeomorphic to $M \times R$ for some connected closed topological manifold M. Then W has two ends ε_{-}and ε_{+}, both tame, and whon we identify $\tilde{K}_{0} \pi_{1} \varepsilon_{-}$and $\tilde{\mathrm{K}}_{0} \pi_{1} \epsilon_{+}$with $\tilde{\mathrm{K}}_{0} \pi_{1} \mathrm{~W}$ under the natural isomorphisms,

$$
\sigma\left(\varepsilon_{+}\right)=(-1)^{n-1 \overline{\sigma\left(\varepsilon_{-}\right)} .}
$$

The proof begins after 11.4 below.

Corollary 11.2: The above theorem holds without restriction on n.

Proof of 11.2: Form the cartesian product of W with a closed smooth manifold N^{6} having $X(N)=1$, e.g. real projective space $p^{6}(R)$.
 Definition 7.7 and the Product Theorem 7.2 one easily shows that $\sigma\left(\varepsilon_{+} \times N\right)=\chi(N) i_{*} \sigma\left(\varepsilon_{+}\right)$and hence $r_{*} \sigma\left(\varepsilon_{+} \times N\right)=\sigma\left(\varepsilon_{+}\right)$. The samo holds for ε_{-}. Sinco r_{*} comnutes with 'bar', duality for $\mathrm{W} \times \mathrm{N}$ implies duality for $\mathrm{W} . \mathrm{D}$

Corollary 11.3. Without restriction on n,

$$
\sigma(M)=\sigma\left(\varepsilon_{+}\right)+(-1)^{n-1} \overline{\sigma\left(\varepsilon_{+}\right)}
$$

and, cons₹quently, $\quad \sigma(M)=(-1)^{n-1} \overline{\sigma(M)}$.

Eroof of 11.3: By 6.5, $\sigma(M)=\sigma(W)=\sigma\left(\varepsilon_{+}\right)+\sigma\left(\varepsilon_{-}\right) . \square$
Pe-tark: It is a conjecture of Professor Minnor that if M^{m} is any closed topological manifold, then $\sigma(M)=(-1)^{m} \sigma(M)$ or equivalentig

$$
\rho(M)=(-1)^{m \rho(M)} .
$$

0 : course the conjecture vanishes if all closed manifolds are triangulable. Theorem 11.1 shows at least that

Theorea 11.4. If M^{m} is a closed topological manifold such that for soree $k, M>R^{k}$ has a smoothness structure then

$$
\sigma(M)=(-1)^{m f} \sigma(M) .
$$

Prof of 11.4: We can assume k is even and $k>2$. We will be 201θ to identify all fundamental groups naturally with $\Pi_{1}(M)$. By 6.12 the end ε of $M \times R^{k}$ is tame and $\sigma(\varepsilon)=\sigma(M)$. The opon submanifold $\dot{W}=M>R^{k}-M>0$ is homeomorphic to $M \times$ $s^{k-1} \times R$ and $\sigma(W)=0$ by the Product Theorem since $k-1$ is ocid. From 11.2 and the Sum Theorem we get
or

$$
\begin{aligned}
& 0=\sigma(W)=\sigma(\varepsilon)+(-1)^{m+k-1} \overline{\sigma(\varepsilon)} \\
& 0=\sigma(M)+(-1)^{m-1} \overline{\sigma(M)} \text { as required. }
\end{aligned}
$$

Pomark: It is know that not every closed topological manifold M is stably smoothable (page 126). However it is conceivable that, for sufficiently large $k, M>R^{k}$ can always be triangulated as a cominatorial manifold. Then the plecewise linear version of 11.4 (see the introduction) would prove Professor Milnor's conjecture.

Proof of the Duality Theorem 11.1: For convenience identify the uncerlving topological manifold of W with $M>R$. By 4.5 we can find a (n-3)-neighborhood V of ε_{+}so small that it lies in. $M \times(0, \infty)$. After adding suitable (trivially attached) 2-handles to V in $u><(0, \infty)$, we can assume that $U=W$ - Int V is a 2 reishiorhood of ε_{-}. Next find a ($n-3$)-neighborhood of the poritire end of . $1 \times(-\infty, 0)$. Adding $M \times[0, \infty)$ to it we get a ($n-3$)neighborhood V^{\prime} of ϵ_{+}that contains $M \times[0, \infty)$. After adding 2-iandles to V^{\prime} we can assume that $U^{\prime}=W$ - Int V^{\prime} is a 2-neighboricood of ε_{-}.

By 5.1 we know that $H_{*}(\tilde{V}, \mathrm{Bd} \tilde{V})$ and $H_{*}(\tilde{V}, \operatorname{Bd} \tilde{V})$ are fog. projective $\Pi_{1}(N)$-modules P_{+}and P_{+}^{\prime} concentrated in dimension $n-2$ and both of class $(-1)^{n-2} o\left(\varepsilon_{+}\right)$. By an argument similar to that for 5.1 one shows that 0 admits a proper Morse function $f: U \rightarrow[0, \infty)$ with $f^{-1}(0)=$ Bd U so that f has critical points of index 2 and 3 only. (The strong handle cancellation theorem in final [3, Theorem 5.5] is needed.) The same is true for U '. It follows that $H_{*}(\tilde{U}, \mathrm{Bd} \tilde{V})$ and $H_{*}\left(\tilde{U}, \mathrm{Bd}\left(\tilde{V} \tilde{V}^{\prime}\right)\right.$ are fog. projective rocilles $P_{\text {_ }}$ and P : concentrated in dimension 3 and both of class $(-1)^{3} \sigma\left(\varepsilon_{-}\right)$by Lam 6.2 and Proposition 6.11.

Let $X=V^{\prime}$ - Int V. Since the composition $V^{\prime}-M \times(0, \infty) \leftrightarrows$ $X G V^{\prime}$ is a homotopy equivalence $H_{*}\left(\tilde{X}, B d \tilde{V}^{j}\right) \longrightarrow H_{*}\left(\tilde{V}, B d \tilde{V}^{j}\right)$: is onto. Thus from the exact sequence of $(\tilde{V}, \tilde{X}, \tilde{H})$ we deduce (c.f. page 37) that $H_{n-2}\left(\tilde{X}, B d \tilde{V}^{\prime}\right) \cong H_{n-2}\left(\tilde{V}^{\prime}, B d \tilde{V}^{\prime}\right) \cong P_{+}^{\prime}$ and $H_{n-3}\left(\tilde{X}, \operatorname{Bd} \tilde{V}^{\prime}\right)$ $\cong H_{n-2}(\tilde{V}, \tilde{X}) \cong H_{n-2}(\tilde{V}, B d \tilde{V}) \cong P_{+}$

Similarly one shows that $\mathrm{F}_{*}(\tilde{X}, \mathrm{Bd} \tilde{V}) \longrightarrow \mathrm{H}_{*}(\tilde{U}, \mathrm{Bd} \tilde{\mathrm{V}})$ is onto. As a consequence $H_{3}(\tilde{X}, B d \tilde{V}) \cong H_{3}(\tilde{U}, B d \tilde{V})=P_{\ldots}$.

Now $B d V S X$ gives a π_{1}-isomorphism. Also $B d V \cdot \subset$ is ($n-4$)-connected (and gives a π_{1}-isomorphism when $n=5$). It follows from Wall. [3, Theorem 5.5] that the triad (X;Bd V',Bd V) admits a nice Morse function \mathbf{f} with critical points of index $n-3$ and $n-2$ only.

Let f be suitably equipped and consider the free $\pi_{1}(W)$ complex C_{*} for $H_{*}\left(\tilde{X}, B d \tilde{V}^{\prime}\right)$. It has the form (c.f. page 39)

$$
0 \longrightarrow H_{n-2} \oplus B_{n-3}^{\prime} \xrightarrow{\partial} B_{n-3} \oplus H_{n-3} \longrightarrow 0
$$

where ∂ is an isomorphism of B_{n-3} onto B_{n-3} and $H_{n-2} \cong P_{+}$ and $H_{n-3} \cong P_{+}$. Then the complex \vec{C}_{*} is

$$
0<\bar{H}_{n-2} \ominus \overline{\mathrm{~B}}_{n-3}^{\prime}<-\bar{\delta} \bar{B}_{n-3} \oplus H_{n-3} \longleftarrow 0
$$

where $\overline{\mathrm{a}}$ gives an isomorphism of $\overline{\bar{B}}_{n-3}$ onto $\overline{\mathrm{B}}_{\mathrm{n}-3}$. But we have observed that \bar{C}_{n-*} is the complex C_{*}^{\prime} for $H_{*}(\tilde{X}, \mathrm{Bd} \tilde{V})$ that is geometrically dual to C_{*}. Hence we have

$$
H_{3}(C) \cong \bar{H}_{n-3}
$$

But $H_{3}\left(C^{\prime}\right) \cong H_{3}(\tilde{X}, B d \tilde{V}) \cong P_{-}$has class $(-1)^{3} \sigma(\varepsilon)$ and $\bar{H}_{n-3} \cong \bar{P}_{+}$ has class $(-1)^{n-2 \sigma\left(\epsilon_{+}\right)}$, So the duality relation is established. $[0$

Suppose $\mathrm{in}^{\text {n }}$ is an open topological manifold and ε an enci of in. Let β_{1} and θ_{2} be two smoothness structures for \because and denote the smooth ends corresponding, to ε by $\varepsilon_{1}, \epsilon_{2}$. Liotice trat ε_{1} is tame if and only if ε_{2} is, since the definition of timeness does not mention the smoothness structure.

Theoren 11.5. Suppose $n \geq 5$. If ε_{1} is tame, so is ε_{2}, and the diference $\sigma\left(\varepsilon_{1}\right)-\sigma\left(\varepsilon_{2}\right)=\sigma_{0} \in \tilde{K}_{0} \pi_{1} \varepsilon$ satisfies the relation

$$
\sigma_{0}+(-1)^{n-1} \overline{\sigma_{0}}=0
$$

Furtier σ_{0} is always zero if and ondy if the following statement (s) is true.
(S) If M^{n-1} is a closed smooth manifold and W^{n} is a smooth zarisold homeomorphic to $M \times R$ then both onds of W^{n} have invariant zero.

Ccroliary 11.6. The first assertion of 11.5 is valid for any. dimension n.

Proef: Lot N^{6} be a closed smooth manifold with $\chi(N)=1$, and consicier the smoothings $\varepsilon_{1} \times N, \varepsilon_{2} \times N$ of $\varepsilon>N$. Now follow the zroof of 11.2. 0

Proef: Let V_{1}, be a 1-naighborhood of ε_{1}. With smoothness from ∂_{2}, Int V_{1} has two ends $-V_{z} \varepsilon_{2}$, and the end ε_{0} whose noighborcoods are those of Bi V_{1} intersected with Int V_{1}. Since ϵ_{0} has a neighborhood homeomorphic to $E d V_{1} \times R, \varepsilon_{0}$ is tame and $\sigma\left(\varepsilon_{0}\right)+(-1)^{n-1} \overline{\sigma\left(\varepsilon_{0}\right)}=0$ by Corollary 11.3 to the duality theorem. iat U be a 1 -naighborbood of ε_{0}. Then $V_{2}=$ Int V_{1} - Int 0
is clearly a 1 -naighborhood of ε_{2}. Eut $V_{1} \simeq \operatorname{Int} V_{1}=U U V_{2}$ and $U \cap V_{2}$ is a finite complex. Thus, by the Sum Theorem 6.5, $\sigma\left(\varepsilon_{1}\right)=\sigma\left(V_{1}\right)=\sigma\left(V_{2}\right)+\sigma(J)=\sigma\left(\varepsilon_{2}\right)+\sigma\left(\varepsilon_{0}\right)$. Thus the first assertion holds with $\sigma_{0}=\sigma\left(\epsilon_{0}\right)$.

Now if (S) holds, $\sigma_{0}=\sigma\left(\epsilon_{0}\right)=0$ because ϵ_{0} is an end of a smooth manifold homeomorphic to $B d V_{1} \times R$. Conversely, if σ_{0} is always zero, i.e. $\sigma\left(\varepsilon_{2}\right)=\sigma\left(\varepsilon_{1}\right)$, then σ does not depend on the smoothness structure. Thus (S) clearly holds. This completes the proof. \square

Footnote: To justify an assertion on page 122 here is a folklore example, due to Professor Milnor, of a closed topological manifold which is not stably smoothable. It is shown in Milnor [32, 9.4, 9.5] that there is a finite complex K and a topological microbundle ξ^{n} over K which is stably distinct (as microbundie) from any vector bundle. Further one can arrange that K is a compact k-submanifold with boundary, of R^{k} for some k . By Kister [33] the induced microbundle $D \xi^{n}$ over the double: $D K$ of K contains a locally trivial bundle with fibre R^{n}. If one suitably compactifies the total space adding a pointmat-infinity to each fibre, a closed topological manifold results which cannot be stably smoothable since its tangent microbundle restricts to $\xi^{n} \oplus\{$ trivial bunde $\}$ over K.

Appendia

This appendix explains Professor Milnor's proof that thare exist nonzero x and y in $\tilde{K}_{0}\left(Z_{257}\right)$ so that $\bar{x}=x$ and $\vec{y}=$ $-\vec{j} \neq \mathrm{y}$ where the bar denotes the standard involution (pages 119-120). Theorens A. 6 and A. 7 below actually tell a good deal about the standard involution on tine projoctive class group $\tilde{K}_{0}\left(Z_{p}\right)$ of the cyclic group Z_{p} of prime order p.

Suppose A and B are rings with identity each equipped with anti-automorphisms bar of period $2 \ldots$ If. $\theta: A \longrightarrow B$ is. .. a ring homomorphism so that $\theta(\bar{a})=\overline{\theta(a)}$, then one can show that tine dagran

cozutes where 'bar' is the additive involution of the projective class group defined on pages 119-120. Now specialize. Let $A=$ $2[\pi]$ where $\pi=\left\{t ; t^{p}=1\right\}$ is cyclic of prime order. Dafine $\overline{a(t)}=a\left(t^{-1}\right)$ for $a(t) \in Z[\pi]$ so that

$$
\text { bar: } K_{0} Z[\pi] \longrightarrow K_{0} Z[\pi]
$$

is the standard involution of $\widetilde{K}_{0} 2[\pi] \equiv \widetilde{K}_{0}(\pi)$. Lat $B=Z[\xi]$ where ξ is a primitive p-th root of 1 , and let $\theta(t)=5$ define θ : $Z[\pi] \rightarrow Z[\xi]$. - (Notice that ker θ is the principal ideal generajed by $\left.\mathcal{K}=1+t+\ldots+t^{p-1}.\right)$ Since ξ^{-1} is the complex-conjugate $\bar{\zeta}$ of $\xi, \quad \theta(\bar{a})=\overline{\theta(a)}$ where the second bar is complex conjugation.

The following is due to Rim [38, pp. 708-711].

Theorem A.1. $\theta_{*}: \tilde{\mathrm{K}}_{0} 2[\pi] \longrightarrow \tilde{\mathrm{K}}_{0} 2[\xi]$ is an isomorphism.

Remark: Rim assigns to a f.g. projective P ovor $Z[\pi]$ the subobject $\Sigma^{P}=\{x \in P \mid \Sigma x=0\}, \Sigma=1+t+\ldots+t^{p-1}$, with the obvious action of $Z[\pi] /(\Sigma) \cong Z[\zeta]$. But there is an exact sequence

$$
0 \rightarrow \Sigma P \xrightarrow{\alpha} P \xrightarrow{\beta} \Sigma_{\Sigma} P \longrightarrow 0
$$

where α is inclusion and β is multiplication by $1-t$. Hence $\Sigma \cong P /\left(\sum P\right)$ as $Z[\xi]$-mocules. But $P /(\Sigma P)$ is easily seen to be isomorphic with $Z[\zeta] \otimes_{Z[\pi]} P$. Thus Rim's isomorphism is in fact θ_{*}.

We now have a commutative diagram

So it is enough to study 'bar' on $\tilde{K}_{0} 2[5]$. To do this we go one more step to the ideal class group of $2[\zeta]$.

Now $Z[\zeta]$ is known to be the ring of all algebraic integers in the cyclotomic field $\mathbb{Q}(\xi)$ of p-th roots of unity $[39, p .70]$. Eence $z[\zeta]$ is a Dedekind domain [40, p. 281]. A Dedolind domain may be defined as an integral domain X with 1-element in which the (equivalent) conditions A) and B) hold. [40, p. 275] [41, Crap. 7, pp. 29-33].
A) The fractional ideals form a group under maltiplication. (A fractional ideal is an R-module O imbadded in the quotient field K of R such that for some $r \in R$, rol (R.)
B) Every ideal in R is a f.g. projective R-moduie.

Tre ideal class group $C(R)$ of R is by definition the group of fractional ideals modulo the subgroup generated by principal ideals.
B) indies that any f.g. projective P over R is a direct sum $a_{1} \in \ldots \in a_{r}$ of ideals in $R .[42, p .13]$. According to [38, Theorem 6.19] the ideal class of the product $a_{1} \ldots a_{r}$ depends oniy or. F and the comespondence $p \longrightarrow \sigma_{1} \ldots \sigma_{r}$ gives an isomorphism $\varphi: \tilde{X}_{0}(R) \longrightarrow C(R)$.

Let us define 'bar': CZ[$\xi] \rightarrow C Z[\xi]$ by sending a fractional ideal or to the fractional ideal $\sigma\left(\lambda^{-1}\right)$ where σ denotes complex conjugation in $Q(\xi)$. The following two lemas show that the diagram

comates.

Ioran A.2. In any Dedokind domain R, $\operatorname{Hom}_{R}(Q, R) \cong Q^{-1}$ for any fractioral ideal or.

Lema A.3. Let σ be any fractional ideal in $2[5]$. Then $\sigma(G)$ is naturally isomorpicic as $Z[\xi]$-mocule to of with a new action of $2[\xi]$ given by $r \cdot a=\overline{r a}$ for $r \in 2[\xi], a \in a$.

The second lemra is obvious. The first is proved below. To see that these lemas imply that the diagram above commates notice that for a ring R equipped with anti-automorphism 'bar', the left R-ocule $\bar{P}=\overline{F o r}_{R}(P, R)$ used on page 119 to define 'bar': $\tilde{K}_{0}(R)$
$\longrightarrow \tilde{K}_{0}(R)$, is naturally isomorphic to $P^{*}=\operatorname{Hom}_{R}(P, R)$ provided with a left action of R by the rule $(r . f)(x)=f(x) \bar{r}$ for $r \in R$, $f \in P^{*}$ and $x \in P$.

Proof of Lemma A.2: We know $a^{-1}=\{y \in K \mid$ yaC $R\}$ where K is the quotient field of R [40, p. 272]. So there is a nature? imbedaing

$$
\alpha: a^{-1} \longrightarrow \operatorname{Hom}_{R}(\alpha, R)
$$

which we prove is onto. Take $f \in \operatorname{Hom}_{R}(a, R)$ and $x \in a \cap R$. Let $b=f(x) / x$ and consider the map f_{b} defined by $f_{b}(x)=b x$. For. $a \in a$

$$
\begin{aligned}
0 & =\left(f-f_{b}\right)(x)=a\left(f-f_{b}\right)(x)=\left(f-f_{b}\right) a x= \\
& =x\left(f-f_{b}\right)(a)=\left(f-f_{b}\right)(a)
\end{aligned}
$$

herce $f^{\prime}(a)=f_{b}(a)=b a$. Thus $b \in a^{-1}$ and α is onto as required. \square

Let A be a Dedekind domain, K its quotient Sield, L 2 finite Calois extension of K with degree d and group G. Then the integral closure B of A in L is a Dedekind domain. [40, p. 281]. Each element $\sigma \in G$ maps integers to integers and so gives an automorphism of B fixing A. Then σ clearly gives an automorphism of the group of fractional ideals of B that sends principal ideals to principal ideals. Thus σ induces an automorphism σ_{*} of $C(B)$. Let us write $C(A)$ and $C(B)$ as additive groups.

Thooren A.4. There exist homomorphisms $j: C(A) \longrightarrow C(B)$ and $N: C(B) \longrightarrow C(A)$ so that $N \circ f$ is multiplication by $d=[L ; K]$ and $j \bullet N=\sum_{\sigma \in G} \sigma_{*}$.

Proof: J is induced by sending each fractional ideal or $\in A$ to the fractional ideal a B of B. N cones from the norm homomorphism cesined in Lang [43, p. 18-19]. It is Proposition 22 on p. 21 of [43] that shows N is well defined. That $N \cdot j=d$ and $j \cdot N=$ $\sum_{C \in G} \sigma_{*}$ follows imnodiately from Corollary 1 and Corollary 3 on pp. 20-21 of [43]. \square

Since $\zeta, \zeta^{2}, \ldots, \zeta^{p-1}$ form a Z-basis for the algebraic intesers in $Q(\xi)[39, p .70], \xi+\bar{\xi}, \ldots, \xi^{\frac{p-1}{2}}+\bar{\xi} \frac{p-1}{2}$ form a 2 - basis for the self-conjugate integers in $\mathbb{Q}(\xi)$, i.e. the algebreic integers in $Q(\xi) \cap \mathbb{R}=Q(\xi+\bar{\xi})$. But $2[\xi+\bar{\zeta}]$ is the span of $\zeta+\bar{\zeta}, \ldots, \zeta^{\frac{p-1}{2}}+\bar{\zeta}^{\frac{p-1}{2}}$. Hence $2[\zeta+\bar{\zeta}]$ is the full ring of aigebraic integers in $Q(\xi+\bar{\xi})$ and so is a Dedecind domain [40, p. 281]. It is now easy to check that we have a situation as described above with $A=Z[\xi+\bar{\zeta}], B=Z[\xi], d=2$ and $G=\{1, \sigma\}$ where σ is complex conjugation. Observe that with the ideal class group $C Z[\zeta]$ writton additively $\bar{x}=\sigma_{*}(-x)=-\sigma_{*} x$, for $x \in C Z[\zeta]$ ($p=\xi^{-1} 129$). As a direct appilcation of the theorem above we have

Ensorem A.5. There exdst homomorphisms N and j

$$
\tilde{K}_{0}\left(Z_{p}\right) \cong c z[\zeta] \underset{J}{<} c Z[\zeta+\bar{\zeta}]
$$

so tiat $\mathrm{j} \cdot \mathrm{N}=1+\sigma_{*}$ and $\mathrm{Noj}=2$.

Now the order $h=h(p)$ of $C Z[\xi]$ is the so-called class murber of the cyclotomic field $Q(\xi)$ of p-th roots of unity. It can be expressed as a product $h_{1} h_{2}$ of positive integral factors, where the first is given by a closed formula of Kumer [44] 1850, and the second is the order of $C Z[\zeta+\bar{\zeta}]$, Vandiver $[45, \mathrm{p} .571]$.
(In fact J is l-1 and if is onto, Kunmer [50], Hasse [46;p. 13 footnote 3), p. 49 footnote 2)]. Write $h_{2}=h_{2}^{\prime} 2^{s}$ where h_{2}^{\prime} is odd. Recall that p is a prime number and $\tilde{K}_{0}\left(Z_{p}\right)$ is the group of stable isomorphism classes of f.g. projective over the group z_{p}. Bar denotes the standard involution of $\tilde{K}_{0}\left(Z_{p}\right)$ (pagell8).

Theorem A.6. 1) The subgroup in $\tilde{K}_{0}\left(Z_{p}\right)$ of all x with $\bar{x}=x$ has order at least h_{1};
2) There is a summand S in $\widetilde{K}_{0}\left(Z_{p}\right)$ of order h_{2}^{\prime} so that $\bar{y}=-y$ for all $y \in S$.

Proof: For $x \in \operatorname{kemel}(N), \quad\left(1+\sigma_{*}\right) x=j o N x=0$ implies $\bar{x}=\dot{x}$. But kernel(N) has order at least h_{1}; so 1) is established. The component of $C Z[\zeta+\bar{\zeta}]$ prime to 2 is a subgroup S of order h_{2}^{\prime}. Since miltiplication by $\cdot 2$ is an automorphism of $S, N \circ j=2$ says that j maps $S 1-1$ into a summind of $\tilde{K}_{0}\left(z_{p}\right)$. For $y=$ $j(x), \quad x \in S$, we have $j 0 N(y)=j(2 x)=2 y$. Thus $y+\sigma_{*} y=2 y$ or $\bar{y}=-y$. This proves 2). \square

In case h_{2} is odd $h_{2}=h_{2}^{1}$, and the proof of A. 6 gives the clear-cut result:

Treorem A.7. If the second factor h_{2} of the class number for the cyclotomic field of p-th roots of unity is odd, then

$$
\tilde{K}_{0}\left(Z_{p}\right) \cong \operatorname{kemel}(N) \oplus \operatorname{cz}[\zeta+\bar{\zeta}]
$$

and $x=\bar{x}$ for $x \in \operatorname{kemel}(N)$ while $\bar{y}=-\bar{y}$ for $y \in \operatorname{cZ}[\zeta+\bar{\zeta}]$.

In [47] 1870, Kumer proved that $2 / \mathrm{h}_{2}$ implies $2 / \mathrm{h}_{1}$ (c.f. [46], p. 119). He shows that, although h_{1} is even for $p=29$
ard $p=113, h_{2}$ is odd．Tnen he shows that both h_{1} and h_{2} are even for $p=163$ and states that the same is true for $p=937$ ． Tumer computed h_{1} for a］i $p<100$ in［44］ 1850 （see［50，p．199］ for the correction $h_{1}(71)=7^{2} \times 79241$ ），and for $101 \leq p \leq 163$ in［49］1874．In［49］，h_{1} is incorrectly listed as odd for $p=$ 163．Supposing that the other computations are correct，one observes だa亡 for $p<163, h_{1}$ is odd except when $p=29$ or $p=113$ ． We conclude that $p=163$ is the least prime so that h_{2} is even． Trus $p=163$ is the least prime where have to fall back from A． 7 to the weaker theorem A．6．

Elements x in $K_{0}\left(Z_{p}\right)$ ，so that $x=\bar{x}$ ，are plentiful． After a slow start the factor h_{1} grows rapidly：$h_{1}(p)=1$ for primes $p<23, h_{1}(23)=3, h_{1}(29)=8, h_{1}(31)=9, h_{1}(37)=37$ ， $n_{1}(41)=11.11=121, \quad h_{1}(47)=5.139, h_{1}(53)=4889, \ldots, h_{1}(101)$ $=5^{5} \cdot 101 \cdot 11239301$ ，etc．Kummer［44］ 1850 gives（without proof）the asymptotic formula

$$
h_{1}(p) \sim p^{\frac{p+3}{4} / 2^{\frac{p-3}{2}} \pi \frac{p-1}{2}}
$$

But it seems no one has shown that $h_{1}(p)>1$ for all $p>23$ ．
On the other hand elerrents with $\bar{x}=-x$ are hard to get hold cf，for infomation zoout h_{2} is scanty．It has been estabitshed that $h_{2}(p)=0$ for primes $p<23$（see Minkowski［48，p． 296］）．In［47］1870，Kummer shows that h_{2} is divisible by 3 for $p=229$ ，and he asserts the same for $p=257$ ．

Vandiver［45，p．571］has used a criterion of Kummer to show that $p / h_{1}(p)$ for $p=257$（but $p \nmid h_{1}(p)$ for $p=229$ ）．Since $31 i_{2}(257)$ ，Treorem A． 6 shows for example that there is in $\tilde{K}_{0}\left(Z_{257}\right)$
an element x of order 257 with $x=\bar{x}$ and another element y of order 3 with $\bar{y}=-y$. Notice that $(\overline{x+y}) \neq \pm(x+y)$.

Rerari: It is not to be thought that $\tilde{K}_{0}\left(Z_{p}\right)$ is a cyclic group in general. In [50] 1853, Kummer discussed the structure of the subgroup G_{p} of all olements for which $\bar{x}=x$, i.e. the subgroup corresponding to the ideals x in $2[5]$ such that $0 \sigma(a)$ is principal. For $p<100, h_{2}$ is odd so that this subgroup is a summand of order h_{1} by Theorem A.7. He found that

$$
\begin{aligned}
& G_{29}=z_{2} \oplus z_{2} \oplus z_{2} \\
& G_{31}=z_{9} \\
& G_{41}=z_{11} \oplus z_{11} \\
& G_{71}=z_{49} \oplus z_{79241} .
\end{aligned}
$$

For other $p<100$ there are no repeated factors in h_{1} hence no structure problem exists.

Bibliography.
[1] W. Browder, J. Levine, G. R. Livesay, Finding a Boundary for an Opan Manifold, Amer. J. Math. (to appoar).
[2] C.T.C. Wall, Finiteness Conditions for CW-Complexes, Annals

C.T.C. Wall, Differential Topology. Part IV, Theory of Handia Decompositions, mimeographed, Cambridge U. (1904).
[4] J. Ninnor, Lectures on the h-Cobordism Theorem, notes by I. Siebonmarm and J. Sondow, Princeton Mathematical Notes, Princeton University Press (1965).
[5] F. Freudenthal, ther die Enden topologischer Rume und Gruppen, Kath. Zoitschrift, 33 (1931), pp. 692-713.
[6] S. Eilenbergand N. Steenrod, Foundations of Algebraic Topology, Princeton U. Press, 1952.
[7] M.K. Fort, Jr., Topoiogy of 3-Manifolds and Related Topics, Prentice-Hall, Englewood Cliffs, N.J., 1952. J. Milnor, Norse Theory, Princeton University Press, Princeton, N.J., 1963.
J. Milnor, D'fierentiable Manifolds which are Homotopy Spheres, rimaographec, Princeton University, 1959.
J. Stallings, On Infinite Processos Leading to pifierentiability
in the Compiement of a Point, in the proceedings of a symposium (1952) in honour of Harston Morse, to be called Differential and Combinatorial Topology, Princeton University Press (to appea=-).
[11] J.H.C. Whitehead, Combinatorial Homotopy I, Bul工. Amer. Math. Soc., 55 (1949), pp. 213-245.
[12] J. Stallings, The Piecewise-Linear Structure of Euclidean Space, Proc. Camb. Phil. Soc., 58, part 3 (1962), pp. 481-488.
[13] E. Connell, D. Montgomery, and C.T. Yang, Compact Groups in E^{n}, Ans. of Math. 80 (1964), pp. 94-103 (see correction, Ann. of Math. 81 (1965), p. 194).
[14] J. wilnor, A Procedure for Killing Homotopy Groups of Differentiable Manifolds, Proceedings of Symposium in Pure Mathematics, vol. 3, Differential Geometry, A.M.S., 1961.
[15] M. Brown, Locally Flat Embeddings of Topological Manifolds, pp. 83-91 in [7].
[16] O. Hanner, Some Theorem on Absolute Neighborhood Ratracts, Ark. Mat., vol. 1 (1950) pp. 389-408.
[17] J. Nilnor, Whitehead Torsion, mimeographed notes, Princeton University, October 1964.
[18] J. Vilnor, Characteristic Classes Notes, Appendix A, rimeogrpphed, Princeton University, March 1964.
[19] K.W. Kwun and R.H. Szezarba, Product and Sum Theorems for Hhitehead Torsion, (to appear).
[20] S. Gerston, A Product Formula for Wall's Obstmetion, mimeographed, Rice University (1965).
[21] H.S.M. Coxeter and W.O.J. Moser, Generators and Relations for Discrete Groups, Ergebnisse Nath., neue folge, heft 14. Springer Verlag, 1957.
[22] S.T. Hu, Homotopy Theory, Academic Press, 1959.
[23] P. Hiliton, An Introduction to Homotopy Theory, Cambridge Tract, No. 43, Cambridge University Press, 1961.
[24] M.L. Curtis and K.W. Kwun, Infinite Sums of Manifolds, Topology, ToI. 3 (1965), pp. 31-42.
[25] J. isinor, Differential Structures, mimeographed lecture notes, Princeton University, 1961.
[2ó] B. V. Kerékjárto, Yorlesungen ther Topologie, I, Flächentopologie, Springer Verlag, 1923.
[27] M.H.A. Nowman, Boundaries of ULC Sets in Euclidean Space, Proc. Nat. Acad. Sci. U.S.A., vol. 34, No. 1 (1948), pp. 193-196.
[23] J. Ceri, Isotopy and Pseudo-Isotopy I, mimeographed at Cambridge University, 1964.
[29] iv.E. Steenrod, The Topology of Fibre Bundes, Princetion U. Prass, 1951.
[30] C.F.C. Wall, Open 3-Manifolds which are 1-Connected at Ininity, mimeographed at Cambridge University, 1964.
[31] D. Barien, Structure of Manifolds. (to appear) -- also, mimeographed at Cambridge University, 1964.
[32] J. Milnor, Microbuncles, Part I, Topology, Vol. 3, Suppl. 1, (1.964), pp. 53-80.
[33] i.K. Kister, Microbundles are Fibre Bundles, Eull. A.M.S., vo1. 69, no. 6 (1963), pp. 854-857.
[31; B. Vazur, Differentsal Tonology from the Point of View of Simple Eromony Thoom, I.f.E.S. Publications Mathematiques, No. 15.
[35] E. Mazur, Forse Theory in the Combinatorial and Tooological Case, in the proceedings of a symposium in honor of Marston vorse (1962) to ba called Differential and Combinatorial Tcpology,

Princeton U. Press (to appear).
[36] J.F.P. Hudson and E.C. Zeeman, On Combinatorial Isotopy, I.H.E.S., Publications Mathematiques No. 19, pp. 69-94.
[37] M.R. Mather, Counting Horotopy Types of Manifolds, Topology, (to appear).
[38] D.S. Rim, Mocules over Finite Groups, Annals of Math., 69(1959), pp. 700-712.
[39] H. Pollard, The Thecry of Algebraic Numbers, Carus Monograph No. 9, Math. Association of America, 1950.
[40] O. Zariski and P. Samuel, Commutative Algebra, Volume 1, Van Nostrand, 1958.
[41] J.C. Moore, Modern Classical Algebra, lecture notes mimeographed at Princeton University, 1960-61.
[42] H. Cartan and S. Eilenberg, Homological Algebra, Princeton U. Press, 1956.
[43] S. Lang, Algebraic Numbers. Addison-Wesley, 1964.
[44] E.E. Kummer, Journal de Math. (Liouville), 16(1850), pp. 377-488.
[45] H.S. Vandiver, Fermat's Last Theorem. Amer. Math. Monthly, vol. 53(1946). pp. 555-578.
[46] H. Hasse, Uber die Klassenzahl abelschen ZahlkBrper, AkademieVerlag, Berlin, 1952.
[47] E.E. Kummer, Monatsberichte den YBaigitchen Akademie der Wissenschaften zu Berlin, 1970, pp. 855-880.
[48] i. Minkowski, Ueber die positiven quadratischen Fomen und uber keitenoruchthnliche Algorithaen, J. reine angew. Math., 107(1891).
[49] E.E. Kurmer, Monatsberichte K. Akad. Wiss. Borlin, 1874, pp. 239-248.
[50] E.E. Kumer, Monatsberichte K. Akad. Wiss, Berlin, J853, pp. 194-199.
[51] ii, Arowder, Struetures on M×R, Proc. Camb. Phil. Soc., 61 (1965), pp. 337-345.

[^0]: Proof: By Theorem 1.10, there are only finitely many ends. If V

