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Local to global and, if possible, global to local

I There are many theorems in TOPOLOGY of the type

local input =⇒ global output

I Theorems of the type

global input =⇒ local output

are even more interesting, and correspondingly harder to
prove! This frequently requires ALGEBRA.

I Algebra is a pact one makes with the devil!
(Sir Michael Atiyah)

I I rather think that algebra is the song that the angels sing!
(Barry Mazur)

I One thing I’ve learned about algebra ... don’t take it too
seriously (Peanuts cartoon)

http://www.maths.ed.ac.uk/~aar/eleven.pdf
http://www.maths.ed.ac.uk/~aar/eleven.pdf
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Poincaré duality and its converse

I The Poincaré duality of an n-dimensional topological manifold
M

H∗(M) ∼= Hn−∗(M)

is a local =⇒ global theorem.

I Theorem Let n > 5. A space X with n-dimensional Poincaré
duality H∗(X ) ∼= Hn−∗(X ) is homotopy equivalent to an
n-dimensional topological manifold if and only if X has
sufficient local Poincaré duality.

I Modern take on central result of the
Browder-Novikov-Sullivan-Wall high-dimensional surgery
theory for differentiable and PL manifolds, and its
Kirby-Siebenmann extension to topological manifolds
(1962-1970)

I Will explain ”sufficient” over the course of the lectures!
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The Seifert-van Kampen Theorem and its converse

I Local =⇒ global. The fundamental group of a union

X = X1 ∪Y X2 , Y = X1 ∩ X2

is an amalgamated free product

π1(X ) = π1(X1) ∗π1(Y ) π1(X2) .

I Global =⇒ local. Let n > 6. If X is an n-dimensional
manifold such that π1(X ) = G1 ∗H G2 then X = X1 ∪Y X2 for
codimension 0 submanifolds X1,X2 ⊂ X with

∂X1 = ∂X2 = Y = (n − 1)-dimensional manifold ,

π1(X1) = G1 , π1(X2) = G2 , π1(Y ) = H .
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The Vietoris Theorem and its converses

I Theorem If f : X → Y is a surjection of compact metric
spaces such that for each y ∈ Y the restriction

f | : f −1(y)→ {y}

induces an isomorphisms in homology

H∗(f −1(y)) ∼= H∗({y})

then f induces isomorphisms in homology

f∗ : H∗(X ) ∼= H∗(Y ) .

I Local input: each f −1(y) (y ∈ Y ) is acyclic

H̃∗(f −1(y)) = 0 .

I Global output: f∗ is an isomorphism.
I Would like to have converses of the Vietoris theorem! For

example, under what conditions is a homotopy equivalence
homotopic to a homeomorphism?
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Manifolds and homology manifolds

I An n-dimensional topological manifold is a topological
space M such that each x ∈ M has an open neighbourhood
homeomorphic to Rn.

I An n-dimensional homology manifold is a topological space
M such that the local homology groups of M at each x ∈ M
are isomorphic to the local homology groups of Rn at 0

H∗(M,M\{x}) ∼= H∗(Rn,Rn\{0}) =

{
Z if ∗ = n

0 if ∗ 6= n

I A topological manifold is a homology manifold.

I A homology manifold need not be a topological manifold.

I Will only consider compact M which can be realized as a
subspace M ⊂ Rn+k for some large k > 0, i.e. a compact
ENR. This is automatically the case for topological manifolds.
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The triangulation of manifolds

I A triangulation of a space X is a simplicial complex K
together with a homeomorphism

X ∼= |K |

with |K | the polyhedron of K .

I X is compact if and only if K is finite.
I Triangulation of n-dimensional topological manifolds:

I Exists and is unique for n 6 3
I Known: may not exist for n = 4
I Unknown: if exists for n > 5

(Update: now known. Manolescu 2013: Nontriangulable
topological manifolds in each dimension n > 5)

I Differentiable and PL manifolds are triangulated for all n > 0
I Triangulation of n-dimensional homology manifolds:

I Exists and is unique for n 6 3
I Known: may not exist for n > 4.

http://http://front.math.ucdavis.edu/1303.2354
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The naked homeomorphism

I Poincaré, for one, was emphatic about the importance of the
naked homeomorphism - when writing philosophically - yet his
memoirs treat DIFF or PL manifolds only.
in L. Siebenmann’s 1970 ICM lecture on topological
manifolds.

I . . . topological manifolds bear the simplest possible relation
to their underlying homotopy types. This is a broad statement
worth testing. (ibid.)

I Will describe how surgery theory manufactures the homotopy
theory of topological manifolds of dimension > 4 from
Poincaré duality spaces and chain complexes.

I Poincaré duality is the most important property of the
algebraic topology of manifolds.

http://www.maths.ed.ac.uk/~aar/papers/siebenicm.pdf
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The original statement of Poincaré duality

I Analysis Situs and its Five Supplements (1892–1904)
I

I Originally proved for a differentiable manifold M, but long
since established for topological and homology manifolds.

I h = n, the dimension of M.
I Pp = dimZHp(M), the pth Betti number of M.
I Happy birthday! 2011 is the 100th anniversary of Brouwer’s

proof that homeomorphic manifolds have the same dimension.
Also true for homology manifolds.

http://www.maths.ed.ac.uk/~aar/papers/poincare2009.pdf
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Orientation

I A local fundamental class of an n-dimensional homology
manifold M at x ∈ M is a choice of generator

[M]x ∈ {1,−1} ⊂ Hn(M,M\{x}) = Z .

I The local Poincaré duality isomorphisms are defined by

[M]x ∩ − : H∗({x}) ∼= Hn−∗(M,M\{x}) .

I An n-dimensional homology manifold M is orientable if there
exists a fundamental homology class [M] ∈ Hn(M) such that
for each x ∈ M the image

[M]x ∈ Hn(M,M\{x}) = Z

is a local fundamental class.
I We shall only consider manifolds which are orientable,

together with a choice of fundamental class [M] ∈ Hn(M).



11

Poincaré duality in modern terminology

I Theorem For an n-dimensional manifold M the cap products
with the orientation [M] ∈ Hn(M) are Poincaré duality
isomorphisms

[M] ∩ − : H∗(M) ∼= Hn−∗(M) .

I Idea of proof Glue together the local Poincaré duality
isomorphisms

[M]x ∩ − : H∗({x}) ∼= Hn−∗(M,M\{x}) (x ∈ M)

to obtain the global Poincaré duality isomorphisms

[M] ∩ − = lim←−
x∈M

[M]x ∩ − :

H∗(M) = lim←−
x∈M

H∗({x}) ∼= Hn−∗(M) = lim←−
x∈M

Hn−∗(M,M\{x})

I Need to work on the chain level, rather than directly with
homology.
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Poincaré duality spaces

I Definition An n-dimensional Poincaré duality space X is a
finite CW complex X with a homology class [X ] ∈ Hn(X )
such that cap product with [X ] defines Poincaré duality
isomorphism

[X ] ∩ − : H∗(X ;Z[π1(X )]) ∼= Hn−∗(X ;Z[π1(X )]) .

I In the simply-connected case π1(X ) = {1} just

[X ] ∩ − : H∗(X ) ∼= Hn−∗(X ) .

I Homotopy invariant: any finite CW complex homotopy
equivalent to an n-dimensional Poincaré duality space is an
n-dimensional Poincaré duality space.

I A triangulable n-dimensional homology manifold is an
n-dimensional Poincaré duality space.

I A nontriangulable n-dimensional homology manifold is
homotopy equivalent to an n-dimensional Poincaré duality
space.
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Floer’s Diplom thesis

I Floer’s 1982 Bochum Diplom thesis (under the supervision of
Ralph Stöcker) was on the homotopy-theoretic classification
of (n − 1)-connected (2n + 1)-dimensional Poincaré duality
spaces for n > 1.

I http://www.maths.ed.ac.uk/̃ aar/papers/floer.pdf

http://www.maths.ed.ac.uk/~aar/papers/floer.pdf
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Manifold structures in the homotopy type
of a Poincaré duality space

I (Existence) When is an n-dimensional Poincaré duality space
homotopy equivalent to an n-dimensional topological
manifold?

I (Uniqueness) When is a homotopy equivalence of
n-dimensional topological manifolds homotopic to a
homeomorphism?

I There are also versions of these questions for differentiable
and PL manifolds, and also for homology manifolds.

I But it is the topological manifold version which is the most
interesting! Both intrinsically, and because most susceptible
to algebra, at least for n > 4.
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Surfaces

I Surface = 2-dimensional topological manifold.

I Every orientable surface is homeomorphic to the standard
surface Σg of genus g > 0.

I Every 2-dimensional Poincaré duality space is homotopy
equivalent to a surface.

I A homotopy equivalence of surfaces is homotopic to a
homeomorphism.

I In general, the analogous statements for false for
n-dimensional manifolds with n > 2.
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Bundle theories

I
spaces bundles classifying

spaces
differentiable manifolds vector BO

bundles π∗(BO) infinite
topological manifolds topological BTOP

bundles π∗(BTOP) infinite
homotopy Poincaré spherical BG

theory duality spaces fibrations π∗(BG ) = πS
∗−1 finite

I Forgetful maps downwards. Difference between the first two
rows = finite (but non-zero) = exotic spheres (Milnor).

I An n-dimensional differentiable manifold M has a tangent
bundle τM : M → BO(n) and a stable normal bundle
νM : M → BO.

I Similarly for a topological manifold M, with BTOP(n).
I An n-dimensional Poincaré duality space X has a Spivak

normal fibration νX : X → BG .
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The Hirzebruch signature theorem

I The signature of a 4k-dimensional Poincaré duality space X is

σ(X ) = signature(H2k(X ), intersection form) ∈ Z

I The Hirzebruch L-genus of a vector bundle η over a space
X is a certain polynomial L(η) ∈ H4∗(X ;Q) in the Pontrjagin
classes p∗(η) ∈ H4∗(M).

I Signature Theorem (1953) If M is a 4k-dimensional
differentiable manifold then

σ(M) = 〈L(τM), [M]〉 ∈ Z

I There have been many extensions of the theorem since 1953!
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The Browder converse of the Hirzebruch signature theorem

I Theorem (Browder, 1962) For k > 1 a simply-connected
4k-dimensional Poincaré duality space X is homotopy
equivalent to a 4k-dimensional differentiable manifold M if
and only if νX : X → BG lifts to a vector bundle η : X → BO
such that

σ(X ) = 〈L(−η), [X ]〉 ∈ Z .

I Novikov (1962) initiated the complementary theory of
necessary and sufficient conditions for a homotopy equivalence
of simply-connected differentiable manifolds to be homotopic
to a diffeomorphism.

I Many developments in the last 50 years, including versions for
topological manifolds and homeomorphisms.
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The Browder-Novikov-Sullivan-Wall surgery theory I.

I Is an n-dimensional Poincaré duality space X homotopy
equivalent to an n-dimensional topological manifold?

I The surgery theory provides a 2-stage obstruction for n > 4,
working outside of X , involving normal maps (f , b) : M → X
from manifolds M, with b a bundle map.

I Primary obstruction in the topological K -theory of vector
bundles to the existence of a normal map (f , b) : M → X .

I Secondary obstruction σ(f , b) ∈ Ln(Z[π1(X )]) in the Wall
surgery obstruction group, depending on the choice of (f , b)
in resolving the primary obstruction. The algebraic L-groups
defined algebraically using quadratic forms over Z[π1(X )].

I The mixture of topological K -theory and algebraic L-theory
not very satisfactory!
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The Browder-Novikov-Sullivan-Wall surgery theory II.

I Is a homotopy equivalence f : M → N of n-dimensional
topological manifolds homotopic to a homeomorphism?

I For n > 4 similar 2-stage obstruction theory for deciding if f is
homotopic to a homeomorphism.

I The mapping cylinder of f

L = M × [0, 1] ∪(x ,1)∼f (x) N

defines an (n + 1)-dimensional Poincaré pair (L,M t N) with
manifold boundary. The 2-stage obstruction for uniqueness is
the 2-stage obstruction for relative existence.

I Again, the mixture of topological K -theory and algebraic
L-theory not very satisfactory!
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The total surgery obstruction
I. Existence of manifold structures

I The S-groups S∗(X ) are Z-graded abelian groups defined for
any space X . A map f : X → Y induces f∗ : S∗(X )→ S∗(Y ).
If f is a homotopy equivalence, then f∗ is an isomorphism

I The total surgery obstruction s(X ) ∈ Sn(X ) of an
n-dimensional Poincaré duality space X with the following
properties.

I If f : X → Y is a homotopy equivalence of n-dimensional
Poincaré duality spaces then f∗s(X ) = s(Y ) ∈ Sn(Y ).

I If X is an n-dimensional homology manifold then
s(X ) = 0 ∈ Sn(X ).

I Main Theorem If n > 5 and s(X ) = 0 ∈ Sn(X ) then X is
homotopy equivalent to an n-dimensional topological
manifold.

I Global input =⇒ local output.
I Proof by Browder-Novikov-Sullivan-Wall theory.
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The total surgery obstruction
II. Uniqueness of manifold structures

I The total surgery obstruction of a homotopy equivalence
h : N → M of n-dimensional topological manifolds is an
element s(h) ∈ Sn+1(M) with the following properties.

I If the point inverses h−1(x) ⊂ N (x ∈ M) are acyclic

h| : H∗(h
−1(x)) ∼= H∗({x})

then s(h) = 0 ∈ Sn+1(M).

I If n > 5 and s(h) = 0 ∈ Sn+1(M) then h is homotopic to a
homeomorphism. (Need also Whitehead torsion τ(h) = 0).
Every s ∈ Sn+1(M) is s = s(h) for some h.

I Global input =⇒ local output.

I (A.R.) The total surgery obstruction
(Proc. 1978 Aarhus Topology Conference, Springer Lecture
Notes)

http://www.maths.ed.ac.uk/~aar/papers/total.pdf
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The Wall surgery obstruction

I In 1969 C.T.C. Wall constructed the surgery obstruction
groups Ln(A) of a ring with involution A, using quadratic
structures on f.g. free A-modules.

I 4-periodic: Ln(A) = Ln+4(A)

I L0(A) = Witt group of quadratic forms over A.

I L1(A) = stable automorphism group of quadratic forms over
A.

I L2(A) = Witt group of symplectic-quadratic forms over A.

I L3(A) = stable automorphism group of symplectic-quadratic
forms over A.

I A normal map (f , b) : M → X from an n-dimensional
manifold M to an n-dimensional Poincaré duality space X has
a surgery obstruction σ(f , b) ∈ Ln(Z[π1(X )]) such that
σ(f , b) = 0 if (and for n > 5 only if) (f , b) is normal bordant
to a homotopy equivalence.
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Local =⇒ global in surgery theory

I The algebraic L-groups L∗(Z[π1(X )]) depend only on the
fundamental group π1(X ) of a space X , so are global.

I The Witt groups of sheaves of quadratic forms over X define
the generalized homology groups H∗(X ; L(Z)), which are
local. Here L(Z) is a spectrum with

π∗(L(Z)) = L∗(Z) = Z, 0,Z2, 0, . . . (4-periodic)

the simply-connected surgery obstruction groups.
I For any space X there is an exact sequence

· · · → Hn(X ; L(Z))
A // Ln(Z[π1(X )])

→ Sn(X )→ Hn−1(X ; L(Z))→ . . .

I A is the local =⇒ global assembly map in L-theory.
Originally defined geometrically by Quinn.

I The S-groups S∗(X ) measure the failure of A to be an
isomorphism.
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The failure of local Poincaré duality

I Let X be an n-dimensional Poincaré duality space. The failure
of local Poincaré duality at x ∈ X is measured by the groups
K∗(X , x) in the exact sequences

· · · → Hn−r−1({x})
[X ]x ∩ −// Hr+1(X ,X\{x})
→ Kr (X , x)→ Hn−r ({x})→ . . .

I X is a homology manifold if and only if K∗(X , x) = 0 (x ∈ X ).

I Roughly speaking, the total surgery obstruction s(X ) ∈ Sn(X )
is the cobordism class of a sheaf over X of chain complexes
with quadratic Poincaré duality over Z with K∗(X , x) the stalk
at x ∈ X .

I Chain complex with quadratic Poincaré duality
= chain complex with quadratic structure
= generalization of quadratic form.
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Bringing in the sheaves

(From The Night of the Hunter)

I The book
A.R. Algebraic L-theory and manifolds (CUP, 1992)
developed the theory for simplicial complexes K , with an
assembly map

A : {(Z,K )-modules} → {Z[π1(K )]-modules}

to provide the passage from local to global in algebra. This is
sufficient for applications, since every Poincaré duality space is
homotopy equivalent to one which is triangulated.

I Unfortunately, have not yet been able to develop the necessary
sheaf theory. However, the paper
A.R.+Michael Weiss On the construction and topological
invariance of the Pontryagin classes (Geometriae Dedicata
2010) points in the right direction!

http://www.maths.ed.ac.uk/~aar/sheaves.mp4
http://www.imdb.com/title/tt0048424
http://www.maths.ed.ac.uk/~aar/books/topman.pdf
http://www.maths.ed.ac.uk/~aar/papers/invtop.pdf
http://www.maths.ed.ac.uk/~aar/papers/invtop.pdf


8

Rings with involution

I An involution on a ring A is a function

A→ A ; a 7→ a

such that

a + b = a + b , ab = ba , a = a (a, b ∈ A) .

I Example 1 A commutative ring A, with a = a.
I Example 2 A group ring A = Z[π] with g = g−1 (g ∈ π).
I Regard a left A-module P as a right A-module with

P × A→ P ; (x , a) 7→ ax .

I The tensor product of left A-modules P,Q is the abelian
group defined by

P ⊗A Q = P ⊗Z Q/{ax ⊗ y − x ⊗ ay | a ∈ A, x ∈ P, y ∈ Q}
with transposition isomorphism

P ⊗A Q → Q ⊗A P ; x ⊗ y 7→ y ⊗ x .
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Duality over a ring with involution

I The dual of a left A-module P is the left A-module

P∗ = HomA(P,A) , A× P∗ → P∗ ; (a, f ) 7→ (x 7→ f (x)a) .

I The natural A-module morphism

P → P∗∗ ; x 7→ (f 7→ f (x))

is an isomorphism for f.g. free P.

I For A-modules P,Q the abelian group morphisms

P∗ ⊗A Q → HomA(P,Q) ; f ⊗ y 7→ (x 7→ f (x)y) ,

∗ : HomA(P,Q)→ HomA(Q∗,P∗); f 7→ (f ∗ : g 7→ (x 7→ g(f (x))))

are isomorphisms for f.g. free P,Q.
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Quadratic forms on chain complexes I.

I A.R. The algebraic theory of surgery I., II. (1980, Proc.
LMS)

I The n-dual of a f.g. free A-module chain complex

C : · · · → Cr
d // Cr−1 → · · · → C1

d // C0 → . . .

is the f.g. free A-module chain complex

Cn−∗ : · · · → C 0 d∗ // C 1 → · · · → C r−1 d∗ // C r → . . .

with C r = C ∗r .

I An ‘algebraic Poincaré complex’ is a f.g. free A-module chain
complex C with a chain equivalence Cn−∗ ' C satisfying
extra conditions. There are two flavours: symmetric and
quadratic. Will ignore the difference today, using algebraic
for both!

http://www.maths.ed.ac.uk/~aar/papers/ats12.pdf
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Quadratic forms on chain complexes II.

I For any f.g. free A-module chain complex C there is defined
an isomorphism of A-module chain complexes

C ⊗A C → HomA(C−∗,C ) ; x ⊗ y 7→ (f 7→ f (x).y) .

The homology group

Hn(C ⊗A C ) = H0(HomA(Cn−∗,C ))

is the group of chain homotopy classes of chain maps
φ : Cn−∗ → C .

I The action of T ∈ Z2 by the transposition involution

T : C⊗AC → C⊗AC ; x⊗y 7→ (−)pqy⊗x (x ∈ Cp, y ∈ Cq)

corresponds to the duality involution

T : HomA(C−∗,C )→ HomA(C−∗,C ) ; f 7→ (−)pqf ∗ ,

(f : Cp → Cq) 7→ ((−)pqf ∗ : Cq → Cp) , y(f ∗(x)) = x(f (y)) .
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Algebraic Poincaré cobordism

I An n-dimensional algebraic Poincaré complex over A
(C , φ) is an n-dimensional f.g. free A-module chain complex
C together with a chain equivalence φ : Cn−∗ → C such that
there exists a chain homotopy Tφ ' φ : Cn−∗ → C .

I If 1/2 /∈ A need additional structure: either symmetric or
quadratic.

I A cobordism (L;M,M ′) of n-dimensional manifolds has
Poincaré-Lefschetz duality

[L] ∩ − : Hn+1−∗(L,M) ∼= H∗(L,M
′) .

I Proposition (Mishchenko, R., 1970’s) The Wall group Ln(A)
is the group of cobordism classes of n-dimensional algebraic
Poincaré complexes (C , φ) over A, with (C , φ) ∼ (C ′, φ′) if
C ⊕ C ′ ⊂ D for an (n + 1)-dimensional f.g. free A-module
chain complex D such that Hn+1−∗(D,C ) ∼= H∗(D,C

′).
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The polyhedron of a simplicial complex

I A simplicial complex K is a collection of finite subsets
σ ⊆ K (0) of an ordered vertex set K (0) such that:

(a) v ∈ K for each v ∈ K (0),
(b) if σ ∈ K and τ ⊆ σ then τ ∈ K .

I The dimension of σ ∈ K is

|σ| = (no. of vertices in σ)− 1

Let K (n) denote the set of n-simplexes in K .

I The polyhedron of K is the usual identification space

|K | = (
∞∐
n=0

∆n × K (n))/∼

with ∆n the convex hull of (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn+1.
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The simplicial chain complex

I The simplicial chain complex C (K ) has

d : C (K )n = Z[K (n)]→ C (K )n−1 = Z[K (n−1)] ;

(v0v1 . . . vn) 7→
n∑

i=0
(−)i (v0, . . . , vi−1, vi+1, . . . , vn)

(v0 < v1 < · · · < vn)

I The homology and cohomology groups of the polyhedron are
the same as those of the simplicial complex

H∗(|K |) = H∗(K ) = H∗(C (K )) ,

H∗(|K |) = H∗(K ) = H∗(C (K )) .

I For any simplicial complexes K , L Hn(|K | × |L|) is the group
of chain homotopy classes of chain maps C (K )n−∗ → C (L).
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Polyhedral Poincaré complexes

I A triangulated n-dimensional Poincaré space is a finite
simplicial complex K with universal cover K̃ and a homology
class [K ] ∈ Hn(K ) satisfying the equivalent conditions:

I (a) the cap products

[K ] ∩ − : Hn−∗(K̃ ) = H∗(C (K̃ )n−∗)→ H∗(K̃ )

are Z[π1(K )]-module isomorphisms.
I (b) The image ∆[K ] ∈ Hn(X ) under the diagonal map

∆ : |K | → X = |K̃ | ×π1(K) |K̃ | ; x 7→ (x̃ , x̃)

is a chain homotopy class of Z[π1(K )]–module chain
equivalences φ = ∆[K ] : C (K̃ )n−∗ → C (K̃ ).

I (c) The cap product [X ] ∩ − : Hn(X )→ Hn(X ) is an
isomorphism, with ∆[K ]∗ ∈ Hn(X ) a Z[π1(K )]-module chain
homotopy inverse φ−1 : C (K̃ )→ C (K̃ )n−∗.

I (C (K̃ ), φ) is an n-dimensional algebraic Poincaré complex
over Z[π1(K )].
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Dual cells

I The barycentric subdivision of K is the simplicial complex
K ′ with K ′(0) = K and

K ′
(n)

= {(σ0, σ1, . . . , σn) |σ0 ⊂ σ1 ⊂ · · · ⊂ σn} .
Homeomorphic polyhedron |K ′| ∼= |K |.

I The dual cells of K are the contractible subcomplexes

D(σ) = {(σ0, σ1, . . . , σn) ∈ K ′ |σ0 ⊆ σ} ⊆ K ′ .

I The boundary of the dual cell D(σ) is

∂D(σ) = {(σ0, σ1, . . . , σn) ∈ D(σ) |σ0 6= σ} .
I Proposition The local homology groups of |K | at x ∈ |K | are

the homology groups of the dual cells relative to boundaries

H∗(|K |, |K |\{x}) = H∗−|σ|(D(σ), ∂D(σ)) (x ∈ interior(σ), σ ∈ K ) .

For each σ ∈ K and x ∈ interior(σ) there are natural maps

∂σ : H∗(|K |) = H∗(K )→ H∗(|K |, |K |\{x}) = H∗−|σ|(D(σ), ∂D(σ)) .
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The (Z,K )-category I. Modules

I A.R.+M.Weiss Chain complexes and assembly Math. Z.
(1999)

I A (Z,K )-module is a f.g. free Z-module M with splitting

M =
∑
σ∈K

M(σ) .

I A morphism of (Z,K )-modules f : M → N is a Z-module
morphism such that

f (M(σ)) ⊆
∑
τ>σ

N(τ) (σ ∈ K ) .

I Proposition A (Z,K )-module morphism f : M → N is an
isomorphism if and only if each

f (σ, σ) : M(σ)→ N(σ) (σ ∈ K )

is a Z-module isomorphism.

http://www.maths.ed.ac.uk/~aar/papers/ranwei.pdf
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Assembly

I Let p : K̃ → K be the universal cover of a connected
simplicial complex K . The assembly functor

A : {(Z,K )-modules} → {f.g. free Z[π1(K )]-modules}

is defined by

A(M) =
∑
σ̃∈K̃

M(p(σ̃)) .

I Local =⇒ global.
I Example For finite K the simplicial chain complex C (K ′) is a

(Z,K )-module chain complex with

C (K ′)(σ) = C (D(σ), ∂D(σ)) (σ ∈ K )

The assembly is the simplicial Z[π1(K )]-module chain
complex of K̃ ′

A(C (K ′)) = C (K̃ ′) .



19

The algebraic Vietoris theorem

I Let f : L→ K ′ be a simplicial map with K , L finite.

I Regard C (L) as a (Z,K )-module chain complex by

C (L)(σ) = C (f −1D(σ), f −1∂D(σ)) (σ ∈ K ) .

I Proposition f has acyclic point inverses if and only if

f : C (L)→ C (K ′)

is a (Z,K )-module chain equivalence.

I Corollary If f has acyclic point inverses then

f̃ : C (L̃)→ C (K̃ ′)

is a Z[π1(K )]-module chain equivalence
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The (Z,K )-category II. Products

I The product of (Z,K )-modules A,B is the (Z,K )-module

A⊗(Z,K) B =
∑

λ,µ∈K ,λ∩µ6=∅
A(λ)⊗Z B(µ) ⊆ A⊗Z B with

(A⊗(Z,K) B)(σ) =
∑

λ,µ∈K ,λ∩µ=σ
A(λ)⊗Z B(µ) .

I Example For simplicial maps f : L→ K ′, g : M → K ′ the
pullback polyhedron

L×K M = {(x , y) ∈ |L| × |M| | f (x) = g(y) ∈ |K |}

has homology

H∗(L×K M) = H∗(C (L)⊗(Z,K) C (M))

with
C (L)(σ) = C (f −1D(σ), f −1∂D(σ)) ,

C (M)(σ) = C (g−1D(σ), g−1∂D(σ)) .
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The (Z,K )-category III. Duality

I The dual of a (Z,K )-module M is the (Z,K )-module chain
complex TM with

TM(σ)r =


∑
τ>σ

M(τ)∗ if r = −|σ|

0 otherwise.

I The dual of a (Z,K )-module chain complex C is a
(Z,K )-module chain complex TC . Analogue of Verdier
duality for sheaves.

I Example The dual of C (K ′) is (Z,K )-equivalent to the
cochain complex of K

TC (K ′) ' C (K )−∗ , C (K )r (σ) =

{
Z if r = −|σ|
0 otherwise.

I For any (Z,K )-module chain complexes C ,D

H∗(C ⊗(Z,K) D) = H∗(Hom(Z,K)(TC ,D)) .
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The assembly map

I Proposition (i) The generalized homology group Hn(K ; L(Z))
is the cobordism group of n-dimensional algebraic Poincaré
complexes (C , φ : TC∗−n → C ) in the (Z,K )-module category.

I (ii) The assembly functor

A : {(Z,K )-modules} → {Z[π1(K )]-modules}

induces assembly maps in algebraic L-theory

A : Hn(K ; L(Z))→ Ln(Z[π1(K )])

I (iii) Sn(K ) is the cobordism group of (n − 1)-dimensional
algebraic Poincaré complexes (C , φ) in the (Z,K )-module
category such that the assembly A(C ) is a contractible f.g.
free Z[π1(K )]-module chain complex, H∗(A(C )) = 0.
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From local to global Poincaré duality, and back again!

I For any simplicial complex K

Hn(K ) = Hn(Hom(Z,K)(TC (K ′),C (K ′))) .

The cap product with any homology class [K ] ∈ Hn(K ) is a
(Z,K )-module chain map

φ = [K ] ∩ − : TC (K ′)∗−n → C (K ′)

with diagonal components

φ(σ, σ) = ∂σ[K ] ∩ − : TC (K ′)∗−n(σ) = C (D(σ))n−∗−|σ|

→ C (K ′)(σ) = C (D(σ), ∂D(σ)) (σ ∈ K ) ,

with assembly

[K ] ∩ − : TC (K̃ ′)∗−n ' C (K̃ )n−∗ → C (K̃ ′) ' C (K̃ ) .

I K is a homology manifold if and only if [K ] ∩ − is a
(Z,K )-module chain equivalence. This is essentially
Poincaré’s original proof of duality!
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The total surgery obstruction

I The total surgery obstruction of a polyhedral n-dimensional
Poincaré duality space K is the cobordism class

s(K ) = (C(φ)∗+1, ψ) ∈ Sn(K ) ,

with C(φ) the Z[π1(K )]-contractible algebraic mapping cone
of the (Z,K )-module chain map

φ = [K ] ∩ − : TC (K ′)n−∗ → C (K ′) .

I The image

t(K ) = [s(K )] ∈ Hn−1(K ; L(Z))

is such that t(K ) = 0 if and only if there exists a normal map
(f , b) : M → |K |, M an n-dimensional topological manifold.

I s(K ) = 0 if and only if there exists a normal map (f , b) with
surgery obstruction σ(f , b) = 0 ∈ Ln(Z[π1(K )]).

I For n > 5 s(K ) = 0 if and only if |K | is homotopy equivalent
to an n-dimensional topological manifold, by B-N-S-W theory.
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The symmetric signature

I The symmetric signature of a triangulated n-dimensional
Poincaré space K is the algebraic Poincaré cobordism class

σ(K ) = (C (K̃ ), φ) ∈ Ln(Z[π1(K )]) .

I The symmetric signature is a homotopy invariant, generalizing
the signature.

I Modulo 2-torsion, the total surgery obstruction is the image

s(K ) = [σ(K )] ∈ im(Ln(Z[π1(K )])→ Sn(K )) .

I Theorem (A.R., 1992) Modulo 2-torsion, if n > 5 |K | is
homotopy equivalent to an n-dimensional topological manifold
if and only if s(K ) = 0 ∈ Sn(K ), if and only if

σ(K ) ∈ im(A : Hn(K ; L(Z))→ Ln(Z[π1(K )])) .

I For n = 4k , π1(K ) = {1} this is just Browder’s converse of
the Hirzebruch signature theorem.
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The homotopy types of topological manifolds

I For n > 5 the homotopy types of n-dimensional topological
manifolds M fit into a fibre square

topological manifolds //

��

cobordism of local APC’s

A
��

PD spaces // cobordism of global APC’s

with PD = Poincaré duality, APC = algebraic Poincaré
complexes, A = assembly.

I Local = in the (Z,K )-module category, for a finite simplicial
complex K with a surjection |K | → M with acyclic point
inverses, and π1(|K |) ∼= π1(M),

I Global = in the Z[π]-module category, π = π1(|K |) = π1(M).
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Three conjectures

I The Novikov conjecture (1969) on the homotopy invariance
of the higher signatures of manifolds with fundamental group
π is equivalent to the injectivity of the local =⇒ global
assembly map 1⊗ A : H∗(Bπ; L(Z))⊗Q→ L∗(Z[π])⊗Q.
History and survey of the Novikov conjecture.

I The Borel conjecture (1953) on the existence and rigidity of
topological manifold structures on aspherical Poincaré
complexes Bπ is essentially equivalent to the assembly map
A : H∗(Bπ; L(Z))→ L∗(Z[π]) being an isomorphism, so that
local ⇐⇒ global.
1953 letter from Borel to Serre.

I The Farrell-Jones conjecture (1982) that a generalized
assembly map from equivariant homology to the L-theory of
Z[π] is an isomorphism for all groups π.

http://www.maths.ed.ac.uk/~aar/surgery/history.pdf
http://www.maths.ed.ac.uk/~aar/surgery/borel.pdf
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Conclusion

I Starting with Novikov himself, many authors in the last 40
years have proved many special cases of the Novikov, Borel
and Farrell-Jones conjectures, using a wide variety of
algebraic, geometric and analytic methods.

I Some (though not all) have used the algebraic L-theory
assembly map defined here.

I There is still much work to be done to understand the
relationship between all these methods of proof, and maybe
even prove new results!


