THE POINCARÉ DUALITY THEOREM

 AND ITS CONVERSE I.Andrew Ranicki (Edinburgh)
http://www.maths.ed.ac.uk/「aar

FLOER
CENTER OF GEOMETRY

Festive Opening Colloquium
Bochum, 7th December, 2011

Local to global and, if possible, global to local

- There are many theorems in TOPOLOGY of the type

$$
\text { local input } \Longrightarrow \text { global output }
$$

- Theorems of the type

$$
\text { global input } \Longrightarrow \text { local output }
$$

are even more interesting, and correspondingly harder to prove! This frequently requires ALGEBRA.

- Algebra is a pact one makes with the devil! (Sir Michael Atiyah)
- I rather think that algebra is the song that the angels sing! (Barry Mazur)
- One thing l've learned about algebra ... don't take it too seriously (Peanuts cartoon)

Poincaré duality and its converse

- The Poincaré duality of an n-dimensional topological manifold M

$$
H^{*}(M) \cong H_{n-*}(M)
$$

is a local \Longrightarrow global theorem.

- Theorem Let $n \geqslant 5$. A space X with n-dimensional Poincaré duality $H^{*}(X) \cong H_{n-*}(X)$ is homotopy equivalent to an n-dimensional topological manifold if and only if X has sufficient local Poincaré duality.
- Modern take on central result of the Browder-Novikov-Sullivan-Wall high-dimensional surgery theory for differentiable and PL manifolds, and its Kirby-Siebenmann extension to topological manifolds (1962-1970)
- Will explain "sufficient" over the course of the lectures!

The Seifert-van Kampen Theorem and its converse

- Local \Longrightarrow global. The fundamental group of a union

$$
X=X_{1} \cup_{Y} X_{2}, Y=X_{1} \cap X_{2}
$$

is an amalgamated free product

$$
\pi_{1}(X)=\pi_{1}\left(X_{1}\right) *_{\pi_{1}(Y)} \pi_{1}\left(X_{2}\right)
$$

- Global \Longrightarrow local. Let $n \geqslant 6$. If X is an n-dimensional manifold such that $\pi_{1}(X)=G_{1} *_{H} G_{2}$ then $X=X_{1} \cup_{Y} X_{2}$ for codimension 0 submanifolds $X_{1}, X_{2} \subset X$ with

$$
\begin{aligned}
& \partial X_{1}=\partial X_{2}=Y=(n-1) \text {-dimensional manifold } \\
& \pi_{1}\left(X_{1}\right)=G_{1}, \pi_{1}\left(X_{2}\right)=G_{2}, \pi_{1}(Y)=H
\end{aligned}
$$

The Vietoris Theorem and its converses

- Theorem If $f: X \rightarrow Y$ is a surjection of compact metric spaces such that for each $y \in Y$ the restriction

$$
f \mid: f^{-1}(y) \rightarrow\{y\}
$$

induces an isomorphisms in homology

$$
H_{*}\left(f^{-1}(y)\right) \cong H_{*}(\{y\})
$$

then f induces isomorphisms in homology

$$
f_{*}: H_{*}(X) \cong H_{*}(Y)
$$

- Local input: each $f^{-1}(y)(y \in Y)$ is acyclic

$$
\widetilde{H}_{*}\left(f^{-1}(y)\right)=0
$$

- Global output: f_{*} is an isomorphism.
- Would like to have converses of the Vietoris theorem! For example, under what conditions is a homotopy equivalence homotopic to a homeomorphism?

Manifolds and homology manifolds

- An n-dimensional topological manifold is a topological space M such that each $x \in M$ has an open neighbourhood homeomorphic to \mathbb{R}^{n}.
- An n-dimensional homology manifold is a topological space M such that the local homology groups of M at each $x \in M$ are isomorphic to the local homology groups of \mathbb{R}^{n} at 0

$$
H_{*}(M, M \backslash\{x\}) \cong H_{*}\left(\mathbb{R}^{n}, \mathbb{R}^{n} \backslash\{0\}\right)= \begin{cases}\mathbb{Z} & \text { if } *=n \\ 0 & \text { if } * \neq n\end{cases}
$$

- A topological manifold is a homology manifold.
- A homology manifold need not be a topological manifold.
- Will only consider compact M which can be realized as a subspace $M \subset \mathbb{R}^{n+k}$ for some large $k \geqslant 0$, i.e. a compact ENR. This is automatically the case for topological manifolds.

The triangulation of manifolds

- A triangulation of a space X is a simplicial complex K together with a homeomorphism

$$
X \cong|K|
$$

with $|K|$ the polyhedron of K.

- X is compact if and only if K is finite.
- Triangulation of n-dimensional topological manifolds:
- Exists and is unique for $n \leqslant 3$
- Known: may not exist for $n=4$
- Unknown: if exists for $n \geqslant 5$
(Update: now known. Manolescu 2013: Nontriangulable topological manifolds in each dimension $n \geqslant 5$)
- Differentiable and PL manifolds are triangulated for all $n \geqslant 0$
- Triangulation of n-dimensional homology manifolds:
- Exists and is unique for $n \leqslant 3$
- Known: may not exist for $n \geqslant 4$.

The naked homeomorphism

- Poincaré, for one, was emphatic about the importance of the naked homeomorphism - when writing philosophically - yet his memoirs treat DIFF or PL manifolds only.
in L. Siebenmann's 1970 ICM lecture on topological manifolds.
- ... topological manifolds bear the simplest possible relation to their underlying homotopy types. This is a broad statement worth testing. (ibid.)
- Will describe how surgery theory manufactures the homotopy theory of topological manifolds of dimension >4 from Poincaré duality spaces and chain complexes.
- Poincaré duality is the most important property of the algebraic topology of manifolds.

The original statement of Poincaré duality

- Analysis Situs and its Five Supplements (1892-1904)

228 analysis situs.

Donc

$$
P_{p}=P_{h-p} .
$$

Par conséquent, pour une variété fermée, les nombres de Betti également distants des extrêmes sont égaux.

Ce théorème n'a, je crois, jamais été énoncé; il était cependant connu de plusieurs personnes qui en ont meme fait des applications.

- Originally proved for a differentiable manifold M, but long since established for topological and homology manifolds.
- $h=n$, the dimension of M.
- $P_{p}=\operatorname{dim}_{\mathbb{Z}} H_{p}(M)$, the p th Betti number of M.
- Happy birthday! 2011 is the 100th anniversary of Brouwer's proof that homeomorphic manifolds have the same dimension. Also true for homology manifolds.

Orientation

- A local fundamental class of an n-dimensional homology manifold M at $x \in M$ is a choice of generator

$$
[M]_{x} \in\{1,-1\} \subset H_{n}(M, M \backslash\{x\})=\mathbb{Z}
$$

- The local Poincaré duality isomorphisms are defined by

$$
[M]_{x} \cap-: H^{*}(\{x\}) \cong H_{n-*}(M, M \backslash\{x\})
$$

- An n-dimensional homology manifold M is orientable if there exists a fundamental homology class $[M] \in H_{n}(M)$ such that for each $x \in M$ the image

$$
[M]_{x} \in H_{n}(M, M \backslash\{x\})=\mathbb{Z}
$$

is a local fundamental class.

- We shall only consider manifolds which are orientable, together with a choice of fundamental class $[M] \in H_{n}(M)$.

Poincaré duality in modern terminology

- Theorem For an n-dimensional manifold M the cap products with the orientation $[M] \in H_{n}(M)$ are Poincaré duality isomorphisms

$$
[M] \cap-: H^{*}(M) \cong H_{n-*}(M)
$$

- Idea of proof Glue together the local Poincaré duality isomorphisms

$$
[M]_{x} \cap-H^{*}(\{x\}) \cong H_{n-*}(M, M \backslash\{x\})(x \in M)
$$

to obtain the global Poincaré duality isomorphisms

$$
\begin{aligned}
& {[M] \cap-=\lim _{x \in M}[M]_{x} \cap-:} \\
& H^{*}(M)=\lim _{x \in M} H^{*}(\{x\}) \cong H_{n-*}(M)=\lim _{x \in M} H_{n-*}(M, M \backslash\{x\})
\end{aligned}
$$

- Need to work on the chain level, rather than directly with homology.

Poincaré duality spaces

- Definition An n-dimensional Poincaré duality space X is a finite $C W$ complex X with a homology class $[X] \in H_{n}(X)$ such that cap product with $[X]$ defines Poincaré duality isomorphism

$$
[X] \cap-: H^{*}\left(X ; \mathbb{Z}\left[\pi_{1}(X)\right]\right) \cong H_{n-*}\left(X ; \mathbb{Z}\left[\pi_{1}(X)\right]\right)
$$

- In the simply-connected case $\pi_{1}(X)=\{1\}$ just

$$
[X] \cap-: H^{*}(X) \cong H_{n-*}(X)
$$

- Homotopy invariant: any finite CW complex homotopy equivalent to an n-dimensional Poincaré duality space is an n-dimensional Poincaré duality space.
- A triangulable n-dimensional homology manifold is an n-dimensional Poincaré duality space.
- A nontriangulable n-dimensional homology manifold is homotopy equivalent to an n-dimensional Poincaré duality space.

Floer's Diplom thesis

- Floer's 1982 Bochum Diplom thesis (under the supervision of Ralph Stöcker) was on the homotopy-theoretic classification of $(n-1)$-connected $(2 n+1)$-dimensional Poincaré duality spaces for $n>1$.
- http://www.maths.ed.ac.uk/~aar/papers/floer.pdf

Klassifikation hochzusammenhängender Poincaré-Räume
Andreas Floer

Diplomarbeit
Ruhr-Universität Bochum
Abteilung für Mathematik
1982

Manifold structures in the homotopy type of a Poincaré duality space

- (Existence) When is an n-dimensional Poincaré duality space homotopy equivalent to an n-dimensional topological manifold?
- (Uniqueness) When is a homotopy equivalence of n-dimensional topological manifolds homotopic to a homeomorphism?
- There are also versions of these questions for differentiable and PL manifolds, and also for homology manifolds.
- But it is the topological manifold version which is the most interesting! Both intrinsically, and because most susceptible to algebra, at least for $n>4$.

Surfaces

- Surface $=2$-dimensional topological manifold.
- Every orientable surface is homeomorphic to the standard surface Σ_{g} of genus $g \geqslant 0$.
- Every 2-dimensional Poincaré duality space is homotopy equivalent to a surface.
- A homotopy equivalence of surfaces is homotopic to a homeomorphism.
- In general, the analogous statements for false for n-dimensional manifolds with $n>2$.

Bundle theories

-

	spaces	bundles	classifying spaces
differentiable	manifolds	vector bundles	$B O$ $\pi_{*}(B O)$ infinite
topological	manifolds	topological bundles	$B T O P$ $\pi_{*}(B T O P)$ infinite
homotopy theory	Poincaré duality spaces	spherical fibrations	$B G$ $\pi_{*}(B G)=\pi_{*-1}^{S}$ finite

- Forgetful maps downwards. Difference between the first two rows $=$ finite (but non-zero) $=$ exotic spheres (Milnor).
- An n-dimensional differentiable manifold M has a tangent bundle $\tau_{M}: M \rightarrow B O(n)$ and a stable normal bundle $\nu_{M}: M \rightarrow B O$.
- Similarly for a topological manifold M, with $B T O P(n)$.
- An n-dimensional Poincaré duality space X has a Spivak normal fibration $\nu_{X}: X \rightarrow B G$.

The Hirzebruch signature theorem

- The signature of a $4 k$-dimensional Poincaré duality space X is

$$
\sigma(X)=\text { signature }\left(H^{2 k}(X), \text { intersection form }\right) \in \mathbb{Z}
$$

- The Hirzebruch \mathcal{L}-genus of a vector bundle η over a space X is a certain polynomial $\mathcal{L}(\eta) \in H^{4 *}(X ; \mathbb{Q})$ in the Pontrjagin classes $p_{*}(\eta) \in H^{4 *}(M)$.
- Signature Theorem (1953) If M is a $4 k$-dimensional differentiable manifold then

$$
\sigma(M)=\left\langle\mathcal{L}\left(\tau_{M}\right),[M]\right\rangle \in \mathbb{Z}
$$

- There have been many extensions of the theorem since 1953!

The Browder converse of the Hirzebruch signature theorem

- Theorem (Browder, 1962) For $k>1$ a simply-connected $4 k$-dimensional Poincaré duality space X is homotopy equivalent to a $4 k$-dimensional differentiable manifold M if and only if $\nu_{X}: X \rightarrow B G$ lifts to a vector bundle $\eta: X \rightarrow B O$ such that

$$
\sigma(X)=\langle\mathcal{L}(-\eta),[X]\rangle \in \mathbb{Z} .
$$

- Novikov (1962) initiated the complementary theory of necessary and sufficient conditions for a homotopy equivalence of simply-connected differentiable manifolds to be homotopic to a diffeomorphism.
- Many developments in the last 50 years, including versions for topological manifolds and homeomorphisms.

The Browder-Novikov-Sullivan-Wall surgery theory I.

- Is an n-dimensional Poincaré duality space X homotopy equivalent to an n-dimensional topological manifold?
- The surgery theory provides a 2-stage obstruction for $n>4$, working outside of X, involving normal maps $(f, b): M \rightarrow X$ from manifolds M, with b a bundle map.
- Primary obstruction in the topological K-theory of vector bundles to the existence of a normal map $(f, b): M \rightarrow X$.
- Secondary obstruction $\sigma(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ in the Wall surgery obstruction group, depending on the choice of (f, b) in resolving the primary obstruction. The algebraic L-groups defined algebraically using quadratic forms over $\mathbb{Z}\left[\pi_{1}(X)\right]$.
- The mixture of topological K-theory and algebraic L-theory not very satisfactory!

The Browder-Novikov-Sullivan-Wall surgery theory II.

- Is a homotopy equivalence $f: M \rightarrow N$ of n-dimensional topological manifolds homotopic to a homeomorphism?
- For $n>4$ similar 2-stage obstruction theory for deciding if f is homotopic to a homeomorphism.
- The mapping cylinder of f

$$
L=M \times[0,1] \cup_{(x, 1) \sim f(x)} N
$$

defines an $(n+1)$-dimensional Poincaré pair $(L, M \sqcup N)$ with manifold boundary. The 2-stage obstruction for uniqueness is the 2-stage obstruction for relative existence.

- Again, the mixture of topological K-theory and algebraic L-theory not very satisfactory!

THE POINCARÉ DUALITY THEOREM

 AND ITS CONVERSE II.Andrew Ranicki (Edinburgh)
http://www.maths.ed.ac.uk/「aar

FLOER
CENTER OF GEOMETRY

Festive Opening Colloquium
Bochum, 8th December, 2011

The total surgery obstruction

I. Existence of manifold structures

- The \mathbb{S}-groups $\mathbb{S}_{*}(X)$ are \mathbb{Z}-graded abelian groups defined for any space X. A map $f: X \rightarrow Y$ induces $f_{*}: \mathbb{S}_{*}(X) \rightarrow \mathbb{S}_{*}(Y)$. If f is a homotopy equivalence, then f_{*} is an isomorphism
- The total surgery obstruction $s(X) \in \mathbb{S}_{n}(X)$ of an n-dimensional Poincaré duality space X with the following properties.
- If $f: X \rightarrow Y$ is a homotopy equivalence of n-dimensional Poincaré duality spaces then $f_{*} s(X)=s(Y) \in \mathbb{S}_{n}(Y)$.
- If X is an n-dimensional homology manifold then $s(X)=0 \in \mathbb{S}_{n}(X)$.
- Main Theorem If $n \geqslant 5$ and $s(X)=0 \in \mathbb{S}_{n}(X)$ then X is homotopy equivalent to an n-dimensional topological manifold.
- Global input \Longrightarrow local output.
- Proof by Browder-Novikov-Sullivan-Wall theory.

The total surgery obstruction II. Uniqueness of manifold structures

- The total surgery obstruction of a homotopy equivalence $h: N \rightarrow M$ of n-dimensional topological manifolds is an element $s(h) \in \mathbb{S}_{n+1}(M)$ with the following properties.
- If the point inverses $h^{-1}(x) \subset N(x \in M)$ are acyclic

$$
h \mid: H_{*}\left(h^{-1}(x)\right) \cong H_{*}(\{x\})
$$

then $s(h)=0 \in \mathbb{S}_{n+1}(M)$.

- If $n \geqslant 5$ and $s(h)=0 \in \mathbb{S}_{n+1}(M)$ then h is homotopic to a homeomorphism. (Need also Whitehead torsion $\tau(h)=0$). Every $s \in \mathbb{S}_{n+1}(M)$ is $s=s(h)$ for some h.
- Global input \Longrightarrow local output.
- (A.R.) The total surgery obstruction
(Proc. 1978 Aarhus Topology Conference, Springer Lecture Notes)

The Wall surgery obstruction

- In 1969 C.T.C. Wall constructed the surgery obstruction groups $L_{n}(A)$ of a ring with involution A, using quadratic structures on f.g. free A-modules.
- 4-periodic: $L_{n}(A)=L_{n+4}(A)$
- $L_{0}(A)=$ Witt group of quadratic forms over A.
- $L_{1}(A)=$ stable automorphism group of quadratic forms over A.
- $L_{2}(A)=$ Witt group of symplectic-quadratic forms over A.
- $L_{3}(A)=$ stable automorphism group of symplectic-quadratic forms over A.
- A normal map $(f, b): M \rightarrow X$ from an n-dimensional manifold M to an n-dimensional Poincaré duality space X has a surgery obstruction $\sigma(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ such that $\sigma(f, b)=0$ if (and for $n \geqslant 5$ only if) (f, b) is normal bordant to a homotopy equivalence.

Local \Longrightarrow global in surgery theory

- The algebraic L-groups $L_{*}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ depend only on the fundamental group $\pi_{1}(X)$ of a space X, so are global.
- The Witt groups of sheaves of quadratic forms over X define the generalized homology groups $H_{*}(X ; \mathbf{L}(\mathbb{Z}))$, which are local. Here $\mathbf{L}(\mathbb{Z})$ is a spectrum with

$$
\pi_{*}(\mathbf{L}(\mathbf{Z}))=L_{*}(\mathbb{Z})=\mathbb{Z}, 0, \mathbb{Z}_{2}, 0, \ldots \text { (4-periodic) }
$$

the simply-connected surgery obstruction groups.

- For any space X there is an exact sequence

$$
\begin{aligned}
\cdots \rightarrow H_{n}(X ; \mathbf{L}(\mathbb{Z})) & \xrightarrow{A} L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \\
& \rightarrow \mathbb{S}_{n}(X) \rightarrow H_{n-1}(X ; \mathbf{L}(\mathbb{Z})) \rightarrow \ldots
\end{aligned}
$$

- A is the local \Longrightarrow global assembly map in L-theory. Originally defined geometrically by Quinn.
- The \mathbb{S}-groups $\mathbb{S}_{*}(X)$ measure the failure of A to be an isomorphism.

The failure of local Poincaré duality

- Let X be an n-dimensional Poincaré duality space. The failure of local Poincaré duality at $x \in X$ is measured by the groups $K_{*}(X, x)$ in the exact sequences

$$
\begin{aligned}
\cdots \rightarrow H^{n-r-1}(\{x\}) & \xrightarrow{[X]_{x} \cap-} H_{r+1}(X, X \backslash\{x\}) \\
& \rightarrow K_{r}(X, x) \rightarrow H^{n-r}(\{x\}) \rightarrow \ldots
\end{aligned}
$$

- X is a homology manifold if and only if $K_{*}(X, x)=0(x \in X)$.
- Roughly speaking, the total surgery obstruction $s(X) \in \mathbb{S}_{n}(X)$ is the cobordism class of a sheaf over X of chain complexes with quadratic Poincaré duality over \mathbb{Z} with $K_{*}(X, x)$ the stalk at $x \in X$.
- Chain complex with quadratic Poincaré duality
= chain complex with quadratic structure
$=$ generalization of quadratic form.

Bringing in the sheaves

(From The Night of the Hunter)

- The book
A.R. Algebraic L-theory and manifolds (CUP, 1992) developed the theory for simplicial complexes K, with an assembly map

$$
A:\{(\mathbb{Z}, K) \text {-modules }\} \rightarrow\left\{\mathbb{Z}\left[\pi_{1}(K)\right] \text {-modules }\right\}
$$

to provide the passage from local to global in algebra. This is sufficient for applications, since every Poincaré duality space is homotopy equivalent to one which is triangulated.

- Unfortunately, have not yet been able to develop the necessary sheaf theory. However, the paper A.R.+Michael Weiss On the construction and topological invariance of the Pontryagin classes (Geometriae Dedicata 2010) points in the right direction!

Rings with involution

- An involution on a ring A is a function

$$
A \rightarrow A ; a \mapsto \bar{a}
$$

such that

$$
\overline{a+b}=\bar{a}+\bar{b}, \overline{a b}=\bar{b} \bar{a}, \overline{\bar{a}}=a(a, b \in A) .
$$

- Example 1 A commutative ring A, with $\bar{a}=a$.
- Example 2 A group ring $A=\mathbb{Z}[\pi]$ with $\bar{g}=g^{-1}(g \in \pi)$.
- Regard a left A-module P as a right A-module with

$$
P \times A \rightarrow P ;(x, a) \mapsto \bar{a} x .
$$

- The tensor product of left A-modules P, Q is the abelian group defined by
$P \otimes_{A} Q=P \otimes_{\mathbb{Z}} Q /\{a x \otimes y-x \otimes \bar{a} y \mid a \in A, x \in P, y \in Q\}$ with transposition isomorphism

$$
P \otimes_{A} Q \rightarrow Q \otimes_{A} P ; x \otimes y \mapsto y \otimes x .
$$

Duality over a ring with involution

- The dual of a left A-module P is the left A-module

$$
P^{*}=\operatorname{Hom}_{A}(P, A), A \times P^{*} \rightarrow P^{*} ;(a, f) \mapsto(x \mapsto f(x) \bar{a}) .
$$

- The natural A-module morphism

$$
P \rightarrow P^{* *} ; x \mapsto(f \mapsto \overline{f(x)})
$$

is an isomorphism for f.g. free P.

- For A-modules P, Q the abelian group morphisms

$$
\begin{aligned}
& P^{*} \otimes_{A} Q \rightarrow \operatorname{Hom}_{A}(P, Q) ; f \otimes y \mapsto(x \mapsto \overline{f(x)} y), \\
& *: \operatorname{Hom}_{A}(P, Q) \rightarrow \operatorname{Hom}_{A}\left(Q^{*}, P^{*}\right) ; f \mapsto\left(f^{*}: g \mapsto(x \mapsto g(f(x)))\right)
\end{aligned}
$$

are isomorphisms for f.g. free P, Q.

Quadratic forms on chain complexes I.

- A.R. The algebraic theory of surgery I., II. (1980, Proc. LMS)
- The n-dual of a f.g. free A-module chain complex

$$
C: \cdots \rightarrow C_{r} \xrightarrow{d} C_{r-1} \rightarrow \cdots \rightarrow C_{1} \xrightarrow{d} C_{0} \rightarrow \ldots
$$

is the f.g. free A-module chain complex
$C^{n-*}: \cdots \rightarrow C^{0} \xrightarrow{d^{*}} C^{1} \rightarrow \cdots \rightarrow C^{r-1} \xrightarrow{d^{*}} C^{r} \rightarrow \ldots$
with $C^{r}=C_{r}^{*}$.

- An 'algebraic Poincaré complex' is a f.g. free A-module chain complex C with a chain equivalence $C^{n-*} \simeq C$ satisfying extra conditions. There are two flavours: symmetric and quadratic. Will ignore the difference today, using algebraic for both!

Quadratic forms on chain complexes II.

- For any f.g. free A-module chain complex C there is defined an isomorphism of A-module chain complexes

$$
C \otimes_{A} C \rightarrow \operatorname{Hom}_{A}\left(C^{-*}, C\right) ; x \otimes y \mapsto(f \mapsto \overline{f(x)} \cdot y)
$$

The homology group

$$
H_{n}\left(C \otimes_{A} C\right)=H_{0}\left(\operatorname{Hom}_{A}\left(C^{n-*}, C\right)\right)
$$

is the group of chain homotopy classes of chain maps $\phi: C^{n-*} \rightarrow C$.

- The action of $T \in \mathbb{Z}_{2}$ by the transposition involution
$T: C \otimes_{A} C \rightarrow C \otimes_{A} C ; x \otimes y \mapsto(-)^{p q} y \otimes x\left(x \in C_{p}, y \in C_{q}\right)$
corresponds to the duality involution
$T: \operatorname{Hom}_{A}\left(C^{-*}, C\right) \rightarrow \operatorname{Hom}_{A}\left(C^{-*}, C\right) ; f \mapsto(-)^{p q} f^{*}$,
$\left(f: C^{p} \rightarrow C_{q}\right) \mapsto\left((-)^{p q} f^{*}: C^{q} \rightarrow C_{p}\right), y\left(f^{*}(x)\right)=x(f(y))$.

Algebraic Poincaré cobordism

- An n-dimensional algebraic Poincaré complex over A
(C, ϕ) is an n-dimensional f.g. free A-module chain complex C together with a chain equivalence $\phi: C^{n-*} \rightarrow C$ such that there exists a chain homotopy $T \phi \simeq \phi: C^{n-*} \rightarrow C$.
- If $1 / 2 \notin A$ need additional structure: either symmetric or quadratic.
- A cobordism ($L ; M, M^{\prime}$) of n-dimensional manifolds has Poincaré-Lefschetz duality

$$
[L] \cap-: H^{n+1-*}(L, M) \cong H_{*}\left(L, M^{\prime}\right)
$$

- Proposition (Mishchenko, R., 1970's) The Wall group $L_{n}(A)$ is the group of cobordism classes of n-dimensional algebraic Poincaré complexes (C, ϕ) over A, with $(C, \phi) \sim\left(C^{\prime}, \phi^{\prime}\right)$ if $C \oplus C^{\prime} \subset D$ for an ($n+1$)-dimensional f.g. free A-module chain complex D such that $H^{n+1-*}(D, C) \cong H_{*}\left(D, C^{\prime}\right)$.

The polyhedron of a simplicial complex

- A simplicial complex K is a collection of finite subsets $\sigma \subseteq K^{(0)}$ of an ordered vertex set $K^{(0)}$ such that:
(a) $v \in K$ for each $v \in K^{(0)}$,
(b) if $\sigma \in K$ and $\tau \subseteq \sigma$ then $\tau \in K$.
- The dimension of $\sigma \in K$ is

$$
|\sigma|=(\text { no. of vertices in } \sigma)-1
$$

Let $K^{(n)}$ denote the set of n-simplexes in K.

- The polyhedron of K is the usual identification space

$$
|K|=\left(\coprod_{n=0}^{\infty} \Delta^{n} \times K^{(n)}\right) / \sim
$$

with Δ^{n} the convex hull of $(0, \ldots, 0,1,0, \ldots, 0) \in \mathbb{R}^{n+1}$.

The simplicial chain complex

- The simplicial chain complex $C(K)$ has

$$
\begin{gathered}
d: C(K)_{n}=\mathbb{Z}\left[K^{(n)}\right] \rightarrow C(K)_{n-1}=\mathbb{Z}\left[K^{(n-1)}\right] ; \\
\left(v_{0} v_{1} \ldots v_{n}\right) \mapsto \sum_{i=0}^{n}(-)^{i}\left(v_{0}, \ldots, v_{i-1}, v_{i+1}, \ldots, v_{n}\right) \\
\left(v_{0}<v_{1}<\cdots<v_{n}\right)
\end{gathered}
$$

- The homology and cohomology groups of the polyhedron are the same as those of the simplicial complex

$$
\begin{aligned}
& H_{*}(|K|)=H_{*}(K)=H_{*}(C(K)) \\
& H^{*}(|K|)=H^{*}(K)=H^{*}(C(K))
\end{aligned}
$$

- For any simplicial complexes $K, L H_{n}(|K| \times|L|)$ is the group of chain homotopy classes of chain maps $C(K)^{n-*} \rightarrow C(L)$.

Polyhedral Poincaré complexes

- A triangulated n-dimensional Poincaré space is a finite simplicial complex K with universal cover \widetilde{K} and a homology class $[K] \in H_{n}(K)$ satisfying the equivalent conditions:
- (a) the cap products

$$
[K] \cap-: H^{n-*}(\widetilde{K})=H_{*}\left(C(\widetilde{K})^{n-*}\right) \rightarrow H_{*}(\widetilde{K})
$$

are $\mathbb{Z}\left[\pi_{1}(K)\right]$-module isomorphisms.

- (b) The image $\Delta[K] \in H_{n}(X)$ under the diagonal map

$$
\Delta:|K| \rightarrow X=|\widetilde{K}| \times_{\pi_{1}(K)}|\widetilde{K}| ; x \mapsto(\widetilde{x}, \widetilde{x})
$$

is a chain homotopy class of $\mathbb{Z}\left[\pi_{1}(K)\right]$-module chain equivalences $\phi=\Delta[K]: C(\widetilde{K})^{n-*} \rightarrow C(\widetilde{K})$.

- (c) The cap product $[X] \cap-: H^{n}(X) \rightarrow H_{n}(X)$ is an isomorphism, with $\Delta[K]^{*} \in H^{n}(X)$ a $\mathbb{Z}\left[\pi_{1}(K)\right]$-module chain homotopy inverse $\phi^{-1}: C(\widetilde{K}) \rightarrow C(\widetilde{K})^{n-*}$.
- $(C(\widetilde{K}), \phi)$ is an n-dimensional algebraic Poincaré complex over $\mathbb{Z}\left[\pi_{1}(K)\right]$.

Dual cells

- The barycentric subdivision of K is the simplicial complex K^{\prime} with $K^{\prime(0)}=K$ and

$$
K^{\prime(n)}=\left\{\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right) \mid \sigma_{0} \subset \sigma_{1} \subset \cdots \subset \sigma_{n}\right\}
$$

Homeomorphic polyhedron $\left|K^{\prime}\right| \cong|K|$.

- The dual cells of K are the contractible subcomplexes

$$
D(\sigma)=\left\{\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right) \in K^{\prime} \mid \sigma_{0} \subseteq \sigma\right\} \subseteq K^{\prime}
$$

- The boundary of the dual cell $D(\sigma)$ is

$$
\partial D(\sigma)=\left\{\left(\sigma_{0}, \sigma_{1}, \ldots, \sigma_{n}\right) \in D(\sigma) \mid \sigma_{0} \neq \sigma\right\}
$$

- Proposition The local homology groups of $|K|$ at $x \in|K|$ are the homology groups of the dual cells relative to boundaries $H_{*}(|K|,|K| \backslash\{x\})=H_{*-|\sigma|}(D(\sigma), \partial D(\sigma))(x \in \operatorname{interior}(\sigma), \sigma \in K)$.
For each $\sigma \in K$ and $x \in \operatorname{interior}(\sigma)$ there are natural maps
$\partial_{\sigma}: H_{*}(|K|)=H_{*}(K) \rightarrow H_{*}(|K|,|K| \backslash\{x\})=H_{*-|\sigma|}(D(\sigma), \partial D(\sigma))$

The (\mathbb{Z}, K)-category I. Modules

- A.R.+M.Weiss Chain complexes and assembly Math. Z. (1999)
- A (\mathbb{Z}, K)-module is a f.g. free \mathbb{Z}-module M with splitting

$$
M=\sum_{\sigma \in K} M(\sigma) .
$$

- A morphism of (\mathbb{Z}, K)-modules $f: M \rightarrow N$ is a \mathbb{Z}-module morphism such that

$$
f(M(\sigma)) \subseteq \sum_{\tau \geqslant \sigma} N(\tau)(\sigma \in K) .
$$

- Proposition $\mathrm{A}(\mathbb{Z}, K)$-module morphism $f: M \rightarrow N$ is an isomorphism if and only if each

$$
f(\sigma, \sigma): M(\sigma) \rightarrow N(\sigma)(\sigma \in K)
$$

is a \mathbb{Z}-module isomorphism.

Assembly

- Let $p: \widetilde{K} \rightarrow K$ be the universal cover of a connected simplicial complex K. The assembly functor
$A:\{(\mathbb{Z}, K)$-modules $\} \rightarrow\left\{\right.$ f.g. free $\mathbb{Z}\left[\pi_{1}(K)\right]$-modules $\}$
is defined by

$$
A(M)=\sum_{\widetilde{\sigma} \in \widetilde{K}} M(p(\widetilde{\sigma}))
$$

- Local \Longrightarrow global.
- Example For finite K the simplicial chain complex $C\left(K^{\prime}\right)$ is a (\mathbb{Z}, K)-module chain complex with

$$
C\left(K^{\prime}\right)(\sigma)=C(D(\sigma), \partial D(\sigma))(\sigma \in K)
$$

The assembly is the simplicial $\mathbb{Z}\left[\pi_{1}(K)\right]$-module chain complex of \widetilde{K}^{\prime}

$$
A\left(C\left(K^{\prime}\right)\right)=C\left(\widetilde{K}^{\prime}\right)
$$

The algebraic Vietoris theorem

- Let $f: L \rightarrow K^{\prime}$ be a simplicial map with K, L finite.
- Regard $C(L)$ as a (\mathbb{Z}, K)-module chain complex by

$$
C(L)(\sigma)=C\left(f^{-1} D(\sigma), f^{-1} \partial D(\sigma)\right)(\sigma \in K)
$$

- Proposition f has acyclic point inverses if and only if

$$
f: C(L) \rightarrow C\left(K^{\prime}\right)
$$

is a (\mathbb{Z}, K)-module chain equivalence.

- Corollary If f has acyclic point inverses then

$$
\tilde{f}: C(\tilde{L}) \rightarrow C\left(\tilde{K}^{\prime}\right)
$$

is a $\mathbb{Z}\left[\pi_{1}(K)\right]$-module chain equivalence

The (\mathbb{Z}, K)-category II. Products

- The product of (\mathbb{Z}, K)-modules A, B is the (\mathbb{Z}, K)-module

$$
\begin{aligned}
& A \otimes_{(\mathbb{Z}, K)} B=\sum_{\lambda, \mu \in K, \lambda \cap \mu \neq \emptyset} A(\lambda) \otimes_{\mathbb{Z}} B(\mu) \subseteq A \otimes_{\mathbb{Z}} B \text { with } \\
& \left(A \otimes_{(\mathbb{Z}, K)} B\right)(\sigma)=\sum_{\lambda, \mu \in K, \lambda \cap \mu=\sigma} A(\lambda) \otimes_{\mathbb{Z}} B(\mu) .
\end{aligned}
$$

- Example For simplicial maps $f: L \rightarrow K^{\prime}, g: M \rightarrow K^{\prime}$ the pullback polyhedron

$$
L \times_{K} M=\{(x, y) \in|L| \times|M||f(x)=g(y) \in| K \mid\}
$$

has homology

$$
H_{*}\left(L \times_{K} M\right)=H_{*}\left(C(L) \otimes_{(\mathbb{Z}, K)} C(M)\right)
$$

with

$$
\begin{aligned}
& C(L)(\sigma)=C\left(f^{-1} D(\sigma), f^{-1} \partial D(\sigma)\right) \\
& C(M)(\sigma)=C\left(g^{-1} D(\sigma), g^{-1} \partial D(\sigma)\right)
\end{aligned}
$$

The (\mathbb{Z}, K)-category III. Duality

- The dual of a (\mathbb{Z}, K)-module M is the (\mathbb{Z}, K)-module chain complex TM with

$$
T M(\sigma)_{r}= \begin{cases}\sum_{\tau \geqslant \sigma} M(\tau)^{*} & \text { if } r=-|\sigma| \\ 0 & \text { otherwise }\end{cases}
$$

- The dual of a (\mathbb{Z}, K)-module chain complex C is a (\mathbb{Z}, K)-module chain complex $T C$. Analogue of Verdier duality for sheaves.
- Example The dual of $C\left(K^{\prime}\right)$ is (\mathbb{Z}, K)-equivalent to the cochain complex of K

$$
T C\left(K^{\prime}\right) \simeq C(K)^{-*}, C(K)^{r}(\sigma)= \begin{cases}\mathbb{Z} & \text { if } r=-|\sigma| \\ 0 & \text { otherwise }\end{cases}
$$

- For any (\mathbb{Z}, K)-module chain complexes C, D

$$
H_{*}\left(C \otimes_{(\mathbb{Z}, K)} D\right)=H_{*}\left(\operatorname{Hom}_{(\mathbb{Z}, K)}(T C, D)\right)
$$

The assembly map

- Proposition (i) The generalized homology group $H_{n}(K ; \mathbf{L}(\mathbb{Z}))$ is the cobordism group of n-dimensional algebraic Poincaré complexes $\left(C, \phi: T C_{*-n} \rightarrow C\right)$ in the (\mathbb{Z}, K)-module category.
- (ii) The assembly functor

$$
A:\{(\mathbb{Z}, K) \text {-modules }\} \rightarrow\left\{\mathbb{Z}\left[\pi_{1}(K)\right] \text {-modules }\right\}
$$

induces assembly maps in algebraic L-theory

$$
A: H_{n}(K ; \mathbf{L}(\mathbb{Z})) \rightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right]\right)
$$

- (iii) $\mathbb{S}_{n}(K)$ is the cobordism group of $(n-1)$-dimensional algebraic Poincaré complexes (C, ϕ) in the (\mathbb{Z}, K)-module category such that the assembly $A(C)$ is a contractible f.g. free $\mathbb{Z}\left[\pi_{1}(K)\right]$-module chain complex, $H_{*}(A(C))=0$.

From local to global Poincaré duality, and back again!

- For any simplicial complex K

$$
H_{n}(K)=H_{n}\left(\operatorname{Hom}_{(\mathbb{Z}, K)}\left(T C\left(K^{\prime}\right), C\left(K^{\prime}\right)\right)\right) .
$$

The cap product with any homology class $[K] \in H_{n}(K)$ is a (\mathbb{Z}, K)-module chain map

$$
\phi=[K] \cap-: T C\left(K^{\prime}\right)_{*-n} \rightarrow C\left(K^{\prime}\right)
$$

with diagonal components

$$
\begin{aligned}
\phi(\sigma, \sigma)= & \partial_{\sigma}[K] \cap-: T C\left(K^{\prime}\right)_{*-n}(\sigma)=C(D(\sigma))^{n-*-|\sigma|} \\
& \rightarrow C\left(K^{\prime}\right)(\sigma)=C(D(\sigma), \partial D(\sigma))(\sigma \in K),
\end{aligned}
$$

with assembly

$$
[K] \cap-: T C\left(\widetilde{K}^{\prime}\right)_{*-n} \simeq C(\widetilde{K})^{n-*} \rightarrow C\left(\widetilde{K}^{\prime}\right) \simeq C(\widetilde{K})
$$

- K is a homology manifold if and only if $[K] \cap$ - is a (\mathbb{Z}, K)-module chain equivalence. This is essentially Poincaré's original proof of duality!

The total surgery obstruction

- The total surgery obstruction of a polyhedral n-dimensional Poincaré duality space K is the cobordism class

$$
s(K)=\left(\mathcal{C}(\phi)_{*+1}, \psi\right) \in \mathbb{S}_{n}(K),
$$

with $\mathcal{C}(\phi)$ the $\mathbb{Z}\left[\pi_{1}(K)\right]$-contractible algebraic mapping cone of the (\mathbb{Z}, K)-module chain map

$$
\phi=[K] \cap-: T C\left(K^{\prime}\right)_{n-*} \rightarrow C\left(K^{\prime}\right) .
$$

- The image

$$
t(K)=[s(K)] \in H_{n-1}(K ; \mathbf{L}(\mathbb{Z}))
$$

is such that $t(K)=0$ if and only if there exists a normal map $(f, b): M \rightarrow|K|, M$ an n-dimensional topological manifold.

- $s(K)=0$ if and only if there exists a normal map (f, b) with surgery obstruction $\sigma(f, b)=0 \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right]\right)$.
- For $n \geqslant 5 s(K)=0$ if and only if $|K|$ is homotopy equivalent to an n-dimensional topological manifold, by B-N-S-W theory.

The symmetric signature

- The symmetric signature of a triangulated n-dimensional Poincaré space K is the algebraic Poincaré cobordism class

$$
\sigma(K)=(C(\widetilde{K}), \phi) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right]\right)
$$

- The symmetric signature is a homotopy invariant, generalizing the signature.
- Modulo 2-torsion, the total surgery obstruction is the image

$$
s(K)=[\sigma(K)] \in \operatorname{im}\left(L_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right]\right) \rightarrow \mathbb{S}_{n}(K)\right)
$$

- Theorem (A.R., 1992) Modulo 2-torsion, if $n \geqslant 5|K|$ is homotopy equivalent to an n-dimensional topological manifold if and only if $s(K)=0 \in \mathbb{S}_{n}(K)$, if and only if

$$
\sigma(K) \in \operatorname{im}\left(A: H_{n}(K ; \mathbf{L}(\mathbb{Z})) \rightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right]\right)\right)
$$

- For $n=4 k, \pi_{1}(K)=\{1\}$ this is just Browder's converse of the Hirzebruch signature theorem.

The homotopy types of topological manifolds

- For $n \geqslant 5$ the homotopy types of n-dimensional topological manifolds M fit into a fibre square

with $\mathrm{PD}=$ Poincaré duality, $\mathrm{APC}=$ algebraic Poincaré complexes, $A=$ assembly.
- Local $=$ in the (\mathbb{Z}, K)-module category, for a finite simplicial complex K with a surjection $|K| \rightarrow M$ with acyclic point inverses, and $\pi_{1}(|K|) \cong \pi_{1}(M)$,
- Global $=$ in the $\mathbb{Z}[\pi]$-module category, $\pi=\pi_{1}(|K|)=\pi_{1}(M)$.

Three conjectures

- The Novikov conjecture (1969) on the homotopy invariance of the higher signatures of manifolds with fundamental group π is equivalent to the injectivity of the local \Longrightarrow global assembly map $1 \otimes A: H_{*}(B \pi ; \mathbf{L}(\mathbb{Z})) \otimes \mathbb{Q} \rightarrow L_{*}(\mathbb{Z}[\pi]) \otimes \mathbb{Q}$. History and survey of the Novikov conjecture.
- The Borel conjecture (1953) on the existence and rigidity of topological manifold structures on aspherical Poincaré complexes $B \pi$ is essentially equivalent to the assembly map $A: H_{*}(B \pi ; \mathbf{L}(\mathbb{Z})) \rightarrow L_{*}(\mathbb{Z}[\pi])$ being an isomorphism, so that local \Longleftrightarrow global.
1953 letter from Borel to Serre.
- The Farrell-Jones conjecture (1982) that a generalized assembly map from equivariant homology to the L-theory of $\mathbb{Z}[\pi]$ is an isomorphism for all groups π.

Conclusion

- Starting with Novikov himself, many authors in the last 40 years have proved many special cases of the Novikov, Borel and Farrell-Jones conjectures, using a wide variety of algebraic, geometric and analytic methods.
- Some (though not all) have used the algebraic L-theory assembly map defined here.
- There is still much work to be done to understand the relationship between all these methods of proof, and maybe even prove new results!

