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Preface

One of the main goals in topology is the classi�cation of manifolds up to some

equivalence relation (homotopy equivalence, homeomorphism, PL-homeomorphism,

di�eomorphism. . .). A very natural question arising from this is to decide whether

two manifolds identical up to some equivalence relation are still the same under

a stronger equivalence relation. In this thesis, we will be interested in topogical

rigidity. A manifold M is said to be topologically rigid if any topological mani-

fold homotopy equivalent to M is actually homeomorphic to M . Maybe the most

famous example of a topological rigidity phenomenon is the Poincaré conjecture,

now proven in all dimensions, which asserts that Sn is topologically rigid. An ex-

ample more related to the subject of this thesis is the following result of Mostow.

Mostow Rigidity Theorem. If f : M → N is a homotopy equivalence be-

tween two complete hyperbolic n-manifolds of �nite volume (n ≥ 3), then f is

homotopic to an isometry.

Motivated by this result, Borel formulated the following conjecture, which can

be thought as a topological analogue of the Mostow Rigidity Theorem.

Borel Conjecture. A compact aspherical manifold is topologically rigid.

The �rst example was developed during the sixties. In 1964, Bass, Heller and

Swan [. H. 64] proved the vanishing of Wh(Zn). At the same period, Farrell and

Hsiang developped the theory of codimension one splitting obstructions [FH73],

using the ideas introduced in the doctoral dissertation of Farrell (1967). This in

turn was used by Hsiang and Shaneson [HS70] to classify the PL-structures on a

PL-manifold homotopy equivalent to a high-dimensional torus. This result is a

cornerstone in high-dimensional topology. It was of crucial importance to Kirby

and Siebenmann [KS77] who used it to develop the theory of topological manifolds.
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This in turn was used by Hsiang and Wall to prove the topogical rigidity of the

torus in 1969 in [HW69].

Since then, this circle of idea has been extensively studied, especially by Far-

rell and Jones, who were able to prove the Borel Conjecture for a large class of

manifolds.

The aim of this thesis is to present the surgical proof of the original result, namely

the topologicl rigidity of the torus. It is organised as follows. The �rst chapter

presents a proof of the Bass-Heller-Swan theorem for Zn, which will be used in

Chapter 2 to split homotopy equivalences along codimension one submanifolds.

This splitting theorem will be a key ingredient for the computation of the PL-

structure set SPL(Tk × Dn) presented in Chapter 4. Chapter 5 deals with the

various PL-structure a topological manifold might carry. Finally, we prove the

topological rigidity of the torus in Chapter 6.

While trying to be as self-contained as possible, I was forced to outsource some

results and some of the most technical lemmas to keep this thesis reasonably long.

I shall give references anytime I do that.

I would like to thank here my advisor, Andrew Ranicki. During these few

months I spent in Edinburgh, he guided me through this beautiful world of surgery

theory, showing me its beautiful landscapes, while encouraging me to venture on

some (algebraic) roads I would not have taken alone.

I would like also to thank my advisor at the Ecole Normale Supérieure, Frédéric

Paulin. Since my very �rst year at the ENS he helped me and encouraged me to

work on a �eld that is not so fashionable in France. I could not thank him enough

for that!
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Chapter 1

The Bass-Heller-Swan Theorem.

The Whitehead torsion τ(f) ∈ Wh(π1(N)) of a homotopy equivalence f : M → N

vanishes if f is homotopic to a homeomorphism. Thus the vanishing ofWh(π1(M))

is generally a �rst step in proving the topological rigidity of a high-dimensional

manifold M . This chapter is devoted to prove the vanishing of Wh(Zn).

In Section 1.1, we de�ne lower algebraic K-groups for suitable categories. The

interest of such a general approach will become apparent in Section 1.2 where

we prove the Resolution Theorem for K1, which will allow us to work with more

tractable categories. We prove in Section 1.3 a theorem of Grothendieck which

will be needed to prove the vanishing of Wh(Zn) in Section 1.4. This chapter is

greatly inspired by [Ros94] and [. H. 64].

Throughout this chapter R will be a commutative ring with unit.

1.1 K0, K1.

De�nition 1.1.1. (i) Let Proj R be the category of �netaly generated projective

R-modules.

(ii) Let R-modfg be the category of �nitely generated R-modules. It is an abelian

category if R is noetherian.

In order two de�ne the algebraic K-groups K0, K1 of a category, we need some

additional properties.

De�nition 1.1.2. A category with exact sequence is a full additive subcategory P
of an abelian category A such that
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- P is closed under extensions, i.e, if

0→ P1 → P → P2 → 0

is a short exact sequence in A and P1, P2 ∈ Obj P , then P ∈ Obj P .

- P has a small skeleton, i.e, P has a full subcategory P0 which is small and

for which the inclusion P0 ↪→ P is an equivalence.

Proposition 1.1.3. Let R be a Noetherian ring. Then R-modfg and Proj R are

categories with exact sequences.

Proof. These categories are clearly closed under extensions. Proj R has for (small)

skeleton the set of direct summands in Rn, n ≥ 0. R-modfg has for (small) skeleton

the set of quotient modules of Rn, n ≥ 0.

We now de�ne the �rst algebraic K-groups for Proj R and R-modfg.

De�nition 1.1.4. Let P be a category with exact sequences, and P0 its small

skeleton. Let Λ0(P) be the free abelian group with generators [P ], P ∈ Obj P0.

We de�ne K0(P) as the quotient of Λ0(P) by the subgroup generated by the fol-

lowing relations:

[P ] = [P1] + [P2] if there is a short exact sequence in P of the form

0→ P1 → P → P2 → 0.

Note that since every object of P is isomorphic to an object of P0, the notation

[P ] makes sense for every P ∈ Obj P .

De�nition 1.1.5. Let P be a category with exact sequences, and P0 its small

skeleton. Let Λ1(P) be the free abelian group with generators (P, α), P ∈ Obj

P0, α ∈ Aut P . We de�ne K1(P) as the quotient of Λ1(P) by the subgroup

generated by the following relations:

(1) [P, αβ] = [P, α] + [P, β].

(2) If there is a commutative diagram in P with exact row

0 // P1
ι //

α1

��

P
π //

α

��

P2
//

α2

��

0

0 // P1
ι // P

π // P2
// 0
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where α ∈ Aut P , α1 ∈ Aut P1 and α2 ∈ Aut P2, then

[P, α] = [P1, α1] + [P2, α2].

Once again, since every object of P is isomorphic to an object of P0, the

notation [P, α] makes sense for every P ∈ Obj P , α ∈ Aut P .

This category-theoretic approach toK1 might surprise (or alarm) the topologist

reader. Note however that it also yields the common de�nition ofK1 that we brie�y

recall here.

De�nition 1.1.6. A n × n matrix is said to be elementary if it is of the form

In + rEi,j, where r ∈ R and Ei,j = (δik,jl)1≤k≤n,1≤l≤n (1 ≤ i ≤ n, 1 ≤ j ≤ n). The

subgroup of GLn(R) generated by elementary matrices is denoted En(R). Using

the natural embedding GLn(R) ↪→ GLn+1(R) given by

M 7→
(
M 0

0 1

)
,

En(R) embeds in En+1(R). We denote GL(R) (resp. E(R)) the direct limit of the

GLn(R) (resp. En(R)).

Lemma 1.1.7 (Whitehead's lemma). E(R) = [GL(R), GL(R)].

De�nition 1.1.8. (i) Let K1(R) = GL(R)/E(R) = GL(R)ab.

(ii) If π is a group, let Wh(π) be the quotient of K1(Zπ) by the image of GL1(Zπ)

in GL(Zπ), called the Whitehead group of π.

Proposition 1.1.9. K1(R) is an abelian group and K1(R) ' K1(Proj R).

For a proof of these results, we refer to [Ros94].

De�nition 1.1.10. We set Ki(R) = Ki(Proj R), i = 0, 1.

Given a functor between two categories with exact sequences, it is natural to

ask if it yields a map between algebraic K-groups. The following is an immediate

consequence of the de�nitions.

Proposition 1.1.11. Given two categories with exact sequences P and M, an

exact functor F : P →M induces homomorphisms F∗ : Ki(P)→ Ki(M), i = 0, 1.
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The main advantage of de�ning algebraic K-groups for a general category is

the Resolution theorem proved in the next section, which will allow us to work in

R-modfg, a more tractable category than Proj R.

In Section 1.2, we will construct an explicit inverse of i∗ : K1(Proj R)→ K1(R-

modfg) under some assumptions on R. Recall that every �nitely generated R-

module admits a projective resolution. To extract some information from such a

resolution it would be preferable to have a projective resolution with �nitely many

nonzero modules. This motivates the following de�nition.

De�nition 1.1.12. A noetherian ring is called regular if every �nitely generated

R-module M admits a projective resolution of �nite type (or simply a �nite reso-

lution), i.e, if there exists an exact sequence

0→ Pn → . . .→ P1 →M

with each Pi a �nitely generated projective R-module.

We recall a famous theorem of Hilbert.

Theorem 1.1.13 (Hilbert's Syzygy Theorem). If R is a regular ring, then so is

R[t].

This implies the following

Proposition 1.1.14. If R is a regular ring, then so is R[t, t−1].

Proof. R[t, t−1] is noetherian as a localization of the noetherian ring R. Let M

be a �nitely generated R[t, t−1]-module. Choose a �nite set of generators for M ,

and let M1 be the �nitely generated R[t]-module they generate. By the Syzygy

theorem, let

0→ Pn → . . .→ P1 →M1

be a �nite resolution of the R[t]-module. R[t, t−1] is �at over R[t], since R[t, t−1] =

lim t−nR[t] and t−nR[t] is free over R[t], so

0→ R[t, t−1]⊗R[t] Pn → . . .→ R[t, t−1]⊗R[t] P1 → R[t, t−1]⊗R[t] M1 'M

is a �nite resolution of the R[t, t−1]-module M .

Corollary 1.1.15. Z[Zn] is a regular ring for all n ≥ 0.

Proof. By induction, since Z is clearly regular and Z[Zn+1] ' Z[Zn][t, t−1].
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1.2 The Resolution theorem for K1.

In this section we will prove that for a regular ring R, K1(R), or equivalently

K1(Proj R), is naturally isomorphic to K1(R-modfg). The main advantage of

this theorem is that it allows us some useful constructions as quotients, since we

now work in an abelian category. This considerations will be of crucial importance

in the proof of the vanishing of Wh(Zn).

The notation [ ]fg (resp. [ ]proj) will denote an element of K∗(R-modfg) (resp.

K∗(Proj R).

Our starting point, while trying to build a map K1(R-modfg)→ K1(Proj R),

is the fact that every �nitely generated R-module (with R-regular) admits a �nite

resolution. We need the following result, which allows to lift an automorphism of

a �nitely-generated R-module to an automorphism of some �nite resolution.

Proposition 1.2.1. Let R be a regular ring, M a �nitely generated R-module,

and α an automorphism of M . Then there exists a �nite resolution

0→ Pr → . . .→ P1 →M

and elements αi ∈ Aut Pi, 1 ≤ i ≤ r, such that the following diagram commutes:

0 // Pr //

αr
��

. . . // P1
//

α1

��

M

α

��

// 0

0 // Pr // . . . // P1
// M // 0

Proof. Choose an epimorphism P → M → 0, with P projective. Since P is

projective, every endomorphism ofM lifts to an endomorphism of P . However, an

automorphism of M does not necessarily lift to an automorphism of P . To avoid

this di�culty, let us consider the automorphism α⊕α−1 ∈ AutM⊕M . Note that

we have (it is convenient to adopt a matricial notation here):

α⊕ α =

(
α 0

0 α−1

)
=

(
1 α

0 1

)(
1 0

−α−1 1

)(
1 α

0 1

)(
0 −1

1 0

)
.

Thus, lifting α (resp. α−1) to any endomorphism β (resp. β′) of P , the formula(
1 β

0 1

)(
1 0

−β′ 1

)(
1 β

0 1

)(
0 −1

1 0

)

9



yields a lifting of α⊕ α−1 to an automorphism of α1 of P ⊕ P . We thus have the

following commutative diagram

P ⊕ P π⊕0 //

α1

��

M

α

��

// 0

P ⊕ P π⊕0 // M // 0.

By commutativity of the diagram, ker(π⊕0) is stable under α1, and α1 induces an

isomorphism of ker(π ⊕ 0). Thus we are back to the same situation, with �nitely

generated R-module ker(π⊕0) and α1 ∈ Aut ker(π⊕0). Thus repeating the same

argument, possibly in�nitely many times, we have a lifting of projective resolution

. . . dr+1 // Pr
dr //

αr
��

. . . // P1
//

α1

��

M

α

��

// 0

. . . dr+1 // Pr
dr // . . . // P1

// M // 0

with αi ∈ Aut Pi, for all i ≥ 0. But R is a regular ring, so admits a projective

resolution of �nite lenght, say r. Now, by a basic lemma of homological algebra,

this implies that any projective resolution can be shortened at its r-th stage. More

precisely, considering the projective resolution

. . . dr+1 // Pr
dr // . . . // P1

// M // 0,

this implies that ker dr is projective. Since αr+1 induces an isomorphism on ker dr,

we have the following �nite resolution:

0 // ker dr

αr+1

��

dr+1 // Pr
dr //

αr
��

. . . // P1
//

α1

��

M

α

��

// 0

0 // ker dr
dr+1 // Pr

dr // . . . // P1
// M // 0

Proposition 1.2.2. De�ne Φ : K1(R-modfg) → K1(Proj R) as follows. Given

an element [M,α] ∈ K1(R-modfg), we can lift to an isomorphism of some �nite

projective resolution, as in 1.2.1,

0 // Pr //

αr
��

. . . // P1
//

α1

��

M

α

��

// 0

0 // Pr // . . . // P1
// M // 0.
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Set

Φ ([M,α]fg) =
∑
i≥1

(−1)i[Pi, αi]proj ∈ K1(Proj R).

Then Φ is a well de�ned homomorphism.

We �rst prove that this is independent of the chosen resolution. To achieve

this, we need the following lemmas

Lemma 1.2.3. Given two �nitely generated R-module M,M ′, a morphism α :

M →M ′, and a �nite projective resolution

0→ Pr → . . .→ P0 →M → 0,

there exists a lift

0 // . . . // P ′r+1

αr+1

��

// P ′r //

αr

��

. . . // P ′1 //

α1

��

M ′

α

��

// 0

0 // . . . // 0 // Pr // . . . // P1
// M // 0.

whose rows are �nite projective resolutions.

Proof. We start by lifting the following diagram

M ′

α

��
P0

d0 // M // 0

to a diagram

P ′0 //

α0

��

M ′

α

��
P0

d0 // M // 0.

Let B = kerP0 ⊕M ′ −d0⊕α−−−−→. Since d0 is surjective, the projection B → M ′ is

surjective. Now consider an epimorphism P ′0 → B, with P ′0 projective. Composing

with the projections B → P0 and B →M ′ yields a diagram

P ′0
d′0 //

α0

��

M ′

α

��

// 0

P0
d0 // M // 0.
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The lemma now results by induction. Namely, suppose we have constructed

P ′i
d′i //

αi

��

. . . // P ′0 //

α0

��

M ′

α

��
Pi+1

// Pi
di // . . . // M // 0,

then we apply the same reasoning to the diagram

ker di

α

��
Pi+1

// ker di // 0

. Since Pi = 0 for i ≥ r+ 1, we conclude by adding a �nite (projective) resolution

of ker dr+1.

Corollary 1.2.4. Φ([M,α]fg) is independent of the �nite projective resolution

used.

Proof. Suppose we have to lifts of α to some automorphism of some �nite resolution

0 // Pr //

αr
��

. . . // P1
//

α1

��

M

α

��

// 0

0 // Pr // . . . // P1
// M // 0

0 // P ′r //

α′r
��

. . . // P ′1 //

α′1
��

M

α

��

// 0

0 // P ′r // . . . // P ′1 // M // 0.

By applying 1.2.2 to the diagram

M

∆
��

0 // Pr ⊕ P ′r
dr⊕d′r // . . . // P1 ⊕ P ′1

d1⊕d′1 // M ⊕M // 0,

where ∆ is the diagonal map, we obtain a �nite resolution

. . .→ P ′′1 →M
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and chain maps f• : P ′′• → P•, f
′
• : P ′′• → P ′• covering the identity of M , where P•

is the chain complex

. . .→ P2
d2−→ P1 → 0

(P ′• and P
′′
• being de�ned in a similar way). Note that since we have ommited the

M ′s at the end, the various chain complexes de�nes have zero homology except

in degree one where it is isomorphic to M . Moreover, by commutativity of the

diagrams

P ′′1 //

f1
��

M

Id

��

// 0 P ′′1 //

f ′1
��

M

Id

��

// 0

P1
// M // 0 P ′1 // M // 0,

f1 and f
′
1 induce isomorphism on the �rst homology groups. It follows that f and

f ′ are homology equivalences, hence their mapping cones are acyclic. But an easy

induction shows that for any exact sequence in Proj R

0→ Qn → . . .→ Q1 → Q0 → 0,

the Euler characteristic χ(Q•) =
∑

i(−1)i [Qi]proj vanishes. Using the fact that

χ(Cf ) = χ(P•)− χ(P ′′• ) and χ(Cf ′) = χ(P ′•)− χ(P ′′• ), the result follows.

Theorem 1.2.5 (Resolution theorem for K1). There is an isomorphism K1(Proj

R)
ι∗−→ K1(R-modfg) induced by the inclusion.

Proof. For any �nitely generated projective R-module P , 0 → P → P → 0 is a

projective resolution, so Φ ◦ ι∗ ([P ]proj) = Φ ([P ]fg) = [P ]proj. Moreover, an easy

induction shows that for any exact sequence in R-modfg

0→Mn → . . .→M1 →M0 → 0,

the Euler characteristic χ(M•) =
∑

i(−1)i [Mi]fg vanishes. Hence for any �nitely

generated R-module and any projective resolution

0→ Pn → . . .→ P1 →M → 0,

we have

ι∗ ◦ Φ ([M ]fg) = ι∗

(∑
i≥1

(−1)i+1[Pi]proj

)
=
∑
i≥1

(−1)i+1[Pi]fg = [M ]fg.

The result follows.
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1.3 The Grothendieck's Theorem

In this section we prove that every �nitely generated projective R-module is stably

trivial, where R = Z[Zn]. This amounts to proving that the inclusion Z ↪→ R

induces an isomorphism K0(Z)
≈−→ K0(R). By induction, it su�ces to prove that

the inclusion induces an isomorphism K0(R)
≈−→ K0(R[t, t−1]) for any regular ring

R.

From now on, R will be a regular ring. Give R the trivial grading, and give

R[t] the canonical grading given by the degree.

De�nition 1.3.1. For any graded R[t]-module M , de�ne ϕi(M) ⊂ Mi by Mi =∑
j≥1Rt

j Mi−j, and de�ne ϕi(M) = Mi/Di(M). Denote by ϕ(M) the graded

R-module
∑

i ϕi(M).

Lemma 1.3.2. If M is a graded module bounded below such that ϕ(M) = 0, then

M = 0.

Proof. Let M be a non zero graded module bounded below, and let n denote the

lowest integer such that Mn 6= 0, then by de�nition ϕn(M) = 0, and ϕn(M) =

Mn.

It is not hard to see that ϕ is additive and sends free modules into free modules.

Hence it sends projective modules into projective modules. Actually, we have the

following

Proposition 1.3.3. The functor Q ; R[t] ⊗R Q establishes a bijection between

isomorphism classes of graded projective R-modules which are bounded below and

isomorphism classes of projective R[t]-modules which are bounded below, whose

inverse is given by the functor ϕ.

Proof. It is obvious that both functors preserve boundedness condition. Since we

have clearly ϕ(R[t] ⊗R Q) ' Q for every projective R-module which is bounded

below, it su�ces to show that R[t]⊗R ϕ(P ) ' P for every projective R[t]-modules

which is bounded below. Now consider the quotient map f : P → ϕ(P ) given

by the de�nition of ϕ(P ), which can be seen as an epimorphism of graded R-

modules. Since ϕ(P ) is projective, there exists a right inverse g : ϕ(P ) → P ,

which yields a map of graded R[t]-modules h : R[t] ⊗R ϕ(P ) → P . Now clearly

ϕ(h) : ϕ(R[t]⊗R ϕ(P ))
≈−→ ϕ(P ). Hence, since one can easily check that ϕ is right

exact, we have ϕ(coker h) = 0. But since coker h is bounded below, it follows from

1.3.2 that coker h=0, hence h is isomorphic. Now since P is projective, h splits
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and, by additivity of ϕ, we have ϕ(kerh) ' ker(ϕ(R[t] ⊗R ϕ(P )) → ϕ(P )) = 0.

Once again, this implies that kerh = 0, and h is injective.

Corollary 1.3.4. The functor Q ; R[t, s] ⊗R Q establishes a bijection between

isomorphism classes of graded projective R-modules which are bounded below and

isomorphism classes of projective R[t, s]-modules which are bounded below

We are now going to construct a left inverse to K0(R)→ K0(R[t]). In order to

see that the functor Q ; R⊗R[t] Q yields a map K0(R[t])→ K0(R), we need the

following

Proposition 1.3.5. R⊗R[t] − is exact on the category of graded R[t]-modules.

Proof. Since the tensor product functor is always right exact, it remains to prove

the left exactness. Note that R ⊗R[t] M may also be written as M/(t − 1)M ,

so this amounts to proving that for any graded R[t]-modules M and any graded

submodule M ′, then (1 − t)M ∩ M ′ = (1 − t)M ′. But this follows by an easy

induction, since if an element x = x0 + x1 + . . . ∈ M is such that (1 − t)x =

x0 + (x1− tx0) + . . .+ (xn− txn−1) + . . . ∈M ′, then every xn is actually in M ′.

Theorem 1.3.6 (Grothendieck). The natural map K0(R) → K0(R[t]) is an iso-

morphism.

Proof. It is easy to see that the map K0(R[t]) → K0(R) de�ned above is a left

inverse to the map we are considering. Hence it su�ces to prove the surjectivity.

Let P be a projective R[t]-module. We are going to prove that it is of the form

R[t] ⊗R[t,s] N for some graded R[t, s]-module. To see that, �rst observe thet P =

R[t]n/Q for some n ≥ 0 and some module of relations Q ⊂ R[t]n. Since M is

�nitely generated and R is noetherian, it follows from the Hilbert Basis Theorem

that Q is �nitely generated. Now choose a �nite set of generators of Q

fi = (fj,1(t), . . . , fj,n(t)) , 1 ≤ i ≤ m,

and de�ne

gi = (gj,1(t, s), . . . , gj,n(t, s)) , 1 ≤ i ≤ m,

by replacing every monomial atk by atksd−k, where d is the highest degree of the

fi,j's. It is now clear that every gi,j is homogeneous of degree d. Furthermore, if we

denote by Q′ the submodule of R[t, s] generated by the gi,j's and N = R[t, s]/Q′,

then R[t]⊗[t,s] N ' P .
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Since R is regular, R[t, s] is regular by the Syzygy theorem, hence we can choose

a �nite resolution

0→ Pm → . . .→ P1 → N → 0.

Using 1.3.5, the following sequence

0→ R[t]⊗R[t,s] Pm → . . .→ R[t]⊗R[t,s] P1 → R[t]⊗R[t,s] N ' P → 0

is exact. Now by 1.3.4, each Pi is (disregarding the grading) a direct sum of

modules of the form R[t, s]⊗RQ, with Q a projective R-module. Since R[t]⊗R[t,s]

(R[t, s]⊗R Q) ' R[t] ⊗R Q, it follows that every R[t] ⊗R[t,s] Pi is a direct sum of

modules of the form R[t]⊗Q. Thus the result follows from the following lemma,

which is easily proved by induction.

Lemma 1.3.7. If

0→ P ′m → . . . P ′0 → 0

is an exact sequence of �nitely generated projective R-module, then∑
i

(−1)i [P ′i ]proj = 0 ∈ K0(R).

Corollary 1.3.8. The natural map K0(R)→ K0(R[t, t−1]) is an isomorphism for

every regualr ring R.

Proof. First note that the map R[t, t−1] → R sending t to 1 yields a left inverse,

by the same reasoning as above. Now since the map K0(R) → K0(R[t, t−1])

factors through K0(R[t]) by means of the ring homomorphisms R → R[t] →
R[t, t−1], it su�ce to show that K0(R[t])→ K0(R[t, t−1]) is surjective, by ??. Let

P be a �nitely generated projective R[t, t−1]-module. Then P = R[t, t−1]n/Q for

some module of relations Q ⊂ R[t, t−1]n. Since P is �nitely generated and R is

noetherian, it follows from the Hilbert Basis Theorem that Q is �nitely generated.

Thus we can choose d large enough so that tdQ ⊂ R[t]n. Hence

P ' tdR[t, t−1]n/
(
tdQ
)
' R[t, t−1]⊗R[t] M

for some �nitely generated R[t]-module M . Using the Syzygy theorem, choose a

�nite resolution

0→ Pm → . . .→ P1 →M → 0
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by �nitely generated projective R[t]-modules. Since R[t, t−1] is a �at over R[t], the

following sequence is exact

0→ R[t, t−1]⊗R[t] Pm → . . .→ R[t, t−1]⊗R[t] P1 → R[t, t−1]⊗R[t] M ' P → 0.

Thus the result follows from 1.3.7 applied to R[t, t−1].

Corollary 1.3.9. The natural map K0(Z)→ K0(Z[Zn]) is an isomorphism for all

n ≥ 0.

1.4 The vanishing of Wh(Zn).

In this section, we prove a particular case of the Bass-Heller-Swan theorem, which

will appear to be of fundamental importance to study high-dimensional manifolds.

The links between this vanishing theorem and manifold topology will be studied

in the next section.

The notation [ ]Wh will denote an element in the Whitehead group.

Theorem 1.4.1 (Bass-Heller-Swan). The Whitehead group Wh(Zn) vanishes for

all n ≥ 0.

We prove the result by induction on n. The vanishing of Wh(e) is a basic fact

of linear algebra. Suppose the result has been prove for n ≥ 0.

Given a class [P, α]Wh ∈ Wh(Zn+1), there exists a (projective) �nitely gen-

erated R[t, t−1]-module Q such that P ⊕ Q ' R[t, t−1]N for some N ≥ 0. By

de�nition of Wh, we then have

[P, α]Wh = [P ⊕Q,α⊕ IdQ]Wh = [R[t, t−1]N , β]Wh

for some automorphism β of the R[t, t−1]-module R[t, t−1]N . It is thus enough to

prove that [R[t, t−1]N , β] = 0 ∈ Wh(Zn+1) for any β ∈ Aut R[t, t−1]N , N ≥ 0.

Since an automorphism of R[t, t−1]N can be seen as an element of GLN(R[t, t−1]),

we start by expressing any matrix in GLN(R[t, t−1]) in a more tractable way.

Proposition 1.4.2. Any matrix B ∈ GL(R[t, t−1]) can be reduced, modulo GL(R)

and E(R[t, t−1]), to a matrix of the form(
tm 0

0 1

)
(1 + A(t− 1)),

where m ∈ Z, and A ∈M(R) with A(1− A) nilpotent.
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Proof. Let m ≥ 0 such that tmB has entries in R[t], and write

tmB = B0 + tB1 + . . .+ tdBd,

where the Bi have entries in R, and d ≥ 0. We prove by induction that, modulo

GL(R) and E(R[t]), we can reduced our study to the case d ≤ 1. Assume d > 1.

Then, by writing M ≈ N if two matrices M,N ∈ M(R[t, t−1]) are equivalent

modulo GL(R) and E(R[t]), we have

tmB ≈
(
tmB 0

0 1

)
≈
(
tmB td−1Bd

0 1

)
≈
(
tmB − tdBd td−1Bd

−t 1

)
,

and the last matrix has entries of degree ≤ d−1, so we conclude by induction. Thus

we have only to deal with the case tmB ≈ B0 + tB1 = (B0 +B1) + (t− 1)B1. Since

tmB must be invertible as a matrix over R[t, t−1], B0+N1 is invertible. So factoring

out by B0 +B1 ∈ GL(R), we have a matrix of the form 1+A(t−1) = (1−A)+ tA.

Let C−r, . . . , Cs ∈M(R) with s, r > 0, such that

1 = ((1− A) + tA)(t−rC−r + . . .+ tsCs) = (C0 + tC1 + . . .+ tsCs)((1− A) + tA).

It follows that (1−A)Ci +ACi−1 = 0 for i 6= 0. Starting with ACs = 0, we prove

by induction that AiCs−i+1 = 0 for 1 ≤ i ≤ s + 1, so in particular As+1C0 =

0. Similarly, starting with (1 − A)C−r = 0, we prove by induction that (1 −
A)iC−r+i−1 = 0 for 1 ≤ i ≤ r, so in particular (1 − A)rC−1 = 0. Multiplying the

equation (1− A)C0 + AC−1 = 1 by As(1− A)r−1 yields

As(1− A)r−1 = (1− A)r−1As+1C0 + As(1− A)rC−1 = 0,

and the result follows.

Using 1.4.2, we thus have

[R[t, t−1]N , B]Wh = [R[t, t−1]k, (1−A)+tA]Wh+[R[t, t−1]k, S]Wh

+[R[t, t−1]k, U ]Wh ∈ Wh(Zn+1),

with A(1− A) nilpotent, S ∈ GLm(R), and U ∈ E(R[t]).

By induction hypothesis, we have [R[t, t−1]m, S]Wh = 0 since Wh(Zn) = 0 and

S ∈ GLk(Z[Zn]).

Since E(R[t]) is generated by unipotent matrices, it is enough to prove the following
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Lemma 1.4.3. Let P be a projective R[t, t−1]-module, and α an unipotent auto-

morphism of P . Then [P, α]proj = 0 ∈ K1(R[t, t−1]).

Proof. By the Resolution theorem 1.2.5, it is enough to prove the result in R[t, t−1]-

modfg. Suppose α
s = 0, and letMi = Im (α−1)s−i. EachMi is stable under α, and

α induces identity on the quotient Mi+1/Mi, yielding the following commutative

diagram in R[t, t−1]-modfg

0 // Mi

α|

��

// Mi+1

α|

��

// Mi+1/Mi

Id
��

// 0

0 // Mi
// Mi+1

// Mi+1/Mi
// 0.

So, by de�nition of K1, [Mi+1, α|]fg = −[Mi, α|]fg, and the result follows by induc-

tion.

To complete the proof of 1.4.1 me must show that [R[t, t−1]k, 1+(t−1)A]Wh = 0,

with A ∈ M(R) such that A(1 − A) is nilpotent, say As(1 − A)s = 0. We have

R[t, t−1]k = M0⊕M1, with M0 = kerAs,M1 = Ker(1−A)s, and A stabilizes both

submodules. Let A0 (resp A1) its restriction to M0 (resp. M1).[
R[t, t−1]k, 1 + (t− 1)A

]
Wh

= [M0, IdM0 + (t− 1)A0]Wh

+ [M1, tIdM1 + (IdM1 − tA1)]Wh

= [M0, IdM0 + (t− 1)A0]Wh + [M1, ]Wh

+
[
IdM1 + t−1A−1

1 (IdM1 − tA1)
]
Wh

= [M1, tIdM1 ]Wh + [M0, IdM0 + (t− 1)A0]Wh

+ [M1, A1]Wh +
[
IdM1 + t−1A−1

1 (IdM1 − tA1)
]
Wh

The last three terms vanish by 1.4.3, since the automorphisms involved are unipo-

tent. If M1 was free, [M1, tIdM1 ]Wh would vanish by de�nition of the Whitehead

group. Here, M1 is only projective, but the Grothendieck's theorem will allow us

to

Lemma 1.4.4. [M1, tIdM1 ]Wh = 0.

Proof. By the Grothendieck's theorem, let s ∈ Z such that [M1]proj = [R[t, t−1]s]proj.

By de�nition of K0(Proj R[t, t−1]), this implies that M1 is isomorphic to a pro-

jective module Q satisfying

Q = R[t, t−1]s +
∑
i

(P (i) − P (i)
1 − P

(i)
2 ) ∈ Λ0(Proj R[t, t−1]),
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where the P (i), P
(i)
1 , P

(i)
2 are projective modules satisfying an exact sequence

0→ P
(i)
1 → P (i) → P

(i)
2 → 0.

Now one can deduce the following commutative diagrams

0 // P
(i)
1

//

tId
��

P (i) //

tId

��

P
(i)
2

tId
��

// 0

0 // P
(i)
1

// P (i) // P
(i)
2

// 0.

So,

(Q, tId) =
(
R[t, t−1]s, tId

)
+
∑
i

(
(P (i), tId)− (P

(i)
1 , tId)− (P

(i)
2 , tId)

)
∈ Λ1(ProjR[t, t−1]),

and hence [M1, tId]Wh = [R[t, t−1]s, tId]Wh = 0.
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Chapter 2

From Algebra to Topology: Splitting

obstructions

In this chapter, we study a geometric phenomenon which will be of crucial impor-

tance in calculating the PL-structure set of the torus: codimension one splitting.

Let f : M →M ′ be a homotopy equivalence, and N ′ a two-sided codimension one

submanifold of M ′. By making f transverse to N ′, it induces a degree one map

g : N → N ′, with N = f−1(N ′). The problem is to decide if we can homotop f

to make g a homotopy equivalence. The idea will be to make g highly connected

by performing succesive surgeries on N . Note that, instead of classical surgery,

everything is done inside M , so we will need di�erent assumptions to make sure

we can perform surgery on a class.

In the �rst section, we prove that this program can be carried out until middle

dimension, where a obstruction to perform surgery will appear. In Section 2.2, we

prove that the vanishing of this obstruction gives algebraic moves, whose geomet-

ric counterparts will be developed in Section 2.3 to achieve the surgery program,

yielding the following

Splitting Theorem.

Let f : M → Tn be a homotopy equivalence between PL-manifolds of dimension

n ≥ 6, and N ′ a two-sided codimension submanifold of Tn. Then we can homotop

f such that:

- f is transverse to N ′.

- the restriction f| : N → N ′ is a homotopy equivalence, where N = f−1(N ′).

Finally, we relate the algebraic obstruction to the algebraic machinery developed
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in the previous chapter in Section 2.4. This last section is not necessary for the

rest of this thesis, but presents the link between the Whitehead group of a group

and the Nil group of its groups ring given by the general Bass-Heller-Swan theorem.

Notation In this chapter, R will denote the ring Z[Zn].

2.1 Surgery below the middle dimension.

LetM be a PL-manifold of dimension n ≥ 6, f : M → Tn a homotopy equivalence,

and N ′ a two-sided codimension one subtorus of M ′ = Tn. By �rst making f

transverse regular to N ′, we can assume it induces a degree one map g : N →
N ′, with N = f−1(N ′). We will try to perform sugery on N to make g highly

connected.

Lemma 2.1.1. One can homotop f so that N is connected and g : N → N ′

induces an isomorphism on π1.

Proof. By performing surgery on a path between two connect components of N , we

can �rst assume thatN is connected. Now g : N → N ′ is a degree one map between

connected compact manifolds, thus induces an epimorphism g∗ : π1(N)→ π1(N ′).

Indeed, consider the covering map Z → N ′ associated to g∗π1(N). Then by

de�nition g lifts to g̃ : N → Z, and g∗ : Hn−1(N) → Hn−1(N ′) factors through

Hn−1(N)
g̃∗−→ Hn−1(Z) → Hn−1(N ′). Since g is a degree one map, Z is compact

(otherwise Hn−1(Z) = 0), so g∗π1(N) is a subgroup of π1(N ′) of �nite index d, and

Hn−1(Z)→ Hn−1(N ′) is multiplication by d. Hence d = 1 and g∗π1(N) = π1(N ′).

Now consider a loop γ representing an element of ker g∗. Then, since f : M →M ′,

the commutativity of the following diagram

π1(N)

g∗
��

// π1(M ′)

f∗≈
��

π1(N ′) // π1(M)

shows that γ is nullhomotopic in M . Since n ≥ 6, we can, by a general position

argument, assume that γ bounds an embedding (D2,S1) ↪→ (M,N).
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The normal bundle of the embedded (contractible) D2 is trivial, hence it has a

tubular neighboorhood of the form D2 × Dn−2. By homotoping f we can assume

that f maps this tube in N . Consider the codimension one submanifold N1 ob-

tained by ambient surgery on γ (namely, N1 = N − (S1 × Dn−2) ∪ D2 × Sn−3).

f induces a map g1 : N1 → N ′ and ker g1 ' ker g∗/ < [γ] >. Furthermore, by

considering a su�ciently small tube D2 ×Dn−2, we can suppose that the image of

the tube is not dense in N ′. But since the degree is a local data, this implies that

g1 has degree one.

We now assume that N is connected and N → N ′ induces an isomorphism

on π1. It is not possible to have the same reasoning in higher dimensions since a

degree one map does not necessarily induce an epimorphism on πi, i ≥ 2. However,

we have the following

Lemma 2.1.2. A degree one normal map between compact connected orientable

manifolds induces an epimorphism on Hi, i ≥ 1.

Proof. Let h : X → Y be a degree one normal map between compact connected

orientable m-manifolds. We have the following commutative diagram

Hi(X)
f∗

//

D
��

Hi(Y )

D
��

Hm−i(X) Hm−i(Y )
f∗oo
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where D is the inverse of the Poincaré duality isomorphism. Set f] = D−1 ◦f ∗ ◦D.

Then, for all y ∈ Hi(Y ),

f∗ ◦ f](y) = f∗(f
∗(Dy) ∩ [X]) = Dy ∩ f∗[X] = Dy ∩ [Y ] = y.

Thus f∗ ◦ f] = id, hence f∗ is surjective.

By virtue of the Hurewicz theorem (since f induces an isomorphism on π1), it

is su�cient to prove that we can homotop f so that g induces a homology isomor-

phism. By Poincaré duality, it is su�cient to prove that it induces a homology

equivalence until the middle dimension. Now, if N1 is obtained from N by surgery,

there is no natural map N → N1. It will be more convenient to consider the

following in�nite cycling covering.

De�nition 2.1.3. Let p′ : YM ′ → M ′ be the in�nite cyclic covering associated to

the inclusion Zn−1 = π1(N ′) ↪→ π1(M ′) = Zn, and p : YM → M the pullback over

f

YM

p

��

f // YM

p′

��
M

f
// M ′.

.

By de�nition of p′, N ′ lifts to a two-sided codimension one submanifold that

we still denote N ′. N ′ divides YM ′ into AN ′ and BN ′ . The group of cover-

ing transformations is isomorphic to Z, and we choose a generator t such that

tAN ′ ⊂ AN ′ .Furthermore, since π1(N) → π1(N ′) is an isomorphism, N lifts to a

two-sided codimension one submanifold that will still denote by N . We can choose

a lift such that f(N) ⊂ N ′. N divides YN into AN and BN , and considering the

generator t of the in�nite cyclic group of covering transformations of p induced

by the isomorphism π1(N) → π1(N ′), we have f(AN) ⊂ AN ′ , f(BN) ⊂ BN ′ and

tAN ⊂ AN .
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De�nition 2.1.4. For any map h : X → Y , de�ne Ki(h) = kerHi(X) → Hi(Y ),

Ki(h) = kerH i(Y ) → H i(X) for i ≥ 0 (where the coe�cient group is to be

speci�ed). If no confusion is possible, we will just denote it by Ki(X) or Ki(X).

We have the following

Lemma 2.1.5. We have, for i ≥ 1,

Ki(N) ' Ki−1(AN , N)⊕Ki−1(BN , N)

where we consider homology with coe�cient in a R-module.

Proof. We have the Mayer-Vietoris exact sequence

→ Ki+1(YM)→ Ki(N)→ Ki(AN)⊕Ki(BN)→ Ki(YM)→

and the exact sequences of pairs

→ Ki(YM)→ Ki(YM , AN)→ Ki−1(AN)→ Ki−1(YM)→

→ Ki(YM)→ Ki(YM , BN)→ Ki−1(BN)→ Ki(YM)→

and by excision, Ki(YM , AN) ' Ki(BN , N), Ki(YM , BN) ' Ki(AN , N). Now since

f is a homotopy equivalence, Ki(YM) = 0 for all i ≥ 0, and the result follows

easily.
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We now describe how an ambient surgery (analog to the one done in 2.1.1 )

will be performed. Suppose we have an embedding (Dk,Sk−1) ↪→ (N,AN − tAN)

(AN − tAN is a fundamental domain of the in�nite cyclic covering). Then the

normal bundle of the embedded Dk is trivial, thus admits a tubular neighboor-

hood of the form Dk × Dn−k. By homotoping f we can suppose that f maps

this tube in N , and by choosing a su�ciently small tubular neighboorhood we

can assume that the image of this tube is not dense in N . Consider the codi-

mension one submanifold N1 obtained by ambient surgery on this tube (namely,

N1 = N−(Sk−1×Dn−k)∪Dk×Sn−k−1). This submanifold projects to a submanifold

N1 in M . By considering a tubular neighboorhood around N , we can assume that

there is a cobordism W between N and N1, as described in the following picture

and f induces a map g1 : N1 → N ′, which is of degree one by the same reasoning.

This is the procedure we will use to kill judicious elements in Ki(AN , N) and

Ki(BN , N). However there is apparently no reason why a homology class should

be represented by an embedding. We �rst prove a lemma which will enable us to

eliminate some homology classes, allowing an induction argument. First we need

the following lemmas.

Lemma 2.1.6. If g is k-connected, then Kk(N), Kk+1(AN , N) and Kk+1(BN , N)

are all �nitely generated R-modules.

Proof. By 2.1.5, it su�ces to prove the result for Kk(N). Since Hk(N)→ Hk(N
′)

is surjective by 2.1.2, we have Ki(N) ' Hi+1(Cg) for all i ≥ 0, where Cg is the
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mapping cone of g. Since g is k-connected, πi(Cg) = 0 = Hi(Cg) for all i ≤ k,

hence Hk+1(Cg) is a �nitely generated R-module.

Recall that t denote a covering map generating the covering transformations

group of the covering. Consider the inclusion i : (YM , BN)→ (YM , tBN). We have

the endomorphism (of R-modules) (t−1)∗ : Hi(AN , N) → Hi(AN , N) de�ned by

the following commutative diagram:

Hi(YM , BN)

≈ excision
��

i∗ // Hi(YM , tBN , )
(t−1)∗ // Hi(YM , BN)

≈ excision
��

Hi(AN , N)
(t−1)∗ // Hi(AN , N),

and similarly we can construct an endomorphism t∗ : Hi(BN , N) → Hi(BN , N).

These endomorphisms induce endomorphisms on Ki(AN , N) and (Ki(BN , N) re-

spectively.

Lemma 2.1.7. If g is k-connected, then (t−1)∗ (resp. t∗) is nilpotent onKk+1(AN , N)

(resp. Kk+1(BN , N)).

Proof. We prove the lemma for (t−1)∗, the proof being analog for t∗. Since both

modules are �nitely generated by 2.1.6, it is enough to prove that any element

x is killed by a su�ciently high power of (t−1)∗. Let c be a cycle representing

x. Since c has compact support, there exists a l such that the support of c lies

in AN − tlAN . But then x is killed under the map Hi(YM , BN) → Hi(YM , t
lBN)

induced by inclusion, and so (t−1)l∗x = 0.

The following lemma exhibits homology classes on which surgery will be pos-

sible. For a proof, we refer to [FH73].

Lemma 2.1.8. Suppose g is k-connected, and let l ≥ 1 be the nilpotence index of

(t−1)∗ on Kk+1(AN , N). Then the image of the composite map

πk+1(AN − tAN , N)
H−→ Hk+1(AN − tAN , N)

j∗−→ Hk+1(AN , N),

where H is the Hurewicz homomorphism and j∗ is induced by inclusion, contains

(t−1)l−1
∗ .

We are now able to prove the main result of this section.

Proposition 2.1.9. We can homotop f so that there exists a codimension one

submanifold N ⊂ M , with g = f|N : N → N ′ which is k-connected for every

k < n/2.
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Proof. We keep the same notations as above. Using 2.1.1, we can suppose that

there exists a codimension one connected submanifold N ⊂M such that g is a π1-

isomorphism. We prove the proposition by induction on k. Since we just proved

it for k = 0, 1, let assume g is k-connected for k < n/2. If k + 1 > n/2, the

result follows by Poincaré duality. Otherwise Kk+1(AN , N) is a �nitely generated

R-module endowed with a nilpotent R-endomorphism (t−1)∗, whose nilpotence is

denoted l. Since (t−1)∗Kk+1(AN , N) is also �nitely generated, let x1, . . . , xs be a

set of generators. By 2.1.8 there are elements in πk+1(AN − tAN , N) whose images

under the composite map are x1, . . . , xs. Since k + 1 < n/2, we can represent

them by disjoint embeddings (Dk+1,Sk) ↪→ (AN − tAN , N). Using the procedure

described above, we perform surgery on these embeddings to obtain a map homo-

topic to f (for simplicity, we still denote it f) and a codimension one submanifold

N1 ⊂ N . Let AN1 , BN1 be the corresponding sets for N1. We have the following

commutative diagram

Kk+1(AN , N)

excision ≈
��

// Kk+1(AN1 , N1)

excision ≈
��

Kk+1(YM , BN) // Kk+1(YM , BN1) // Kk(BN1 , BN).

Now by excision, Kk(BN1 , BN) ' Kk(W,N), where W is the cobordism between

N and N1 described above. But since W is obtaind from N by adding k + 1

handles, Kk(W,N) = 0, and so Kk+1(AN , N) → Kk+1(AN1 , N1) is an epimor-

phism. But by construction, the kernel of Kk+1(YM , BN) → Kk+1(YM , BN1) con-

tains (t−1)l−1
∗ (Kk+1(AN , N)). Hence using the commutativity of the following di-

agram

Kk+1(AN , N)

(t−1)∗
��

// Kk+1(AN1 , N1)

(t−1)∗
��

// 0

Kk+1(AN , N) // Kk+1(AN1 , N1) // 0,

it follows that (t−1)∗Kk+1(AN1 , N1) = 0. We can repeat the argument. Thus after

�nitely many times, Kk+1(AN , N) can be killed. Note that during that procedure,

Kk+1(BN , N) has not been a�ected. Indeed, since W is obtained from N1 by

adding n − k − 1 handles and n − k − 1 > n/2 since k + 1 < n/2, it follows

that Kk+1(YM , AN1) → Kk+1(YM , AN) is an isomorphism, hence Kk+1(BN , N) '
Kk+1(BN1 , N1). So we can apply a similar program to kill Kk+1(BN , N). This

completes the induction step.
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2.2 The algebraic obstruction.

Lemma 2.2.1. (i) Suppose n = 2k is even. Then under the above assumptions,

we can homotop f so there exists a codimension one submanifold N such that the

induced map g : N → N ′ satis�es: Ki(AN , N) = 0, Ki(BN , N) = 0 for i < k,

Kk(AN , N) = 0 and Kk(BN , N) is �nitely generated.

(ii) Suppose n = 2k + 1 is odd. Then under the above assumptions, we can

homotop f so there exists a codimension one submanifold N such that the induced

map g : N → N ′ satis�es: Ki(AN , N) = 0, Ki(BN , N) = 0 for i ≤ k, Kk+1(AN , N)

and Kk+1(BN , N) are �nitely generated.

Proof. (i) Using 2.1.9, we can assume that Ki(AN , N) = 0, Ki(BN , N) = 0 for i <

k. If we try to carry out the same procedure as in 2.1.9, the only problem arising is

the utilisation of the Whitney trick to represent x1, . . . , xs by disjoint embeddings.

However, since π1(N) → π1(AN − tAN) is an isomorphism by de�nition of the

in�nite cyclic covering, we can use the Wall's piping out argument to represent

them by disjoint embeddings (we refer the reader to the Chapter 4 of [Wal70]

for the proof of this lemma). Then the same reasoning aplies and one can kill

Kk(AN , N). By the same argument as in 2.1.5, we have

Ki(AN , N,R)⊕Ki(BN , N,R) = Ki−1(N,R)

for any R-module R. Now Ki−1(N,R) = 0 for i > k by Poincaré duality, so

Ki(BN , N,R) = 0 for i > k. Hence Kk(BN , N) is a �nitely generated projective

R-module.

(ii) By 2.1.9, we can assume that Ki(AN , N) = 0, Ki(BN , N) = 0 for i ≤ k. Now

since Ki−1(N,R) = 0 for i > k + 1 by Poincaré duality, we have Ki(AN , N,R)⊕
Ki(BN , N,R) = 0 for i > k + 1, thus Ki(AN , N,R) = 0 and Ki(BN , N,R) = 0

for i > k + 1. Hence Kk+1(AN , N,R) and Kk+1(BN , N,R) are �nitely generated

projective R-module.

De�nition 2.2.2. A map M →M ′ as in 2.2.1 is called an almost splitting.

Recall that the Grothendieck's theorem implies that K0(R) ' Z, hence every
�nitely generated projective R-module is stably free.

De�nition 2.2.3. De�ne a group Ñil R as follows. Let Nil R be the category

whose objects are pairs (P, ν), where P is a �nitely generated stably free R-module

and ν is a nilpotent endomorphism of P , and de�ne Ñil R = K0(Nil R).
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Recall that, since K0(R) ' Z by the Grothendieck theorem 1.3.8, every �nitely

generated projective R-module is stably free. Hence, using the usual notations,

(Kk+1(BN , N), t∗) (resp. (Kk(BN , N), t∗)) de�nes an element in Ñil R if n = 2k+1

(resp. n = 2k). We have the following

De�nition 2.2.4. We say that an object (P, ν) in Ñil R is triangular if there

exists a �ltration 0 = E0 ⊂ E1 ⊂ . . . ⊂ Rr = P such that Ei+1/Ei is free and

ν(Ei+1) ⊂ Ei for all i.

An elementary example of a triangular object is given by the following

Lemma 2.2.5. If P is a free R-module, then P ⊗RR[x]/(xr) with ν(
∑

i pi⊗xi) =∑
i pi ⊗ xi+1 is a triangular object.

An important property of triangular object is the following

Proposition 2.2.6. Any triangular object represents the zero element in Ñil R.

Proof. We proceed by induction on the length of the �ltration by which the object

is said to be triangular. If (P, ν) is a triangular object with a �ltration of length

1, the result follows immediately from the de�nition of Ñil R. Assume we have

proved the proposition for �ltrations of lengths m − 1, m ≥ 2, and consider an

object (P, ν) with a �ltration 0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = P . We have the

following exact sequence in Nil R

0→ (Em−1, νEm−1)→ (P, ν)→ (P/Em−1, 0)→ 0.

Thus [P, ν] = [Em−1, νEm−1 ] + [P/Em−1, 0] = [Em−1, νEm−1 ] since P/Em−1 is free.

Now (Em−1, νEm−1) is a triangular object with a �ltration of length m − 1, hence

[Em−1, νEm−1 ] = 0 by the induction hypothesis.

Lemma 2.2.7. Let (P, ν) be an object in Nil R with a �ltration 0 = E0 ⊂ E1 ⊂
. . . ⊂ Em = P by �nitely generated submodules such that ν(Ei+1) ⊂ Ei. Then

there exists an exact sequence in Nil R

0→ (P ′, ν ′)
u−→ (P ′′, ν ′′)

v−→ (P, ν)→ 0

where (P ′′, ν ′′) is a triangular object with respect to a �ltration 0 = F0 ⊂ F1 ⊂
. . . ⊂ Fm = P ′′ such that v(Fi) = Ei.
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Proof. We proceed by induction on the length m of the �ltration of P . If m = 1,

consider a �nitely generated free module F and a surjection v : F → P . Then

0 → (ker v, 0) → (F, 0)
v−→ (P, 0) → 0 is the desired sequence. Assume the

lemma is true for m − 1,m ≥ 2. Applying the lemma to (Em−1, νEm−1) by the

induction hypothesis, there exists a map vm−1 : (Fm−1, fm−1) → (Em−1, νEm−1)

satisfying the above conclusions. Since Em/Em−1 is �nitely generated, there exists

an epimorphism q : Q→ Em/Em−1, where Q is a �nitely generated free R-module.

q lifts to a map q̄ : Q→ Em = P . Let F = Fm−1 ⊕Q and v = vm−1 ⊕ q : F → P .

We now extend fm−1 to an endomorphism of F . Since Q is free, there exists a

linear map f̄ making the following diagram commutative

Q

v

��

f̄ // Fm−1

vm−1

��
K ν

// Em−1.

Let f = fm−1 ⊕ f̄ : F → F . Let L = ker v, l = f|L. Then 0 → (L, l) ↪→ (F, v)
v−→

(P, ν)→ 0 is the desired sequence.

Proposition 2.2.8. Ñil R = 0.

Proof. Let [P, ν] ∈ Ñil R, with νm = 0, and set Ki = Im νm−i. We thus have

a �ltration 0 = K0 ⊂ K1 ⊂ . . . ⊂ Km = P , with each Ki �nitely generated.

Using 2.2.7, let 0 → (P1, ν1)
u−→ (P ′′, ν ′′)

v−→ (P, ν) → 0 be an exact sequence in

Nil R with (P ′′, ν ′′) triangular for a �ltration 0 = E0 ⊂ E1 ⊂ . . . ⊂ Em = P ′′

with v(Ei) ⊂ Ki. Since (P ′′, ν ′′) is triangular, [P, ν] = −[P1, ν1] by 2.2.6. Let

Li = u−1(Ei). We then have a �ltration 0 = L0 ⊂ E1 ⊂ . . . ⊂ Lm = P1, and

exact sequences 0 → Li+1/Li → Ei+1/Ei → Ki+1/Ki → 0. Since R is noetherian,

Li+1/Li is �nitely generated, and it follows that each Li is �nitely generated by an

easy induction. IfM is a R-module, let d(M) be the minimal length of a projective

resolution of M . Since Ei+1/Ei is free, it follows from the exact sequence 0 →
Li+1/Li → Ei+1/Ei → Ki+1/Ki → 0 that d(Li+1/Li) = max (1, d(Ki+1/Ki)− 1).

Let d = max0≤i≤m−1d(Ki+1/Ki). So after d applications of this procedure, we

have an object (Pd, νd) ∈ Nil R such that [Pd, νd] = (−1)d[P, ν], and a �ltration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = Pd such that Si+1/Si is a �nitely generated projective

R-module. Hence

[P, ν] = (−1)d[Pd, νd] =
∑
i

[Si+1/Si, 0] = 0,

since each Si+1/Si is stably free by the Grothendieck theorem 1.3.8.
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Thus the element (Kk(BN , N), t∗) or (Kk+1(BN , N), t∗) is the zero element in

Ñil R = K0(Nil R). This in turn gives information on the structure of the pair,

which can be thought as an analog of the fact that an element representing 0 in

K0(R) is stably trivial. Namely, an element representing the zero element in Ñil

R = K0(Nil R) is stably trivial in the following sense.

Proposition 2.2.9. An object (P, ν) ∈ Nil R represents 0 ∈ Ñil R if and only if

there exists triangular objects (T1, t1), (T2, t2) such that

(P, ν)⊕ (T1, t1) ' (T2, t2).

For a proof, we refer to [Ko9]. We will see in the next section the geometric

operations corresponding to adding or removing a triangular object, which will

allow us to kill the remaining homology kernel.

2.3 The Splitting Theorem.

We are now going to prove the splitting theorem. So far, we have proved that one

can homotop f so as to have an almost splitting. Furthermore, we saw in the last

section that the remaining homology kernel is stably triangular. In this section,

we describe the geometric operations which allow us to add or remove a triangular

object, thus proving the Splitting Theorem.

Lemma 2.3.1. (i) Suppose that n = 2k ≥ 6, and (N, g) is an almost splitting. If

we have an exact sequence in Nil R

0→ (P, ν)→ (P1, ν1)→ (F, f)→ 0

with (P, v) ' (Kk(BN , N), t∗) and (F, f) a triangular object, there exists an almost

splitting (N1, g1) such that (Kk(BN1 , N1), t∗) ' (P1, ν1).

(ii) Suppose that n = 2k + 1 ≥ 7, and (N, g) is an almost splitting. If we have

an exact sequence in Nil R

0→ (P, ν)→ (P1, ν1)
v−→ (F, f)→ 0

with (P, v) ' (Kk+1(BN , N), t∗) and (F, f) a triangular object, there exists an

almost splitting (N1, g1) such that (Kk+1(BN1 , N1), t∗) ' (P1, ν1).
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Proof. The proofs are essentially the same, except for some number changes. We

thus restrict to the case where n = 2k. Since (F, f) is triangular, it su�ces to

prove the result for (F, f) ' (R, 0) by an easy induction. Let a ∈ P1 projecting

on a generator of R. Then x = ν1(a) ∈ ker v, so we can consider as an element

of (P, ν) ' (Kk(BN , N), t∗). Let u = ∂x, where is the boundary map in the exact

sequence

. . .→ Kk(t
−1BN , t

−1N) ' Kk(BN , BN − t−1BN)
∂−→

∂−→ Kk−1(BN − t−1BN , N)→ Kk−1(BN , N) ' 0→ . . .

Following 2.1.8, we can show that is representable under the Hurewicz homomor-

phism by a map u : (Dk−1,Sk−2) → (BN − t−1BN , N). Using the Whitney trick,

we can assume that u is an embedding. Hence we can apply the same reasoning

and perform surgery on u. Let (N1, g1) be the almost splitting obtained, and W

be the cobordism between N and N1. Using the following exact sequence of the

triple (BN ,W,N),

0 ' Kk(W,N)→ Kk(BN , N)→ Kk(BN ,W ) ' Kk(BN1 , N1)→

→ Kk−1(W,N)→ Kk−1(BN , N) ' 0,

it follows that Kk(BN1 , N1) ' Kk(BN , N) ⊕ R. Furthermore, by construction of

u we have that t−1
∗ x generates the second summand. Now since t∗(t

−1
∗ x) = x and

the previous exact sequence preserves the action of t∗, it follows that the two exact

sequences

0→ (Kk(BN , N), t∗)→ (Kk(BN1 , N1), t∗)→ (Kk−1(W,N), t∗)→ 0,

0→ (P, ν)→ (P1, ν1)→ (R, 0)→ 0

are isomorphic. Furthermore, one easily checks that the previous construction does

not a�ect Kk(AN , N) looking at the exact sequence of the triple (AN1 ,W,N1).

Lemma 2.3.2. Suppose that n = 2k ≥ 6, and (N, g) is an almost splitting. If we

have an exact sequence in Nil R

0→ (F, f)→ (P, ν)→ (P1, ν1)→ 0

with (P, v) ' (Kk(BN , N), t∗) and (F, f) a triangular object, there exists an almost

splitting (N1, g1) such that (Kk(BN1 , N1), t∗) ' (P1, ν1).
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Proof. Once again we can suppose that (F, f) ' (R, 0). Let a be an element of

Kk(BN , N) ' P generating F . Let l be the least integer such that tl∗Kk(BN , N) =

0. Since t∗a = 0, a ∈ ker t∗ ⊂ Im tl−1
∗ . Thus, using 2.1.8 and Wall's piping out ar-

gument, we can represent a by an embedding under the Hurewicz homomorphism.

Carrying out again our surgery program, we obtain a new almost splitting (N1, g1)

and a cobordism W between N and N1. Using the exact sequence of the triple

(BN ,W,N)

0→ Kk(W,N)→ Kk(BN , N)→ Kk(BN ,W ) ' Kk(BN1 , N1)→ 0,

and using the fact that it preserves the action of t∗, it follows that this sequence

is isomorphic to

0→ (R, 0)→ (P, ν)→ (P1, ν1)→ 0.

Furthermore, by looking at the exact sequence of the triple (AN1 ,W,N1), one can

check that Kk(AN , N) is not a�ected during the procedure.

Lemma 2.3.3. Suppose that n = 2k + 1 ≥ 7, and (N, g) is an almost splitting. If

we have an exact sequence in Nil R

0→ (F, f)→ (P, ν)→ (P1, ν1)→ 0

with (P, v) ' (Kk+1(BN , N), t∗) and (F, f) a triangular object, there exists an

almost splitting (N1, g1) such that (Kk+1(BN1 , N1), t∗) ' (P1, ν1).

This lemma is quite technical and uses ideas from the Chapter 4 of [Wal70].

We refer the reader to [FH73] for the details.

Proof of the Splitting Theorem By 2.2.8 and 2.2.9, the homology kernel

(Kk(BN , N), t∗) (resp. (Kk+1(BN , N), t∗)) is stably triangular. Now, using 2.3.1,

2.3.2 and 2.3.3, we can �nd an almost splitting (N1, g1) such that Kk(BN , N) = 0

(resp. Kk+1(BN , N) = 0). This in turn implies by Poincaré duality and 2.1.5 that

g1 is an homotopy equivalence.

2.4 In light of the general Bass-Heller-Swan The-

orem...

This last section presents without proof the links between the algebraic obstruction

constructed in Section 2.2 and the Whitehead torsion of the associated homotopy

equivalence. It is not needed for the rest of the thesis.
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First we have the generalisation of the Bass-Heller-Swan theorem to an arbi-

trary ring.

Theorem 2.4.1. For any ring R,

K1(R[t, t−1]) ' K1(R)⊕K0(R)⊕ Ñil(R)⊕ Ñil(R).

Corollary 2.4.2. For any group π,

Wh(π × Z) ' Wh(π)⊕ K̃0(Zπ)⊕ Ñil(Zπ)⊕ Ñil(Zπ).

The algebraic obstruction previously de�ned in Section 2.2 is related to the

Whitehead torsion of the associated homotopy equivalence by the following

Theorem 2.4.3. Let f : M → M ′ be a homotopy equivalence between compact

m-dimensional manifolds (m ≥ 6) with fundamental group of the form π×Z, and
N a two-sided codimension one submanifold of M . The obstruction to splitting f

along N is given by φ(τ), where τ is the Whitehead torsion of f , and

φ : Wh(π × Z)→ K̃0(π)⊕ Ñil(R)

is the projection1 given by the decomposition of Wh(π × Z).

What we computed in Section 2.2 was the projection of φ(τ) on Ñil(Zπ).

Because of the Grothendieck theorem 1.3.8, it was su�cient to prove its vanishing

to deduce that the map is splittable along N . For further details, we refer the

reader to [FH73]

1The copy of Ñil(Zπ) chosen in the decomposition of Wh(π×Z) is actually not relevant, see

[HS70] for further details.
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Chapter 3

A crash course in surgery theory.

This chapter is intended to present in a very concise way the necessary background

on surgery theory and homotopy theory, which will be used to prove the topological

rigidity of the torus in high dimensions. For a (incredibly) more detailed exposition

of this material, we refer to [Ran02].

For sake of simplicity, and since this the only case we will encounter in this

thesis, we will assume that all the spaces we study have a fundamental group

with vanishing Whitehead group. That will allow us to avoid complications

in the exposition of surgery theory due to so called decorations of algebraic L-

groups. Furthermore, since we will have to consider possibly TOP-, PL-, or DIFF-

manifolds, when a manifold comes with a given structure and that the discussion

applies to equally to all the above structures, we will just call it a CAT-manifold

(CAT = TOP, PL, DIFF ).

3.1 Surgery obstructions.

3.1.1 Degree one normal maps, surgery obstructions, and

L-groups.

The basic question of surgery theory is to know whether a �nite CW-complex is

homotopy equivalent to a compact CAT-manifold (we will only consider oriented

manifolds). We outline here the main steps of the so called surgery program, and

explain how the so called surgery obstructions arise.

The �rst obstruction for a �nite CW-complex to be homotopy equivalent to an

orientd compact manifold is given by Poincaré duality. We will restrict ourselves
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to the case of oriented Poincaré spaces, that is to say, spaces with a class [X] ∈
Hm(X; Z) such that

∩[X] : Hn(X; Z)→ Hm−n(X; Z)

is an isomorphism for all n. Since for any oriented Poincaré space X there exists

a degree one map f : M → X with M a compact oriented manifold, the idea is to

modify f in such a way that it becomes a homotopy equivalence (or equivalently

that it induces isomorphisms on homotopy groups). Since a degree one map in-

duces an epimorphism on π1 by 2.1.1, one can try to perform surgery on a set of

generators of ker(f∗ : π1(M) → π1(X)) to obtain a new map f1 : M1 → X which

is a π1-isomorphism. The situation is not that simple in higher dimensions since a

degree one map does not necessarily induce epimorphisms on πi, i ≥ 2. However,

it induces epimorphisms on Hi, i ≥ 2 by 2.1.2. Thus, it su�ces to modify f1 so

that it induces an isomorphism on π1 and Hi, i ≥ 2 (or equivalently until middle

dimension by Poincaré duality). It appears that to carry out such a program,

one needs some additional bundle data. Hence we are considering instead degree

one normal maps (see the de�nition below). Below middle dimension, an element

in the kernel of Hi(N)
f∗−→ Hi(X) is representable by a framed embedding with

trivial normal bundle (mainly because of the Whitney embedding theorem), on

which one might perform surgery. Thus for a degree one normal map f : M → X

with M a m-dimensional CAT-manifold (m = 2n or 2n + 1), one can construct

a bordant n-connected degree one normal map fn : Mn → X. However there is

an obstruction to kill ker f∗ : Hn(M) → Hn(X) living in the algebraic L-group

Lm (Z[π1(X)]). If the surgery obstruction vanishes, one can �nd a bordant de-

gree one n + 1-connected degree one normal map fn+1 : Mn+1 → X, which is a

homotopy equivalence by Poincaré duality.

3.1.2 Simply-connected obstructions.

A fundamental case is the case of degree one normal maps over simply-connected

manifolds.

Proposition 3.1.1. The simply-connected L-groups are given by

Ln(e) =


Z if n ≡ 0 (mod 4),

Z2 if n ≡ 2 (mod 4)

0 if n ≡ 1, 3 (mod 4)
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Proposition 3.1.2. Given a degree one normal map (f, b) : N → M with M

simply-connected, we have

S(f, b) =


1
8
(σ(N)− σ(M)) if n ≡ 0 (mod 4),

Arf invariant of the intersection form if n ≡ 2 (mod 4)

0 if n ≡ 1, 3 (mod 4).

3.1.3 Codimension-one splitting.

Let M be a PL-manifold of dimension n ≥ 5 such that Wh(π1(M)) = 0, and let

ξ ∈ Ln+1(π1(M)). We recall the following theorem

Theorem 3.1.3 (Realization Theorem). LetM be a compact oriented PL-manifold

of dimension n ≥ 5, and ξ ∈ Ln+1 (Z [π1(M)]). Then there exists a degree one nor-

mal map (F, b) : N →M × [0, 1] covering a map of triads

F = (F ;0 F, ∂1F ) : (N ; ∂0N, ∂1N)→ (M × [0, 1];M × 0 ∪ ∂M × [0, 1],M × 1)

such that

- ∂0F is a PL-homotopy equivalence,

- ∂1F is a homotopy equivalence,

- ξ = S(F, b).

Thus, using the Realization Theorem, let

(ψ, b) : (N, ∂N)→ (M × [0, 1]), ∂(M × [0, 1])

be a degree one normal map with surgery obstruction ξ. Let L be a codimension

one submanifold of M without boundary. By the Splitting Theorem, we can split

ψ along L× [0, 1] to obtain a degree one normal map

(ψ|, b|) : ψ−1(L× [0, 1])→ L× [0, 1].

The surgery obstruction of this new map yields an element in Ln(G). Let

α(L) : Ln+1(G× Z)→ Ln(G)

be the induced map.

Proposition 3.1.4. α(L) is a well-de�ned homoprhism, and the following se-

quence is exact and splits:

Ln+1(G)
Ln+1(i∗)−−−−−→ Ln+1(G× Z)

α(L)−−→ Ln(G)

and a splitting is given by crossing with S1
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Corollary 3.1.5. We have

Ln(Zk) '
∑

0≤l≤k

(
k

l

)
Ln−l(e).

Let us give a geometric interpretation of the map Ln+1(i∗).

Let ξ ∈ Ln+1(G). By the Relaization Theorem 3.1.3, let

(ϕ, b) : N → L× [0, 1]× [0, 1]

be a degree one normal map with surgery obstruction ξ and such that, with ∂N =

∂−N ∪ ∂+N , ϕ| : ∂−N → (L× [0, 1]× {0}) ∪ (L× {0} × [0, 1]) ∪ (L× {1} × [0, 1])

a PL-homeomorphism. We can use it to identify the copy L × {0} × [0, 1] and

L× {1} × [0, 1] in ∂N . By glueing them together, we obtain a normal map

(g, b′) : N ′ → L× S1 × [0, 1].

Let ι(L) : Ln+1(G)→ Ln+1(G× S1) be the induced map.

Proposition 3.1.6. ι(L) is a well-de�ned homomorphism, and ι(L) = Ln+1(i∗).

3.1.4 Products

Suppose we are given a degree one normal map

(ϕ, b) : M → N

and a PL-manifold X. We can construct the normal map

(ϕ× IdX , b× Id) : M ×X → N ×X.

We would like a formula for S(ϕ × IdN). The answer has been given by Morgan

[Mor78] forX simply-connected, and by Ranicki [Ran80] in the general case. There

exist �symmetric L-groups� Ln(π′), and a pairing

Li(π)⊗ Lj(π′)→ Li+j(π × π′)

such that S(ϕ× IdX) = S(ϕ)⊗ σ∗(X), where

σ∗ : Ω∗Bπ
′ → L∗(π′)

is the Mischenko-Ranicki symmetric signature. The symmetric L-groups are hard

to compute. However, we have the following particular case:
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Proposition 3.1.7. (i) The symmetric L-groups L∗(e) are 4-periodic, and given

by

Ln(e) =


Z if n ≡ 0 (mod 4),

Z2 if n ≡ 1 (mod 4)

0 if n ≡ 1, 2 (mod 4).

(ii) If N is simply connected, then

S(ϕ×IdN) =


S(ϕ).σ(N) if dim N ≡ 0 (mod 4),

0 if dim N ≡ 1 (mod 4) and N has a zero de Rham invariant,

0 if dim N ≡ 2, 3 (mod 4).

Proposition 3.1.8. We have the following commutative diagram:

Ln(π)

Ln(prπ)

��

⊗ σ∗(N) // Ln+m(π × π′)
Ln+m(prπ×π′ )

��
Ln(e) // Ln+m(e),

where the lower horizontal map is given by considering N as a simply-connected

manifold (c.f. [Ran80] ).

3.2 The surgery exact sequence.

Given a compact m-dimensional CAT-manifold M without boundary, we have the

following exact sequence:

· · · → SCAT
(
M×Dk+1,M×Sk

)
→
[(
M×Dk,M×Sk

)
, (G/CAT, ∗)

] S−→ Lm+k (Z (π1(M)))→ · · ·

· · · → Lm+1 (Z [π1(M)])→ SCAT (M)→ [M,G/CAT ]
S−→ Lm (Z [π1(M)]) .

3.2.1 The sets

The structure set

It is the object that re�ects the various CAT-manifolds homotopy equivalent toM ,

and is consequently what one generally tries to compute. If M is a m-dimensional

CAT-manifold with boundary (possibly empty), SCAT (M,∂M) is de�ned as the

set of equivalence classes of pairs (N, f), with N a m-dimensional closed CAT-

manifold and f : N → M an homotopy equivalence such that ∂f : ∂N → ∂M is
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a CAT-isomorphism, with (N1, f1) and (N2, f2) equivalent if there exists a CAT-

isomorphism h : N1 → N2 such that the following diagram commutes up to homo-

topy:

N1

h
��

f1 // M

N2.
f2

=={{{{{{{{

The normal invariants

Roughly speaking, the degree one normal maps are the candidates on which one

might try to perform surgery to obtain a homotopy equivalence. There are two

equivalent ways to de�ne a normal invariant:

- The degree one normal maps: De�ne a degree one normal map as a pair as

a commutative diagram

νN

��

b // η

��
N

f // M,

with f : N → M a degree one map, η : M → BCAT a stable CAT−bundle,
and b : νN → η a bundle stable isomorphism. We will often write (f, b) :

M → N for a degree one normal map, or even just f : N →M if the framing

is not relevant or obvious.

- [M,G/CAT ]: It is the set of stable CAT-bundles over M (up to stable

isomorphism) such that the associated spherical �bration is strongly �ber

homotopically trivial. In other words, it is the set of homotopy classes of

lifts

BCAT

��
M

0
//

::

BG

The algebraic L-groups

It is where surgery obstruction lie. They are de�ned in terms of forms and forma-

tions. For a precise account on this subject, we refer to [Ran02].
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3.2.2 The maps

The surgery obstruction map S

Given a degree one normal map f : N →M between twom-dimensional manifolds,

one can perform surgery on it to obtain a
[
m
2

]
-connected degree one normal map

f ′ : N ′ →M . De�ne SM(f, b) (or simply S(f, b) ) as the obstruction to make this

map a homotopy equivalence. This obstruction lives in Lm (Z [π1(M)]).

The forgetful map S(M)→ [M,G/CAT ]

A homotopy equivalence f : N → M naturally gives rise to a degree one normal

map
νN //

��

(f−1)∗νN

��
N

f // M.

The action of Lm+1 (Z [π1(M)]) on S(M)

Let f : N → M be a homotopy equivalence between m-oriented compact PL-

manifold, and ξ ∈ Lm+1 (Z [π1(M)]) By the realization theorem 3.1.3, consider

a degree one normal map (F, b) : (W,∂W0, ∂W1) → (N×[0, 1] , N×{0} , N×{1})
with obstruction ξ, and such that F|∂W0 : ∂W0 → N is a CAT-isomorphism, and

set

ξ. (f : N →M) =
(
f ◦ F−1

|∂W1
: ∂W1 → N

)
.

3.2.3 An exact sequence of what ?

One has to be careful with the surgery exact sequence. Although [M,G/CAT ]

and Lm (Z [π1(M)]) both carry a natural group structure, the surgery obstruction

map S is generally NOT a group morphism. However, S is in some special cases a

group morphism. This is the case for example if M is a suspension, or for M ×Dk

(k ≥ 1) appearing in the surgery obstruction map.
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3.3 Classifying spaces and their homotopy groups.

We give here some homotopy groups of the classifying spaces BG,BPL,BO, and

their associated homotopy �bers G/PL and PL/O, needed for the rest of this

thesis.

3.3.1 πi(PL/O) and smoothing theory.

The problem here is to decide if a PL-manifold can be given a smooth structure.

First recall the following

Theorem 3.3.1 (Cairns-Hirsch). A PL-manifold M is smoothable if and only if

its tangent bundle M → BPL admits a lift to BO.

Since we have the �bration PL/O → BO → BPL, we need to understand the

space PL/O. We have the following theorem.

Theorem 3.3.2. PL/O is 7-connected.

Corollary 3.3.3 (Smoothing Theorem). Every PL-manifold of dimension ≤ 5 is

smoothable.

Proof. By obstruction theory, a map M → BPL admits a lift to BO if and only

some obstructions ωi ∈ H i+1(M ; πi(PL/O)) vanish. But since M is of dimension

≤ 5, ωi = 0 for i ≥ 5. Furthermore, since πi(PL/O) = 0 for i ≤ 4, ωi = 0 for i ≤ 4.

The result then follows from the Cairns-Hirsch theorem.

3.3.2 BO,BG and the J-homomorphism.

We present some low dimensional computations of the J-homomorphism J :

πi(BO)→ πi(BG) given by associating to a stable vector bundle over Si its spher-
ical bundle.

i πi(BO) πi(BG) πi(BO)
J−→ πi(BG)

1 Z2 Z2 Z2
≈−→ Z2

2 Z2 Z2 Z2
≈−→ Z2

3 0 Z2 0
0−→ Z2

4 Z Z24 Z pr−→ Z24

5 0 0 0
0−→ 0

6 0 0 0
0−→ 0
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3.3.3 πi(G/PL) and the surgery obstruction map of spheres.

We want to understand the surgery obstruction map πi(G/PL) → Li(e) arising

in the surgery exact sequence of a PL-sphere. Recall the following theorem of

Stallings.

Theorem 3.3.4 (Stallings). For i ≥ 6, SPL(Si) = 0.

Corollary 3.3.5. The surgery obstruction map πi(G/PL)→ Li(e) is an isomor-

phism for i ≥ 6.

Proof. Immediate from the surgery exact sequence.

In low dimensions, the same reasoning does not apply. Instead, we start by

showing that πi(G/PL) and Li(e) are abstractly isomorphic, then by proving that

the surgery obstruction map is an isomorphism. We already know Li(e), i ≤ 5 by

??. Thus we compute the homotopy groups of G/PL.

Recall that PL/O is 7-connected. Thus the exact sequence

πn(PL/O)→ πn(G/O)→ πn(G/PL)→ πn−1(PL/O)

yields πn(G/PL) ' πn(G/O), for 1 ≤ n ≤ 5. We now use the following long exact

sequence

. . .→ πn+1(BO)
J−→ πn+1(BG)→ πn(G/O)→ πn(BO)

J−→ πn(BG)→ . . .

to calucate the homotopy groups of G/PL in low dimensions.

Proposition 3.3.6. π1(G/PL) ' 0.

Proof. Since J : π2(BO)→ π2(BG) and J : π1(BO)→ π1(BG) are isomorphisms,

we have

0→ π1(G/O)→ π1(BO)
≈−→ π1(BG)→ 0

hence π1(G/O) ' 0.

Proposition 3.3.7. π2(G/PL) ' Z2.

Proof. Since J : π2(BO)→ π2(BG) is an isomorhism, we have the following exact

sequence

0→ Z2 → π2(G/O)
0−→ Z2

J−→ Z2 → 0

hence π2(G/O) ' Z2.
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Proposition 3.3.8. π3(G/PL) ' 0.

Proof. Since J : π4(BO) → π4(BG) is surjective, we have the following exact

sequence

Z J−→ Z24
0−→ π3(G/O)→ 0

hence π3(G/O) ' 0.

Proposition 3.3.9. π4(G/PL) ' Z.

Proof. Since J : π4(BO) → π4(BG) is surjective, we have the following exact

sequence

0→ π3(G/O)→ Z J−→ Z24 → 0

hence π4(G/O) ' Z.

Proposition 3.3.10. π5(G/PL) = 0.

Proof. Immediate from π5(BO) = 0 and π6(BG) = 0.

We now use these calculations to study the surgery obstruction map πn(G/PL)→
Ln(e) in dimension ≤ 5. We just proved that these groups are abstractly isomor-

phic, and we want to prove that the surgery obstruction map realizes an isomor-

phism in dimension other than 4, and is a monomorphism in any case.

In odd dimensions, both groups are zero, so we restrict to dimensions 2 and 4.

Since π2(G/PL) ' L2(e) ' Z2 and π4(G/PL) ' L4(e) ' Z, the maps are either

zero or injective.

We recall two classical facts.

Proposition 3.3.11. There exists an almost parallelizable 4-manifold with signa-

ture 16.

Corollary 3.3.12. π4(G/PL)→ L4(e) is injective.

Proposition 3.3.13. There exists a degree one normal map (T2, ε2) → (S2, ε2)

with Arf invariant 1.

Corollary 3.3.14. π2(G/PL)→ L2(e) in an isomorphism.

Finally, we have proved the following

Theorem 3.3.15. The surgery obstruction map πn(G/PL) → Ln(e) is an iso-

morphism in dimension n 6= 4, and a monorphism in all dimensions.
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Chapter 4

The classi�cation of PL-homotopy

tori.

We now start our program to prove the topological rigidity of the torus in high

dimensions. According to the de�nition given in the previous chapter, this amounts

to proving that STOP (Tn) consists of a single element for n ≥ 5.

We start by computing SPL(Tn). This might seem quite surprising since the

question of the topological rigidity of the torus is merely formulated in terms of

topological manifolds. However, this will appear to be more tractable, mainly be-

cause of the following fundamental theorem:

Rokhlin's Theorem. A 4-dimensional PL-manifold with vanishing �rst and

second Stiefel-Whiteney classes has a signature dividible by 16.

In Section 4.1 we show that the action of the L-group on the PL-structure set

is transitive, thus reducing the computation of the SPL to the computation of the

stabilizer of a given element. This in turn will be done in Section 4.2, by means

of the Splitting Theorem. This chapter follows the proof of [HS70].

4.1 Normal invariants of PL-homotopy tori.

Our aim is to compute the structure set SPL(Tk), k ≥ 5, and more generally

SPL(Tk × Dn), n+ k ≥ 5. Our main tool is the surgery exact sequence

Ln+k+1

(
Z
[
π1(Tk × Dn)

])
→ SPL(Tk×Dn)

ηTk×Dn−−−−→
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ηTk×Dn−−−−→
[(

Tk × Dn, ∂
)
, (G/PL, ∗)

] STk×Dn−−−−→ Ln+k

(
Z
[
π1(Tk × Dn)

])
.

We �rst have to understand the maps involved.

Proposition 4.1.1. Let n, k such that n+ k ≥ 5. Then ηTk×Dn = 0.

Proof. It amounts to proving that STk×Dn is injective. Recall that G/PL is a loop

space, say G/PL = ΩY , so

[(Tk × Dn, ∂), (G/PL, ∗)] = [SnTk,ΩY ] = [Sn+1Tk, Y ].

Now we have the following

Lemma 4.1.2. STk has the homotopy type of a wedge of spheres.

Proof. We prove by induction on l that each attaching map of a l-cell of Tk has

trivial suspension. It is obvious for l = 1. Let l ≥ 2 and suppose it is true until

l − 1. We are looking at the attaching map of the top cell of a certain subtorus

Tl ⊂ Tk. Identify Tl and [0, 1]l with faces identi�es in the natural way, and let

φ : Sl−1 ≈ ∂([0, 1]l) ↪→ [0, 1]l
proj−−→ Tl the attaching map of the top l-cell. For every

1 ≤ i ≤ l, φi,0 = φ|∂([0,1]×...×{0}×[0,1]) and φi,1 = φ|∂([0,1]×...×{1}×[0,1]) are attaching

maps of some (l−1)-cells, and φi,0 = −φi,1 ∈ πl−2(Tl) because of the identi�cation.

Now by the induction hypothesis, we can suppose that Sφ factors through

Sφ : S(∂([0, 1]l)) ≈ Sl C−→
∨

Sl → Tl,

where the collapsing map C : Sl →
∨

Sl is obtained by collapsing the subsets

∂([0, 1]× ...× {1} × [0, 1]), ∂([0, 1]× ...× {1} × [0, 1]), 1 ≤ i ≤ l. But by de�nition

of the addition in πl, l ≥ 2, this is exactly
∑

i(Sφi,0 + Sφi,1) = 0.

In particular, Sn+1Tk has the homotopy type of a wedge of spheres, so

[Sn+1Tk, Y ] = [
∨

Si+n+1, Y ] =
⊕

πi+n+1(Y ) =
⊕

πi+n(G/PL)

with
(
k
i

)
summands πi+n for each i. But Ln+k(Zn) = ⊕

(
k
i

)
Ln+i(e) by (a result

which will appear in the crash course in surgery theory), and the following dia-

gram is commutative

[SnTk, G/PL]

≈
��

STk×Dn // Ln+k(Zk)

≈
��

⊕
(
k
i

)
πn+i(G/PL) ⊕SSn+i

// ⊕
(
k
i

)
Ln+i(e)
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Hence STk×Dn is injective, since every SSn+i is injective by 3.3.15.

Corollary 4.1.3. Every PL-manifold of dimension ≥ 5 which is homotopy equiv-

alent to the torus is stably parallelizable.

Proof. ηTk = 0, so given any homotopy equivalence h : M → Tk, we have h∗τN =

τTk = 0, hence τN = 0.

Corollary 4.1.4. For every n, k such that n+ k ≥ 5,

SPL(Tk × Dn) ' Ln+k+1(Zk)/Stab[IdTk×Dn ].

Proof. Immediate from the surgery exact sequence.

4.2 Computation of SPL(Tk × Dn), n + k ≥ 5.

By the results of the previous section, it is now necessary to describe precisely the

action of Ln+k+1(Zk) on SPL(Tk×Dn). We start by expliciting a set of generators.

For every J ⊂ {1, . . . , k}, let |J | denote its cardinal, J c its complementary,

and set T (J) = {(x1, . . . , xk) ∈ Tk = (S1)k|xi = ∗ if i /∈ J}. For each J with

|J | + n ≡ 1(mod 2), we associate an element ξ(J) ∈ Ln+k+1(Zk) in the following

way (for simplicity, set m = |J |):

- If m+ n ≥ 5, by the Realization Theorem 3.1.3, choose a degree one normal

map (M,h, F ) over ([0, 1]m+n+1, εm+n+1) such that S[0,1]m+n+1(M,h, F ) is a

generator of Lm+n+1(e). Let K be obtained from T (J) × [0, 1]n × [0, 1] by

taking the connected sum with M along T (J)× [0, 1]n×{1}. This yields the
degree one normal

K = (T (J)× [0, 1]n × [0, 1]) ] M

Id ] h

��
(T (J)× [0, 1]n × [0, 1]) ] [0, 1]m+n+1 = T (J)× [0, 1]n × [0, 1]

with framing the connected sum of the framings. Denote (K, f,E) this degree

one normal map. We write (K, f,E) = (T (J)× [0, 1]n× [0, 1])](M,h, F ). By

de�nition of the surgery obstructions,

ST (J)×[0,1]n×[0,1](K, f,E) = Lm+n+1i(S[0,1]m+n+1(M,h, F )),

48



where i : e ↪→ Zm is the inclusion. De�ne

ξ(J) = STk×Dn×[0,1](K × T (J c), f × Id, E ×D) ∈ Ln+k+1(Zk)

- If m+ n = 3, the previous construction does not work. Indeed, if there was

a degree one normal map (W,ϕ, F ) over (D4, ε4) with surgery obstruction

1 ∈ L4(e), one would obtain, by glueing a copy of D4 with W along their

boundaries using ϕ, a 4-dimensional PL-manifold with vanishing w1 and w2,

contradicting Rokhlin's theorem (see the proof of 4.2.5 for more details).

To overcome this problem, we use the periodicity of surgery obstructions.

Namely, by the Realization Theorem, let (M,h, F ) a degree one normal map

over (D8, ε8) with surgery obstruction 1 ∈ L8(e). Let (K, f,E) = (T (J) ×
Dn × CP2 × [0, 1])

∐
(M,h, F ), and ξ(J) = S(K × T (J c), f × Id, E ×D) ∈

Lm+n+5(Zk) = Lm+n+1(Zk).

- If m+n = 1, choose a degree one normal map (h, F ) : (S1×S1, ε2)→ (S2, ε2)

with nonzero Arf invariant. Let K be obtained from T (J) × [0, 1]n × [0, 1]

by taking the connected sum with S1 × S1 in the interior. This yields the

degree one normal

K = (T (J)× [0, 1]n × [0, 1]) ] (S1 × S1)

Id ] h

��
(T (J)× [0, 1]n × [0, 1]) ] S2 = T (J)× [0, 1]n × [0, 1]

with framing the connected sum of the framings. Denote (K, f,E) this degree

one normal map. By de�nition of the surgery obstructions,

ST (J)×[0,1]n×[0,1](K, f,E) = L2i(SS2(S1 × S1, h, F )),

where i : e ↪→ Z is the inclusion. De�ne

ξ(J) = STk×Dn×[0,1](K × T (J c), f × Id, E ×D) ∈ Ln+k+1(Zk)

Note that we could have crossed with CP2 to de�ne all the ξ(J). The periodicity in

surgery obstructions ensures that this does not change anything. This computation

will be useful while studying the action of an element ξ(J) on SPL(Tk × Dn). We

now prove that we have constructed a set of generators.
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Proposition 4.2.1. Every element of Ln+k+1(Zk) has a unique expression
∑
a(J)ξ(J),

where J is a non empty subset of {1, . . . , k} such that |J | + n ≡ 1 (mod 2), and

a(J) ∈ Z if |J |+ n ≡ 3 (mod 4) (resp. a(J) ∈ Z2 if |J |+ n ≡ 1 (mod 4).

Proof. We �rst de�ne a map on L-groups which corresponds to the geometric

operation of splitting the degree one normal map representing an element ξ(J)

along subtori.

Let J ⊂ H ⊂ {1, . . . , n} (and denote m = |J |, l = |H|), with m+ n ≡ 1 (mod 2).

Just as before we de�ne elements ξ(H, J) ∈ Ll+n+1(Zl) by crossing with T (H − J)

instead of T (J c). Let suppose �rst that m = l − 1. We de�ne a map α(J,H) :

Lm+n+2(π1(T (H)))→ Lm+n+1(π1(T (J))) as follows. By the Realization Theorem,

consider a degree one normal map (W,h, F ) over (T (H)×Dn×CP2×[0, 1], εm+n+6).

Now apply the Splitting Theorem to make h|∂W×CP2 transverse to T (J) × Dn ×
CP2×{0} and T (J)×Dn×CP2×{1}. This gives a degree one normal map (K, f,E)

over (T (J) × Dn × CP2 × [0, 1], εm+n+5), and de�ne α(J,H)x = S(K, f,E). This

yields a map Lm+n+6(π1(T (H))) → Lm+n+5(π1(T (J))). By periodicity of surgery

obstruction, this de�nes the desired map. Note that if m + n ≥ 5, it is not

necessary to cross with CP2 to use the Splitting Principle, and the periodicity of

surgery obstructions implies we would de�ne the same element.

For arbitrary J ⊂ H ⊂ {1, . . . , n}, we de�ne α(J,H) as follows. Choose the

unique sequence J = J0 ⊂ · · · ⊂ Js = H with |Ji+1| = |Ji|+ 1 and max(Ji − J) <

max(Ji+1− J), and set α(J,H) = α(J0, J1) ◦ · · · ◦α(Js−1, Js) (with the convention

α(J, J) = Id). The choice of the �ltration is actually irrelevant, we only �x it to

have maps de�ned with no ambiguity.

By de�nition of ξ(H, J) and α(J,H), we have immediately

Lemma 4.2.2. For every J ⊂ K ⊂ L with |J |+ n odd,

α(K,L)ξ(L, J) = ξ(K, J).

Moreover, we have

Lemma 4.2.3. For every J ⊂ L,H ⊂ L, J ( K with |J |+ n odd,

α(K,L)ξ(L, J) = 0.
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Proof. Let j0 ∈ J−K. Recall that we de�ned ξ(J) as S(W,ϕ,E), where (W,ϕ,E) =

(M,h, F )
∐

(T (J)×[0, 1]n+1×CP2), (M,h, F ) representing an element ofB|J |+n+5([0, 1]|J |+n+5, ε)

with S(M,h, F ) the chosen generator of L|J |+n+5(e). We can take the boundary

connected sum along a disk that misses T (J − {j0})× [0, 1]n+1 × CP2,

so ϕ restricts to a PL-homeomorphism on T (J −{j0})× [0, 1]n+1×CP2. We then

obtain ξ(L, J) by crossing with T (L−J). But now, since T (K) ⊂ T (J−{j0}), we
can assume ϕ× IdT (L−J) restricts to a PL-homeomorphism on T (K)× [0, 1]n+1 ×
CP2 × T (L − J), and the surgery obstrution of such a restriction is precisely

α(K,L)ξ(L, J) by de�nition of α(K,L). Hence α(K,L)ξ(L, J) = 0.

Let w(J) : L|J |+n+1(π1(T (J))) → L|J |+n+1(e) be the natural projection, and

let δH,J be the chosen generator of L|J |+n+1(e) if J = H and |J | + n is odd, 0

otherwise. Then

Lemma 4.2.4. For every subsets J,H such that |J |+ n is odd,

w(H)α(H)ξ(J) = δH,J .

Proof. The case J = H is obvious. If J 6⊂ H, α(H)ξ(J) = 0. Finally, if J ( H,

α(H)ξ(J) = ξ(H, J) by 4.2.2. But ξ(H, J) is obtained by crossing a degree one

normal map with a torus, whose signature and De Rham invariant vanish. Hence,

by the formula for simply connected surgery obstructions 3.1.7, w(J)α(H, J) =

0.

We are now able to prove 4.2.1. Let A the abelian group with genetors the

subsets J ⊂ {1, . . . , n} with |J | + n odd, and relations 2J = 0 for |J | + n ≡
1 (mod 4). De�ne a map ρ : Ln+k+1(Zk)→ A, ξ 7→

∑
(w(J)α(J)ξ)J . ρ is surjective
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since ρ(
∑
a(J)ξ(J)) =

∑
a(J)J . But by 3.1.5, these two groups are isomorphic.

Hence ρ is an isomorphism, which conludes 4.2.1.

We now have to understand which elements of Ln+k+1(Zk) stabilize [IdTk×Dn ].

First of all, note that if |J |+n is an odd integer≥ 5 the construction of ξ(J) directly

shows that ξ(J) stabilizes [IdTk×Dn ]. Recall that we constructed two degree one

normal maps

h : M → [0, 1]m+n+1

Id ] h : (T (J)× [0, 1]n × [0, 1]) ] M → (T (J)× [0, 1]n × [0, 1]) ] [0, 1]m+n+1

and constructed ξ(J) by crossing with T (J c) and taking the associated surgery

obstruction. Now, by de�nition of the action of Ln+k+1(Zk) on SPL(Tk × Dn), we

have

ξ(J).[IdTk×Dn ] =


(T (J)× [0, 1]n × {1} ] ∂M)× T (J c)

↓ (IdT (J)×[0,1]n×{1} ] ∂h)× IdT (Jc)

(T (J)× [0, 1]n × {1} ] ∂[0, 1]m+n+1)× T (J c)


But (IdT (J)×[0,1]n×{1} ] ∂h)×IdT (Jc) is clearly a PL-homeomorphism, hence ξ(J).[IdTk×Dn ] =

[IdTk×Dn ].

The situation for |J | + n = 1 is even easier. Since the connected sum of

T (J)× [0, 1]n× [0, 1] with S1× S1 was taken in the interior, it has no e�ect on the

boundary, so the restriction of the degree one normal map obtained after taking

the connected sum is a PL-homeomorphism when restricted to the boundary, and

the degree one normal map obtained after crossing with T (J c) restricts to a PL-

homeomorphism on the boundary, hence ξ(J).[IdTk×Dn ] = [IdTk×Dn ].

The only remaining case is |J | + n = 3. Recall that since there exists no 4-

dimensional PL-manifold with vanishing w1 and w2 and signature 8 by Rokhlin's

theorem, we were forced to cross with CP2, so the previous argument does not

apply. However, there exists a 4-dimensional PL-manifold with vanishing w1 and

w2 and signature 16 (references ?), which yields a degree one normal map (W,h, F )

over (D4, ε4) with obstruction twice the chosen generator of L4(e). Once again the

periodicity of surgery obstructions shows that we could have de�ned 2ξ(J) starting

with this normal map, taking the boundary connected sum with T (J)×Dn× [0, 1],
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crossing with T (J c) and evaluating the surgery obstruction of the resulting de-

gree one normal map. Hence the same reasoning as for |J | + n ≥ 5 implies

2ξ(J).[IdTk×Dn ] = [IdTk×Dn ].

We are now going to use Rokhlin's theorem to prove that there are essentially

the only elements of Ln+k+1(Zk) acting trivially on SPL(Tk×Dn). Namely we have

Proposition 4.2.5. Let ξ =
∑
a(J)ξ(J) ∈ Ln+k+1(Zk). Then ξ acts trivially on

[IdTk×Dn ] if and only if a(J) is even whenever |J |+ n = 3.

Proof. Suppose we have an element ξ =
∑
a(J)ξ(J) ∈ Ln+k+1(Zk) acting trivially

on [IdTk×Dn ] and a subset H with |H| + n = 3 and a(H) odd. The idea here

will be, given a degree one normal map representing ξ, to lower the dimension

using splitting ideas and derive a contradiction to Rokhlin's theorem. Since even

multiples of ξ(H) act trivially, we can assume a(H) = 1. By the Realization

Theorem, let (W,ϕ, F ) be a degree one normal map over (Tk×Dn× [0, 1], εn+k+1)

ϕ : (W,∂0W,∂1W )→ (Tk×Dn×[0, 1],Tk×Dn×{0}∪Tk×Sn−1×[0, 1],Tk×Dn×{1})

with ϕ|∂0W a PL-homeomorphism. Since ξ acts trivially, we can assume ϕ|∂1W
is also a PL-homeomorphism, hence ϕ|∂W is a PL-homeomorphism. So we can

homotop ϕ rel ∂W to make it transverse to T (H)× Dn × [0, 1], yielding a degree

one normal map (P, f, E) over (T (H)×Dn × [0, 1], ε4), with f| : ∂P → ∂(T (H)×
Dn × [0, 1]) a PL-homeomorphism. Note that this coincides with the de�nition of

α(H), namely S((P, f, E) × CP2) = α(H)ξ. The important fact here is that we

did not use the splitting lemma since ϕ was already a PL-homeomorphism when

restricted to the boundary, hence we did not have to cross with CP2, which allows

us to work in dimension 4. We thus have

I((P, f, E)× CP2) = w(H)S((P, f, E)× CP2) = w(H)α(H)ξ = a(H) = 1.

By periodicity of simply connected surgery obstructions, this implies I(P, f, E) =

1. After performing surgeries on it, we can assume that f induces an isomorphism

on π1.

Let us work out the cas n = 0. We will explain later how to adapt the proof

in the other cases.

Since T3 = T2 × S1, we can glue two copies of T2 × D2 along ∂−P and ∂+P using
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f . Denote by W the PL-manifold obtained, and let Q denote the image of the two

copies of T2 × D2 in W . We then have a degree one normal map

g : W → (T2 × D2) ∪ (T3 × [0, 1]) ∪ (T2 × D2) = T2 × S2.

Let K2(W ) (resp. K2(P )) denote the kernel of f∗ : H2(W ) → H2(T2 × S2) (resp

f∗ : H2(P )→ H2(T3 × [0, 1])).

Lemma 4.2.6. ST2×S2(W, g,D) = 1.

Proof. By de�nition of surgery obstructions, it is clearly su�cient to prove that

the inclusion i : P ↪→ W induces an isomorphism between K2(P ) and K2(W ). For

simplicity, let P ′ = T3 × [0, 1], W ′ = T2 × S2, and Q′ the two copies of T2 ×D2 in

W ′.

- ι∗ : K2(P ) → K2(W ) is surjective: By the Mayer-Vietoris exact sequence,

we have

H2(P ∩Q) α //

≈
��

H2(P )⊕H2(Q)
i∗⊕j∗ //

��

H2(W )
β //

f∗
��

H3(P ∩Q)

≈
��

H2(P ′ ∩Q′) α′ // H2(P )⊕H2(Q′)
i′∗⊕j′∗ // H2(W ′)

β′ // H3(P ′ ∩Q′)
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where the vertical isomorphisms come form the fact that f restricts to a

PL-homeomorphism on Q and P ∩Q. Let x ∈ K2(W ). The commutativity

of the right square and the fact that the map H3(P ∩Q)→ H3(P ′∩Q′) is an
isomorphism imply that x is sent to 0 under the map H2(W )→ H3(P ∩Q).

By exactness, let u ∈ H2(P ), v ∈ H2(Q) such that i∗(u) − j∗(v) = x. The

commutativity of the middle square and the fact that x ∈ K2(W ) imply

(i′∗ ⊕ j′∗)(f∗(u), f∗(v)) = 0. Hence by exactness there exists s ∈ H2(P ∩ Q)

such that α′(s) = (f∗(u), f∗(v)). Let t denote the antecedent of s under the

left vertical isomorphism. By commutativity of the left square and the fact

that H2(Q)→ H2(Q′) is an isomorphism, α(s) = (u+ y, v), with y ∈ K2(P ).

But by exactness, (i′∗ ⊕ j′∗)(u+ y, v) = 0, and x = −i∗(y).

- ι∗ : K2(P )→ K2(W ) is injective: By the Mayer-Vietoris exact sequence, we

have

H1(P ∩Q) α //

(1) ≈
��

H1(P )⊕H1(Q)
i∗⊕j∗ //

(2) ≈
��

H1(W )
β //

(3) f∗

��

H2(P ∩Q)

(4) ≈
��

γ // H2(P )⊕H2(Q)

(5)

��
H1(P ′ ∩Q′)

α′ // H1(P )⊕H2(Q′)
i′∗⊕j

′
∗ // H1(W ′)

β′ // H2(P ′ ∩Q′)
γ′ // H2(P )⊕H2(Q)

where the vertical isomorphisms come form the fact that f restricts to a PL-

homeomorphism on Q and P ∩ Q, and the assumption that f induces a π1

isomorphism. Let x ∈ K2(P ) such that ι∗(x) = 0. By exactness, there exists

y ∈ H2(P ∩Q) such that γ(y) = (x, 0). By commutativity of the right square,

the image z of y under the right vertical isomorphism is sent to 0, so there

exists v ∈ H1(W ′) such that β′(v) = z. Now we use the following classical

fact on exact sequences: In the previous situation, if the vertical maps (1),

(2) and (4) are surjective, the map (3) is injective. Thus the map H1(W )→
H1(W ′) is injective. But this argument works equally for homology with

coe�cients in a �nite �eld. Thus the map H1(W )⊗ Zp
f∗⊗Id−−−→ H1(W ′)⊗ Zp

is injective, hence surjective, for every prime p. Now this implies that the

map H1(W )→ H1(W ′) is surjective. Let u ∈ H1(W ) be an antecedent of v

under this map. By commutativity of the second square from the right and

the fact that H2(P ∩Q)→ H2(P ′∩Q′) is an isomorphism, we have β(u) = y,

so (x, 0) = γ(y) = γ ◦ β(u) = 0 by exactness.
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Since σ(T2 × S2) = 0, the formula for simply connected surgery obstructions

gives σ(W ) = 8. Now in order to apply Rokhlin's theorem, we want to prove that

w1(W ) = 0, w2(W ) = 0. Since g is a degree one normal map and τT3×[0,1] = 0, τP is

trivial, hence its Stiefel-Whitney classes vanish. Thus, by the long exact sequence

of the pair (W,P ), it is su�cient to prove the following

Lemma 4.2.7. (i) H1(W,P ; Z2) = 0;

(ii) δ : H1(P ; Z2)→ H1(W,P ; Z2) is onto.

Proof. (i) We have

H1(W,P ; Z2) = H1(Q,P ∩Q; Z2) (by excision)

= H3(Q; Z2) (by Lefschetz duality)

= 0

(ii) We have the following commutative diagram

H1(P ; Z2)
δ //

f∗
��

H2(W,P ; Z2)

f∗
��

H1(P ′; Z2)
δ // H2(W ′, P ′; Z2).

The left vertical arrow is an isomorphism by hypothesis on f . The right

vertical arrow is an isomorphism by excision and the fact that f is an PL-

homeomorphism when restricted to Q and P ∩ Q. Hence it is equivalent

to proving the surjectivity of the lower horizontal map. Now, by the exact

sequence of the pair (W ′, P ′), we have

H1(W ′, P ′; Z2) // H1(W ′; Z2) // H1(P ′; Z2)
δ // H2(W ′, P ′; Z2)

Furthermore,

H2(W ′, P ′; Z2) = H2(Q′, P ′ ∩Q; Z2) (by excision)

= H2(Q′; Z2) (by Lefschetz duality)

= H2(T2 × D2; Z2)⊕H2(T2 × D2; Z2)

= Z2 ⊕ Z2
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Hence, the symmetry of the problem implies that δ is either surjective or 0.

If it was 0, then we would have the surjection H1(W ′; Z2) ' Z2
2 → Z3

2 '
H1(P ′; Z2), contradiction.

Thus we have constructed a 4-dimensional PL-manifold with vanishing w1 and

w2 and signature 8. It admits a PL-structure by the Smoothing Theorem 3.3.3.

This in turn contradicts the Rokhlin's theorem.

We now explain how to obtain such a contraction for the other values of n.

The explicit constructions involved are used only to prove:

- H3(Q′,Z2) = 0,

- the computation of the various groups in the sequenceH1(W ′, P ′; Z2)→ H1(W ′; Z2)→
H1(P ′; Z2)

δ−→ H2(W ′, P ′; Z2) to prove the surjectivity of δ,

- σ(W ′) = 0.

First remark that the Splitting Theorem applies in the other cases, even if we are

considering manifolds with boundaries. We then start with a degree one normal

map f : P → T3−n × Dn, n = 0, 1, 2.

- n = 1:

Glue P ′ = T2×D2 and Q′ = T2×D2 along their common boundary T2×D2,

to obtainW ′ = T2×S2. Nothing is changed, except in proving that δ is onto.

it is now immediate that δ is either surjective or zero since H2(Q′; Z2) = Z2.

If it was zero, we would have

δ=0−−→ H2(W ′, P ′; Z2)
≈−→ H2(P ′; Z2)

0−→ H2(W ′; Z2) ↪→ H3(W ′, P ′; Z2)

but the last injection is impossible by cardinality.

- n = 2:

Glue T1×D3 andQ′ = D2×S2 along their common boundary S1×S2 to obtain

W ′ = S4. σ(S4) = 0, and H3(Q′; Z2) = 0. Furthermore H2(Q′; Z2) = Z2, so

δ is again either surjective or zero. If it was zero, we would have a surjection

H1(W ′; Z2) ≈ 0→ Z2 ≈ H1(P ′; Z2).

- n = 3:

Glue P ′ = D4 and Q′ = P ′ along their common boundary. This time all

groups involved are zero and the result follows.
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Finally for n ≥ 4 the previous construction of ξ(J) shows that every element of

Ln+k+1(Zk) acts trivially on SPL(Tk ×Dn), which conludes the proof of 4.2.5.

We are now able to give a simple description of SPL(Tk × Dn).

De�nition 4.2.8. For |J |+ n = 3, let

λJ(ξ) = w(J)α(J)ξ(mod2)

called a geometric coordinate of ξ.

Consider a basis t1, . . . , tk of H1(Tk; Z2). For a subset J = {i1, . . . , i|J ||i1 <
. . . < i|J |} ⊂ {1, . . . , k} with |J |+n = 3, let tJ = t1∧ . . .∧ t|J |. Then the (tJ) form

a basis of H3−n(Tk × Dn; Z2). We have:

Theorem 4.2.9. Let

λ∗ : SPL(Tk × Dn)→ H3−n(Tk; Z2), x 7→
∑
|J |+n=3

λJ(ξ)tJ

where ξ ∈ Ln+k+1(Zk) is such that ξ.[IdTk×Dn ] = x. Then λ∗ is a well-de�ned

bijection.

Proof. Immediate from the above discussion.
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Chapter 5

PL-structures on topological

manifolds.

Considering a homotopy equivalence f : M → Tk, we want to prove that M is ac-

tually homeomorphic to Tk. Such a homeomorphism naturally endowes M with a

PL-structure. Our �rst task is then to prove thatM indeed admits a PL-structure.

Note that a PL-structure on M gives rise to a PL-structure on its (topological)

tangent bundle τM : M → BTOP. In other words, there exists a lift

BPL

��
M τM

//

::

BTOP.

By considering the �bration TOP/PL → BPL → BTOP → BTOP/PL, we see

that this is the case if and only if the map M
τM−→ BTOP → BTOP/PL is null-

homotopic. Furthermore, in the case where such a lift exists, the various bundle

reductions are then classi�ed by [M,TOP/PL]. Hence it is necessary to study the

homotopy properties of TOP/PL to carry out our program.

More precisely, we are going to prove the following

Theorem. TOP/PL has the homotopy type of an Einlenberg-Mac Lane space

K(Z2, 3).

Note that this theorem will allow us to answer our previous question. Namely,

we will prove the following
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Obstruction Theorem. A topological manifold admits a PL-structure if and

only if a certain obstruction κ(M) ∈ H4(M,Z2) vanishes. In that case, the di�er-

ent PL-structures are in (unnatural) bijection with H3(M,Z2).

We will see in Chapter 6 how to compute this obstruction in the situation rel-

evant to our study. Note that the Obstruction Theorem, which can be thought as

a �rst step in our attempt to classify topological manifolds homotopy equivalent to

the torus, relies heavily on the PL-classi�cation of PL-manifolds homotopy equiv-

alent to the torus made in the previous section. The fundamental ingredient which

made possible such an intermediary classi�cation was Rokhlin's theorem, which

roughly speaking states that there is a factor 2 between TOP- and PL-manifolds.

The theorem giving the homotopy type of TOP/PL asserts that this is essentially

the only di�erence. Furthermore, it will in turn allow us to deduce a topological

classi�cation. Following [HS70], we describe in Section 5.1 some properties of �nite

coverings of PL-homotopy tori needed to compute the homotopy type of TOP/PL,

which will be done in Section 5.2. The Obstruction Theorem will �nally be proven

in Section 5.3. The last two sections are greatly inspired by [Rud01].

5.1 Finite coverings of PL-homotopy tori

We are now going to study the e�ect of a �nite covering on the PL-structure set.

Namely, we want to prove that a PL-manifold homotopy equivalent to Tk × Dn

(n+k ≥ 5, n 6= 3) has a �nite cover PL-homeomorphic to Tk×Dn. We �rst de�ne

what coverings we will be interested in.

De�nition 5.1.1. Let p : Tk × Dn → Tk × Dn be a �nite covering map. We say

that p is nice if there exists integers d1, . . . , dk such that p(x1, . . . , xk, y1, . . . , yn) =

(xd11 , . . . , x
dk
k , y1, . . . , yn).

Let p : Tk×Dn → Tk×Dn be a nice �nite covering. It can be used to pullback

several objects:

- There is the naturel pullback map p∗ : H3−n(Tk × Dn; Z2) → H3−n(Tk ×
Dn; Z2).

- Consider f : M → Tk ×Dn representing an element of SPL(Tk ×Dn). Since

every nice �nite covering of Tk × Dn is PL-homeomorphic to Tk × Dn, we
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have the following pullback diagram

M̄

f∗p

��

f̄ // Tk × Dn

p

��
M

f
// Tk × Dn

and f̄ : M̄ → Tk × Dn is a homotopy equivalence. Let pt : SPL(Tk × Dn)→
SPL(Tk × Dn) the induced map.

- Let x ∈ Ln+k+1(Zk), realized by a degree one normal map (h, F ) : (M, νM)→
(Tk × Dn × [0, 1], εn+k+1). We then the have comutative diagram

M̃

h∗(p×Id)

��

h̃ // Tk × Dn × [0, 1]

p×Id
��

M
h

// Tk × Dn × [0, 1]

Let h∗F the induced framing of τM̃ ⊕ νTk×Dn×[0,1]. We then have a degree

one normal map (h̃, h∗F ) : (M̃, νM)→ (Tk ×Dn × [0, 1], εn+k+1). One easily

checks that this de�nes maps

p! : Ln+k+1(Zk)→ Ln+k+1(Zk)

p] : Bn+k+1(Tk × Dn × [0, 1], εn+k+1)→ Bn+k+1(Tk × Dn × [0, 1], εn+k+1).

Furthermore, the following diagram is clearly commutative

Bn+k+1(Tk × Dn × [0, 1], εn+k+1)
S //

p]

��

Ln+k+1(Zk)

p!

��

// SPL(Tk × Dn)

pt

��
Bn+k+1(Tk × Dn × [0, 1], εn+k+1)

S // Ln+k+1(Zk) // SPL(Tk × Dn)

We want to understand the map pt. In order to do that, we study the e�ect of a

pullback on the geometric coordinates of an obstruction. By the previous compu-

tation of SPL(Tk × Dn), we can suppose from now on that 0 ≤ n ≤ 2.

We start with the simplest nice covering map, namely

p : Tk × Dn → Tk × Dn, (x1, . . . , xk, y1 . . . , yn) 7→ (x1, . . . , x
d
i , . . . , xk, y1, . . . , yn).
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Proposition 5.1.2. Let J ⊂ {1, . . . , k} with |J |+ n = 3. If i /∈ J , then p!ξ(J) =

ξ(J).

Proof. Recall that by de�nition, ξ(J) = S(K×T (J c), f×Id, E×D) ∈ Ln+k+1(Zk),

with f : K → T (J) × [0, 1] and Id : T (J c) → T (J c). It is now clear that p](K ×
T (J c), f×Id, E×D) = (K×T (J c), f×gp, E×Dp) where gp : T (J c)→ T (J c) take

the i-th coordinate to the power of d, and Dp is the natural framing. But (gp, Dp)

and (Id,D) are clearly framed cobordant, so p](K × T (J c), f × Id, E × D) and

(K×T (J c), f×Id, E×D) are framed cobordant, hence their surgery obstructions

coincide.

Proposition 5.1.3. Let J ⊂ {1, . . . , k} with |J |+ n = 3. If i ∈ J , then p!ξ(J) =

dξ(J).

Proof. Let H = 1, . . . , n − i. By 4.2.3, α(H)ξ(J) = 0, hence by exactness of the

following sequence

0→ Ln+k+1(π1(T (H)×Dn))
j∗−→ Ln+k+1(π1(Tk×Dn))

α(H)−−−→ Ln+k(π1(T (H)×Dn))→ 0

there exists ξ ∈ Ln+k+1(π1(T (H) × Dn)) such that ξ(J) = j∗(ξ). Let us describe

geometrically the e�ect of p! on such an element.

Let (h, F ) : M → (T (H) × [0, 1] × [0, 1], ε) a degree one normal map with

surgery obstruction ξ and such that, with ∂M = ∂−M ∪ ∂+M , h| : ∂−M →
(T (H) × [0, 1] × {0}) ∪ (T (H) × {0} × [0, 1]) ∪ (T (H) × {1} × [0, 1]) is a PL-

homeomorphism. We can use it to identify the copy T (H) × {0} × [0, 1] and

T (H) × {1} × [0, 1] in ∂M . By glueing them together, we obtain a normal map

(f, E) : (N, νN)→ (T (H)×S1×[0, 1], ν) whose surgery obstruction is j∗(ξ) = ξ(J).

Now it is clear that p](N, f,E) can be obtained as follows: Consider d copies

(Mi, hi, Fi) of (M,h, F ). Glue together the copy T (H) × {1} × [0, 1] in ∂Mi and

T (H) × {0} × [0, 1] in ∂Mi+1, 1 ≤ i ≤ d − 1, and denote P the space obtained.

Let ti : T (H)× [0, 1]× [0, 1]→ T (H)× [0, 1]× [0, 1], (x, y, t) 7→ (x, y, (t+ i− 1)/d).

Let ϕ : (t1 ◦ f1) ∪ . . . ∪ (td ◦ fd) and D = F1 ∪ . . . ∪ Fd.
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It is now not hard to see that p](N, f,E) is obtained by glueing together the the

copy T (H)×{0}× [0, 1] in ∂M1 and T (H)×{1}× [0, 1] in ∂Md, i.e p
](N, f,E) =

j∗(S(P, ϕ,D)). But by additivity of surgery obstructions, S(P, ϕ,D) = dS(M,h, F ),

hence p!ξ(J) = p!j∗S(M,h, F ) = dj∗S(M,h, F ) = dξ(J).

We thus have proved the following

Proposition 5.1.4. Let J ⊂ {1, . . . , k} with |J |+ n = 3. Then

λH(pt∂ξ(J)) =


1 if H = J and i /∈ J
d if H = J and i ∈ J
0 otherwise

Recall that p∗ : H3−n(Tk; Z2)→ H3−n(Tk; Z2) is given by p∗(tJ) = dtJ if i ∈ J ,
p∗(tJ) = tJ sinon. Furthermore, every nice covering map p(x1, . . . , xk, y1, . . . , yn) =

(xd11 , . . . , x
dk
k , y1, . . . , yn) can be written as a composite of coverings we have been

considering previously. Thus we have proved the following
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Theorem 5.1.5. Let q : Tk×Dn → Tk×Dn be a nice covering map, with n+k ≥ 5

and n ≤ 2. Then the following diagram commutes:

SPL(Tk × Dn)

qt

��

'
λ∗ // H3−n(Tk; Z2)

q∗

��
SPL(Tk × Dn)

λ∗
' // H3−n(Tk; Z2).

Corollary 5.1.6. Every PL-manifold homotopy equivalent to Tk ×Dn (n+ k ≥ 5

and n 6= 3) has a �nite covering PL-homeomorphic to Tk × Dn.

Proof. If n ≤ 2, we have q∗ = 0 for the nice covering map q(x1, . . . , xk, y1, . . . , yn) =

(x2
1, . . . , x

2
k, y1, . . . , yn). If n ≥ 4, every PL-manifold homotopy equivalent to Tk×Dn

is actually PL-homeomorphic to Tk × Dn by 4.2.9.

5.2 The homotopy type of TOP/PL

First we give a bit of structure on the di�erent PL-structures a topological manifold

might carry.

De�nition 5.2.1. Let M be a topological manifold whose boundary is a PL-

manifold. A PL-structuralization is a homeomorphism h : N → M with N a

PL-manifold and such that h|∂N : ∂N → ∂M is a PL-homeomorphism. Two PL-

structuralizations hi : Ni →M, i = 0, 1 are called concordant if there exists a PL-

homeomorphism ϕ : N0 → N1 and a homeomorphism H : N0 × [0, 1]→M × [0, 1]

such that:

- HN0×0 = h0

- HN0×1 = h1◦ϕ
- H : ∂N0 × [0, 1]→ ∂M × [0, 1] coincides with h0 × Id0,1.

A PL-structure onM is an equivalence class of PL-structuralizations. Let TPL (M)

denote the set of all PL-structures on M .

As we mentionned it earlier, a PL-structure on M yields a PL-structure on the

topological stable tangent bundle. The converse is true, but requires the di�cult

theorem
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Theorem 5.2.2 (Product Structure Theorem). For every n ≥ 5 and every k ≥ 0,

the natural map TPL(M) → TPL(M × Rk) obtained by associating to any PL-

structuralization h : N →M the PL-structuralization h× Id : N ×Rk →M ×Rk

is a bijection.

The classical proof of the Structure Theorem uses the Stable Homeomorphism

Theorem of Kirby [KS77] which in turn relies on the properties of PL-homotopy

tori under �nite converings. Thus surgery theory is the key ingredient in proving

the Product Structure Theorem, which explains the dimension restiction n ≥ 5.

It fails in dimension 3. There is a corresponding theorem for DIFF-structures on

PL-manifolds known as the Cairns-Hirsch theorem, which holds in any dimension.

A fundamental consequence of the Product Structure Theorem is the following

Theorem 5.2.3 (Classi�cation Theorem). Let M be a topological manifold of

dimension ≥ 5 which admits a PL-structure. Then there exists a bijection

σ : [(M,∂M), (TOP/PL, ∗)]→ TPL(M)

The proof can be found in [KS77]. Here is at least the construction of the maps

in both senses.

Consider from now M as a PL-manifold. A PL-structuralization h : N → M

yields an isomorphism of topological stable tangent bundles, since h is a homeo-

morphism. It also yields a new PL-structure on the stable tangent bundle on M .

The situation is resumed in the following diagram, in which the upper triangle and

both lower triangles are commutative.

TOP/PL

��
N //

h

��

BPL

��
M

τTOP
//

τ̃PL
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Thus we have two PL-structures on τTOP . Hence their di�erence yields an element

τ̃PL−τPL ∈ [(M,∂M), (TOP/PL, ∗)]. We then de�ne the map π : g 7→ τ̃PL−τPL.
Now given an element α ∈ [(M,∂M), (TOP/PL, ∗)], we thus have a PL-bundle

over M which is trivial, when seen as a TOP-bundle. Thus we have the following

commutative diagram

M × Rp

$$HHH
HHH

HHH
H

H // E(α)

||yy
yy

yy
yy

M

Since E(α) is a PL-manifold, the homeomorphism H endowes M ×Rp with a PL-

structure. But now by the Product Structure Theorem, this yields a PL-struture

on M . More precisely, there is a homeomorphism g : N → M with N a PL-

manifold such that H and g × IdRp are concordant. We then de�ne the map

σ : α 7→ g.

Note that a PL-structuralization ofM can be seen as representing an element of

the structure set. In other words, there is a forgetful map β : TPL(M)→ SPL(M).

We have the following

Proposition 5.2.4. Let k, n ≥ 0 such that n + k ≥ 5. Let x, y ∈ TPL(Tk × Dn)

such that β(x) = β(y) ∈ SPL(Tk × Dn). Then there exists a �nite covering p :

Tk × Dn → Tk × Dn such that p∗(x) = p∗(y).

This amounts to proving the following lemma.

Lemma 5.2.5. Let k, n ≥ 0 such that n + k ≥ 5. For any homeomorphismn

h : Tk×Dn → Tk×Dn which is isotopic rel ∂(Tk×Dn) to the identity, there exists

a nice �nite covering p : Tk × Dn → Tk × Dn and a lift h̃ : Tk × Dn → Tk × Dn

isotopic rel ∂(Tk × Dn) to the identity, such that the following diagram commutes

Tk × Dn h̃ //

p

��

Tk × Dn

p

��
Tk × Dn

h
// Tk × Dn
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In other words, the proposition asserts that β : TPL(Tk×Dn)→ SPL(Tk×Dn)

is injective up to �nite coverings.

Proof. Identify Tk with (S1)n and denote e its basepoint, and endow it with its

invariant metric. For an integer λ > 0, consider the nice covering map pλ :

Tk ×Dn → Tk ×Dn, (x, y) 7→ (xλ, y) . Let ht : Tk ×Dn → Tk ×Dn be a homotopy

rel ∂(Tk × Dn) between h = h0 and Id = h1 (for the special case n = 0, note that

since π1(Tk) acts trivially on [Tk,Tk], we can assume that the ht are basepoint

preserving). The pullback covering h∗pλ is isomorphic to pλ. Thus we have the

following commutative diagram

Tk × Dn

h̃

++

≈
//

pλ

$$IIIIIIIIIIIIIIIIIII
E(h∗pλ) ≈

//

h∗pλ

��

Tk × Dn

pλ

��
Tk × Dn

h
// Tk × Dn

Similarly, we can construct a continuous family of maps h̃t : Tk×Dn, t ∈ [0, 1]

with h̃0 = h̃ and such that pλ ◦ h̃t = ht ◦ pλ.
Consider �rst the case n = 0. We can assume that h̃(e) = e. Thus h̃1 is a

deck transformation. But since t 7→ h̃t(e) is a continuous path in the discret set

p−1
λ (e), h̃1(e) = h̃0(e) = e, hence h̃1 = Id. Now for all x ∈ p−1

λ (e), t 7→ h̃t(x) is a

continuous path in p−1
λ (e), hence h̃(x) = h̃1(x) = x. Now choose ε > 0. Choose

0 < δ < ε such that d(h̃(x), h̃(y)) < ε whenever d(x, y) < δ, and choose λ large

enough so the diameter of any closed (isometric) fundamental domain is less than

δ. Now given x ∈ Tk, choose x0 ∈ p−1
λ (e) such that x and x0 are in the same

fundamental domain. We have,

d(x, h̃(x)) ≤ d(x, x0) + d(x0, h̃(x)) = d(x, x0) + d(h̃(x0), h̃(x)) ≤ 2ε

So for every ε > 0 there exists an integer λ ≥ 0 such that d(h̃, IdTk) ≤ ε, where

d(h̃, IdTk) = supx∈Tkd(h̃(x), x). Now, by local contractibility of the space of home-

omorphisms of a compact topological manifold, this implies that there exists a nice

�nite covering such that h lifts to a homeomorphism h̃ isotopic to IdTk .
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For n > 0, the previous argument is not su�cient since the isotopy has no

reason to be rel ∂(Tk×Dn). To overcome that, we need to do the previous procedure

"far from the boundary�. More precisely, for 0 < η < 1, let Dη ⊂ Dn the disk of

radius η. This time, we can assume that h̃ stabilizes every element of p−1
λ ({e} ×

∂(Dn)). Now choose ε > 0. Choose 0 < δ < ε such that d(h̃(x), h̃(y)) < ε whenever

d(x, y) < δ, choose η close enough to 1 so that given an element x ∈ Tk ×Dη, one

can choose an element x0 ∈ p−1
λ ({e}× ∂(Dn)) such that d(x, x0) ≤ δ, and choose λ

large enough so that any closed (isometric) foundamental domain has diameter less

than δ. The same reasoning as above shows that d(h̃|Tk×Dη , IdTk×Dη) ≤ 2ε. Thus

there exists a nice covering such that there exists an isotopy ϕ : Tk×Dη× [0, 1]→
Tk × Dη × [0, 1] between IdTk×Dη and h̃|Tk×Dη . One then construct the desired

isotopy rel ∂(Tk × Dn) by setting:

ψ(a, t) =

{
ϕ(a, t) if |a| ≤ η

ϕ(a, 1−|a|
1−η ) if |a| ≥ η

Now consider the map

Φ : πn(TOP/PL) = [(Dn, ∂), (TOP/PL, ∗)] pr∗−−→
pr∗−−→ [(Tk×Dn, ∂), (TOP/PL, ∗)] σ−→ TPL(Tk×Dn)

β−→ SPL(Tk×Dn)

with k ≥ 0 such that n+ k ≥ 5, and pr : Tk × Dn → Dn the natural projection.

Proposition 5.2.6. The map Φ is injective. Furthermore, if for some λ ≥ 0,

p∗λΦ(x) = p∗λΦ(y), then x = y.

Proof. Let x, y ∈ πn(TOP/PL) such that Φ(x) = Φ(y). By 5.2.4, there exists a

nice covering p : Tk × Dn → Tk × Dn such that p∗(σ ◦ pr∗(x)) = p∗(σ ◦ pr∗(y)).

Since p is a nice covering, p∗ ◦σ ◦ pr∗ = σ ◦ pr∗. Thus σ ◦ pr∗(x) = σ ◦ pr∗(y). Now

this clearly implies x = y, since both σ and pr∗ are injective.

Let p : Tk × Dn → Tk × Dn be a �nite covering, and let x, y ∈ πn(TOP/PL)

such that p∗(Φ(x)) = p∗(Φ(y)), that is p∗(β ◦ σ ◦ pr∗(x)) = p∗(β ◦ σ ◦ pr∗(y)). β is

clearly natural for �nite coverings, so β( p∗(σ ◦ pr∗(x)) ) = β( p∗(σ ◦ pr∗(y)) ). By

5.2.4, there exists a �nite covering q such that q∗p∗(σ ◦ pr∗(x)) = q∗p∗(σ ◦ pr∗(y)),

or in other words (p ◦ q)∗(σ ◦ pr∗(x)) = (p ◦ q)∗(σ ◦ pr∗(y)). Now again this implies

x = y.
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Corollary 5.2.7. (i) πn(TOP/PL) = 0 for every n 6= 3.

(ii) π3(TOP/PL) has at most two elements.

Proof. This is an immediate consequence of 5.1.6, 5.2.6 and 4.2.9.

The homotopy type of TOP/PL is thus almost determined. Namely, TOP/PL

is either contractible or a K(Z2, 3). If TOP/PL was contractible, any map M
τM−→

BTOP → BTOP/PL would be nullhomotopic. In particular, any topological

manifold of dimension ≥ 5 would admit a PL-structure, by the Classi�cation

Theorem 5.2.3.

Let us recall that there exists a closed manifold F of dimension 4 which satis�es

w1(F ) = 0, w2(F ) = 0, and σ(F ) = 8. The Rokhlin's theorem implies that F

does not admit a PL-structure, otherwise it would admit a DIFF-structure by

the Smoothing Theorem. This will allow us to construct a topological manifold of

dimension 5 which admits no PL-structure. Note that by the Smoothing Theorem,

this amounts to giving an example of a 5-dimensional topological manifold without

any smooth structure.

Proposition 5.2.8. F × R admits no smooth structure.

Proof. Suppose it is the case. We can �nd an C0-approximation f of pr : R×R→
R which equals pr on ]−∞, 0] and is smooth on [1,∞[. By Sard theorem, choose

a regular value a of f , and set F ′ = f−1(a),W = f−1([0, a]). Then F ′ is a

smooth 4-dimension manifold whose tangent bundle is stably isomorphic to i∗τW
(with i : F ′ ↪→ W the inclusion), by the tubular neighborhood theorem. But

τTOPW = τTOPF ⊕ ε1, so w1(W ) = 0, w2(W ) = 0. Thus, by naturality of the Stiefel-

Whitney classes, w1(F ′) = i∗w1(W ) = 0, w2(F ′) = i∗w2(F ′) = 0. Furthermore, W

is a topological cobordism between F and F ′, so σ(F ′) = 8. So F ′ is a smooth

4-dimensional manifold with w1(F ′) = 0, w2(F ′) = 0, and σ(F ′) = 8, which con-

tradicts Rokhlin's theorem.

Note that, by the Product Structure Theorem, F × Rk gives an example of a

topological manifold with no PL-structure in any dimension ≥ 4.

5.3 The Kirby-Siebenmann obstruction

We can now turn back to our problem of determining the PL-structures a topo-

logical manifold might carry. We have just proved that we have the following
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�bration

K(Z2, 3)→ BPL→ BTOP

Since TOP/PL is a H-group, it has a classifying space, yielding a �bration

BPL→ BTOP→ BTOP/PL ' K(Z2, 4).

Since BTOP/PL is 3-connected, it has a fundamental class

α ∈ H4(BTOP/PL; π4(BTOP/PL))

representing the inverse of the Hurewicz isomorphism π4(BTOP/PL)→ H4(BTOP/PL; Z)

under the identi�cation

H4(BTOP/PL; π4(BTOP/PL)) ' Hom(H4(BTOP/PL; Z), π4(BTOP/PL)).

De�nition 5.3.1. (i) Under the natural map BTOP → BTOP/PL, α pullbacks

to a class

κ ∈ H4(BTOP; Z2),

called the universal Kirby-Siebenmann class.

(ii) Let M be a topological manifold, and f : M → BTOP the classifying map

for its topological tangent bundle. We de�ne the Kirby-Siebenmann obstruction

κ(M) by

κ(M) = f ∗κ ∈ H4(M ; Z2).

Theorem 5.3.2. Let M be a topological manifold of dimension ≥ 5. Then M

admits a PL-structure if and olny if κ(M) = 0. Furthermore, if κ(M) = 0,

the various PL-structures are in (unnatural) correspondence with [M,TOP/PL] '
H3(M ; Z2).

Proof. Let f : M → BTOP the classifying map of the topological tangent bundle

ofM . By the Classi�cation Theorem 5.2.3,M admits a PL-structure if and only if

f lifts to BPL. Since, we have a �bration BPL→ BTOP
φ−→ BTOP/PL, f lifts to

BPL if and only if the composition M
f−→ BTOP

φ−→ BTOP/PL is nullhomotopic.

Now, since BTOP/PL is a K(Z2, 4), φ◦f ∈ [M,BTOP/PL] ' H4(M,Z2), with

isomorphism given by

[M,K(Z2, 4)]→ H4(M,Z2), g 7→ g∗α.

Hence, M admits a PL-structure if and only if

(φ◦f)∗α = f ∗(φ∗α) = f ∗κ = κ(M) = 0.

The second assertion follows immediately from the properties of the �bration

TOP/PL→ BPL→ BTOP.
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Chapter 6

Topological rigidity of the torus

We are now going to prove the main theorem of this thesis. Recall that we found

in Chapter 5 a necessary and su�cient condition for a manifold of dimension ≥ 5

to admit a PL-structure. In Chapter 4, we were able to compute the PL-structure

set SPL(Tn), n ≥ 5. We now combine these results to deduce the rigidity theorem.

There is still one obstacle left. In order to prove that a high-dimensional

homotopy torus admits a PL-structure, we need to prove the vanishing of its

Kirby-Siebenmann obstruction. But since κ lies in the cohomology of BTOP, this

obstruction is generally not preserved under homotopy equivalence. Section 5.1 is

thus devoted to constructing an intermediary charactristic class ωG(M) carrying

enough data on κ(M) to derive the existence of a PL-structure on a homotopy

torus from its vanishing, and such that ωG(M) = ωG(Tn) for a manifold homotopy

equivalent to Tn. In section 5.2, we �nally carry out our program and prove the

rigidity theorem. This chapter follows the strategy of [HW69].

6.1 An intermediary characteristic class.

De�nition 6.1.1. Let STOP be the subgroup of TOP consisting of orientation

preserving maps, Spin-Top its (double) universal cover, and BSTop, BSpin-Top

their classifying spaces.

Proposition 6.1.2. BSpin-Top is 3-connected, and π4(BSpin-Top) ' Z⊕ Z2.

Proof. It amounts to proving that Spin-Top is 2-connected. By de�nition, it is

simply-connected. Furthermore, π2(Spin-Top) ' π2(Top) = π3(BTOP). But the

exact sequence of homotopy groups of the �bration TOP/PLBPL→ BTOP yields

π3(BPL)→ π3(BTOP)→ π2(TOP/PL).
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Now, since PL/O is 4-connected, π3(BPL) ' π3(BO) ' 0, and π2(TOP/PL) ' 0

by the theorem on the homotopy type of TOP/PL.

As for π4(BSpin-Top) ' π4(BSpin-Top), the exact sequence of homotopy

groups of the �bration TOP/PLBPL→ BTOP yields

π4(TOP/PL)→ π4(BPL)→ π4(BTOP)→ π3(TOP/PL)→ π3(BPL).

Now, since PL/O is 4-connected, π3(BPL) ' π3(BO) = 0 and π4(BPL) '
π4(BO) ' Z. By the theorem on the homotopy type of TOP/PL, π4(TOP/PL) =

0, and π3(TOP/PL) ' Z2, and the result follows.

It follows fromBSpin-Top has a fundamental class ω ∈ H4(B(Spin-Top);π4(B(Spin-Top))),

which has two components ωfree ∈ H4(BSpin-Top; Z), ωtors ∈ H4(BSpin-Top; Z2).

Proposition 6.1.3. H4(BSpin-Top; Z) ' Z, generated by ωfree.

Proof. We have, since BSpin-Top is 3-connected

H4(BSpin-Top; Z) ' Hom(H4(BSpin-Top; Z),Z)

' Hom(π4(BSpin-Top); Z) (Hurewicz)

' Hom(Z⊕ Z2; Z)

' Z.

Now, by the universal coe�cient theorem,

H4(BSpin-Top, π4(BSpin-Top)) ' Hom(H4(BSpin-Top,Z)π4(BSpin-Top)),

and under this isomorphism, ω represents h−1, where

h : π4(BSpin-Top)→ H4(BSpin-Top,Z)

is the Hurewicz isomorphism. So h−1 : Z ⊕ Z2
(±Id)⊕Id−−−−−→ Z ⊕ Z2, hence ωfree ∈

H4(BSpin-Top; Z) ' Hom(H4(BSpin-Top; Z),Z) represents Z⊕ Z2
(±Id)⊕Id−−−−−→ Z⊕

Z2
(±Id)⊕0−−−−−→ Z, which is a generator of Hom(Z⊕ Z2,Z).

Proposition 6.1.4. (i) H4(BS Top; Z)free ' Z.

(ii) The natural map H4(BSTop; Z)free → H4(BSpin-Top ; Z) is injective.

(iii) The natural map H4(BS Top; Z)free → H4(BSO; Z) is injective 1.

1Actually, Wall asserts in [HW69] that the natural map H4(BS Top; Z)→ H4(BSO; Z) is an

isomoprhism.
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Proof. Since Spin-Top is the universal double cover of STop, the natural map

Spin-Top → S Top yields an isomorphism π∗(Spin-Top) ⊗ Q → π∗(S Top) ⊗ Q ,

and thus an isomorphism πn(BSpin-Top) ⊗ Q → πn(BS Top) ⊗ Q for n ≥ 1, by

commutativity of the following diagram

πn(BSpin-Top)⊗Q //

≈

��

πn(BS Top)⊗Q

≈

��
πn−1(Spin-Top)⊗Q ≈ // πn−1(S Top)⊗Q.

There is also an isomorphism on π0 ⊗ Q ' 0, so by the generalized Whitehead

theorem, BSpin-Top → BSTop induces an isomorphism in cohomology with Q-

coe�cients, which proves (ii).

Recall that we have a �bration BPL → BTOP → K(Z2, 4). Once again, the

generalizedWhitehead theorem yields an isomorphismH4(BPL; Q)→ H4(BTOP; Q).

Since PL/O is 4-connected, the natural map BPL → BO yields an isomorphism

πn(BPL)→ πn(BO), n ≤ 4, and so an isomorphismHn(BPL,Z)→ Hn(BO,Z), n ≤
4, by the Hurewicz theorem. Thus H4(BTop; Q)→ H4(BO; Q) is an isomorphism.

By the commutativity of the following diagram

H4(BS Top; Q) // H4(BSO; Q)

H4(BTop; Q)
≈ //

OO

H4(BSO; Q),

OO

it is su�cient to prove that we have isomorphismH∗(BS Top; Q) ' H∗(BTOP; Q),

H∗(BSO; Q) ' H∗(BO; Q). The natural maps SO → O, S Top → TOP yield

isomorphisms

πn(SO)⊗Q→ πn(O)⊗Q, πn(S Top)⊗Q→ πn(Top)⊗Q

for n ≥ 1, by commutativity of the following diagrams

πn(BSO)⊗Q //

≈

��

πn(BO)⊗Q

≈

��

πn(BS Top)⊗Q //

≈

��

πn(BTOP)⊗Q

≈

��
πn−1(SO)⊗Q ≈ // πn−1(O)⊗Q πn−1(S Top)⊗Q ≈ // πn−1(TOP)⊗Q.
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It also yields an isomorphism on π0⊗Q ' 0, so (iii) then follows form the general-

ized Whitehead theorem, and (i) follows from the fact that H4(BSO; Z) ' Z.

De�nition 6.1.5. Let ptop be a generator ofH
4(BS Top,Z)free, called a topological

universal Pontryagin class.

Corollary 6.1.6. There exists an integer d 6= 0 such that dωfree is induced from

ptop ∈ H4(B(STop); Z).

Proposition 6.1.7. The natural map H4(BTOP; Z2)→ H4(BSpin-Top; Z2) maps

the Kirby-Siebenmann class κ to ωtors.

Proof. Since both BSpin-Top and BTOP/PL ' K(Z2, 4) are 3-connected, the

naturality of the Hurewicz homomorphism yields the following commutative dia-

gram

H4(BTOP/PL; Z2)
' //

��

Hom(π4(BTOP/PL),Z2)

��
H4(BSpin-Top; Z2)

' // Hom(π4(BSpin-Top),Z2)

obtained by dualizing the natural map

π4(BSpin-Top) ' π4(BTOP) ' Z⊕ Z2
0⊕Id−−−→ Z2 ' π4(BTOP/PL).

Thus the fundamental class α ∈ H4(BTOP/PL; Z2) corresponding to the in-

verse of the Hurewicz homomorphism h−1
BTOP/PL : Z2

Id−→ Z maps to the element

(Z⊕ Z2
0⊕Id−−−→ Z2) ∈ H4(BSpin-Top; Z2).

Now the fundamental class ω ∈ H4(BSpin-Top; π4(BSpin-Top)) corresponds, un-

der the canonic identi�cation, to the inverse of the Hurewicz map h−1
BSpin-Top : Z⊕

Z2
(±Id)⊕Id−−−−−→ Z⊕Z2, so ωtors corresponds to Z⊕Z2

0⊕Id−−−→ Z⊕Z2. Hence The natural

map H4(BTOP/PL; Z2)→ H4(BSpin-Top; Z2) maps α to ωtors. But by de�ntion,

κ is induced from α under the natural map H4(BTOP/PL; Z2)→ H4(BTOP; Z2).

Thus the result follows from the commutativity of the following diagram, where

all maps are the natural ones

H4(BTOP/PL; Z2) //

))TTTTTTTTTTTTTTT
H4(BSpin-Top; Z2)

H4(BTOP; Z2).

55jjjjjjjjjjjjjjj

74



De�nition 6.1.8. (i) Let ωG be the image of ω under the map

H4(B(Spin-Top); π3(TOP))→ H4(B(Spin-Top); π3(G)).

(ii) For a topological manifold M with vanishing w1 and w2, and with classifying

space of its topological spin tangent bundle f : M → BSpin-Top, let

ωG(M) = f ∗ωG.

Theorem 6.1.9. Let M a topological manifold homotopy equivalent to a torus.

Then M admits a topological spin-structure, for which ωG(M) = 0.

Proof. Consider the Whitehead tower of BSG:

...

��
X2

��
BSpin-G

��

// K(π3(BSG), 3)

BSG // K(π2(BSG), 2).

We have the following commutative diagram

X2

��
BSpin-Top

77

��

// BSpin-G

��

// K(π3(BSG), 3)

BS Top // BSG // K(π2(BSG), 2)

and the map BSpin-Top→ BSpin-G lifts to X2 if and only if the composite

BSpin-Top→ BSpin-G→ K(π3(BSG), 3)

is nullhomotopic, by obstruction theory. Since H3(BSpin-Top; π3(BSG)) = 0, such

a lift exists. The induced map BSpin-Top→ X2 yields the map

π4(BSpin-Top) ' π4(BTOP)→ π4(BG) ' π4(X2)

We have the following lemma:

75



Lemma 6.1.10. The map H4(X2; π4(BG)) → H4(BSpin-Top; π4(BG)) maps the

fundamental class αX2 of X2 to ωG.

Proof. Since X2 is 3-connected, we have

H4(X2; π4(BG)) ' Hom(π4(X2), π4(BG)) ' Hom(π4(BG), π4(BG))

and, under this isomorphism, αX2 represents Z24
Id−→ Z24. Furthemore, since BSpin-Top

is 3-connected,

H4(BSpin-Top; π4(BG)) ' Hom(π4(BTOP), π4(BG))

and the map H4(X2; π4(BG))→ H4(BSpin-Top; π4(BG)) is obtained by dualizing

the natural map π4(BTOP)→ π4(BG). Hence αX2 maps to Z⊕ Z2
pr⊕i−−→ Z24.

Now recall that

ω ∈ H4(BSpin-Top; π4(BSpin-Top)) ' Hom(π4(BTOP), π4(BTOP))

is represented by Z⊕ Z2
(±Id)⊕Id−−−−−→ Z⊕ Z2, hence ωG ∈ H4(BSpin-Top; π4(BG)) '

Hom(π4(BTOP), π4(BG)) is represented by Z⊕Z2
pr⊕i−−→ Z24, and the result follows.

Lemma 6.1.11. Let M a topological oriented manifold whose Spivak normal �-

bration admits a spin structure M → BSpin-G. Then there exists a topological

spin structure on M

BSpin-Top

��
M

99ssssssssss
// BTOP

such that the induced spin structure on the Spivak normal �brationM → BSpin-Top→
BSpin-G agrees with the given structure M → BSpin-G.

Proof. First consider the case of an oriented manifold M → BS Top with a lift

of its oriented Spivak �bration M → BS G to BSpin-G. Since Spin-Top (resp.

Spin-G) is the universal double cover of S Top (resp. SG), we have �brations

K(Z2, 1) ' F //

��

F ′ ' K(Z2, 1)

��
BSpin-Top //

��

BSpin-G

��
BS Top // BS G.
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Now, by the result of Boardman and Vogt on homotopy-everything H-spaces

[BV68], there are �brations

BSpin-Top //

��

BSpin-G

��
BS Top //

��

BS G

��
K(Z2, 2) ' BF // BF ′ ' K(Z2, 2).

Since π1(TOP)→ π1(G) is an isomorphism, F → F ′ andBF → BF ′ are homotopy

equivalences. Let α (resp. α′) be the fundamental class of BF (resp. BF ′). Then

BF → BF ′ maps α to α′ since H2(K(Z2, 2),Z2) ' Z2. We thus have the following

commutative diagram

BSpin-Top //

��

BSpin-G

��
M

f // BS Top
g //

ϕ

��

BS G

ψ
��

K(Z2, 2) ' BF // BF ′ ' K(Z2, 2).

By obstruction theory, since M
g◦f−−→ BS G lifts to BSpin-G, (g◦f)∗ψ∗α′ = 0. But

(g◦f)∗ψ∗α′ = f ∗ϕ∗α = 0

hence M → BS Top lifts to BSpin-Top. Furthermore, the various lifts are in bi-

jective correspondence with [M,F ]. But F
≈−→ F ′ yields a bijection [M,F ] →

[M,F ], and [M,F ] classi�es the lifts of M → BS G. Thus there exists a lift

M → BSpin-Top compatible with both the orientation of the tangent bundle

M → BS Top and the spin structure on the Spivak �bration M → BSpin-G.

The same reasoning applies to the �brations

K(Z2, 0) ' F
≈ //

��

F ′ ' K(Z2, 0)

��
BS Top //

��

BS G

��
BTOP // BG,
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so given a topological manifold with a liftM → BS G of its Spivak �bration, there

exists an orientation of the topological tangent bundle M → BS Top compatible

with both the topological structureM → BTOP and the orientation of the Spivak

�bration M → BS G.

The result now follows by combining these two assertions.

Let M be a topological manifold homotopy equivalent to a torus. Then M is

orientable and has a trivial Spivak �bration, and so admits the trivial lift M →
X2. By 0.0.3, let M → BSpin-Top be a spin-structure on M such that M →
BSpin-Top→ BSpin-G is nullhomotopic. We thus have the following commutative

diagram

X2

��
BSpin-Top

77oooooooooooo
//

��

BSpin-G

��
M //

99ssssssssss
BS Top // BS G.

In particular, we have the following commutative triangle

H4(X2; Z24)

0

""FFFFFFFFFFFFFFFFFF
// H4(BSpin-Top; Z24)

yyttttttttttttttttttttt

H4(M ; Z24).

Since the horizontal map sends αX2 to ωG by 0.0.2, ωG(M) = 0.

6.2 The Rigidity Theorem.

Lemma 6.2.1. The topological Pontryagin class ptop is additive modulo torsion

with respect to direct sums of vector bundles.
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Proof. Let fξ, fη : M → BS Top. We have the following commutative diagram

M
fξ×fη // BS Top× BS Top

⊕ // BS Top

BSO× BSO
⊕ //

OO

BSO

OO

Let m 6= 0 such that ptop is mapped to mp1 ∈ H4(BSO,Z) under the map BSO→
BS Top. As before, we can prove that BSO × BSO → BS Top × BS Top induces

an isomorphism on H4( ; Q), so that H4(BS Top×BS Top; Z) ' Z⊕Z⊕ (torsion).

Now, by additivity of the �rst Pontryagin class,

H4(BSO; Z) ' Z→ Z⊕ Z ' H4(BSO×BSO; Z)

is the diagonal map, so ptop is mapped to (mp1,mp1) under

H4(BS Top; Z)→ H4(BSO; Z)→ H4(BSO×BSO; Z).

Thus ptop is mapped to (ptop, ptop) + torsion under the map H4(BS Top; Z) →
H4(BS Top×BS Top; Z), and the result follows.

Proposition 6.2.2. LetM be a topological manifold homotopy equivalent to Tn, n ≥
5. Then M admits a PL-structure.

Proof. Let p : Tn → Tn be the 2n-sheeted covering map given by p (x1, . . . , xn) =

(x2
1, . . . , x

2
n), and π : M̃ →M its pullback over f

M̃
F //

π

��

Tn

p

��
M

f
// Tn

π being a local homeomorphism, the tangent bundle of M̃ is induced from that

of M , so κ(M̃) = π∗κ (M). But p∗ : H4(Tn,Z2) → H4(Tn,Z2) is the zero map,

since p∗ : H1(Tn,Z) → H1(Tn,Z) is multiplication by 2. Furthermore, f being a

homotopy equivalence, F is also a homotopy equivalence. Hence π∗ : H4(M,Z2)→
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H4(M,Z2) is the zero map, so κ(M̃) = 0 and M̃ admits a PL-structure by the

Obstruction Theorem.

Now M̃ being a PL-homotopy torus, it is stably parallelizable by 4.1.3. Since M̃

has torsion-free cohomology, it follows from 6.2.1 that ptop(M̃) = 0 = π∗ptop (M).

But H4(M,Z) has no torsion, so π∗ : H4(M,Z) → H4(M̃,Z) is injective, which

implies ptop (M) = 0. Thus, by 6.1.6, there exists d 6= 0 such that dωfree(M) = 0,

hence ωfree(M) = 0 sinceM has torsion-free cohomology. It follows that ωG (M) =

i∗κ (M), where i : Z2 ↪→ Z24 is the canonical injection. Recall that, M being a

homotopy torus, ωG(M) = 0 by 6.1.9, hence i∗κ (M) = 0. But i∗ : H4 (M,Z2) →
H4(M̃,Z24) is clearly injective, so κ (M) = 0, and M admits a PL-structure by

the Obstruction Theorem.

Theorem 6.2.3. Let M a topological manifold of dimension n ≥ 5, and f : M →
Tn a homotopy equivalence. Then f is homotopic to a homeomorphism.

Proof. Recall that the PL-structures on Tn are classi�ed by H3(Tn,Z2). Now the

same group also classi�es the homotopy PL-structures on Tn, by 4.2.9. Thus we

have the maps

H3(Tn,Z2) ∼= [Tn,TOP/PL]
jTOP−−−→
≈
TPL (Tn)

β
↪−→ SPL (Tn) ∼= H3(Tn,Z2) .

Since H3(Tn,Z2) is �nite, we get

TPL (Tn)
β−−−→
≈
SPL (Tn) .

Thus, to the homotopy equivalence f : M → Tn representing an element of

SPL (Tn) there corresponds a homeomorphism g : N → Tn and a homeomor-

phism H : N →M such that the following triangle

M
f // Tn

N

H

OO

g

>>}}}}}}}}}}}}}}}}

commutes up to homotopy. In particular, f is homotopic to a homeomorphism.
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