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Abstract
In 1957 Chern, Hirzebruch and Serre proved that the signature of the total space

of a fibration of manifolds is equal to the product of the signatures of the base

space and the fibre space if the action of the fundamental group of the base space

on the real cohomology of the fibre is trivial. In the late 1960s Kodaira, Atiyah

and Hirzebruch independently discovered examples of fibrations of manifolds with

non-multiplicative signature. These examples are in the lowest possible dimension

where the base and fibre spaces are both surfaces. W. Meyer investigated this

phenomenon further and in 1973 proved that every multiple of four occurs as

the signature of the total space of a fibration of manifolds with base and fibre

both surfaces. Then in 1998 H. Endo showed that the simplest example of such

a fibration with non-multiplicative signature occurs when the genus of the base

space is 111.

We will prove two results about the signature of fibrations of Poincaré spaces.

Firstly we show that the signature is always multiplicative modulo four, extending

joint work with I. Hambleton and A. Ranicki on the modulo four multiplicativity

of the signature in a PL-manifold fibre bundle. Secondly we show that if the

action of the fundamental group of the base space on the middle-dimensional

homology of the fibre with coefficients in Z2 is trivial, and that the dimension of

the base space is a multiple of four, then the signature is multiplicative modulo

eight.

The main ingredient of the first result is the development of absolute White-

head torsion; this is a refinement of the usual Whitehead torsion which takes

values in the absolute group K1(R) of a ring R, rather than the reduced group

K̃1(R). When applied to the algebraic Poincaré complexes of Ranicki the “sign”

term (the part which vanishes in K̃1(R)) will be identified with the signature

modulo four. We prove a formula for the absolute Whitehead torsion of the total

space of a fibration and a simple calculation yields the first result.

The second result is proved by means of an equivariant Pontrjagin square, a

refinement of the usual one. We make use of the Theorem of Morita which states

that the signature modulo eight is equal to the Arf invariant of the Pontrjagin

square. The Pontrjagin square of the total space of the bundles concerned is

expressed in terms of the equivariant Pontrjagin square on the base space and

this allows us to compute the Arf invariant.
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Chapter 1

Introduction.

1.1 A brief history of the signature of fibrations.

Given a 4k-dimensional Poincaré space X the signature is defined as usual to

be the signature of the form given by the cup product and evaluation on the

fundamental class:

H2k(X;C)⊗H2k(X;C) → C

x⊗ y 7→ 〈[X], x ∪ y〉

(Poincaré spaces will always be oriented and assumed to have the homotopy type

of a finite CW -complex in this thesis). If the dimension of X is not a multiple of

four the signature is defined to be 0. We denote the signature by sign(X).

One can easily show that the signature is multiplicative for products of spaces

sign(X × Y ) = sign(X)sign(Y )

so a natural question to ask is whether this result extends to fibrations of Poincaré

spaces.

Definition 1.1. A (Hurewicz) fibration is a map p : E → B of topological spaces

satisfying the homotopy lifting property; that is for all spaces X and maps f : X →
E, F : X × I → B such that F (x, 0) = f(x) we may find a map H : X × I → E

such that H(x, 0) = f(x) and p(H(x, t)) = F (x, t).

A slightly better way of seeing the homotopy lifting property is in commutative

diagrams. It say that for all commutative diagrams of the type:

X
f //

x 7→(x,0)
��

E

p

��
X × I

F // B
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then there exists a map H : X × I → E such that:

X
f //

x 7→(x,0)
��

E

p

��
X × I

F //

H

;;xxxxxxxxx
B

commutes. The space B will always be path-connected in the fibrations we con-

sider. We write F = p−1(b0), where b0 is a distinguished base-point of B, for

the fibre of p. In fact the homotopy type of the space F does not depend on the

choice of b0. We often write F → E → B for a fibration.

The most trivial example of a fibration is a product of spaces X × Y →
X. It is known [Got79] that if B and F are n- and m-dimensional Poincaré

spaces respectively and that the action of π1(B) on the Hm(F ;Z) is trivial (see

below) then E is an (n +m)-dimensional Poincaré space [Ped82]. Moreover the

orientation of E can be made compatible with that of B and F (more about this

in chapter 4).

Therefore we may ask: If Fm → Em+n → Bn is a fibration of Poincaré spaces

(the superscript denoting the dimension of the space), is it true that sign(E) =

sign(B)sign(F )? In 1957 Chern, Hirzebruch and Serre proved (over afternoon

tea at the Institute for Advanced Study in Princeton) that this is the case if the

action of the fundamental group of the base-space on the homology of the fibre

H∗(F ;C) is trivial [CHS57]. We explain what this means:

Let ω : I → B be a loop in B starting and finishing at the base-point b0.

Then we have a diagram:

F //

i0
��

E

p

��
F × I

ω◦prI // B

with prI and i0 the obvious projection and inclusion maps. By the homotopy

lifting property there exists a map H : F × I → E such that

F //

i0
��

E

p

��
F × I

ω◦prI //

H

77ooooooooooooo
B

commutes. The composition F
f 7→(f,1)−−−−→ F × I

H−→ E lands in F ⊂ E so it is

a self-map of F . One can show that it is a homotopy equivalence and that it

only depends (up to homotopy) on the class of ω in π1(B). Taking homology

this describes the action of π1(B) on H∗(F ). The proof of Chern, Hirzebruch
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and Serre uses the Serre spectral sequence which we do not discuss in depth here,

although a certain amount of familiarity with it is assumed. One can use a similar

argument to show that the signature is always multiplicative if the dimension of

the base space is odd.

The next natural question which could be asked is whether there are any fi-

brations with non-multiplicative signature. In the late 1960s Kodaira [Kod67],

Atiyah [Ati69] and Hirzebruch [Hir69] independently produced examples of surface-

bundles over surfaces where the signature of the total space was a multiple of 16.

This is the lowest possible dimension where non-multiplicativity could occur.

Atiyah went further and derived a characteristic class formula in the case of a

differentiable fibre bundle.

In 1972 Meyer [Mey72, Mey73] went on to describe the signature of a fibration

over a differentiable manifold as the signature of a local coefficient system: Let

M be a 2k-dimensional manifold and let V be a real vector space equipped with

a (−)k-symmetric form. Suppose we have a map π1(M) → Aut(V ) preserving

the form. Then this determines a local coefficient system Γ → M with fibre

V . The combination of the cup product and the (−)k-symmetric form on V

yield a symmetric form on Hn(M ; Γ); we refer to the signature of this form as

the signature of the local coefficient system. Given a differentiable fibre bundle

F 2m → E2n+2m → B2n with n + m even the action of π1(B) on Hm(F ;R)

determines a local coefficient system over the base space B. Meyer proved that

the signature of this system is equal to the signature of the total space.

Of course one could dispense with the fibration entirely and just study the

signature of local coefficient systems. This was done by Meyer who then went

on to study in great depth the case of surface bundles over surfaces. He showed

that every multiple of four occurs as the signature of a surface bundle over a

surface, but did not give explicit topological examples. He gave an example of

a local coefficient system with non-multiplicative signature over the surface of

genus two.

Endo [End98] then went on to construct an example of a surface bundle over

a surface with signature four. The genus of the base space of this example is

111, although the genus of the fibre is only three. To date no example of non-

multiplicativity is known where the base space has a lower genus.

The multiplicativity of the signature has also been studied by Neumann [Neu78]

who investigated which fundamental groups of the base space give rise to non-

multiplicative signatures. He showed that the signature is always multiplicative

for a large class of groups, including finite groups and free groups. The work

of Karras, Kreck, Neumann and Ossa on the cutting and pasting of manifolds
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[KKNO73] investigated the strong relationship of this subject with the multi-

plicativity of the signature, we do not go into detail here.

In [HKR05] (jointly with I. Hambleton and A. Ranicki) we proved that the

signature of a fibre bundle of PL-manifolds is multiplicative modulo four. In this

thesis we will extend this result to fibrations of Poincaré spaces.

1.2 The results concerning the signature of fi-

brations.

We will be concerned with fibrations p : E → B with particular properties. To

save ourselves repeating the same conditions we introduce:

Assumption 1.2. The space B is a connected finite CW -complex (the CW struc-

ture is part of the data) and the fibre F = p−1(b0) has the homotopy type of a finite

CW -complex. We have choices of base-points b0 and e0 such that p(e0) = b0.

We say a fibration is Poincaré if F , E and B are Poincaré spaces and that

the orientation of E is compatible with that of F and B.

Our two main results will be the following:

Theorem 7.2. Let Fm → En+m → Bn be a Poincaré fibration satisfying as-

sumption 1.2, and such that τ(B) = 0 ∈ Wh(π1(B)). Then

sign(E) = sign(B)sign(F ) (mod 4)

Recall that for a Poincaré space X the Whitehead torsion τ(X) ∈ Wh(π1(X))

is defined to be the Whitehead torsion of the Poincaré duality map τ(φ0 : C(X̃)n−∗ →
C(X̃)). It is always zero if X is a manifold. We do not know whether this Theo-

rem fails if the Whitehead torsion condition is not satisfied.

Theorem 8.1. Let F 4m → E4n+4m → B4n be a Poincaré fibration satisfying

assumption 1.2, and such that the action of π1(B) on (H2m(F ;Z)/torsion)⊗ Z2

is trivial. Then

sign(E) = sign(B)sign(F ) (mod 8)

S. Klaus and P. Teichner [KT03] have conjectured that this is true even if the

dimension of B is not a multiple of four.
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1.3 Symmetric L-theory.

This thesis will use Ranicki’s chain complex techniques. We assume that the

reader is familiar with chain complexes, chain maps, chain homotopies etc..2qw.

We will present a more detailed description of the symmetric Poincaré complexes

of Ranicki [Ran80a, Ran80b] in chapter 2; we will just give a brief description

here. An n-dimensional symmetric complex (C, φ) consists of a chain complex C

of modules over a ring with involution R, a chain equivalence φ0 : Cn−∗ → C, a

homotopy φ1 between φ0 and its dual, and higher homotopies φs. Such a complex

is said to be Poincaré if φ0 is a chain equivalence. If now (C, φ) is 4k-dimensional

and over the ring Z (or Q, R or C) then the signature sign(C, φ) is defined to be

the signature of the middle dimensional symmetric form φ0 : H2k(C) → H2k(C).

Let X be an n-dimensional Poincaré complex. Then we can form an n-

dimensional symmetric complex (C(X̃), φ) over the ring Z[π1(X)] where C(X̃) is

a chain complex of X and the chain equivalence φ0 represents cap product with

the fundamental class:

φ0 = [X] ∩ − : C(X̃)n−∗ → C(X̃)

We say that (C(X̃), φ) represents X̃.

The abelian group Ln(R) consists of n-dimensional symmetric Poincaré com-

plexes modulo the boundaries of (n + 1)-dimensional symmetric complexes (see

chapter 2) with composition given by direct sum. Ranicki [Ran80b] shows that

the signature gives a well-defined map from L4k(Z) to Z and that moreover this

map is an isomorphism.

We have a map ε : Z[π] → Z of rings defined by g 7→ 1 on the group elements

and this induces a map of symmetric L-groups L4k(Z[π]) → L4k(Z) ∼= Z. The

image under this map of a symmetric Poincaré complex representing a Poincaré

space X is the signature of the space X. The element σ∗(X̃) of Ln(Z[π1(X)])

representing a space X is often referred to as the symmetric signature of X̃.

Unfortunately not every element of Ln(Z[π]) can be represented as a repre-

sentative of a Poincaré space X. There exists a subtle variation on symmetric L-

theory called visible symmetric L-theory, developed by Weiss [Wei92]. The groups

V Ln(Z[π]) have the advantage that every element may be geometrically realized;

they are also easier to compute. There exists a map V Ln(Z[π]) → Ln(Z[π]) by

forgetting that the complexes are visible.
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1.4 The algebraic surgery transfer map.

In many ways the theory we develop here is very much inspired by the algebraic

surgery transfer map of Lück and Ranicki [LR92]. We will assume familiarity with

the surgery theory of Wall [Wal99] and the algebraic theory of surgery of Ranicki

[Ran80a, Ran80b]) in this section of the introduction. The surgery transfer is

defined for a fibration F → E → B where F is an m-dimensional manifold. It is

a map:

p! : Ln(Z[π1(B)]) → Ln+m(Z[π1(E)])

which gives an algebraic description of the surgery transfer map of Quinn [Qui70].

This sends the surgery obstruction σ∗(f, b) of an n-dimensional normal map (f, b) :

M → X with reference map X → B to the surgery obstruction σ∗(f
!, b!) of the

(n + m)-dimensional normal map (f !, b!) : M ! → X ! obtained by pullback from

p : E → B. It is a Theorem of Wall [Wal99] that every surgery obstruction in

Ln(Z[π1(B)]) may be represented by a normal map (f, b) : M → X with reference

map X → B, so the geometric transfer is well-defined.

This is a very nice situation because the algebraic situation fits the geometric

one precisely; this is to be expected because the quadratic L-groups can always be

geometrically realized. One might hope to do something similar in the symmetric

case, in other words construct a map algebraically:

p! : Ln(Z[π1(B)]) → Ln+m(Z[π1(E)])

however in the appendix to [LR92] Lück and Ranicki argued that such a map

cannot be constructed using their algebraic techniques. It cannot even be con-

structed geometrically since not every element of Ln(Z[π1(B)]) can be realized as

the symmetric signature of a Poincaré complex, even when n is large. There is a

transfer map in the visible symmetric L-groups but this is rather unwieldy and

we do not describe it here (see [Ran92]).

1.5 Describing the signature of a fibration alge-

braically.

One of the key steps in proving our main results will be to describe the signature

of a fibration in terms of the symmetric complex of the base space and the action

of π1(B) on the fibre. This can be seen as the algebraic analogue of Meyer’s

description of the signature of a fibration in terms of the intersection form on B

with coefficients in a local coefficient system.
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In chapter 4 we define a (Z,m)-symmetric representation of a ring with invo-

lution R; this consists of a triple (A,α, U) where A is a free Z-module, α : A∗ → A

a map such that α∗ = (−)mα and U : R → Hom(A,A)op a map of rings such

that u(r)∗α = αu(r∗). We can construct a (Z,m)-symmetric representation

(K,φF , U) of Z[π1(B)] from a Poincaré fibration F 2m → E2m+2n → B2n by defin-

ing K = Hm(F ;Z)/torsion and φF the form on K given by Poincaré duality.

The map U is defined on pure group elements g ∈ Z[π1(B)] by the action of g on

K = Hm(F ;Z)/torsion and we extend this to the ring Z[π1(B)] in the obvious

way. This is very much analogous to the notion of a local coefficient system.

We can use the map U to form a twisted tensor product M ⊗ (A,α, U) of a

based left Z[π1(B)]-module with A as follows: We first identify M with Z[π1(B)]k

using the basis and define

M ⊗ (A,α, U) =
⊕
k

A

For morphisms f : M → N we define

f ⊗ (A,α, U) : M ⊗ (A,α, U) → N ⊗ (A,α, U)

to be U(fi,j) on the components fi,j of f with respect to the basis (in other words

we consider f to be a matrix and apply U to every element). We can think of

tensor product −⊗(A,α, U) as a functor from the category of based left Z[π1(B)]

modules to the category of free Z-modules. This functor induces a map:

−⊗ (A,α, U) : Ln(Z[π1(B)]) → Ln+2m(Z)

in symmetric L-theory described explicitly in chapter 4. We prove the following

Theorem which allows us to study the signature of a fibration using chain complex

techniques:

Theorem 4.9. Let F 2m → E2n+2m → B2n be a Poincaré fibration satisfying

assumption 1.2, let (C(B̃), φB) be a symmetric Poincaré complex representing B

and denote by (K,φF , U) the (Z,m)-symmetric representation constructed from

the fibration. Then the signature of E is equal to the signature of the symmetric

Poincaré complex (C(B̃), φB)⊗ (K,φF , U).

We will refer to (C(B̃), φB) ⊗ (K,φF , U) as the twisted tensor product of

(C(B̃), φB) and (K,φF , U). We will prove our two main theorem by proving the

corresponding statement for visible symmetric complexes and (Z,m)-symmetric

representations and then by applying this theorem. Given this theorem one can

naturally ask:
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Question 1.3. Is it possible (either geometrically or algebraically) to describe the

symmetric signature σ∗(E) ∈ Ln+m(Z[π1(E)]) of the total space of a fibration in

terms of the symmetric signature of the base space and the fibre and the action of

π1(B) on the fibre?

1.6 The chain complex of a fibration.

An important tool in this thesis will be a description of the chain complex of

the total space of a fibration in terms of the base space and the action of π1(B)

on the fibre; this is the subject of chapter 3. Obviously one cannot produce a

complete description of C(Ẽ) from this data, otherwise fibrations with simply

connected base spaces wouldn’t be very interesting. Instead we take advantage

of the fact that the chain complex of the total space is a filtered complex and we

describe the associated complex (defined in chapter 3) in these terms. This is very

similar to using the Serre spectral sequence to study fibrations and many readers

may at this point be wondering why we don’t do so. The main disadvantage to

working with spectral sequences is that taking homology produces some rather

exotic modules when working over a group ring Z[π], and therefore it is rather

unsuitable when one wants to use algebraic surgery theory. We can overcome this

problem by working with chain complexes instead. The description of the chain

complex of a fibration given here is quite general and may well be of independent

interest. It is very much inspired by the work of Lück [Lüc86] on the transfer map

in algebraic K-theory. The key theorem (Theorem 3.11) describes not only the

chain complex of the fibration but also the diagonal approximation. It is the link

between topology and algebra which we require. We will postpone the statement

of this Theorem until chapter 3 because even this requires some rather technical

language that would be out of place here.

1.7 Absolute Whitehead torsion.

We develop a theory of absolute Whitehead torsion which refines the usual theory.

This can be read quite separately from the rest of the thesis (indeed this chapter

is essentially the preprint [Kor05]) and is of sufficient independent interest that

the author feels that its intrusion in the title is entirely justified. The motivation

for introducing this theory is that it may be used to detect the signature of a

symmetric Poincaré complex modulo four, generalizing the formula of Hirzebruch

and Koh [HNK71], that for a unimodular symmetric form φ over the integers

sign(φ) = det(φ) + rank(φ)− 1 (mod 4)

11



Another motivation is that the definition used in [HRT87] of the absolute torsion

of a round (χ(C) = 0) symmetric Poincaré complex does not have the desired

properties.

The Whitehead torsion of a homotopy equivalence f : X → Y of finite CW

complexes is an element of the Whitehead group of π = π1(X) = π1(Y )

τ(f) = τ(f̃ : C(X̃) → C(Ỹ )) ∈ Wh(π) = K1(Z[π])/{±π} ,

with f̃ the induced chain equivalence of based f.g. free cellular Z[π]-module chain

complexes (see e.g [Mil66]). The Whitehead torsion of a finite n-dimensional

Poincaré complex X is

τ(X) = τ([X] ∩ − : C(X̃)n−∗ → C(X̃)) ∈ Wh(π) .

In this chapter we extend the methods of [Ran85] to consider absolute Whitehead

torsion invariants for homotopy equivalences of certain finite CW complexes and

finite Poincaré complexes, which take values in K1(Z[π]) rather than Wh(π).

The absolute torsion of a finite contractible chain complex of finitely generated

based R-modules C is defined by

τ(C) = τ(d+ Γ : Codd → Ceven) ∈ K1(R) .

for a chain contraction Γ; it is independent of the choice of Γ. The algebraic map-

ping cone of a chain equivalence of finite chain complexes of finitely generated

based R-modules f : C → D is a contractible chain complex C(f). The naive

absolute torsion τ(C(f)) ∈ K1(R) only has good additive and composition for-

mulae modulo Im(K1(Z) → K1(R)). Likewise, the naive definition of the torsion

of an n-dimensional symmetric Poincaré complex (C, φ)

τ(C, φ) = τ(C(φ0 : Cn−∗ → C))

only has good cobordism and additivity properties in K̃1(R). The Tate Z2-

cohomology class

τ(C, φ) ∈ Ĥn(Z2;K1(R))

may not be defined, and even if defined may not be a cobordism invariant.

In [Ran85] Ranicki developed a theory of absolute torsion for chain equiva-

lences of round chain complexes, that is chain complexes C satisfying χ(C) = 0.

This absolute torsion has a good composition formula but it is not additive, and

for round Poincaré complexes τ(C, φ0) is not a cobordism invariant (contrary to

the assertions of [Ran89, 7.21, 7.22]).

There are two main aims of this chapter, firstly to develop a more satisfac-

tory definition of the absolute torsion of a chain equivalence with good additive
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and composition formulae and secondly to define an absolute torsion invariant of

Poincaré complexes which behaves predictably under cobordism. Section 5.1 is

devoted to the first of these aims. Following [Ran85] we work in the more general

context of an additive category A. The chief novelty here is the introduction of a

signed chain complex; this is a pair (C, ηC) where C is a finite chain complex and

ηC is a “sign” term living in K1(A), which will be made precise in section 5.1. We

give definitions for the sum and suspension of two signed chain complexes, and

we define the absolute torsion of a chain equivalence of signed chain complexes.

τNEW (f : C → D) ∈ Kiso
1 (A)

This gives us a definition of absolute torsion with good additive and composition

formulae at the cost of making the definition more complicated by adding sign

terms to the chain complexes. This definition is similar to the one given in

[Ran85], indeed if the chain complexes C and D are round and ηC = ηD = 0

then the definition of the absolute torsion of a chain equivalence f : C → D is

precisely that given in [Ran85]. When working over a ring R the absolute torsion

defined here reduces to the usual torsion in K̃1(R).

In section 5.3 we work over a category with involution and define the dual of

a signed chain complex. We can then define in section 5.5 the absolute torsion of

a symmetric Poincaré complex to be the absolute torsion of the chain equivalence

φ0 : Cn−∗ → C. This new invariant is shown to be additive and to have good

behavior under round algebraic cobordism. Although we have to choose a sign

ηC in order to define the absolute torsion of φ0, we show that the absolute torsion

is independent of this choice.

In chapter 6 we compute the absolute torsion of fibration using the techniques

of [HKR05]. This is a generalization of the result of [HKR05] to fibrations of

Poincaré spaces. In chapter 7 we compute the absolute torsion of a twisted

tensor product in order to prove that the signature of a fibration is multiplicative

modulo four, one of our two main Theorems.

1.8 The generalized Pontrjagin square.

To investigate the multiplicativity of the signature modulo eight we will make use

of the fact that the signature modulo eight can be determined from the Pontr-

jagin square (see chapter 8 for details). The Pontrjagin square is a cohomology

operation:

P : Hk(X;Z2) → H2k(X;Z4)
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which refines the Z2-valued cup product; i.e. i∗P(x) = x ∪ x ∈ H2k(X;Z2)

where i∗ : H2k(X;Z4) → H2k(X;Z2) is the map induced by the non-trivial map

Z4 → Z2. If X is a 2k-dimensional Poincaré space then we have a map:

P : Hk(X;Z2) → Z4

x 7→ 〈[X],P(x)〉

given by the Pontrjagin square evaluated on the fundamental class. One can

also define a map P : Hk(C;Z2) → Z4 for 2k-dimensional symmetric Poincaré

complexes (C, φ) over Z which is consistent with that defined for spaces. It is a

Theorem of Morita ([Mor71], see also Theorem 8.5) that in the case where k is

even the Arf invariant of P detects the signature of a symmetric Poincaré space

modulo eight. Our novelty is to introduce a generalized Pontrjagin square for a

2k-dimensional symmetric Poincaré complex over a ring with involution R and

an ideal I in the ring:

P(C,φ),I : Hk(C;R/I) → R/(I2 + 2I)

which is a further refinement of the Pontrjagin square. If we now take R to be a

group ring Z[π] and the ideal I = ε−1(2Z) we have a map:

P(C,φ),I : Hk(C;Z2) → Z[π]/I2 = Z4 ⊕H1(π;Z2) (1.8.1)

We say a (Z,m)-symmetric representation is Z2-trivial if

U(r)⊗ Z2 = ε(r)I ⊗ Z2 : A⊗ Z2 → A⊗ Z2

This is satisfied for the (Z,m)-symmetric representation of a fibration F 2m →
E2m+2n → B2n if the action of π1(B) on (Hm(F ;Z)/torsion)⊗ Z2 is trivial.

It turns out that the Pontrjagin square on a twisted tensor product of a sym-

metric complex (C, φ) and a Z2-trivial (Z,m)-symmetric representation (A,α, U)

can be expressed in terms of the map 1.8.1 on (C, φ) and the map α. Moreover it

is seen to depend only on the diagonal elements of the matrices U(g). This implies

that the signature of the twisted product is equal to the sum of the signatures of

twisted products of (C, φ) and rank 1 (Z,m)-symmetric representations. There-

fore it is sufficient to demonstrate modulo eight multiplicativity of the signature

for such representations.

1.9 Chapter outlines.

In chapter 2 we recall all of the necessary theory of symmetric Poincaré complexes.

In chapter 3 we derive our algebraic description of a fibration; this is used in

14



chapter 4 to prove Theorem 4.9 which gives us an algebraic description of the

signature of a fibration. We develop the theory of Absolute Whitehead torsion

in chapter 5 which we apply in chapter 6 to compute the absolute torsion of the

total space of a fibration and in chapter 7 to show that the signature of a fibration

is multiplicative modulo four. Finally in chapter 8 we prove our modulo eight

result.
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help and encouragement during my time as a student at Edinburgh, and for

suggesting these projects. I would also like to thank Ian Hambleton for many

useful conversations and for going beyond the call of duty by carefully checking

the sign terms in chapter 5 while suffering from jet lag. Finally I wish to thank

my fellow graduate students in the School of Mathematics, particularly those in

room 4620, for making my time in Edinburgh so enjoyable.
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Chapter 2

Chain complexes, the algebraic
theory of surgery and the
symmetric construction.

In this chapter we will recall some of the algebraic theory of Ranicki [Ran80a,

Ran80b], which underpins the results of this thesis. As the name suggests, the

Algebraic Theory of Surgery was origionally developed to give a purely algebraic

formulation of the surgery theory of Wall [Wal99] via quadratic complexes. We

will not be directly concerned with surgery theory here, although we will be

comparing our results with the surgery transfer of Lück and Ranicki [LR92]. The

main algebraic basis of this thesis will be the closely related symmetric complexes

which, in the same way that quadratic complexes are an algebraic model of surgery

obstructions, provide an algebraic model of certain properties of a space which

arise from the diagonal map. The process of extracting this algebra from an

actual topological space is called the symmetric construction, originally due to

Mischenko but in the present formulation to Ranicki [Ran80b].

2.1 Symmetric L-theory

All chain complexes are finite and non-zero only in positive dimensions unless

stated otherwise.

We will develop the theory in the most general way with chain complexes in

an additive category A. We will write A(R) for the additive category of finitely

generated free left R-modules and Abased(R) if in addition the modules are to be

based. We denote by D(A) the additive category of finite chain complexes in an

additive category A with morphisms the chain homotopy classes of chain maps.

This category is referred to throughout as the derived category . We write D(R)

as shorthand for D(A(R)).
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Following [Ran89] we define an involution on an additive category A to be a

contravariant functor

∗ : A → A; M →M∗, (f : M → N) → (f ∗ : N∗ →M∗)

together with a natural equivalence

e : idA → ∗∗ : A → A; M → (e(M) : M →M∗∗)

such that for any object M of A

e(M∗) = (e(M)−1)∗ : M∗ →M∗∗∗

A functor of derived categories with involution consists of a functor F : A → B
of the underlying categories together with a natural equivalence H : F∗ → ∗F :

A → B such that for every M ∈ A there is a commutative diagram:

F (M)
e(F (M)) //

F (e(M))
��

F (M)∗∗

G(M)∗

��
F (M∗∗)

G(M∗) // F (M∗)∗

Given a ring with involution R the category A(R) and Abased(R) are categories

with involution ∗M = M∗. We the left action of an element r ∈ R on M∗ is

defined to be the right action of the involution applied to r. When we work over

a ring with involution we have left actions as well as right actions so the tensor

product M ⊗R N is always well-defined.

We write SCr = Cr−1 for the suspension of a chain complex. We should state

the sign conventions that we’ll be using:

Sign Convention 2.1. The tensor product C⊗SD of chain complexes C and D

of right, respectively left S-modules is a chain complex given by:

(C ⊗D)n =
⊕
i+j=r

Ci ⊗Dj

dC⊗D(x⊗ y) = x⊗ dD(y) + (−)jdC(x)⊗ y

Sign Convention 2.2. We define the algebraic mapping cone of a chain map

f : C → D to be the chain complex C(F ) given by :

dC(f) =

(
dD (−)r+1f
0 dC

)
: C(f)r = Dr ⊕ Cr−1 → C(f)r−1 = Dr−1 ⊕ Cr−2

17



Sign Convention 2.3. Given a n-dimensional chain complex

C : Cn
d−→ Cn−1

d−→ Cn−2
d−→ . . .

d−→ C0

we use the following sign convention for the dual complex Cn−∗.

dCn−∗ = (−)rd∗C : Cn−r → Cn−r+1

We define the duality isomorphism T as:

T : HomA(Cp, Dq) → HomA(Dq, Cp) ; φ→ (−)pqφ∗

Before we get into the full technical detail of symmetric complexes we start

off with a slightly easier notion that will be useful later on. We define an n-

dimensional symmetric chain equivalence (C, φ) in A to be an n-dimensional chain

complex C in A and a chain equivalence φ0 : Cn−∗ → C such that Tφ0 : Cn−∗ → C

is chain equivalent to φ0. We see that φ induces an isomorphism in homology

φ : Hn−r(C) → Hr(C) such that φ = (−)r(n−r)φ∗ : Hn−r(C) → Hr(C). We define

the signature of a 4k-dimensional symmetric chain equivalence in A(Z) (or Q, R

or C) to be the signature of the form φ : H2k(C) → H2k(C). We denote this by

sign(C, φ).

Definition 2.4. 1. An n-dimensional symmetric complex (C, φ0) is a finite

chain complex C in A, together with a collection of morphisms

φ = {φs : Cn−r+s → Cr | s ≥ 0}

such that

dCφs + (−)rφsd
∗
C + (−)n+s+1(φs−1 + (−)sTφs−1) = 0

: Cn−r+s−1 → Cr (s ≥ 0, φ−1 = 0)

Hence φ0 : Cn−∗ is a chain map and φ1 is a chain homotopy φ1 : φ0 ' Tφ0.

2. The complex is said to be Poincaré if φ0 is a chain equivalence. In this case

(C, φ0) is an n-dimensional symmetric chain equivalence.

3. A morphism between n-dimensional symmetric complexes (C, φ) and (C ′, φ′)

consists of a chain map f : C → C ′ and morphisms σs : C ′n+1+s−r → C ′
r

s ≥ 0 such that

φ′s − fφsf
∗ = dCσs + (−)rσsd

∗
C + (−)n+s(σs−1 + (−)sTσs−1) : Cn−r+s → Cr

(in particular φ′0 ' fφ0f
∗). Such a morphism is said to be a homotopy

equivalence if f is a chain equivalence.
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4. The boundary (∂C, ∂φ) of a n-dimensional symmetric complex (C, φ) is the

(n− 1)-dimensional symmetric Poincaré complex defined by

d∂C =

(
dC (−)rφ0

0 (−)rd∗C

)
: ∂Cr = Cr+1 ⊕ Cn−r →

∂Cr−1 = Cr ⊕ Cn+1−r

∂φ0 =

(
(−)n−r−1Tφ1 (−)rn

1 0

)
: ∂Cn−r−1 = Cn−r ⊕ Cr+1 →

∂Cr = Cr+1 ⊕ Cn−r

∂φs =

(
(−)n−r−1Tφs+1 (−)rn

0 0

)
: ∂Cn−r+s−1 = Cn+s−r ⊕ Cr−s+1

→ ∂Cr = Cr+1 ⊕ Cn−r

We will show how symmetric complexes occur topologically in the next section.

A more intrinsic way of defining symmetric complexes in A(R) (R a ring with

involution) is as follows: We have a slant product:

\ : C ⊗S D → Hom(C−∗, D)

x⊗ y 7→ (f 7→ ¯f(x).y)

Let W be the standard free resolution of Z over Z[Z2]:

W : ...→ Z[Z2]
1−T−−→ Z[Z2]

1+T−−→ Z[Z2]
1−T−−→ Z[Z2]

Then for a finite chain complex C we may regard a symmetric complex (C, φ) to

be an n-cycle in the chain complex

φ ∈ HomZ[Z2](W,C ⊗R C)

(the action of Z2 on C ⊗R C is given by interchanging the components) with the

morphisms φi being the images under φ of the canonical generators of W after

applying the slant product.

Definition 2.5. We define an (n + 1)-dimensional symmetric pair (f : C →
D, (δφ, φ)) to be a symmetric complex (C, φ), a chain map f : C → D and

{δφs : Dn+1+s−r → Dr} a collection of morphisms such that:

(−)n+1fφsf
∗ = dDδφs + (−)rδφsd

∗
D + (−)n+s(δφs−1 + (−)sTδφs−1)

: Dn−r+s → Dr (s ≥ 0, δφ−1 = 0)

The pair is said to be Poincaré if the chain map:(
δφ0

(−)n+r+1φ0f
∗

)
: Dn+1−∗ → C(f)

is a chain equivalence.
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The condition of a pair being Poincaré is equivalent to saying that the chain

map: (
δφ0 fφ0

)
: C(f)n+1−∗ → D

is a chain equivalence. The reason we bring this up in the first place is that there

is a Theorem of Ranicki [Ran80a] which states that a symmetric Poincaré complex

(C, φ) is homotopy equivalent to the boundary of some symmetric complex if and

only if there exists a symmetric Poincaré pair (f : C → D, (δφ, φ)). We say that

a symmetric Poincaré complex satisfying these conditions is null-cobordant. We

often refer to a pair as a null-cobordism of (C, φ).

We now define the symmetric L-groups Ln(A) of an additive category with

involution to be the set of n-dimensional symmetric Poincaré complexes (with ad-

dition given by direct sum) modulo those which are null-cobordant. In particular

this implies that homotopy equivalent symmetric Poincaré complexes represent

the same element in Ln(A). We will write Ln(R) = Ln(A(R)). As an example we

recall from [Ran80b] the computation of the symmetric L-groups of Z.

Proposition 2.6. The symmetric L-groups of Z for n ≥ 0 are as follows:

Ln(Z) =


Z (signature)
Z2 (de Rham invariant)
0
0

for n ≡


0
1
2
3

There is a lot more that can be said about symmetric L-theory and how it

relates to the other constructions of algebraic surgery; for more information see

[Ran80a, Ran80b].

2.2 The symmetric construction.

We now explain how the above algebra occurs topologically. We will show that

for an n-dimensional Poincaré space X there is an associated symmetric Poincaré

complex over Z[π1(X)].

Let X be a space with the homotopy type of a CW -complex. We may as

well replace X by such a complex so we can form the chain complex C(X). Let

X̃ → X be the universal cover of X. Then the chain complex C(X̃) may be

regarded as a chain complex of finite free left Z[π1(X)]-modules. For any space

we have the diagonal map X̃ → X̃ × X̃; x 7→ (x, x). If we approximate this via

the G-CW -approximation Thorem we get a chain map:

∆X : C(X̃) → C(X̃)⊗Z C(X̃)
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which extends (via acyclic model theory, see e.g. [MT68], [Ran80b]) to a map:

∆X : C(X̃) → HomZ[Z2](W,C(X̃)⊗Z C(X̃))

We can now tensor with Z to get a map:

∆X ⊗Z[π1(X)] Z : C(X) → HomZ[Z2](W,C(X̃)⊗Z[π1(X)] C(X̃))

If now X is an n-dimensional Poincaré space then we can find a chain level repre-

sentative of the orientation class [X] on the left hand side. The image of [X] under

the map ∆X⊗Z[π1(X)]Z determines a symmetric Poincaré complex (C(X̃), φ). We

say that this symmetric Poincaré complex represents X̃. The process by which

(C(X̃), φ) is obtained from X̃ is often referred to as the symmetric construction.

Note that the homotopy class of (C(X̃), φ) is independent of any choices that

may have been made. We write σ∗(X̃) ∈ Ln(Z[π1(X)]) for the class of (C(X̃), φ)

in the symmetric L-group and refer to this as the symmetric signature of X.

We don’t have to take the universal cover of X as our starting point. For every

regular covering X̂ → X with group of transformations π we can play the same

game and obtain an element of Ln(Z[π]). However this will not contain any more

information than the symmetric Poincaré complex obtained from the universal

cover. For example, let X → Y be a map with X a Poincaré space and let X̂ be

the pull-back of the universal cover of Y . Then the symmetric Poincaré complex

representing X̂ can be obtained from (C(X̃), φ) by tensoring with Z[π1(Y )] thus:

(C(X̃)⊗Z[π1(X)] Z[π1(Y )], φ⊗Z[π1(X)] Z[π1(Y )])

Here the action of Z[π1(X)] on Z[π1(Y )] is determined by the induced map

π1(X) → π1(Y ). In particular by tensoring with Z we can obtain an ele-

ment of Ln(Z) representing the trivial cover. If n = 4k then the signature of

σ∗(X) ∈ L4k(Z) is just the signature of X.

2.3 Visible symmetric complexes

The symmetric L-groups have the disadvantage that not every element of Ln(Z[π])

is realizable as the symmetric signature of a Poincaré space σ∗(X̃). However

Michael Weiss has developed a variation on symmetric L-theory called visible

symmetric L-theory [Wei92]. He constructs groups V Ln(Z[π]) in which every

element can be represented by a symmetric Poincaré complex (for high enough

dimension). We will discuss only group rings over the integers, see [Wei92] for a

complete description.
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Let Z[π] be a group ring and let P be a right free resolution of Z over Z[π].

Then a visible symmetric complex consists of a chain complex C in A(Z[π]) along

with an n-cycle in:

φ ∈ P ⊗Z[π] HomZ[Z2](W,C ⊗Z C)

The augmentation map P → Z determines a natural map:

P ⊗Z[π] HomZ[Z2](W,C ⊗Z C) → Hom(W,C ⊗Z[π] C)

so we have a natural way of making a symmetric complex from a visible symmetric

one. A visible symmetric complex is said to be Poincaré if it is Poincaré as

a symmetric complex. We write V Ln(Z[π]) for the group of visible Poincaré

complexes modulo the boundaries of such complexes. There is a natural map:

V Ln(Z[π]) → Ln(Z[π])

We will only really be concerned with symmetric complexes that occur as visible

symmetric complexes so we’re not going to be saying any more about V Ln(Z[π]).

However it should be noted that it is (in principle) easier to compute than

Ln(Z[π]). To get the right feel for visible symmetric complexes the reader should

try and prove this lemma (quoted from [Ran92]).

Lemma 2.7. Let (C, φ) be a 0-dimensional visible symmetric complex over Z[π].

Then for all x ∈ C0:

〈φ0(x), x〉

is of the form a+ b+ b∗, with a ∈ Z and b ∈ Z[π]

A symmetric Poincaré complex which occurs as the symmetric signature of a

Poincaré space X is always visible (see [Wei92] page 466 for details).
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Chapter 3

The chain complex of a fibration.

All topological spaces will be compactly generated.

The aim of this chapter is to prove a theorem linking algebra and topology

(Theorem 3.11). This theorem extracts just enough information from the topo-

logical situation of a fibration p : E → B satisfying assumption 1.2 to allow

us to apply the algebraic techniques developed later in this thesis. This is the

only chapter of this thesis with a significant amount of “hands on” topology in it

and as such can be read quite independently of the rest of this thesis. Similarly

there is nothing after the statement of Theorem 3.11 which the rest of the thesis

depends on.

The theory is very much inspired by [HKR05],[LR88] and especially [Lüc86],

indeed much of the notation comes from here and a few of the arguments. We

always note in the text where this is the case. The theory developed here differs

from [Lüc86] in two significant aspects:

• In [Lüc86] Lück was concerned solely with the algebraic K-theory transfer

map p! : Ki(Z[π1(B)]) → Ki(Z[π1(E)]) (i = 0, 1) and was able to take

advantage of the existence of a geometric realization of the elements of

Wh(π1(B)). In other words he could make the geometry match the algebra

whereas we will have to make the algebra match the geometry. Specifically

we will have to algebraically model filtered complexes to develop a filtered

version of this theory (see the section on filtered complexes below).

• Since we will be concerned with Poincaré duality we will have to consider

the diagonal approximation on the total space.

We should also mention the relationship between this theory and that developed

in [HKR05] for PL-manifolds. The definition of a CW -model 3.14 is a reflection of

that of a “pointed fibre bundle torsion structure” in [HKR05], and is also followed

by a “realization” theorem (Theorem 3.15). The advantage to our approach is not
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only that it holds for more general topological spaces but that we avoid having

to deal with absolute torsion in the topological part of the argument. This not

only cleans it up but also allows the theory to be applied in other situations.

3.1 Filtered complexes and filtered spaces.

3.1.1 Filtered complexes.

We recall the following definition from [HKR05]. Let A be an additive category.

Definition 3.1. 1. A k-filtered object F∗M in A is an object M in A together

with a direct sum decomposition:

M = M0 ⊕M1 ⊕ . . .⊕Mk

which we regard as a length k filtration

F−1M = 0 ⊂ F0M ⊂ F1M ⊂ . . . ⊂ FkM = M

with

FjM = M0 ⊕M1 ⊕ . . .⊕Mj (0 ≤ j ≤ k).

We refer to Mr as the r-th filtration quotient of M .

2. A filtered morphism f : F∗M → F∗N of k-filtered objects in A is a mor-

phism in A of the type

f =


f0 f1 f2 . . . fk
0 f0 f1 . . . fk−1

0 0 f0 . . . fk−2
...

...
...

. . .
...

0 0 0 . . . f0

 : M =
k⊕
s=0

Ms → N =
k⊕
s=0

Ns

so that

f(FjM) ⊆ FjN (0 6 j 6 k) .

The (u, v)-component of this upper triangular matrix is a morphism fv−u : Mv →
Nu, 0 6 u 6 v 6 k, where fj : M∗ → N∗−j, 0 6 j 6 k, are graded mor-

phisms in A. We refer to the fj as the component morphisms of f .

3. We denote by Filk(A) the additive category whose objects are filtered objects

in A and whose morphisms are filtered morphisms.

4. A filtered complex F∗C in A is a chain complex in Filk(A). We write Cr

for the r-th object in the chain complex and write Cr,s for the s-th filtration

quotient of Cr.
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5. A filtered map f : F∗C → F∗D of filtered complexes is a chain map in

Filk(A).

Example 3.2. Let C and D be chain complexes in A(R) and A(R) respectively,

where R and S are rings. Then the tensor product chain complex C ⊗Z D may

be regarded as a filtered complex with (C ⊗D)r,s = Cs ⊗Dr−s.

3.1.2 The associated complex

We will now define the associated complex of a filtered complex. This is a chain

complex in the derived category D(A), in other words it is a chain complex whose

objects are chain complexes in A and whose differentials are chain homotopy

classes of chain maps.

Definition 3.3. Let F∗C be a k-filtered complex in A. We write dj : Cr,s →
Cr−1,s−j for the component morphisms of the differential d. The associated com-

plex G∗(C) is a k-dimensional complex in D(A)

G∗(C) : Gk(C) → . . .→ Gr(C)
Grd−−→ Gr−1(C) → . . .→ G0(C)

The objects Gr(C) are chain complexes in A given by:

dGrC = d0 : Gr(C)s = Cr+s,r → Gr(C)s−1 = Cr+s−1,r

and the differentials G∗d are the chain homotopy classes of the maps

Grd = (−)sd1 : Gr(C)s = Cr+s,r → Gr−1(C)s = Cr+s−1,r−1.

Example 3.4. The associated complex of a tensor product C⊗D with the filtered

structure defined in example 3.2 has objects:

Gr(C ⊗D) = Cr ⊗D

and differentials

G∗d = dC ⊗ 1 : Cr ⊗D → Cr−1 ⊗D
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3.1.3 Filtered spaces.

Here we define the notion of a filtered space and prove a two technical lemmas

which will be useful later on. We work in the category of compactly generated

spaces.

Definition 3.5. • A k-filtered space X is a topological space X together with

a series of sub-spaces

X−1 = 0 ⊂ X0 ⊂ X1... ⊂ Xk = X

To avoid introducing extra terminology we also insist that each inclusion

Xj ⊂ Xj+1 be a cofibration - this will always be the case in this thesis. We

will sometimes have a base-point x0 ∈ X0.

• A filtered map between two filtered spaces X and Y is a map f : X → Y

such that f(Xj) ⊂ Yj. A filtered homotopy between two such maps f and

f ′ is a homotopy H : X × I → Y such that H(Xj × I) ⊂ Yj. A filtered

homotopy equivalence is a filtered map f : X → Y such that there exists a

filtered map g : Y → X such that fg and gf are filtered homotopic to the

identity maps on Y and X respectively.

• A k-filtered CW-complex X is a CW-complex X together with a series of

sub-complexes

X−1 = 0 ⊂ X0 ⊂ ... ⊂ Xk = X

The cellular chain complex C(X) is filtered with

FjC(X) = C(Xj)

A cellular map f : X → Y between filtered CW-complexes X and Y is said

to be filtered if f(Xj) ⊂ Yj. In this case the chain map f∗ : C(W ) → C(Y )

is filtered.

Notice that GjC(X) = S−jC(Xj, Xj−1) for a filtered CW -complex X.

Our main example of a filtered complex arises from a fibration p : E → B

satisfying assumption 1.2. The CW -complex B is filtered by its skeleta and we

give E a filtered structure by defining Ek := p−1(Bk). Each inclusion Ek−1 ⊂ Ek

is a cofibration because we’re working in the category of compactly generated

spaces.

Lemma 3.6. A filtered map f : X → Y is a filtered homotopy equivalence if and

only if each fj : Xj → Yj is a homotopy equivalence of unfiltered spaces.
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Proof. Apply the result of Brown [Bro68] 7.4.1 inductively.

A filtered cellular map f : X → Y of filtered CW -complexes induces a filtered

map F∗f : F∗C(X) → F∗C(Y ). The following lemma should help the reader get

a feel for how the algebra matches the topology.

Lemma 3.7. Let f, f ′ be filtered homotopic filtered cellular maps between cellular

maps X and Y . Then:

G∗f = G∗f
′ : C(X) → C(Y )

Proof. The map fj : GjC(X) → C(Y ) depends only on the homotopy class of

the map of pairs (fj, fj−1) : (Xj, Xj−1) → (Yj, Yj−1) which in turn depends only

on the filtered homotopy class of f .

For a discrete group G we have a corresponding notation of a filtered G-space

and a filtered G-CW -complex. The obvious G-space versions of the above lemmas

hold.

3.1.4 Products of filtered complexes and spaces.

Definition 3.8. There is a natural map:

(C ⊗D)⊗ (C ′ ⊗D′) → (C ⊗ C ′)⊗ (D ⊗D′)

given by

cp ⊗ dq ⊗ c′r ⊗ d′s 7→ (−)qrcp ⊗ c′r ⊗ dq ⊗ d′s

Given filtered complexes F∗C and F∗D over rings R and S respectively we

can form the filtered complex F∗(C ⊗Z D) with filtration quotients given by:

Fr(C ⊗Z D) =
⊕
i+j=r

FiC ⊗Z FjD

By analogy with the lost sign-term of algebraic surgery, for filtered complexes

F∗C and F∗D we have a natural map

θC,D : G∗(C ⊗D) → G∗C ⊗G∗D

where the tensor of chain complexes in D(A) is given by the Z-tensor products of

the object chain complexes. This map is given explicitly by:

θ : cp,q ⊗ dr,s 7→ (−)s(p+q)cp,q ⊗ dr,s
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If now X and Y are filtered spaces then we define the product space X × Y

by

(X × Y )r =
⋃
i+j=r

Xi × Yj

Observe that F∗C(X × Y ) = F∗(C(X)×D(X)) so we have a map:

θX,Y := θC(X),C(Y ) : G∗C(X × Y ) → G∗(X)⊗G∗(Y )

3.2 G-Fibrations

In this thesis we will be dealing with the more general notion of a G-fibration,

this is a fibration with a group action on the total space:

Definition 3.9 ([Lüc86] definition 1.1). Let G be a discrete group. A G-fibration

consists of a G-map E → B with E a G-space and B a plain topological space

(with the trivial G-action) which satisfies the G-equivariant homotopy lifting prop-

erty, that is for all G-spaces X, G-map f : X → E and map F : X × I → B

such that F (x, 0) = f(x) we may find a G-homotopy H : X × I → E such that

H(x, 0) = f(x) and p(H(x, t)) = F (x, t).

Note that a fibration is a G-fibration with G the trivial group. For any fibra-

tion p : E → B we may form the π1(E)-fibration p̂ : Ẽ → B by composing p with

the universal cover of E; this will be our main example of a G-fibration.

Following Lück [Lüc86] we introduce some standard terminology:

• A map (f̄ , f) : p → p′ between G-fibrations p : E → B and p′ : E ′ → B′

consists of a pair of G-maps f̄ : E → E ′ and f : B → B′ such that

p′ ◦ f̄ = f ◦ p.

• A G-homotopy between G-maps f1, f2 : X → Y between G-spaces X and Y

is a homotopy H : X × I → Y between f1 and f2 which is a also a G-map,

where G acts on the left-hand side by acting only on X.

• A G-fibre homotopy between G-maps f1, f2 : Z → E is a G-homotopy h :

Z × I → E such that p ◦ h = p ◦ f1 = p ◦ f2

3.2.1 Fibre transport.

This material is also from Lück [Lüc86].

Let E
p−→ B be a G-fibration and h : f0 ' f1 : Z → B a G-homotopy between

two maps from a G-space Z into the base space. Then we can construct a G-fibre
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homotopy equivalence f ∗0E → f ∗1E as follows: The lifting problem below has a

solution H

f ∗0E
f̂0 //

��

E

p

��
f ∗0E × I

h◦(pf0
,Id)

//

H

77nnnnnnnnnnnnnn
B

By the universal property of the pull-back we have a map of G-fibrations αh :

f ∗0E → f ∗1E such that the diagram

f ∗0E
H(−,1)

**UUUUUUUUUUUUUUUUUUUUUUU

pf0

��3
33

33
33

33
33

33
33

3
αh

""EE
EE

EE
EE

f ∗1E
f̂1

//

pf1

��

E

p

��
Z

f1 // B

commutes. One can easily verify that the G-fibre homotopy class of αh depends

only on the G-homotopy class of h. Furthermore if now g : Z × I → B is a G-

homotopy between f1 and a map f2, and h ∗ g is the obvious homotopy between

f0 and f2 then

αh∗g 'pf2
αg ◦ αh (3.2.1)

If we now consider a loop x representing an element of π1(B) as a G-homotopy

from b0 to itself then we have a map αx : F → F . This depends only on the class

of x in π1(B) and we write u(x) : F → F for the G-homotopy class of maps given

by αx. Hence we have a map

u : π1(B) → [F, F ]opG

which is a homomorphism of monoids by equation 3.2.1. In particular each u(g)

is a homotopy equivalence.

3.2.2 Algebraic fibre transport.

We now concentrate on the π1(E)-fibration p̂ : Ẽ → B for some fibration p : E →
B satisfying assumption 1.2. The transport of the fibre F̂ = p̂−1(b0) along an

element x is π1(E)-equivariant, so fibre transport determines a homomorphism

u : π1(B) → [F̂ , F̂ ]opπ1(E)

into the monoid of π1(E)-homotopy classes of π1(E)-equivariant self maps of F̂ .

Suppose now we have a π1(E)-CW -complex F̂CW which is π1(E)-homotopy

equivalent to F̂ . Then we can form the chain complex C(F̂ ) of free Z[π1(E)]-

modules. The map u determines an algebraic map:

u∗ : π1(B) → [C(F̂ ), C(F̂ )]op
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which extends to a ring morphism.

U : Z[π1(B)] → [C(F̂ ), C(F̂ )]op

3.2.3 Transfer functors.

We recall the following from Lück and Ranicki [LR88].

Definition 3.10. A representation (A,U) of a ring R in an additive category A
is an object A in A together with a morphism of rings U : R→ HomA(A,A)op.

A representation (A,U) of a ringR determines a transfer functor F : Abased(R) →
D(A) as follows:

F (Rn) = An

F ((aij) : Rn → Rm) = (U(aij) : An → Am)

We denote this functor by −⊗ (A,U) : Abased(R) → D(A).

Given a fibration E
p−→ B, the fibre transport map

U : Z[π1(B)] → [C(F̂ ), C(F̂ )]op

constructed above gives rise to a representation (C(F̂ ), U) of the ring Z[π1(B)]

in the category D(A(Z[π1(E)])). This determines the transfer functor of the

fibration:

−⊗ (C(F̂ ), U) : Abased(Z[π1(B)]) → D(A(Z[π1(E)]))

(in [HKR05] this functor is denoted by JF ).

If we apply such a functor to a chain complex of objects in Abased(Z[π1(B)]

(i.e. a chain complex of based free modules) then we get a chain complex whose

objects are themselves chain complexes and the differentials are given by chain

complexes of chain maps.

The transfer for the product of a fibration with itself p̂× p̂ : Ẽ × Ẽ → B ×B

is given by:

−⊗ (C(F̂ )⊗Z C(F̂ ), U ⊗Z U) : Abased(Z[π1(B)× π1(B)]) → D(Z[π1(E)× π1(E)])

By analogy with the map θC,D for filtered complexes, for all Z[π1(B)] chain com-

plexes C and D there is a natural map:

θC,D : (C⊗ZD)⊗(C(F̂ )⊗ZC(F̂ ), U⊗ZU) → (C⊗(C(F̂ ), U))⊗Z (D⊗(C(F̂ ), U))

given by:

θC,D : (cp ⊗ dq)⊗ (fr ⊗ f ′s) 7→ (−)pq(cp ⊗ fr)⊗ (dq ⊗ f ′s)

We are now in a position to state the main theorem of this chapter:
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Theorem 3.11. Let E → B be a fibration satisfying assumption 1.2, ∆(B) :

C(B̃) → C(B̃)⊗C(B̃) a chain approximation of the diagonal and suppose further

that we have chosen a basis for C(B̃). Then there exists a filtered π1(E)-CW-

complex X, filtered π1(E)-homotopy equivalent to Ẽ, and a filtered chain diagonal

approximation ∆(X) such that:

1. There exists a natural chain isomorphism E : G∗C(X) → C(B̃)⊗(C(F̂ ), U)

on chain complexes in D(Z[π1(E)]).

2. The diagram

G∗C(X) EX
//

G∗C(∆X)

��

C(B̃)⊗ (C(F̂ ), U)

G∗C(∆
eB)⊗∆F̂

��
G∗(C(X)⊗Z C(X))

θX,X

��

(C(B̃)⊗ C(B̃))⊗Z (C(F̂ )⊗ C(F̂ ), U ⊗ U)

θC( eB),C( eB)

��
G∗C(X)⊗Z G∗C(X)

EX⊗EX
// (C(B̃)⊗ (C(F̂ ), U))⊗Z (C(B̃)⊗ (C(F̂ ), U))

(3.2.2)

commutes, where ∆(F̂ ) is the unique chain homotopy class of the diagonal

map on C(F̂ ).

When we say that the chain isomorphism E is natural we mean that for all such

fibrations there is a specific choice of E which satisfies the following: Suppose that

f : B′ → B is a cellular map; we write B̃′ for the pull-back of the universal cover

of B over f . If apply the above theorem for f ∗Ẽ then there exists some space X ′

filtered π1(E)-homotopy equivalent to f ∗Ẽ and a natural map E ′ : G∗C(X ′) →
C(B̃′)⊗(C(F̂ ), U). Then naturality of the maps E and E ′ means that the diagram:

C(X ′) //

E ′
��

C(X)

E
��

C(B̃′)⊗ (C(F̂ ), U)
C( ef)⊗(C(F̂ ),U) // C(B̃)⊗ (C(F̂ ), U)

(3.2.3)

commutes in D(Z[π1(E)]).

The rest of this chapter is devoted to the proof of this theorem; none of the

material is used elsewhere in the thesis.

3.2.4 Trivializations of the bundle.

The first thing that we need to do is to investigate the pull-back of a bundle over

an attaching map on the base space. We recall again from [Lüc86]:
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Definition 3.12. Let (D, d0) be a pointed contractible space, f : D → B a map

and ξ a path from f(d0) to b0. Given any homotopy h : D × I → B between the

constant map taking D to b0 and f such that h(d0, i) = ξ(i) we may construct a

map

Th(f, ξ) : D × F̂ → E

by αh : D× F̂ → f ∗E composed with the map f ∗E → E. Up to G-fibre homotopy

this map is independent of the choice of h and we write T (f, ξ) for the G-fibre

homotopy class of Th(f, ξ). Observe that p ◦ T (f, ξ) = f ◦ prD : D → B, so for a

map of pairs f : (Dk, Sk−1) → (Bk, Bk−1) we have a corresponding map

T (f, ξ) : (Dk, Sk−1)× F̂ → (Ẽk, Ẽk−1)

One may think of the map T (f, ξ) as “trivialization of the bundle along the

path ξ”. Lück proves the following:

Lemma 3.13. Let h : (Dk, Sk−1) × I → (Bk, Bk−1) be a homotopy between two

maps f1, f2 : Dk → B and ξ1, ξ2 paths from f1(d0) respectively f2(d0) to b0. Write

ξ for the path h(d0,−). Then the following diagram commutes up to homotopy of

pairs:

(Dk, Sk−1)× F̂
T (f1,ξ1) //

u(ξ1∗ξ−∗ξ−2 )×Id
��

(Ek, Ek−1)

(Dk, Sk−1)× F̂

T (f2,ξ2)

55jjjjjjjjjjjjjjjj

3.3 Describing the CW -complex of a fibration.

From this point on the proof becomes rather more algebraic and involves chain

maps. We consider all chain maps to be defined only up to chain homotopy. When

we write C(f) for maps f : X → Y of G-CW -complexes what we mean is the

chain homotopy class of some G-CW -approximation to f . This is well defined

since all such approximations yield chain homotopic chain maps. In the case

of filtered maps we will similarly take filtered G-CW -approximations. We will

identify C(Dk, Sk) with the chain complex which is Z concentrated in dimension

k; furthermore we will write C((Dk, Sk−1)×F̂ ) as SkC(F̂ ) using this identification.

We also consider (Dk, Sk−1) to be a filtered space with (k − 1)-th filtration Sk

and k-th filtration Dk. In this case we identify GkC((Dk, Sk−1) × F̂CW ) with

C(F̂CW ).

We will now fix some fibration p : E → B satisfying assumption 1.2. The

k-cells in B will be indexed by a set Jk and we will denote the attaching maps by
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(Q(j), q(j)) : (Dk, Sk−1) → (Bk, Bk−1), j ∈ Jk; we also assume that the set Jk is

ordered.

Suppose we have a map (R, r) : (Dk, Sk−1) → (Bk, Bk−1) and a path ξ from

R(d0) to b0. Then we can find a unique map (R̃, r̃, ξ) : (Dk, Sk−1) → (B̃k, B̃k−1)

such that

1. The composition of (R̃, r̃) with the universal cover projection of B is (R, r).

2. There exists a lift ξ̃ of the path ξ to the universal cover which goes from

R̃(d0) to b̃0 ∈ B̃ the base-point.

We have a chain map

C(R̃, r̃, ξ) : SkZ → C(B̃k, B̃k−1)

Taking the tensor product with Z[π1(B)] (with π1(B) acting trivially on Z) and

ignoring all but the k’th term we have a chain map

C̄(R, r, ξ) := C(R̃, r̃, ξ)k ⊗ Z[π1(B)] : Z[π1(B)] → C(B̃)k

We can use this construction to define a basis for C(B̃)k. Choosing paths ηj

for j ∈ Jk from Q(j)(d0) to the base-point b0 we have an isomorphism:⊕
j∈Jk

Z[π1B]
L
C̄(Q(j),q(j),ηj)−−−−−−−−−−→ C(B̃)k

which is effectively a basis for C(B̃)k since we’ve assumed that Jk is ordered.

From now on we assume that we’ve chosen paths ηj which define such a basis for

each C(B̃)k.

If k ≥ 2 then by the relative Hurewicz theorem we have an isomorphism:

πk(B̃k, B̃k−1, b0) ∼= C(B̃k, B̃k−1)

Furthermore we can apply the long exact sequence of a fibration to the covering

map B̃ → B to get an isomorphism of groups:

H : πk(Bk, Bk−1, b0)
∼=−→ C(B̃k, B̃k−1) (3.3.1)

We can see this map explicitly (as well as the left π1(B)-action on the left-hand

side) by using the above construction: Choose (R, r) and ξ as above. We can

always approximate ξ by a path lying in Bk−1 so we assume that ξ is such a path.

Regarding ξ− ◦ r|{d0} : {d0} × I → B as a homotopy we can use the homotopy

extension property of the pairs (Sk−1, d0) and (Dk, d0) to construct a homotopy

of pairs

H : (Dk, Sk−1)× I → (Bk, Bk−1)
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such that the diagram

(Dk, Sk−1) //

(R,r)

��

(Dk, Sk−1)× I
H

vvmmmmmmmmmmmmmmm

B d0 × I
ξ−◦r|d0oo

i×Id

OO

commutes. ThenH(−, 1) : (Dk, Sk−1) → (Bk, Bk−1) is an element of πk(Bk, Bk−1, b0).

We denote this element by (R, r, ξ). Note that this depends only on the homotopy

class of ξ modulo the end-points rather than on ξ itself, in particular it doesn’t

depend on any approximation we may have taken for ξ. The image of (R, r, ξ)

under the isomorphism 3.3.1 is given by the image of the generator 1 ∈ Z[π1B]

under the map C̄(R, r, ξ). The action of an element x of π1(B) on an element

(R, r) of π1(B̃k, B̃k−1, b0) is given by

x.(R, r) = (R, r, x−1)

(note that the inverse is required to make this into a left action)

Definition 3.14. A CW -model (X,ψX , F̂CW , λX , EX) for the total space Ẽ of a

fibration p : E → B satisfying assumption 1.2 consists of

• A π1(E)-CW -complex F̂CW and a π1(E)-homotopy equivalence λX : F̂CW →
F̂ .

• A filtered π1(E)-CW -complex X and a π1(E)-homotopy equivalence ψX :

Ẽ → X.

• For each k an isomorphism of chain complexes:

EXk : GkC(X̃)
∼=−→ C(B̃)k ⊗ (C(F̂CW ), U)

where − ⊗ (C(F̂CW ), U) : Abased(Z[π1(B)]) → D(Z[π1(B)) is the transfer

functor defined in section 3.2.3 (recall that we’ve chosen a basis for C(B̃)

so the right-hand side is well-defined)

To clear up the notation we define

TCW (f, ξ) := ψX ◦ T (f, ξ) ◦ (Id× λX) : D × F̂CW → X

for maps f : D → B from a contractible space D and paths ξ : f(d0) → b0.

In addition the following condition must be satisfied: For each attaching map

(Q(j), q(j)) : (Dk, Sk−1) → (Br, Br−1) and basis path ηj the trivialization

TCW (Q(j), ηj) : (Dk, Sk)× F̂ → (Xk, Xk−1)
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satisfies

EXk ◦G∗C(TCW (Q(j), ηj))k = C̄(Q(j), q(j), ηj)⊗ (C(F̂ ), U))

: C(F̂ ) → C(B̃)k ⊗ (C(F̂ ), U).
(3.3.2)

Note that we do not insist that the map E∗ : C(X) → C(B̃)⊗ (C(F̂ ), U) is a

chain map (of chain complexes in D(Z[π1(E)])), although it will turn out that this

is the case (Theorem 3.17). Observe also that the condition 3.3.2 is equivalent to

saying that:⊕
j∈Jk

G∗C(TCW (Q(j), ηj)) = E−1 : C(B̃)k ⊗ (C(F̂ ), U) → GkC(X) (3.3.3)

since
⊕

j∈Jk
C̄(Q(j), q(j), ηj) is by definition the based identity map.

Having made such a definition we ought to show that such things exist:

Theorem 3.15. Given a fibration p : E → B satisfying assumption 1.2 then

there exists a CW -model (X,ψX , F̂CW , λX , EX) for Ẽ.

Proof. This is essentially a “filtered” version of the argument of [Lüc86] section

7A. We first choose any π1(E)-homotopy equivalence λX : F̂CW → F̂ from some

π1(E)-space F̂CW . We now proceed by induction on the filtration of E. Since Ẽ0 is

just a disjoint union of spaces homotopy equivalent to F̂ we define X0 to be #(J0)

copies of F̂CW and ψX0 : Ẽ0 → X0 the obvious π1(E)-homotopy equivalence. We

can now simply define the map E0 to be the inverse of
⊕

j∈J0
C(TCW (Q(j), ηj))

so it clearly satisfies the condition.

We proceed to the inductive step: Suppose that we have already constructed

a CW -model (Xk−1, ψ
X
k−1, F̂

CW , λX , EX) for Ek−1. We have a π1(E)-push-out

diagram given by the attaching maps (Q(j), q(j)):

Q(j)∗Ẽ // Ẽk

q(j)∗Ẽ //

OO

Ẽk−1

OO

which we extend using the trivializations TCW (Q(j), ηj) to a diagram:

⊔
Jk
Dk × F̂CW

tT (Q(j),ηj) // Q(j)∗Ẽ // Ek

⊔
Jk
Sk × F̂CW //

OO

q(j)∗Ẽ //

OO

Ek−1

OO

ψX
k−1 // Xk−1

35



We choose a π1(E)-CW -approximation φk to the bottom row and write hk for

the homotopy. We define Xk to be the π1(E)-push-out

⊔
Jk
Dk × F̂CW

tT (Q(j),ηj) // Xk

⊔
Jk
Sk × F̂CW φk //

OO

Xk−1

OO

Observe that Xk has the structure of a π1(E)-CW -complex with attaching maps

given by those for Xk−1 and the maps Dk×FCW → Xk. Observe that Xk−1 ⊂ Xk

so Xk inherits the filtration of Xk−1. We are now required to find a filtered π1(E)-

homotopy equivalence Ẽ → X. We have a diagram of maps (c.f. [Lüc86] page

115): ⊔
j∈Jk

Q(j)∗Ẽ

��

⊔
j∈Jk

q(j)∗Ẽoo //

��

Ẽk−1

ψX
k−1

��⊔
j∈Jk

Dk × F̂CW

i0
��

⊔
j∈Jk

Sk−1 × F̂CW

i0
��

oo tTCW (Q(j),ηj) // Xk−1

Id

��⊔
j∈Jk

Dk × F̂CW × I
⊔
j∈Jk

Sk−1 × F̂CW × Ioo hk // Xk−1

⊔
j∈Jk

Dk × F̂CW

i1

OO

⊔
j∈Jk

Sk−1 × F̂CW

i1

OO

oo φk // Xk−1

Id

OO

The total space Ẽk is the push-out of the top row, the space Xk is the push-out

of the bottom row so we are required to show that each of the triplets of vertical

maps induces a homotopy equivalence of the filtered spaces given by the push-

outs of the rows (the filtrations on the push-outs of the middle two row are given

in the obvious way). The fact that all of the left-hand horizontal maps have the

homotopy extension property implies that the induced maps are homotopy equiv-

alences (see Brown [Bro68] page 249)). We can now apply the equivariant version

of lemma 3.6 to see that the induced maps are π1(E)-homotopy equivalences of

filtered spaces. Hence we have constructed the map ψX .

We have an isomorphism:

S−kC(
⊔
Jk

(Dk, Sk−1)×F̂CW ) ∼=
⊕
Jk

C(F̂ )
L
T (Q(j),ηj)−−−−−−−→ S−kC(Xk, Xk−1) ∼= GkC(X)

Again we simply define EXk to be the inverse of this map so as to satisfy the

alternative formulation of the required condition (equation 3.3.3).
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The aim now is to prove the following proposition which relates algebra and

topology for a CW -model. In effect it generalizes the condition 3.3.2 to all maps

(R, r) : (Dk, Sk−1) → (Bk, Bk−1) rather than just those that represent the basis.

It allows us to put the most technical calculations involving the fibre transport

in one place.

Proposition 3.16. Given a map (R, r) : (Dk, Sk−1) → (Bk, Bk−1) and a path ξ

from f(d0) to b0 then

EXk ◦G∗C(TCW (R, ξ))k = C̄(R, r, ξ)⊗ (C(F̂ ), U) : C(F̂CW ) → C(B̃)⊗ (C(F̂ ), U)

Proof. This is essentially proved (at least in the case k ≥ 2) in [Lüc86] section

7D, using slightly different language. The author prefers a slightly different,

more algebraic proof which is that presented here: We first demonstrate that the

proposition holds for (R, r) = (Q(j), q(j)) for some j ∈ Jk. We will write the path

ξ as ηj ∗ x for some loop x, which we can do because everything depends only on

the homotopy class of ξ modulo {0, 1}. By lemma 3.13 we have a commutative

diagram:

(Dk, Sk−1)× F̂CW
T (Q(j),ηj) //

u(x−1)
��

(Ẽk, Ẽk−1)

(Dk, Sk−1)× F̂CW

T (Q(j),x∗ηj)

33hhhhhhhhhhhhhhhhhhhhh

Composing with ψX and λX and taking associated chain complexes we get:

C(F̂CW )
G∗C(TCW (Q(j),ηj)) //

(x−1)⊗(C(F̂ ),U)
��

GkC(X)

C(F̂CW )

G∗C(TCW (Q(j),ηj∗x))

33hhhhhhhhhhhhhhhhhhhhhhhh

By the definition of a CW -model the top map is given by C̄(Q(j), q(j), ηj) ⊗
(C(F̂CW ), U) so we get

G∗C(TCW (Q(j), ηj ∗ x)) = G∗C(TCW (Q(j), ηj)) ◦ ((x)⊗ (C(F̂CW ), U))

= (x−1.C̄(Q(j), q(j), ηj))⊗ (C(F̂CW ), U)

= C̄(Q(j), q(j), ηj ∗ x)⊗ (C(F̂CW ), U)

This completes the proof of the (R, r) = (Q(j), q(j)) case, it also covers the

k = 0 case since all maps take this form. We now tackle the general case; we

will deal with the case k = 1 at the end so without further ado we assume that

k ≥ 2. The first observation which we make is that the trivialization of (R, r)
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along the path ξ is π1(E)-homotopic to the trivialization of the map (R, r, ξ) :

(Dk, Sk−1) → (Bk, Bk−1, b0) along the trivial path from b0 to itself. By lemma 3.13

the map TCW (R, r) depends (up to homotopy of pairs) only on the class (R, r, ξ) ∈
πk(Bk, Bk−1, b0). Therefore it is sufficient to prove that the lemma holds for maps

(R, r) : (Dk, Sk−1) → (Bk, Bk−1, b0) representing elements of π1(Bk, Bk−1, b0). We

have a topologically defined map:

Ω : π1(Bk, Bk−1, b0) → [C(F̂ ), C(B̃)k ⊗ (C(F̂ ), U)]

(R, r) 7→ (EXk ◦G∗C(TCW (R, Id))

In order to prove the lemma we must show that this coincides with the map given

by

(R, r) 7→ (C(R, r)⊗ (F̂CW , U))

We do this in two steps:

1. We show that Ω is a homomorphism.

2. We show that the required formula holds for generators of π1(Bk, Bk−1, b0).

For the first step, let (R, r) and (R′, r′) be two maps from (Dk, Sk−1) to (Bk, Bk−1, b0)

and let∇ : (Dk, Sk−1)∨(Dk−1, Sk−1) → (Dk, Sk−1) be the map inducing the group

structure in π1(Bk, Bk−1, b0). Then we have a commutative diagram:

(Dk, Sk−1)× F̂CW

TCW ((R∨R′)◦∇,b0)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

((Dk, Sk−1) ∨ (Dk, Sk−1))× F̂CW

∇×Id

OO

T (R,b0)∨T (R′,b0) // (Xk, Xk−1)

((Dk, Sk−1) t (Dk, Sk−1))× F̂CW

OO

TCW (R,b0)tTCW (R′,b0)

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

Taking associated chain complexes we see that Ω((R, r) + (R′, r′)) = Ω(R, r) +

Ω(R′, r′) as required for the first step. For the second step, observe that π1(Bk, Bk−1, b0)

has a basis given by element of the form ξ.(Q(j), q(j), ηj) for j ∈ Jk and ξ ∈ π1(B)

(equation 3.3.1). However proving that the required formula holds for these maps

is equivalent to proving that it holds for maps (Q(j), q(j)) and paths ηj.ξ, which

we’ve already covered at the beginning of the proof. This completes the proof of

the k ≥ 2 case.

We now turn our attention to the case k = 1. A map (D1, S0) → (B1, B0)

represents a path between vertices in B1. Any such path can be represented by

the composition of elementary paths given by the attaching maps (Q(j), q(j)) for
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j ∈ J1. We will write the composition of paths (R, r) and (R′, r′) as (R∗R′, r∗r′).
By considering the lifts of the relevant paths we deduce that

C̄(R ∗R′, r ∗ r′, ξ) = C̄(R, r, ξ) + C̄(R′, r′, R ∗ ξ)

for paths (R, r) and (R′, r′) such that R(1) = R′(0) and a path ξ in B from R(0)

to b0. In order to complete the proof we are required to show two things:

1. That C(TCW (R∗R′, ξ)) = C(TCW (R, ξ))+C(TCW (R′, R∗ξ)) : Z[π1(B)] →
C(B̃)k ⊗ (C(F̂ ), U) for (R, r), (R′, r′), ξ as above.

2. That the lemma holds for the maps (Q(j), q(j)) for all j ∈ J1 and paths

ηj.ξ for ξ ∈ π1(B).

We have already shown that the second statement is true at the beginning of the

proof. For the first statement we have a commutative diagram:

(D1, S0)× F̂CW

TCW (R∗R′,ξ)

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

((D1, S0) ∗ (D1, S0))× F̂CW

∗×ID

OO

T (R,ξ)∗T (R′,R∗ξ) // (X1, X0)

((D1, S0) t (D1, S0))× F̂CW

TCW (R,ξ)tTCW (R′,R∗ξ)

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

OO

Taking chain complexes yields the required formula and hence we’ve proved the

lemma in the case k = 1. This completes the proof of the lemma.

We now prove, as promised, that the map E is a chain map.

Theorem 3.17. Let X be a CW -model for the total space of a fibration p : E →
B. Then the maps Ek induce an isomorphism of chain complexes in D(Z[π1B]):

E : G∗C(X) → C(B̃)⊗ (C(F̂ ), U)

Proof. We are required to show that the differential in G∗C(X) is given by

Gkd = E−1
k−1 ◦ (dBk ⊗ (C(F̂ ), U) ◦ Ek : GkC(X) → Gk−1C(X)

under the identification E of GkC(X) with C(B̃)k⊗ (C(F̂ ), U). We write (q̄(j), .)

for the composition

(Dk−1, Sk−2) → (Sk−1, s0)
q(j)−−→ (Bk−1, Bk−2)
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The basis of C(B̃) identifies it with
⊕

Jk
Z[π1(B)], moreover we can describe the

map dk : C(B̃)k → C(B̃)k−1 with respect to this identification as:

dk =
⊕
Jk

C̄(q̄(j), ., ηj) : C(B̃)k → C(B̃)k−1

For each j ∈ Jk we have a commutative diagram:

C((Dk, Sk−1)× F̂ )
C(TCW (Q(j),ηj)) //

d⊗1

��

C(Xk, Xk−1)

d

��

SC((Sk−1, s0)× FCW )

∼=
��

SC((Dk−1, Sk−2)× F̂CW )
C(TCW (q̄(j),ηj))// SC(Xk−1, Xk−2)

Both the top-left and bottom-left groups can be identified with C(F̂CW ) in a

canonical way, in this case the composition of the maps on the left-hand side is

given by (−)r+k : C(F̂CW ) → C(F̂CW ) (the sign term comes from that in the

definition of the tensor product of two chain complexes).

Looking at the graded complex we get the diagram:

C(F̂CW )
GkC(TCW (Q(j),ηj)) //

Id
��

GkC(X)

Gkd

��
C(F̂CW )

GkC(TCW (q̄(j),ηj)) // Gk−1C(X)

Summing over all j ∈ Jk and extending to the right we get a diagram⊕
j∈Jk

C(F̂ )

Id
��

⊕GkC(TCW (Q(j),ηj))// GkC(X)

Gkd

��

Ek // C(B̃)k ⊗ C(F̂ )

dk⊗(C(F̂ ),U)

��⊕
j∈Jk

C(F̂ )
⊕GkC(TCW (q̄(j),ηj)) // GkC(X)

Ek−1// C(B̃)k−1 ⊗ C(F̂ )

The left-hand square clearly commutes from the above. The composition along

the the top is given by

Ek ◦
⊕
j∈Jk

GkC(TCW (Q(j), ηj)) =
⊕
j∈Jk

C̄(Q(j), q(j), ηj)⊗ (C(F̂ ), U)

= Id

:
⊕
j∈Jk

C(F̂ ) = C(B̃)k ⊗ (C(F̂ ), U) → C(B̃)k ⊗ (C(F̂ ), U)

Applying proposition 3.16 to the maps q̄(j) we see that the composition along

the bottom is given by:

Ek−1 ◦
⊕
j∈Jk

GkC(TCW (q̄(j), ηj)) =
⊕
j∈Jk

C̄(q̄(j), ., ηj)⊗ (C(F̂ ), U)

= dk ⊗ (C(F̂CW ), U)
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:
⊕
j∈Jk

C(F̂ ) = C(B̃)k ⊗ (C(F̂ ), U) → C(B̃)k ⊗ (C(F̂ ), U)

Hence the outer square commutes so we deduce that the right-hand square com-

mutes. Therefore E is a chain map as required.

3.3.1 Finishing the proof.

Proof of theorem 3.11. By theorem 3.15 there exists a CW -model (X,ψX , F̂CW , λX , EX)

for E and we take X to be the filtered space here. By theorem 3.17 the chain

maps Ek induce the required isomorphism of G∗C(X̃) with C(B̃)⊗ (C(F̂ ), U).

We must establish that this construction satisfies the required naturality prop-

erty 3.2.3. Suppose f : B′ → B is a cellular map and let B̃′ be the pull-

back of the universal cover of B over f as before. There exists a CW -model

(X ′, ψX
′
, F̂CW , λX , EX′

). Let (Q′(j), q(j)) : (Dk, Sk−1) → (B′
k, B

′
k−1) be the at-

taching maps for B′ and let η′j be some basis paths. For each k we have a diagram

of chain complexes:

⊕
J ′k
C(F̂CW )

⊕Gk(TCW (Q′(j),ηj)) //

=

��

GkC(X ′) //

E ′
��

GkC(X)

E
��⊕

J ′k
C(F̂CW )

C̄(Q(j),q(j),ηj)⊗(C(F̂ ),U)// C(B̃′)k ⊗ (C(F̂ ), U)
C( eF )⊗(C(F̂ ),U)// C(B̃)k ⊗ (C(F̂ ), U)

The left-hand square commutes from the definition of a CW -model and the outer

square commutes by Proposition 3.16. However the two left-hand horizontal maps

are isomorphism so the right-hand square must commute. Hence the CW -model

construction satisfies the required naturality condition.

The only thing left for us to do it to find the filtered approximation to the

diagonal and to show that is has the required properties. Let h : B× I → B×B
be a homotopy between diagB and a cellular map ∆B. Consider the following

diagram:

Ẽ
diag

eE
//

��

Ẽ × Ẽ

p̂×p̂
��

Ẽ × I
p̂×Id // B × I

h // B ×B

The map p× p : Ẽ × Ẽ → B × B is a π1(E)-fibration with π1(E) acting via the

diagonal action and the above diagram is a homotopy lifting problem so there
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exists a map H : Ẽ × I → Ẽ × Ẽ such that

Ẽ
diag

eE
//

��

Ẽ × Ẽ

p̂×p̂
��

Ẽ × I
p̂×Id //

H

55jjjjjjjjjjjjjjjjjj
B × I

h // B ×B

commutes. We define the filtered map ∆
eE := H(−, 1) : Ẽ → Ẽ × Ẽ and define

∆X : X → X ×X to be the composition of filtered maps:

X
(ψX)−1

−−−−→ Ẽ
∆

eE
−−→ Ẽ × Ẽ

ψX×ψX

−−−−−→ X ×X

(defined up to homotopy) We have a CW -model for the π1(E)× π1(E)-fibration

Ẽ × Ẽ given by

(X ×X,ψX × ψX , F̂CW × F̂CW , λX × λX , (θC( eB),C( eB))−1(E ⊗Z E) ◦ θX,X) (3.3.4)

We are required to show that diagram 3.2.2 commutes. Fix k > 0. For any

j ∈ Jk we choose a homotopy h between the map Q(j) : Dk → Bk and the map

taking all of Dk to the base point d0 and such that h(i, d0) : I → Bk represents

the path ηj. Choosing a lift H of the map h ◦ (iDk×I) : Dk × F̂ × I → Bk such

that

Dk × F̂
prF̂ //

��

Ẽ

p̂

��
Dk × F̂ × I

h◦(i
Dk×I

)
//

H

66mmmmmmmmmmmmmmm

B

commutes allows us to construct an explicit trivialization:

T h(Q(j), ηj) : (Dk, Sk)× F̂ → (Ẽk, Ẽk−1)

(the map H is required to explicitly construct a choice of αh). Similarly the map

H ◦∆
eE is a lift of the homotopy composing h with the diagonal approximation

h ◦∆B so we have an explicit trivialization:

T∆b◦h(∆B ◦Q(j), ηj × ηj) : (Dk, Sk)× (F̂ × F̂ ) → ((Ẽ × Ẽ)k, (Ẽ × Ẽ)k−1)

These explicit maps allow us to see that the following diagram commutes:

(Dk, Sk−1)× F̂CW
Id×diagF

//

Th(Q(j),ηj)

��

(Dk, Sk−1)× (F̂CW × F̂CW )

T∆B◦h(∆B◦Q(j),ηj×ηj)
��

Ẽ
∆E

//

��

Ẽ × Ẽ

��
X

∆X
// X ×X
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We can now take associated chain complexes of this diagram to yield:

C(F̂ )
C(∆F̂ ) //

GkC(TCW (Q(j),ηj))

��

C(F̂ × F̂ )

GkC(TCW (∆B◦Q(j),ηj×ηj))

��
GkC(X)

GkC(∆X) // GkC(X ×X)

and sum over all j ∈ Jk to obtain:

C(B̃)k ⊗ (C(F̂ ), U)
Id⊗C(∆F̂ )//

L
GkC(TCW (Q(j),ηj))

��

C(B̃)k ⊗ (C(F̂ × F̂ ), U ⊗ U)L
GkC(TCW (∆B◦Q(j),ηj×ηj))

��
GkC(X)

GkC(∆X) // GkC(X ×X)

(3.3.5)

By equation 3.3.3 we know that⊕
j∈Jk

GkC(TCW (Q(j), ηj)) = (EXk )−1

and by proposition 3.16 to the given CW -model for Ẽ × Ẽ (equation 3.3.4) we

deduce that⊕
j∈Jk

GkC(TCW (∆b ◦Q(j), ηj × ηj))

= ((θC( eB),C( eB))−1 ◦ (EXk ⊗Z EXk ) ◦ θX,X)−1

◦
⊕
j∈Jk

C̄(∆B ◦Q(j),∆B ◦ q(j), ηj × ηj)⊗ (C(F̂ )⊗Z C(F̂ )), U ⊗Z U)

= (θX,X)−1 ◦ ((EXk )−1 ⊗Z (EXk )−1) ◦ θC( eB),C( eB)

◦(C(∆
eB)k ⊗ (C(F̂ )⊗Z C(F̂ )), U ⊗Z U))

: C(B̃)k ⊗ (C(F̂ × F̂ ), U ⊗ U) → GkC(X ×X)

If we now substitute these two expressions for the vertical maps of diagram 3.3.5

and do a significant amount of rearranging to make it humanly readable we obtain

the required diagram (equation 3.2.2):

G∗C(X) E //

G∗C(∆X)

��

C(B̃)⊗ (C(F̂ ), U)

G∗C(∆
eB)⊗∆F̂

��
G∗(C(X)⊗ C(X))

θX,X

��

(C(B̃)⊗ C(B̃))⊗ (C(F̂ )⊗ C(F̂ ), U ⊗ U)

θC( eB),C( eB)

��
G∗C(X)⊗G∗C(X)

EX⊗EX
// (C(B̃)⊗ (C(F̂ ), U))⊗ (C(B̃)⊗ (C(F̂ ), U))

(3.3.6)
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Chapter 4

The signature of a fibration.

In this chapter we will show how the signature of a fibration may be obtained

from the symmetric complex of the base space and the action of π1(B) on the

middle dimension of the fibre. We present a new way of obtaining this result from

our description of a fibration.

4.1 Compatible orientations.

We say a fibration is Poincaré if F and B are Poincaré spaces of dimension m and

n respectively and if the action of π1(B) on Hm(F ) the top dimensional homology

of F is trivial. It is already known [Got79] that in this case E is a Poincaré space.

We wish to describe explicitly how an orientation of E is determined from that

of F and B; we refer to this as the compatible orientation.

One way of doing this is via spectral sequences. For a fibration satisfying

these conditions we know that

Hn+m(E) = E2
n,m(E) = Hn(B;Hm(F )) = Hn(B)⊗Hm(F )

so the natural orientation of E is [B] ⊗ [F ] under this identification. We wish

to describe this using the algebraic model of a fibration developed in the pre-

vious chapter. By Theorem 3.11 there exists a filtered π1(E)-CW -complex X

which is filtered homotopy equivalent to Ẽ and such that there exists a natural

isomorphism:

E : G∗C(X) → C(B̃)⊗ (C(F̂ ), U)

We write (C(F ), U) for the representation of Z[π1B] in D(Z) given by the action

of π1(B) on C(F ). After tensoring with Z we have a chain isomorphism

E ⊗Z[π1(E)] Z : G∗C(X)⊗Z[π1(E)] Z → C(B̃)⊗ (C(F ), U)

in the category D(Z). From now on for the sake of clarity we’ll write C(Ẽ) for

C(X) and C(E) for C(X)⊗Z[π1(E)] Z.
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Definition 4.1. We define an (m,n)-cycle x of a chain complex G∗C in D(R)

to be a cycle in GnCm such that G∗d(x) represents 0 in Hm(Gn−1C).

Let f be a cycle in C(F )m representing [F ] and b a cycle in C(B)n representing

[B]. The tensor product b ⊗ f is a well-defined m-cycle of Cn(B) ⊗ (C(F ), U).

The fact that π1(B) acts trivially on Hm(F ) implies that dB ⊗ (C(F ), U) applied

to b ⊗ f represents zero in Hm(Gn−1C(E)). Hence b ⊗ f is a (m,n)-cycle. If we

now take the inverse image of b⊗f under (some chain-level representative of) the

chain isomorphism E−1⊗Z[π1(B)] Z we get a well-defined (m,n)-cycle in GnC(X)m

which we denote by e. But this may also be considered to be an element of

C(E)n+m and because it is in the top dimension it is a cycle in C(E)n+m. It is

the class of this cycle which defines the compatible orientation of E which we

denote by [E].

4.2 Duality.

4.2.1 Duality for filtered complexes.

We now work over an additive category with involution A. We recall from

[HKR05]:

Definition 4.2. • We define the n-filtered dual M∗ of a filtered object M of

filtration degree at most m to be the filtered object with filtration quotients:

fjM
∗ = M∗

n ⊕M∗
n−1 ⊕ ...⊕M∗

n−j

Observe that if f : M → N is a filtered map of filtered objects then f ∗ :

N∗ →M∗ is a filtered map with respect to this filtration.

• Given a filtered chain complex F∗C of dimension n+m and with the degree of

each FrC not exceeding n we define the (n,m)-filtered dual complex F n,m
∗ C

to be the filtered chain complex with objects F n,m
r C the m-dual of Fn+m−rC,

and differentials as one would expect but with a rather unwieldy looking sign

term; specifically:

dn,mj = (−)r+s+j(m+r)d∗j : F n,m
r Cs = C∗

n+m−r,n−s → C∗
n+m−r+1,n−s+j

The point of this sign term will be revealed in the next lemma. In [HKR05]

F n,m
∗ C is denoted by F dual

∗ C.

• The derived category with m-involution Dm(A) is the category D(A) equipped

with the involution:

∗ : C 7→ Cm−∗
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and for morphisms f : C → D

∗f = fm−∗ : Dm−∗ → Cm−∗

(see sign convention 2.3). The natural equivalence eD(A)(A) : A→ ∗∗A for

any object A is given by:

eD(A)(A) = (−)mreA : Ar → ∗ ∗ Ar

Lemma 4.3 ([HKR05] lemma 12.23). The associated complex of the (n,m)-

filtered dual of a filtered complex C satisfies:

G∗(F
n,m
∗ C) = (G∗C)n−∗

when G∗C is considered to lie in the category Dm(A).

We have a chain equivalence ([HKR05] lemma 12.25):

θF∗C : F n,m
∗ C → Cn+m−∗ (4.2.1)

given by the direct sum of the following map on the filtration quotients:

(−)s(m+r+1) : C∗
n+m−r,n−s → C∗

n+m−r,n−s

4.2.2 Duality for the transfer functor.

In definition 3.10 we introduced (following [LR88]) the notion of a transfer functor

F : A(R)based → D(A). We now extend this (still following [LR88]) to a functor

of additive categories with involution:

Definition 4.4. • A non-singular symmetric form (A,α) in an additive cat-

egory with involution A consists of an object A ∈ A and an isomorphism

α : A∗ → A such that α∗ = α.

• Given a non-singular symmetric form (A,α) we define the ring with invo-

lution Homα
A(A,A)op to have underlying ring HomA(A,A)op and involution

given by:

∗(F : A→ A) = αf ∗α−1

A symmetric representation (A,α, U) of a ring with involution R in an

additive category with involution A consists of a non-singular symmetric

form (A,α) in A along with a morphism of rings with involution:

R→ Homα
A(A,A)op

In particular, (A,U) is a representation of R (definition 3.10).
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• Given a symmetric representation (A,α, U) we define the transfer functor

F : Abased(R) → A, a functor of categories with involution, to be the functor

of definition 3.10 determined by (A,U). To be a functor of categories with

involution we define the natural equivalence H : ∗F → F∗ : A(R) → A to

be:

H(Rn) =
⊕
n

α : ∗F (Rn) =
⊕
n

A∗ → F (Rn) =
⊕
n

A

Suppose we have a chain map f : Cm−∗ → D of chain complexes in a category

A. Then we can regard f as a morphism in Dm(A). When we apply the involution

of Dm(A) we get the morphism

fm−∗ : Dm−∗ → (Cm−∗)m−∗

When we compose this with the inverse of the natural equivalence eDm(A)(C) we

get:

eDm(A)(C) ◦ fm−∗ = Tf : Dm−∗ → C

Therefore if (C, φ) is an m-dimensional symmetric Poincaré complex in A the pair

(C, φ0) define a non-singular symmetric form in Dm(A).

The main example of a symmetric representation comes from a fibration

Fm → E → B satisfying assumption 1.2 where F is an m-dimensional Poincaré

space. We choose some CW -complex FCW homotopy equivalent to F and apply

the symmetric construction of section 2.2 to obtain a symmetric Poincaré com-

plex (C(F̂ ), φF ). For each g ∈ π1(B) the map U(g) : F̂ → F̂ is a homotopy

equivalence so the induced maps U(g) : C(F̂ ) → C(F̂ ) satisfy U(g)φF0 U(g)n−∗ =

φF0 : C(F̂ )n−∗ → C(F̂ ). Hence φF0 U(r) = U(r∗)φF0 so the triple (C(F̂ ), φF0 , U) is

a symmetric representation of Z[π1(B)] in the category Dn(Z[π1(E)]). We refer

to this as the symmetric representation associated to F .

We can now state one of the main theorems of this section which describes

the symmetric Poincaré complex of the total space of a fibration.

Theorem 4.5. Let Fm → Em+n p−→ Bn be a Poincaré fibration satisfying assump-

tion 1.2 and (C(F̂ ), φF0 , U) the symmetric representation associated to p defined

above. Let (C(B̃), φB) be an n-dimensional symmetric Poincaré complex repre-

senting B̃. Then there exists an (n+m)-dimensional symmetric Poincaré complex

(C(Ẽ), φE) representing Ẽ satisfying:

1. The complex C(Ẽ) is n-filtered and there exists a chain isomorphism (in

Dm(A)):

E : G∗C(Ẽ) → C(B̃)⊗ (C(F̂ ), φF0 , U)
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2. The chain map φE0 ◦ θF∗C( eE) : F n,mC(Ẽ) → C(Ẽ) is a filtered map and

satisfies:

E ◦G∗(φ
E
0 ◦ θF∗C( eE)) ◦ En−∗ = φB0 ⊗ (C(F̂ ), φF0 , U) ◦H(C(B̃))

: (C(B̃)⊗ (C(F̂ , φF , U)))n−∗ → C(B̃)⊗ (C(F̂ ), φF , U)

Proof. Let ∆B : C(B) → C(B̃)⊗Z[π1(B)] C(B̃) be the chain diagonal approxima-

tion such that

φB0 = \(∆B([B])) : C(B̃)n−∗ → C(B̃)

. By theorem 3.11 we can find a π1(E)-space filtered homotopy equivalent to Ẽ

(which we now replace the space Ẽ with), a filtered chain diagonal approximation

∆E : C(E) → C(Ẽ) ⊗Z[π1(E)] C(Ẽ) and a chain isomorphism E : G∗C(Ẽ) →
C(B̃)⊗ (C(F̂ ), U) such that the diagram:

G∗C(E)
E⊗Z[π1(E)]Z //

G∗C(∆E)
��

C(B̃)⊗ (C(F ), U)

C(∆
eB)⊗∆F̂

��

G∗(C(Ẽ)⊗Z[π1(E)] C(Ẽ))

θE,E

��

(C(B̃)⊗Z[π1B] C(B̃))⊗ (C(F̂ )⊗Z[π1(E)] C(F̂ ), U ⊗ U)

θC( eB),C( eB)

��

G∗C(Ẽ)⊗Z[π1(E)] G∗C(Ẽ)
E⊗E // (C(B̃)⊗ (C(F̂ ), U))⊗Z[π1(E)] (C(B̃)⊗ (C(F̂ ), U))

(4.2.2)

commutes (we are now considering Z[π1(E)] as a ring with involution so these

tensor products are well-defined). We have an orientation [E] for E which cor-

responds to [B] ⊗ [F ] under the isomorphism E ⊗ Z and we apply the sym-

metric construction to form the symmetric Poincaré complex (C(Ẽ), φE) with

φE0 = \(∆E([E])). To avoid confusion we will write G∗[E] when the orientation

in considered to lie in GnC(E)m and [E] when considered to lie in C(E)n+m.

For any chain complexes G∗C and G∗D in Dm(R) a (m,n)-chain x in G∗C⊗R

G∗D determines a chain map

\x : (G∗C)n−∗ → G∗D

which is defined on each component

(Gn−rC)m−s → (GrD)s

by the usual slant product on the component of x contained in (Gn−rC)m−s ⊗Z

(GrD)s. This map is determined up to chain homotopy by the class of x in

Hm((G∗C ⊗G∗D)n).
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We now apply this to the situation of a fibration. One can easily see from the

definition of the slant product and the fact that ∆X is a filtered map that the

composition

φE0 ◦ θF∗C( eE) = \(∆E([E])) ◦ θF∗C( eE) : F n,m(C(Ẽ)) → C(Ẽ)

is a filtered map and that moreover

G∗(φ
E
0 ◦ θF∗C( eE)) = \(θE,E ◦G∗∆

E(G∗[E])) : G∗(C(Ẽ))n−∗ → G∗C(Ẽ)

By the commutativity of diagram 4.2.2 we see that:

E ◦G∗(φ
E
0 ◦ θF∗C( eE)) ◦ E

n−∗ = E ◦ \(θE,E ◦G∗∆
X(G∗[E])) ◦ En−∗

= \(θC( eB),C( eB) ◦G∗C(∆
eB)⊗∆F̂ ◦ E(G∗[E]))

= \(θC( eB),C( eB) ◦G∗C(∆
eB)⊗∆F̂ ([B]⊗ [F ]))

= φB0 ⊗ (C(F̂ ), φF0 , U)

= φB0 ⊗ (C(F̂ ), φF0 , U) ◦H(C(B̃))

as required.

Question 4.6. How much information does this give us about the symmetric

signature of Ẽ?

4.3 The signature of a fibre bundle.

We will now describe how the signature of a fibre bundle is determined by the

symmetric structure of the base space and the action of π1(B) on the middle-

dimensional homology of the base space.

Definition 4.7. A (Z,m)-symmetric representation (A,α, U) of a group ring

Z[π] is a symmetric representation of Z[π] in the category A(Z(m)), where Z(m)

is the ring Z with involution given by a∗ = (−)ma.

In other words the form α is (−)m-symmetric.

The most important examples of (Z,m)-symmetric representations are those

constructed from fibre bundles: Let F 2n → E → B be a fibration satisfying

assumption 1.2 with F a 2m-dimensional Poincaré space. Cup product on the

fibre F gives us a (−)m-symmetric form

φF : Hm(F,Z)/torsion→ Hm(F,Z)/torsion
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We write K = Hm(F,Z)/torsion and identify Hm(F,Z)/torsion ∼= K∗ via the

universal coefficient theorem. The action of π1B on the fibre determines a unitary

representation

U : π1B → Aut(K,φF )op

which extends in the obvious way to a ring representation

U : Z[π1B] → Hom(K,K)op

satisfying the required property. The triple (K,φF , U) is a (Z,m)-symmetric

representation of Z[π1B]; we refer to it as the (Z,m)-symmetric representation

associated to the fibration F 2m → E → B.

Definition 4.8. Let (C, φ) be an n-dimensional symmetric Poincaré complex

over Z[π] and (A,α, U) an (Z,m)-symmetric representation of Z[π]. We define

the twisted product (A,α, U)⊗R (C, φ) to be the (2m+n)-dimensional symmetric

complex over Z with chain complex SmC⊗(A,α, U) and morphisms φ⊗(A,α, U)s

given by:

φ⊗ (A,α, U)s = φs ⊗ (A,α, U) ◦H(Cn+s+m−r) : Cn+s+m−r ⊗ (A,α, U) → Cm+r

What we’re doing here is applying the functor −⊗(A,α, U) and then bumping

up the dimension to make it a symmetric complex over Z with the standard

involution. It is simply a matter of sign counting to check that this is a (2m+n)-

dimensional symmetric complex. Observe that (C, φ) ⊗ (A,α, U) is Poincaré if

and only if (C, φ) is Poincaré. We give a simple example:

Let (A,α) be a (−)m-symmetric form. Then we can form a (Z,m)-symmetric

form (A,α, ε) where the representation

ε : Z[π] → Hom(A,A)op

is given by ε(r) = Iε(r) : A→ A. In this case the functor

−⊗ (A,α, ε) : Abased → Z(m)

is simply the usual tensor product with A. If we now consider (A,α) to be a

an element of L2m(Z) then the twisted product of an n-dimensional symmetric

Poincaré complex (C, φ) with (A,α) is equal to the usual product

Ln(Z)⊗ L2m(Z) → Ln+2m(Z)

defined by Ranicki [Ran80a]. We refer to this as the untwisted product and write

it as (C, φ)⊗ (A,α). It is a result of [Ran80a] that:

sign((C, φ)⊗ (A,α)) = sign(C, φ)sign(A,α)

Our main result in this chapter is the following theorem:
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Theorem 4.9. Let F 2m → E2n+2m → B2n be a Poincaré fibration satisfying

assumption 1.2, let (C(B̃), φB) be a symmetric Poincaré complex representing

B and denote by (K,φF , U) the (Z,m)-symmetric representation associated to

fibration. Then the signature of E is equal to the signature of the symmetric

Poincaré complex (C(B̃), φB)⊗ (K,φF , U).

We will now work towards proving this result. One could equally well prove it

using an argument based on the Serre spectral sequence. The proof we give here

is based on our description of the symmetric complex of a fibration.

4.4 A signature for the derived category.

In this section we will construct a signature for 2n-dimensional symmetric chain

equivalences (G∗C, φ) in D2m(Z) with n+m even which we denote by signD2m(Z)(G∗C, φ).

This signature will induce a well-defined map:

signD2m(Z) : L2n(D2m(Z)) → Z

We construct signD2m(Z)(G∗C, φ) as follows: First of all we may form a sym-

metric chain equivalence in D2m(R) by tensoring (G∗C, φ) with the reals (to avoid

extra notation we’ll still call this complex (G∗C, φ)). We now define a new 2n-

dimensional symmetric chain equivalence (H∗C,H∗φ) in D2m(Z) with HrC the

r′th object in H∗C give by:

HrCs = Hs(GrC)

with differentials Hrd : HrC → Hr−1C and the map H∗φ the maps induced

by G∗d and φ respectively on homology. We now define yet another new pair

(H ′
∗C;H ′

∗φ) by:

H ′
rC = HrC/Im(H∗d : Hr+1C → HrC)

with trivial differentials and with H ′
∗φ the map induced by H∗φ (this is well-

defined on the quotients). The process of going from (G∗C, φ) to (H ′
∗C;H ′

∗φ)

is rather similar to forming the E2-term of a spectral sequence from the E0-

term. Observe that G∗C (over R) is chain equivalent to H ′
∗C so this symmetric

chain equivalence in D2m(Z) is equivalent to the one we started with. The map

Hnφ : (HnCm)∗ → HnCm in the middle dimension is a symmetric form over R;

we define the signature signD2m(Z)(G∗C, φ) to be the signature of this form.

Lemma 4.10. The map signD2m(Z) : L2n(D2m(Z)) → Z is well-defined, that is if

(G∗C, φ) and (G∗C
′, φ′) represent the same element of L2n(D2m(Z)) then

signD2m(Z)(G∗C, φ) = signD2m(Z)(G∗C
′, φ′)
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Proof. The construction of signD2m(Z) only depends on the homotopy class of

(G∗C, φ); therefore it is sufficient to show that signD2m(Z)(G∗C, φ) = 0 for ele-

ments representing zero in L2n(D2m(Z)) since signD2m(Z) is clearly additive. Let

(G∗C, φ) be such an element and (f : G∗C → G∗D, (δφ, φ)) a suitable null-

cobordism. We can play the same game to form a null-cobordism (H ′
∗f : H ′

∗C →
H ′
∗D, (H

′
∗δφ,H

′
∗φ)) of (H ′

∗C,H
′
∗φ) with the differentials in H ′

∗D zero.

We know that(
H ′
∗δφ0 H ′

∗fH
′
∗φ0

)
: C(H ′

∗f)2n+1−∗ → H ′
∗D

is a chain equivalence (of chain complexes in D(R)). The chain complex C(H ′
∗f)2n+1−∗

is chain equivalent to the chain complex H ′
∗C(f) (in D(R)) given by:

HrC(f)s = Ker((H ′
2n+1−rf2m−s)

∗)⊕ Coker((H ′
2n−rf2m−s)

∗)

Hence the induced map(
H ′
∗δφ0 H ′

∗fH
′
∗φ0

)
: Ker((H ′

2n+1−rf2m−s)
∗)⊕ Coker((H ′

2n−rf2m−s)
∗) → H ′

rDs

is an isomorphism of R-vector spaces (observing that fφ0f
∗ = 0 implies that

fφ0f is well-defined on Coker(f ∗)). We have a commutative diagram:

(H ′
nDm)∗

(H′
nf)∗// (H ′

nCm)∗
(0 i) //

H′
nφ

��

Ker((H ′
n+1fm)∗)⊕ Coker((H ′

nfm)∗)

(H′
n+1δφ0 H′

nfH
′
nφ0)

��
H ′
nCm

H′
nf // H ′

nDm

Both of the vertical maps are isomorphisms of R-vector spaces and the top row is

exact. It follows that Im(H ′
nf) is a Lagrangian for the form H ′

nφ0 : (H ′
nCm)∗ →

H ′
nCm so sign(C, φ) = 0 as required.

If one could define a map Ln(Dm(Z[π1(E)])) → Ln+m(Z[π1(E)]) then one

might hope to construct the symmetric transfer map as the composition:

Ln(Z[π1(B)])
−⊗(C(F̂ ),φF ,U)−−−−−−−−−→ Ln(Dm(Z[π1(E)])) → Ln+m(Z[π1(E)])

and get a description of the symmetric signature of Ẽ. This would be directly

analogous to the construction of Lück and Ranicki [LR92] of the surgery trans-

fer map. They construct a map Ln(Dm(Z[π1(E)])) → Ln+m(Z[π1(E)]) in the

quadratic case by taking advantage of the fact that one can perform surgery be-

low the middle dimension on quadratic complexes. The difficulty in constructing

this map in the symmetric case is highlighted in [LR92] as the chief problem to

be overcome in understanding the symmetric signature of Ẽ.
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Let (C, φ, U) be a symmetric representation of a group ring Z[π] in D2m(Z).

Then we can construct an (Z,m)-symmetric representation (A,α, Ū) of π by

A = Hm(C)/torsion, α the map induced from A∗ to A by φ0 and Ū(π) = U(π)m

the maps induced on A by U . Observe that if (C(F ), φF , U) is the symmetric

representation associated to a fibration then the (Z,m)-symmetric representation

constructed from (C(F ), φF , U) in this way in the (Z,m)-symmetric representa-

tion associated to the fibration.

We have functors of additive categories with involution:

−⊗ (C, φ, U) : Abased → D2m(Z)

−⊗ (A,α, U) : Abased → A(Z(m))

which give rise to maps of symmetric L-groups:

−⊗ (C, φ, U) : Ln(Z[π]) → Ln(D2m(Z))

−⊗ (A,α, U) : Ln(Z[π]) → Ln+2m(Z)

We can relate these two maps:

Lemma 4.11. Let (C, φ, U), (A,α, Ū) be as above. Then for each n such that

n ≡ m(mod 2) the diagram:

Ln(Z[π])
−⊗(C,φ,U) //

−⊗(A,α,Ū)
��

Ln(D2m(Z))

signD2m(Z)

��
Ln+2m(Z)

sign // Z

commutes.

Proof. We can play the same game as before and tensor with R. The key step

is to observe that when we take the homology of C ⊗R the signature then only

depends on the middle dimension of C ⊗R.

sign ◦ (−⊗ (C, φ, U)) = signD2m(Z) ◦ (−⊗ (C ⊗R, φ⊗R, U ⊗R))

= signD2m(R) ◦ (−⊗ (H∗(C ⊗R), (φ⊗R)∗, (U ⊗R)∗))

= sign ◦ (−⊗ (A⊗R, α⊗R, Û ⊗R))

= sign ◦ (−⊗ (A,α, Û))
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4.5 Finishing the proof

We now complete the proof of Theorem 4.9. We will require the following technical

lemma:

Lemma 4.12. Let C be a filtered 2n+2m-dimensional (n+m even) chain complex

and φ : C2n+2m−∗ → C a map such that

1. Tφ is homotopic to φ.

2. The composition φ ◦ θC : F 2n,2mC → C is a filtered homotopy equivalence.

3. The associated map G∗(φ) (which we denote by G∗φ0) is a symmetric chain

equivalence in the category D2m(Z).

Then the signature of the associated symmetric form signD2m
(G∗C,G∗(φ ◦ θC)) is

equal to the signature of (C, φ).

Proof. The argument we use here is essentially that of [CHS57] except that we

use slightly different language here. Again we first tensor everything with R.

We can perform a spectral-sequence type construction to construct a sequence

of filtered chain complexes F∗C
(i) and chain maps φ(i) : (C(i))n+m−∗ → C(i). We

first set C(0) = F∗C, φ(0) = φ and inductively define:

FjC
(r+1)
i = FjC

(r)
i /Im(dr : Fj+rC

(r)
i+1 → FjC

(r)
i )

Because the differentials in each F∗C
(r) are filtered we have well-defined fil-

tered differentials F∗C
(r+1)
i+1 → F∗C

(r+1)
i and well-defined maps φ(r+1) defined

to be φ(r) on the quotient. Note that at each stage φ(r) ◦ θC(r) is a filtered

map. The associated complex of (F∗C
(2), φ(2)) is (H ′

∗C,H
′
∗φ) so we deduce that

signD2m(Z)(G∗φ) = signD2m(Z)(G∗φ
(2)). By lemma 4 of [CHS57] (which roughly

states that the signature is preserved when moving to the next page of a spectral

sequence) we see that signD2m(Z)(G∗φ
(r)) = signD2m(Z)(G∗φ

(r+1)). The sequence

(C(r), φ(r)) converges to a term (C(∞), φ(∞)) and by the usual arguments we know

that signD2m(Z)(G∗φ
(∞)) = sign(φ). Putting all this together we see that

sign(φ) = sign(G∗φ
(∞)) = sign(G∗φ

(2)) = sign(G∗φ)

as required.

Proof of Theorem 4.9. By Theorem 4.5 we have a symmetric complex (C(Ẽ), φE)

representing Ẽ such that C(Ẽ) is a filtered complex, φ0◦θC( eE) is a filtered map and
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the symmetric chain equivalence (G∗C(Ẽ), G∗φ0) is isomorphic to the symmetric

chain equivalence (C(B̃) ⊗ (C(F̂ ), φF , U), φB0 ⊗ (C(F̂ ), φF , U)). From the above

lemma the signature of φE0 is equal to the signature of G∗φ
E
0 and hence:

sign(E) = sign(φE0 )

= signD2m(Z)(G∗φ
E
0 )

= signD2m(Z)(φ
B
0 ⊗ (C(F ), φF , U) ◦H(B̃))

However we know from lemma 4.11 that this last signature is equal to the signa-

ture of the twisted product of C(B̃) with (K,φF , U). The Theorem follows.

55



Chapter 5

Absolute Whitehead torsion.

This chapter is devoted to the development of the theory of absolute Whitehead

torsion; this is a refinement of the the usual Whitehead torsion (see e.g. Milnor

[Mil66]). Absolute torsion invariants lie in the unreduced group K1(R) rather

than the usual K̃1(R); here we develop the theory in the even more general case

of an additive category A (following [Ran85]).

In order to make the formulae in this chapter more concise we introduce the

notion of a signed chain complex; this is a pair (C, ηC) where C is a chain com-

plex and ηC an element of Kiso
1 (A). The absolute torsion is then defined for

contractible signed complexes and chain equivalences of signed complexes. By

defining suitably chosen operations on signed chain complexes (e.g. sum, sus-

pension, dual etc...) we can establish nice properties for the absolute torsion. In

section 5.5 we apply the absolute torsion to develop a new invariant of symmetric

Poincaré complexes; in section 5.6 we show how this can be used as a replacement

for the incorrect absolute torsion in [HRT87]. Finally in section 5.8 we identify the

“sign” term in the absolute torsion of a Poincaré complex with more traditional

invariants. We will see that the absolute torsion and the Euler characteristic allow

us to determine the signature modulo four of a 4k-dimensional complex. This will

be applied in chapter 7 to show that the signature of a fibration is multiplicative

modulo four.

The material in this chapter is essentially that contained in the preprint

[Kor05].

5.1 Absolute torsion of contractible complexes

and chain equivalences.

In this section we introduce the absolute torsion of contractible complexes and

chain equivalences and derive their basic properties. This closely follows [Ran85]

but without the assumption that the complexes are round (χ(C) = 0 ∈ K0(A));
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we also develop the theory in the context of signed chain complexes which we will

define in this section.

Let A be an additive category. Following [Ran85] we define:

Definition 5.1. 1. The class group K0(A) has one generator [M ] for each

object in A and relations:

(a) [M ] = [M ′] if M is isomorphic to [M ′].

(b) [M ⊕N ] = [M ] + [N ] for objects M,N in A.

2. The isomorphism torsion group Kiso
1 (A) has one generator τ iso(f) for each

isomorphism f : M → N in A, and relations:

(a) τ iso(gf) = τ iso(f) + τ iso(g) for isomorphisms f : M → N , g : N → P

(b) τ iso(f ⊕ f ′) = τ iso(f) + τ iso(f ′) for isomorphisms f : M → N , f ′ :

M ′ → N ′

5.1.1 Sign terms

The traditional torsion invariants are considered to lie in K̃iso
1 (A), a particu-

lar quotient of Kiso
1 (A) (defined below) in which the torsion of maps such as(

0 1
1 0

)
: C ⊕ D → D ⊕ C are trivial. In absolute torsion we must consider

such rearrangement maps; to this end we recall from [Ran85] the following nota-

tion:

Definition 5.2. Let C,D be free, finitely generated chain complexes in A.

1. The suspension of C is the chain complex SC such that SCr = Cr−1 and

SC0 = 0

2. The sign of two objects X, Y ∈ A is the element

ε(X, Y ) := τ iso
((

0 1Y
1X 0

)
: X ⊕ Y → Y ⊕X

)
∈ Kiso

1 (A)

The sign only depends on the stable isomorphism classes of M and N and

satisfies:

(a) ε(M ⊕M ′, N) = ε(M,N) + ε(M ′, N)

(b) ε(M,N) = −ε(N,M)

(c) ε(M,M) = τ iso(−1 : M →M)
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We may extend ε to a morphism of abelian groups:

ε : K0(A)⊗K0(A) → Kiso
1 (A); ([M ], [N ]) 7→ ε(M,N)

3. The reduced isomorphism torsion group K̃iso
1 (A) is the quotient:

K̃iso
1 (A) := Kiso

1 (A)/Im(ε : K0(A)⊗K0(A) → Kiso
1 (A))

4. The intertwining of C and D is the element defined by:

β(C,D) :=
∑
i>j

(ε(C2i, D2j)− ε(C2i+1, D2j+1)) ∈ Kiso
1 (A)

Example 5.3. The reader may find it useful to keep the following example in

mind, as it is the most frequently occurring context.

Let R be an associative ring with 1 such that rankR(M) is well-defined for f.g

free modules M . We define A(R) to be the category of based f.g. R-modules. In

this case the map K0(A(R)) → Z given by M 7→ dimM is an isomorphism. We

have a forgetful functor:

Kiso
1 (A(R)) → K1(R) ; τ iso(f) 7→ τ(f)

mapping elements of Kiso
1 (A(R)) to the more familiar K1(R) in the obvious way.

In particular

Im(ε : K0(A(R))⊗K0(A(R)) → K1(R)) = {τ(±1)} = Im(K1(Z) → K1(R))

justifying the terminology of a “sign” term; the map is given explicitly for modules

M and N by:

ε(M,N) = rankR(M)rankR(N)τ(−1)

We will make use of the notation:

Ceven = C0 ⊕ C2 ⊕ C4 ⊕ ...

Codd = C1 ⊕ C3 ⊕ C5 ⊕ ...

and as usual we define the Euler characteristic χ(C) as:

χ(C) = [Ceven]− [Codd] ∈ K0(A)

We also recall from [Ran85] proposition 3.4 the following relationships between

the “sign” terms:
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Lemma 5.4. Let C,C ′, D,D′ be finite chain complexes over A. Then

1. β(C,D) = τ iso((C ⊕D)even → Ceven ⊕Deven)

− τ iso((C ⊕D)odd → Codd ⊕Dodd)

2. β(C ⊕ C ′, D) = β(C,D) + β(C ′, D)

3. β(C,D ⊕D′) = β(C,D) + β(C,D′)

4. β(C,D)− β(D,C) +
∑

(−)rε(Cr, Dr) = ε(Ceven, Deven)− ε(Codd, Dodd)

5. β(SC, SD) = −β(C,D)

6. β(SC,C) = ε(Codd, Ceven)

5.1.2 Signed chain complexes.

In order to make to formulae in this chapter more concise we introduce the concept

of a signed chain complex; this is a chain complex with an associated element in

Im(ε : K0(A)⊗K0(A) → Kiso
1 (A)) which we refer to as the sign of the complex.

We use this element in the definition of the absolute torsion invariants.

Definition 5.5. 1. A signed chain complex is a pair (C, ηC) where C is a

finite chain complex in A and ηC an element of

Im(ε : K0(A)⊗K0(A) → Kiso
1 (A))

We will usually suppress mention of ηC denoting such complexes as C.

2. Given a signed chain complex (C, ηC) we give the suspension of C, SC the

sign

ηSC = −ηC

3. We define the sum signed chain complex of two signed chain complexes

(C, ηC), (D, ηD) as (C ⊕D, ηC⊕D) where C ⊕D is the usual based sum of

two chain complexes and ηC⊕D defined by:

ηC⊕D = ηC + ηD − β(C,D) + ε(Codd, χ(D))

(it is easily shown that η(C⊕D)⊕E = ηC⊕(D⊕E))
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5.1.3 The absolute torsion of isomorphisms

We now define the absolute torsion of a collection of isomorphisms {fr : Cr → Dr}
between two signed chain complexes. Note that the map f need not be a chain

isomorphism (i.e. fdC = dDf need not hold). In the case where f is a chain

isomorphism the torsion invariant defined here will coincide with the definition

of the absolute torsion of chain equivalence given later.

Definition 5.6. The absolute torsion of a collection of isomorphisms {fr : Cr →
Dr} between the chain groups of signed chain complexes C and D is defined as:

τNEWiso (f) =
∞∑
r=0

(−)rτ iso(fr : Cr → Dr)− ηC + ηD ∈ Kiso
1 (A)

Lemma 5.7. We have the following properties of the absolute torsion of isomor-

phisms:

1. The absolute torsion of isomorphisms is logarithmic, that is for isomor-

phisms f : C → D and f : D → E.

τNEWiso (gf) = τNEWiso (f) + τNEWiso (g)

2. The absolute torsion of isomorphisms is additive, that is for isomorphisms

f : C → D and f ′ : C ′ → D′

τNEWiso (f ⊕ g) = τNEWiso (f) + τNEWiso (g)

3. The absolute torsion of the rearrangement isomorphism:

C ⊕D

0@ 0 1
1 0

1A
−−−−−−−→ D ⊕ C

is ε(χ(C), χ(D)) ∈ Kiso
1 (A).

4. The absolute torsion of the isomorphism:

S(C ⊕D)

0@ 1 0
0 1

1A
−−−−−−−→ SC ⊕ SD

is ε(χ(D), χ(C)) ∈ Kiso
1 (A).
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Proof. Parts 1 and 2 follow straight from the definitions. For part 3

τNEWiso (C ⊕D → D ⊕ C) =
∞∑
r=0

(−)rε(Cr, Dr)− ηC⊕D + ηD⊕C

=
∞∑
r=0

(−)rε(Cr, Dr) + β(C,D)− β(D,C)

−ε(Codd, χ(D)) + ε(Dodd, χ(C))

= ε(Ceven, Deven)− ε(Codd, Dodd)

−ε(Codd, χ(D)) + ε(Dodd, χ(C))

= ε(χ(C), χ(D))

For part 4:

τNEWiso (S(C ⊕D) → SC ⊕ SD) = ηSC⊕SD − ηS(C⊕D)

= −β(SC, SD) + ε(Ceven, χ(SD))

−β(C,D) + ε(Codd, χ(D))

= ε(χ(D), χ(C))

5.1.4 The absolute torsion of contractible complexes and
short exact sequences.

We recall from [Ran85] the following:

Given a finite contractible chain complex over A

C : Cn → ...→ C0

and a chain contraction Γ: Cr → Cr+1 we may form the following isomorphism:

d + Γ =


d 0 0 ...
Γ d 0 ...
0 Γ d ...
...

...
...

 : Codd = C1 ⊕ C3 ⊕ C5... → Ceven = C0 ⊕ C2 ⊕ C4...

The element τ iso(d+Γ) ∈ Kiso
1 (A) is independent of the choice of Γ and is denoted

τ(C) (following [Ran85] section 3).

We define the absolute torsion of a contractible signed chain complex C as

τNEW (C) = τ(C) + ηC ∈ Kiso
1 (A)

Given a short exact sequence of signed chain complexes over A:

0 → C
i−→ C ′′ j−→ C ′ → 0
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we may find a sequence of splitting morphisms {k : C ′
r → C ′′

r |r ≥ 0} such that

jk = 1 : C ′
r → C ′

r (r ≥ 0) and each (i k) : Cr ⊕ C ′
r → C ′′

r (r ≥ 0) is an

isomorphism. The torsion of this collection of isomorphisms

τNEWiso ((i k) : Cr ⊕ C ′
r → C ′′

r )

is independent of the choice of the kr, so we may define the absolute torsion of a

short exact sequence as:

τNEW (C,C ′′, C ′; i, j) = τNEWiso ((i k) : Cr ⊕ C ′
r → C ′′

r )

Lemma 5.8. We have the following properties of the absolute torsion of signed

contractible complexes:

1. Suppose we have a short exact sequence of contractible signed complexes:

0 → C
i−→ C ′′ j−→ C ′ → 0

Then

τNEW (C ′′) = τNEW (C) + τNEW (C ′) + τNEW (C,C ′′, C ′; i, j)

2. Let C, C ′ be contractible signed complexes. Then:

τNEW (C ⊕ C ′) = τNEW (C) + τNEW (C ′)

Proof. 1. From [Ran85] proposition 3.3 we have that

τ(C ′′) = τ(C) + τ(C ′) +
∞∑
r=0

τ iso((i k) : Cr ⊕ C ′
r → C ′′) + β(C,C)

for some choice of splitting morphisms {k : C ′
r → C ′′

r |r ≥ 0}. By the

definition of the absolute torsion of a short exact sequence and the definition

of the sum torsion (noting that contractible complexes have χ(C) = 0 ∈
K0(A)) we get:

τNEW (C,C ′′, C ′; i, j) =
∞∑
r=0

(−)rτ iso((i k) : Cr ⊕ C ′
r → C ′′)

+β(C,C ′)− ηC − ηC′ + ηC′′

By comparing these two formulae and the definition of the absolute torsion

of a contractible signed complex, the result follows.

2. Apply the above to C ′′ = C ⊕ C ′.
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5.1.5 The absolute torsion of chain equivalences.

We make the algebraic mapping cone (2.2) C(f) into a signed complex by setting

ηC(f) = ηD⊕SC

Lemma 5.9. The absolute torsion of a chain isomorphism f : C → D of signed

chain complexes satisfies:

τNEWiso (f) = τNEW (C(f))

Proof. In the case of an isomorphism we may choose the chain contraction for

C(f) to be:

ΓC(f) =

(
0 0

(−)rf−1 0

)
: C(f)r → C(f)r+1

We have a commutative diagram:

(D1 ⊕ C0)⊕ (D3 ⊕ C2)⊕ ...
(dC(f) + ΓC(f)) //

��

D0 ⊕ (D2 ⊕ C1)⊕ (D4 ⊕ C3)⊕ ...

��
C0 ⊕D1 ⊕ C2 ⊕D3...


f dD 0 . . .
0 −f−1 dC . . .
0 0 f . . .
...

...
...


// D0 ⊕ C1 ⊕D2 ⊕ C3

The torsion of the upper map is τ iso(C(f)), the torsion of the lower isomorphism

is
∑∞

r=0(−)rτ iso(fr : Cr → Dr) + ε(Codd, Codd) and the difference between the

torsions of the downward maps is
∑∞

r=0(−)rε(Cr, Cr−1) (using the fact that Cr ∼=
Dr). Hence

τNEW (C(f)) = τ iso(C(f)) + ηC(f)

=
∞∑
r=0

(−)rτ iso(fr : Cr → Dr)−
∞∑
r=0

(−)rε(Cr, Cr−1)

−β(C, SC) + ε(Codd, χ(SC)) + ε(Codd, Codd)− ηC + ηD

=
∞∑
r=0

(−)rτ iso(fr : Cr → Dr)− ηC + ηD

= τNEWiso (f)

(using the formulae of lemma 5.4)

We can now give a definition of the absolute torsion of a chain equivalence

f : C → D which coincides with the previous definition in the case when f is a

chain isomorphism.
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Definition 5.10. We define the absolute torsion of a chain equivalence of signed

chain complexes f : C → D as:

τNEW (f) = τNEW (C(f)) ∈ Kiso
1 (A)

In the case where f is a chain isomorphism the above lemma shows that this

definition of the torsion agrees with that given in definition 5.6.

Lemma 5.11. The absolute torsion of a chain equivalence of chain complexes

with torsion f : C → D is:

τNEW (f) = τ(C(f))− β(D,SC)− ε(Dodd, χ(C)) + ηD − ηC ∈ K1(A)

(c.f. definition of torsion on pages 223 and 226 of [Ran85]. The two definitions

coincide if C and D are even and ηC = ηD).

Proof. Simply a matter of unravelling definitions.

We have the following properties of the torsion of chain equivalences:

Proposition 5.12. 1. Let f : C → D and g : D → E be chain equivalences

of signed chain complexes in A, then

τNEW (gf) = τNEW (f) + τNEW (g) ∈ Kiso
1 (A)

2. Suppose f : C → D is map of contractible signed chain complexes. Then

τNEW (f) = τNEW (D)− τNEW (C) ∈ Kiso
1 (A)

3. The absolute torsion τNEW (f) is a chain homotopy invariant of f .

4. Suppose we have a commutative diagram of chain maps as follows where the

rows are exact and the vertical maps are chain equivalences:

0 // A
i //

a

��

B
j //

b
��

C //

c

��

0

0 // A′
i′ // B′ j′ // C ′ // 0

Then

τNEW (b) = τNEW (a) + τNEW (c)− τNEW (A,B,C; i, j)

+τNEW (A′, B′, C ′; i′, j′) ∈ Kiso
1 (A)
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5. The torsion of a sum f ⊕ f ′ : C ⊕ C ′ → D ⊕D′ is given by:

τNEW (f ⊕ f ′) = τNEW (f) + τNEW (f ′) ∈ Kiso
1 (A)

6. Suppose we have a short exact sequence

0 → A
f−→ B

g−→ C → 0

where C is a contractible complex and f is a chain equivalence. Then

τNEW (f) = τNEW (A,B,C; f, g) + τNEW (C)

Proof. The proofs of these follow those in [Ran85] propositions 4.2 and 4.4, mod-

ified where appropriate.

1. We denote by ΩC the chain complex defined by:

dΩC = dC : ΩCr = Cr+1 → ΩCr−1 = Cr

We define a chain map

h : ΩC(g) → C(f)

by (
0 −1
0 0

)
: ΩC(g)r = Er+1 ⊕Dr → C(f)r = Dr ⊕ Cr−1

The algebraic mapping cone C(h) fits into the following short exact se-

quences:

0 → C(f)
i−→ C(h)

j−→ C(g) → 0 (5.1.1)

0 → C(gf)
i′−→ C(h)

j′−→ C(−1D : D → D) → 0 (5.1.2)

where

i =

(
1
0

)
: C(f)r → C(h)r = C(f)r ⊕ C(g)r

j =
(

0 1
)

: C(h)r = C(f)r ⊕ C(g)r → C(g)r

i′ =


0 0
0 1
1 0
0 f

 : C(gf)r = Er ⊕ SCr → C(h)r = Dr ⊕ SCr ⊕ Er ⊕ SDr

j′ =

(
1 0 0 0
0 −f 0 1

)
: C(h)r = Dr⊕SCr⊕Er⊕SDr → C(−1D)r = Dr⊕SDr

Applying lemma 5.8 part 1 to the first short exact sequence (5.1.1) we have

τNEW (h) = τNEW (f) + τNEW (g) (5.1.3)
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Notice that

τNEWiso ((i′ k′)) = τNEWiso (


0 0 1 0
0 1 0 0
1 0 0 0
0 f 0 1

 : C(gf)r ⊕ C(−1D)r

= Er ⊕ SCr ⊕Dr ⊕ SDr → C(h)r = Dr ⊕ SCr ⊕ Er ⊕ SDr)

= τNEWiso (D ⊕ SC → SC ⊕D)

+τNEWiso (E ⊕ SC → SC ⊕ E)

+τNEWiso (D ⊕ E → E ⊕D)

= ε(χ(D), χ(D))

(using the results of lemma 5.7, the fact that χ(C) = χ(D) = χ(E) and

that f has no effect on the torsion). We also see that τNEW (C(−1D)) =

τNEWiso (−1D) = ε(χ(D), χ(D)). Applying these two expressions and lemma

5.8 part 1 to the second exact sequence (5.1.2) we see that

τNEW (gf) = τNEW (h)

and comparison with (5.1.3) yields the result.

2. By construction we have C(0
0−→ D) = D and hence

τNEW (0
0−→ D) = τNEW (D)

Applying this and the composition formula (part 1) to the composition

0
0−→ C

f−→ D

yields the result.

3. A chain homotopy

g : f ' f ′ : C → D

gives rise to an isomorphism(
1 (−)rg
0 1

)
: C(f) = D ⊕ CS → C(f ′) = D ⊕ SC

which has trivial torsion. Using part 2

0 = τNEW (C(f ′))− τNEW (C(f))

the result follows.
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4. We choose splitting morphisms {k : Cr → Br|r ≥ 0} and {k′ : C ′
r → B′

r|r ≥
0}. We have the following short exact sequence of mapping cones:

0 → C(a)

0@ i′ 0
0 i

1A
−−−−−−−→ C(b)

0@ j′ 0
0 j

1A
−−−−−−−→ C(c) → 0

We note that

τNEW
(
C(a), C(b), C(c);

(
i′

i

)
;

(
i′

i

))
= τNEWiso

((
i′ 0 k′ 0
0 i 0 k

)
: A′ ⊕ SA⊕ C ′ ⊕ SC → B′ ⊕B

)
= τNEWiso

((
i′ k′ 0 0
0 0 i k

)
: A′ ⊕ C ′ ⊕ SA⊕ SC → B′ ⊕B

)
+τNEWiso (SA⊕ C ′ → C ′ ⊕ SA)

= τNEWiso ((i k) : SA⊕ SC → SB) + τNEWiso ((i′ k′)) + ε(χ(SA), χ(C ′))

= τNEWiso ((i k) : S(A⊕ C) → SB) + τNEWiso ((i′ k′))

+τNEWiso (SA⊕ SC → S(A⊕ C)) + ε(χ(C), χ(A))

= −τNEWiso ((i k) : A⊕ C → B) + τNEWiso ((i′ k′))

−ε(χ(C), χ(A)) + ε(χ(C), χ(A))

= −τNEWiso ((i k) : A⊕ C → B) + τNEWiso ((i′ k′))

= τNEW (A′, B′, C ′; i′, j′)− τNEW (A,B,C; i, j)

The result now follows from applying lemma 5.8 part 1 to the short exact

sequence above.

5. Applying the result for a commutative diagram of short exact sequences

(part 4) with a = f : C → D, c = f ′ : C ′ → D′ and b = f ⊕ f ′ : C ⊕ C ′ →
D ⊕D′ yields the result.

6. We have a commutative diagram with short exact rows:

0 // A
f //

f
��

B
g //

1
��

C //

��

0

0 // B
1 // B // 0 // 0

The result follows by applying part 4 to the above diagram.
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5.1.6 Applications to topology and examples of use.

Let X be a connected finite CW -complex. We may form the cellular chain com-

plex of the universal cover of X as a complex C(X̃) over the fundamental group

ring Z[π1X]; we may further make C(X̃) into a signed complex with an arbitrary

choice of ηC(X̃). For a cellular homotopy equivalence f : X → X we have an as-

sociated chain equivalence f∗ : C(X̃) → C(X̃); we can make C(X̃) into a signed

chain complex by choosing some ηC(X̃) and define the torsion of f to be

τNEW (f) := τNEW (f∗ : C(X̃) → C(X̃)) ∈ K1(Z[π1X])

this is independent of the choice of ηC(X̃). We now give some examples:

1. The torsion of the identity map of any connected CW -complex is trivial.

2. Let X = CP2; we choose homogeneous coordinates (x : y : z) and we give

X a CW -structure as follows:

0-cell (1 : 0 : 0)
2-cell (z1 : 1 : 0)
4-cell (z1 : z2 : 1)

Let f : CP2 → CP2 be the cellular self-homeomorphism given by complex

conjugation in all three coordinates, that is:

f : (x : y : z) 7→ (x̄ : ȳ : z̄)

This map preserves the orientation of the 0-cell and 4-cell, and it reverses

the orientation of the 2-cell. Hence τNEW (f) = τ(−1). In corollary 5.28 we

show that for any orientation preserving self-homeomorphism g of a simply

connected manifold of dimension 4k + 2, that τNEW (g) = 0. This example

shows that for self-homeomorphism f of a 4k-dimensional manifold it is

possible for τNEW (f) 6= 0

5.2 The signed derived category.

Chapter 6 will require the use of the signed derived category. In this section we

define SD(A) and prove some basic properties.

Definition 5.13. The signed derived category SD(A) is the additive category

with objects signed chain complexes in A and morphisms chain homotopy classes

of chain maps between such complexes.

We write SD(R) for SD(A(R))
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Proposition 5.14. (i) The Euler characteristic defines a surjection

χ : K0(SD(A)) → K0(A) ; [C, ηC ] 7→ χ(C) =
∞∑
r=0

(−)r[Cr] .

(ii) Isomorphism torsion defines a forgetful map

i∗ : Kiso
1 (SD(A)) → Kiso

1 (A) ; τ iso(f) 7→ [τNEW (f)] = τNEW (f)

which is a surjection split by the injection

Kiso
1 (A) → Kiso

1 (SD(A)) ; τ iso(f : A→ B) 7→ τNEW (f : (A, 0) → (B, 0)) .

(iii) The diagram

K0(SD(A))⊗K0(SD(A))

χ⊗ χ ∼=
��

ε // Kiso
1 (SD(A))

i∗
��

K0(A)⊗K0(A) ε // Kiso
1 (A)

commutes, that is the sign of objects (C, ηC), (D, ηD) in SD(A) has image

i∗ε((C, ηC), (D, ηD)) = ε(χ(C), χ(D)) ∈ Kiso
1 (A) .

Proof. (i) A short exact sequence 0 → C → D → E → 0 of finite chain complexes

in A determines a relation

[C, ηC ]− [D, ηD] + [E, ηE] = 0 ∈ K0(SD(A))

for any signs ηC , ηD, ηE.

(ii) By construction.

(iii) The sign

ε((C, ηC), (D, ηD))

= τNEW (

(
0 1
1 0

)
: (C, ηC)⊕ (D, ηD) → (D, ηD)⊕ (C, ηC)) ∈ Kiso

1 (SD(A))

has image

i∗ε((C, ηC), (D, ηD))

= τNEW (

(
0 1
1 0

)
: (C, ηC)⊕ (D, ηD) → (D, ηD)⊕ (C, ηC))

=
∞∑
r=0

(−)rτNEW (

(
0 1
1 0

)
: Cr ⊕Dr → Dr ⊕ Cr) + ηD⊕C − ηC⊕D

=
∞∑
r=0

(−)rε(Cr, Dr)− ε(χ(D), χ(C)) +
∞∑
r=0

(−)rε(Dr, Cr)

= ε(χ(D), χ(C)) = ε(χ(C), χ(D)) ∈ Kiso
1 (A) .
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5.3 Duality properties of absolute torsion.

In this section we extend the notion of absolute torsion to encompass dual objects

and dual maps. We now work over an additive category with involution and

introduce the notion of a dual signed complex Cn−∗ (defined below). We prove

the following result:

Proposition 5.15. 1. Let C be a contractible signed complex. Then

τNEW (Cn−∗) = (−)n+1τNEW (C)∗ ∈ Kiso
1 (A)

2. Let f : C → D be a chain equivalence of signed chain complexes. Then

τNEW (fn−∗ : Cn−∗ → Dn−∗) = (−)nτNEW (f)∗ ∈ Kiso
1 (A)

3. Let f : Cn−∗ → D be a chain equivalence of signed chain complexes. Then

the chain equivalence Tf : Dn−∗ → C (defined below) satisfies:

τNEW (Tf : Dn−∗ → C) = (−)nτNEW (f)∗+
n

2
(n+1)ε(χ(C), χ(C)) ∈ Kiso

1 (A)

The rest of this section will be concerned with defining these concepts and

proving proposition 5.15.

Throughout the rest of this chapter A is an additive category with involution.

An involution on A induces an involution on Kiso
1 (A) in the obvious way.

We define the sign term

αn(C) =
∑

r≡n+2,n+3 (mod 4)

ε(Cr, Cr) ∈ Kiso
1 (A)

Given a signed chain complex (C, ηC) we define the dual signed chain complex

with (Cn−∗, ηCn−∗) by

ηCn−∗ := (−)n+1η∗C + (−)n+1β(C,C)∗ + αn(C) ∈ Kiso
1 (A)

Lemma 5.16. Let A and B be elements of A and C and D chain complexes over

A. We have the following basic properties of the absolute torsion in an additive

category with involution:

1. χ(Cn−∗) = (−)nχ(C)∗

2. ε(A∗, B∗) = ε(B,A)∗
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3. β(Cn−∗, Dn−∗) = (−)nβ(D,C)∗

4. For chain isomorphisms f : C → D we have that:

τNEW (fn−∗ : Dn−∗ → Cn−∗) = (−)nτNEW (f)∗ ∈ Kiso
1 (A)

5.

τNEW ((C ⊕D)n−∗ → Cn−∗ ⊕Dn−∗) =

{
0

ε(χ(C), χ(D))∗
for

{
n even
n odd

6. τNEW (1 : Cn−∗ → (SC)n+1−∗) = 0.

7. τNEW ((−1)r : Cn+1−∗ → S(Cn−∗)) = 0.

8. τNEW ((−1)(n+1)r : (Cn−∗)n−∗ → C) = n
2
(n+ 1)ε(χ(C), χ(C))∗

Proof. Parts 1 to 4 follow straight from the definitions. For part 5:

τNEW ((C ⊕D)n−∗ → Cn−∗ ⊕Dn−∗)

= ηCn−∗⊕Dn−∗ − η(C⊕D)n−∗

= ε(χ(Cn−∗), (Dn−∗)even) + (−)nε(χ(C), Deven)
∗

The result follows after considering the odd and even cases.

Part 6 follows straight from the definitions. For part 7:

τNEW ((−1)r : Cn+1−∗ → S(Cn−∗))

τNEW ((−1)r : Cn+1−∗ → S(Cn−∗))
= ηS(Cn−∗) − ηCn+1−∗ +

∑
r≡n (mod 2) ε(Cr, Cr)

∗

= αn+1(C) + αn(C) +
∑

r≡n (mod 2) ε(Cr, Cr)
∗

= 0

For part 8:

τNEW ((−1)(n+1)r : (Cn−∗)n−∗ → C)

= ηC − η(Cn−∗)n−∗ + τ((−)(n+1)r : Cr → Cr)
= αn(C

n−∗) + (−)nαn(C)∗ + (n+ 1)
∑

r odd ε(Cr, Cr)
=

∑
r≡n+2,n+3(mod 4)(ε(Cr, Cr) + ε(Cn−r, Cn−r))

+(n+ 1)
∑

r odd ε(Cr, Cr)

=


0

ε(χ(C), χ(C))
ε(χ(C), χ(C))

0

for n ≡


0
1
2
3

= n
2
(n+ 1)ε(χ(C), χ(C))
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Lemma 5.17. The torsion of a contractible signed chain complex C in A satisfies:

τNEW (Cn−∗) = (−)n+1τNEW (C)∗ ∈ Kiso
1 (A)

Proof. We denote by C̄n−∗ the chain complex with (C̄n−∗)r = (Cn−r)
∗ and

dC̄n−∗ = d∗C : C̄n−r → C̄n−r+1

We have an isomorphism f : Cn−∗
r → C̄n−∗

r given by f = −1 if r ≡ n + 2, n +

3 (mod 4) and f = 1 otherwise. By considering the torsion of this isomorphism

we have:

τ(Cn−∗) = τ(C̄n−∗) + αn(C) (5.3.1)

Let neven be the greatest even integer ≤ n, similarly nodd. For any chain contrac-
tion Γ for C we have the following commutative diagram:

Cneven ⊕ . . .⊕ C0


d∗ 0 0 . . .
Γ∗ d∗ 0 . . .
0 Γ∗ d∗ . . .
...

...
...


//


1

1
. . .

1


��

Cnodd ⊕ . . .⊕ C1


1

1
. . .

1


��

C0 ⊕ . . .⊕ Cneven
d∗ Γ∗ 0 . . .
0 d∗ Γ∗ . . .
0 0 d∗ . . .
...

...
...


// C1 ⊕ . . .⊕ Cnodd

The torsion of the lower map in this diagram is τ(C)∗; the torsion of the upper-

most map is (−)n+1τ(C̄n−∗). So, by first considering the torsions of the maps in

the above diagram we have:

τ(C̄n−∗) = (−)n+1τ(C)∗ + (−)n+1(
∑

i>j; i,j even

ε(Ci, Cj)−
∑

i>j; i,j odd

ε(Ci, Cj))

= (−)n+1τ(C)∗ + (−)nβ(C,C)∗

Hence by equation 5.3.1

τ(Cn−∗) = (−)n+1τ(C)∗ + (−)nβ(C,C)∗ + αn(C)
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Using the definition of the dual signed chain complex we have:

τNEW (Cn−∗) = (−)n+1τNEW (C)∗

Lemma 5.18. Let C,D be n-dimensional signed chain complexes in A and f :

C → D a chain equivalence. Then

τNEW (fn−∗ : Dn−∗ → Cn−∗) = (−)nτNEW (f)∗ ∈ Kiso
1 (A)

Proof. We have an isomorphism of chain complexes θ : C(fn−∗) → C(f)n+1−∗

given by:

C(fn−∗)r = Cn−r ⊕Dn−r+1

0@ 0 (−)n−r

1 0

1A
−−−−−−−−−−−→ C(f)n+1−∗

r = Dn−r+1 ⊕ Cn−r

The torsion of the map θ is given by:

τNEW (θ) = τNEW ((−)n−r : S(Dn−∗ → Dn+1−∗)

+τNEW (Cn−∗ → (SC)n+1−∗)

+τNEW ((SC)n+1−∗ ⊕Dn+1−∗ → (SC ⊕D)n+1−∗)

+(−)n+1τNEW (D ⊕ SC → SC ⊕D)∗

= nε(χ(D), χ(D))∗ + (n+ 1)ε(χ(D), χ(D))∗

+ε(χ(D), χ(D))∗

= 0

and the result follows since τNEW (C(f)n+1−∗) = (−)nτNEW (f)∗

Lemma 5.19. Let C,D be n-dimensional signed chain complexes in A and f :

Cn−∗ → D a chain equivalence. Then

τNEW (Tf : Dn−∗ → C) = (−)nτNEW (f)∗ +
n

2
(n+ 1)ε(χ(C), χ(C)) ∈ Kiso

1 (A)

Proof. Using lemmas 5.16 and 5.18 we have:

τNEW (Tf : Dn−∗ → C) = τNEW (f ∗ : Dn−∗ → (Cn−∗)n−∗)

+τNEW ((−1)(n+1)r(Cn−∗)n−∗ → C)

= (−)nτNEW (f)∗ +
n

2
(n+ 1)ε(χ(C), χ(C))

as required.

Together the above three lemma prove proposition 5.15.
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5.4 The signed Poincaré derived category with

involution.

In this section we will add an involution to a particular subcategory of the signed

derived category. Let SPDn(A(R)) denote the category whose object are signed

n-dimensional chain complexes C in A(R) which are isomorphic to their dual

complexes Cn−∗ and χ(C) = 0 ifn is odd. Then we have an involution

∗ : C 7→ Cn−∗

∗ : (f : C → D) 7→ (fn−∗ : Dn−∗ → Cn−∗)

with the natural equivalence e(C) given by

e(C) = (−)(n+1)r : C → (Cn−∗)n−∗

We call this category the signed Poincaré derived category with n-involution.

Again we write SPDn(A(r)) as SPD(r). In order to show that this is a covariant

functor of additive categories we must show that ∗(A⊕B) = ∗A⊕∗B. However,

the condition that χ(C) is odd if n is odd implies that the torsion of the rear-

rangement map (C ⊕ D)n−∗ → Cn−∗ ⊕ Dn−∗ is trivial (see lemma 5.16 part 5)

and the functor ∗ is additive. As in the case of the signed derived category we

have a map

i∗ : Kiso
1 (SPDn(A(R))) → Kiso

1 (A(R)) ; τ iso(f) 7→ τNEW (f)

The behaviour of i∗ under the involution on SPDn(A(R)) is given by

i∗(f
∗) = (−)ni∗(f)∗

5.5 Torsion of Poincaré complexes

We now move on to consider symmetric Poincaré complexes. We will restrict

ourselves to considering symmetric Poincaré complexes over a ring R, that is we

work over A = A(R) and we will consider the torsion invariants to lie in the more

familiar K1(R). We will define the notion of the absolute torsion of a symmetric

Poincaré complex to be, essentially, the torsion of the Poincaré duality chain

equivalence.

A signed symmetric (Poincaré) complex is a symmetric (Poincaré) complex

(C, φ0) where in addition C is a signed chain complex. Such a complex is said to

be round or even if C is round or even respectively.
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Lemma 5.20. The boundary (∂C, ∂φ) of any signed n-dimensional symmetric

complex (C, φ) satisfies

τNEW (∂φ0 : (∂C)n−1−∗ → ∂C) =
n

2
(n+ 1)ε(χ(C), χ(C)) ∈ K1(R)

Proof. The map

∂φ0 =

(
(−)n−r−1Tφ1 (−)rn

1 0

)
: ∂Cn−r−1 → ∂Cr

is an isomorphism.

We have that

τNEW (∂φ0) = τNEW
((

0 (−)rn
1 0

)
: (ΩC ⊕ Cn−∗)n−1−∗ → ΩC ⊕ Cn−∗

)
= τNEW ((ΩC ⊕ Cn−∗)n−1−∗ → (ΩC)n−1−∗ ⊕ (Cn−∗)n−1−∗)

+τNEW ((Cn−∗)n−1−∗ → (ΩCn−1−∗)n−1−∗)

+τNEW ((−)nr : (ΩCn−1−∗)n−1−∗ → ΩC)

+τNEW ((ΩC)n−1−∗ → Cn−∗)

= τNEW (Cn−∗ ⊕ ΩC → ΩC ⊕ Cn−∗)

=
n

2
(n+ 1)ε(χ(C), χ(C))

using the results of lemma 5.16.

We can now define a new absolute torsion invariant of Poincaré complexes

which is additive and a cobordism invariant.

Definition 5.21. We define the absolute torsion of a signed Poincaré complex

(C, φ) as

τNEW (C, φ) = τNEW (φ0) ∈ K1(R)

Proposition 5.22. Let (C, φ) and (C ′, φ′) be signed n-dimensional Poincaré com-

plexes. Then:

1. Additivity:

τNEW (C ⊕ C ′, φ⊕ φ′) = τNEW (C, φ) + τNEW (C ′φ′0) ∈ K1(R)

2. Duality:

τNEW (C, φ) = (−)nτNEW (C, φ)∗ +
n

2
(n+ 1)ε(χ(C), χ(C)) ∈ K1(R)

(n.b. the above sign term disappears in the case where A = A(R) and where

anti-symmetric form over the ring R necessarily have even rank; this is the

case for R = Z or R = Q but not R = C).
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3. Homotopy invariance: Suppose (f, σs) is a homotopy equivalence from (C, φ)

to (C ′, φ′). Then

τNEW (C ′, φ′) = τNEW (C, φ) + τ(f) + (−)nτ(f)∗ ∈ K1(R)

4. Cobordism Invariance: Suppose that (C, φ) is homotopy equivalent to the

boundary of some (n+1)-dimensional symmetric complex with torsion (D,φD).

Then

τNEW (C, φ) = (−)n+1τNEW (C → ∂D)∗ − τNEW (C → ∂D)

+
1

2
(n+ 1)(n+ 2)ε(χ(D), χ(D)) ∈ K1(R)

5. Orientation change:

τNEW (C,−φ) = τNEW (C, φ) + ε(χ(C), χ(C)) ∈ K1(R)

6. The absolute torsion of a signed Poincaré complex is independent of the

choice of sign ηC.

Proof. 1. A symmetric Poincaré complex of odd dimension satisfies χ(C) = 0,

hence the map (C ⊕ C ′)n−∗ → Cn−∗ ⊕ C ′n−∗ has trivial absolute torsion.

Additivity now follows from the additivity of chain equivalences.

2. We know that φ0 is homotopic to Tφ0; duality now follows by applying

lemma 5.19.

3. We have that φ′0 ' fφ0f
∗ and hence

τNEW (φ′0) = τNEW (f) + τNEW (φ0) + (−)nτNEW (f)∗

4. This follows from proposition 5.20 and homotopy invariance.

5. We have that τNEW (−φ0) = τNEW (φ0)+τ
NEW (−1 : C → C) = τNEW (φ0)+

χ(C)τ(−1).

6. A change in ηC leads to a corresponding change in ηcn−∗ so τNEW (φ0) is

unchanged.

76



5.6 Round L-theory

We refer the reader to [HRT87] for the definition of the round symmetric L-groups

Lnr (A). The absolute torsion defined in this paper as τ(C, φ0) = τ(φ0) (here τ(φ0)

refers to the absolute torsion defined in [Ran85]) is not a cobordism invariant.

We can define such an invariant using the absolute torsion of a Poincaré complex.

If this invariant is substituted for τ(C, φ0) as defined in [HRT87] then the results

become correct.

Lemma 5.23. Let (C, φ) be a round Poincaré complex. The reduced element

τNEW (C, φ) ∈ Ĥn(Z2;K1(R))

is independent of the choice of sign ηC; moreover we have a well defined homo-

morphism:

Lnr (R) → Ĥn(Z2;K1(R))

given by (C, φ) 7→ τNEW (C, φ).

Proof. The element τNEW (C, φ) ∈ Ĥn(Z2;K1(R)) is independent of the choice of

sign by proposition 5.22 part 6. The absolute torsion is additive by proposition

5.22 part 1. The absolute torsion of the boundary of a round symmetric complex

is trivial in the reduced group Ĥn(Z1;K1(R)) by proposition 5.22 part 4. Hence

the torsion of a round null-cobordant complex is trivial and the map

Lnr (R) → Ĥn(Z2;K1(R))

given by (C, φ) 7→ τNEW (C, φ) is well defined.

5.7 Applications to Poincaré spaces.

5.7.1 The absolute torsion of Poincaré spaces.

To any n-dimensional Poincaré space X we may associate via the symmetric

construction a symmetric Poincaré complex (C(X̃), φ) over the ring R = Z[π1(X)]

, well defined up to homotopy equivalence. By property 2 of proposition 5.22 the

absolute torsion of such a Poincaré complex satisfies

τNEW (C, φ) = (−)nτNEW (C, φ)∗

since χ(X) ≡ 0 (mod 2) unless n ≡ 0 (mod 4). Hence the torsion τNEW (C, φ)

may be considered to lie in the group Ĥn(Z2;K1(Z[π1(X)])). By property 3 of

proposition 5.22 if (C, φ) is homotopy equivalent to (C ′, φ′) then

τNEW (C, φ) = τNEW (C ′, φ′) ∈ Ĥn(Z2;K1(Z[π1(X)]))
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hence

τNEW (X) := τNEW (C, φ) ∈ Ĥn(Z2;Z[π1(X)])

is well defined.

5.7.2 Examples of the absolute torsion of Poincaré spaces.

5.7.2.1 The circle

We may associate to the circle (S1) the following chain complex over R =

Z[π1(S
1)] = Z[t, t−1] by giving it the CW-decomposition consisting of one 1-cell

and one 0-cell:

Z[t, t−1]
1 //

t−1−1
��

Z[t, t−1]

1−t
��

Z[t, t−1]
t // Z[t, t−1]

In this diagram the two modules on the right are the chain complex, the two

modules on the left are the dual complex and the sideways arrows represent φ0.

Hence τNEW (S1) = τ(−t) ∈ Ĥn(Z2;K1(Z[t, t−1]).

5.7.2.2 The absolute torsion of an algebraic mapping torus.

The mapping torus of a map f : X → X is the space obtained from X × I

obtained by attaching the boundaries X × {0} and X × {1} using the map f .

The following algebraic analogue is defined by Ranicki ([Ran98] definition 24.3,

the reader should note the different sign convention used here).

Definition 5.24. The algebraic mapping torus of a morphism (f, σ) : (C, φ) →
(C, φ) from an n-dimensional symmetric Poincaré complex (C, φ) over a ring R

to itself is the (n + 1)-dimensional symmetric complex (T (f), θ) over the ring

R[z, z−1] defined by:

T (f) = C(f − z)

θ0 =

(
(−)nσ0 φ0z
(−)n−r+1φ0f

∗ 0

)
: T (f)n−r+1 → T (f)r

The complex is Poincaré if the morphism f is a chain equivalence.

Lemma 5.25. Let (f, σ) : (C, φ) → (C, φ) be a self chain equivalence from an

n-dimensional symmetric Poincaré complex (C, φ) over a ring R to itself. Then:

τNEW (T (f), θ) = τNEW (f) + τNEW (−z : C → C) ∈ K1(R[z, z−1])
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Proof. We have a commutative diagram with short exact rows:

0 // Cn−r

0@ 0
1

1A
//

−zφ0
��

C(f − z)n+1−r

“
(−)r 0

”
//

θ
��

S(Cn−r)

(−)nφ0f
∗

��

// 0

0 // Cr 0@ 1
0

1A
// C(f − z)r “

0 1
” // SCr // 0

The absolute torsion of the lower short exact sequence is trivial; for the top map

we have:

τNEW
(
Cn−r, C(f − z)n+1−r, S(Cn−r);

(
0
1

)
,
(

(−)r 0
))

=

τNEW
((

0 (−)r

1 0

)
: (C ⊕ SC)n+1−∗ → Cn−∗ ⊕ S(Cn−∗)

)
= τNEW ((C ⊕ SC)n+1−∗ → Cn+1−∗ ⊕ (SC)n+1−∗)

+τNEW ((−1)r : Cn+1−∗ → S(Cn−∗))
+τNEW ((SC)n+1−∗ → Cn−∗)
+τNEW (S(Cn−∗)⊕ Cn−∗ → Cn−∗ ⊕ S(Cn−∗))

= 0

Using proposition 5.12 part 4 we have:

τNEW (T (f), θ) = τNEW (θ)

= τNEW (−zφ0) + τNEW ((−1)nS(φ0f
∗) : S(Cn−∗) → SC)

= −τNEW (f ∗) + τNEW (−z : C → C)

= (−)n+1−∗τNEW (f)∗ + τNEW (−z : C → C)

= τNEW (f) + τNEW (−z : C → C)

as required.

5.7.2.3 A specific example of a mapping torus.

We return to the example of the orientation preserving self-homeomorphism

f : CP2 → CP2 given by complex conjugation in some choice of homoge-

neous coordinates (see section 5.1.6). We recall that the torsion of this map is

τNEW (f) = τ(−1) ∈ K1(Z). Using lemma 5.25 we compute the absolute torsion

of the mapping torus of f as

τNEW (T (f)) = τ(z3) ∈ K1(Z[z, z−1])

where z is a generator of π1(T (f)) = π1(S
1) = Z. By contrast we may compute

the absolute torsion of the space T (Id : CP2 → CP2) = S1 ×CP2 as

τNEW (S1 ×CP2) = τ(−z3) ∈ K1(Z[z, z−1])
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hence the absolute torsion can distinguish between these two CP2 bundles over

S1.

5.8 Identifying the sign term

Throughout this section we work over a group ring R = Z[π] for some group π (or,

more generally, any ring with involution R which admits a map R→ Z such that

the composition Z → R → Z is the identity). We first identify the relationship

between the “sign” term of the absolute torsion of a Poincaré complex and the

traditional signature and Euler characteristic and semi-characteristic invariants.

We have a canonical decomposition of K1(Z[π]) as follows:

K1(Z[π]) = K̃1(Z[π])⊕ Z2

with the Z2 component the “sign” term identified by the map

i∗K1(Z[π]) → K1(Z) = Z2

induced by the augmentation map i : π → 1 (more generally, a map R→ Z gives a

mapK1(R) → K1(Z) = Z2 which gives a splittingK1(R) = K̃1(R)⊕Z2). We wish

to determine the Z2 component in terms of more traditional invariants of Poincaré

complexes. The augmentation map may also be applied to a symmetric complex

(C, φ) over Z[π] to form a symmetric complex over Z by forgetting the group.

Functoriality of the absolute torsion tells us that this complex has the same sign

term as (C, φ), hence to identify the sign term it is sufficient to consider symmetric

Poincaré complexes over Z. We will require the Euler semi-characteristic χ1/2(C)

of Kervaire [Ker56]

Definition 5.26. The Euler semi-characteristic χ1/2(C) of a (2k−1)-dimensional

chain complex C over a field F is defined by

χ1/2(C) =
k−1∑
i=0

(−)irankFHi(C) ∈ Z

For a (2k − 1)-dimensional chain complex C over Z we define

χ1/2(C;F ) = χ1/2(C ⊗Z F )

Proposition 5.27. The absolute torsion of an n-dimensional symmetric Poincaré

complex over Z is determined by the signature and the Euler characteristic and

semi-characteristic as follows:
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1. If n = 4k then:

τNEW (C, φ) =
sign(C, φ)− (1 + 2k)χ(C)

2
τ(−1)

with σ(C) the signature of the complex.

2. If n = 4k + 1 then τNEW (C, φ) = χ1/2(C;Q).

3. Otherwise τNEW (C, φ) = 0.

As an example we have a simple corollary:

Corollary 5.28. The absolute torsion of a self homotopy equivalence of a 4k+2-

dimensional symmetric Poincaré complex over Z is trivial.

Proof. Let (C, φ) be the symmetric Poincaré complex and f : C → C the self-

homotopy equvialence. Then the algebraic mapping torus T (f) is a 4k + 3-

dimensional symmetric Poincaré complex and by lemma 5.25 we have

τNEW (T (f)) = τNEW (f) ∈ K1(Z[z, z−1])

The augmentation map ε : Z → 1 induces a map of rings ε∗ : Z[z, z−1] → Z. Since

L-theory and the absolute torsion are functorial, ε∗T (f) represents an element of

L4k+3(Z) with absolute torsion τNEW (ε∗T (f)) = τNEW (f) ∈ K1(Z). However by

part 3 of the above proposition τNEW (ε∗T (f)) = 0.

The aim of the rest of this section is to prove proposition 5.27 . We recall

from [Ran80b] the computation of the symmetric L-groups Lnh(Z) of the integers

Z:

Lnh(Z) =


Z (signature)
Z2 (de Rham invariant)
0
0

for n ≡


0
1
2
3

(mod 4)

The deRham invariant d(C) ∈ Z2 of a (4k + 1)-dimensional Poincaré complex

was expressed in [LMP69] as the difference

d(C) = χ1/2(C;Z2)− χ1/2(C;Q)

For dimensions n ≡ 2, 3 (mod 4) the absolute torsion is a cobordism invariant

(proposition 5.22 part 4) so the above computation of the symmetric L-groups

tells us that the absolute torsion is trivial in these cases, thus proving the third

part of proposition 5.27.
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If n = 4k + 1 then the absolute torsion is not a cobordism invariant; however

it is a round cobordism invariant, so absolute torsion defines a map:

L4k+1
rh (Z) → K1(Z)

Since χ(C) = 0 for all odd-dimensional symmetric Poincaré complexes every such

(4k + 1)-dimensional complex represents an element in L4k+1
rh (Z). In [HRT87]

(proposition 4.2) the group L4k+1
rh (Z) is identified as:

L4k+1
rh (Z) = Z2 ⊕ Z2; C 7→ (χ1/2(C;Z2), χ1/2(C,Q))

We now construct explicit generators of this group and compute their absolute

torsions. We define the generator (G, φ) to have chain complex G concentrated

in dimensions 2k and 2k + 1 defined by:

dG = 0 : G2k+1 = Z → G2k = Z

with the morphisms φ given by:

φ0 =

{
1 : G2k = Z → G2k+1 = Z
1 : G2k+1 = Z → G2k = Z

φ1 = 0

Geometrically (G, φ) is the symmetric Poincaré complex over Z associated to the

circle. By direct computation, χ1/2(G,Z2) = 1, χ1/2(G,Q) = 1 and τNEW (G, φ) =

τ(−1). We define the generator (H,ψ) to have chain complex H concentrated in

dimensions 2k and 2k + 1 defined by:

dH = 2 : H2k+1 = Z → H2k = Z

with the morphisms ψ given by:

ψ0 =

{
−1 : H2k = Z → H2k+1 = Z
1 : H2k+1 = Z → H2k = Z

ψ1 = 1 : H2k+1 → H2k+1

Geometrically (H,ψ) is a symmetric Poincaré complex over Z which is cobordant

to the complex associated to the mapping torus of the self-diffeomorphism of CP2

given by complex conjugation. Again by direct computation, χ1/2(H,Z2) = 1,

χ1/2(H,Q) = 0 and τNEW (H,ψ) = 0. By considering the absolute torsion of

these two generators we see that the map L4k+1
rh (Z) → K1(Z) is given by:

(C, φ) 7→ χ1/2(C,Q)τ(−1)

thus proving part two of proposition 5.27.

To prove part 1 of proposition 5.27 we use the following lemma (from [HKR05]):

82



Lemma 5.29. We have the following relationship between τNEW and signature

modulo 4 of a 4k-dimensional Poincaré complex (C, φ):

sign(C, φ) = 2τNEW (C, φ) + (2k + 1)χ(C) ∈ Z4

where the map 2 : K1(Z) = Z2 → Z4 takes τ(−1) to 2 ∈ Z4.

Proof. The right-hand side is clearly additive. Suppose momentarily that C is

null-cobordant, in other words that C is homotopy equivalent to the boundary of

some (n+ 1)-dimensional symmetric complex (D,φD). Then by proposition 5.22

part 4:

τNEW (C) = ε(χ(D), χ(D))

and one can easily see that χ(D) = 1
2
χ(C) so

2τNEW (C, φ) + (2k + 1)χ(C) = 0 ∈ Z4

in this case. Hence the right-hand side is a cobordism invariant so we only have

to show that the formula holds for a generator of L4k(Z) ∼= Z. One can easily

check this.

A simple rearrangement of the formula of the above lemma yields the first

part of proposition 5.27.
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Chapter 6

The absolute torsion of a fibre
bundle.

For the sake of completeness we now prove a formula for the absolute torsion

of the total space of a Poincaré fibration satisfying assumption 1.2. This first

appeared in [HKR05] in the special case of a fibre bundle of PL-manifolds. We will

use the results of [HKR05] concerning the absolute torsion of filtered complexes.

Unlike in [HKR05] we will not use this result to prove that the signature of

a fibration is multiplicative modulo four, instead we will compute the absolute

torsion of a twisted product of a symmetric Poincaré complex and a (Z,m)-

symmetric representation.

We first recall from [Lüc86] and [LR88] the construction of the algebraic K-

theory transfer map associated to a fibration. Let p : E → B be a fibration

satisfying assumption 1.2. Then we have an associated transfer functor

−⊗ (C(F̂ ), U) : Abased(Z[π1(B)]) → D(Z[π1(E)])

If we choose some sign (arbitrarily) for C(F̂ ) we can assume that this functor lands

in the signed derived category SD(Z[π1(E)]), since the functor applied objects

Z[π1(B)]k is
⊕

k C(F̂ ) a well-defined signed complex. If we take Kiso
1 of this

functor we have a homomorphism:

K1(Z[π1(B)]) → Kiso
1 (SD(Z[π1(E)]))

If we now compose with the forgetful map i∗ : Kiso
1 (SD(Z[π1(E)])) → K1(Z[π1(E)])

of proposition 5.14 we have a map:

p! : K1(Z[π1(B)]) → K1(Z[π1(E)])

Note that this depends only on the action of π1(B) on the fibre (in particular it

doesn’t depend on the choice of sign for C(F̂ )).

We can now state the main Theorem of this chapter:
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Theorem 6.1. Let p : Fm → Em+n → Bn be a Poincaré fibration satisfying

assumption 1.2. Then:

τNEW (E) = p!τNEW (B) + χ(B)q∗τ
NEW (F ) ∈ Ĥn+m(Z2;K1(Z[π1(E)]))

where q∗ : K1(Z[π1(F )]) → K1(Z[π1(E)]) is the map induced by the inclusion

F → E.

6.1 The absolute torsion of filtered chain com-

plexes.

In this chapter we recall the definitions and results (without proof) of [HKR05]

chapter 12. First we must define signed analogues of filtered complexes and

associated complexes (definitions 3.1 and 3.3).

Definition 6.2. • A signed k-filtered complex (F∗C, ηG∗C) in A consists of

a filtered complex F∗C together with signs:

ηG∗C ∈ Kiso
1 (SD(A)) (6.1.1)

ηGj
∈ Kiso

1 (A) (6.1.2)

for all 0 ≤ j ≤ k. A map of such complexes is a map of the underlying

filtered complexes.

• Given a signed filtered complex (F∗C, ηG∗C) we define the signed associated

complex (G∗C, ηG∗C) to be the signed chain complex in SD(A) whose under-

lying unsigned chain complex in D(A) is the usual associated complex, but

with signed objects (GjC, ηGjC) and “global” sign ηG∗C.

• Given a signed filtered complex (F∗C, ηG∗C) we define the unfiltered signed

complex (C, ηC) by:

ηC = i∗ηG∗C + ηG0C⊕S(G1C⊕S(G2C⊕...⊕SGkC)...)

The best justification for the sign terms appearing in this definition is the

following theorem ([HKR05] Theorem 12.17):

Theorem 6.3. Let F∗f : (F∗C, ηG∗C) → (F∗D, ηG∗D) be a filtered homotopy equiv-

alence of signed filtered complexes. Then the associated map G∗f : (G∗C, ηG∗C) →
(G∗D, ηG∗D) is a chain equivalence of signed complexes in SD(A); moreover

τNEW (f : (C, ηC) → (D, ηD)) = i∗τ
NEW (G∗f) ∈ Kiso

1 (A)
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We now introduce sign terms for the filtered dual complex (definition 4.2).

Let A be an additive category with involution

Definition 6.4. 1. A filtered complex F∗C in an additive category with invo-

lution A is said to be m-admissible if each GrC is isomorphic to its m-dual

(GrC)m−∗. In addition, if m is odd we require that χ(Gr) = 0. These

conditions are equivalent to saying that G∗C lifts to the category SPDm(A).

2. The signed (n,m)-filtered dual (F n,m
∗ C, ηG∗(Fn,m

∗ C)) complex of an m-admissible

signed filtered complex (F∗C, ηF∗C) to be the signed filtered complex who’s un-

derlying filtered chain complex is the (n,m)-filtered dual of F∗C and with

filtered signs given by:

ηG∗(Fn,m
∗ C) = η(G∗C)n−∗ ∈ Kiso

1 (SD(A))

ηGj(F
n,m
∗ C) = η(GjC)m−∗ ∈ Kiso

1 (A)

Observe that the associated complex of the signed filtered dual is the dual of

the filtered complex; in other words

G∗(F
n,m
∗ C, ηG∗(Fn,m

∗ C)) = ((G∗C)n−∗, η(G∗C)n−∗)

as signed chain complexes in SPDm(A). We recall Proposition 12.26 of [HKR05]

Proposition 6.5. Let F∗C be a m-admissible signed filtered chain complex over

A(R). Then

τNEW (θF∗C : F n,mC → Cn+m−∗) = 0

as a map between unfiltered signed complexes.

6.2 Completing the proof

The proof of Theorem 6.1. Let (C(B̃), φB) be a symmetric complex representing

B. By theorem 4.5 there exists a symmetric complex (C(Ẽ), φE) representing

E with C(Ẽ) a filtered complex and an isomorphism E : G∗C(Ẽ) → C(B̃) ⊗
(C(F̂ ), φF0 , U) such that φE0 ◦ θF∗C( eE) is a filtered map and

E ◦G∗(φ
E
0 ◦ θF∗C( eE)) ◦ E

n−∗ = (φB0 ⊗ (C(F̂ ), φF0 , U)) ◦H(C(B̃))

The existence of E and the fact that C(F̂ ) is isomorphic to C(F̂ )m−∗ imply that

C(Ẽ) is m-admissible. We choose signs to make C(Ẽ) a filtered signed complex

and C(B̃) a signed complex. Of course the absolute torsion computed will be
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independent of these choices. Applying Proposition 6.5 and Theorem 6.3 we see

that

τNEW (E) = τNEW (φE0 )

= τNEW (φE0 ◦ θF∗C( eE))

= i∗τ
NEW (G∗(φ

E
0 ◦ θF∗C( eE)))

= i∗τ
NEW (E−1 ◦ (φB0 ⊗ (C(F̂ ), φF0 , U)) ◦H(C(B̃)) ◦ (E−1)n−∗)

= i∗τ
NEW (E−1) + i∗((−)mτNEW (E−1)∗)

+i∗τ
NEW (H(C(B̃))) + i∗τ

NEW (φB0 ⊗ (C(F̂ ), φF0 , U))

= i∗τ
NEW (E) + (−)n+m(i∗τ

NEW (E))∗

+i∗τ
NEW (H(C(B̃))) + i∗τ

NEW (φB0 ⊗ (C(F̂ ), φF0 , U))

= i∗τ
NEW (H(C(B̃))) + i∗τ

NEW (φB0 ⊗ (C(F̂ ), φF0 , U))

∈ Ĥn+m(Z2;K1(Z[π1(E)])) (6.2.1)

By the functoriality of absolute torsion and the definition of the transfer map

i∗τ
NEW (φB0 ⊗ (C(F̂ ), φF0 , U)) = i∗(τ

NEW (φB0 )⊗ (C(F̂ ), φF0 , U)) = p!τNEW (φB0 )

(6.2.2)

By the definition of the absolute torsion of a chain isomorphism:

i∗τ
NEW (H(C(B̃))) =

∞∑
r=0

(−)ri∗τ
iso(H(C(B̃)r))

=
∞∑
r=0

(−)rτNEW (H(C(B̃)r))

=
∞∑
r=0

(−)rτNEW (
⊕

rank(C( eB)r)

φF0 )

= χ(B).τNEW (φF0 ) (6.2.3)

If we now substitute the expressions of 6.2.2 and 6.2.3 into equation 6.2.1 we

obtain:

τNEW (E) = p!τNEW (B) + χ(B)q∗τ
NEW (F ) ∈ Ĥn+m(Z2;K1(Z[π1(E)]))

as required.
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Chapter 7

The signature of a fibration
modulo four.

In this chapter we will extend the result of [HKR05] that the signature of a PL-

fibre bundle of manifolds is multiplicative modulo four to the case of a fibration

of Poincaré spaces with the base space satisfying a Whitehead torsion condition

(Theorem 7.2). The main step is to prove the corresponding algebraic Theorem

for (Z,m)-symmetric representations and visible symmetric Poincaré complexes:

Theorem 7.1. Suppose that (C, φ) is an n-dimensional visible symmetric Poincaré

complex over A(Z[π]) such that τ(C, φ) = 0 ∈ Wh(Z[π]) and (A,α, U) a (Z,m)-

symmetric representation of Z[π]. Then

sign((C, φ)⊗ (A,α, U)) = sign(A,α, U)sign(C, φ) (mod 4)

The main Theorem follows straight from this:

Theorem 7.2. Let Fm → En+m → Bn be a Poincaré fibration satisfying as-

sumption 1.2 such that τ(B) = 0 ∈ Wh(π1(B)). Then

sign(E) = sign(B)sign(F ) (mod 4)

Proof. We know that the theorem is true if the dimension of F is odd so we

assume that the dimension of F is 2m. From theorem 4.9 the signature of E is

the signature of the twisted tensor product of the symmetric complex (C(B̃), φB)

with the Z-coefficient bundle (Hm(F )/torsion, φF0 , U) of π1(B) (Theorem 4.9).

However the above Theorem show that the signature of such a twisted tensor

product is multiplicative modulo four.
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It remains to prove Theorem 7.1. We will describe the absolute torsion of the

twisted tensor product of a symmetric complex and a (Z,m)-symmetric repre-

sentation. Both the statement and proof are very similar to Theorem 6.1 but the

advantage here is that the technology of the torsion of filtered complexes is not

required.

Definition 7.3. We define the transfer map associated to a (Z,m)-symmetric

representation (A,α, U) to be the map

U ! : K1(Z[π]) → K1(Z)

induced by the functor −⊗ (A,α, U) : A(Z[π]) → A(Z).

Theorem 7.4. Suppose that (C, φ) is an n-dimensional visible symmetric Poincaré

complex over A(Z[π]) and (A,α, U) a (Z,m)-symmetric representation of Z[π].

Then:

τNEW ((C, φ)⊗(A,α, U)) = U !τNEW (C, φ)+χ(C)τNEW (α) ∈ Ĥn+m(Z2;K1(Z)) = K1(Z)

Proof. We make C into a signed complex by choosing some ηC . The morphism

φ0 ⊗ (A,α, U) is given by:

φ0 ⊗ (A,α, U) = Sm(φ0 ⊗ (A,α, U)) ◦

 ⊕
rankZ(Cn−r)

α

 : (SmC ⊗ (A,α, U))n+m−r

→ (SmC ⊗ (A,α, U))r+m

We regard the chain complex Sm(C ⊗ (A,α, U)) as the signed complex which

one obtains after applying the functor − ⊗ (A,α, U) to the signed complex C

and suspending m times. We observe that (SmC ⊗ (A,α, U)n+2m−∗ = SmCn−∗ ⊗
(A,α, U) as signed complexes. Hence:

τNEW ((C, φ)⊗ (A,α, U)) = τNEW (Smφ0 ⊗ (A,α, U)) + τNEW (
⊕
r

(−)r
⊕

rankZ(Cr)

α)

= U !τNEW (φ0) + χ(C)τNEW (α)

as required.

Proof of Theorem 7.1. The theorem is known to be true if n is odd so we assume

that n = 2k. From Theorem 7.4 we know that:

τNEW ((C, φ)⊗ (A,α, U)) = U !τNEW (C, φ) + χ(B)τNEW (α)
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We know that the signature modulo four is determined by the absolute torsion

5.29 and the Euler characteristic. We also know that the signature is multiplica-

tive for the untwisted product so it is sufficient to show that the right-hand side

of the above equation does not depend on action U . In other words we want to

show that

U !τNEW (C, φ) = rank(A).ε.τ(C, φ) (7.0.1)

The assumption that τ(C, φ) = 0 ∈ Wh(Z[π]) tells us that τNEW (C, φ) = τ(±g)
for some g ∈ π. In this the two sides of the above equation differ by τ(U(g)) so

it will be sufficient to show that τ(U(g)) = 0. We divide into two cases:

The case where n is even Suppose that τ(U(g)) = τ(−1). We define a map

λ : π → Z2 by

g 7→ τ(U(g))

The subgroup ker(λ) is a normal subgroup of index 2. We can form the

algebraic double-cover of (C, φ) associated to ker(λ); this is given by the

twisted tensor product of (C, φ) with the form (B, β, V ) with B = Z2,

β =

(
1 0
0 1

)
and

V (g) =



(
1 0
0 1

)
if g ∈ ker(λ)

(
0 1
1 0

)
if g /∈ ker(λ)

We write V ! : K1(Z[π]) → K1(Z) for the transfer associated to this rep-

resentation. The absolute torsion of this algebraic double-cover is given

by:

τNEW ((C, φ)⊗ (B, β, V )) = V !τNEW (C, φ)

= V !τ(±g)

= V !τ(±) + τ(

(
0 1
1 0

)
)

= τ(−1) + τ(±)

whereas the absolute torsion of the untwisted product is τ(±). Therefore

the signature of the double cover associated to ker(λ) is not multiplicative

modulo four. However, we know from [Wei92] Observation 8.2 that the

signature of such a double cover of a visible symmetric complex is multi-

plicative modulo eight so we have a contradiction. Therefore τ(U(g)) = 0

in this case.
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The case where n is odd In this case the form α is anti-symmetric. Consid-

ering (A,α) to be a 2-dimensional symmetric Poincaré complex we see that

U(g) is a self-homotopy equivalence of such a complex. Therefore by corol-

lary 5.28 τ(U(g)) = 0.
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Chapter 8

The signature of a fibration
modulo eight

In this chapter we will prove:

Theorem 8.1. Let F 4m → E4n+4m → B4n be a Poincaré fibration satisfying

assumption 1.2 such that the action of π1(B) on (H2m(F ;Z)/torsion) ⊗ Z2 is

trivial. Then

sign(E) = sign(F )sign(B) (mod 8)

We will of course be proving this as a corollary of the analogous algebraic state-

ment for twisted products. First some terminology: We say a (Z,m)-symmetric

representation (A,α, U) of a group ring Z[π] is Z2-trivial if

U(r)⊗ 1 = ε(r)⊗ 1 : A⊗ Z2 → A⊗ Z2

for all r ∈ Z[π]. In the case of a fibration F 4m → E4n+4m → B4n the (Z, 2m)-

symmetric representation (K,φF , U) is Z2-trivial if the action of π1(B) on

(H2m(F ;Z)/torsion)⊗ Z2

is trivial.

We can now state the algebraic analogue of the main Theorem:

Theorem 8.2. Let (C, φ) be a 4n-dimensional visible symmetric complex and let

(A,α, U) be a Z2-trivial (Z, 2m)-symmetric representation. Then

sign((A,α, U)⊗ (C, φ)) = sign(C, φ)sign(A,α) (mod 8)

The main idea behind the proof is to exploit the relationship between the

signature modulo 8 and the Arf invariant of the Pontrjagin square established

by Morita (Theorem 8.5). We will first show that the Theorem holds if the
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dimension of A is one by comparison with a double cover. We will then introduce

a generalized Pontrjagin square for symmetric Poincaré complexes and we will

relate this generalized Pontrjagin square on a symmetric complex to the usual

Pontrjagin square on a twisted product. This will allow us to reduce to the case

where (A,α, U) is the sum of one dimensional symmetric representations.

First we show how the main Theorem follows from the algebraic Theorem:

The proof of Theorem 8.1. Applying the symmetric construction to B yields a

4n-dimensional visible symmetric complex (C(B̃), φB). We have an (Z, 2m)-

symmetric representation (K,φF , U) of Z[π1B] given by the middle dimension

of the fibre as in section 4.3. Moreover this representation is Z2-trivial. Theorem

4.9 states that the signature of E is the signature of (C(B̃), φB)⊗(K,φF , U). The

above Corollary tells us that modulo 8 this is the product of the signatures of

(C(B̃), φB) and (K,φF ), which is the product of the signatures of F and B.

8.1 The proof for one dimensional symmetric

representations.

We first prove that Theorem 8.2 holds in the special case where A = Z.

Proposition 8.3. Let (C, φ) be a 4n-dimensional visible symmetric complex and

let (Z, α, U) be a Z2-trivial (Z, 2m)-symmetric representation. Then

sign((A,α, U)⊗ (C, φ)) = sign(C, φ)sign(Z, α) (mod 8)

Proof. The argument is similar to that used in proving the modulo four result in

the case where the dimension of the base space is a multiple of four, in that we

can reduce to the case of a double cover and use the fact that the signature of

such covers is known to be multiplicative modulo eight ([Wei92] Observation 7.6,

[Ran92] Example 23.5C).

Clearly the symmetric form α is either 1 or −1; without loss of generality we

assume that α = 1. For each g ∈ π the representation U(g) is also either 1 or −1

- this induces a homomorphism λ : π → Z2 given by

g 7→ U(g) ∈ {±1} = Z2

We can form the algebraic double-cover of (C, φ) associated to ker(λ); this is given

by the twisted tensor product of (C, φ) with the (Z, 2m)-symmetric representation
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(B, β, V ) with B = Z2, β =

(
1 0
0 1

)
and

V (g) =



(
1 0
0 1

)
if g ∈ ker(λ)

(
0 1
1 0

)
if g /∈ ker(λ)

(c.f. the proof of Theorem 7.1 at the end of the previous chapter)

We now take the sum of (Z, 1, U) with a trivial (Z, 2m)-symmetric representa-

tion (Z, 1, ε) to form a (Z, 2m)-symmetric representation (Z2, 1⊕1, U ⊕ ε). There

is an obvious notion of an (R, 2m)-symmetric representation given by replacing Z

with R and we can form such a representation by tensoring a (Z, 2m)-symmetric

representation with R (we will omit the ⊗R from the maps U ,V and β). After

such tensoring there is an isomorphism between the (R, 2m)-symmetric represen-

tations (B ⊗R, β, V ) and (R2, 1⊕ 1, U ⊕ ε) given by:

θ =

(
−1√

2
1√
2

1√
2

1√
2

)
: B ⊗R → R2

which satisfies

(1⊕ 1) = θ ◦ β ◦ θ∗ : R2 → R2

and

θ ◦ V (r) = (U(r)⊕ ε(r)) ◦ θ : B ⊗R → R2

Hence for each r we have a commutative diagram:

(C2n−r ⊗ (B ⊗R, β, V ))∗L
β

��

(C2n−r ⊗ (R2, 1⊕ 1, U ⊕ ε))∗L
(1⊕1)

��

L
θ∗

oo

C2n−r ⊗ (B ⊗R, β, V )

φ0⊗(B⊗R,β,V )

��

L
θ // C2n−r ⊗ (R2, 1⊕ 1, U ⊕ ε)

φ0⊗(R2,1⊕1,U⊕ε)
��

Cr ⊗ (B ⊗R, β, V )
L
θ // Cr ⊗ (R2, 1⊕ 1, U ⊕ ε)

Consequently θ induces an isomorphism of symmetric complexes:

θ∗ : (C, φ)⊗ (B ⊗R, β, V ) → (C, φ)⊗ (R2, 1⊕ 1, U ⊕ ε)

Therefore these complexes have the same signature and hence

sign((C, φ)⊗ (B, β, V )) = sign((C, φ)⊗ (Z2, 1⊕ 1, U ⊕ ε))

However we know that the signature of the double cover of a visible symmet-

ric complex is multiplicative modulo eight hence the left-hand side is equal to
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2sign(C, φ) modulo eight (see [Wei92] Observation 7.6, [Ran92] Example 23.5C).

The signature of the right-hand side is equal to sum of the signatures of (C, φ)

and (C, φ)⊗ (Z, 1, U). Hence

sign((C, φ)⊗ (Z, 1, U)) = sign(C, φ) = sign(C, φ)sign(Z, α) (mod 8)

as required.

8.2 The Pontrjagin square and a theorem of Morita.

The Pontrjagin square (see [BT62]) is an unstable cohomology operation:

P : Hk(X;Z2a) → H2k(X;Z4a)

For a 2k-dimensional symmetric complex (C, φ), there is defined a Pontrjagin

square:

P(C,φ) : Hk(C;Z2a) → Z4a ; x∗ 7→ 〈x∗, (φ0 + dφ1)(x
∗)〉

where x∗ is a cochain representing [x∗] ∈ Hk(C;Z2a). This is related to the

traditional topological Pontrjagin square in the following way: For a space X and

homology class [X] ∈ H2k(X), the symmetric construction of Ranicki [Ran80b]

yields a 2k-dimensional symmetric complex (C(X),∆[X]). Then for all x ∈
Hk(X;Z2a) = Hk(C(X);Z2a) we have

P(C(X),∆[X]) = 〈P(x), [X]〉 ∈ Z4a

The Pontrjagin square is an example of a quadratic enhancement of a bilinear

form on a Z2-vector space ([Mor71], [Tay]).

Definition 8.4. Let µ : V ⊗ V → Z2 be a non-singular symmetric form on a

Z2-vector space V . A function η : V → Z4 is said to be a quadratic enhancement

of µ if

η(x+ y) = η(x) + η(y) + 2µ(x⊗ y) ∈ Z4

where 2 : Z2 → Z4 is the inclusion.

If (C, φ) is Poincaré then the Pontrjagin square is a quadratic enhancement

of the form on Hk(C;Z2) given on the cochain level by (x⊗ y) 7→ 〈x, φ0(y)〉.
We define the Arf invariant Arf(η) of a quadratic enhancement as follows

([Mor71], [Tay], [Bro72]): The Gauss sum G(η) ∈ C is defined to be:

G(η) =
∑
x∈V

iη(x)
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It can be shown that G(η) is non-zero and that furthermore the argument of G(η)

is a multiple of π
4
. We define the Arf invariant Arf(η) ∈ Z8 to be such that the

argument of G(η) is Arf(η)π
4
.

We have the following theorem of Morita [Mor71], [Tay]:

Theorem 8.5. Let (C, φ) be a 4k-dimensional symmetric Poincaré complex over

Z. Then the Arf invariant of P(C,φ),2Z : Hk(C;Z2) → Z4 satisfies

Arf(P(C,φ),2Z) = sign(C, φ) (mod 8)

Proof. The original proof of Morita [Mor71] holds in the more general case of

symmetric Poincaré complexes, as does the proof of Taylor [Tay]. See also the

recent work of Ranicki and Taylor [RT05].

8.3 The generalized Pontrjagin square.

We now generalize this to the setting of a symmetric complex over a ring with

involution R.

Definition 8.6. 1. A *-invariant ideal I in a ring with involution R is a left

ideal I satisfying I∗ = I. Note that such an ideal is also a right ideal. The

involution on R extends to an involution on R/I in the obvious way.

2. Given a 2k-dimensional symmetric complex (C, φ) over R and a *-invariant

ideal I then we define the Pontrjagin square to be the map

P(C,φ),I : Hk(C;R/I) → R/(I2 + 2I) ; x 7→ 〈x, (φ0 + dφ1)(x)〉

where x is a cochain representative of [x] ∈ Hk(C;R/I). One can easily

check that this map is well-defined.

By Hk(C;R/I) we mean Hk(C ⊗R R/I). If R = Z and I = 2aZ then this

coincides with the Pontrjagin square defined above. We list a few important

properties of the generalized Pontrjagin square analogous to those of the usual

Pontrjagin square:

Proposition 8.7. 1. P(C,φ),I(rx) = rP(C,φ),I(x)r
∗

2. P(C,φ),I(x+ y) = P(C,φ),I(x) + P(C,φ),I(y) + 〈x, φ0(y)〉+ (−)k〈x, φ0(y)〉∗

3. P(C,φ),I(x) = 〈x, φ0(x)〉 ∈ R/I
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4. P(C,φ),I(x)
∗ = (−)kP(C,φ),I(x)

Proof. Easy manipulations.

We will have a particular situation in mind. Suppose that R = Z[π] and

I = ε−1(2Z). Then the generalized Pontrjagin square is a map:

P(C,φ),I : Hk(C;Z2) → Z[π]/(I2)

since the ideal I contains two. We can describe the right-hand side more explicitly:

The induced augmentation map ε̄ : Z[π]/(I2) → Z4 splits so we can decompose

Z[π]/(I2) as:

Z[π]/(I2) = Z4 ⊕ ε̄−1(0)

We have a basis for ε−1(0) given by the elements 1 − g for g ∈ π. The relations

in ε̄−1(0) are given by the products

0 = (1− g)(1− h) = 1− g − h+ gh

or in other words:

(1− g) + (1− h) = (1− gh).

Therefore we have a map
θ : π → ε̄−1(0)

g 7→ (1− g)

The group ε̄−1(0) is abelian and consists only of 2-torsion so the map θ factors

through πab⊗Z2. Examining the relations in ε̄−1(0) tells us that the induced map

θ̄ : πab ⊗ Z2 → ε̄−1(0)

is an isomorphism. The Hurewicz Theorem and the Universal Coefficient Theorem

combine to tells us that πab ⊗ Z2 is isomorphic to H1(π;Z2). Putting all this

together we see that:

Z[π]/(I2) ∼= Z4 ⊕H1(π;Z2) (8.3.1)

in a natural way.

8.4 The generalized Pontrjagin square on visible

symmetric complexes.

The results of this section have been withdrawn by the author. A new argument

is used in the next section to prove the modulo eight result.
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8.5 The generalized Pontrjagin square and twisted

products.

We now fix our ring to be a group ring Z[π] and I the ideal given by I = ε−1(2Z).

If (A,α, U) is Z2-trivial we have a natural identification:

H2n+2m(C ⊗ (A,α, U);Z2) ∼= H2n(C;Z2)⊗Z2 A
∼= H2n+2m(C ⊗ A;Z2)

The following technical lemma describes how the generalized Pontrjagin square

behaves on twisted products:

Lemma 8.8. Let (C, φ) be a 4n-dimensional symmetric complex and (A,α, U)

be a Z2-trivial (Z, 2m)-symmetric representation. Then the Pontrjagin square

evaluated on c⊗ a, for a ∈ A and c a 2n-cochain in C is given by:

P(C,φ)⊗(A,α,U),2Z(c⊗ a) = 〈a, U(P(C,φ),I(c)) ◦ α(a)〉 ∈ Z4

Note that the map U is applied to the Pontrjagin square in the formula on the

right hand side; by this we mean U applied to some representative of P(C,φ),I(c)

in Z[π]. One can easily check that the RHS is well-defined. Note also that this

proposition applies only to elements of the form c⊗ a ∈ C2n ⊗ (A,α, U).

Proof.

P(C,φ)⊗(A,α,U) = 〈c⊗ a, ((φ0 + φ1d
∗)⊗ α)(c⊗ a)〉

= 〈a, α ◦ U(〈c, (φ0 + φ1d
∗)c〉∗)(a)〉

= 〈a, U(〈c, (φ0 + φ1d
∗)c〉) ◦ α(a)〉

= 〈a, U(P(C,φ),I(c)) ◦ α(a)〉 ∈ Z/4iZ

The proof of Theorem 8.2. Without loss of generality we may assume that we

have some choice of basis {ai} for A such that the form α is diagonal with respect

to this basis. We can represent any element of H2n+2m(C ⊗ (A,α, U)) as a sum∑
i ci ⊗ ai for some ci ∈ C2n+2m. Using the additivity property of the Pontrjagin

square, the above lemma and the fact that (A,α, U) is Z2-trivial we see that:

P(C,φ)⊗(A,α,U),2Z(
∑
i

ci ⊗ ai) =
∑
i

〈ai, U(P(C,φ),I(ci)) ◦ α(ai)〉

+
∑
j>k

2〈aj, α(ak)〉ε(〈cj, φ0(ck)〉)

=
∑
i

〈ai, U(P(C,φ),I(ci)) ◦ α(ai)〉
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From this expression we see that the Pontrjagin square on the twisted product

only depends on the diagonal elements of each U(r) with respect to the basis

{ai}. For each i we have a homomorphism wi : π → {±1} = Z2 given by

wi(g) = U(g)i,i (mod 4)

with U(g)i,i being the diagonal elements of U with respect to the basis. These

maps extend linearly to maps Wi : Z[π] → Z in the obvious way and we may

construct a representation W → Hom(A,A)op given by:

W (r) =


W1(r)

W2(r)
. . .

Wn(R)

 : A = Zn → A

Clearly (A,α,W ) is a Z2-trivial (Z, 2m)-symmetric representation. Moreover

since the diagonal terms of U coincide with those ofW modulo four we see that the

Pontrjagin square on the twisted products (C, φ)⊗(A,α, U) and (C, φ)⊗(A,α,W )

coincide. The Theorem of Morita 8.5 tells us that

sign((C, φ)⊗ (A,α, U)) = sign((C, φ)⊗ (A,α,W )) (mod 8)

But the symmetric representation (A,α,W ) splits into a sum (Ai, αi,i,Wi) with

each Ai = Z. Hence

sign((C, φ)⊗ (A,α, U)) =
∑
i

sign((C, φ)⊗ (Ai, αi,i,Wi)) (mod 8)

However by proposition 8.3 the signature is multiplicative modulo eight for the

twisted products on the right-hand side. Therefore

sign((C, φ)⊗ (A,α, U)) =
∑
i

sign((C, φ)⊗ (Ai, αi,i,Wi))

=
∑
i

sign(C, φ)sign(Ai, αi,i)

= sign(C, φ)sign(A,α) (mod 8)

as required.

The following example illustrates that the “visible” condition is required (see

also [Ran81] Proposition 7.6.8): Let π = Z2 generated by t and define the 0-

dimensional symmetric Poincaré complex (C, φ) by C0 = Z[Z2] and

φ0 = t : C0 = Z[Z2] → C0 = Z[Z2]
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We know that this complex is not visible because of lemma 2.7. Let (A,α, U)

be the (Z, 0)-symmetric representation defined by A = Z, α = 1 : A∗ → A and

U(t) = −1 : A → A. Then the signature of the untwisted product is 1 whereas

the signature of the twisted product is −1. Note that this example shows that

the modulo four result is false without the ”visible” assumption.
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