AN EXPLICIT PROJECTION

by Andrew Ranicki

A module P over a ring A is f.g. (finitely generated) projective if it is isomorphic to the image $\operatorname{im}\left(p: A^{n} \longrightarrow A^{n}\right)$ of a projection $p=p^{2}: A^{n} \longrightarrow A^{n}$ of a f.g. free module A^{n}. Projective modules and the projective class groups $K_{0}(A), \widetilde{K}_{0}(A)$ entered topology via the work of Swan [8] on finite group actions on homotopy spheres, and more generally via the finiteness obstruction theory of Wall [10]. In various papers (Munkholm and Ranicki [5], Ranicki [7], Lück [1], Pedersen and Weibel [6], Lück and Ranicki [2]) it has actually been found more convenient to work with the projections rather than the modules.

In this note an explicit projection is obtained for the f.g. projective A-module constructed by the standard Mayer-Vietoris procedure (Milnor [4,§2]) from an automorphism of a f.g. free A^{\prime}-module, with A and A^{\prime} related by a cartesian square of rings

with $f^{\prime}: A \longrightarrow B^{\prime}$ and $g: B \longrightarrow A^{\prime}$ onto. In view of the theorem of Swan that the map $\widetilde{K}_{0}(\mathbb{Z}[G]) \longrightarrow \widetilde{K}_{0}(\mathbb{Q}[G])$ is trivial this is the generic construction of f.g. projective $\mathbb{Z}[G]$-modules for finite groups G. By way of an example an explicit projection is constructed for a generator of $\widetilde{K}_{0}(\mathbb{Z}[Q(8)])=\mathbb{Z}_{2}$, with $Q(8)$ the quaternion group $Q(8)$ of order 8 . This is the simplest example of a group G with non-trivial reduced projective class group $\widetilde{K}_{0}(\mathbb{Z}[G])$.

A commutative square of rings (as above) is cartesian if the sequence of additive groups

$$
0 \longrightarrow A \xrightarrow{\binom{f}{f^{\prime}}} B \oplus B^{\prime} \xrightarrow{\left(\begin{array}{ll}
g & -g^{\prime}
\end{array}\right)} A^{\prime} \longrightarrow 0
$$

is exact.
Given an automorphism $\alpha^{\prime}: A^{\prime n} \longrightarrow A^{\prime n}$ of a f.g. free A^{\prime}-module define the pullback f.g. projective A-module

$$
P\left(\alpha^{\prime}\right)=\left\{\left(x, x^{\prime}\right) \in B^{n} \oplus B^{\prime n} \mid \alpha^{\prime}(g(x))=g^{\prime}\left(x^{\prime}\right) \in A^{\prime n}\right\}
$$

which fits into an exact sequence of additive groups

$$
0 \longrightarrow P\left(\alpha^{\prime}\right) \longrightarrow B^{n} \oplus B^{\prime n} \xrightarrow{\left(\alpha^{\prime} g \quad-g^{\prime}\right)} A^{\prime n} \longrightarrow 0
$$

with A acting by

$$
A \times P\left(\alpha^{\prime}\right) \longrightarrow P\left(\alpha^{\prime}\right) ;\left(a,\left(x, x^{\prime}\right)\right) \longmapsto\left(f(a) x, f^{\prime}(a) x^{\prime}\right) .
$$

The construction is used to define the connecting map ∂ in the Mayer-Vietoris exact sequence (Milnor $[4, \S 4]$) of algebraic K-groups

$$
\begin{aligned}
K_{1}(A) \xrightarrow{\binom{f}{f^{\prime}}} K_{1}(B) \oplus K_{1}\left(B^{\prime}\right) \xrightarrow{\left(\begin{array}{ll}
g & -g^{\prime}
\end{array}\right)} K_{1}\left(A^{\prime}\right) \xrightarrow{\partial} \\
K_{0}(A) \xrightarrow{\binom{f}{f^{\prime}}} K_{0}(B) \oplus K_{0}\left(B^{\prime}\right) \xrightarrow{\left(\begin{array}{ll}
g & -g^{\prime}
\end{array}\right)} K_{0}\left(A^{\prime}\right),
\end{aligned}
$$

with

$$
\partial: K_{1}\left(A^{\prime}\right) \longrightarrow K_{0}(A) ; \tau\left(\alpha^{\prime}: A^{\prime n} \longrightarrow A^{\prime n}\right) \longmapsto\left[P\left(\alpha^{\prime}\right)\right]-\left[A^{n}\right] .
$$

Given A^{\prime}-module automorphisms $\alpha^{\prime}: A^{\prime n} \longrightarrow A^{\prime n}, \alpha^{\prime \prime}: A^{\prime m} \longrightarrow A^{\prime m}$, and also a B-module morphism $\beta: B^{n} \longrightarrow B^{m}$ and a B^{\prime}-module morphism $\beta^{\prime}: B^{\prime n} \longrightarrow B^{\prime m}$ such that the square

commutes let

$$
\left(\beta, \beta^{\prime}\right): P\left(\alpha^{\prime}\right) \longrightarrow P\left(\alpha^{\prime \prime}\right) ;\left(x, x^{\prime}\right) \longmapsto\left(\beta(x), \beta^{\prime}\left(x^{\prime}\right)\right)
$$

be the pullback A-module morphism.
Proposition Given an A^{\prime}-module automorphism $\alpha^{\prime}: A^{\prime n} \longrightarrow A^{\prime n}$ and any lifts of $\alpha^{\prime}, \alpha^{\prime-1}$ to B-module endomorphisms $\beta, \gamma: B^{n} \longrightarrow B^{n}$ there is defined an A module projection

$$
p\left(\alpha^{\prime}\right)=\left(\begin{array}{cc}
((2-\beta \gamma) \beta \gamma, 1) & ((2-\beta \gamma)(1-\beta \gamma) \beta, 0) \\
(\gamma(1-\beta \gamma), 0) & \left((1-\gamma \beta)^{2}, 0\right)
\end{array}\right): A^{n} \oplus A^{n} \longrightarrow A^{n} \oplus A^{n}
$$

such that up to isomorphism

$$
P\left(\alpha^{\prime}\right)=\operatorname{im}\left(p\left(\alpha^{\prime}\right)\right) .
$$

Proof: Lift the Whitehead lemma identity of A^{\prime}-module automorphisms

$$
\begin{aligned}
\left(\begin{array}{cc}
\alpha^{\prime} & 0 \\
0 & \alpha^{\prime-1}
\end{array}\right)= & \left(\begin{array}{cc}
1 & \alpha^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\alpha^{\prime-1} & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \alpha^{\prime} \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) \\
& : A^{\prime n} \oplus A^{\prime n} \longrightarrow A^{\prime n} \oplus A^{\prime n}
\end{aligned}
$$

to define a B-module automorphism

$$
\begin{gathered}
\phi=\left(\begin{array}{ll}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-\gamma & 1
\end{array}\right)\left(\begin{array}{cc}
1 & \beta \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
(2-\beta \gamma) \beta & \beta \gamma-1 \\
1-\gamma \beta & \gamma
\end{array}\right) \\
: B^{n} \oplus B^{n} \longrightarrow B^{n} \oplus B^{n}
\end{gathered}
$$

with inverse

$$
\begin{gathered}
\phi^{-1}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & -\beta \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
\gamma & 1
\end{array}\right)\left(\begin{array}{cc}
1 & -\beta \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\gamma & 1-\gamma \beta \\
\beta \gamma-1 & (2-\beta \gamma) \beta
\end{array}\right) \\
: B^{n} \oplus B^{n} \longrightarrow B^{n} \oplus B^{n} .
\end{gathered}
$$

Identifying $A^{n} \oplus A^{n}=A^{2 n}$ define an A-module isomorphism

$$
h=(\phi, 1): P\left(\alpha^{\prime}\right) \oplus P\left(\alpha^{\prime-1}\right) \longrightarrow P\left(1: A^{\prime 2 n} \longrightarrow A^{\prime 2 n}\right)=A^{2 n}
$$

with inverse

$$
h^{-1}=\left(\phi^{-1}, 1\right): P\left(1: A^{\prime 2 n} \longrightarrow A^{\prime 2 n}\right)=A^{2 n} \longrightarrow P\left(\alpha^{\prime}\right) \oplus P\left(\alpha^{\prime-1}\right) .
$$

It is now immediate from the identity

$$
\begin{aligned}
p\left(\alpha^{\prime}\right) & =h(1 \oplus 0) h^{-1}: \\
& A^{2 n} \xrightarrow{h^{-1}} P\left(\alpha^{\prime}\right) \oplus P\left(\alpha^{\prime-1}\right) \xrightarrow{1 \oplus 0} P\left(\alpha^{\prime}\right) \oplus P\left(\alpha^{\prime-1}\right) \xrightarrow{h} A^{2 n}
\end{aligned}
$$

that $p\left(\alpha^{\prime}\right): A^{2 n} \longrightarrow A^{2 n}$ is a projection with image isomorphic to $P\left(\alpha^{\prime}\right)$. Explicitly, the restriction of h defines an A-module isomorphism

$$
P\left(\alpha^{\prime}\right) \longrightarrow \operatorname{im}\left(p\left(\alpha^{\prime}\right)\right) ;\left(x, x^{\prime}\right) \longmapsto\left((2-\beta \gamma) \beta(x), x^{\prime}\right) \oplus((1-\gamma \beta)(x), 0) .
$$

Example Given a finite group G consider the Rim cartesian square of rings

in which all the morphisms are onto, with

$$
N=\sum_{g \in G} g \in \mathbb{Z}[G], \epsilon: \mathbb{Z}[G] \longrightarrow \mathbb{Z} ; g \longmapsto 1
$$

The canonical isomorphism of rings $\mathbb{Z}[G] \longrightarrow(\mathbb{Z}[G] / N, 1, \mathbb{Z})$ has inverse

$$
(\mathbb{Z}[G] / N, 1, \mathbb{Z}) \longrightarrow \mathbb{Z}[G] ;\left(b, b^{\prime}\right) \longmapsto a+\left(b^{\prime}-\epsilon(a)\right)(N /|G|)
$$

with $a \in \mathbb{Z}[G]$ any lift of $b \in \mathbb{Z}[G] / N\left(\right.$ so that $\left.\epsilon(a) \equiv b^{\prime}(\bmod |G|)\right)$. In this case the boundary map in the Mayer-Vietoris sequence is given by

$$
\begin{aligned}
\partial: K_{1}(\mathbb{Z} /|G|)=(\mathbb{Z} /|G|)^{\times} & \longrightarrow K_{0}(\mathbb{Z}[G]) ; \\
\tau\left(\alpha^{\prime}\right) & \longmapsto\left[\operatorname{im}\left(p\left(\alpha^{\prime}\right)\right)\right]-\left[\mathbb{Z}[G]^{2}\right]
\end{aligned}
$$

for any unit $\alpha^{\prime} \in(\mathbb{Z} /|G|)^{\times}$, with $\beta, \gamma \in \mathbb{Z}$ such that $[\beta]=\alpha^{\prime},[\gamma]=\alpha^{\prime-1} \in \mathbb{Z} /|G|$, and $p\left(\alpha^{\prime}\right)$ the $\mathbb{Z}[G]$-module projection

$$
\begin{gathered}
p\left(\alpha^{\prime}\right)=\left(\begin{array}{cc}
1-(1-\beta \gamma)^{2}(N /|G|) & (2-\beta \gamma)(1-\beta \gamma) \beta(N /|G|) \\
\gamma(1-\beta \gamma)(N /|G|) & (1-\gamma \beta)^{2}(N /|G|)
\end{array}\right) \\
: \mathbb{Z}[G] \oplus \mathbb{Z}[G] \longrightarrow \mathbb{Z}[G] \oplus \mathbb{Z}[G]
\end{gathered}
$$

Example For the quaternion group of order 8

$$
G=Q(8)=\{ \pm 1, \pm i, \pm j, \pm k\}
$$

and the unit $\alpha^{\prime}=3 \in(\mathbb{Z} / 8)^{\times}$take $\beta=\gamma=3 \in \mathbb{Z}$ in the previous Example. By the Proposition the corresponding projection

$$
p\left(\alpha^{\prime}\right)=\left(\begin{array}{cc}
1-8 N & 21 N \\
-3 N & 8 N
\end{array}\right): \mathbb{Z}[Q(8)] \oplus \mathbb{Z}[Q(8)] \longrightarrow \mathbb{Z}[Q(8)] \oplus \mathbb{Z}[Q(8)]
$$

is such that $P\left(\alpha^{\prime}\right) \cong \operatorname{im}\left(p\left(\alpha^{\prime}\right)\right)$ is a f.g. projective $\mathbb{Z}[Q(8)]$-module isomorphic to the two-sided ideal

$$
\langle 3, N\rangle=\operatorname{im}((3 N): \mathbb{Z}[Q(8)] \oplus \mathbb{Z}[Q(8)] \longrightarrow \mathbb{Z}[Q(8)]) \subset \mathbb{Z}[Q(8)]
$$

of the type considered by Swan $[8, \S 6]$, with an isomorphism

$$
\langle 3, N\rangle \longrightarrow P\left(\alpha^{\prime}\right) ; 3 x+N y \longmapsto x(1,3)+y(0,8) \quad(x, y \in \mathbb{Z}[Q(8)]) .
$$

The reduced projective class

$$
\partial \tau(3)=\left[P\left(\alpha^{\prime}\right)\right] \in \widetilde{K}_{0}(\mathbb{Z}[Q(8)])=\mathbb{Z} / 2
$$

represents the generator (Martinet [3]). As noted in [3] $P\left(\alpha^{\prime}\right)$ is isomorphic to the f.g. projective $\mathbb{Z}[Q(8)]$-module P_{3} defined by the f.g. free \mathbb{Z}-module \mathbb{Z}^{8} on 8 generators $\left\{e_{0}\right\} \cup\left\{e_{s} \mid s \in Q(8), s \neq 1\right\}$, with $Q(8)$ acting by

$$
\begin{gathered}
s e_{0}=e_{0}, s e_{s^{-1}}=3 e_{0}-\sum_{t \neq 1} e_{t}(s \in Q(8)) \\
s e_{t}=e_{s t}\left(t \neq 1, s^{-1}\right)
\end{gathered}
$$

The element defined by

$$
e_{1}=3 e_{0}-\sum_{t \neq 1} e_{t} \in P_{3}
$$

is such that

$$
s e_{1}=e_{s} \in P_{3} \quad(s \neq 1) .
$$

Thus

$$
N e_{1}=e_{1}+\sum_{t \neq 1} e_{t}=3 e_{0} \in P_{3}
$$

and there is defined a $\mathbb{Z}[Q(8)]$-module isomorphism

$$
\langle 3, N\rangle \longrightarrow P_{3} ; 3 x+N y \longmapsto x e_{1}+y e_{0}
$$

Given a ring A and a multiplicative subset $S \subset A$ of central non-zero divisors there is defined a cartesian square of rings

with $S^{-1} A$ the localization of A inverting S, and

$$
\widehat{A}=\lim _{\overleftarrow{s \in S}} A / s A
$$

the S-adic completion of A. The algebraic K-theory Mayer-Vietoris exact sequence determined by such a square

$$
\begin{aligned}
& K_{1}(A) \longrightarrow K_{1}\left(S^{-1} A\right) \oplus K_{1}(\widehat{A}) \longrightarrow K_{1}\left(S^{-1} \widehat{A}\right) \xrightarrow{\partial} \\
& K_{0}(A) \longrightarrow K_{0}\left(S^{-1} A\right) \oplus K_{0}(\widehat{A}) \longrightarrow K_{0}\left(S^{-1} \widehat{A}\right)
\end{aligned}
$$

is widely used in the computations of the K-groups of the group rings $A=\mathbb{Z}[G]$ of finite groups G, with $S=\mathbb{Z}-\{0\}, S^{-1} A=\mathbb{Q}[G]$. Again, the connecting map ∂ is defined by the pullback construction: if $\alpha: S^{-1} \widehat{A}^{n} \longrightarrow S^{-1} \widehat{A}^{n}$ is an automorphism of a f.g. free $S^{-1} \widehat{A}$-module then the pullback

$$
P(\alpha)=\left\{(x, y) \in S^{-1} A^{n} \oplus \widehat{A}^{n} \mid \alpha(x)=y \in S^{-1} \widehat{A}^{n}\right\}
$$

is a f.g. projective A-module, and

$$
\partial: K_{1}\left(S^{-1} \widehat{A}\right) \longrightarrow K_{0}(A) ; \tau\left(\alpha: S^{-1} \widehat{A}^{n} \longrightarrow S^{-1} \widehat{A}^{n}\right) \longmapsto[P(\alpha)]-\left[A^{n}\right]
$$

It is possible to obtain an explicit projection for $P(\alpha)$ from the material in Appendix A of Swan [9], but the actual formula is much more complicated than in the cartesian case with onto maps. (I am grateful to Jim Davis for the reference to [9]).

REFERENCES

[1] W.Lück
The transfer maps induced in the algebraic $K_{0^{-}}$and K_{1-} groups by a fibration I.
Math. Scand. 59, 93-121 (1986)
[2] and A.Ranicki
Chain homotopy projections
J. Algebra 120, 361-391 (1989)
[3] J.Martinet
Modules sur l'algèbre de groupe quaternionien
Ann. scient. Éc. Norm. Sup. 4(4), 399-408 (1971)
[4] J.Milnor
Introduction to algebraic K-theory
Annals of Mathematics Studies 72, Princeton (1971)
[5] H.Munkholm and A.Ranicki
The projective class group transfer induced by an S^{1}-bundle
Proc. 1981 Ontario Topology Conference, Canadian Math. Soc. Proc. 2, Vol. 2, 461-484 (1984)
[6] E.Pedersen and C.Weibel
A non-connective delooping of algebraic K-theory
Proc. 1983 Rutgers Conference, Springer Lecture Notes 1126, 166-181 (1985)
[7] A.Ranicki
The algebraic theory of finiteness obstruction
Math. Scand. 57, 105-126 (1985)
[8] R.G.Swan
Periodic resolutions for finite groups
Annals of Maths. 72, 267-291 (1960)
[9] Projective modules over binary polyhedral groups
J. f. reine u. angew. Math. 342, 66-172 (1983)
[10] C.T.C.Wall
Finiteness conditions for $C W$ complexes
Annals of Maths. 81, 56-69 (1965)
Dept. of Mathematics and Statistics
The University of Edinburgh
Edinburgh EH9 3JZ
Scotland, UK
e-mail: a.ranicki@edinburgh.ac.uk

