
AN EXPLICIT PROJECTION
by Andrew Ranicki

A module P over a ring A is f.g. (finitely generated) projective if it is isomor-
phic to the image im(p : An−−→An) of a projection p = p2 : An−−→An of a f.g.
free module An. Projective modules and the projective class groups K0(A), K̃0(A)
entered topology via the work of Swan [8] on finite group actions on homotopy
spheres, and more generally via the finiteness obstruction theory of Wall [10]. In
various papers (Munkholm and Ranicki [5], Ranicki [7], Lück [1], Pedersen and
Weibel [6], Lück and Ranicki [2]) it has actually been found more convenient to
work with the projections rather than the modules.

In this note an explicit projection is obtained for the f.g. projective A-module
constructed by the standard Mayer-Vietoris procedure (Milnor [4,§2]) from an
automorphism of a f.g. free A′-module, with A and A′ related by a cartesian
square of rings

A
f //

f ′

��

B

g

��
B′

g′ // A′

with f ′ : A−−→B′ and g : B−−→A′ onto. In view of the theorem of Swan that
the map K̃0(Z[G])−−→K̃0(Q[G]) is trivial this is the generic construction of f.g.
projective Z[G]-modules for finite groups G. By way of an example an explicit
projection is constructed for a generator of K̃0(Z[Q(8)]) = Z2, with Q(8) the
quaternion group Q(8) of order 8. This is the simplest example of a group G with
non-trivial reduced projective class group K̃0(Z[G]).

A commutative square of rings (as above) is cartesian if the sequence of ad-
ditive groups

0 −−→ A

(
f
f ′

)
−−−−−−→ B ⊕B′

(g −g′ )
−−−−−−−−→ A′ −−→ 0

is exact.

Given an automorphism α′ : A′n−−→A′n of a f.g. free A′-module define the
pullback f.g. projective A-module

P (α′) = {(x, x′) ∈ Bn ⊕B′n |α′(g(x)) = g′(x′) ∈ A′n}

which fits into an exact sequence of additive groups

0 −−→ P (α′) −−→ Bn ⊕B′n
(α′g −g′ )
−−−−−−−−−→ A′n −−→ 0
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with A acting by

A× P (α′) −−→ P (α′) ; (a, (x, x′)) 7−−→ (f(a)x, f ′(a)x′) .

The construction is used to define the connecting map ∂ in the Mayer-Vietoris
exact sequence (Milnor [4,§4]) of algebraic K-groups

K1(A)

(
f
f ′

)
−−−−−−→ K1(B)⊕K1(B′)

(g −g′ )
−−−−−−−−→ K1(A′)

∂
−−→

K0(A)

(
f
f ′

)
−−−−−−→ K0(B)⊕K0(B′)

(g −g′ )
−−−−−−−−→ K0(A′) ,

with

∂ : K1(A′) −−→ K0(A) ; τ(α′ : A′n−−→A′n) 7−−→ [P (α′)]− [An] .

Given A′-module automorphisms α′ : A′n−−→A′n, α′′ : A′m−−→A′m, and also
a B-module morphism β : Bn−−→Bm and a B′-module morphism β′ : B′n−−→B′m
such that the square

A′n
g(β)

//

α′

��

A′m

α′′

��
A′n

g′(β′) // A′m

commutes let

(β, β′) : P (α′) −−→ P (α′′) ; (x, x′) 7−−→ (β(x), β′(x′))

be the pullback A-module morphism.

Proposition Given an A′-module automorphism α′ : A′n−−→A′n and any lifts
of α′, α′−1 to B-module endomorphisms β, γ : Bn−−→Bn there is defined an A-
module projection

p(α′) =

 ((2− βγ)βγ, 1) ((2− βγ)(1− βγ)β, 0)

(γ(1− βγ), 0) ((1− γβ)2, 0)

 : An ⊕An −−→ An ⊕An

such that up to isomorphism

P (α′) = im(p(α′)) .
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Proof: Lift the Whitehead lemma identity of A′-module automorphisms(
α′ 0
0 α′−1

)
=
(

1 α′

0 1

)(
1 0

−α′−1 1

)(
1 α′

0 1

)(
0 −1
1 0

)
: A′n ⊕A′n −−→ A′n ⊕A′n

to define a B-module automorphism

φ =
(

1 β
0 1

)(
1 0
−γ 1

)(
1 β
0 1

)(
0 −1
1 0

)
=
(

(2− βγ)β βγ − 1
1− γβ γ

)
: Bn ⊕Bn −−→ Bn ⊕Bn

with inverse

φ−1 =
(

0 1
−1 0

)(
1 −β
0 1

)(
1 0
γ 1

)(
1 −β
0 1

)
=
(

γ 1− γβ
βγ − 1 (2− βγ)β

)
: Bn ⊕Bn −−→ Bn ⊕Bn .

Identifying An ⊕An = A2n define an A-module isomorphism

h = (φ, 1) : P (α′)⊕ P (α′−1) −−→ P (1 : A′2n−−→A′2n) = A2n

with inverse

h−1 = (φ−1, 1) : P (1 : A′2n−−→A′2n) = A2n −−→ P (α′)⊕ P (α′−1) .

It is now immediate from the identity

p(α′) = h(1⊕ 0)h−1 :

A2n
h−1

−−→ P (α′)⊕ P (α′−1)
1⊕0
−−→ P (α′)⊕ P (α′−1)

h
−−→ A2n

that p(α′) : A2n−−→A2n is a projection with image isomorphic to P (α′). Explicitly,
the restriction of h defines an A-module isomorphism

P (α′) −−→ im(p(α′)) ; (x, x′) 7−−→ ((2− βγ)β(x), x′)⊕ ((1− γβ)(x), 0) .

�

Example Given a finite group G consider the Rim cartesian square of rings

Z[G]

ε

��

// Z[G]/N

ε
��

Z // Z/|G|
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in which all the morphisms are onto, with

N =
∑
g∈G

g ∈ Z[G] , ε : Z[G] −−→ Z ; g 7−−→ 1 .

The canonical isomorphism of rings Z[G]−−→(Z[G]/N, 1,Z) has inverse

(Z[G]/N, 1,Z) −−→ Z[G] ; (b, b′) 7−−→ a + (b′ − ε(a))(N/|G|)

with a ∈ Z[G] any lift of b ∈ Z[G]/N (so that ε(a) ≡ b′(mod |G|)). In this case
the boundary map in the Mayer-Vietoris sequence is given by

∂ : K1(Z/|G|) = (Z/|G|)× −−→ K0(Z[G]) ;

τ(α′) 7−−→ [im(p(α′))]− [Z[G]2]

for any unit α′ ∈ (Z/|G|)×, with β, γ ∈ Z such that [β] = α′, [γ] = α′−1 ∈ Z/|G| ,
and p(α′) the Z[G]-module projection

p(α′) =

 1− (1− βγ)2(N/|G|) (2− βγ)(1− βγ)β(N/|G|)

γ(1− βγ)(N/|G|) (1− γβ)2(N/|G|)


: Z[G]⊕ Z[G] −−→ Z[G]⊕ Z[G] .

�

Example For the quaternion group of order 8

G = Q(8) = {±1,±i,±j,±k}

and the unit α′ = 3 ∈ (Z/8)× take β = γ = 3 ∈ Z in the previous Example. By
the Proposition the corresponding projection

p(α′) =

 1− 8N 21N

−3N 8N

 : Z[Q(8)]⊕ Z[Q(8)] −−−−→ Z[Q(8)]⊕ Z[Q(8)]

is such that P (α′) ∼= im(p(α′)) is a f.g. projective Z[Q(8)]-module isomorphic to
the two-sided ideal

〈3, N〉 = im((3 N) : Z[Q(8)]⊕ Z[Q(8)]−−→Z[Q(8)]) ⊂ Z[Q(8)]

of the type considered by Swan [8,§6], with an isomorphism

〈3, N〉 −−→ P (α′) ; 3x+Ny 7−−→ x(1, 3) + y(0, 8) (x, y ∈ Z[Q(8)]) .
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The reduced projective class

∂τ(3) = [P (α′)] ∈ K̃0(Z[Q(8)]) = Z/2

represents the generator (Martinet [3]). As noted in [3] P (α′) is isomorphic to
the f.g. projective Z[Q(8)]-module P3 defined by the f.g. free Z-module Z8 on 8
generators {e0} ∪ {es|s ∈ Q(8), s 6= 1}, with Q(8) acting by

se0 = e0 , ses−1 = 3e0 −
∑
t6=1

et (s ∈ Q(8)) ,

set = est (t 6= 1, s−1) .

The element defined by
e1 = 3e0 −

∑
t6=1

et ∈ P3

is such that
se1 = es ∈ P3 (s 6= 1) .

Thus
Ne1 = e1 +

∑
t6=1

et = 3e0 ∈ P3 ,

and there is defined a Z[Q(8)]-module isomorphism

〈3, N〉 −−→ P3 ; 3x+Ny 7−−→ xe1 + ye0 .

�

Given a ring A and a multiplicative subset S ⊂ A of central non-zero divisors
there is defined a cartesian square of rings

A

��

// S−1A

��
Â // S−1Â

with S−1A the localization of A inverting S, and

Â = lim←−
s∈S

A/sA

the S-adic completion of A. The algebraicK-theory Mayer-Vietoris exact sequence
determined by such a square

K1(A) −−→ K1(S−1A)⊕K1(Â) −−→ K1(S−1Â)
∂
−−→

K0(A) −−→ K0(S−1A)⊕K0(Â) −−→ K0(S−1Â)
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is widely used in the computations of the K-groups of the group rings A = Z[G] of
finite groups G, with S = Z-{0}, S−1A = Q[G]. Again, the connecting map ∂ is
defined by the pullback construction: if α : S−1Ân−−→S−1Ân is an automorphism
of a f.g. free S−1Â-module then the pullback

P (α) = {(x, y) ∈ S−1An ⊕ Ân |α(x) = y ∈ S−1Ân}

is a f.g. projective A-module, and

∂ : K1(S−1Â) −−→ K0(A) ; τ(α : S−1Ân−−→S−1Ân) 7−−→ [P (α)]− [An] .

It is possible to obtain an explicit projection for P (α) from the material in Ap-
pendix A of Swan [9], but the actual formula is much more complicated than in
the cartesian case with onto maps. (I am grateful to Jim Davis for the reference
to [9]).
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