
Recent Advances in Topological Manifolds

A. J. Casson

Lent 1971

Introduction

A topological n-manifold is a Hausdorff space which is locally n-Euclidean (like
Rn).

No progress was made in their study (unlike that in PL and differentiable
manifolds) until 1968 when Kirby, Siebenmann and Wall solved most questions
for high dimensional manifolds (at least as much as for the PL and differentiable
cases).

Question: can compact n-manifolds be triangulated? Yes, if n 6 3 (Moise
1950’s). This is unknown in general.

However, there exist manifolds (of dimension > 5) which don’t have PL
structures. (They might still have triangulations in which links of simplices
aren’t PL spheres.) There is machinery for deciding whether manifolds of di-
mension > 5 have a PL structure.

Not much is known about 4-manifolds in the topological, differentiable, and
PL cases.

Question 2: the generalized Schönflies theorem. Let Bn =
{
x ∈ Rn+1 : ‖x‖ 6 1

}
,

Sn =
{
x ∈ Rn+1 : ‖x‖ = 1

}
. Given an embedding f : Bn → Sn (i.e. a 1-1 con-

tinuous map), is Sn \ f(Bn) ∼= Bn? No–the Alexander horned sphere.
Let λBn =

{
x ∈ Rn+1 : ‖x‖ 6 λ

}
. Question 2′: is Sn \ f(λBn) ∼= Bn (where

0 < λ < 1)? Yes.
In 1960, Morton Brown, Mazur, and Morse proved the following: if g : Sn−1×

[−1, 1] → Sn is an embedding, then Sn\g(Sn−1×{0}) has 2 components, D1, D2,
such that D1

∼= D2
∼= Bn, which implies 2′ as a corollary. (The proof is easier

than that of PL topology).
Question 3: the annulus conjecture. Let f : Bn → IntBn be an embedding.

Is Bn \ f(1
2Bn) ∼= Bn \ 1

2Bn (∼= Sn−1 × I)? In 1968, Kirby, Siebenmann, and
Wall proved this for n > 5. This was already known for n 6 3. The n = 4 case
is still unknown.

Outline of course:

• Basic facts about topological manifolds

• Morton Brown’s theorem – the first “recent” result
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• Kirby’s trick: Homeo(M) is a topological group (with the compact-open
topology). This is locally contractible: any homeomorphism h near 1 can
be joined by a path in Homeo(M) to 1

• Product structure theorem: if Mn is a topological manifold and M × Rk

has a PL structure, then Mn has a PL structure (n > 5).

• sketch of proof of the annulus conjecture (complete except for deep PL
theorems).

1 Basic Properties of Topological Manifolds

Let Rn
+ = {(x1, . . . , xn) ∈ Rn : xn > 0}. Identify Rn−1 with

{(x1, . . . , xn) ∈ Rn : xn = 0} = ∂Rn
+.

Definition 1.1. A (topological) n-manifold (with boundary) is a Hausdorff
space M such that each point of M has a neighborhood homeomorphic to Rn

+.
The interior of M , IntM , is the set of points in M which have neighborhoods
homeomorphic to Rn. The boundary of M , ∂M = M \ IntM .

IntM is an open set in M , ∂M is closed in M .
M is an open manifold if it is non-compact and ∂M = ∅.
M is a closed manifold if it is compact and ∂M = ∅.

Example. Any open subset of an n-manifold is an n-manifold.
Let M be a connected manifold with ∂M = ∅. If x, y ∈ M then there is a

homeomorphism h : M → M with h(x) = y.

Theorem 1.2 (Invariance of domain). Let U, V ⊂ Rn be subsets such that
U ∼= V . Then if U is open in Rn, then so is V .

Corollary 1.3. If M is an N -manifold, then ∂M is an (n−1)-manifold without
boundary.

Proof. Suppose x ∈ M and f : Rn
+ → M be a homeomorphism onto a neigh-

borhood N of x in M . Then

x ∈ ∂M ⇐⇒ x ∈ f(Rn−1) (1)

If x 6∈ f(Rn−1), then x ∈ f(Rn
+ \ Rn−1) ∼= Rn, so x ∈ IntM and x 6∈ ∂M .

If x 6∈ ∂M , then x ∈ IntM , i.e. there is a neighborhood U of x homeo-
morphic to Rn ⊂ f(Rn

+). So there is a neighborhood V of x which is open
in M such that V ⊂ U , homeomorphic to an open set in Rn. Therefore
f−1(V ) ⊂ Rn

+ ⊂ Rn. By theorem 1.2, f−1(V ) is open in Rn.
Suppose x 6∈ f(Rn−1). Then f−1(x) ∈ Rn−1, but then f−1(V ) can’t be

a neighborhood of f−1(x), so f−1(V ) is not open. This is a contradiction,
therefore x ∈ f(Rn−1) =⇒ x ∈ ∂M .

Now suppose y ∈ ∂M . Let g : Rn
+ → M be a homeomorphism onto a

neighborhood P of y in M . P contains an open neighborhood W of y in M .
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Now W ∩∂M = W ∩g(Rn−1) by (1). Therefore W ∩g(Rn−1) is a neighborhood
of y in ∂M homeomorphic to an open set N , so y has a neighborhood in ∂M
homeomorphic to Rn−1, as required.

Corollary 1.4. If Mm, Nn are manifolds then M ×N is an (m + n)-manifold
with ∂(M ×N) = (∂M ×N) ∪ (M × ∂N), i.e. Int(M ×N) = IntM × IntN .

Proof. If x ∈ M ×N , then x has a neighborhood homeomorphic to Rm
+ ×Rn

+
∼=

Rm+n
+ , so M ×N is an (m + n)-manifold.

Clearly IntM × IntN ⊂ Int(M ×N).
If x ∈ (∂M ×N)∪ (M × ∂N), then x has a neighborhood homeomorphic to

Rm
+ ×Rn, Rm×Rn

+, or Rm
+ ×Rn

+ – all homeomorphic to Rm+n
+ by a homeomor-

phism carrying x to Rm+n−1. By (1), x ∈ ∂(M ×N). Hence the result.

Example. Examples of manifolds:

• Rm is an m-manifold without boundary, open.

• Sm is a closed m-manifold. (Stereographic projection gives neighbor-
hoods.)

• Bm is a compact manifold with boundary Sm−1.

• Rm
+ is an m-manifold with boundary Rm−1.

• Products of these,

• CPn, orthogonal groups O(n) are manifolds.

These are all differentiable manifolds. There exist topological manifolds
which do not possess a differentiable structure.

Lemma 1.5. If X ⊂ Sn is homeomorphic to Bk, then H̃r(Sn \X) = 0 for all
r ∈ Z.

Proof. By induction on k. The lemma is true if k = 0: Sn \ {pt.} ∼= Rn.
Assume true if k = l, we prove it for k = l + 1. Choose a homeomorphism

f : Bl × I ∼= Bl+1 → X, suppose α ∈ H̃r(Sn \ X). Take t ∈ I. By induction
hypothesis, H̃r(Sn\f(Bl×{t})) = 0. Therefore α is represented by the boundary
of some singular chain c lying in Sn \ f(Bl × {t}). There is a neighborhood Nt

of f(Bl × {t}) in Sn such that c lies in Sn \Nt.
Therefore there is an open interval Jt ⊂ I containing t such that c lies in

Sn \ f(Bl × Jt). Since the unit interval is compact, we can cover by finitely
many of the Jt’s. Therefore there is a dissection 0 = t0 < t1 < · · · < tk = 1
such that [tp−1, tp] ⊂ some Jt.

Let φp,q : H̃r(Sn \X) → H̃r(Sn \ f(Bl × [tp, tq])) where p < q and the map
is induced by inclusion. Now φp−1,p(α) = 0 for all p.

Suppose inductively that φ0,i(α) = 0 starts with i = 1. By the main in-
ductive hypothesis, H̃s(Sn \ f(Bl × {ti})) = 0 for s = r, r + 1. The sets
Sn \ f(Bl × [tp, tq]) are open. We have the lattice
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Sn \ f(Bl × [0, ti]) // Sn \ f(Bl × {ti})

Sn \ f(Bl × [0, ti+1])

OO

// Sn \ f(Bl × [ti, ti+1])

OO

and the corresponding Mayer-Vietoris sequence:

0 −→ H̃r(Sn \ f(Bl × [0, ti+1]))

−→ H̃r(Sn \ f(Bl × [0, ti]))⊕ H̃r(Sn \ f(Bl × [ti, ti+1])) −→ 0,

with the maps induced by inclusion.
Since φ0,i(α) = 0 and φi,i+1(α) = 0, we have φ0,i+1(α) = 0. Therefore,

φ0,k(α) = 0, i.e. α = 0 and H̃r(Sn \X) = 0 as required.

Lemma 1.6. If X ⊂ Sn is homeomorphic to Sk, then

H̃r(Sn \X) ∼= H̃r(Sn−k−1) =

{
Z if r = n− k − 1,
0 otherwise.

Proof. By induction on k. The result is true if k = 0, for Sk \ pair of points ∼=
Sn−1. (???) Now assume the result holds for k = l − 1 and try to prove it for
k = l.

Choose a homeomorphism f : Sl → X. Let D1, D2 be northern and southern
hemispheres of Sl so that D1 ∪D2 = Sl and D1 ∩D2

∼= Sl−1. The sets Sn \X,
Sn \ f(Di), and Sn \ f(D1 ∩D2) are open. We have the lattice

Sn \ f(D1) // Sn \ f(D1 ∩D2)

Sn \X

OO

// Sn \ f(D2)

OO

and the Mayer-Vietoris sequence

0 −→ H̃r+1(Sn \ f(D1 ∩D2)) −→ H̃r(Sn \X) −→ 0

since H̃r+1(Sn \ f(D1)) ∼= H̃r+1(Sn \ f(D2)) ∼= 0 by the previous lemma. The
result follows from the inductive hypothesis.

Corollary 1.7. If f : Sn−1 → Sn is 1-1 and continuous, then Sn \f(Sn−1) has
just two components.

Proof. By 1.6, H̃0(Sn \ f(Sn−1)) ∼= H̃0(S0) ∼= Z. Therefore, Sn \ f(Sn−1) has
two components.

Corollary 1.8. If f : Bn → Sn is 1-1 and continuous, then f(IntBn) is open
in Sn.

4



Proof. By lemma 1.5, H̃0(Sn \ f(Bn)) = 0, so Sn \ f(Bn) is connected. Now
Sn \ f(Sn−1) = f(IntBn) ∪ Sn \ f(Bn), and f(IntBn) and Sn \ f(Bn) are
connected, while Sn \ f(Sn−1) is not (by corollary 1.7). Thus f(IntBn) and
Sn \f(Bn) are the components of Sn \f(Sn−1), and are closed in Sn \f(Sn−1).

f(IntBn) is open in Sn \ f(Sn−1), therefore open in Sn.

Proof of theorem 1.2. We have U, V ⊂ Rn, a homeomorphism f : U → V , U
open in Rn. Choose x ∈ U . Then there exists a closed n-ball Bn ⊂ U with
center x and a map g : Rn → Sn which is a homeomorphism onto g(Rn) (e.g.
the inverse of stereographic projection). We have that gf : U → Sn is 1-1 and
continuous, so by 1.7, gf(IntBn) is open in Sn and f(Bn) is open in Rn.

Now f(x) ∈ f(IntBn) ⊂ f(U) = V , so V is a neighborhood of f(x). Since
V = f(U), V is open in Rn.

2 The Generalized Schönflies Theorem

Definition 2.1. If M, N are manifolds, an embedding of M in N is a map
f : M → N which is a homeomorphism onto f(M). (If M is compact then
any 1-1 continuous map f : M → N is an embedding, but this is not true in
general.)

Theorem 2.2 (Morton Brown’s Schönflies Theorem). If f : Sn−1 × [−1, 1] →
Sn is an embedding, then each component of Sn \ f(Xn−1 × {0}) has closure
homeomorphic to Bn.

Definition 2.3. Let M be a manifold and X ⊂ IntM . X is cellular if it is
closed and, for any open set U containing X there is a set Y ⊂ U such that
Y ∼= Bn and X ⊂ IntY .

Example. Any collapsible polyhedron in Rn is cellular.
If f : Bn → Sn is any embedding, then Sn \ f(Bn) is cellular.

Lemma 2.4. If M is a manifold and X ⊂ M is cellular, then M/X is homeo-
morphic to M by a homeomorphism fixed on ∂M .

Proof. Since X is cellular, there is a Y0 ⊂ IntM such that Y0
∼= Bn and

X ⊂ IntY0. Y0 has a metric d. Let Ur =
{
y ∈ Y0 : d(X, y) < 1

r

}
. Define Yr

inductively: assume Yr−1 ⊂ M is constructed with X ⊂ IntYr−1. X is cellular
implies that there is a Yr ⊂ (IntYr−1) ∩ Ur such that Yr

∼= Bn and X ⊂ IntYr,
where IntYr is the interior or Yr in M . We have

Y0 ⊃ IntY0 ⊃ Y1 ⊃ IntY1 ⊃ · · · ⊃ X =
∞⋂

r=0

Yr.

We construct homeomorphisms hr : M → M such that

i. h0 = 1,
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ii. hr|M\Yr−1 = hr−1|M\Yr−1 , and

iii. hr(Yr) has diameter < 1
r with respect to the metric d.

Suppose hr−1 is defined. Choose a homeomorphism f : hr−1(Yr−1) → Bn.
Now, Yr ⊂ IntYr−1, so f(hr−1(Yr)) ⊂ IntBn and there is a λ < 1 and ε > 0
such that f(hr−1(Yr)) ⊂ λBn and f−1(εBn) has diameter < 1

r . There is a
homeomorphism g : Bn → Bn such that g|∂Bn = 1 and g(λBn) ⊂ εBn. Define
hr : M → M by

hr(x) =

{
hr−1(x) if x ∈ M \ Yr−1,
f−1gfhr−1(x) if x ∈ Yr−1.

To verify (3), note that

hr(Yr) ⊆ f−1gfhr−1(Yr−1)

⊂ f−1g(λBn)

⊂ f−1(εBn)

has diameter < 1
r .

Define h(x) = limr→∞ hr(x) for each x ∈ M . If x ∈ M \X, then x ∈ M \Yr

for some r, and hr(x) = hr+1(x) = · · · = h(x) by (2), so h(x) exists. Since
hr(Yr) ⊃ hr+1(Yr) ⊃ . . . , with diameter hr(Yr) → 0,

⋂∞
r=1 hr(Yr) = {y} for

some y ∈ M . If x ∈ X, hr(x) ∈ hr(Yr), so d(hr(x), y) < 1
r by (3), so hr(x) → y

as r →∞ and h(x) = y.
h is continuous at x ∈ M \ X because h = hr in a neighborhood of x for

some r. h is continuous at x ∈ X because Yr is a neighborhood of x and h(Yr) ⊂
1
r neighborhood of Y . Thus h induces a continuous map ĥ : M/X → M with
ĥ|∂M = 1.

Since h coincides with some hr outside X, h|M\X → M \{y} is a homeomor-
phism. h(X) = y, so ĥ is bijective. Further, ĥ|M\X is open: If U is a neighbor-
hood of X is M , then U ⊃ Yr for some r, so y ∈ hr+1(Yr+1) ⊂ Inthr(Yr) ⊂ h(U)
and h(U) is a neighborhood of y, so h is open.

Therefore ĥ is a homeomorphism.

Lemma 2.5. If X ⊂ IntBn is closed and Bn/X is homeomorphic to some
subset of Sn, then X is cellular.

Proof. Let f : Bn → Sn induce an embedding f̂ : Bn/X → Sn. Suppose f(x) =
y. Then f(Bn) = f̂(Bn/X) 6= Sn. (Apply theorem 1.2 to neighborhoods of
points of ∂Bn). Let U be any neighborhood of X in Bn; f(U) is a neighborhood
of y in Sn. f(Bn) is a proper closed subset of Sn.

There is a homeomorphism h : Sn → Sn such that h|V = 1 for some neigh-
borhood V of y and h(f(Bn)) ⊂ f(U): there is a Y ⊂ Sn such that Y ∼= Bn

and f(Bn) ⊂ IntY . Let Z be a small convex ball with y ∈ IntZ. The radial
map gives the homeomorphism.
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Define g : Bn → Bn by

g(x) =

{
f−1hf(x) if x 6∈ X,
x if x ∈ X.

Here, hf(x) 6= y implies that f−1hf(x) is well defined. g is continuous since
h = 1 in a neighborhood of y. Also, g is 1-1. Now g(Bn) ∼= Bn and g(Bn) ⊂
f−1hf(Bn) ⊂ f−1f(U) = U , and g = 1 on a neighborhood of X. Therefore,
Int g(Bn) ⊃ X and X is cellular.

Proof of Theorem 2.2. f : Sn−1× [−1, 1] → Sn is an embedding, Sn \f(Xn−1×
{0}) has two components, D+ and D−. Say f(Sn−1 × {−1}) ⊂ D−. Let
X+ = D+ \ f(Xn−1 × (0, 1)) and X− = D− \ f(Xn−1 × (−1, 0)).

Then X+ and X− are both closed, and X+ ∪X− = Sn \ f(Xn−1 × (−1, 1)).
Note that (Sn/X+)/X− ∼= (Sn−1 × [−1, 1]/Sn−1 × {−1})/Sn−1 × {1} ∼= Sn.
Therefore there is a map g : Sn → Sn such that g(X+) = y+, g(X−) = y−,
and g|Sn\(X+∪X−) is a homeomorphism onto Sn \{y+, y−} where y+, y− are the
poles of Sn.

X+∪X− is a proper closed subset of Sn, so there exists Y ⊂ Sn with Y ∼= Bn

and X+ ∪ X− ⊂ IntY . Since g(Y ) is a proper closed subset of Sn, there is a
homeomorphism h : Sn → Sn such that h = 1 on a neighborhood of y− and
h(g(Y )) ⊂ Sn \ {y+, y−}.

Define φ : Y → Sn by

φ(x) =

{
g−1hg(x) if x 6∈ X−,
x if x ∈ X−.

Since h = 1 on a neighborhood of y−, φ is injective on Y \X+ and φ(X+) =
g−1h(y+). Therefore φ induces an embedding φ̂ : Y/X+ → Sn, Y ∼=???????????????.
By lemma 2.5, X+ is cellular.

D+ is a manifold with X+ ⊂ D+ = Int D+. By lemma 2.4, D+
∼= D+/X+

∼=
Sn−1 × [0, 1]/Sn−1 × {1} ∼= Bn. Similarly for D−.

Corollary 2.6. If f, g : Sn−1 × [−1, 1] → Sn are embeddings, then there is a
homeomorphism h : Sn → Sn such that

hf |Sn−1×{0} = g|Sn−1×{0} .

Proof. If φ : ∂Bn → ∂Bn is a homeomorphism, then φ extends to a home-
omorphism φ : Bn → Bn in an obvious way along radii: φ(rx) = rφ(x) for
0 6 r < 1, x ∈ ∂Bn. Therefore, if Y1, Y2 are homeomorphic to balls and
φ : ∂Y1 → ∂Y2 is a homeomorphism, then φ extends to a homeomorphism
φ : Y1 → Y2.

Let D+, D− be the components of Sn \ f(Sn−1 × {0}) and E+, E− be
the components of Sn \ g(Sn−1 × {0}). Define h|f(Sn−1×{0}) to be gf−1, so
h : ∂D+ → ∂E+. Since D+

∼= E+
∼= Bn, h can be extended to a homeomor-

phism h : D+ → E+.
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Extend h|∂D− → ∂E− (already defined) to a homeomorphism h|D− → E−.
We obtain a homeomorphism h : Sn → Sn with hf |Sn−1×{0} = g|Sn−1×{0}.

Definition 2.7. A collar of ∂M in M is an embedding f : ∂M × I → M such
that f(x, 0) = x for x ∈ ∂M .

Exercise. f(∂M × I) is a neighborhood of ∂M in M .
Remark. From now on, we only consider metrizable manifolds, i.e. ones which
are second countable.
Exercise. Compact manifolds are metrizable.

Theorem 2.8 (Morton Brown). If M is metrizable, then ∂M has a collar in
M .

If U is an open set in ∂M , say that U is collared if U has a collar in the
manifold IntM ∪ U .

Let V ⊂ U be a smaller open set and λ : U → I = [0, 1] be a continuous
map such that λ(x) = 0 iff x 6∈ V . Define a spindle neighborhood of V in U × I
to be

S(V, λ) = {(x, t) ∈ U × I : t < λ(x)} .

S(V, λ) is open, therefore a neighborhood of V × {0}.
Lemma 2.9. Let f : S(V, λ) → U × I be an embedding with f |V×{0} = 1. Then
there is a homeomorphism h : U × I → U × I such that:

i. hf = 1 on S(V, µ) for some µ such that µ ≤ λ, and

ii. h|U×I\f(S(V,λ)) is the identity.

Proof. Spindle neighborhoods form a base of neighborhoods of V ×{0} in U×I.
Suppose V × {0} ⊂ W , W open. Let d be a metric on U and define a metric d
on U × I by

d((x, t), (x′, t′)) = d(x, x′) + |t− t′|.
Let ν(x) = min {d(x,U × I \W ), d(x,U \ V )}. Then (x, t) ∈ S(V, ν) implies
that t < ν(x), and so (x, t) ∈ W . Therefore S(V, ν) ⊂ W .

There exists µ such that S(V, 2µ) ⊂ S(V, 1
2λ) ∩ f(S(V, 1

2λ)). There is an
embedding g : U × I → U × I defined by

(x, t) 7−→
{

(x, t) if t > 2µ(x),
(x, µ(x) + 1

2 t) otherwise.

g has image U × I \ S(V, µ) and g|U×I\S(V,2µ) = 1.
Define h : U × I → U × I by

h(x) =





f−1(x) if x ∈ f(S(V, µ)),
gfg−1f−1(x) if x ∈ f(S(V, λ)) \ f(S(V, µ)),
x otherwise.

Continuity of h is simply verified. In fact, h is a homeomorphism such that
hf = 1 on S(V, µ) and h = 1 off f(S(V, λ)).
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Lemma 2.10. If U, V ⊂ ∂M are collared, then U ∪ V is collared.

Proof. Let f : U × I → M , g : V × I → M be collars. Choose λ : U ∪V → I so
that S(U ∩ V, λ) ⊂ f−1g(V × I). Apply lemma 2.9 to the embedding

g−1f : S(U ∩ V, λ) → V × I.

There is an S(U ∩V, µ) ⊂ S(U ∩V, λ) and a homeomorphism h : V × I → V × I
such that hg−1f |S(U∩V,µ) = 1. Then gh−1 and f agree on S(U ∩ V, µ).

Define an open set U1 ⊂ U × I by

U1 = {x ∈ U × I : d(x, (U \ V )× {0}) < d(x, (V \ U)× {0})} .

Define V1 ⊂ V × I similarly. Let U2 be

U2 = {y ∈ M : d(y, U \ V ) < d(y, V \ U)}
and define V2 similarly. Then U1 ∩ V1 = ∅ and U2 ∩ V2 = ∅.

Put U3 = U1∩f−1(U2), V3 = V1∩hg−1(V2). Then U3, V3 are open, U3∩V3 =
∅, f(U3) ∩ gh−1(V3) = ∅, (U \ V ) × {0} ⊂ U3, and (V \ U) × {0} ⊂ V3, so
W = U3 ∪ S(U ∩ V, µ) ∪ V3 is a neighborhood of (U ∪ V )× {0} in (U ∪ V )× I.

Define φ : W → M by

φ(x) =

{
f(x) if x ∈ U3 ∪ S(U ∩ V, µ),
gh−1(x) if x ∈ S(U ∩ V, µ) ∪ V3.

Then φ is well defined, continuous, and 1-1.
There is a ν : U∪V → I such that S(U∪V, ν) ⊂ W . Define ψ : (U∪V )×I →

M by (x, t) 7→ φ(x, t ν(x)
2 ). This is continuous and 1-1, and hence an embedding

by invariance of domain.

Proof of theorem 2.8. Collared sets cover ∂M because if x ∈ ∂M , then there
is a homeomorphism f : Rn × R+ → M onto a neighborhood of x in M . We
proved in corollary 1.3 that f(Rn×{0}) contains a neighborhood U of x in ∂M .
Then U has a collar given by g : U × I → M sending (y, t) 7→ f(p1f

−1(y), t).
If ∂M is compact, then ∂M is collared by lemma 2.10. Before proceeding

to the general case, we prove:

Lemma 2.11. Let Uα, α ∈ A be a disjoint family of open collared sets. Then⋃
α∈A Uα is collared.

Proof. Let Vα =
{

y ∈ M : d(y, Uα) < d(y,
⋃

β 6=α Uβ)
}

. This is an open neigh-
borhood of Uα in M , and α 6= β implies that Vα ∩ Vβ = ∅.

Let fα : Uα× I → M be a collar of Uα. Let Wα = f−1
α (Vα), a neighborhood

of Uα×{0} in Uα× I. There are maps να : Uα → I such that S(Uα, να) ⊂ Wα.
Define gα : Uα × I → M by

gα(x, t) = fα(x,
tνα(x)

2
) ∈ Vα.

Define g =
⋃

gα : (
⋃

α Uα)× I → M . This is a collar of
⋃

α∈A Uα in M .
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We have proved that if X = ∂M then

i. X is covered by collared sets,

ii. a finite union of collared sets is collared,

iii. a disjoint union of collared sets is collared, and

iv. open subsets of collared sets are collared.

Then (i)–(iv) together with X metric imply that X is collared.

Lemma 2.12. Any countable union of collared sets is collared.

Proof. It is enough to consider countable nested unions U =
⋃∞

n=1 Un with
U1 ⊂ U2 ⊂ . . . .

Put Vn = {x ∈ Un : d(x, X \ Un) > 2−n}. Then U =
⋃∞

n=1 Vn since x ∈ Uk

means there is an n > k such that B(x, 2−n) ⊂ Uk. Therefore d(x,X \ Uk) >
2−n, so d(x,X \ Un) > 2−n and x ∈ Vn.

We have that Vn ⊂ Vn+1. Let Ak = V2k+1 \ V2k−1 and Bk = V2k+2 \ V2k.
Then A =

⋃∞
k=1 Ak is a disjoint union of collared sets, hence collared. Similarly

for B =
⋃∞

k=1 Bk. Now U = A ∪B ∪ V2 is collared.

A family of subsets of X is discrete if each x ∈ X has a neighbourhood
which intersects at most one member of the family. Call a family of subsets
of X σ-discrete if it is a countable union of locally finite discrete subfamilies
(Kelley, p. 127).

Lemma 2.13. Every open cover of a metric space X has a σ-discrete refine-
ment.

Proof (cf Kelley, p. 129). Let U be an open cover of a metric space X. If U ∈ U
let Un = {x ∈ U : d(x,X \ U) > 2−n}. Then d(Un, X \ Un+1) > 2−(n+1).

Well order U by the relation <. Let U∗
n = Un \

⋃
V <U Vn+1. If U 6= V then

U < V or U > V . The first implies that V ∗
n ⊂ X \ Un+1, the second that

U∗
n ⊂ X \ Vn+1, and in either case d(U∗

n, V ∗
n ) > 2−(n+1).

Let U ′
n be an open 2−(n+2) neighborhood of U∗

n, similarly for V ′
n. If U 6= V ,

then U ′
n ∩ V ′

n = ∅.
It is enough to prove that

⋃
n,U U ′

n = X. If x ∈ X let U be the first (with
respect to <) member of U containing x. Then x ∈ Un for some n and so
x ∈ U∗

n ⊂ U ′
n. Now {U ′

n} is a σ-discrete refinement of U .

¤ (theorem 2.8)

References:
Morton Brown: “A proof of the generalized Schönflies conjecture” Bull. Amer.
Math. Soc. 66 (1960) 74–76

Morton Brown: “Locally flat embeddings of topological manifolds” Annals
of Math. 75 (1962) 331–341

A shortened version of the second reference is included in the book “Topology
of 3-manifolds.
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Definition 2.14. Let Mm, Nn be manifolds without boundary. An embedding
f : Mm → Nn is locally flat if for all x ∈ M , there is a neighborhood U of x
and an embedding F : U × Rn−m → Nn such that F (y, 0) = f(y) for y ∈ U .

Remark. There needn’t be an embedding G : M × Rn−m → N such that
G(y, 0) = f(y) for all y. For example, S1 → Möbius strip along the center
line. This is locally flat but there is no embedding S1 × R→ M agreeing with
the previous one on S1 × {0}.
Example. If f : Sn−1 → Sn is locally flat then each component of Sn\f(Xn−1)
has closure homeomorphic to Bn.

If ∂M is compact and f, g : ∂M × I → M are two collars, then there is a
homeomorphism h : M → M such that hf agrees with g on ∂M × [0, 1

2 ] and
h = 1 outside f(∂M × I)∪ g(∂M × I), so “the collaring of ∂M in M is unique.”
This is not true if ∂M is noncompact, e.g. Milnor’s rising sun.

Exercise. Suggest a generalization that does work.

Given two manifolds Mm, Nn let E(M, N) be the set of embeddings of M
in N with the compact-open topology.

A continuous map f : X → Y is proper if C ⊆ Y compact implies f−1(C) ⊆
X is compact.

Let Ep(M,N) be the set of embeddings which are proper maps. We will be
interested in Ep(Rn\IntBn,Rn), which consists of embeddings f : Rn\IntBn →
Rn onto neighborhoods of ∞ (by propriety).

Let R̂n be the one point compactification of Rn. f : Rn \ IntBn → Rn

extends to a continuous map f̂ : R̂n \ IntBn → R̂n with f̂(∞) = ∞ iff f is
proper.

(In general, f : X → Y extends to a continuous map f̂ : X̂ → Ŷ with
f̂(∞) = ∞ iff f is proper.)

Theorem 2.15. There is a neighborhood U of 1 in E(6Bn \ IntBn,Rn) and a
continuous map θ : U → Ep(Rn \ IntBn,Rn) such that θ(f)|Sn−1 = f |Sn−1 .

Proof. Take U = {f ∈ E(6Bn \ IntBn,Rn) : d(x, f(x)) < 1, x ∈ 6Bn \ IntBn}.
If f ∈ U , then f(2Bn \ IntBn) ⊆ Int 3Bn \{0} and f(6Bn \ Int 5Bn) ⊂ f(7Bn \
Int 4Bn).

Define inductively fk : (4k + 6)Bn \ IntBn → Rn such that

i. f0 = f ,

ii. fk+1|(4k+5)Bn\Int Bn = fk|(4k+5)Bn\Int Bn ,

iii. fk((4r + 6)Bn \ Int(4r + 5)Bn) ⊂ Int(4r + 7)Bn \ (4r + 4)Bn for r 6 k,
and

iv. fk depends continuously on f .

11



Suppose fk is constructed. If c, d ∈ (a, b) (a, b, c, d ∈ R), let ρ(a, b, c, d) : Rn →
Rn be the radial homeomorphism fixed outside 6Bn\aBn taking cBn onto dBn.
Let ρk(a, b, c, d) = ρ(4k + a, 4k + b, 4k + c, 4k + d).

Define gk : (4k+6)Bn\IntBn → Rn by gk = ρk(3, 11, 4, 8)fkρk(1, 5 2
3 , 5 1

3 , 2).
Define a homeomorphism hk : Rn → Rn by

hk(x) =

{
fkρk(1, 52

3 , 2, 51
3 )f−1

k if x is in the image of fk,
x otherwise.

Let σk : (4k + 10)Bn → (4k + 6)Bn be a radial homeomorphism fixed on (4k +
5)Bn, sending (4k + 6)Bn → (4k + 5 1

2 )Bn and (4k + 9)Bn → (4k + 5 2
3 )Bn.

Define fk+1 = hkgkσk : (4k+10)Bn \IntBn → Rn. Check (ii): let x ∈ (4k+
5)Bn so σk(x) = x, ρk(1, 5 2

3 , 5 1
3 , 2)(x) ∈ (4k +2)Bn, y = fkρk(1, 5 2

3 , 5 1
3 , 2)(x) ∈

(4k+3)Bn (inductive hypothesis), gk(x) = ρk(3, 11, 4, 8)(y) = y etc. XXXXXXXXXX
Similarly we can verify (iii). To prove (iv), that fk depends continuously on

f , it is enough to show that hk depends continuously on fk. Let f ′k be near fk,
and let

h′k =

{
f ′kρkf−1

k on Im f where ρk = ρk(1, 52
3 , 2, 5 1

2 ),
1 otherwise.

If C is a compact set in Rn, we must prove that supx∈C d(hkx, h′kx) can be
made less than ε by requiring d(fky, f ′ky) = δ for all y ∈ Ak, ε > 0.

Let Ak = (4k + 6)Bn \ IntBn = domain of fk. Given ε > 0 there is an
η > 0 such that y, y′ ∈ A and d(y, y′) < η imply d(fkρk(y), fkρk(y′)) < ε

2 .
Since δk is injective, there is a δ > 0 such that y, y′ ∈ A and d(y, y′) ≥ η imply
d(fky, fky′) ≥ δ. We suppose δ < ε

2 . Suppose d(fky, f ′ky) < δ
2 for all y ∈ A.

Let x ∈ C. We split into cases:

i. x ∈ Im fk∩Im f ′k, say x = fkyk = f ′ky′k. Then d(fkyk, fky′k) = d(f ′ky′k, fky′k) <
δ
2 < δ. Therefore d(y, y′) < η, so

d(hkx, h′kx) = d(fkρkyk, f ′kρky′k)
6 d(fkρkyk, fkρky′k) + d(fkρky′k, f ′kρky′k)

<
ε

2
+

δ

2
< ε

ii. If x ∈ Im fk \ Im f ′k, say x = fk(y), then d(x, f ′ky) < δ
2 , so there is

a z ∈ ∂A such that d(f ′kz, f ′ky) < XXXXX and d(x, f ′kz) < δ
2 . But

d(f ′kz, fkz) < δ
2 , so d(x, fkz) < δ, so d(y, z) < η. Therefore

d(hkx, h′kx) = d(fkρky, x)
6 d(fkρky, fkρkz) + d(fkz, x)

<
ε

2
+ δ

< ε.

Here we used the fact that fkρkz = z since z ∈ ∂A.
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iii. If x ∈ Im f ′k \ Im fk, the proof is similar.

iv. If x 6∈ Im f ′k ∪ Im fk, there is nothing to prove.

We have proved that fk 7→ hk is continuous. f 7→ fk+1 is continuous if f 7→ fk

is, so the induction is complete.
Define θ : U → Ep(Rn \ IntBn,Rn) by θ(f)(x) = fk(x) for k large and

x ∈ (4k + 5)Bn. Then θ(f) is proper (interleaving property (iii)). Also θ(f) is
an embedding, so θ(f) ∈ Ep(Rn \ IntBn,Rn). θ(f) depends continuously on f
because fk agrees with f on (4k + 5)Bn and fk depends continuously on f .

Corollary 2.16. If 0 < λ < 1, there is a neighborhood V of 1 ∈ E(Bn \
IntλBn,Rn) and a continuous map φ : V → E(Bn,Rn) such that for all f ,
φ(f)|Sn−1 = f |Sn−1 .

Proof. Let X̂ be the one point compactification of X. g : X → Y is proper iff
g extends to ĝ : X̂ → Ŷ with ĝ(∞) = ∞.

Example. The map g 7→ ĝ is not continuous, even if X = Y = Rn.

We first prove that f 7→ f̂ is continuous (XXXXX seems to contradict
the above). Suppose f ∈ Ep(Rn \ IntBn,Rn), C ⊂ R is compact, U ⊂ R̂n

is open, and f̂(C) = U . If ∞ 6∈ C, C is a compact set in Rn \ IntBn so
{g ∈ Ep(Rn \ IntBn,Rn) : g(C) ⊂ U ∩ Rn} is a neighborhood of f , mapping into
a given neighborhood of f̂ .

If ∞ ∈ C, then ∞ = f̂(∞) ∈ U open in R̂n and there is a k such that R̂n \
kBn ⊂ U . Since f is proper, there is an l such that f−1(2kBn) ⊂ lBn. Let N ={
g ∈ Ep(Rn \ IntBn,Rn) : g(C ∩ lBn) ⊂ U ∩ Rn, g(lSn−1) ⊂ Rn \ kBn

}
. This

is open in Ep and contains f .
Now we have to show that ĝ(C) ⊂ U for all g ∈ N .

ĝ(C) = g(C ∩ lBn) ∪ ĝ(R̂n \ Int lBn)

⊂ U ∪ one of the complementary domains of g(lSn−1).

In fact U∪outside domain ⊂ R̂n\kBn ⊂ U . Hence the map g 7→ ĝ is continuous.

E(6Bn \ IntBn,Rn) ⊃ U //

**UUUUUUUUUUUUUUUU
Ep(Rn \ IntBn,Rn)

²²
Ep(R̂n \ IntBn, R̂n).

There exists a homeomorphism h : R̂n → R̂n with

h(x) =





x
‖x‖2 if x 6= 0,∞,

∞ if x = 0, and
0 if x = ∞,
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carrying 6Bn \ IntBn onto Bn \ Int 1
6Bn taking R̂n \ IntBn → Bn. Hence the

result. (XXXXXX: really?)

3 Properties of Tori

Definition 3.1. Let Zn be the integer lattice in Rn. Then Tn = Rn/Zn is the
n-dimensional torus. Clearly Tn ∼= S1 × · · · × S1, n copies of S1.

Let e : Rn → Tn be the projection map. If a ∈ Zn, let τa : Rn → Rn send
x 7→ a + x.

Proposition 3.2. e : Rn → Tn is a universal covering of Tn. If X is a 1-
connected space and f : X → Tn is any map the there is an f̃ : X → R such
that f = ef̃ . (f̃ is a lift of f .) If f̃1, f̃2 are lifts of f then f̃1 = τaf̃2 for some
a ∈ Zn.

If X is simply connected and f : X × Tn → X × Tn is a map, then there
exists an f̃ : X × Rn → X × Rn such that ef̃ = fe.

Lemma 3.3. If f is a homeomorphism, so is f̃ ; if f is homotopic to the identity,
then f̃ commutes with the covering translations.

Proof. Let f be the homeomorphism and g its inverse. We have

ef̃ g̃ = feg̃

= fge

= e,

so f̃ g̃ = τa for some a. Similarly g̃f̃ = τb. Therefore f̃ is a homeomorphism.
Suppose F : X × Tn × I → X × Tn has F0 = f and F1 = 1. By 3.2 there is

an F̃ : X × Rn × I → X × Rn with eF̃ = Fe. We have

eτ−aF̃ τa = eF̃ τa

= Feτa

= Fe

= eF.

Therefore there is a b ∈ Zn so that τ−aF̃ τa = τbF̃ . We have eF̃1 = F1e = e,
so F̃1 = τc for some c. But τ−aτcτa = τbτc, therefore b = 0 and τb = 1. Thus
τ−aF̃ τa = F̃ . Since F0 = f, F̃0 = τdf̃ for some d. Therefore f̃ commutes with
τd.

Definition 3.4. Let M, N be manifolds. An immersion f : M → N is a map
such that each point x ∈ M has a neighborhood Ux with f |Ux an embedding. If
Ux can be chosen so that f |Ux is locally flat, then f is a locally flat immersion.

Theorem 3.5. There is an immersion of Tn \ point in Rn.
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Proof. Tn \ pt is an open parallelizable manifold. Therefore, by Hirsch’s theory
of immersions there is a C∞ immersion Tn \ pt → Rn.

Alternately, regard Tn as the product of n circles, T = T 1 = circle. Let J
be a closed interval in T . Tn \ Jn ∼= Tn \ pt. Assume inductively that there
is an immersion fn : Tn \ Jn → Rn such that fn × 1 : (Tn \ Jn) × [−1, 1] →
Rn × R = Rn+1 extends to an immersion gn : Tn × [−1, 1] → Rn+1.

The induction starts with n = 1. Let φ0 : T \ J → [−1, 1]. Choose an
embedding φ : R×T → R×R such that if (x, t) ∈ [−1, 1]×T \ J then φ(x, t) =
(x, φ0(t)). Extend φ−1

0 : [−1, 1] → T \ J to an embedding ψ : R→ T .
Suppose fn, gn constructed. We have Tn+1 \ Jn+1 = (Tn \ Jn)× T ∪ Tn ×

(T \ J). Define f ′n+1 : Tn+1 \ Jn+1 → Rn+1 by

f ′n+1 = (1Rn−1 × φ)[(fn × 1T ) ∪ (1× ψ)gn(1T n × ψ−1)].

On (Tn\Jn)×(T \J), gn = fn×1 so (1×φ)g(1×ψ−1) = (1×ψ)(fn×1)(1×ψ−1) =
fn × 1. Let J ′ = T \ φ(− 1

4 , 1
4 ), so J ⊂ IntJ ′.

We shall construct an immersion g′n+1 : Tn+1× [−1, 1] → Rn+2 which agrees
with f ′n+1 × I on Tn+1 \ (J ′)n+1 × [− 1

4 , 1
4 ]. This will be enough, since Tn+1 \

(J ′)n+1 ∼= Tn+1 \ Jn+1.
Define θt : C→ C (= R2) by

θt(z) =





z if |z| ≤ 1
2 ,

ze2(|z|− 1
2 )πit if 1

2 ≤ |z| ≤ 3
4 , and

ze
πit
2 if |z| ≥ 3

4 .

Let J ′′ = T \ψ(− 3
4 , 3

4 ) and λ : Tn → [0, 1] be continuous such that λ|(J ′′)n =
1 and λ|T n\(J′)n = 0.

Define g′n+1|(T n\Jn)×T×[−1,1] → Rn+1×R by g′n+1(x, t, u) = (1×θλ(x))(φ′n+1(x, t), u)
and define g′n+1|T n×(T\J)×[−1,1] → Rn×R by g′n+1(x, t, u) = (f ′n+1× 1)(x, (ψ×
1)θλ(x)(ψ−1(t), u)). Then g′n+1|T n+1\(J ′)n+1 agrees with f ′n+1×1. Define g′n+1|(J ′′)n+1

to be the restriction of

σn(1× φ)σn(gn × 1)σn+1(1× τ) : Tn × T × [1, 1] → Rn+2

where σj swaps the jth and (j + 1)th factors in the (n + 1)-fold product and
τ : [−1, 1] → [−1, 1] changes sign.

This proof has no end XXXXXXXXXXXXXXX

4 Local Contractibility

Definition 4.1. A space X is locally contractible if for each point x ∈ X
and each neighborhood U of x, there is a neighborhood V of x and homotopy
H : V × I → U such that H0 = 1 and H1(V ) = x.

Let XI be the set of paths in X ending at x. It is enough to find a neigh-
borhood V and map φ : V → XI such that φ(y) is a path from y to x and φ(x)
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is the constant path at x. (Given an open neighborhood U of x, U I is the open
set in XI so that there is a neighborhood of x in X such that φ(V ′) ⊂ U I .)

If M is a manifold, letH(M) be the space of homeomorphisms of M together
with the compact-open topology.

Definition 4.2. An isotopy of M is a path in H(M). Equivalently, an isotopy
is a homeomorphism H : M × I → M × I such that p2H = p2. We say that H
is an isotopy from H0 to H1, and H0,H1 are isotopic.

Theorem 4.3 (Černavsky, Kirby). H(Rn) is locally contractible.

Proof. H(Rn) is a group, so it is enough to show that it is locally contractible
at 1.

Choose an embedding i : 4Bn → Tn and choose an immersion f : Tn \
i(0) → Rn. Tn \ i(IntBn) is compact, so there is a δ > 0 such that for
all x ∈ Tn \ i(IntBn), f |Nδ(x) is injective. We may suppose δ < d(i(3Bn \
Int 2Bn), i(4Sn−1 ∪ Sn−1)). Since f is open εx = d(f(x),Rn \ Nδ(f(x))) > 0
and ε = inf {εx : x ∈ Tn \ i(Int Bn)} > 0.

If x ∈ Tn \ i(Int Bn) and v ∈ Rn are such that d(f(x), v) < ε then there
exists a unique u ∈ Nδ(x) such that f(u) = v.

Let h ∈ H(Rn). Suppose h is so close to 1 that d(h(f(x)), f(x)) < ε for all
x ∈ Tn\i(Int Bn). For x ∈ Tn\i(Int 2Bn), let h′(x) be the unique point in Nδ(x)
such that fh′(x) = hf(x), h′(x) ∈ Tn \ i(IntBn). Since f is an open immersion,
h′ is an open immersion. If h′(x) = h′(y), then x, y ∈ Nδ(h′(x)) mean that
f(x) 6= f(y) which implies that h′(x) 6= h′(y), a contradiction. Therefore h′ is
an embedding depending continuously on h ∈ H(Rn).

Consider i−1h′i : 3Bn \ Int 2Bn → Int 4Bn. By corollary 2.16 there is a
neighborhood W of 1 in E(3Bn\Int 2Bn, Int 4Bn) and continuous map φ : W →
E(3Bn, Int 4Bn) such that φ(g)|3Sn−1 = g|3Sn−1 . Define h′′ : Tn → Tn by

h′′(x) =

{
h′(x) if x 6∈ i(3Bn),
iφ(i−1h′i)i−1(x) if x ∈ i(3Bn).

Then h′′ is a homeomorphism, depending continuously on h ∈ V where V ={
h ∈ H(Rn) : h′ is defined and i−1h′i ∈ W

}
. If V is sufficiently small, then h ∈

V implies that h′′ is homotopic to 1.
Let e : Rn → Tn be the (universal) covering map. By 3.3 there exists a

homeomorphism h̃ : Rn → Rn such that eh̃ = h′′e. If V is sufficiently small,
there is a unique choice of h̃ such that d(h̃(0), 0) < 1

2 . Then h̃ depends con-
tinuously on h. By 3.3, h̃ commutes with covering translations. Let I = [0, 1]:
every point of Rn can be moved into In by covering translations.

If A = supx∈In d(h̃(x), x) < ∞, we have d(h̃(x), x) 6 A for all x ∈ Rn, that
is, h̃ is a bounded homeomorphism of Rn.

Suppose without loss of generality that e(0) 6∈ i(4Bn). Choose once and for
all r > 0 such that f |e(rBn) is injective and r < 1 and e(rBn) ∩ i(4Bn) = ∅.
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Define a homeomorphism ρ : IntBn → Rn fixed on rBn by

ρ(x) =

{
x if x ∈ rBn,
r−1
|x|−1x if x 6∈ rBn.

Then ρ−1h̃ρ is a homeomorphism from Int Bn → IntBn fixed on rBn. Suppose
|x| < 1 is close to 1. Then d(x, ρ−1h̃ρ(x)) ≤ 2A(|x|−1)

r−1 → 0 as |x| → 1. So ρ−1h̃ρ
extends to a homeomorphism of Bn, fixed on ∂Bn.

Define an isotopy Rt of Bn by

Rt(x) =

{
x if |x| > t,
tρ−1h̃ρ(x

t ) if |x| < t.

Extend fe : rBn → Rn to a homeomorphism σ : Int Bn → Rn (e.g. by
Schönflies theorem). Choose s, 0 < s < r. If V is small enough, h ∈ V implies
that h̃(sBn) ⊂ Int tBn.

Define an isotopy St of Rn by St(x) = σRtσ
−1(x). This depends contin-

uously on h. S0 = 1, and S1|fe(sBn) = h|fe(sBn). Without loss of generality,
0 ∈ Int fe(sBn). S−1

1 h is 1 on a neighborhood of 0.
Define Ft : Rn → Rn by

Ft(x) =

{
t−1S−1h(tx) if t 6= 0,
x if t = 0.

Define Ht = StFt, i.e. Ht(x) = St(Ft(x)). This is an isotopy from 1 to h. Ht

depends continuously on h ∈ V , and h = 1 implies that Ht = 1. So H(Rn) is
locally contractible.

What about H(M) for (say) M compact? (Use a handle decomposition.)
Let E(k-handle) be the space of embeddings of Bk ×Bn → Bk ×Rn leaving

(∂Bk)×Bn fixed.

Theorem 4.4. There is a neighborhood V of 1 in E(k-handle) and a homotopy
H : V × I → E(k-handle) such that

i. Ht(1) = 1 for all t,

ii. H0(h) = h for all h ∈ V ,

iii. Ht(h)|Bk× 1
2 Bn = 1, and

iv. Ht(h)|∂Bk×Bn = h|∂Bk×Bn for all t, h.

Proof. Let i : 4Bn → Tn be a fixed embedding, f : Tn \ {0} → IntBn a fixed
immersion. Choose 0 < r < 1 such that f |e(rBn) is injective and e(rBn) ∩
i(4Bn) = ∅. Modify f so that f(e(Int rBn)) ⊃ 1

2Bn.
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XXX: this junk is all messed up: Let h ∈ E(k-handle) be close to 1. Define
a preliminary isotopy G from h to g ∈ E(k-handle) such that XXXXXXX:

Gt(x, y) =

{
(x, y) if |x| ≥ 1− t

2 ,
((1− t

2 )h1((1− t
2 )−1x, y), h2(x, y)) if |x| 6 1− t

2

where h(x, y) = XXXX. G0 = h, G1 = g is an embedding fixed on Bn \ 1
2Bk×

3
4Bn. G depends continuously on h and

Gt|Bk×∂Bn = h|Bk×∂Bn .

As in 4.3 construct an embedding g′ : Bk × (Tn \ i(Int 2Bn)) → Bk × (Tn \
i(IntBn)) such that (1× f)g′ = g(1× f) and g′|

Bk\ 1
2 Bk×(T n\−)

= 1.
Put g′|

Bk\ 1
2 Bk×T n = 1. This extends the g′ defined above. Use 2.16 to

extend g′| 3
4 Bk×i(3Bn)\Int( 1

2 Bk×i(2Bn)) to an embedding g′′ : 3
4Bk × i(3Bn) →

Bk × i(4Bn) such that g′′ = g′ on ∂( 3
4Bk × i(3Bn)).

Let g̃ : Bk × Rn → Bk × Rn be such that (1 × e)g̃ = g′′(1 × e) and
g̃|∂Bk×Bn = 1. g̃ is bounded, i.e. d(x, g̃(x)) 6 A for x ∈ Bk × Rn. Extend
g̃ to a homeomorphism of Rk × Rn by g̃|(Rk\Bk)×Rn = 1.

Define ρ : Int(2Bk × 2Bn) → Rk × Rn, a homeomorphism fixing Bk × Bn,
by

ρ(x, y) =

{
(x, y) if (x, y) ∈ Bk ×Bn,
(2−max {|x|, |y|})−1(x, y) otherwise.

Then ρ−1g̃ρ : Int(2Bk× 2Bn) → Int(2Bk× 2Bn) extends to a homeomorphism
of 2Bk×2Bn fixed on ∂(2Bk×2Bn). In fact, ρ−1g̃ρ fixes (2Bk \ IntBk)×2Bn.
Thus ρ−1g̃ρ defines a homeomorphism of Bk×2Bn fixed on ∂(Bk×2Bn). Define
an isotopy Rt of Bk × 2Bn by

Rt(x, y) =

{
(x, y) if max

{|x|, 1
2 |y|

}
> t,

tρ−1g̃ρ(t−1(x, y)) otherwise.

Let σ : Bk × 2Bn → Bk × IntBn be an embedding with σ|Bk×rBn = fe.
Now define an isotopy St of Bk ×Bn by

St(x) =

{
σRtσ

−1 if x ∈ Im σ,
x otherwise.

Then S0 = 1 and St fixes ∂(Bk ×Bn).
Suppose V is so small that h ∈ V implies that g̃ is defined and g( 1

2Bn) ⊂
fe(Int rBn). Then S1|Bk× 1

2 Bn = g.
Define Ht : Bk ×Bn → Bk × Rn by

Ht(x) =

{
G2t(x) if 0 6 t ≤ 1

2 ,
gS−1

2t−1(x) otherwise.

This does what is required.
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Lemma 4.5. If C ⊂ Rn is compact and ε > 0, then C lies in the interior
of a handlebody with handles of diameter < ε. Explicitly, there exist finitely
many embeddings hi : Bk

i × Bn−ki → Rn, i = 1, 2 . . . , l, such that if Wj =⋃
i6j hi(Bki × 1

2Bn−ki) then

i. hi(Bki ×Bn−ki) ∩Wi−1 = hi(∂Bki ×Bn−ki),

ii. Wl is a neighborhood of C, and

iii. hi(Bki ×Bn−ki) has diameter < ε and hi(Bki ×Bn−ki) ⊂ Nε.

Proof. Cover C by a lattice of cubes of side 1
2ε. Since C is compact, C only

needs a finite number of these cubes. Let γ1, . . . , γi be all the faces of all the
cubes meeting C.

Let ki = dim γi and order γi so that k0 6 k1 ≤ · · · 6 kl. Define a metric on
Rn by d((x1, . . . , xn), (y1, . . . , yn)) = max16i6n |xi − yi|. Let

Hi = Nε2−i−3(γi) \
⋃

j<i

Nε2−j−4(γj)

and 1
2Hi = Hi ∩Nε2−i−4(γi).

Then Hi∩γi
∼= γi (radial projection)∼= Bk and clearly Hi

∼= (Hi∩γi)×Bn−ki .
There exist homeomorphisms hi : Bki ×Bn−ki → Hi carrying Bki × 1

2Bn−ki

onto 1
2Hi and (∂Bki)×Bn−ki onto Hi∩

⋃
j<i

1
2Hj . Then h1, h2, . . . , hi do what

is required.

Addendum 4.6. If D ⊂ C is compact, then we can select hi1 , . . . him so that
(i) is still satisfied, and (ii) and (iii) are satisfied by hi1 , . . . , him with respect
to D instead of C. That is,

⋃
hir (B

kir × 1
2Bn−kir ) is a neighborhood of D,

hir (B
kir ×Bn−kir ) has diameter less than ε and is contained in Nε(0).

Proof. Select hi iff γi is a face of a cube which meets D.

Theorem 4.7 (Kirby-Edwards). Let C, D be compact in Rn and U, V be neigh-
borhoods of C,D. Let E be the space of embeddings of U in Rn which restrict to 1
on V . There is a neighborhood N of 1 in E and a homotopy H : N×I → H(Rn)
such that

i. Ht(1) = 1 for all t,

ii. H0(g) = 1 for all g ∈ N ,

iii. H1(g)|C = g|C , and

iv. Ht(g)|D∪(Rn\U) = 1 for all t, g.

Proof. Let ε = min {d(C,Rn \ U), d(D,Rn \ V )}. Cover C∪D by a handlebody
in U ∪ V with handles of diameter < ε. Let h1, . . . , hl be the handles, with Wi

as in 4.5. Select hi1 , . . . , him to form a sub-handlebody covering D, contained
in V . Let X =

⋃
r hir (B

kir ×Bn−kir ).
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Suppose inductively that we have constructed a neighborhood Ni−1 of 1 in E
and a homotopy H(i−1) : Ni−1× I → H(Rn) such that (i) and (ii) are satisfied,
H

(i−1)
1 (g)|Wi−1 = g, H

(i−1)
t (1) = 1, H

(i−1)
0 (g) = 1, and H

(i−1)
r (g)|X∪(Rn\U) = 1.

If hi(Bki ×Bn−ki) ⊂ X, put Ni = Ni−1 and Hi = Hi−1. (This is consistent
because if hi(Bki × Bn−ki) ∩ hj(Bkj × Bn−kj ) 6= ∅ for j < i then hj(Bkj ×
Bn−kj ) ⊂ X.)

Now suppose hi(Bki × bn−ki) 6⊂ X. Choose Ni so small that

g−1H
(i−1)
t (g)hi(Bki × 3

4
Bn−ki) ⊂ hi(Bki × IntBn−ki).

Let f = h−1
i g−1

i H
(i−1)
1 (g)hi : Bki × 3

4Bn−ki → Bki × IntBn−ki . Then f fixes
(∂Bki)× 3

4Bn−ki . Theorem 4.4 gives a continuously varying isotopy H ′
t(y) such

that

i. H ′
t(1) = 1,

ii. H ′
0(g) = f ,

iii. H ′
1(g)|Bki× 1

2 Bn−ki = 1, and

iv. H ′
t(g)|∂(Bki× 3

4 Bn−ki ) = 1.

Define

H
(i)
t (g)(x) =

{(
H

(i−1)
t (g)

)
hif

−1 (H ′
t(g))h−1

i (x) if x ∈ hi(Bki × 3
4Bn−ki),

H
(i−1)
t (g)(x) otherwise.

Then Wi = Wi−1 ∪ hi(Bki × 1
2Bn−ki), hi(Bk

i × 3
4Bn−ki) ∩ X ⊂ hi(∂(Bk

i ×
3
4Bn−ki)) completes the induction.

H = H l, N = N l do what is required.

Theorem 4.8. If M is a compact manifold then H(M) is locally contractible.

Proof. First suppose M is closed, ∂M = ∅. Cover M by finitely many embed-
dings fi : Rn → M , i = 1, . . . , l. In fact, assume M =

⋃
Fi(Bn).

Let h : M → M be a homeomorphism near 1. Define inductively an isotopy
H(i)(h) of M such that

i. H
(i)
t (h) depends continuously on h,

ii. H
(i)
t (1) = 1,

iii. H
(i)
0 (h) = 1, and

iv. H
(i)
1 (h) agrees with h on

⋃
j6i fj((1 + 2−i)Bn).
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Suppose H
(i−1)
t is defined. Let C = (1 + 2−i)Bn, U = (1 + 2−(i−1))Bn, and

let D = f−1
i (

⋃
j<i fj(C)) ∩ 4Bn, V = f−1

i (
⋃

j<i fj(U)).

Suppose h is so near 1 that h−1H
(i−1)
t (h)fi(U) ⊂ fi(Rn). Apply Theorem 4.7

to g = f−1
i h−1H

(i−1)
1 (h)fi : U → Rn. If h is sufficiently near 1, we get a

continuously varying isotopy H ′(h) of Rn such that

i. H ′
t(1) = 1 for all t,

ii. H ′
0(h) = 1 for all h,

iii. H ′
1(h)|C = h|C , and

iv. H ′
t(h)|D∪(Rn\U) = 1 for all t, h.

Define H(i) = H(i)(h) by

H
(i)
t (x) =

{
H

(i−1)
t fi (H ′

t(h))−1
f−1

i (x) if x ∈ fi(R),
H

(i−1)
t (x) otherwise.

Then H(i) satisfies (i)–(iii) and completes the induction.
Now suppose ∂M 6= ∅. Let γ : ∂M × I → M be a collar of ∂M in M .

H(∂M) is locally contractible. If h ∈ H(M) is near 1 then we have an isotopy
Ht(h) of ∂M with H0(h) = 1, H1(1) = h|∂M .

Define an isotopy H of M by

Ht(γ(x, u)) = γ(Ht(1−u)(x), u)

for x ∈ ∂M, u ∈ I, and
Ht(y) = y

if y 6∈ γ(∂M × I). Then Ht is an isotopy of M from 1 to H1 where H1 agrees
with h on ∂M .

There exists an isotopy Gt : M → M from H1 to G1 where G1 agrees with
h on γ(∂M × [0, 1

2 ]). Now the argument goes as for closed manifolds.

Exercise. If M is compact, then H(Int M) is locally contractible.

Theorem 4.9 (Isotopy extension). Let M,N be n-manifolds with M com-
pact, ∂N = ∅, and M ⊂ N . Suppose we are given a path H : I → E(M, N),
H0 : M ↪→ N . If U is a neighborhood of ∂M in M , then there is an isotopy
H : I → H(N) such that H0 = 1 and Ht|M\U = H|M\U .

Proof. First use the method of 4.8 to generalize 4.7 to deal with compact
C,D ⊂ N (i.e. replace Rn by N .) Let f ∈ E(M,n). Then f(M) ⊂ N is a
neighborhood of f(M \ U) (assume that U is open), and there exists an open
neighborhood Vf of 1 in E(f(M), N) and a homotopy F (f) : Vf × I → H(N)
such that F

(f)
1 (g)|M\U = g|M\U for g ∈ Vf .

Let Wf = {gf : g ∈ Vf}. Then Wf is an open neighborhood of f in E(M,N).
Now {Wf}f∈E(M,N) is an open cover of E(M,N). There is a dissection 0 =
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t0 < t1 < · · · < tl = 1 of I such that H([ti−1, ti]) is contained in some Wfi ,
fi ∈ E(M,N).

Define Ht for ti−1 6 t 6 ti by

Ht = F
(fi)
1 (Ht ◦ f−1

i )
(
F

(fi)
1 (Hti−1 ◦ f−1

i )
)−1

Hti−1 .

Then Ht = Ht on M \ U .

Addendum 4.10. Ht can be chosen to be the identity outside some compact
set. (This is because 4.7 also produces isotopies of compact support.)

Corollary 4.11. Let f : Bn ↪→ Int 2Bn be isotopic to 1. Then 2Bn\f(Int 1
2Bn) ∼=

2Bn \ Int 1
2Bn.

Proof. Let Ht be an isotopy from 1 to f . By 4.10 there is an isotopy Ht of
Int 2Bn, fixed outside λBn for some λ < 2, such that H1 = f on 1

2Bn.
Therefore H̃1 defines a homeomorphism 2Bn \ Int 1

2Bn → 2Bn \ f(Int 1
2Bn).

5 Triangulation Theorems

Definition 5.1. An r-simplex in Rn is the convex hull of r + 1 linearly inde-
pendent points.

Let K ⊂ Rn be compact. An embedding f : K → Rn is PL if K is a finite
union of simplexes, each mapped linearly by f .

If M is an n-manifold, a PL structure on M is a family F of embeddings
f : ∆n → M such that

i. every point of M has a neighborhood of XXXXXXXXXX from f(∆n),
f ∈ F ,

ii. if f, g ∈ F , then g−1f : f−1g(∆n) → Rn is PL, and

iii. F is maximal with respect to (i) and (ii).

If M, N have PL structures F ,G, an embedding h : M → N is PL if f ∈ F
implies hf ∈ G.

Example. The composite of 2 PL embeddings is PL, i.e. PL ∼= is an equivalence
relation.

A PL structure F on M defines a PL structure ∂F on ∂M .
A compact n-manifold has PL structure iff it has a triangulation with the

link of each vertex PL homeomorphic to ∂∆n.

We need 3 deep theorems from PL topology.

Proposition 5.2. i. Suppose M is a closed PL manifold which is homotopy
equivalent to Sn. If n > 5, then M is PL homeomorphic to Sn = ∂∆n+1.
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ii. Call a non-compact manifold W simply-connected at ∞ if for every com-
pact set C ⊂ W , there is a compact set D ⊂ W such that any two loops
in W \D are homotopic in W \ C. (Example: Rn is simply connected at
∞ iff n > 3.)

Suppose Wn is an open PL manifold which is simply connected at infinity.
If n > 6 then W is PL homeomorphic to IntV where V is some compact
PL manifold. XXXXXXXXXXXX

iii. Let M be a closed PL manifold which is homotopy equivalent to Tn. Then
some finite covering of M is PL homeomorphic to Tn = (∂∆2)n. (Proof
in Wall’s book.)

Theorem 5.3 (Annulus Conjecture). If h : Bn → IntBn is an embedding and
n > 6, then Bn \ h(Int 1

2Bn) ∼= Bn \ Int 1
2Bn.

Proof. Let a ∈ Tn and let f : Tn \ {a} → IntBn be a PL immersion such that
f(Tn \ {a}) ⊂ 1

2Bn. Let h : Bn → IntBn be a topological homeomorphism:
we shall find a PL Structure F ′ on Tn \ {a} such that hf is PL with respect
to F ′. Let F0 = {φ : ∆n → Tn \ {a} : (hf)φ is a PL embedding}. Since hf is
an open immersion, {φ(Int∆n) : φ ∈ F} covers Tn \ {a}. Extend F0 to a PL
structure F ′ on Tn\{a}. Let XXXXXXX. For n > 3, (Tn\{a})′ ∼= (Tn\{a}) so
(Tn \{a})′ is simply connected at ∞. Since n > 6, by 5.2 (ii) there is a compact
PL manifold w and PL homeomorphism g : (Tn \ {a})′ → IntW . There exists
a PL collar γ : ∂W × I → W . Let ε > 0 and A be a neighborhood of a in Tn

homeomorphic to Bn and so small that

g−1γ(∂W × I) ⊃ A \ {a} ⊃ g−1γ(∂W × {ε}).

The first and last sets are homotopy equivalent, so it follows that ∂W ∼= Sn−1.
By 5.2 (i) since n > 6, ∂W is PL homeomorphic to Sn−1.

By Schönflies theorem, {a}∪g−1γ(∂W×(0, ε]) ∼= Bn. Extend F ′|T n\({a}∪g−1γ(∂W×(0,ε)))

to a PL structure F ′′ on XXX. (F ′ induces PL structure on ∂({a}∪g−1γ(∂W ×
(0, ε])); extend this “conewise” to a PL structure on {a} ∪ g−1γ(∂W × (0, ε)).)

By 5.2 (iii), there is a finite covering of (Tn)′′ which is PL homeomorphic
to Tn. Let ε′′ : Tn → (Tn)′′ be a finite cover. Let ε : Tn → Tn be the corre-
sponding cover of Tn. By the theory of covering spaces there exists a homeo-
morphism h : Tn → Tn (not PL) such that ε = ε′′h (h is homotopic to 1). Now
let h̃ : Rn → Rn be a homeomorphism such that eh̃ = he. Then d(x, h̃(x)) is
bounded uniformly for x ∈ Rn.

Let ρ : IntBn → Rn be a PL “radial” homeomorphism (avoiding the “stan-
dard mistake”). Now η = ρ−1h̃ρ : IntBn → IntBn extends to a homeomor-
phism of Bn fixing ∂Bn.

Let U be a nonempty open set in IntBn such that εeρ(U) ∩ A = ∅ and
σ = fεeρ|U maps U injectively into 1

2Bn. Let σ′′ = hfε′′eρ|η(U) → IntBn.
Then σ, σ′′ are PL embeddings and σ′′η = hσ. The PL annulus conjecture is
true (proof by regular neighborhood theory). There is an n-simplex ∆ ⊂ U
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such that η(∆) is contained in some n-simplex ∆′′ ⊂ η(U). Therefore by the
PL annulus theorem, 1

2Bn \ σ(∆) ∼= the standard annulus ∼= Bn \ 1
2Bn.

We have that Bn \ h(Int 1
2Bn) ∼= Bn \ hσ(Int∆) by gluing the standard

annulus h( 1
2Bn) \ hσ(Int∆) onto Bn \ h(Int 1

2Bn). From there,

Bn \ hσ(Int∆) ∼= Bn \ σ′′η(Int∆)
∼= σ′′(∆′′) \ σ′′η(Int∆)
∼= ∆′′ \ η(Int∆)
∼= Bn \ η(Int∆)
∼= Bn \ Int∆

∼= Bn \ Int
1
2
Bn.

The proof depends only on knowing that given embeddings f, g : Bn → Tn

there exists an h : Tn → Tn carrying f( 1
2Bn) onto g( 1

2Bn). If we could do this
purely geometrically (i.e. without PL theory) for all dimensions, we would have
then proved the annulus conjecture in all dimensions.

New notation: W is any manifold, ] is the subset (∂W × I) ∪ (W × {1}) of
W × I.

Theorem 5.4. Let M be a PL manifold and let h : I × Bk × Rn → M be a
homeomorphism which is PL on a neighborhood of ]. If k + n > 6 then there is
an isotopy Ht : I ×Bk × Rn → M such that

i. H0 = h,

ii. H1 is PL on I ×Bk ×Bn, and

iii. Ht = h on ] and outside I ×Bk × 2Bn.

Proof. Let a ∈ Tn and let f : Tn \ {a} → Rn be a PL immersion. As in 5.3,
let F ′ be a PL structure on I ×Bk × (Tn \ {a}) such that h(1× f) : (I ×Bk ×
(Tn \ {a}))′ → M is PL. Then F ′ agrees with F near ].

Let A be a ball neighborhood of a in Tn. First extend F ′ over a neighborhood
of ] in I × Bk × Tn (using the standard structure). As in 5.3 extend F ′ over
{0} ×Bk × Tn, obtaining a structure F ′′. The following argument implies that
we can extend F ′′ ∪ F|I×Bk×(T n\A) over a neighborhood of {0} × Bk × Tn in
I ×Bk × Tn.

As in 5.3 extend this to a PL structure over I × Bk × Tn agreeing with
the standard structure near ] and with F ′ on I × Bk × (Tn \ A). We can take
F ′′ to be the standard structure near {1} × Bk × Tn. Now F ′′ is defined near
∂(I × Bk × A); we extend over I × Bk × A as in 5.3, obtaining a PL manifold
(I ×Bk × Tn)′′. The inclusion (I ×Bk × (Tn \ {a}))′ ↪→ (I ×Bk × Tn)′′ is PL
except on I ×Bk ×A, and the identity map I ×Bk × Tn → (I ×Bk × Tn)′′ is
PL near ].

Now we need another result from PL topology:
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Proposition 5.5. Let W,V1, V2 be compact PL manifolds with ∂W = V1 ∪ V2

and V1 ∩ V2 = ∂V1 = ∂V2. Suppose the inclusions Vi → W are homotopy equiv-
alent. If π1(W ) is free abelian and dim W > 6, then W is PL homeomorphic to
V1 × I.

Apply this result with W = (I×Bk×Tn)′′, V1 =] and V2 = ({0}×Bk×Tn)′′.
We obtain a PL homeomorphism (I×Bk×Tn)′′ →]×I. Since ]×I ∼= I×Bk×Tn

by a PL homeomorphism taking (x, 0) to x, we can find a PL homeomorphism
g : I ×Bk × Tn → (I ×Bk × Tn)′′ which is the identity near ].

Let h̃ : I × Bk × Rn → I × Bk × Rn be such that eh̃ = g−1e and h̃ = 1 on
]. Then h̃ is a bounded homeomorphism. Extend h̃ over [0,∞) × Rk × Rn by
putting h̃ = 1 outside I×Bk×Rn. Extend further over R×Rk×Rn by putting
h̃(t, x, y) = (t, p2h̃(0, x, y), p3h̃(0, x, y)) for t 6 0. Note that d(x, h̃(x)) remains
bounded for x ∈ R× Rk × Rn.

Suppose 0 < r < 1, e(rBn) ∩ A = ∅, and fe|rBn is injective. We may also
suppose fe(rBn) ⊃ sBn for some s > 0. There is a PL “radial” homeomorphism
ρ : (−1, 2) × Int(2Bk × Bn) → R × Rk × Rn fixed near I × Bk × rBn. Then
ρh̃ρ−1 extends to a homeomorphism of [−1, 2]× 2Bk ×Bn fixing the boundary.
Let η = ρh̃ρ−1.

Note that I×Bk×Bn×I is the join of ( 1
2 , 0, 0, 1

2 ) to (]×I)∪(I×Bk×Bn×∂I).
Define a PL homeomorphism R of I×Bk×Bn× i by R(1

2 , 0, 0, 1
2 ) = ( 1

2 , 0, 0, 1
2 ),

R|(]×I)∪(I×Bk×Bn×{1}) = 1, and R|I×Bk×Bn×{0} = η, extending conewise. Then
R defines a PL isotopy Rt of I×Bk×Bn, fixed near ], with R0 = η and R1 = 1.

Let σ : I × Bk × Bn → I × Bk × Rn be a PL embedding which agrees
with 1 × fe near I × Bk × rBn. Then hση−1 agrees with h(1 × f)geρ near
η(I ×Bk × rBn), so it is PL there.

I ×Bk ×Bn
η //

σ

²²

I ×Bk ×Bn

σ′′

²²
I ×Bk × Rn h // M

hση−1 is PL near η(I×Bk× rBn). W = I×Bk×Bn \η(I×Bk× rBn) is a
PL manifold (since it is an open subset of a PL manifold). If n > 3, W is simply
connected at infinity, so if n > 3 the Browder-Levine-Livesay theorem (5.2B)
implies that W is homeomorphic to an open subset of a compact manifold.

If n 6 2, the same result, using instead Siebenmann’s XXXXXXX. It fol-
lows that η(I × Bk × rBn) has a neighborhood which is a compact PL man-
ifold such that ∂N ⊂ I ×Bk ×Bn \N is a homotopy equivalence. Now the
s-cobordism theorem (5.5) implies that I ×Bk ×Bn \N is PL homeomorphic
to I ×Bk ×Bn \ I ×Bk × rBn.

It follows that there is a σ′′ : I ×Bk ×Bn → M , a PL embedding such that
σ′′η = hσ near I×Bk×rBn (regard I ×Bk ×Bn \N as a collar of XXXXXX).
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Let Rt be an isotopy from η to 1 rel ]. Define St : I ×Bk × Rn → M by

St(x) =

{
σ′′Rtη

−1(σ′′)−1h(x) if h(x) ∈ Im σ′′,
h(x) otherwise.

Then S0 = h and

S1|I×Bk×sBn = σ′′R1η
−1ησ−1

= σ′′σ−1|I×Bk×sBn → M

which is PL. St = h on ] and also outside h−1 (the image of σ′′) which is
compact. Therefore St = h on ] and outside I ×Bk ×RBn for some R À 0. It
is trivial to replace St by an isotopy Ht satisfying (i)–(iii).

Theorem 5.6. Let C, D be closed subsets of Rn and let U be an open neigh-
borhood of C. Let F be a PL structure on U × I ⊂ Rn× I which agrees with the
standard PL structure near (U ∩D)× I and near U ×{0}. If n > 6, then there
is an isotopy Ht of Rn × I such that

i. H0 = 1Rn×I ,

ii. H1 : (U × I, standard) → (U × I,F) is PL near C × I, and

iii. H1 = 1 near (D ∪ (Rn \ U))× I and near Rn × {0}.
Proof. If C, D are compact, this is deduced from 5.4 exactly as 4.7 was deduced
from 4.4. For the general case, let Ci = C ∩ iBn, Ui = U ∩ (i + 1) IntBn,
Di = D∩(i+1)Bn. Suppose inductively that H(i) satisfies (i)–(iii) with respect
to Ci, Di, and Ui.

Let Fi = (H(i)
1 )−1(F): this is a PL structure on U ×I which agrees with the

standard PL structure near (Ci×I)∪(Di∪(Rn\Ui))×I and near U×{0}. Now
apply the compact case to get an isotopy H ′

t satisfying (i)–(iii) with respect to
Ci+1 \ Ci, Ui+1 \ Ui−2, Ci ∪Di+1, Fi. Then H

(i+1)
t = H

(i)
t H ′

t satisfies (i)–(iii)
with respect to Ci+1, Ui+1, Di+1,F . Since H ′

t = 1 on (i− 1)Bn, H
(i+1)
t = H

(i)
t

on (i− 1)Bn.
Now take Ht = limi→∞H

(i)
t . This satisfies (i)–(iii) with respect to C,D, U,F .

Theorem 5.7 (Product Structure Theorem). Let Mn be a topological manifold,
C ⊆ M be a closed subset, and U be an open neighborhood of C. Let F0 be a PL
structure on U , and let G be a PL structure on M ×Rn such that G agrees with
F0×Rk on U ×Rk. If n > 6 then there is a PL structure F on M agreeing with
F0 on C and a PL homeomorphism (M ×Rk,F ×Rk) → (M ×Rk,G) which is
isotopic to 1 by an isotopy fixing a neighborhood of C × Rk.

The proof is given below.

Definition 5.8. PL structures F1,F2 on M are isotopic if there is a PL home-
omorphism h : (M,F1) → (M,F2) which is isotopic to 1.
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Let PL(M) be the set of isotopy classes of PL structures on M .

Corollary 5.9. If dim M > 6, the natural map PL(M) → PL(M × Rk) is a
bijection. In particular, if M ×Rk has a PL structure and dim M > 6, then M
has a PL structure.

Lemma 5.10. Any two PL structures on Rn (n XXXXXXX) are isotopic.

Proof. Let F be a PL structure on Rn. By 5.2 (ii) (Rn,F) is PL homeomor-
phic to IntW where W is a compact PL manifold with ∂W ∼= Sn−1. By 5.2
(i), ∂W is PL homeomorphic to Sn−1. W is contractible, so by 5.2 (i), W is
PL homeomorphic to Bn. W ∪∂ Bn ∼= Sn, so there exists a PL homeomor-
phism h : Rn → IntBn → IntW → (Rn,F). We may assume h is orientation
preserving. We must prove that h is isotopic to 1.

Let R > r > 0 be chosen so that h(rBn) ⊂ Inth(RBn). By the annulus
theorem 5.3, there is a homeomorphism f : RBn \ Int rBn → RBn \ h(Int rBn)
with f∂(RBn) = 1. Since h is orientation preserving, and using the proof of 5.3,
we can choose f so that f = h on ∂(rBn).

Extend f over Rn by

f(x) =

{
x if ‖x‖ > R,
hx if ‖x‖ 6 r.

Since f = 1 outside RBn, f is isotopic to 1, so h is isotopic to f−1h. Since
f−1h = 1 in rBn, f−1h is isotopic to 1. Therefore h is isotopic to 1 as required.

Proof of Theorem 5.7. Clearly, it is sufficient to prove for the case k = 1. As-
sume first that M = Rn, G = a PL structure on Rn × R = Rn+1. By 5.10,
there exists an isotopy Ht such that H1 : Rn+1 → (Rn+1,G) is PL and Ht = 1
for t ≤ 1

4 . H defines a homeomorphism H : Rn × R × I → Rn × R × I (send-
ing (x, t) 7→ (Ht(x), t)) Let H = H(standard PL structure). Then H agrees
with the standard structure near Rn × R × {0} and with G on Rn × R × {1}.
Apply theorem 5.6 to Rn × R × I with C, U,D,F replaced by Rn × (−∞, 0],
Rn × (−∞, 1

2 ), ∅, H|U×I .
We obtain an isotopy Ft on Rn × R× {1} such that F0 = 1, Ft = 1 outside

Rn×(−∞, 1
2 )×XXXX and F1 : (Rn×(−∞, 1

2 )×{1} , standard) → XXXXXX
is PL near Rn × (−∞, 0)× {1}.

Let G′ = F−1
1 (G), a PL structure on Rn × R. Then G′ agrees with G near

Rn× [1,∞) and G′ agrees with the standard structure near Rn× (−∞, 0]. Rn×
{0} is a PL submanifold of G′, U × {1} is a PL submanifold of G′, therefore G′
induces a PL structure on U × I. G′ is equal to the standard structure near
U × {0}.

Apply Theorem 5.6 to C, U, ∅,G′|U×I to obtain an isotopy Gt of Rn×R such
that G1 : (U×I, standard) → (U×I,G′) is PL near C×I. Gt is 1 near Rn×{0}.

Let g : Rn → R be defined by (g(x), 1) + G(XXXXXX). Let G′′ = (g ×
1)G−1

1 (G′). Near C × I, G′′ agrees with (g × 1)(standard structure) = Fg × I.
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Define F = G′′|Rn×{0}. F agrees with F0 near C. XXXXXX Remains
constant isotopy (rel C × R) from F × R to G.

Choose a PL isotopy (of embeddings) jt : R → R such that jt = 1 when
t ≤ 1

4 and j1(R) ⊂ (1,∞). Let J : Rn × R × I → Rn × R × I be defined by
J(x, y, t) = (x, jt(y), t). Then the PL structure J−1(G′′×I) agrees with G′′×{0}
on Rn × R× {0} and agrees with F0 × R× I near C × R× I.

Apply theorem 5.6 (using the fact that G′′ is isotopic to the standard struc-
ture by lemma 5.10) to obtain an isotopy from G′′ to J−1(G′′ ×{1}), fixed near
C ×R. We have J−1(G′′ × {1}) = J−1(G × {1}) (since G′′ = G on Rn × (1,∞))
and similarly G is isotopic to J−1(G × {1}) (fixed near C ×R). Therefore G,G′′
are isotopic (relative to a neighborhood of C × R). Similarly, G′′,F × Rn are
isotopic fixing a neighborhood of C ×R. Therefore G,F ×R are isotopic fixing
a neighborhood of C × R.

For general M , with ∂M = ∅, we may assume WLOG that M is connected.
We know that M is metrizable implies that M is second countable. So M =⋃∞

i=1 fi(Bn) where fi : Rn → M are embeddings. Let Ci = C ∪ f1(Bn) ∪ · · · ∪
fi(Bn). Suppose inductively we have a PL structure Fi−1 on a neighborhood of
Ci−1 in M , extending F0 and a PL structure Gi−1 on M×R extending Fi−1×R
and isotopic to G by an isotopy fixed near C × R.

Apply the result for M = Rn to F ′ = f−1
i (Fi−1) (near C ′ = f−1

i (Ci−1)) and
(fi× 1)−1(Gi−1) = G′. We obtain a PL structure F ′′ on Rn (= F ′ near C ′) and
isotopy Ht of Rn × R with Ht = 1 for t ≤ 1

4 and H−1
1 (G′) = F ′′ × R, and Ht

fixes a neighborhood of C ′.
H defines a homeomorphism on Rn×R×I. Let H = H−1(G′×I). H agrees

with G′ near Rn×R×{0}, with F ′′×R on Rn×R×{1}, and near C ′×R× I.
Apply theorem 5.6 to this: replace C,U,D,F by Bn×R, Int 2Bn×R, C ′×R,H to
obtain a PL structure G′′ on Rn×R which agrees with F ′′×R near (C ′∪Bn)×R
and which is isotopic to G′ rel (C ′ ∪ (Rn \ Int 2Bn))× R).

Define Fi = Fi−1∪fi(F ′′) and extend (fi×1)(G′′) to a structure Gi on M×R
agreeing with Gi−1 off fi(Rn) × R. Then Gi agrees with Fi × R near Ci × R
and Gi is isotopic to Gi−1 fixing a neighborhood of Ci−1×R, so Fi = Fi−1 near
Ci−1.

Since Fi = Fi−1 near Ci−1 there is a PL structure F on M agreeing
with Fi near Ci. G agrees with F × R near C × R, F agrees with F0 near
XXXXXXXXXXX. Since Gi is isotopic to Gi−1 (fixing a neighborhood of Ci−1×
R). Hence all isotopies can be pieced together to obtain an isotopy of F ×R to
G, fixing a neighborhood of C × R. This proves the product theorem when M
has no boundary.

If M has nonempty boundary ∂M , then apply the theorem for M unbounded
to ∂M , and then to IntM using a collaring argument. We seem to need dim M >
7 to ensure dim ∂M > 6.

In fact the theorem can be proved for all unbounded 5-manifolds and all
6-manifolds.

As an application, if M is a topological manifold, we can embed M in RN

with a neighborhood E which fibers over M , i.e. there is a map φ : E → M which

28



is locally the projection of product, with fiber Rn (structural group H(Rn) =
Topn).

Let ν = φ. A necessary condition for M to have a PL structure is that ν
come from a PL bundle over M . This is also sufficient if dim M > 6.

E(ν) is an open subset of RN so that it inherits a PL structure. Suppose
there exists a PL bundle ξ over E(ν) which is equivalent as a topological bundle
to ν. There exists a PL bundle η over E(ν) such that ξ ⊕ η is trivial. The the
total space E(η) is homeomorphic to M × Rk and has a PL structure. By the
product structure theorem, M has a PL structure.

There exists a classifying space BTopn classifying such topological bundles
by [M, BTopn]. n is immaterial, so take BTop =

⋃∞
n=1 BTopn. Similarly for

BPLn, BPL. There is a natural map BPLn → BTop which forgets the extra
structure.

Therefore when dim M > 6, M has a PL structure if the map ν : M → BTop
factors (up to homotopy) as

M

{{v
v

v
v

v
ν

²²
BPL // BTop

Therefore M has a PL structure iff the classifying map of the stable normal
bundle ν of M lies in the image of [M, BPL] → [M, BTop].

To show that PL 6= Top: let k be an integer, and pk : Tn → Tn be induced
by Rn → Rn; x 7→ kx. Then pk is a kn-fold covering (a fiber bundle with
discrete fibers of kn XXXXXXXXXXXXX). There exists a homeomorphism
hk : Tn → Tn such that

Tn
hk //___

pk

²²

Tn

pk

²²
Tn h // Tn

for any given homeomorphism h : Tn → Tn. There are kn such homeomor-
phisms. Since all covering translations of pk : Tn → Tn are isotopic to 1, any
two choices for hk are isotopic.

Theorem 5.11. If h : Tn → Tn is a homeomorphism homotopic to 1, then hk

is topologically isotopic to 1 for sufficiently large k.

Proof. First isotope h until h(0) = 0 (where 0 = e(0) ∈ Tn.) Choose hk so
that hk(0) = 0. Let h̃k : Rn → Rn be a homeomorphism such that eh̃k = hke

and h̃k(0) = 0. Since h ' 1, h̃1 = h̃ is bounded. h̃k(x) = 1
k h̃(x) because

pkeh̃k = pkhke = hpke, h̃k(0) = 0, and these characterize h̃k. We have

sup
x∈Rn

d(x, h̃k(x)) =
1
k

(
sup

x∈Rn

d(x, h̃(x))
)
→ 0
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as k → ∞. So supy∈T n d(y, hk(y)) → 0 as k → ∞. But H(Tn) is locally
contractible by Theorem 4.8. Therefore if k is large enough, hk is isotopic to
1.

But the behavior is different in the PL case:

Proposition 5.12. Let n > 5. There exists a PL homeomorphism h : Tn → Tn

such that h ' 1 and hk is not PL isotopic to 1 for any odd k.

Exercise. Show that if h : Tn → Tn is PL and topologically isotopic to 1 but not
PL isotopic to 1 then Tn × I/(x, 0) ∼ (h(x), 1) is topologically homeomorphic
to Tn+1 but not PL homeomorphic to Tn+1.
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