CW transvessaldy by Andres Ronkls

1.1

§1. Algebraic and geometric K-theory

We start with a brief review of the classical applications

of the algebraic K-groups K.,K, to the homotopy theory of chain

0’1
complexes in aigebra and CW complexes in topology. It is .assumed
that the reader is already familiar with the Wall finiteness
obstruction and the Whitehead torsion, so that the account is
not self-contained. The object is to present the usual invariants
in the way appropriate to the generalizations appearing in
the splitting theorems.

Rings are to be associative with 1, and morphisms of
rings are to preserve 1. We shall have a preference for left
modules over right modules, in keeping with the left action
of the group of covering translations on a covering space.
Modules will be understood to be left modules, with right

module structures expressly specified as such.

The elementary geometric operation of attaching an

(m+1)-cell

(CW complex X, cellular map £:5" —> X)
t———> CW complex X' = X\)fDm+l
has an evident algebraic analogue.

Let A be a ring, and let C be an A-module chain complex

d d

C:...——>C , —>C —>C ,—> ... (r € %)

Given an m-cycle x€ ker(d:qm——%'qﬂ_l) regard it as an A-module
chain map

x : S"A ——3 C '
with (SmA)r =0 (r#m), = A (r=m). The algebraic mapping cone
of x is the A-module chain complex obtained from C by attaching
an algebraic (m+l)-cell at x

(2)
o @ (=)'
> C

®A > C

C' = C(f) : o.—> Cm+2 —



(We are adopting the sign convention that the algebraic mapping

cone C(f) of a chain map f:B ——>C has boundary maps

de (-yF71e
de gy = : C(f), = C_®B_
0 a

B

—>C(£f) = C 6B ) .

-1 r—1 r-1 "r-2

The effect on homology is to kill the homology class XEEHm(C),

with an exact sequence

O——>H (C) —— H

m+1 (ch)

m+1 m m

v
i
\f
T
o
o
o
o

and Hr(C) = Hr(C') (r #m,m+1).

Given. a CW complex X and a regular covering X with group

of covering translations 7 let C(X) be the cellular Z[7m]-module

chain complex, so that C(i)r = H (i(r),i(r_l)

r ) is the free

Z([m]-module with one generator for each r-cell erEEX(r) (with
the actual generator depending on a choice of 1lift EIEEX(I)‘and
of orientation *1), and with the boundary map
; by _ g(r) w(r-1) By - g(r=1) ¢(r-2)
d : C(X)r = Hr(x . X ) ———-—>C(X)r_l = Hr—l(X X )

given by the boundary map in the homology of the triad

~(r),§(r—l),~(r—2)

(X X ). If f: sM——>X is a cellular map such that either

m# 1 or if m =1 then f*(X) = 71 x8™ (i.e. f€ T, (X) has image

1 €m) it is possible to extend X to a reqular cover X' of

m+1

X' = X ugD , and the Z[m]-module chain complex C(X') is

obtained from C(X) by attaching an algebraic (m+l)-cell at the
m

r-cycle x = f£,[S]'€ ker(d:C(X) —>C(X) ).

Given a commutative diagram of cellular maps of CW complexes
f

Sm —_— X

iJ{ h
g

Dm+l v
. . m m+1l . . . . .
(with 1i:8" ——>»D the inclusion) there is defined an extension of h
h' = hvug : X' = X ufDm+l —>y

If Y is a regular cover of Y with group of covering translations =



the diagram 1lifts to a commutative square of m-equivariant maps

of covers

T % Dm+l

with X = h*Y the pullback, and h extends to a T-equivariant map

of covers

Bt = Bug : & = Rugnxp™t ——— %

The algebraic mapping cone C(h') is obtained from C(h) by attaching
*[Dm+l,Sm

—3>C(h) )..

] € ker(d:C(h)m+l 0

an algebraic (m+2)-cell at (g,f)

An A-module chain complex C is n-dimensional if it is

positive, Cr = O for r <0, and Cr = 0 for r>n

C: ...~ >0 —>C —>C _,—> ... —>C;—>0 —>...

The complex C is finite if it is finite-dimensional (i.e. n-dimensional
for some n»0) and each Cr (O¢r <n) 1is a based f.g. free A-module.

A finite domination (D,f,g,h) of an A-module chain complex

C consists of a finite A-module chain complex D, chain maps
t: C~——>D, g: D —>C
and a chain homotopy
h :gf~x1l : C—C

It was shown in Ranicki [ ] that an A-module chain complex C
is finitely dominated if and only if it is chain equivalent to
a finite-dimensional chain complex of f.g. projective A-modules

rp: .,...—>0 — Pn‘——+ Pn —_—> .. > P —3>0 —> ...

-1 O

The projective class of C is defined in the usual way by

n
[C] = [P] = § (-)
r=0

r
[P ] € Ky(A)

for any such P. For a finitely dominated chain complex C let dim(C)

denote the dimension of any chain equivalent P.



A finite domination (Y,f,g,h) of a CW complex X consists

of a finite CW complex Y, maps

f:X=—>Y, g: Y —>X
and a homotopy

h :gf=~1: X —>X

Assuming that X is connected let X be the universal cover, and
let ¥ = g*X be the pullback cover of Y. Then C(Y) is a finite
Z[nl(X)]—modulechain complex and (C(?),f,g,h) is a finite
domination of C(X).

The finiteness obstruction theory of wWall [ 1,[ ]
associates to a finitely dominated CW complex X the reduced
projective class of C(X)

[(X] = [C(X)] € Ry(zZIn (X)]) ,
proving that X is homotopy equivalent to a finite CW complex
if and only if [X] = O € ﬁo(z[nl(X)]).The essential properties
of a finitely dominated CW complex X used in the proof were that
if ¢:K——>X is a map from a finite m-dimensional CW complex K
such that m.(¢) = 0 for r{ m then the % [my (X)]-module

Toe1 (0) = H_ ) (3:C(K) —>C (X))

is finitely generated (f.g.), and if m» n=dim(C(X)) then it is

also projective with reduced projective class
_ I+l o ~
[Wm+l(¢)] = (=) [C(X)] € KO(Z[ﬂl(X)])
Let {(gi,fi)e ﬂm+l(¢)[]_$ i£Jj} be a finite set of Z[n, (X)]-module
generators of ﬂm+l(¢). Then attaching j geometric (m+l)-cells to ¢

results in a map from a finite (m+l)-dimensional CW complex K'

3 « J
6" =9u Ug, : K' = KU j O ™ML o x
i=1 U f,i=1 1
i=1 1t
such that wr(¢') = O for r{m+l. If m) n=dim(X) and nm+l(¢) is

1 (X)1-module with base {(gi,fi)|l$ i £ j} then

T4«(d') = 0 and ¢':K'——>X is a homotopy equivalence.

a f.g. free ZIn



The finiteness obstruction for chain complexes can be
developed in exactly the same way as for CW complexes.
Given a finitely dominated A-module chain complex C and a
chain map ¢:F —>C from a finite m-dimensional A-module chain
complex F such that Hr(¢) = 0 for rgm it is the case that

n=dim(C) it 1is also

the A-module Hm+l(¢) is f.g., and that if m}

projective with

_ I+l o
[Hm+l(¢)] = (=) [Cl € KO(A)
Given a finite set of A-module generators {(gi,fi) eHm+l(¢) |1 €13}
it is possible to attach j algebraic (m+l)-cells to C(¢), so
as to obtain the algebraic mapping cone C(¢') of a chain map to C

from a finite (m+l)-dimensional A-module chain complex F'

¢'=¢®§gi:F'=C(§fi:%SmA‘—-—?F)————)C
i=1 i=1 i=1
such that Hr(¢') = 0 for r&m+l. If mzn and Ho11(9)
is a f.g. free A-module with base {(gi,fi)|l$ i¢$ 3} then Hy(¢') =0

and ¢':F' ——=>C is a chain equivalence. Thus a finitely dominated
A-module chain complex C is chain equivalent to a finite chain

complex if and only if [C] = O € K_(A), and the reduced projective

o

class [C] € K. (A) deserves to be called the finiteness obstruction

0
of C.



Simple homotopy theory studies the uniqueness properties

of finite CW complex structures with respect to the elementary

expansion operation

(finite CW complex X, cellular map (g,f): (D™"1,s™) —> x)

+——> finite CW complex X' = (X ufDm+l) U D™t
gwi
where
gul : g™ = ptt v m ™l — xufDm+l
Cohen [ 1 is a general reference for simple homotopy theory.

The Whitehead torsion of a homotopy equivalence h:X —=>Y of

finite CW complexes

T(h) € Wh(nl(X))
is defined as usual, with t(h) = O if and only if h is a simple
homotopy equivalence, that is if h is homotopic to the composite
of a finite sequence of elementary expansions or their inverses.

A finiteness structure on a CW complex X is an equivalence class

of pairs

(finite CW complex K, homotopy equivalence ¢:K —>X)
under the equivalence relation

(K, ) ~ (K',¢') if (o' "¢ : K—>K') = 0 € Wh(n (X)) .

An algebraic elementary expansion of a finite A-module

chain complex C is the finite A-module chain complex C' determined

by any chain gGCm+l

d a (-)"g -1
<O) (O 1) (@ (-)"7E)

C'" : ...—>C

m+3 +2 +1

with f = dg(SCm. The torsion of a chain equivalence h:C——D of
finite A-module chain complexes

1(h) € K, (4)

1
is defined as usual, with t(h) = O if and only if h is a simple

chain homotopy equivalence, that is if h is chain homotopic to

R > . e
———9-Cm BA Cm ®A Cm-—>



the composite of a finite sequence of elémentary algebraic

expansions and their inverses. A finiteness structure on an

A-module chain complex C is an equivalence class of pairs
(finite A-module chain complex F, chain equivalence ¢ : F — C)
under the equivalence relation
(F,0) ~ (F',0') if T(¢' 16 :F —F') = 0 € Ky (A)
In the applications to topology A = Z[7m] is a group ring and
torsion is measured in the Whitehead group
Wh(m) = K, (z[mn])/{zm}

1

rather than K, (Z[7]). In particular, the Whitehead torsion

l(
of a homotopy equivalence h:X —>Y of finite CW complexes X,Y

is just the reduction of the torsion T(H:C(i)———9C(§))EEKl(Z[ﬂl(X)])
to Wh(m, (X)), with h:c(X)——>C(Y) any induced Z [T (X)]-module
chain equivalence. The effect of a geometric elementary expansion
(X,(£,9)) ——= X' on the chain level is that of an algebraic

elementary expansion (C(i),SEEC(i) J—3 C(X') = C(X)"'.

m+1
The finiteness structures on a CW complex X are in one-one
correspondence with the finiteness structures on the Z[ﬂl(X)]—module
chain complex C(X).

Finally, we recall the realization theorems. If m is a

finitely presented group every element x €K (Z([7]) is the

O
finiteness obstruction x = [X] of a finitely dominated CW complex X
with ﬂl(X) = 7T, and every element TEWh(m) is the Whitehead
torsion T = T(h) of a homotopy equivalence h:X —— Y of finite

CW complexes with nl(X) = 7.



2.1

§2. Geometric transversality for CW complexes

The algebraic methods used to prove the splitting theorems
in the algebraic K- and L-groups of generalized free products are
best understood as abstract versions of the geometric transversality
construction of codimension 1 framed submanifolds Yn_lC x" of a
connected compact n-manifold X, and the corresponding construction
of the universal cover X’by cutting X along Y. Howewer, manifcld
transversality is toc geometric in nature to translate directly
into algebra. We shall now interpret the combinatorial methods
of Waldhausen [ ] as a transversality theory for CW complexes,
which will serve as a model for the algebraic transversality
of chain complexes and algebraic Poincaré complexes in §§3,5 below.
In the first instance we recall the connections between
generalized free products of groups, groups acting on trees
and covering spaces. Apart from [ ] the main references for these

are Cappell [ ] and Serre [ ].



The free product with amalgamation determined by two

injections of a group H into distinct groups Gl’ 5

iy H-—-—)Gl, i, :H——>G2

is the quotient group of the free product Gl*G2 defined by
. . -1
* = *

Gy*yGy = G1*G,/<iy (h)i,(h) | hen>
There are defined injections

Jp # Gy > G*G, v 3, ¢ G G1%uC>

o5 i o4 s *
k J114 Jyly ¢ H-———*Gl HG2 ’

such that

The commutative square

H
G

*
— G *6,

is a pushout in the category of groups, and the commmutative square
oi,

—_—
HuH Glu G2

1Y 3y

Hx I ————————>Gl H 2

is a pushout in the category of groupoids. The group Gl H 5 is

infinite and the subgroups'Gl,Gz,H are of infinite index, except

possibly in the case when one of il’iZ {(say 12) is an isomorphism

* . = N g 3 P
and Gl HG2 - Cl' We exclude this case.



The HNN extension determined by two injections of a

group H into the same group G

1 r iy s H—G

is the quotient group of the free product G*{t} of G and the

i

infinite cyclic group {t} generated by t
Gry{t} = G*{t}/<i (h)ti,(n) ¢ Hnens
There are defined injections

j i 6 —> Gt} .k k P Ho—> Gt} .

177 F T I
Using‘il to identify H with il(H)Q G there are identities
5 (H) = ttarece , H = G‘«th’lczc*H{t}.

The commutative square

HXI ———G* {t}
is a pushout in the category of groupoids. The group G*H{t} is
infinite, and the subgroups G,H,tlet are of infinite index.
The normalizer N of G in G*H{t} is the subgroup generated by
tngt_n (g€EG,n€Z) , a normal subgroup with infinite cyclic quotient
Grltl/N = {t} = Z .
Conjugation by t restricts to an automorphism
@ : N—3 N ; x—>t Txt
such that G*H{t} may be identified with the a-twisted extension
N x OLZ (ta(x) =xt) of N by Z
G*H{t} = Nx Z .
In particular, given an automorphism a:H——>H of a group H
the HNN extension G*H{t} determined by
il=l, i2=0L:H—-'“"?G=H
is such that N = H and

*
GH{t} HXOLZ'

In the case o = 1 this is just the product Hx Z.



A group m is a generalized free product if

either A) 71 = Gl*HG2 is a free product with amalgamation

or B) = G*H{t} is an HNN extension.
Given a group G and a subgroup H €G denote the sets of
left and right H-cosets in G by
[G:H] = {Hg|g€G} , [G:H] = {gH|ge€G},
which are related by a natural duality bijection

~ —_ -1
[G:H] ——>» [G:H] ; Hg+—>Hg = g "H .

The right G-action on [G:H]
[G:H] x G ™ [G:H] ; (Hg,x)F—>Hgx

is then related to the left G-action on [G:H]

Gx [G:H] ——>[G:H] ; (x,gH) —> xgH

by the involution :G6 —» Gjx —> X = x_l, with

(Hg)x = x.(Hg)

G1"uC
Given a generalized free product 7 = let T be the
Gr {t}

infinite tree defined by left cosets in 7, with

[1:G, 1) [17:G,]
T(O) = 1 2 ’ T(l) = [w:H]
[7:G]
G,r.,,G,r
The vertices-{ 1"1772"2 e T(O) (rl,rze m) are connected by the
Gr, ,Gr
1 2
segment Hse'T(l) (s€ m) if and only if
Hs = GlFlf)Gzrz
Hs = Gblrthr2
Use the subscripts of Lyrf5 to orient each segment Hse'T(l).

The right w-action on the left cosets defines a right m-action on T
Txm —> T ; (p,x)FH—P>px
which preserves the orientation of each segment. The quotient
two vertices

graph T,m7 has - and one segment. Conversely, if
one vertex



T is an oriented tree and a group 7 has an orientation-preserving
action on T such that the quotient graph T/3 has
¢ two vertices

and one segment (resp. is finite) then 7w is a
one vertex

A)
type generalized free product (resp. 7w can be built up out
B)

of {1} by a finite sequence of generalized free products).

G1*xC2
A generalized free product 7w = also determines
G* {t}

an infinite tree T defined by means of right cosets in 7, with

[TT:Gl] v [TT:G2]

7(0) 2 , Y o T
[m:G]
"r.G,,r,G
The vertices &_l l_ 2 2EET(O) (rl,rze T) are connected by the
r.G,r,G
1 2
(L)

segment SHE T (s€m) if and only if

sH = rlGlA r2G2

rlG;nrzGt

(1)

sH l.

As for T the segment SHET is oriented by the order of subscripts
in ?l’?Z’ The left action of 7 on the right cosets defines an
orientation-preserving left m-action on T

TXT —>T ; (x,p) —>X%Xp

The duality between left and right cosets defines an isomorphism

of oriented trees

such that

(xp) = (p)(X) (X€m,p€ET)

We shall find both T and T useful.



N . ‘JlﬁlH
[ 333161_
g.H
G,
gH
N 55 GZ
g,éﬁq‘H »9.€ G- H .
. /\ T \
59 T in cone A)
9:9.6,
!thG -t
A 2
t 9.t £3.G
‘ju_t?'G
’Cj&zH
922t H

tG
LG

ry ‘t W
JutG EgutG tguta '
‘ ﬂlltG

€ G-H %€ t (G-t
L€ (G-t
9 @- D] 9= € tG-H)

T n cone E>\)



A)
A CW pair (X,YCX) is bipolar of type if there are
B)
Z ,22 YlC Zl’ Y2C—22
given CW complexes with subcomplexes
Z Yl’Y2C Z (disjoint)

and an isomorphism of CW complexes
h X —> (z,u2,)/{h (y) =h,(y)|y€¥)
h : X —=— 2/{h(y) =h,(y) ]|y €Y}

such that
h(y) = [hy(y)] = [b,(y)] (v€Y)

with hl,h2 given isomorphisms

1
2,7

. . N
h, : ¥ ——> Yl ' h2 Y 2 Y2

2

The CW complex is the complement of the bipolar pair (X,Y).

Z

The various inclusions are denoted by

hl h2

1l Y ‘%Yl ‘%Zl ’ 12 Yy ———> Y2 —~___>22
hl h2

il Y > Yy Z 4 1, Y —— ¥y —

such that the composites

k = i, ¢+ ¥ —— X

Jit1 T 12t
kl = Jiq k2 = Ji, : Y —> X

are inclusions.



Cane A)
X=z 0.7, X




In particular, if (X,Y) is a pair of connected CW complexes
such that Y is bicollared in X, that is the inclusion
Y = ¥Yx {0} —> X extends to an open embedding Y x R —— X,
then (X,Y) has the structure of a bipolar pair with the
complement homeomorphic to the actual complement X - Y x (-1,1)
of an open product neighbourhood Yx(-1,1) <X, as follows:
A) if X-Y is disconnected it has exactly two components
and (X,Y) has type A) bipolar structure, with Zl and 22 connected
B) if X-Y is connected then (X,Y) has a type B) bipolar
structure, with Z connected.

Furthermore, a compact connected n-manifold x" and a connected

codimension 1 framed submanifold Yn_lCXn define such a bicollared

finite CW pair (X,Y), and in case is a connected

B) 2
bZA = YA
n-manifold with boundary .
39z = YluY2
'A) Z1,2,
For a bipolar CW pair (X,Y) of type with X,Y
B) Z

connected and nl(Y)_—é'nl(X) injective the Van Kampen theorem

j amalgamated free product

expresses 1, (X) as the
1 .

l‘HNN extension

*
_ 161768,
Trl(X) -
.
G H1t}

determined by the injections of fundamental groups

g‘ix : ﬂl(Y) = H -————>nl(z ) = (x = 1,2)

A

Gy
°Lil,i2 DY) = H —— 1, (2) =G

Bipolar pairs of this type will be called biconnective.




2.10

Let X be a CW complex, and let X be a regular covering of X

G, * .G
with group of covering translations 7 = LH"2 a generalized free
G* {t}
H
product, acting on the left
mTx X —> ¥ H (g,X)*_’gx
C (W) 5 Wy oW, e X
A fundamental domain for X is defined by subcomplexes N
W WeX
such that
lel = Wll G2W2 W2I ']TWlU 7TW2 = X,
— _ s{W;n W,) 1if r G'P(o),r G’T(O) are connected by SET( )
- 1 2 1 1 2 2
rlwln r2W2 =
) otherwise
GW = W, 7W = X
— - = - - . =(1
_ _ s(Wntw) if rl,r2EET(O) are connected by se'r(}
ernr2W =
0] otherwise

wlnwzci
The projection X —— X/ X sends to a subcomplex

WA EW <X

(W, nW,) /HCX

Yy =
(WANtW) /H €X
A)
such that (X,Y) is a bipolar pair of typeJ ° with complement
B)
ZyH 2y = Wy /G uW, /6,
Z = W/G

R R PYA TP . . .
If X, are simply-connected then (X,Y) 1is a biconnective

WntW, W
. S \T TN Wy By =Wy 2y =W, .
pair, and X,y _ - is the universal cover of
Y=WNtW , 2 =W

74,2 .
X,Y,{ 17a respectively. Conversely, if (X,Y) is a biconnective pair
Z

(W

W
14
the universal cover X of X admits the fundamental domain

1
W=7

er\W2=§ -~
with ~ ¢ that is X may be obtained from the universal covers
WntW=Y



s )Z%1'% 2102
Y, 4 of Y, by 'cutting X along Y': the embeddings
Z Z
Py 1y T T .7
1 771 771 T2 T2 T2
h h
. 1 . 2 . R
ll.Y }Yl > Z ,12.Y 7Y2 > Z

lift to embeddings of the covers

1l i Y ————+Zl ’ 12 Y ———> 22
I, .0, ¥ —
such that
~ —~ lz(hY) = hlz(Y) N
i, (hy) = hi (y) ., 21 _ (heH, yeY)
i,(hy) = (t ht)iz(y)

mx (Z,U2,)
of by the equivalence relation generated by

T X Z
| (x,2,) ~ (xg q—lz) g, €G,,z, €72, (A=1,2)
{ A MO o arn xen 3TN
(x,2) ~ (xg,9 ~z) geEG, z€7Z
(x, 1, (y)) ~ (x,1,(y)) B
. N for all x€nmn,y€E€Y ,
(XI 11(Y)) ~ (th 12(Y))

with the action of m given by

Tx X —>X ; (w,[x,2z])—>[wx,z]



- ~“\\<: & \;’}
o ET €hgy £Y
£ g,tY N 9 AY
g Y
GuEG-H  gue EG-DE
S;ze@r-mﬁ.‘ Sue‘;(G—HB ~



2.14

with il’i2’jl’j2 the algebraic inclusions induced by the

geometric inclusions

1 . . ' + . B
1l : Xln X2 ->xl ' 12 : Xlr\X2 X2
— S .
:]_[_.Xl X ’ ]2 -Xz—?xr
such that J11y = 3,1, = k lewxz ——> X 1s also an inclusion.

Let now X be a regular covering of a CW complex X with

617182 (Wy W)
group m = » and fundamental domain , as before.
G it} W

The geometric MV presentation of C(X) is the Mayer-Vietoris

exact sequence of free Z[nm]-modules

, g p ~
O——>k,C(W; A W,) —>3J,,C(W) &3, C(W,) —>C(X)—>0
q p

O —> ky ,C(WntW —>3j,C(W) ——>C(X) —> 0
Jq ¢ Gl—“9 LA P G2-~>ﬂ ' k==jlll==j212 tH —>7
j:G-——HT,kl=jil:H‘~——>ﬂ

the usual inclusions, and p,q defined by

with

P jllC(Wl)@j2!C(W2)-——%'C(X) H (rl®zl,r2®zz)F——+ rlzl+-r222
p: 3,C(W) — C(X) ; r@zt—> rz
(r,rl,r2€ Zin]l, z€ C(W), zlGC(Wl),,:22€C(W2))
| g : klc(er\W2)—-———?jl!C(Wl)@j2!C(W2) i Sy —>(sQQy, -s@y)
q : kl!C(Wr\tW)————?j!C(W) ; SRy —— s@y—-st@t_ly
C(W,nW,)
(s€ Z[n] , vE€ 1 2)
C(W NtW)

In particular, if (X,Y) is a biconnective pair with complement

ZlLiZ2

the Z[ﬂl(x)]—module chain complexC(i) of the universal
7

cover X has geometric MV presentation

.« . P
o —> kEC(Y) r———— jl!C(Zl)®j2!C(Zz)*—————> C(X) ——> O

N gq N P ~
0 ————)kl,C(Y)-———-—>j,C(Z) —> C (X} —m> 0
.7 7,7
Nl 2 the universal cover of Y, 1 2,

with Y,
Z Z



2.15

The regular covers X of a CW complex X with a given
group of covering translations 71 are classified by the homotopy
classes of maps ¢ : X ——> B87. The classifying space Bmn is a
connected CW complex with fundamental group w and contractible
universal cover Em. The map ¢ ::X —> By classifies the pullback
cover of X

X = ¢*(Em) = {(x,y) EXxEnl|¢(x) = [y] € Bn}
with g7 acting by

Tx X —>X ; (g,(x,y))" (x,9Y)

| 61"1%2 A)
If n = i1s a generalized free product of type then
)ox (¢ 8)
H
" A) BG U BG,
(Bm,BH) 1s a biconnective pair of type with complement
B) RG
~ %BGIK)BHBGZ
Br =
BG/((BH)1= (BH)2) '
(EGl,EGz)
and Enm has fundamental domain . For any CW complex X
EG

and any map ¢ : X —>B7 it is possible to subdivide X in such a

way that ¢ 1s homotopic to a map (also denoted by ¢:X ——» Bm)

which is cellular and such that Y = ¢—l(BH)C X 1s a subcomplex,

O AA)
in which case (X,Y) is a bipolar pair of type < and the pullback
i B
{ )
cover X =¢*(En) has fundamental domain
, _ -1 ~=1
W= 3 ' (EG)
| (WA W,)/H
such that Y = .
(W ~tW) /H
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(Moreover, if X is a compact n-manifold the classifying map

¢ : X=——>Bm can be chosen to be transverse regular at BHC Bm ,

so that vy 1 = q>_l(BH)CXn is a framed codimension 1 submanifold).
The transversality construction of fundamental domains

as inverse images of universal examples is too implicit in nature

to translate directly into algebraic K- and L-theory.

The combinatorial methods of Waldhausen [ ] inspire a more

explicit construction, which uses the mapping cylinders of

covering projections to obtain for any CW complex X equipped

. G1%uC2
with a regular covering X with group ©m = -a bipolar pair

G*x {t}

H
(X',Y') such that X' is homotopy equivalent to X, and such that
- (W), W)
the corresponding cover X' of X' has a fundamental domain
Wl

An algebraic version of this construction will be used in §3 below.
Following Cohen [ ] define a map of CW complexes

f: X ——»Y to be contractible if the inverse image of each -

Yy € Y is a non-empty contractible subspace f_l(y)SéYr in
which case f is a homotopy equivalence. A contractible map of
finite CW complexes is a simple homotopy equivalence ([ ).

The mapping cylinder of a cellular map of CW complexes

f:X —3 Y is the CW complex
M(f) = (Xx [0,11wY)/ {(x,1)=f(x)| xeXx },
x [0,1], ey (e

is a subcomplex of M(f), and the projection

C X, e,CY). Then X = X x {0}

with cells eX><{O}, e v

X X

M(f) ——> Y ; (x,8)+—>f(X) , V—> Yy (X€X, VEY, s€ [0,1])

is a contractible map.
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Let then X be a CW complex with a regular covering X
such that the group of covering translations 7 is a generalized

[ G, * G
free product 7w = 1 H 2. Let T be the associated tree, and let T

G* . {t}

be the tree obtained from T by barycentric subdivision, so that

e (0) _ (0 (1)

(0) (

[T'(l) = {(r,s) €T x T l)lr is a vertex of the segment s}

(0) 1)

with r,se T’ the vertices of the segment (r,s)e'T'( .
The right action of m on T determines a right action of m on T'.

The universal bipolar pair (X',Y') of X associated to X is the

bipolar pair defined by

X' =7 xﬂf = T' xX/ {(p,x) = (pg l,gx) loeT' ,xeX,gen },
with Y' = X/H included in X' by
Y'——r X' ; [yli——[H,y] (y€X, HGT'(O))

The complement Z' of (X',Y') is defined by the mapping cylinders

M(ilzi/H——ﬂ/Gl) L M(i2:’>z/H e X‘/G2)

zZ' =
MUi Uiy X/BUR/H ——R/G) (1,=it 7
Sil,i2 ~
with the covering projection, and X' has fundamental domain
il
o —— TN ~ ~ ~ —~ —~ ~
(M(il)’M(iZ)) = (M(il: [GI:H] ><X-—-—-—%X),M(i2 : [GZ:H]X X —> X))
—~~— ~ ~ - w TSI T~ ~
M(ip2i,) = M(ipui,: [G:H] xX &[G:t "HE] x X e—p X)

There is a natural identification of CW pairs

[ (X/c, 0. X/H x [0,1]" O . X/G, , X/Hx{4})
(X',Y') :vS l llx{o} lzx{l} 2

bg/GUilx{o} Uiy x(1)%/B X (031", &/uxls )

where [0,1]' denotes the barycentric subdivision of [O,1] with

CW complex structure

(0,119 = 10,5,11 , 0,111 = t10,4, 14,11}
The projection X' —> X/7 = X is a contractible map, in fact

a fibration with contractible fibre T', with the inverse image
of each x€X a copy of T'. In particular, X'-—— X is a homotopy

equivalence.



For example, if il = 1, i2 =@ : H=——>G = H for some

automorphism o : H ——>H of a group H then 7, (X) = Hx QZL, and

1
X = X/H is a regular infinite cyclic cover of X. (Moreover,
every connected regular infinite cyclic cover X of a connected

CW complex X arises in this way). The universal bipolar pair

(X',¥') of X in this case is the mapping torus of the generating

covering translation t : X —s X
X' = T(t) = Xx [0,1]1"'/{(x,1) = (tx,0)|x € X}
with
Y' = Xx {4} <x!
The universal bipolar pair (X',Y') contains many bipolar

subpairs (X",Y") <& (X',Y') such that X" is a deformation retract
of X', and hence also homotopy equivalent to X. Here is a general
construction of such subpairs.

A subfundamental domain for a regular cover x
W
¢1"1C2
of a CW complex X with group 7 = consists of subcomplexes
G* {t}
H
W, ,W,cX
1 ~2 such that
WCX
lel = Wl p GZWZ = W2 ’ TrWlU 1TW2 = X

GW = W , W = X

and such that the subgraph A(e)¢ T defined for each cell e< X by

©); ze e (0) ]
A(E)(O)= {rle’Tl lrleC.Wl}LJ{rzcvyz IrzeQ.wz}
trer (@ r2cw
1), ~
tser™ e cm nw)l
a ey ) - 17072

(

tserMssc (watw)y

is a subtree. The subtrees A(e) ST (e<X) are non-empty

ﬂWl\;ﬂW = X

by virtue of the condition 2 , and are such that

™W = X
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i) b(ge) = A(e)g = for all ec ¥, gen

~ ~

~ ~ ~ ks ~
i1) A(e') € A(e) if e,e'< X are cells such that ecea'.

Conversely, any collection A= {A(e)C T|e <X} of non-empty subtrees
. (Wl'WZ)

satisfying i) and 1i) determines a subfundamental domain

W

WX (A = 1,2) ~
with consisting of all the cells e <X for which

W
1ea(e) Y B
A fundamental domain for X is a subfundamental domain
~, (0)
leA(e)
(Wl,W )

such that the subtrees A(e)< T (ec X) are either single

LW
vertices or single segments. However, there are many subfundamental

domains which are not fundamental domains, for example

J‘ (W, W,) = (X,%) » ~
‘with A(e) = T (ec X). (Excersize: describe all

2w=>”<’
the subfundamental and fundamental domains W for the universal
cover X = Rof X = Sl, with t : X —>» ¥ ; X+ x+1, and with

the CW structure

z(0) {{n}|ne =z}, f(l) = {[n,n+ll|nez} ).
Given a subfundamental domain for X define the
W
(X(Wl,W2)/Y(Wl,W2))
subuniversal bipolar pair to be the subpair
(X(W) LY (W))

of the universal bipolar pair (X',Y') given by

= T, 1 < Ll
K(Wy Wy) = Wy /Gy Oy (WyaW,)/Hx [0,1]" O, W,/G,EX

1 1 2
X(W) = W/G©, . ~1(WAtW)/Hx [0,1]'<X'
V(W W) = (WA WZ)/HX{%}S y!
Y(W) = (WeytwW)/Hx {5} € v

with complement
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8 Zy (W W) W2, (W, Wy) = M(1y: (W AW, /H—>W,/G)

G M1y (W AW, /H—>W,/G,) & 2] V7]

2 z(wl,wz) = M(i uit_l : (WAtW) /HU (WALW) /B — W/G)E 7'
The composite

. inclusion projection
S X (Wy W) X! > X

S inclusion projection
Z X (W)

X' > X

is a contractible map, with the inverse image of x€ X a copy of the
tree A(e) associated to any lift e X of the unique cell e< X such
that x € &. The construction converts a subfundamental domain

for X into a fundamental domain
W

(Wl'WZ) = (M(ll:Gl(Wlf\W2) l) ,M(12:G2(Wl/\ W2)

W= M(Tuit ™ GWA W) U GRA EW) —s W)

—>W —'9\/\72))

~ X (W, W) Wi, W)
for the the induced cover X" of X" = , with X",
X (W) w"

Wl,W WiﬂWi = Wl 2
homotopy equivalent to X, respectively and

W W' EW” = WA twW

~NW



For example, if il= 1, i2 = q:H——>G = H , so that
X = X/H is an infinite cyclic cover of X and (X',Y') = (T(t:X =X) ,Xx{%})
{as above) then the subuniversal biconnective pair (X(W),Y (W))

associated to a subfundamental domain Wg)N( is given by

Y(W) = (WAtW) /Hx{4} = (W ntW)x{%}
C X(W) = (Wx {1}U Wntw) x [0,1]1") /{(x,0) = (t_lx,l) |xeWwntw}

with W = W/H €X the image of W<X under the projection X — X.

(Wat W)x[ 4,4
(Wot W)xbis)
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Let now X be a finite CW complex which is connected and

G 7RC)
(X) = . As the tree T is infinite the universal
G*, {t}

such that Ty

biconnective pair (X',Y') is an infinite CW pair, with the

complement Z' an infinite CW complex. The following finiteness

(W, ,W,)
conditions on a subfundamental domain 1772 for the universal
W
cover X are equivalent:
: Wl/Gl,WZ/GZ
i) The CW complexes are finite.

W/G

(X(W W )IY(W W ))
ii) The CW pair { L2 12 is finite.
(X (W), Y (W))

iii) For each cell ecX the tree A(e) is finite.

If these conditions are satisfied is a finite
W
X(Wl’WZ) —r X
subfundamental domain, and is a simple
X (W) ==X

homotopy equivalence of finite CW complexes. A fundamentais
domain is automatically finite.

Translated into the language of CW complexes the algebraic
transversality result of Waldhausen [ ] is that a finite

CW complex X admits a finite subfundamental domain for X.

We shall not actually use the CW complex version of algebraic
transversality, but it helps to motivate the development of

chain complex transversality in §3 below.



§3. Algebraic transversality for chain complexes

The algebraic transversality theory of Waldhausen [ ]
for the simple homotopy theory of finite chain complexes over
generalized free product rings will now be cast in a form

suitable for the generalization to L-theory in §5 below.
In the first instance we recall the structure theory of
generalized free product rings. The main reference for this
is Waldhausen [ ], but see also Cohn [ ], Stallings [ ],

Casson [ ], Cappell [ 1 and Dicks [ 1,[ .



The base of a based free R-module M is denoted by [M:R].

For a based free right R-module M the base is denoted by [M:R}.

A ring A is a pure extension of a subring B< A if there

is given a (B,B)-bimodule A'< A such that

A = BOA'
and A' is free and based both as a left and as a right B-module.
Then A is free and based both as a left and as a right B-module
also, with

[A:B] = {1} ¥ [A':B] , (A:B] = {1} {A':B]

A morphism of rings i:B———> A is a pure injection if it

is an injection such that A is a pure extension of the subring
i(B) €A. For example, if i : H ——> G is the inclusion of a subgroup
H in a group G then i : Z[H] ——> Z{[G] is a pure injection of
rings, with
Z[G] = Z[H]®Z [G-H]
A choice of coset representatives for the left cosets [G:H] = {Hg|g€ G}
is a left Z[H]-module base [ZI[G]:Z[H]] for ZI[G], and similarly

for the right cosets [G:H] = {gH|g€ G} and a right Z[H]-module

base [Z[G]:Z[H]].

The free product with amalgamation A determined by

*
1 822

two pure injections of a ring B intou distinct rings Al,AZ

1l:B—-———-—>Al, 12:B———>A2

is the quotient ring of the free product Al*AZ

. o : .
Aj*¥pA, = AJ*A /<1, (b) 12(b)|b613>

There are defined pure injections

j, 1 A, ——> A _ % T .
1 1 By phy v dy ¢ Ay 1785

such that



The commutative square

1

B >*Al

) j]l
U *

Ay > By *ph,

is a pushout in the category of rings.

The HNN extension A*B[t,t_l] determined by two pure injections

of a ring B into the same ring A

il ’ i2 : B —— s A

is the quotient ring of the free product A*Z[t,t_l]
-1 -1 . . -1
A*plt,t 7] = A*Z[t, v 7] /<ij(b) - ti,(b)t | beB >.
There are defined pure injections
. -1 .. .. -1
. * = = . —— Ak
J:A——3A B[t,t I kl Jiqy k2 Ji, = B A B[t,t 1

such that using il and kl to identify B with il(B)CIA and

[t,t—l],.and~using j to identify A with j (&)< A* —1

kl(B)CA* [t,t 71,

B B

there are identities

-1

(B) = t "BtCA , B = AntAt—lCA* 1

plt e ]

In particular, if a:A —>A is an automorphism of a ring A the
HNN extension determined by the pure injections

il =1, i, = o : B = A ——A

(with A7 = A} = 0) is the a-twisted Laurent polynomial extension of A

1
1 2
-1 -1
* =
A B[t,t ] Au[t,t ]

[e o]

consisting of all the polynomials Z ‘antn with the coefficients
n=-co

a €A such that {n€ z| an;fO} is finite, with the multiplication

determined by

at = ta(a) (a€A)



In the special case oo = 1 : A ———> A the HNN extension is just

the usual Laurent polynomial extension
A* [t,t7 1] = are, e
Any HNN extension is an g-twisted Laurent pclynomial extension

-1 -1
* — t

with N the subring of A*B[t,t_l] generated by {tnat_n|a€EA,n€:E}

and
a:N———-—*N;xf———-—)t-Xt .
A ring R 1s a generalized free product if
either A) R = Al*BAZ is a free product with amalgamation
or B) R = A*,[t,t "] is an HNN extension
free product with amalgamation G,* .G
. _ 1 H2
The group ring of a o=
HNN extension G*H{t}

free product with amalgamation
is a
HNN extension

" Z[G,]*

Z (G,
et

1
Z[G]*

Z{.ﬂ-] = Z[H]
7 (1] !
so that the group ring of a generalized free product of groups is

a generalized free product of rings.



As for groups a generalized free product ring

has an associated oriented tree T, which will now be defined using the

given left B-module bases [Ai:B],[Aé:B] of the given

(B,B)-bimodules A!,A! such that

1772
Al = B@Al ’ AZ = B@AZ
— [— -1 '
A = B@Al =t Bt@AZ

In dealing with such bases we shall be considering M@BN for
various (B,B)-bimodules M,N which are free as left B-modules,
with given bases [M:B], [N:B]. The (B,B)-bimodule M@BN is also
free as a left B-module, and is given the base

[MRN:B] = {x@yelwaN|xez[M;B], y € [N:B]}

The oriented tree T in the amalgamated free product case

R =A_* A, is defined by

1 B2
(0) _ (0) (0) _ . } (1) _ )
T = Tl u T2 = [R.Al] u [R.A2] ’ T = [R:B]
The segment SG'T(l) has initial vertex rle'Tio) and terminal
vertex r €’T(O), uniquely characterized by

2 2
Bs = AlrlﬂA2r2CR.

It remains to describe [R:Al],[R:AZ],{R:B]. Define (B,B)-bimodules
R . for m,,m, € {1,2} by
12 ©
Roam. = ) Ro.m
12 p=1 MM
with R the (B,B)-bimodules defined inductively by
m;m,, N
= ! = t = -—
Rip,1 T B1 » Ryp 1 T8y v Ry =0, Ryy =0,
= ' = '
Ri1,n+1 = 2188821, 7 Roo,ne1 T P2%pRio 4 v
Ri2,n+¢1 = 21%Ro0 0 v Roine1 © 228pR1 4



As a (B,B)-bimodule

R = B(BRllEBR22(BR12€BR2l '

and the left B-module base [R:B] is obtained from [Ai:B] and [Aé:B]

by successive application of the above rule for bases of tensor

products. As a left A,-module

1
R = AlEB(B@Rzz@RZl)
with [R:Al] = l@[B®R22®R21:B], and similarly for the left Az—module
structure.
The oriented tree T in the HNN extension case R==A*B[t,t_l]
is defined by
(O = (r:a), ) = [Rr:B]
The segment SE'T(l) has the initial and terminal vertices rl,r2€'r(o)
uniquely characterized by
Bs = Arl htArch.
Again, it remains to describe [R:A],[R:B]. Define (B,B)-bimodules
Rm - for ml,mze {1,2} by
172 @
Rm m, E Rm m
1M2 p=1 M2
with R the (B,B)-bimodules defined inductively by
mym,, n
R = A', R = ta’t™l, R = ac™t, R = tA
11,1 1’ 22,1 2- .7 12,1 ! 21,1 !
R = at tg R ®A'R_R R = tAR_R ®talt @ R
11,n+1 B71ll,n 1°B21,n’ 22,n+1 B"22,n 2 B 12,n’
_ -1 . o ) =1
Rio,ne1 = BE "BpRyy @ AIRLR, o v Ry el T ABRRy; @ EASE TERR, .

As a (B,B)-bimodule

R = B@Rll@R22®R12$R21,

with the corresponding left B-module base [R:B]. As a lett A-module

-1
B(B®R22®R21)(BAt R_(BOR, . ®BR

R = A% B 1188100

with

- - - —l .
[R:A] = 1R[BOR,,®R,;:B] Ut "R[BOR, 6R, ,:B]



It is also possible to construct an oriented tree T for a

§ 817 8%
generalized free product ring R = é 1 using the right

N -
A B[t,t ]

B-module bases [Ai:B],[A':B] with

2
"= (0) % (0)
T (U = [R:A.] W[R:A_] _
E(O) 41 2 1 2 , T(l) - TR B]
[R:A]

-~

The segment seT™ ) has the initial and terminal vertices

(r,eT?, 7 e7?
1 1 2 2 . _
- = = (0) uniquely characterized by
rlrrzeT
— - B -
sB rlAlh r2A2 R
R L
sB = rlAnrzAt CR
Z 16y *yG,l
(In the group ring case R = the group ring involutions
Z[G*H{t}]

:Z[n]~—3;+zz[ﬂ];g h~——>g_l (g€ m) determine an isomorphism of
oriented trees T —> T),.
A morphism of rings
i : B ——>A
determines an (A,B)-bimodule structure on A
AXAXB —— A ; (a,xX,b) ——— axi(b)

This is used to define the induction functor

14

i, : (B-modules) —2 (A-modules) ; M1 M = B& M

which has already appeared in §1 for injections of group rings.
If 1 is a pure injection define for each a€ [A:B] the Z-module
aM = {a®@x € i M|x e M}

There is defined an isomorphism of Z-modules

M~ 5 3M ; x — s ax

14

and as a Z-module

. D A
iM = aM = M& L __a'Mm

a€[A:B] a'€[A':B]

If M is a based free B-module then i,M is a based free A-module

(for any morphism i), with [i;M:A] = {l&x€ i1M|X€5[M:B]} = 1@ [M:B].



BAp*ph,
Let R = -1 be a generalized free product ring.
A*B[t,t ]

An MV presentation of an R-module M is an exact sequence of R-modules

. q o
O—> k,Q ———> jl|P1$j2|P2 “““““ > M 30
g p
0 —> k;,@ > 3j P ———> M —>0
‘Pl,Pz ' Al_’AZ_
such that , Q is an ; B-module respectively, with
b A

the R-module morphism ¢ such that

q(Q) € P8P,

q(Q) € petp.

q, € Hom, (i,,Q,B), 9, € Hom, (i,,Q,B)
Thus g is determined by 1 Al 1 ' 2 A2 2! =

B qlEEHomA(lllQ,P), qZEEHomA(lle,P)
qu‘-qu

_ , with
pql - ptqz

such thatA{

9

l 1 1 -

q =(—q ): k!Q > jl!P:!-@:]z!Pz H r&x t """)’(f@ql(x) ,rﬂqz(x))
2

9 =9y~ tay, : kg Q7§ P r®x > rlq, (x) - L8, ()

The MV presentation is finite if each of the
B17rBy P17%2
R-, , B-modules M, r Q is based f.g. free, and
A- P
the corresponding exact sequence of based f.g. free R-modules
has torsion Tt = O € Kl(R)' In the topological context R is a
Z[G) %G,
group ring R = Z[n] = ;, and torsion is measured 1in
zZ [G*{t}]
the Whitehead group Wh(n), with the corresponding modification

in the definition of finite MV presentation.

An MV presentation of an R-module chain complex C
q p
(‘o ——> k,E - j;,0;®3,,D, ——> C —> 0

q P
z(o-—————é ky B ———> 3D > C >0




is defined in the same way as for an R-module, but using chain

Dy/Dy Bymidy”
complexes and chain maps, with , E an , B-module
D A-

L
chain complex. The MV presentation is finite if all the chain
complexes are finite and the corresponding exact sequence of
finite R-module chain complexes has torsion T = O € Kl(R),
by definition. In particular, if (X,Y) is a biconnective pair
A
of type B) and R = Z[ﬂl(x)] the geometric Mayer-Vietoris presentation

of the R-module chain complex C(X) is an MV presentation

. 9 ~ p -
O —>k,C¥) —— j,,C(Z])8],,C(Z2,) —> C(X) —> 0

oY

~ q ~ P -
0 —>k,,C(¥) ——> 3 ,C(Z) ———> C(X) —> O

For finite (X,Y) this is an exact sequence of finite R-module
chain complexes with torsion

\T( X(Zl'ZZ) =ZlUilY>< [0,1] \)iZZ2 — X=Zl\) YZZ)

1ﬂf(X(Z)= ZUi oi Yx [O,1]" “*——?X==Z/(il(Y)= iz(Y))=:O e Wh(ﬂl(X)) ’
1772

sO that the geometric MV presentation is finite.

=0 € Wh(ﬂl(x))

Waldhausen [ ] showed that every finite R-module chain complex
admits a finite MV presentation, and this was the first step in the
splitting theorem for the Whitehead group of a generalized free
product. In order to make the analogous first step for the L-groups
of a generalized free product it is necessary to consider finite

MV presentations with extra structure. We shall now associate to

we shall require finite MV presentations to be embedded in this one.
We shall show that the methods of [ ] actually supply enough such

finite MV presentations for the purposes of L-theory.
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Given a morphism of rings i:B ——— A and an A-module M
let i!M denote the B-module with the same Z-module structure
and B acting by

Bx i'M —>i'M ; (b,x) —>i(b)x

The restriction functor

1 i
i : (A-modulesg) ——>(B-modules) ; Mit——3 >i M

is adjoint to the induction functor
i! : (B-modules) —— (A-modules) ; M'—————>i!M = A@BM ,

meaning that for any A-module M and any B-module N there is defined

a natural Z-module isomorphism
Hom (N,i!M) —= Hom, (i ,N,M)

B A
The adjoint of 1€ Hom

f > (aBlx ——>af (x))

! !
B(i'M,i'M) is the A-module morphism

I

p; i,i'™M ——> M ; alx r——ax

If i:B—>A 1is a pure injection and M is a based free A-module
!

then 1i°M is a based free B-module with

[i%MB] = {ax|a€e [A:B], x€ [M:A]}

Given a commutative triangle of rings

and an R-module M there is defined a commutative triangle of R-modules

Py
M ———> M

J.J M
with

! .o
gq. : k!k'M————}-j!j!M

i ; r@x t—— rix (r ER,xEM)

or equivalently

. ! N oot
9; = J,p; ¢ kyk'M = 3,1,1°3°M ——— ], M



Proposition 3.1 Let R = -1 be a generalized free product

ring. Every R-module M admits an MV presentation, the universal

MV presentation

7
gq.
q = ( t1
~d p = (p; Pp. )
, 12 , J1 32
O —> k , k™M > jl'jiMQJZ'jZM > M - 0
M(T) | q ql-tq2 P==Pj
0 —>ky kM >, j M-——>M —> 0
with 9y =9y t: rBx—> rltx, tq2= 95 t: rx+—>rtBx (r€R, XxXEM).
1 2

Proof: This result was first obtained using general ring-theoretic

O] ‘amalgamated free products
methods by Dicks , for rings

{[ ] HNN extensions
determined by arbitrary ring morphisms not just pure injections.
A proof specific to the case of pure injections will be given in
Proposition 3.2 below.

It is sufficient to verify exactness in the special case

M = R, since the universal MV presentation of R consists of
(R,R)-bimodules which are free as right R-modules and for any
R-module M

(the universal MV presentation of M)

= (the universal MV presentation of R)@RM

[]

For a generalized free product of group rings
*
Z 161746,
*
7 [G* {t}]
it is possible to verify the exactness of the universal MV
presentation of an R-module M by identifying it with S(T)@ZM,

where g(T) is the augmented chain complex of the oriented tree T



a €
S(T) 0 —> 5, (T) —>S,(T) ———Z —5>0 ,
with
d Sl(T) = Z[T(l)]_*ﬁSO(T) = Z[T(O)] PSr——r, -1,
e :s5,(m) =z V) —sz; rr——1

Given a Z[n]-module Mdefine a Z[n]-action on S(T)&ZM by

Z[nr] x S (T)!X)ZM — S(T)&®,,M; (g,r&x) F——3> rg_lﬁgx

/4
There is then defined an isomorphism of exact sequences of
Z[r]-modules

f : S(T)®, M ———>M(T)

/4
by
o®1 e@l

‘ : ; —> R, M > M > O

S(T)®,M : O —> 5, (T)&,M SO(T_) 7
fs flS fOSl
q , ! 1 P
M(T) O-———?{kik'M %{jl!jimejzljém > M —3> 0
! Lot
kl!kZM 3,3 M
with the Z[r]-module isomorphisms fo,fl given by
R B (0) (0) ~ b
g fq t So(TIB,M = Z[T) 18 MO Z[T, 18, M ——> 3, JM8j, I M ;
_l —_
(rlxxl,rzﬂxz)»-———+(rl @rlx,r2 ®r2x)

£t S (TR M —55 §'u r@x —— r TBrx ,
- -~ ! _l
"’fl DS (T)R,M — k,k'M ; s@y =——> s “®sy

f. 2 S (T)R_M —Z % k. k'M ; sfly ——> s '@t Tsy

1 " "1 z 120



3.13

The universal property of the universal MV presentation

is that given any MV presentation of an R-module M

_/ 4
q = l» _

0 — k!Q >—jl!Pl@j2!P2 > M >0

qqu‘tqz P
O“_—)kllQ ~———————-————>j'P > M > 0O

and any R-module morphism fEEHomR(M,N) there is a unigque extension

of £ to a morphism of MV presentations

q P
0 —>k,Q ———> j;,P,8], P, > M >0
kK,h 3119:%35,9, £
! 4 A P .
0 —> k!k N -—————9jllle®jZ!]2N > N >0
d &
0 —>k,Q ——> 3 P > M >0
-1 .
kl!t h 3,9 Jf
. g ¥ p
0 —>ky kKN —> 3 5'N > N >0

.l A !
' glEEHomA (Pl,le), gZEEHomA (P2,32N), hEEHomB(Q,k N)
with 1

. !
g€ HomA(P,j N), he HomB(Q,klN)

o fplEEHomR(jl!Pl,N), prEEHomR(j2!P2,N), quleHomR(le,N)
the adjoints of
prEHomR(j!P,N), qulEEHomR(kl!Q,N)
respectively. In particular, this gives the functoriality of the

universal MV presentation: a morphism of R-modules f:M —3 N

induces a morphism of the universal MV presentations

' q » . ' . . ' p
O -—>k k'M —— jl,jiM®j2'jéM -—> M > O
Lo I .
Skt 1911315835, 358
1 q U p
0 —> K, k'N —> j,,3{N®J, ;N ——> N ——> 0
| q ] p
0 —>ky koM —> j 3'M ——> N —> 0
5 ! oL
| Kyokof j 3, 3°f Jf
Yo q W p
0 —— ky kjN ——3 3N > N > 0
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An MV presentation of an R-module M is subuniversal if the

adjoints of the R-module morphisms

~

py € Homp (3, ,Py,M), p, € Homp (3, P, M), Pydy = P,q, € Hom, (k,Q,M)
p € Hom, (J,P,M), pq; = ptq, € Homy (k;,Q,M)
are injections

. .l _ ! !
glEEHomAl(Pl,le), gZEEHomA2(Bz,]2M), h(SHomB(Q,k M)

' !
géBHomA(P,j M), hefkm%(Q,klM)

Using these injections as identifications note that . 2,Q
b
are additive subgroups of M such that
3 P = = = = =
Al“l Pl’ A2P2 P2, BO Q, RP +RP2 M, Pln P2 Q

1
AP = P, BO = Q, RP = M, PntP = Q.
A subuniversal MV presentation has a canonical embedding in the

universal MV presentation

9
q = _
e ('qz P = (P} Py)

N/ .
O > k,0 31,P1%35,%,

K.kzh \{ 1119:835,9,
]

q Yo
0O ——> k!k'M . jl!le@]2!sz —s M — % 0

> M —> 0

q:ql_ tq2 . p
0 ——> kl'Q > J],P > M -0
-1 o
£ kl!t h i;j!g
! q L p
0 ———> kl!kzM —> J,] M > M > O

Conversely, any MV presentation with an embedding in the universal
MV presentation is subuniversal. The subuniversal MV presentations
of a fixed R-module M are partially ordered by inclusion, with
maximal element the universal MV presentation. In dealing with
finite subuniversal MV presentations of a based f.g. free R-module M
it is assumed that the bases are such that

A !

i - - 1 - - ! .
gl[Pl:Al]C[le.Al], g2[P2.A2]C[32M.A2], h[Q:B] € [k M:B]

g[P:A] C 13 'M:A], t—lh[Q:B]CI[kéM:B] = {t lstx|se [R:B], x € [M:R]} .
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A subtree ACT is based if it contains

(0) or le'T(O)

either le’Tl 5

(0) The based subtrees AC T are

leT
partially ordered by inclusion, with maximal element T.

A fundamental domain A for a based free R-module M 1is

a collection of based subtrees of T indexed by the base [M:R]
A= {A(x)EST|x€ [M:R]}.
The set of fundamental domains for M is partially ordered by
A€ A" if A(x)< A' (%) for each x € [M:R]
The maximal element A = {A(x) =T|x€ [M:R]} is denoted by A =T.
A fundamental domain A is finite if [M:R] is finite and each
AMX)ES T is a finite based subtree.
Given a based free R-module M (over any ring R) and x €M

let <x,y>€ R be. the coefficients of the base elements’'y € [M:R]

in the expression of.x as an R-linear combination

X = N <X,y>y €M = Y Ry
vE€[M:R] vyE[M:R]

so that {y€ [MsR]|<x,y>#0 € R} is finite.

B1"sR2
Proposition 3.2 Let R = _1 be a generalized free product
A*B[t,t ]

ring, and let M be a based free R-nodule.
i) Given a fundamental domain A for M there is defined a

subuniversal MV presentation of M

(0), P

(0) ) == m —>o0

' q
0 —> k!M(A(l)) —— jl!M(Al

)87, M(A

O —— ki ,M(2 ) ——> J,M(A ) —>» M —» 0
uaf), Ml ) A=Ay
with (0) , M(A ) the based free ,B-module
M(A ) A-

given by



M(A;O)) = N Y ©0) MnHx (= 1,2
X€[M:R] rAGA(X)A
x€[M:R] re€A(x)
M(A(l)) = N N (1) Bsy
yE[M:R] s€A(y)
mep 'ty = N N (1) t LBsy

yE[M:R] s€A(y)

If ACA' then M(A)EM(A'), with M(T) the universal MV presentation
of M. If A is finite then M(A) is a finite subuniversal presentation
of M.
ii) Given another based free R-module N, an R-module morphism
f(EHomR(M,N) and a fundamental domain A for M there is defined
a fundamental domain f,A for N such that the induced morphism
of universal MV presentations

f : M(T) —>N(T)
restricts to a morphism of subuniversal MV presentations

£ : M(A) ——>N(T)
if and only if the fundamental domain I' for N is such that £,AST.

If A and [N:R] are finite then so is f,A.

Proof: i) Since M(A) = z R(A(x))x it is sufficient to
XE[M:R]

prove the exactness of M(A) in the special case M = R, with
[M:R] = {1} and A = {A(1l)} consisting of a single based subtree
A(l)C T. Denote A(l) by A.

If A consists of a single vertex R(A) is the exact sequence

R(A) : O > O > R - > R > O
If ACT is obtained from A'C A by adjoining a single segment s € A(l)
with vertex r & A'(O) then R(A') embeds in R(A) with quotient
the exact sequence

R(A)/R{(A") : O > Rs > Rr > O > O ,

with s+———>tr. This gives the inductive step in proving that R(A)
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is a finite subuniversal MV presentation of R for every finite
based subtree ACT. An infinite based subtree AC T is the union
of all the finite based subtrees A'C A, so that R(A) 1is the
union of all the R(A'), and the exactness of R(A) follows from
the finite case.

ii) Define £, A(y)C T (y€ [N:R]) to be the intersection of all

the based subtrees containing the set of vertices

(0)
<y

{veT(O)[<rf(x),vy>7fOEEA for some x€[M:R],r€A(x)

f(x),vxy>7fOEEA -for some x € [M:R],r GA(X)(O), AE {1,2}}

A A A
(04 |

X er
{Vx
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The functoriality of the universal MV presentation of an
R-module shows that everv R-mocdule chain complex C has a universal

MV presentation

! S PR P
. S O —— k k'C —> 3,,3,C83,,3C > C > 0
AR q p
| I
lo————-}kl'kéc —> j,j’)¢c —> ¢ —>o0

which in degree m is just the universal MV presentation of the
R-module Cm. Subuniversal MV presentations of R-module chain complexes
are defined in the same way as for R-modules, and have the same
general properties. In particular, if X is a regular cover of a

CW complex X with grcup 1 = and is a fundamental
G* {t} W
H
domain then the geometric MV presentation of C(X) is subuniversal,
with the geometrically induced injections
L 1 . '
"9y s CWy) —3C(X), 9y # CWy) —>3,C(X), h:CW AW,) —> k'C(X)
L 1o
g:C(W) —>3°C(X), h: C(Wn tW) — kiC(X)

defining an embedding in the universal MV presentation of C(X)

d P
O —=> k,C(W; nW,) —> J;,C(W;)8],,C(W,) ——> C(X) —> 0
k|h lelgl®jz|92
N q NN o P
O —> k,k’C(X) ———— 3;,]C(X)®],,],C(X) ———> C(X) —> O
q P
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A fundamental domain A for a based free R-module chain

complex
dm+l dm
cC: ... —>C —_— > C -—_— ... (me Z2)
m+1 m m-1
is a set {AmlmEEZ }of fundamental domains Ay = {Am(x)]xéé[cm:R]}
for the based free R-modules Cm such that
<
(dm)* (Am) S (me Z)
The fundamental domains for C are partially ordered by
C 1 : c ]
AS AT 1L AmA_Am for all mez ,
and the maximal element A = {A_ = T]lne Z } is denoted A = T.

m

A fundamental domain A is finite if C is finite and each A, is finite.

B1%g
Proposition 3.3 Let R = be a generalized free product ring,

*
Aot t 7]

and let C be a based free R-module chain complex.
1) Given a fundamental domain A for C there is defined a
subuniversal MV presentation C(A) of C, given in degree m by

C(A)m = Cm(Am)

If AcA' then C(A)C C(A'), and C(T) is the universal MV presentation.
ii) If C is finite there exists a finite fundamental domain A,

in which case C(A) is a finite subuniversal MV presentation of C.

Proof: i) Immediate from Proposition 3.2.

ii) Let n 2> 0O be such that Cm = O for m>»n. Starting with any finite

fundamental domain An for Cn let Am (OSLSm< n-1) be the finite

fundamental domain for Cm defined inductively by

A= (d

m m+l)*A

m+1
Then A = {Am|0$ m¢n} is a finite fundamental domain for C.

[]
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Let X be a CW complex, and let X be a regular cover of X

©1"uC2 (W rWp)
with group 7 = . Given a subfundamental domain

G*H{t} W

for X is possible to choose for each cell e< X a 1lift to a cell

i e <
elther e<:Wl or e W2

e €X such that{rw , sO that A(e)C T is a based subtree.
ecW

These choices determine a Z[n]-module base for C(i)
[C(X):z[n]] = {€|le< X}
and a fundamental domain for C(X)
A= {A(e)lecx)
such that the corresponding subuniversal MV presentation of C(X)

may be expressed as

d p ~
O ——=>k ,C(W NW,) —> j; ,C(W)®], C(W,)) ——> C(X) —> 0

1N W,)

C(X) (8) g o
0 —> ky,C(WOtW) ——> j,C(W) ———> C(X) —>0
(For a fundamental domain this is just the geometric
W
MV presentation of C(i)). Let (X',Y') = (T'><TT X ,Q/H) be the

universal bipolar pair and let

X vy = (X(Wl,W2),Y(Wl,W2)) c oy

(X (W), Y(W))

be the subuniversal bipolar pair, as constructed at the end of §2.
The projection X' = T'x X —X is a T—-equivarlant homotopy
equivalence inducing a chain equivalence (i.e. a morphism consisting
of chain equivalences) between the geometric MV presentation of C(X')
and the universal MV presentation C(i)(T) of C(i). The composite

~ ~ ~

X" X! » X 1s a m-equivariant homotopy equivalence inducing

a chain equivalence between the geometric MV presentation of C(X")

and the subuniversal MV presentation C(X) (A) of C(X).



