AFOSR TN 57-548
 ASTIA AD 236-532

COHOMOLOGY OPERATIONS AND OBSTRUCMIONS
TO EXTENDINO CONTINUOUS EUNCTRONS
by
N. II. Steearod

Colloquium Lectures

Thu work way mupported In part by the Dutted states hiv Torce
 and Development Command under contract W H. $4 \% 18(600)-144$.

COHOMOLOGY OPERATIONS, AMD OBSTRUCTIONS 10. ExTMNING CONTLUUOUS TUNOTIONS. *

by N. E. Steenrod

81. Introduction.

The class of problems know as extension problems is central to neaxiy all of topology. Many of the basic theorems of topology, and some of its most sucm ceschul application in other areas of mathematics are solutions of perticular extension problens. The deepest results of this kind have been obtained by the method of algebraic topology. The easence of the method. is a converrion of the geometric problem into an aigebraic problem which is sufficientiy complex to embody the essential features of the geometric problem, yet sufeiciently simple to be solvable by standard algebraic methods. Many extension problems remain unsolved, and much of the current development of algebraic topology is zappired by the hope of finding a truly general solution.

To place my contribution to these developments in its proper setting, I Will begin with a discussion of the extension problem, and the methods of inding solutions in apecial cases.

82. The extension problem.

Let z_{m} and y be topological spaces. Let. A be a closed aubset of X, and let $h: A \rightarrow X$ be a magping; i.e. a continuous function from A to X. A mapping $f: X \Longrightarrow X$ is called an extension of h if $f(x)=h(x)$ for each $x \in A$ The inclusion mapping $g: A \rightarrow X$ is defined by $g(x)=x$ for $x \in A$

[^0]Then the condition that f be an extension can be restated: h is the composition fg of and go

When X, Y, A and h are given, we have an extension problem: Does an extension i of h exist?

§3. Transforming geometric into algebraic problems.

The general method of attack on an extension problem 16 to apply homology theory to transform the problem into an aigebradc problem. To the diagram of mpaces and mappings we assign e diagram of groups and homomorphisme. Each space has a homology group H_{q} for esch dimension q, and each mapping induces homom morphiams of the correaponding groups. Thus, for each q, we have an algebrate dingram

Given the three groups and the homomorphisme $g_{y,} h_{W^{3}}$ we can now ask the question: Does there extst a homomorphism ϕ such that $\phi g_{*}=h_{*}$? (It should be noted that g. Is not uहually an tnclusion, because a nonmbounding cycle of A may bound in
 becase of the property (fg) $=f_{x}$, of induced homomorphisms. Thus, the exist $=$ ence of a solution of the algebraic problem is a necesany condition for the
existence of an extension. But it is not usually a sufficient condition. The reason for this is that much of the geometry has been lost in the transition to algebra.

It is a prime objective of research in algebrate topology to improve the algebraic machinery so as to give a sharper algebraic picture of the geometric problem. For example, in place of homology we may use cobomology. We obtain an analogous diagram

$$
\begin{aligned}
& g^{*} H^{H^{q}(x)} \mathrm{f}^{*} \\
& \mathrm{H}^{q}(A)<\mathrm{g}^{*}(x)
\end{aligned} \quad \mathrm{f}^{*}=\mathrm{h}^{*} .
$$

The chief difference is the reversal of the directions of the induced homomorphisms. If we consider cohomology solely as additive groups, they have no real advantage over homology groups. However, unlike homology, the cohomology groupa of a space admit aring structure: if $u \in H^{p}(Y)$ and $v \in H^{q}(Y)$, then they have a product, called the cup-product,

$$
\text { uov } \varepsilon H^{p+q}(Y)
$$

This product is bilinear, and satisfies the commatative law $u \cup v=(-1)^{p q} v v^{p}$. murthermore mapping $f: X \longrightarrow Y$ induces a ring homomorphism

$$
f^{*}(u-v)=f^{*} u f^{*} v_{0}
$$

Letting $H^{*}(X)=\left\{H^{q}(X), q=0,1, \ldots\right]$ denote the resulting graded ring, the algebralc diagram becomes

$$
g^{*} \mathrm{~s}^{*}=\mathrm{h}^{*}
$$

and the algebraic problem is sharpened by the requirement that the solution ϕ of $g^{*}{ }^{*}=\mathrm{h}^{*}$ must be a ring homomorphism.

This provides a considerable improvement in the algebraic picture of the geometric problem. However it is not the best that can be done. The cohomo= logy groups possess not only a ring structure but also a more involved structure referred to as the system of cohomology operations. A cohomology operation T, relative to dimensions q and r, is a collection of functions (T_{X}), one for each space X, such that

$$
T_{X}: H^{q}(X) \longrightarrow H^{r}(X)
$$

and, for each mapping $\mathrm{f}: \mathrm{X} \longrightarrow \mathrm{Y}$,

$$
f^{*} T_{Y}=T P^{*} u \text { for an } u \in H^{q}(Y)
$$

The simplest non-trivial operations are the squaring operations. For each dimension q and each integer $1 \geqq 0$, there is a cohomology operation, called square-1,

$$
S q^{1}: H^{q}\left(X ; z_{2}\right) \longrightarrow H^{q+1}\left(X ; z_{2}\right)
$$

Here the coefficient group z_{2} consists of the integers z, reduced modulo 2. Also for each prime $p>2$, there are cohomology operations generalizing the squares called cyclic reduced p th powers. These are functions

$$
\rho^{1}: H^{q}\left(x, z_{p}\right) \rightarrow H^{q+21}(p-1)\left(x ; z_{p}\right)
$$

IWh11 discuss these operations in detail later on. At the present time I Wish only to emphasize the importance of cohomology operations to the study of the extenaion problem: In the derived algebraic problem using cohomology, the solution $\phi: H^{*}(X) \longrightarrow H^{*}(X)$ of the algebraic problem $E^{*} \phi=h^{*}$ mutt be a
ring homonorphism, and also mast satisty $\phi_{y}=T_{y}$ i for every cohomology operation Tr. Thus, by cremming as much structure as possible into conomology theory, we endeavor to obtain the strongest possible necessary conditions for a solution of the extension problem.

The ultimate objective is to so refine the algebralc machinery that the derived algebralc problem is a falthful picture of the geometric problem. This has not yet been accomplished but it appears to be within reach.

We turn now to a more detalled discussion of the ideas presented so far.

St. Examples of extension problems.

Examples of solutions of extension problems are plentiful even in the most elementary aspects of topology. The Urysohn lema is an example In this cage X $1 s$ a normal space, $A=A, A$ is the union of two diajoint ciosed mbsets, X is the interval $[0,1]$ of real numbera, $a n d \quad h\left(A_{0}\right)=0, h\left(A_{1}\right)=1$. The conclusion of the Lemma asserts that an extension aways exdsts.

The Hetze extension theorem If another example. In this case is in norm mal, $y=[0,1]$, and b is arbitrary. Again an extension always exists.

The study of the arcwise connectivity of apace i is another example. In this case $x=[0,1]$, consists of the two points 0 and I, and $h(0)=$

There $1 s$ special clase of extention problems called retraction problena. If $A(X$, then a mpping $x: x \longrightarrow$ ta calied a retraction $1 t(x)=x$ for each $x \in$ G Given apace. X and a cloaed aubpace A, there is the prom Dlem of deciding whether or not guch a retraction exista. By getting $Y=$. A. and takiag h A $\rightarrow Y$ to be the identity, $1 t$ is seen that each retraction problem 1 an extenaion probiem.

An mportant example from elementary algebralc topology is the followlug. Let be the closed nocell, i.e. the set $\sum_{1=1}^{n} x_{i}^{2} \leq 1$ in certestan nospece, and let s be its boundary, $1 . e$, the $(n-1)$ mpnere $\sum_{1=1}^{n} x_{1}^{2}=1$. Then

The boundery S of the nacell E is not a retract of E.
The proof of this for $n=1$ is readily deduced from the tact that Is connected and S is not. For $n>1$, the proor is not trivial, although the conclusion for $n=2$ le intuitively appealing to anyone who bas tightened a drum head, or stretched canvas tauty over a frame. The proof uthlyes the general method of convertug the problem into an algebrale one. We take homology groupe in the dimension $n=1$, and obtain the diagram

$$
\begin{gathered}
g_{*}^{H_{n-1}}(E) \\
H_{n-1}(g) \frac{n_{*}}{n_{*}}>\mathbb{H}_{n-1}(S)
\end{gathered}
$$

The dimenbion nol is used since this gives the only non-trivial homology group
 Now $h=$ identity impliea $h_{*}=$ inentity. This gives an inposalbility: the identity homonorphism of Z cannot be factored into homomorphiams

It may be felt that nonmexistence theorem is of ifttle use. This is not the case. By a mid twiat, a negative regult can be given posthive form. In the case at hand, we obtain as corollary the wellmknown Brouwer pixedmpant theorem: Each mapping g: \rightarrow Has at least one fixed point For suppose to the contrary that there 1 a a G with no 11 xed -point. As x and $g(x)$ are
 moto two hat ilnes. The hait ine not containing $g(x)$ meets S in a gingle point aenoted by $p(x)$. The continutty of g impliee thet of if. In case

85. The use of the cohomology ring:

The next example is one in which the cohomology ring aust be uned to arrive at a decision. Let X denote the complex projective plane, i.e. the pace of 3 homogeneous complex variables $\left[z_{0}, z_{1}, z_{2}\right]$ not an zero. It is a compact noud fold of dimension 4. Let A be the complex projective Line in x derined by the equation $z_{2}=0$. Topologically, in a 2 aphere. In this case the conclucion is that A is not a retract of. X

Suppose that $f: x \rightarrow A$ is a retraction so that $I g=1 d e a t f t y$ where $g: A \rightarrow X$ ic the inclusion. Passing to cohomalogy, we have the diagra

$$
H^{*}(X) \frac{g^{*}}{f^{*}} H^{*}(A), \quad E^{*} S^{*}=1 d e n t t y
$$

When two groupe are so related by homomorphisms, the lest hand groun aplits into a direct sums

$$
\mathrm{E}^{*}(x)=\text { Image of } \mathrm{i}^{*}+\text { Kernel of }{ }^{*}
$$

The abbreviated notation is
nurthermore $)^{*}$ gives an isomorphim

$$
\begin{equation*}
8^{*}: \operatorname{Im} f^{*} \approx \mathbb{L}^{*}(A) \tag{5.2}
\end{equation*}
$$

 homomorphimm, then
(5.3) Im f^{*} is a subring, and $\operatorname{Ker}^{\text {关 }}$ is an deal.

Turning to the example under consideration, we are given X, A and the inclusion' g, and we can ask if $K e r g^{*}$ is a direct summand. The cohomology of X is zero in dimensions >4. In dimensions $\leqq 4$, the cohomology of y and A with integer coefficients 2 is given by the table

A| 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |
| Z | 0 | z | 0 | 0 |
| z | 0 | z | 0 | z |

Furthermore g^{*} is an isomorphism in the dimensions 0 and 2 . It is seen then that the direct sum decomposition required by 5.1 does exist and, in fact, is unique. Namely, in the dimensions 0 and 2 , Ker g^{*} 1a zero no that Im $f^{\text {w }}$ 1s the whole group, and in the dimension 4 , Ker g^{*} is the whole group and $\operatorname{Im} f^{*}=0$ 。

However, on examining the ring structure, we find that the uniquely deter" mined candidate for $\operatorname{Im} f^{*}$ is not a subring. For let u be a generator of $H^{2}(X)$ so that $u \varepsilon \operatorname{Im} f^{*}$. Since x is manifold, the poincaré duality theorem asserts that H^{2} is self-dual under the cup product pairing to H^{4}. It follows that uou must generate $H^{4}(X)$. Therefore uwu is not in Im f^{*} and therefore A is not a retract.

This example is intimately related to the mapping $\mathrm{n}: \mathrm{s}^{3} \longrightarrow \mathrm{~s}^{2}$ of the 3 -sphere into the 2-aphere studied first by H. Hopf [14]. In the space of two complex vauriablea, let g^{3} be the unit aphere $z_{0}^{z_{0}}+z_{1} \bar{z}_{1}=1$ and z^{4} the unit 4 cell $z_{0} \bar{z}_{0}+z_{1} \bar{z}_{1} \leqq 1$. Let B^{2} be the apace of two homogeneous complex variables $\left[z_{0} z_{1}\right]$. Then is sende the point $\left(z_{0}, z_{1}\right)$ of s^{3} into [wo z_{1}] in g^{2}. This is a very amooth mapping. The inverse images of pointe
of s^{2} give a fibration of g^{3} Into great circles. Hopf proved that c is not extendable to a mapping $E^{4} \rightarrow s^{2}$. (Notice that $\left(z_{0}, z_{1}\right) \Rightarrow\left[z_{0}, z_{1}\right]$ has a singularity at (0,0).) If we form a new space out of E^{4} by collapaiag ite boundary s^{3} into g^{2} according to h , the resulting space is homeomorphic to the complex projective plane x, and S^{2} corresponds to the complex projective ine. A. Since A is not a retract of x, it follows that is cannot be extended over E^{4}.
§6. The use of the squaring operations.

The next example is a retraction problem for which the cobomology ring does not provide an answer: but the squaring operations do give an answer. Let p^{5} denote the real projective space of dimension 5 (6 homogeneoua real variables). Let $p^{4} \supset p^{3} \supset p^{2}$ be projective subspaces of the indicated dinensions. Let x be the space obtained from p^{5} by collapsing p^{2} to a point, and let $A C x$ be the image of P^{4} under the collapsing map: $P^{5} \rightarrow X$. Again the assertion Is that A is not a retract of X.

We tackie thif problem in the game manner as the preceding one, and begin by asking whether Ker g^{*} is a direct summand of $\mathrm{F}^{*}(X)$. Knowing the cohomology of P^{5}, one readily deduces that of X and A. With Z_{2} as coefricients, the cohomology is given by the following table

Murthermore, g^{*} is an isomorphism in amensions <5. Therefore there is a drect sum ghitting as in 5.1 and it in unique: In for be the whole group

In dimensions < 5, and it 16 zero in the dimension 5 .
In this case the candiate for $\operatorname{Im} f^{*}$ Le obviously subring. The reason'la that the cup product of elements of alm ≥ 3 has alm ≥ 6, and 18 therefore zero. Thus, hnsofar as the cohomology ring ta concerned, A could be a retrect of X. To show that $1 t$ is not e retract, we must uee the cohomology operation

$$
S q^{2}: H^{3}\left(x, z_{2}\right) \rightarrow H^{5}\left(X, z_{2}\right)
$$

If u is the nonmero eqement of H^{3}, aurtable calculation shown that gqu Le the non-zero element of \sum^{5}. Now the unique candidate for Im F^{*} contarna u and is zero in dinension 5 , hence $1 t$ is not closed under sq^{2}. Dut it would
 a retraction does not exist.

This result has a good appication in differeatial geometry. It is velt
 tangent vectors if and ony if its Euler number in eero. This Imoliea that the
 3 fields which are independent at each point becsuse $1 t$ is group maniond (undt quaternions). The question arises as to the maximum number of felds tangent to g^{5} which are independent at each point. The anawer is 1. nor, by a drect congtruction, two independent fielde can be made to yeld retracton of 1nto A (aee [28]).

The same method can be used to prove a more general reault [20]. If a

 result th the beet possible for a 415.

§7. Homotopies.

Heving demonstrated the need of miner and ilner algebraic tooly, It in notural to ask 15 there 1 an end to the grocess. The nawex it that there Is real hope of achieving complete solution. To exhibit the basis for hy hope, I must delve more deeply into the geometric aspect of the extension problem. Wor this, the concept of homotopy $1 s$ vital. Let h be mapping $A>y$ and Let $I=[0, I]$ be the unit intervai, then mapping $H: A X I \Longrightarrow I$ is callea \& homotopy of in if $H(x, 0)=h(x)$ for x \& A $\operatorname{setting} \quad h^{\prime}(x)=H(x, 1)$, is celled homotopy of h into h^{\prime} and we write $n \mathrm{~m}^{\prime}$ (h in homotophc to h). Thls is an equivalence relation, and the set of maps honotople to lis canled the homotopy class of h. The set of homotopy clasees of mapglags $A \longrightarrow I$ is denoted by $M a p(X, I)$.

A basic result, due to Borguk, is the

Homotopy Extension Theorem. If P. $X \rightarrow Y$, A is closed in X, and $h=1$ h. Then any homotopy H of h may be extended to homotopy of is.

 axtended to mapping $F X X I \longrightarrow I$.

The intultive sdea of the theorem is that it we grab hoid of the inage of

The theorem in not trae in the generalty tated some sestriction on

 ascume some buch restriction whthout further mention.

Notice that the theorem asserts the extendability of certain kinds of mappinga. This solution of a special extension problem is of the utmost importance for the general problem because of the following

Corollary. The extendability of $h: A \rightarrow Y$ to a mapping $f: X \longrightarrow X$ depends only on the homotopy class of h : If h is extendable and $h \simeq h^{\prime}$, then h^{\prime} is extendable.

It is only necescary to extend the homotopy to $F: X X I \longrightarrow Y$ and set $f^{\prime}(x)=F(x, 1)$.

One advantage this gives us is that, in any particular extension problem, we may vary h by a homotopy and obtain a simpler but equivalent problem. For example, suppose it were known that is is homotopic to a constant mapping h, (1.e. $h^{\prime}(A)$ is soingle point). Since such an h^{\prime} is obviously extendable, so is h.

The result also enables us to rephrase the extension problem in an apparently weaker form: Does there exist an f such that $f g \approx h$. Given such an i, we have that $f \mid A$ is obviously extendable, and $f \mid A \simeq h$, and so h is extendable.

Having freed one aspect of the extension problem (replacing $f g=h$ by $f g \simeq h$), it is natural to consider freeing other parts of unnecessaxy retrictions. The condition that g be the inclusion mapping $A C X$ is no longer an essential feature. Let X, A, I be any three spaces and let $h: A \longrightarrow Y$ and $g: A \rightarrow X$ be mappings. Does there exist a mapping
 problem. The class of these problems includes the extension problems and many mores Broadening thus the class of problems does not increase the difficulties because of the following: result.

Each left-factorization problem is equivalent to some retraction problem.
To see this, we start with a left-factorization problem as above, and construct a space Z as follows. In the union of $X, A \times I$ and 1 , identiny each point $(a, 0)$ yith $g(a)$ in x, and identify each point $(a, 1)$ with $h(a)$ in I. The resulting space Z contains X and Y and homotopy of g into H. It follows quickly that y is a retract of Z if and only if there exista a mapping $f: X \longrightarrow X$ such that $f g \simeq h$.

Thus the broadest type of problem is equivalent to the narrowest type.
It is easily shown that a left-factorization problem depends only on the homotopy classes of g and h. Even more it depends only on the homotopy types of the three apaces involved. Two apaces X, X, have the same homotopy type (are homotopically equivalent) if there exist mappings $\phi: X \rightarrow X^{\prime}$ and $\phi^{\prime}: X^{\prime} \longrightarrow X$ such that $\phi \phi^{\prime} \approx 1$ dentity of X^{\prime} and $\phi^{\prime} \phi \approx$ sentity of x. We may substitute X^{3} for X in any problem in we set. $g^{*}=\phi g$ Analogous subm stitutions can be made for A and Y.

An advantage of this flexibility is that any particular problem can often be greatly simplified by homotopic alterations of the spaces and mappings in= volved.

More important however is the Light which it casts on the clabs of all pronlems. If we conslder ony those spaces admitung fint te trianulationg, then there are only a countable number of honotopy types of spaces, and for any two spaces there are onyy a countable number of honotopy classes of mappings. Thin statement can be proved by the use of the well-known aimplicial approxima thon theorem. It is a consequence that there are ony a countable number of extencion problems. This in thself maked it reanonable to hope for effective methods of solving any extenston problem.

To mustantiate this hope, constder the notion of the induced homonorphism
f^{*} of cohomology assigned to a mapping $f: X \longrightarrow Y$. A well-known property is that homotopic maps induce the same homonorphism. Hence we have a function

$$
R_{X X^{\prime}}: \operatorname{Map}(X, Y) \longrightarrow \operatorname{Hom}\left(X^{*}(X), H^{*}(X)\right)
$$

defined by $R_{X Y}(f)=f^{*}$. By Hom we mean ail functions preserving whatever aigebraic structure we are able to put into the cohomology theory of spaces. Suppose we have an extension problem with spaces X, A, Y such that $R_{X Y}$ is onto, and $R_{A Y}$ is $1-1$ into. Suppose moreover that the algebraic problem $g^{*} \phi=h^{*}$ has a solution ϕ. Since $R_{X Y}$ is onto, there existe an $f_{i} X \longrightarrow Y$ such that $f^{*}=\phi$. Then $(f g)^{*}=h^{*}$. Since $R_{A Y}$ is $1-1$ into, this implies $f g \approx h$. Hence the solvability of the algebriac problem is both necessary and sufficient for solving the geometric problem.

Thus we would have a complete hold on the extension problem if we knew that $R_{x y}$ is $1-1$ onto for all triangulable spaces X, Y. This is true for some spaces and false for others. For example, let $X=S^{3}$ and $Y=g^{2}$, then $\operatorname{Hom}\left(\mathbb{E}^{*}\left(S^{2}\right), H^{*}\left(S^{3}\right)\right)=0$, and $\operatorname{Map}\left(S^{3}, S^{2}\right)=\pi 3^{\left(S^{2}\right) \text { is infinite. However our }}$ point of view above has been too narrow in specifying the range of $R_{\text {KY }}$. Bone more intricate algebraic gadget should do the trick. The poselbilities are many. For example $R_{X Y}(f)$ could be taken to be the cohomology sequence associeted with the mapping cylinder of f.

The finaing of a suitable $1-1$ mapping $R_{X Y}$ of $\operatorname{Map}(X, Y)$ into a computable algebraic object is called the homotopy classification problem. Solving it completely will solve the extension problem completely. Why should we be hopeful of solving this? First, Map (X, Y) is a countable set, and is therefore suitable for algebraization. Secondy, in many special cases (as will be showa) we have obtained colutions. Ihirdy, we have available now a variety of functions $\pi_{\mathrm{K}}^{\mathrm{K}}$ which taken together may provide the complete solution.
88. Lifting problems.

There 18 clase of problems called liftng problems whin age dual in * certain senge to extenelon problems. Tn lifting probiem, we are given a mibre bundie x over a base spece x with projection i: \rightarrow I mis means that each y E Y has neighborhood V guch that $f^{-1} v$ is mepreabutabie as product space $V \times F$ for some fixed space F calied the fibre. Turthermore, f restricted to $f^{-1} V$ is the projection $V x$ T \Longrightarrow. In the Ifrting problem, we are siso given space A and a mapping $h: A \longrightarrow I$ nd the problem in to decide whether there exdst a mapping $g: A \rightarrow X$ ach thot $f g=h$.

$$
f g=h_{0}
$$

The condition that $x \xrightarrow{s} y$ is bundie $1 s$ dual to the condition of an extene gion problem that $A \xrightarrow{g} X$ is an inclusion mapping.

An elementary example of 11 ting problem and its solution it the

Monodromy theorem. If x is covertng space of y with projection is
 Lgebralc problen posed by the Aundamental groughas golution

of f^{\prime} and h_{*} are only defined up to inner automorphisms of $\pi_{1}(x)$. Thus to decide whether the algebrale problem has a solution it sufilces to determine whether some conjugate of $f_{1} T_{1}(X)$ contains $h_{1} T_{1}(A)$

The monodromy theorem is used in complex variable theory in order to find a slngle-valued branch of the composition of a single-valued and a mithplemalued function.

If X is a bundie over X with projection f we obtain a special ifes Ing problem by taking $A=X$ and $h=$ identity A solution gi $\mathcal{F} \rightarrow X$ of \hat{y} g identity is called a cross-section of the bundie. Crossmsectioning probiems are the duels of retraction problems.

A great vartety of these problems arise in differential geometry (see (24)). Let y be a diferentiable manifold. For any tensor of apecified algebrale type, the set of all such tensore at all points of x forms a fibre pundie. x. over I. A cross-section of this bunde is a tensor fleld defined on Y of the syecified type. For example, let x be the manfold of non-zero tangent ": vectors of Y A crossmection $1 s$ a continuous field of non-zero vectorg. Tor a compact Y, such a field exists if and only if the guler mumber of 1 gero. This is proved by using cohomology groups of the dimension of X. Wany appllca thone of algebralc topology to problems of this type bave been made. But many more remain out of reach.

We propose to ghow now that the duality between extengion and If?ting per $=$ aists in considerable detal. The dubl of the bomotopy extenston theorem 1 the

Covering homotopy theorem. In the aituation

Where x fa bunde over y , let l be any homotopy of h. Then there exista
a honotopy G of g such that $I G=H, i$. e. any motion in the base space x can be covered by a motion in the bunde space X.

The proposition asserts that a cextain kind of lifting problem always has a solution. In analogy with the case of the extension problem, we have the

Corollary, In any Lifting problem, the 11 tability of a mapping h:A $\rightarrow I$ depends only on the homotopy class of h.

In any lifting problem, a colution g^{\prime} of the weaker problem fg $\because h$ Leads to a solution of the problem $f g=h$. It is only neceasary to cover the homotopy of fg^{\prime} into h by a homotopy of $\mathrm{g}^{\text {i. }}$

As before we can abandon now the restriction that X is a pibre bundle over x. We define a right-factorization problem to consist of three apacea A, X, Y and mappings $h: A \rightarrow X$ and $f: X \longrightarrow X$ A aolution is a mapping
 the homotopy classes of the mappings and the homotopy types of the apacea.

The general method of handing a lifting problem or ahghtactorization problem li the same as that used for extension and left-factorization problems. We transform the problem to an algebriac one by applying a functor from topology to algebra. Al of the discussion of the derived algebraic probleme applies equally well to the new gituation. When we are able to cram into the algebralc functor enough structure to be able to solve the homotopy classiplcation problem, then we wil be able to solve any ifting problera.
39. The classification theorems of Hope and Hurewicz

There are certain restricted situations where homology and cohomology, considered as having additive structure only, are adequate to solve the homotony classification problem. Two theorems proved about 1935 mark high spots in this direction. These are the theorems of Hopi and Hurewicz.

Hopi's classification theorem. If K is a finite complex, and $n>0$ is an integer such that $H^{q}(K)=0$ for all $q>n$, then the natural function

$$
\operatorname{Map}\left(K, s^{n}\right) \longrightarrow \operatorname{Hom}\left(H^{n}\left(s^{n}\right), H^{n}(K)\right)
$$

is one-to-one and onto.
Since $H^{n}\left(\mathrm{~s}^{\mathrm{n}}\right)$ is infinite cyclic, we have

$$
\operatorname{Hom}\left(H^{n}\left(s^{n}\right), H^{n}(x)\right) \approx H^{n}(x)
$$

therefore $\operatorname{Map}\left(K, S^{n}\right)$ is in $1-1$ correspondence with $H^{n}(K)$.

Hurewicz's classification theorem. If I is a connected and simply m connected space, and n is an integer such that $H_{1}(Y)=0$ for $0<1<n$, then the natural function

$$
\operatorname{Map}\left(S^{n}, Y\right) \longrightarrow \operatorname{Hom}\left(H_{n}\left(S^{n}\right), H_{n}(X)\right)
$$

is one-tome and onto.

Again $H_{n}\left(S^{n}\right)$ is infinite cyclic, and therefore $\operatorname{Map}\left(S^{n}, Y\right)$ is in $1-1$ correspondence with $H_{n}(Y)$.

As is well known, Hurewica defined a group structure in Map ($\mathrm{S}^{\mathrm{n}}, \mathrm{y}$) giving an abellan group denoted by $\pi_{n}(y)$ and called the nth homotopy group.

The conclusion of the theorem can be restated: Then $T_{i}(Y)=0$ for $0<1<n$, and $\pi_{n}(X) \approx H_{n}(Y)$.

The homotopy groups, Like the homology groups, form a functor from topology to algebra, and convert geometric problems into algebralc ones. They can be and are used to solve extension problems. However, unlke homology groupe, there Is a severe restriction on their use. Homotopy groups are very dipicult to calculate effectively. Computing a homotopy group requires us to solve a homotopy classification problem and this may be a problem of the same order or difficulty as the extension problem undex consideration A chief virtue of Hurewicz's theorem is that it reduces the calculation of a partculan homotopy group to that of a homology group.

The Hopi and Hurewicz theorems have an Intersection: the homotopy cisages of mappings $g^{n} \longrightarrow 5^{n}$ are $1 n 2-1$ correspondence with the homomorphisms $H_{n}\left(S^{n}\right) \longrightarrow H_{n}\left(S^{n}\right)$. Since $H_{n}\left(s^{2}\right)$ is infinite cycise, any such homomorphism fo La characterized by an integer a called the degree of the maphing is and 1t satispise $f_{*}(z)=d z$ for $z \varepsilon H_{n}\left(g^{n}\right)$

There is anion of the two theorems which is due to Elienberg [1]]:

Homotopy classifacation theorem. Let K be ainite complex and n a posithve integer such that $H^{q}(K)=0$ for $q>n$. Let y be connected and simplymennected space such that $H_{1}(X)=0$ for $0<1<n$. Then Map (K, X)
 K uslag $H_{n}(X)$ as coefficients.

Notice that the hypotheses alow only a single dimension n in which the cohomology of X is non-zero and the bomology of i is non-zero. As soon as we allow an overupplng of non-triviallty in more than one dimenalong the additlve structure of homology and cohomology becomes inadequate.

§10. Obetractions.

The method introduced by Ellenbert to prove the above result has very general applicability, und is called obstruction theory (see [24, Part III]). Let K be a complex, L a subcomplex and $f: L \longrightarrow Y$. For the sake of almpli= city assume that I is arcwise comected and amply-connected. Let x^{q} denote the q dimensional skeleton of K. The aubcomplexes $L u K^{q}$ for $q=0,1,0$ form an expanding sequence. Let us attempt to extend f over each in turn. An extension f_{0} over $L \cup K^{0}$ in obtained by defining f_{0} to be f on \mathbb{E} and to have arbitrary values on the verticea of K not in $\mathcal{L}_{\text {. For any }}$ 1-cell σ of $K-L, f_{0}$ is defined on its vertices and gives two points in Y. As Y is arcwise connected, we may map o into a path joining the two pointa. Doing this for cach such o gives an extension f_{1} of f_{0} over $\mathcal{L} \mathbb{K}^{1}$. For each 2-cell of of $K-L, f_{1}$ is defined on ita boundury ó giving a loop in Y. Since $T_{1}(X)=0$, the mapping f_{1} on $\dot{\sigma}$ may be extended over $\sigma_{\text {, Doing }}$ this for each a gives an extension f_{2} of f_{1} over $I u K^{2}$. Now if each $\pi_{1}(X)=0$ for $1<\operatorname{dim}\left(K-I_{i}\right)$, there 1 nothing to atop ue from continuing this process and obtaining an extension over all of K. Dut this is too severe a requirement, and we must aak what huppens in the general case. Ascume now that somehow an extension f_{q} of f over $I X^{q}$ has been achleved for some q, and conoider the extenaion problem poaed by each (q+1)cell o of $K-L$. We have that i_{q} lo 1 is defined, and is a mapping of a q-sphere into x. This determines an elenent of the homotopy group $\pi_{q}(X)$ prom vided we give o on orientation. This in done by first orienting a, and then giving of the orientation of the algebruic boumary do. Then, for each orient ed cell $o, f_{q} \mid d o$ derines an element of $T_{q}(X)$ denoted by $c\left(f_{q}, \sigma\right)$. thes function of (at1)-cella may bo regarded ne a (q+1)-aimecochain of x whth com efrucients in $\pi_{q}(X)$, and is denoted by $c\left(f_{q}\right)$. Since p_{q} can be extended
over σ if and only if $c\left(f_{q}, 0\right)=0$, we cail $c\left(f_{q}\right)$ the obstruction to ex. tending f_{q} Since f_{q} is defined on each cell of $I_{g} c\left(f_{q}\right)$ is zero on I. It is therefore a cochain of K modulo I .

Most important is the fact that $c\left(f_{q}\right)$ is a cocycle, i.e. it vanishes on boundaries. This follows because it wes defined using the boundary, and $\partial d=0$. It determines therefore cohomology class

$$
\bar{c}\left(f_{q}\right) \varepsilon H^{q+1}\left(K, L ; \pi_{q}(X)\right)
$$

Consider now what happens if we retreat one stage to \mathcal{f}_{q-1} and extend it over $L u K^{q}$ in some other fashion obtaining $f_{q^{0}}^{\prime}$ on any $q-c e l l$ of $K-\mathcal{L}_{g}$ the two mappings $f_{q} f_{q}^{\prime}$ agree on the boundary, and give two, cells in Y wh. a common boundary. These determine a map of a q-sphere in X, and hence an element of $\pi_{q}(Y)$ denoted by $d\left(f_{q}, f_{q}^{\prime}, \tau\right)$. The resulting q-cochain is called the difference cochain. Its main property is that its coboundary is the differm ence of the two obstruction cocycles.

$$
\delta d\left(f_{q}, f_{q}^{p}\right)=c\left(f_{q}\right)-c\left(f_{q}^{\prime}\right)
$$

This givea $\bar{c}\left(f_{q}\right)=\bar{c}\left(f_{q}^{\prime}\right)$. Therefore $\bar{c}\left(f_{q}\right)$ depends only on $f_{q}-1$ and can be written $c^{q+1}\left(f_{q-1}\right)$. It 1 s the obstruction to extending p_{q-1} over Lu K^{q+1} knowing that it can be extended over idu K^{q}.

Now suppose we retreat two stages to \sum_{q-2} and extend over $L_{q} \mathbb{R}^{q-1}$ in some other fashion obtaining \mathfrak{f}_{q-1}^{i}. This gives $(q-1)$ cochain $d\left(f_{q-1} \mathscr{f}_{q-1}^{\prime}\right)$. Its coboundary is $-C^{q}\left(f_{q-1}^{\prime}\right)$. So is the aiteration f_{q-1}^{i} is chosen so that $d\left(f_{q-1} f_{q-1}^{\prime}\right)$ is a cocycle, it may be extended to a map \tilde{p}_{q}^{i} of $L u \mathbb{K}^{q}$, in this case $\bar{C}\left(f_{d}\right)$ and $\bar{c}\left(\vec{p}_{d}\right)$ can be diferent cobomology classes. Their
 welated by the squaring operation

$$
s q^{2} \bar{d}\left(f_{q-1} f_{q-1}^{\prime}\right)=\bar{c}\left(f_{q}\right)-\bar{c}\left(f_{q}^{1}\right)
$$

It follows that the obstruction to extending f_{q-2} over I X^{q+1}, assuming it can be extended over $I U K^{9}$, is an element of the quotient group $\mathrm{H}^{\mathrm{q}+1} / \mathrm{Sq}^{2} \mathrm{H}^{\mathrm{q}}$. .

If we now retreat three stages to \mathcal{f}_{q-3} and extend over $\mathcal{L} u \mathbb{K}^{q}$ in some other fashion obtaining f_{q}^{\prime}, then $d\left(f_{q-2} f_{q-2}^{1}\right)$ is a $(q-2)$-cycle, and $s q^{2}$ of its cohomology class is zero. The difference $\bar{c}\left(f_{q}\right)-\bar{c}\left(f_{q}\right)$ is ame function of $\overline{\bar{d}}\left(\mathrm{f}_{\mathrm{q}-2^{2}} \tilde{q}_{\mathrm{q}-2}\right)$. The relationship in this case has been studied by Adem [1]. He has defined quite generally a cohomology operation, denoted by ${ }^{3}$, which increases dimension by 3 , is defined on the kernel of Sq^{2} and has values in the cokernel of Sq^{2}. The operation provides the desired connection.

The three stage retreat is as far as this game has been analysed in a detailed and effective manner. The general pattern is clear. If f_{q} and f_{q}^{8} are two extensions of f over $L u K^{q}$ which agree on $L w^{T} \quad(0 \leqq x<q-3)$, then $d\left(f_{x+1}, f_{r+1}^{\prime}\right)$ is an $(x+1)$-cocycle. Furthermore it lies in the kernel of $S q^{2}$; hence $\3 is defined on $1 t$, and it liea in the kernel of Φ^{3}, hence some unknown operation ϕ^{4} is defined on 1t. If $r<q-4$, it lies in the kernel of ψ^{4} and some operation 5^{5} is defined on it. This continues up to 0^{-4}. and this operation applied to $d\left(p_{r+1}, f_{r+1}^{\prime}\right)$ gives the difference $\bar{c}\left(f_{q}\right)=\bar{c}\left(f_{q}^{i}\right)$ nodulo images of $\$ q^{2}, \Phi^{3}, \ldots 9^{q-1-1}$.

The method of successive obstrictions has two main phases. First, one must compute effectively those homotopy groups $\pi_{i}(Y)$ wich appear as com efficient groups. This in itcele is a dificult problem. It is worth noting In this connection that E. H_{H}. Brown [6] has shown that the homotopy groups of a simply-connected inite complex are effectively computable. The second phase 1s to give effective methode of computing the operations s^{1} for $1>3$. Much
work remalns to be done. But enough has been accomplished to make one hopeful of ultimate success.
§11. The cohomology ring.

We shall turn now to the methods of constructing cohomology operations. Perhaps the simplest operation is the cup product which gives the ring atructure to the cohomology groups. When first discovered about 1936 by Alexander, Cech and Whitney, the cup product appeared to be very mysterious. It was not known for example why cohomology admits a ring structure but honology does not. The formulas defining the cup product gave little insight into the structure of the cohomology ring.

Lefschetz in his Colloquium book of 1942 presented a new approach to prom ducts which dispelled much of the mystery. It was based on products of comm plexes. If K and I are cell complexes, then their topological product $K \times$ I may be regarded as a cell complex in hich the cells are the products $\sigma \times \tau$ of cells $\sigma \in K$ and $\tau \varepsilon L$. It follow that the chain groups of $K \times I$ are aums of tensor products of the chain groupa of K and L

$$
c_{r}(K \times L) \approx \Sigma_{p+q=r} C_{p}(K) \otimes C_{q}(L)
$$

Introducing orientations suitably (1.e. defining incidence numbers in $K \times L$ In terms of those in K and L), one arrives at the boundary formula

$$
\partial(a \otimes b)=\partial a \otimes b+(-1)^{p} a \otimes \partial b, \quad d i m=p
$$

From this it followe that the product of two cyclea is a cycle, and if either is a boundary so is their product. Thus we have an induced homomorphiam

$$
\alpha \mathrm{H}_{\mathrm{p}}(\mathrm{~K}) \otimes \mathrm{H}_{\mathrm{q}}(\mathrm{X}) \longrightarrow \mathrm{H}_{\mathrm{p}+\mathrm{q}}(\mathrm{~K} \times \mathrm{L})
$$

In fact, with integer coefficients, α is an isomorphism of $\Sigma_{p+q=r} H_{p} \otimes H_{q}$ with a direct summan of $H_{r}(x \times I)$. Abbreviating $\alpha(x \otimes y)$ by $x \times y$, we obtain a bilinear product which is associative and comatative: if T interm changes K and L, then

$$
T_{*}(x \times y)=(-1)^{p q} y \times x
$$

An entirely analogous game can be played with cochains and cobomology. If u and v are cochains of K and L respectively, define $u \times v$ by apecify ing its values on product cells as follows

$$
(u * v) \cdot(\sigma \times T)=(u \cdot \sigma)(v, T)
$$

(Tt is understood here that u.o is zero if u and o have different dimenw slons). This gives an isomorphism (K or I finite)

$$
c^{r}(K \times L) \approx \Sigma_{p+q=x} c^{p}(K) \otimes c^{q}(L)
$$

satisfyiag the coboundary relation

$$
\delta(u \times v)=\delta u \times v+(-I)^{p} u \times \delta v
$$

and inducing

$$
\alpha^{p} H^{p}(K) \otimes \mathbb{L}^{q}(L) \longrightarrow H^{p+q}(K \times L)
$$

This ylelds a bilinear product which is associative, and commatative. It is also highly non-trivial in that a maps $\sum_{p+g m i} H^{p} H^{q}$ isomorphically onto a airect sumand of $\mathrm{H}^{\mathrm{r}}(\mathrm{K} \times \mathrm{H})$.

Up to this point the results for homology and cohomology are on a par. Now take $x=L$, and let

$$
\mathrm{d}: \mathrm{K} \longrightarrow \mathrm{x} \times \mathrm{K}
$$

be the diagonal mapping $d(x)=(x, x)$. Passing to bomology and cohomology gives two diagrams of homonorphiems

$$
\begin{aligned}
& H_{p}(K) \otimes H_{q}(K) \xrightarrow{\alpha} H_{p+q}(K \times X) \stackrel{a^{*}}{\longrightarrow} H_{p+q}(K) \\
& H^{p}(K) \otimes H^{q}(K) \xrightarrow{\alpha} H^{p+q}(K \times K) \xrightarrow{d^{*}} H^{p+q}(K)
\end{aligned}
$$

clearly d_{*} and α cannot be composed, but d^{*} and α can be because co homology is contravariant. The cup-product of $u \varepsilon H^{p}(\mathbb{K})$ and $v \varepsilon \mathbb{H}^{q}(X)$ is defined by

$$
u v=d^{*} \alpha(u \otimes v)=d^{*}(u \times v)
$$

This gives a product in the cohomology of K which is associative and comatam tive: $u v=(-1)^{p q} v u$.

This method of Lefschetr makes it completely clear why cohomology has a ring structure but homology does not. It also shows that the study of the co-
 gation of the way in which the diagonal is imbedded in the product.

A very beatiful application of the ring atructure was made by Hops [15] in determining the cohomology of Lie groups as follows

Hopf's theorem on group manifolds. If G is the space of a Lle group, then the cohomology ring of G over a field of coefficients of characteriatic O If the same as the cobomology ring of the product space of a collection of spheres of odd dimensions. Equivalentiy, $H^{*}(0)$ is an exterior algebra with odd dimensional generators.

There is en extension theorem hiden in this proposition, To see this, 1et. x be a infte complex, and let 1 denote a selected vertex of x. In

$1 \times k$ it is the union of two copies of K With a point in common. Define

$$
h: \mathbb{K} \times \mathbb{K} \rightarrow \mathbb{K} \quad \text { by } \quad h(x, 1)=x=h(1, x)
$$

Then for each K, we have an extension problem: Can h be extended to f: $K \times X \longrightarrow K$ A very strong necessary condition for this is that $H^{*}(K)$ mut be an exterior algebra with ad dimensional generatorg. For the exigtence of P defines a continuous mutiplication in K by $x y=f(x, y)$ having 1 as a twowsided unit. And such a multiplication was all that Hopf assumed in proving his theorem.

An extensive generalizetion of 䧲ops's theorer has been given by A Borel
[4]. He relaxen the hypothesen by allowing the gpace o to be infinte dimensional, and the coefficient field to have a prime characteristic froviding the Held 1 p perfect). He concludes that $H^{*}(G)$ 1s a tensor product of ex. terion algebras and polynomial ringa (which may be truncated).

Another application of the cohomology ring was made by Pontragin to the computation of an obstruction [19]. A simplified form of the result goes as followg: Let $\mathrm{h}: \mathrm{K}^{3} \longrightarrow \mathrm{~g}^{2}$ map the 3 -skeleton of a complex I into the 2-spheres and let u be a generator of the infintte cyclic groug $H^{2}\left(s^{2}\right)$ uaing integer coefficienta. gince x^{3} is the 3 makeleton, the inciusion $\mathbb{X}^{3} C \mathrm{~K}$
 obstruction to extenaing h over K^{4} is the square of $\phi^{-1} \mathbf{p}^{*} u$. Therefore
 able over x^{4}.

§12. Motivation for sq^{2}.

Because the method of constructing the squaring operationa appears to be somewhat arbitrary, it is worthwhile to give the motivation which led their discovery, Briefly, obstruction theory gave a non-constructive proof of the existence of sq^{2}.

To see this clearly, let K be a complex, and let v be an acocycle of K representing $u \in H^{n}(K ; Z)$. Construct a mapping I of the ($n+1$)-skeleton K^{n+1} into the n-sphere S^{n} as follows. R1rst, shrink K^{n-1} to a point to be mapped by i into a point $y_{0} \varepsilon s^{n}$. Each oriented $n=c e l i$ of x be= comes an n-sphere and may be mapped onto S^{n} with the degree $\mathrm{v} \cdot \sigma$ ($=$ the value of v on 0). For each ($n+1$) well T, the boundary of t is mapped on s^{D} with total degree $=\mathrm{v}$. $\partial \sigma$. By aefinition of coboundary, we have $v \cdot \partial \sigma=\delta v \cdot \sigma=0$ because v is a cocycle. So the mapplag of the boundary of T extends over T. Doing this for each T defines $\mathrm{i}_{\mathrm{i}} \mathrm{K}^{\mathrm{n}+1} \longrightarrow \mathrm{~s}^{\mathrm{n}}$.

The obstruction to extending f over x^{n+2} is $\mathrm{an}(n+2)$-cocyle $o(f)$ with coefficients in " $\pi_{n+1}\left(S^{n}\right)$. It cohomology clase $c(s)$ depends only on the class u of v, and may be written $c(s)=s q^{2} u$. When $n=2$, we have $\pi_{3}\left(s^{2}\right)=z$, and Pontrjagin's extension theorem $(\$ 11)$ gives $\bar{c}(f)=u \vee u$. When $n>2$, Freudenthal proved that $\pi_{n+1}\left(s^{n}\right)=z_{2}$, and therefore $8 q^{2}$ in a mapping $H^{n}\left(K_{3} 2\right) \longrightarrow H^{n+2}\left(K_{8} 2_{2}\right)$.

§13. The homology of groupe.

The frst effective depintion of the squares used explicit formulas in aimplicial complexes. These vere genexalizationa of the Alexander formula for the cup product, and they gave no intuitive insight. To obtain auch insight It was dmportant to ifnd a conceptual defindtion analogous to Letachetz's
construction of cup products using $K \times x$ and the diagonel mapping $d:$ $\mathrm{K} \Rightarrow \mathrm{K} \times \mathrm{K}$. This was found and, surprisingly, it revealed a connection With another development of algebraic topology, nemely, the homology groups of a group. We turn to this now.

Let π be group (possibly non-abelian). In the applicationa we bave In mind 1 is a finite group. A complex u is calied a Tocomplex if T is represented as group of automorphisms of W A T-complex W is said to be Tifee if, for each cell of W, the transforms of o undex the varlous elements of T are als distinct. Let W / π denote the complex obtalned by 1dentifying points of W equivaient under T. Then Twieeness implies that the collapsing map $W \longrightarrow W / T$ is covering with T as the group of covering trensformations. Let $A(T)$ denote the faniy of Thiree complexec which are also acyclic (1.e. all homology groups are zero). Inere are two Important facts about the family $A(T)$. Mrgt, it 15 nonaempty. Secondiy. 15 and W are in $A(T)$, then there are chain mappinge $W / T \longrightarrow W / W \Rightarrow W / T M$ giving homotopy equivalence. It collowg that the bomology of W/Tr depends on. T alone, and we define the homology of 7 by

$$
\mathrm{H}_{\mathrm{q}}(T)=\mathrm{E}_{\mathrm{q}}(W / T) \quad \text { for } W \in A(T)
$$

This concept was developed purst by milemberg and hachane, and independenty by Hopi.

As an example, Let be bhe cyclic group of order 2 with generator m. Let be the umion of sequence of apheres

$$
s^{0} \mathrm{Cs}^{1} C s^{2} C \cdots C s^{n} C
$$

where the n-bphere 8^{2} is an equator of $8^{\text {hth }}$. Let p be the antipodal

are n-cells denoted by a_{n} and Td, The collection of these cells for $n=0,1,2, \ldots$ gives cellular structure on W. Obviously wis free. We orient the cells po that the following are the boundary relations:

$$
\begin{aligned}
& \partial d_{1}=T d_{0}-d_{0} \quad \partial T d_{1}=d_{0}=T d_{0}, \\
& \partial d_{2}=d_{1}+\pi d_{2}, \quad \partial T d_{2}=\pi a_{1}+d_{2}, \\
& \partial d_{3}=T d_{2}-d_{2}, \quad \partial T d_{3}=a_{2}-T d_{2}, \\
& \partial d_{2 n}=a_{2 n-1}+T d_{2 n-1}, \quad \partial T d_{2 n}=T d_{2 n-1}+a_{2 n-1} \\
& \partial d_{2 n+1}=T d_{2 n}=d_{2 n} \quad \partial T d_{2 n+1}=d_{2 n}-T d_{2 n} .
\end{aligned}
$$

In an even (oda)dmension, every cycle is a multiple of $\mathrm{Td}_{\mathrm{nn}} \mathrm{a}_{2 n}$ $\left(d_{2 n+1}+T_{2 n+1}\right)$ and this cycle bounds. Therefore in is acyclic. Collapsing $W \longrightarrow W / \pi$ gives a sequence of real projective spaces

$$
\mathbb{P}^{0} \subset \mathbb{P}^{\eta} \subset \cdots \subset p^{n} \subset \cdots
$$

The cells d_{n} " ${ }^{2} d_{n}$ come together to form a single cell d_{n}; and the boundary relations become

$$
\partial d_{2 a}^{3}=2 d_{2 n-1}^{B}, \quad \partial d_{2 n+1}^{B}=0
$$

Using $Z_{2}\left(=\right.$ the integers mod 2) as coefficients, we obtain $H_{Q}\left(\pi z_{2}\right)=2_{2}$ for all 4 .

§14. Construction of the squares.

We are prepared now to define the squaring operations in a complex K. Recall that the diagonal mapping $d: K \longrightarrow K \times K$ is used to construct cup products by the rule $u \sim v=d^{*}(u \times v)$. To compute d^{*}, one must obtain from d chain mapping

$$
d_{0}: c_{q}(K) \longrightarrow c_{q}(K \times K), \quad q \geqq 0
$$

Since the cells of $K \times K$ are the products of cells of K, the diagonal is not a subcomplex of $K \times K$. Hence there is no uniquely determined d_{0} but one mast choose d_{0} from a collection of algebraic approximations to d We proceed to describe these. For each cell of K, define its carrier $C(\sigma)=|\sigma \times \sigma|$ to be the subcomplex of $K \times K$ consiating of $\sigma \times \sigma$ and ant of its faces. We refer to $C(\sigma)$ as the diagonal carrier. Because a and its faces form an acyclic complex, $C(0)$ is likewise acyclic. It is the minimal carrier of a because $C(\sigma)$ is the least subcomplex containing $d(0)$. Any chain mapping d_{0} such that $d_{0} \sigma$ is a chain on $C(\sigma)$ is calied an approximation to d. The two principal facts about such approximations are that they exist, and any two are chain homotopic. These facta are proved by constructing the chain map, or the chain homotopy, inductively with reapect to the dimension starting in the dimension zero. The acyclicfty of the carrier is all that is needed for the general step. Any approximation do induces a homomorphism d^{*}, and the homotopy equivalence of any two ineures that they give the same d^{*}.

The importent point to be observed about the construction of d_{0} is this: although the mapping a is symmetric, there is no symmetric approximation d_{0} Precisely, if T is the automorphism of $K \times K$ which interchanges
the two factors, then $R=d$ but there is no d_{0} such that $T_{0}=d_{0}$ This is easily sean by taking K "to be a i-simplex 0 so that $K \times K$ is a square. The l-chain d_{0} must connect the two end points of the diagonal and lie on the periphery of the square, so ft must go around one way or the other.

This difeiculty can be restated in a more 111 minating fashion tet act also on K as the identity map of K. Then a is equivariant, i.e. $T d=d T . \quad$ But there is no chain approximation d_{0}. which is equivariant. The reason is that T acts Ireely on the set of possible choices for $a_{0} \sigma^{\sigma}$ but leaves o fixed.

Given a d_{0}, we can measure ita deviation from aymmetry. since d_{0} and T_{0} are carried by c, there is a chain homotopy d_{1} of d_{0} into ra. Precisely, for each q-cell σ, there is a $(q+1)$-chain $d_{1} \sigma$ on $c(\sigma)$ such that

$$
\partial a_{2}^{\sigma}=T d_{0} \sigma=d_{0} \sigma-d_{1} \partial \sigma .
$$

Then

$$
\partial T d_{1} \sigma=a_{0} \sigma=T d_{0} \sigma-T d_{1} \partial \sigma
$$

It follows that $a_{1}+T a_{1}$ is a homotopy of d_{0} around a circult back into 1tself. For each qucell a this homotopy lies on $C(\sigma)$ it is therefore homotopic to the constant homotopy of a_{0} Precisely, there is a $(q+2)$ chain d_{2} on $C(0)$ such that

$$
\partial d_{2} \alpha=d_{1} \sigma+\pi d_{1} \theta+d_{2} \partial \sigma
$$

At this stage, the construction should remind one of the construction, given in the preceding aection, of the π-free complex W. The analogy is made precise as follows. Form the product complex $W \times \mathrm{K}$. Define the
action of π in $W \times K$ by $T(W \times \sigma)=(T W) \times \sigma$. The composition of the projection $W \times K \longrightarrow K$ and $d: K \longrightarrow K \times K$ bas the minimal carrier $C(w \times \sigma)=|\sigma \times \sigma| ;$ it is acyclic, and satisfies $T C=0$. Since W is Tufree, so also is $W \times K$. It follows that there is a chain mapping
$\phi: W \otimes K \longrightarrow K \otimes K$
carried by C which is equivariant: $\phi T=T \phi$. (The tensor product \otimes is used instead of x because W and K are now regarded as chain complexes). Recalling that W consists of cells $d_{1}, T d_{1}$, we now identity $\phi\left(d_{0} \otimes \sigma\right)$ with the diagonal approximation $d_{0} \sigma_{\text {, and }} \phi\left(d_{1} \otimes \sigma\right)$ with the chain homotopy $d_{1} \sigma$, etc. Then the d-relations given above for $d_{0} \sigma_{3} d_{2} \sigma_{2} d_{2} \sigma$ correapond exactly to the fact that ϕ is a chain mapping: $\partial \phi=\phi \partial$.

For each integer $i \geqq 0$, we define a product called cupm, as follows. If $u \in C^{p}(K)$, and $v \in C^{q}(K)$, then $u-1 \quad \varepsilon c^{p+q-1}(K)$ is defined by

$$
\left(u \psi_{1} v\right) \cdot c=u \otimes v \cdot \phi\left(d_{i} \otimes c\right), \quad c \varepsilon c_{p+q-1}(k)
$$

Using the fact that ϕ is equivariant we obtain the coboundaxy relations modulo 2

$$
\delta\left(u v_{1} v\right)=u \vartheta_{1-1} v+v v_{1-1} u+\delta u v_{1} v+u-_{1} \delta v
$$

(By convention, $u \psi_{-1} v=0$). If we set $u=v$ and assume $\delta u=0 \bmod 2$, it follows that $u \gamma_{1} u$ is a cocycle mod 2. Passing to cohomology classes gives a function denoted by

$$
\mathrm{Sq}: 1: \mathrm{H}^{\mathrm{p}}\left(\mathrm{~K} ; z_{2}\right) \longrightarrow \mathrm{H}^{2 \mathrm{p}-1}\left(\mathrm{~K} ; z_{2}\right)
$$

which agsigns to the class of u the class of $u{ }^{u} u$. It is notationally more conventent to deftne

$$
S q^{3}: H^{p}\left(K_{;} Z_{2}\right) \rightarrow H^{p+j}\left(K_{3}: Z_{2}\right)
$$

by setting $S q^{j} u=S q_{p-j} u$.
The cup-1 products depend on the choice of ϕ. However any two ϕ^{\prime}. are connected by a chain homotopy which is equivariant. It follows that gq is independent of the choice of ϕ.

§15. Properties of the Squares.

The elementary properties of the $s q^{1}$ are as follows.

1. If f is a mapping, then $f^{*} \mathrm{Sq}^{1}=\mathrm{Sq}^{1} \mathrm{f}^{*}$. This expresses the toplogical invariance of Sq^{1}.
2. Sq^{1} is a homomorphism.
3. $s q^{0}=$ identity.
4. $\quad s q^{p} u=u \sim u$ if $p=d i m$.
5. $S q^{i} u=0$ if $i>\operatorname{dim} u$.
6. If $K \subset K$, and $\delta: H^{p}\left(L_{1}\right) \longrightarrow H^{p \% 1}\left(K, L_{1}\right)$ is the usual coboundary, then $\delta S q^{1}=S q^{1} \delta$ 。
7. If $\delta^{*}: H^{p}\left(K ; Z_{2}\right) \longrightarrow H^{p+1}\left(K ; Z_{2}\right)$ is the Bockstein coboundary for the coefficient sequence $0 \longrightarrow z_{2} \longrightarrow z_{4} \longrightarrow Z_{2} \longrightarrow 0$, thea $\$ q^{1}=8^{\text {米 }}$ and

$$
\mathrm{Sq}^{21+1}=\delta^{*} \mathrm{Sq}^{2 j} \quad \text { for } \quad j \geqq 0
$$

These can be proved readily by uning the machinery already set up. Leas elementary is the Cartan formula:

This can be proved by an explicit computation of a π-mapping $W \longrightarrow W \otimes W$. Using these properties one can compute the squares in many special cases. If $\operatorname{dim} u=1$, its only non-zero squares are $S q^{0} u=u$ and $S q^{1} u=\varepsilon^{*} u=u \vee u$. If $\operatorname{dim} u=2$, its only non-zero squares are $s q^{0} u=u, S q^{1} u=\delta^{*} u$, and $S q^{2} u=u \vee u$. These facts combined with formula 8 enable us to compute squares in the subring of $H^{*}\left(K_{j} Z_{2}\right)$ generated by 1 and 2 -dmensional classes. For example,

$$
\text { 9. } \quad s q^{1}\left(u^{k}\right)=\left(\frac{k}{1}\right)_{u^{k+1}} \quad \text { if } \text { alm } u=1 \text {. }
$$

In this formula, (k is the binomial coeficient mod 2 , and is zero if $1>k$. In the real projective n-space p^{n}, the cohomology ring is the polynomial ring generated by the non-zero element $u \varepsilon \mathbb{E}^{l}\left(\mathrm{p}^{\mathrm{n}} ; \mathrm{z}_{2}\right)$, truncated by the relation $u^{n+1}=0$. Clearly formula 9 gives all squarea in p^{n}. Let p^{x} be a projective subspace of $P^{n}(0<r<n)$, and form a space P^{n} / P^{r} by collapaing P^{r} to a point. The collapsing map $f: P^{n} \longrightarrow P^{n} / P^{r}$ induces 1somorphisms $P^{*}: H^{k}\left(P^{n} / P^{r}\right) \approx H^{k}\left(P^{n}\right)$ for all $k>r$ because P^{r} is an r-dimensimal skeleton of P^{n}. Let $w_{k} \in H^{k}\left(P^{n} / P^{r}\right)$ be such that $f^{*} w_{k}=u^{k}$. Using 9 and 1, we have $S q^{1} w_{k}=\binom{k}{1} w_{k+1}$ for $k>r$ and all i. In particular, when no5 and $x=2$, we have $s q^{2} W_{3}=w_{5}$. I used this exsmple in § 6 to show that P^{4} / P^{2} is not a retract of p^{5} / P^{2}. This is the simplest case known to me where a sqi gives a relation between cocycles which are not already reLated be cup product or a Bockstein coboundary operator.

§16. Reduced power operations.

The squaring operations are associated with the symnetric group of degree 2, It is to be expected that more cohomology operations are to be obtained by studying the n-fold power $K^{n}=K \times \cdots \times K$, and the action of the symmetric group $S(n)$ a permutations of the factors of K^{n}. This is the case. The general definition goes as follows.

Let π be any subgroup of $S(n)$; and let W be a π free acyclic complex. Let $C(\alpha \times 0)=|0|^{n}$ be the diagonal carrier from $W \times K$ to X^{n}. As it is equivariant and acycilc, there is an equivariant chain maping

$$
\phi: W \otimes K \longrightarrow K^{n} .
$$

Let $K^{*}=$ Hom (X, Z) be the cochain complex of K. Define a cochain complex $W \otimes X^{* n}$ by

$$
c^{x}\left(W \otimes x^{m n}\right)=\sum_{i=0}^{\infty} C_{1}(W) \otimes c^{x+1}\left(K^{* n}\right)
$$

The terms of the sum are zero for $1>n$ din $K=x$. If $\mathcal{K} C_{i}(W)$ and $v \varepsilon c^{r+1}\left(x^{* n}\right)$, set

$$
\delta(w \otimes v)=\partial w \otimes v+(-1)^{2} w \otimes \delta v
$$

 cochain mapping

$$
\phi^{\prime}: W \otimes X^{* n} \longrightarrow \mathbb{X}^{*}
$$

dual to $\$$ as rollows

$$
f^{\prime}(w \otimes v) \cdot 0=(-1)^{1(1-1) / 2} v \cdot \phi(w \otimes \sigma)
$$

where $1=d m w^{2}$, 18 a cochain or $K^{* a} \approx K^{n *}$ and a is a chain of K with dim $\alpha=\operatorname{dim} v=0$

The action of π in $W \otimes K^{2}$ ls defined by

$$
t(W \vee V)=T W \otimes T V, T \varepsilon \pi
$$

And T acts as the identity in K^{*}. Then the equivariance of 0 implies that
 the same cochain. If we identily equivaient cochains of $W \mathbb{K}^{\text {Fin }}$, we obtain the quotient complex denoted by $W Q X^{* 2}$. Then $\|^{\prime \prime}$ Induces a cochain mapping

Passing to cohomology with coefticlent group G, we obtain an induced homomorphism

$$
\phi^{*}: H^{0}\left(W \otimes K^{*} D \otimes G\right) \rightarrow H^{n^{*}}\left(K^{*} \otimes G\right)=H^{Y^{*}}(K ; G)
$$

How let u be a q-cocycle mod θ of \mathbb{K}. Treating u as an integer cochoing Ye have $\delta u=0 y$ for some v. Then che multiples of u and vi Som a cochain gubcomplex 1 of K^{*}. Let y denote the inclusion mapplag
 V^{n} and the identrty mep of W induce a cochsin mapping

$$
\psi^{3}: W \theta_{T} H^{n} \longrightarrow \theta_{\pi^{2}}
$$

Tensoring with 6 and pessing to cohomology gives n induced mapping

Composing 量 * and in * gives a moping

$$
\Phi: H^{r}\left(W \otimes M^{n} \otimes G\right) \longrightarrow H^{r}\left(K_{j} G\right)
$$

It depende apparently on the choice of ϕ and the cocycle u mod θ. In fact it is independent of ϕ (any two ϕ 's are equivariantly homotopic); and it depends only on the cohomology class \bar{u} of u. The image of $\theta_{\text {, }}$ for all r, is called the set of π-reduced powers of $\bar{u} \varepsilon H^{q}\left(K ; Z_{Q}\right)$. The groups $H^{*}\left(W \otimes M_{T} \otimes G\right)$ depend only on the groups π, G and the integers θ, n, They are generalizations of the ordinary homology groups of π. In the special case that u is an integral cocycle ($v=0$) and q 16 even, we have

$$
H^{r}\left(W \otimes \otimes_{\pi} M^{n} \otimes G\right) \approx H_{n q-w}(\pi ; G)
$$

For, in this case, $M \approx Z$ is generated by u, and $M^{n} \approx \mathbb{Z}$ is generated by $u^{n} W i t h \pi$ acting as the identity. Therefore $W \theta_{\pi} M^{n} \approx W \otimes_{\pi} z \approx W / T$. If we take account of the dimensional indexing, the assertion follows, Then, to put it roughiy, each homology class of a permutation group of degree n gives a cohomology operation.

If we recall that the squares $3 q$ are the mod 2 homology classes of $5(2)$ it is clear that we have available a great wealth of cohomology operations, and that these demand analysia.
817. A basis for reduced power operations.

A rather elaborate analysis $[26,27]$ Bhows that a relatively amail collection of reduced power operations generate all others by forming compositions. The analysis has two main steps. The first ahows that we do not need to con. sider all permatation groups: it suffices to consider, for each prime p, the cyclic group p_{p} of order p and degree p. The second atep analyzea the
homology (in the generalized sense) of p_{p}.
Just as $\mathcal{H}_{j}\left(\rho_{Z^{\prime}}: Z_{2}\right) \approx Z_{2}$, we have $H_{j}\left(\rho_{p} \cdot Z_{p}\right) \approx Z_{p}$. A generator Sor this group gives a cohomoloty operation analogous to sq, when $p>2$, this operation is dentically zero for most of the values of 3 . The reason for this is that the homomorphism of homology induced by the inclusion mapping $\rho_{p} \longrightarrow S_{p}$ has a large kernel for >2. If we discard the operations which are zero, we obtain an infinite sequence of operations cailed the cyclic reduced powers

$$
Q^{2} p^{q}\left(K_{i} Z_{p}\right) \quad H^{q+2 L}(D-1)\left(\mathrm{A}^{2} Z_{p}\right) \quad d=0,
$$

The operation p_{p}^{1} recucen to Sq^{21} when $\mathrm{p}=2$, and the main propertiea of these operations are mid modifications of the properties of sq^{21} Listed in 815.

To complete our Ifst of besic cohomology operatione, we need to ad join for each prime p the Pontrjagin p th power. For each integer >0, 14 is a function

$$
\Phi_{p^{\prime}}: \mathrm{H}^{2 q}\left(K_{;} Z_{p^{k}}\right) \longrightarrow \mathrm{H}^{2 p \mathrm{q}}\left(\mathrm{~K}_{;} ;{ }_{p^{k+1}}\right)
$$

At first giance, the operation may seem mysterious however it is ony a mila modification of the $p^{\text {th }}$ power in the sense of cup producta. por; if $p^{\text {P }}$ is reduced mod p^{k}, 16 becomen u^{p}. Pontriagin (20] discovered the operation tor $p=2$. He observed that, 11 u 1 a cocycle mod 2^{k}, then

$$
40_{0}+4-15 u
$$

1 s cocycle mod 2^{3+1}. The operatione tor $p>2$ vere pond and studed by p. Thomas [29.30].

There are certaln elementary cohomology operatione which are taken for
granted but must be mentioned in oxder to state the main sesult. Theae axe: addition, cup products, homonorphisns induced by homomorphisms of coerficieat groups, and Bocketein coboundary operators associated with exsct coefficient sequences $0 \rightarrow G^{3} \longrightarrow C^{3} \longrightarrow 0$. Then the matn re sult becomes:

The elementary operations and the operetions $\mathrm{Sq}^{1}{ }^{7} \mathrm{Q}^{1} \mathrm{p}^{1} \mathrm{p}$ generate all reduced power operstions by fomming compositions.
818. Relations on the basic operations.

The generators listed sbove sathefy mumerous relationo. Some of the relations astispled by the $8 q^{2}$ are given in $\$ 15$. They pathafy alao a more complicated set of relations which were found by J. Adem $11:$ If a <2 b, then

$$
\left.8 q^{a} \mathrm{Sq}=\sum_{1=0}^{[a / 2]}(\mathrm{b}-1-1) \mathrm{a}-21\right) \mathrm{Sq}^{\mathrm{b}+\mathrm{b-1}} \mathrm{~Bq}^{1}
$$

This holds for theindicated operetions applied to a cocyele of any dimenalon. To clarify the rough 1 mplication, let us call an terated square $s q^{1} s^{3}$ reducible if $1<21$. Then the formula expresses each reduclble iterated square as a sum of irreduclble ones. Itersted equares, as reduced power operations, appear as homology classes of the $2-$ sylow subgroup of g(4). These relations wexe found by computing the kernel of the homomorphism 1 m $=$ duced by the incluelon of the gubgroup in the whole group. They have two Important consequences.

1. Fach sq ${ }^{1}$ can be cxpressed as a sum of iterates of $8 q^{2}, j=0,1,2, \ldots$
2. Let us call the iterated square $\mathrm{Sq}^{\mathrm{t}^{1}} \mathrm{Sq}^{\mathbf{i}^{2}} \cdot \operatorname{lq}^{\mathrm{i}_{r}}$ admissible if

$$
i_{1} \geqq 2 i_{2}, i_{2} \geqq 2 i_{3}, \ldots, i_{r-1} \geqq 2 i_{r}
$$

Then every iterated square is uniquely expressible as a sum of admissible Iterated squares.

The first result shows that the system of generators given in $\$ 17$ is too large, we can throw out each Sq^{2} for which i is not a power of 2 . (It is to be noted that if we do this, then the relations satisfied by the remaining squares are not readily written).

The second result was proved first by J. - P. Serre [22] uaing an entireIy different method involving the Elienberg-MacLane complexes. The result can be expressed in a more illuminating fashion. Let A be the ascociative (non-comutative) algebra over Z_{2} generated by the Sq^{i} subject to the relations of Adem with ${S q^{0}}^{0}=1$. Then the admissible elements form an additive basis for A.
$J . M i l n o r ~ h a s ~ s h o w n ~[17] ~ t h a t ~ t h e ~ m a p p i n g ~ \phi: A ~ P ~ A ~ A ~ g i v e n ~ b y ~$

$$
\phi\left(S q^{j}\right)=\sum_{j=0}^{1} S q^{j} \otimes s q^{1-j}
$$

(compare with formula 8 of $\$ 15$) defines a honomorphism of algebras, and converts A into a Hopf algebra. He shows that the dual Hopf algebre A^{*} (which is commutative) is a polynomial ring in an easily specified set of generators. Dualiaing gives an additive base for A quite different from that of Serre. An important consequence of Milnor's work is that the algebra A is nilpotent.

Analogous regults heve been obtained for the 0_{p}^{1} for primes $p>2$. Adem [2,3] and Cartan [7] found independently the iteration relations, and proved the anologs of proposition 1 and 2 above. Milnor handka also the case $p>2$ 。

To state the situation roughly, we have a very good hold on the relations satisfied by the cyclic reduced powers in spite of the fact that these relations are complicated.

As for the Pontrjagin $p^{\text {th }}$ powers, the sftuation is not as satiafectory however it is exceedingly interesting. Thomas has given a set of relations which the $p^{\text {th }}$ powers satisfy, but in a most indirect fashion. He takes as coefficient domain a graded ring A with divided powers. The divided powers are functions $\gamma_{n}: A_{r} \longrightarrow A_{n r}$ having the formal properties of the function x^{n} / a : The cohomology $H^{*}(X ; A)$ becomes a bigraded ring. He then extenda the definition of \mathcal{F}_{p} to operations ψ_{n} for all integers $a \geq 0$. The collection $\left(\right.$ क $_{n}$) are then shown to form a set of divided powers in the sub ring of $H^{*}(K ; A)$ of elements with even bidegrees. In this way he obtains relations such as

$$
\begin{aligned}
& \Psi_{r}(u) \psi_{s}(u)=\binom{r+s}{r} \psi_{r r s}(u)_{P} \\
& P_{P}(u+v)=\sum_{n=0}^{r} P_{B}(u) P_{F-B}(v)_{s} \\
& \hat{f}_{s} \hat{f}_{x}(u)=\binom{2 r-1}{r-1}\binom{3 r-1}{r-1} \ldots\binom{s r-1}{r-1}^{p} p_{s r}(u) .
\end{aligned}
$$

Although each ${ }^{\circ} \mathrm{F}$ is expressible in terms of the $\frac{p}{p_{p}}$ for primes p aividing n, it would be exceedingly clumsy to write the above relations using only the powers with prime indices.

It is not yet known whether we bave a complete set of relations on the basic generators. One can ask, for example, whether expressions of the form $T_{p} Q_{p}^{1}$ are reducible?
§19. The Filenberc-Mactane complexes.

There is another approach to the subject of cohomology operations which makes use of the special complexes, called (π, n)-spaces, due to Ellenberg and MacLane [12,13]. These spaces appear to be fundemental to any study of homotopy; and it seems likely that the complete solution of the extenston problem will make vital use of them.

If If is an abelian group and $n>0$ is an integer, then a space X is said to be (π, n)-space if it is arcwise connected and all of its homotopy groups are zero except $\pi_{n}(x)$ which is isomorphic to π.

There are a few relatively simple examples. The circle g^{l} is a (2,1)-space (all its higher homotopy groups are zero because its universal covering space, the straight ine, is contractible). The infinite dimensianal real projective space ($\$ 3$) is a ($Z_{2}, 1$)mspace (it is covered twice by g^{m} Whose homotopy groups are zero). Another example is the complex projective space of infinite dimension. It is a $(2,2)$-space because it is the base space of a fibration of g^{∞} by circles, i.e. by fibres which are (2,1). spaces.

There are (π, n)-spaces for any prescribed π and n. This fact is not evident, and will be discussed in some detail in later sections. For the present, it is helprul to anticipate two broad conclusions of this discussion. First, a (π, n)-space is usually infinite dimensional. Secondy, although the homotopy atructure of a (π, n)-space is simple, its homology structure is usually most intricate. This is in sharp contrast with a space such as $g^{\text {n }}$ Whose homology is simple, and whose homotopy is intricate.

Let Y bo a (π, n)-space. Attached to Y is its fundamental class U. This is an element of $H^{n}\left(Y_{\xi} T\right)$ obtained ar follows. gince $\pi_{1}(Y)=0$
for $1<n$, Hurewhez's theorem asserts that the natural map if of $\pi_{n}(x)$ into $H_{n}(Y)$ is an isomorphism. Since also $H_{n-1}(X)=0$, it follows that the natural mapping

$$
H^{n}\left(Y ; \pi_{n}(Y)\right) \rightarrow \operatorname{Hom}\left(H_{n}(X), \pi_{n}(Y)\right)
$$

is an isomorphism. Then u_{0} is the element on the left whose image on the right is ϕ^{-1}. We may also describe u . is the primary obstruction to contracting y to a point $[24: 9.187]$. The rat important result about (π, n)-spaces, is the

Homotopy classification theorem If X is a (π, n) space, and X
 $1-1$ correspondence between $\operatorname{Map}(X, Y)$ and $\mu^{n}(X, \pi)$.

A proof of this proposition, in the geometric case, can be found in [11; $9.243, T \mathrm{~m} . \mathrm{II}]$ and, for the purely algebraic case of semi-simplicial complexes, see. [13; paper ITI, pp. $220-521]$. In essence, the argument is the one used in proving Hope's theorem (89). If $\%$, in the theorem, is aldo \& (π, n) space, the conclusion asserts that there is a map $f: X \rightarrow Y$ such that ${ }^{*}{ }^{4} 0$ ls the fundamental class of x and this mapping is a homotopy equivalence:

Corollary, wIthin the realm of complexes, any two (m,n)-spaces have the same homotopy type. Thus their homology and cohomology depend only on TI and n: hence $H^{*}(1, G)$ may be written $H^{*}(\pi, n ; C)$.

The importance of (TH)-spaces to the study of cohomology operation As gen gs follow. Recall that cohomology operation T relative to dimensions q, no nd coefitctent groups G, G lo a set of Auctions

$$
T X^{\circ}: H^{q}(X ; G) \longrightarrow H^{n}\left(X ; G^{\prime}\right)
$$

for each space X such that $f^{*} T_{Y}=T_{X} f^{*}$ for each mapping $f: X \longrightarrow X$. Let $O\left(q, G i, G^{\prime}\right)$ denote the set of all such operations. If we add opera: ations in the usual way $\left(T+T^{8}\right) X=T X+T^{8} X^{3}$ then $O\left(q, G y g^{\prime}\right)$ is an abellan group.

Now let Ψ be (G, q)-space, and let u_{0} be its fundamental class.

$$
T u_{0} \varepsilon \tilde{H}^{r}\left(x_{j} G^{n}\right)=H^{r}\left(G, q ; G^{8}\right)
$$

Theorem. The assignment $T \longrightarrow$ Tho defines an isomorphism

$$
Q\left(q, G^{\prime} r, a^{1}\right) \approx H^{r}\left(a, q, G^{1}\right)
$$

This result is due to Serre [22\%.220], and independently to Eilenberg MacLane [23]. The proof runs as follows. Suppose T, Tr are operations such that $T u_{0}=T^{\prime} u_{0}$. Let X be a complex and $u \in H^{q}\left(X_{i} G\right)$. By the classification theorem, there is a mapping $f: X \longrightarrow Y$ such that $f^{*} u_{0}=u$. Therefore

$$
T \dot{u}=T f^{*} u_{0}=f^{*} T_{0}=f^{*} T^{\prime} u_{0}=T^{\prime} f^{*} u_{0}=T^{s} u_{0}
$$

Thus $T=T^{8}$ in $O\left(q, G ; x, G^{\prime}\right)$, For the other part, let $W E H^{r}\left(G, q, G^{\prime}\right)$. Construct a $T \in O\left(q, G g r, G^{\prime}\right)$ as follows. If X is any complex, and $u \varepsilon \mathbb{H}^{q}(X ; G)$, choose mapping $f: X \longrightarrow Y$ such that $f^{*} u_{0}=u$ and define $T=f w_{0}$ one verifies that $T_{0}=w$ by taking $X=Y, u=u_{0}$ and $s=$ identity.

The rough conclusion of the preceding section is that the detemmation of all cohomology operations is equivalent to the problem of computing the co homology of the (T, $)$-spaces. The latter problem has been the aubject of extensive research by Eilenberg-MacLane [13], H. Cartan [7,8,9], and otheze. A brief review of their work is in order.

The basic construction of (π, n)-spaces is given in the lamgage of sem m simplicial complexes. This appears to be most convenient concept for nearly 21. question concerned with homotopy. The following definition of an abotract sem-aimplicial complex K is obtained by witing dow fairly obvious propertien of the alngular complex of a space.

Murgt, for each dimenaion $q \geq 0$, there $1 s$ a set $K q$ whose elementa are called a-simplexes (to be thought of as ordered almplexes). por each a and
 face operator, and if $x \in K_{q} q^{\text {g }}$ then $\partial_{1} x$ is the ${ }^{t h}$ face of x. Again, for each q and each $1=0,2, \ldots, q$, there la function $H_{1}: M_{q} \rightarrow K_{q+1}$ called the $1^{\text {th }}$ degeneracy operator. (picture the collapsing of $(q+1)=$ almplex 1 to a q-simplex obteined by bringing the $i^{\text {th }}$ and (1+1) et vertices togethers then s_{1} is the inverse operation). The definition is completed by imposing the identioles:

$$
\begin{aligned}
& \partial_{1} \partial_{1}=\partial_{1-1} \partial_{1} \quad \quad 1<1
\end{aligned}
$$

$$
\begin{aligned}
& \partial_{1} a_{j}=s_{j-1} \partial_{1,} \quad \quad \quad i_{1} \\
& \partial_{1} S_{1}=\partial_{1+1} I_{1}=\text { identsty } \\
& \partial_{1} B_{j}=\varepsilon_{j} \partial_{1} 1^{\prime} \quad 1>J+1 .
\end{aligned}
$$

A mapping $f: K \longrightarrow L$ of one semi-stmplicial complex into another consists of a function $f_{q}: K_{q} \longrightarrow I_{q}$ for each q such that $\partial_{i} f_{q}=f_{q-1} \partial_{1}$ and $s_{1} f_{q}=f_{q+1} s_{1}$.

An ordinary bimplicial complex K can be converted in various ways into a semi-simplicial complex K^{\prime}. For example, if an ordering of the vertices of K is given, one defines K_{q}^{\prime} to be the set of order preserving (monotonic) simplicial mappings of the standard ordered q-simplex Δ_{q} into K.

As already remarked, the concept of the singular complex of a space is a functor $\$$ from the category α of spaces and mappings to the category 0 of semi-simplicial complexes and mappings. There is a functor $R: Q \longrightarrow Q$ called the geometric realization。 In fact if $K \in \mathbb{B}$, then $\mathbb{R}(K)$ is a CW-complex. The particular realization given by Milnor [18] has very useful properties. Each non-degenerate simplex of K determines a cell of $\cdot \mathrm{R}(\mathrm{K})$. Also \mathbb{R} behaves well with respect to standard. operations such as suspensions and products. Now there are natural mappings

$$
\begin{array}{ll}
R S(X) \longrightarrow X & \text { for } \\
K \longrightarrow S \in(K) & \text { for } \\
K \in B
\end{array}
$$

The second of these' is always a homotopy equivalence. If X is a reasonable space (e.g. triangulable), the first mapping is also a homotopy equivalence. The conclusion is that all questions in a, depending on homotopy type only, are equivalent to the corresponding questions in Q. This is true in particular of extension problems and homotopy classification problens. Since this is our main concern we will limit all subsequent discussion to the category θ.

Each $k \in Q$ determines a simplicial chain complex $C(K)$ as follows. The free abelian group generated by the set K_{q} in denoted by $C_{q}(X)$ and is
called the group of g-chains. The functions ∂_{1}, s_{1} extend uniquely to homonorphisms of the chain groups denoted by the same symbols. Whe identio ties Listed above remain valia. Now define $j_{i} c_{c_{0}}(K) \rightarrow \mathrm{C}_{\mathrm{q}} \mathrm{q}(\mathrm{K})$ by $\partial=\sum_{1=0}^{Q}(-1)^{t} \partial_{1}$. Then $\partial d=0$, and one defines homology and cohomology in the usual way.

\$21. Constructions of $(\pi$, nedpaces.

RHlenberg and Mactane assign to (T,n) a semmsimplicial complex $K(\pi, n)$ In the following rather simple wey, Let Δ_{q} denote the complex or the standard q-simplex with ordered vertices. Let $Z^{n}\left(\Delta_{q} \pi\right)$ be the group af n-cocycles of Δ_{q} with coefficients in $\%$ These are nomalized cocyclea In the sense that they have the value zero on degenerate nosimplexes. Then a q-simplex of $k\left(m^{n} n\right) 15$ defined to be such a cocycle: $K_{q}=z^{n}\left(A_{q} \pi\right)$. The standard map $\Delta_{q-1} \rightarrow \Delta_{q}$ gotten by skipplng the 1 th vertex, induces a homomorphism $Z^{n}\left(\Delta_{q}{ }^{7 T}\right) \rightarrow Z^{n}\left(\Delta_{q-1}, T\right)$ which $1 s$ denoted by $\partial_{1}: K_{q} \rightarrow \mathbb{K}_{q-1}$. The degeneracy s_{1} is likewise induced by the f th degeneracy $\Delta_{a+1} m_{a}$ *

Mach work must be done to show that the honotopy groupe of $\bar{x}(\pi y)$ are
 whet hinders a successmul computation of 1 th homology on cohomology. If TH is infinite, e.g. $T=z_{g}$ then each K_{q} is infinite Mos meana that $C_{q}(K) 1 s$ not $\ln 1$ itely generated gnd therefore the ptandard methoas of
 and we are in the realm of effective computability put due to the aree mumber of rodinenshonal faces of A_{a} the standarimethods are not procticat. So, in elther case, ame large gcale reduction of the probiem munt be nohkeved.

The first observation is that $K(\pi, n)$ and. $K(\pi, n+1)$ are related. Define a complex $W(\pi, n)$ in the same manner as $K(\pi, n)$ except for setting $W_{q}=C^{n}\left(\Delta_{q}, T\right)$. Since Δ_{q} is acyclic, $z^{n}\left(\Delta_{q}\right.$ jTT $)$ is the kernel of 8: $c^{n}\left(\Delta_{q} ; \pi\right) \longrightarrow z^{n+1}\left(\Delta_{q} ; \pi\right)$, and δ is an epimorphism. From this it followe thet we have semi-simplicial mappings

$$
K(\pi, n) \xrightarrow{1} W(\pi, n) \xrightarrow{p} K(\pi, n+1)
$$

where p is a fibremaping with the fibre $K(\pi, n)$. The argument which shows that $K(\pi, n)$ is a (π, n)-space, shows also that $W(\pi, r)$ is homotopically equivalent to a point. The second observation is that $K(\pi, n)$ is an abelian group complex. This means that each K_{q} is an abelian group, i.e. $Z^{n}\left(\Delta_{q}{ }^{3} T\right)$, and each ∂_{i}, s_{i} is a homomorphism. The group structure of K_{q} induces a ring structure in $C_{q}(K)$.

These observations motivate the construction of a new sequence of comm plexes $A(\pi, n)$ given by Hlenberg and MacLane. They start with $A(\pi, O)=K(\pi, 0)$. Then, for any abelian group complex r, they construct a homotopically trivial complex $B(P)$, and a fibre mapping

$$
\cdot \Gamma \xrightarrow{1} B(r) \xrightarrow{p} B(r)
$$

with fibre F. Finally, $A(\pi, n)$ is defined inductively by $A(\pi, n)=\bar{B}(A(\pi, n-1))$. This construction is referred to as the bar construction. An inductive argument based on the two fibrations leads to the conclubion that $A(\pi, n)$ is homotopscally equivalent to $K(\pi, n)$.

In case T is finitely generated, the complexes $A(\pi, n)$ are finite in each dimension, and hence their homologies are effectively computable. This is a large reduction of the problem. Using the $A(\pi, n)$, Ellenberg and Maclane
successfully computed the first fev non-trivial homology groups, and obtained important applications. However the computation problem was still far from solved.

The next large reduction of the problem was made by H. Cartan. He formulated a generai concept of fibre space construction of which the two con= structions given above are examples. He showed that any two acyclic con= structions applied to homotopically equivalent group complexes gave homotopically equivalent base spaces. He was then able to give relatively simple constructions for cyclic groups π. Using these, the comutation of $H^{*}(\pi, n)$ for findtely generated $\pi^{\prime} s$ is almost practical.

To 111ustrate the complexity of the situation, we will state cartan's result on the structure of the ring $H^{*}\left(\pi, n ; z_{p}\right)$ when π is infinite cyclic and p is an odd prime. First, there is a sequence x_{1}, x_{2}, \ldots of elements of H^{*} such that H^{*} is isomorphic to the tensor product $\theta_{i=1}^{\infty} P\left(x_{1}\right)$ where $P\left(x_{1}\right)$ is the polynomial ring over z_{p} generated by x_{1} if $\operatorname{dim} x_{1}$ is even, and it"is the exterior algebra generated by x_{1} if dim x_{1} is odd. For any dimension q, only a finite number of $x_{i}{ }^{\prime}$ s have dimensions $<q$. It remains to specify the $x_{1} ' s$. This is done most efficientiy by using the cyclic reduced $\mathrm{y}^{\text {th }}$ powers p^{i}. A finite sequence of positive integers $\left(a_{1}, \ldots, a_{k}\right)$ is called admissible if
(i) each a_{1} has the form $2 \lambda_{1}(p-1)+\varepsilon_{1}$ where λ_{1} is a positive integer; and ε_{1} is 0 or 1 ,
(11) $a_{i+1} \geqq p a_{1}, \quad 1 \leqq 1<k$
(11) $p a_{K}<(p-1)\left(n+a_{1}+\cdots+a_{K}\right)$

Define $S t^{a_{1}}=O^{\lambda_{1}}$ if $\epsilon_{i}=0$ and $S t^{a_{i}}=\delta^{*} \rho^{\lambda_{1}} \quad i t^{2} \varepsilon_{i}=2$ whare θ^{*} is the bocksteln operator for $0 \rightarrow Z_{p} \rightarrow q_{p} \rightarrow Z_{p} \rightarrow 0$. Let uo be the fundamental class of $K(\pi, n)$. Then the set (x_{p}) conststs of the element u_{0} mod p gnd the elements

$$
g t^{a_{x}} \cdots s t^{a_{1}} u_{0}
$$

as $\left(a_{1}, \ldots, a_{k}\right)$ ranges over all admissible sequences.
A corollary of this result is that all cohomology operations with Z as initial and Z_{p} as temmal coeffickent group are generated by the operationa: addition, cup-product, δ^{*} and the $\sigma^{1}{ }^{\text {. }}$

Using the full strength of Cartan's results, Moore [18] has ghown that all cohomology operations, whose inttial coefficient groups are finitely generm sted, are generated by the cohomology operations 11 sted at the end of $\$ 17$.

S22. Symmetric products.

We have described two methods of obtaining cohomology operations. The flrst Involved $n^{\text {th }}$ powers of complexes and the sction of the symmetric froup on the factors. The second made use of the mlenbergmachane complexed. Each method has its advantages. The first gives specific operations with convenient properties. The second gives all operations. Since they Lead to the same regults, it should be possible to bring the two methods together as s single method. The basis for accomplehing this is provided by a theorem of Dold and Thom [10] as followa.

Let $\mathrm{sp}^{n} \mathrm{x}$ denote the symetric $\mathrm{n}^{\text {th }}$ power of a spece (or complex) x, 1.e. colinpee x^{n} by identifying points equivalent under $3(n)$. choose a base point $x_{0} \in X_{y}$ and use it to give an imbedaing

$$
\begin{equation*}
\operatorname{sP}^{n} \mathrm{X} \subset \operatorname{se}^{\mathrm{n}+1} \mathrm{X} \tag{22.1}
\end{equation*}
$$

by identifyine $\left(x_{1}, \ldots, x_{n}\right) \in x^{n}$ with $\left(x_{0}, x_{2}, \ldots, x_{n}\right) \varepsilon x^{n+1}$. The union over n of $S P^{n} X$ gives the infinite symmetric product $S P^{\infty} X$. The rough assertion of the Dold-Thom result is that there are isomorphisms

$$
\begin{equation*}
\pi_{i}\left(\mathrm{SP}^{\infty} \mathrm{X}\right) \approx H_{i}(\mathrm{X}) \tag{22.2}
\end{equation*}
$$

$$
i \geqq 1 \text { 。 }
$$

This is a most surprising result. It offers an entirely new method of constructing (π, n)-spaces. For example, if X is the n-sphere s^{n}, it follows that $S P^{\infty}\left(S^{n}\right)$ is a $(2, n)$-space. The case $n=2$ of this was already known for elementary reasons: $\quad S P^{\infty}\left(S^{2}\right)$ is the infintte dimensional complex projective space. To see this, regard s^{2} as the space of 2 homogeneous complex variables $\left[a_{0}, a_{1}\right]$, and also as the space of linear functions $a_{0}+a_{1} z$. Consider the complex projective n-space $C P^{n}$ as the space of $n+1$ homogeneous variables $\left[a_{0}, a_{1}, \ldots, a_{n}\right]$, and also as the space of polynomials $\sum_{i=0}^{n} a_{i} z^{1}$. Each polynomial factors into the product of a linear functions, and determines thereby an unordered set of n elements of S^{2}. This gives a $1-1$ corres. pondence between $S P^{n}\left(S^{2}\right)$ and $C P^{n}$. Letting $n \longrightarrow \infty$ yields the above assertion.

It is easy to construct a space X whose homology is zero save $H_{n}(X)$ which is prescribed. If $H_{n}(X)$ is a cyclic group of order θ, let X be s^{n} with an ($n+1$)-cell attached by a map of degree θ_{0} If $H_{n}(x)$ is a drect sum of cyclic groups, let X be a cluster of n-spherea having a common point together with (n+1)-cells attached to the spheres with suitable degrees.

All of this can be done quite effectively. The question of the moment is the effectiveness of the conetruction of $\operatorname{SP}^{24} \%$. The latter, as a
complex, appears to have infinitely many cells in each dimension. The fact which renders the construction etfective is natural direct sum decomposition of the chain complex $C\left(S P^{\infty} X\right)$. The basic step is a splitting into chain subcomplexec

$$
\begin{equation*}
c\left(\operatorname{SP}^{k} x\right) \approx c\left(\mathrm{SP}^{k-1} x\right)+U^{k} \tag{22.3}
\end{equation*}
$$

The existence of such a subcomplex U_{k} is easily established in the language of semi-simplicial complexes as follows. Let X be semi-simplicial, let 1 denote the omsimplex which acts as the base point X_{o}, and let q_{q} be the gmimplex $\left(s_{0}\right)^{q}$. The $k^{\text {th }}$ power x^{k} le taken in the sense of cartesian products, and $s p^{k} X$ has as q-simplexes unordered sequences $X_{1} \cdot x_{k}$ of
 q-dimensional part of U_{k} is defined to be those quchaina generated by chains of the form

$$
\begin{equation*}
\left(x_{1}-1_{q}\right) \cdot\left(x_{k}-1_{q}\right) \tag{22.4}
\end{equation*}
$$

(It is clear that expanding this product into a sum gives a chain of $\mathrm{SP}^{h} \mathrm{X}$). Under a face or degeneracy operator, this expression retains the same form or becomes zero. Thus U Is is a chain subcomplex (WD-complex in the language of ELenberg-MacLane).

If We iterate the decomposition 22.3, we obtain

$$
\begin{aligned}
& C\left(\operatorname{sp}^{n} X\right) \approx \mathbb{x}_{k=0}^{n} U_{k} \\
& C\left(\operatorname{sp}^{\infty} X\right) \approx \sum_{k=0}^{\infty} U_{k}
\end{aligned}
$$

Pagsing to cohomology gives

$$
H^{*}\left(S P^{\infty} X\right) \approx \sum_{k=0}^{\infty} H^{*}\left(U_{k}\right)
$$

By 22.3.

$$
\begin{equation*}
H^{*}\left(u_{k}\right) \approx \mathbb{H}^{*}\left(S P^{k} X, S P^{k-1} X\right) \tag{22.6}
\end{equation*}
$$

Since the finiteness of X (in each dimension) implies the same fo: $g P^{k} \mathrm{~K}_{\mathrm{g}}$ there in no question about the effective computability of U_{k} and $H^{*}\left(U_{k}\right)$. If X is connected, there is an additional fact: $H\left(U_{k}\right)=0$ for $L<k$. Thus for any dimension q, the sum in 22.5 is finite. To state it otherwise:

$$
\begin{equation*}
H^{q}\left(\operatorname{SP}^{\infty} X\right) \approx H^{q}\left(\operatorname{SP}^{k} X\right) \quad \text { for } \quad k \geqq q \tag{22.7}
\end{equation*}
$$

Elements of $H^{*}\left(U_{k}\right)$ are said to be of rank k. We obtain then a natural bigrading of $\mathbb{H}^{*}\left(\operatorname{Sp}^{\infty} \mathrm{X}\right)$ by dimension and rank, Dold [18] has shown that the decomposition 22.5 depends only on the homology groups of X. It follows that $H^{*}(\pi, n)$ admits a natural bigrading by dimension and rank. In $H^{*}(\pi, n)$ the rank of a product is the aum of the ranks (for homogeneous elements). In fact this holds in $H^{*}\left(S P^{\infty} X\right)$ whenever X is a suspension.

When the decomposition by rank was discovered through the symmetric products, it was then seen how to define it directiy, through the constructions of Cartan. It followè that Cartan's methods of computation may be applied to compute effectively the homology of $\operatorname{SP}^{\mathrm{n}} \mathrm{X}$. This is an old problem of algebratc topology, and many papers have treated special cases. Now, for the fret time, we have a generally valid method.

The welding together of the two methods of constructing cohomology operations is not yet complete. By the nethods described in $\$ 16$, one can define a homomorphiam

$$
H^{*}\left(W \otimes_{\pi} M^{n}\right) \longrightarrow H^{n}\left(S P^{n} M\right)
$$

which, for $\pi=S(n)$, is an isomorphism for large T but not for all. Much work remains to be done to complete the picture.
§23. Spaces with two non-zero homotopy groups.

A good start has been made on the analysis of spaces with just two nonzero homotopy groups. The rough overall picture is known but most of the dem tails are missing.

First, we know how to construct such spaces. Suppose the prescribed non-zero groups are $\pi_{n}(Y)=\pi$, and $\pi_{q}(X)=\pi^{8}$ with $q>n$. The product space $K(\pi, n) \times K\left(\pi^{i}, q\right)$ has the required homotopy groups; but there are many others which are homotopically distinct. To obtain these, we must consider fibre spaces having $K(\pi, n)$ as base and $K\left(\pi^{\prime}, q\right)$ for fibre. Recall (\$21) that $W\left(\pi^{\prime}, q\right)$ is an acyclic fibre space over the base space $K\left(\pi^{\prime}, q+1\right)$ with fibre $K(\pi, q)$. Any mapping $f: K(\pi, n) \longrightarrow K\left(\pi^{i}, q+1\right)$ induces a fibre space Y_{f} over $K(\pi, n)$ with the same fibre (see $[24, \S 10]$). Using a semisimplicial version of the classification theorem [24, §19], it follow that the assignment of X_{f} to i sets up a l-1 correspondence between equivalence classes of such fibre spaces and homotopy classes of mappings. That such a fibre space has the prescribed homotopy groups follows from the exactness of the homotopy sequence of the fibre space [24, 817].

The homotopy classification theorem of $\$ 19$ implies that the homotopy clasbes of mappings $K(\pi, n) \longrightarrow K\left(\pi^{2}, q+1\right)$ are in $1-1$ correspondence with the elements of $H^{q+1}\left(\pi, n ; H^{\prime}\right)$. Thus to any element $k \in H^{q+1}\left(\pi, n ; \pi^{3}\right)$ corres. ponds a homotopy class of spaces with the presertbed homotopy groups. In Pact this gives all such in a l-1 manner. If x has the prescribed homotopy groups, there is a unique k such that x belows to tho cluse corresponding to k. Imis is seen by mapping $X \xrightarrow{B} K(\pi, n)$ so as to carry the fundamental
class of $K(\pi, n)$ into that of Y, and defining $k(X) \varepsilon H^{q+1}\left(\pi, n g \pi^{2}\right)$ to be the primary obstruction to retracting the mapping cylinder of g into Y. The class $k(Y)$ is called the Ellenberg-Machane Kminvariant of γ (see H2l). Automoxphisms of π and π^{s} induce automorphisms of $H^{q+1}\left(\pi_{3} n_{i} \pi^{3}\right)$. If k_{1} and $k_{2} \varepsilon H^{q+1}\left(\pi, n ; \pi^{\prime}\right)$ are equivalent undex such an automorphism then the corresponding spaces have the same homotopy type. Thus the homotopy type problem for such spaces reduces to determining equivalence classes of elements of $H^{q+1}\left(\pi, n ; \pi^{i}\right)$ under such automorphisms. This problem is not yet solved. In essence we know how to compute the group $H^{q+1}\left(\pi, n, \pi^{\eta}\right)$ but, if two elements of the group are given, we do not know how to tell in a finite number of steps, whether or not they are equivalent under automorphisms of π, π^{2}. Recall (\$10) that, in the theory of obstructions, we have need of secondary cohomology operations (such as Adem's Φ^{3}) which are defined only on the kernel of an ordinary (primary) cohomology operation. In $\$ 19$ we have seen that any $k \in H^{q+1}\left(\pi, n, \pi^{2}\right)$ determines a primary operation $T(k)$: for any space X,

$$
T(k): H^{n}(X ; \pi) \longrightarrow H^{q+1}\left(X ; \pi^{i}\right)
$$

Furthermore k determines, as above, a fibre space Y over $K(\pi, n)$ with piure $K\left(\pi^{\prime} ; q\right)$.

Each conomolocy clase y \& if $(Y ; G)$ deternines a seconciary operation defined on the kernel of $T(k)$.

To see this, suppose $u \in H^{n}(X, \pi)$ Lien in the kernel of $T(k)$. There is a mapping $h: X \rightarrow K(\pi, n)$ which carries the fundomental clase of $K(\pi, n)$ into u, and its homotopy class is unique. Since $T(k) u=0$, we must have $b^{*} k=0$ (see §19). Since k is the characterictic class of Y (1.e. the obstruction to Lifting $K(\pi, n)$ into Y), there is a mapping $g: x \rightarrow Y$ which
composes with the projection $Y \longrightarrow K(\pi, n)$ to give h. Define the secondary operation $T(k, y)$, when applied to u, to be the set of images $g^{*} y$ for all liftings g of h. In the stable case $x<n+q$, one can describe precisely the nature of the set $T(k, y)$ us follows. The res. triction of y to the fibre $K\left(\pi^{\prime}, q\right)$ determines a primary cohomology operation $T(y): H^{q}\left(X ; \pi^{2}\right) \longrightarrow H^{r}(X ; G)$. Then the set of possible images $\mathrm{E}^{*} \mathrm{y}$ is obtained by adding one of them to the image of $T(y)$.

The result just proved emphasizes the importance of computing the cohomology of Y. This problem has barely been touched. As a fibre space, we know the cohomology of its base $K(\pi, n)$ and its fibre $K\left(\pi^{\prime}, q\right)$, and we know also its characteristic class k. This gives us a hold on its com homology structure via the spectral sequence. But we are far from having it in our grasp.

§24. Postnikov systems

Spaces with three or more non-zero homotopy groups can be built by continuing the pattern of the preceding section. Suppose we wish to build spaces having homotopy groups $\pi, \pi^{\prime}, \pi^{n}$ in the dimensions $n<q<r$ respectively. First we build a space Y having two nonwero homotopy groups $\pi, \pi^{\text {i }}$ in the dimensione n, q. Let $k \in H^{q+1}\left(\pi, n \pi^{\prime}\right)$ be its k-invariant. Now choose an element $k^{\prime} \in H^{r+1}\left(Y ; \pi^{n}\right)$. The homotopy classification theorem ($\$ 19$) assigns to K^{B} a mapping $I: X \longrightarrow K\left(\pi^{8}, r+1\right)$. Let y^{\prime} be the fibre space over Y induced by f and the acyclic fibre space $W\left(\pi^{2 f}, r\right) \longrightarrow K\left(\pi^{3 \prime}, r+1\right)$. Then $Y^{\prime} \longrightarrow Y$ has $K\left(\pi^{\prime \prime}, r^{r}\right)$ as its flbre; and therefore Y^{\prime} bas the required three non-zero homotopy groups.

Given a fourth homotopy group, say o, to be inserted in the dimension s > r, we start with the Y^{\prime} above, choose a cohomology class $k^{n} \in H^{8+1}\left(Y^{1}, 0\right)$,
select a corresponding map $Y^{\prime} \rightarrow K(0, s+1)$, and form the fibre space Y^{B} over Y^{\prime} induced by $W(\alpha, s) \rightarrow K(\sigma, s+1)$.

It is clear that we have described a semi-effective method of building a great variety of spaces using the Eilenberg-MacLane complexes as building blocks. The fact of the matter is that any space can be built, in the sense of homotopy type, by a sequence of such constructions. This idea is due to Postnikov [21]. Precisely, with any connected space X, we can associate a sequence of spaces $X_{n}, n=0,1,2, \ldots$ a sequence of projections $p_{n}: X_{n} \longrightarrow X_{n-1}$, and a sequence of mappings $f_{n}: X \longrightarrow X_{n}$ such that X_{0} is a single point, and for each $n>0$

$$
\begin{array}{ll}
\pi_{i}\left(x_{n}\right)=0 & \text { for } \\
f_{n *}: \pi_{1}(x) \approx \pi_{1}\left(x_{n}\right) & \text { for } \quad 1 \leqq n \\
p_{n} p_{n} \simeq n_{n-1} & \tag{ii1}
\end{array}
$$

(IV) X_{n} is a fibre space over X_{n-1} with respect to X_{n} the fibre is a $\left(\pi_{n}(X), n\right)$-space and can be taken to be $K\left(\pi_{n}(X), n\right)$.

Such a system is called a Postnikoy system for X. It is not unique but any two $\left(X_{n}\right),\left(X_{n}^{\prime}\right)$ are equivalent in the sense that there are mappings $X_{n} \longrightarrow X_{n}^{\prime} \longrightarrow X_{n}$ which give a homotopy equivalence, and, in iact, a fibre bomotopy equivalence of the fibre spaces $X_{n} \longrightarrow X_{n-1}$ and $X_{n}{ }_{n} X_{n-1}^{n}$ This is indeed a most interesting way of dissecting a space. It provides a fresh point of view, and raises many questions whose answers may cast Light on our basic problems. Some useful answers have already been obtained. E. H. Brown [6] has proved the following theorem:

If X is a finite complex which is connected and simply=connected, then a Postnikov system for X is. effectively constructible.

An inmediate corollary is that the homotopy groups of X are effective ly computable. At one time this problen was thought to be of the same order of magnitude as the extension problen itself. It was regarded as a basic weakness of obstruction theory that it used honotopy groups as coefficients when these groups were not know to be computable.

It may be useful to conclude with some questions suggested by these results. Can Brown's result be improved? If X is a finite connected complex, and the word problem for $\pi_{1}(x)$ is effectively solvable, does it follow that a Postnikov system for X is effectively constructible? A use ful special case is that in which $\pi_{1}(X)$ is abelian. It will be important to find efficient methods of computing the Postnikov systems of special kinds of spaces such as spheres and spaces with one or two non-zero homology groups.

Perhaps it is more important to analyse the basic extension problem in terns of the Postnikov systems of the spaces involved in the problem. Brown has given a partial result in this direction.

Let X, Y be finite simplicial complexes, let A be a subcomplex of X, and let $h: A \longrightarrow Y$ be simplicial. Also let Y be simply-connected and such that $H^{(}(Y ; Z)$ is a finite group for all $q>0$. Then there is a finite procedure for deciding whether h is extendable to a mapping $x \longrightarrow Y$.
fuis result it obtained by studying a Postnikov system for X. The res= triction that each $H_{q}(Y)$ be finite is most severe, and should ultimately be unnecessary.

It may be that what is needed is a method of dissecting a mapping (or its homotopy class) similar to the dissection of spaces. One can always treat a mapping as an inclusion mapping (into the mapping cylinder); This suggests tryine to construct simultaneous Postrilkov aystems for a pair consisting of a space and a subspace. Again, a mapping is always homotopically equivalent to
the projection of some fibre space onto its base. Starting with such a projection one can represent it as the composition of a sequence of fibre space projections for which the successive fibres are Eilenberg-MacLane complexes. This is done by dissecting the original fibre a homotopy group at a time. How effective is this procedure? How does it beheve under come positions of mappings? It is easy to ask questions, it is hard to find good ones.

Bloliography

1. J. Adem, The iteration of steenrod squares in algebrafc topology, Proc. Nat. Acad. Sci. 38 (1952), 720-726.
2. \longrightarrow Relations on iterated reduced powers, ibid. 39 (1953), 636.638.
3. \longrightarrow, The relations on Steenrod power of cohomology classes, Algebraic geometry and topology (A symposium in honor of S. Lefschetz), Princeton University Press 1956.
4. A. Borel, Sur la cohomologie des espaces fibres principaux et des espaces homogenes de groupes de Lie compacts, Annals of Math. 57 (1953, 115-207.
5. A.Borel and J.-P. Serre, Groupes de Lie et puissances reduites de Steenrod, Amer.Jour. Math. 75 (1953), 409-448.
6. E. H. Brown, Finite computability of Postnikov complexes, Annals of Math. 65 (1957), 1-20.
7. H. Cartan, Sur les groupes demilenberg-Mactane $H(\pi, n)$, Proc. Nat. Aced. Sci. 40 (1954), $467-471$ and 704-707.
8. , Sur 1'iteration des operations de Steenrod, Coment. Math, Helv. 29 (1955). 40-50.
9. - Seminaire H. Cartan 1954/1955, Paris.
10. A. Dold and R. Thom, Luasi faserungen und unendliche symmetrische Produkte; Annals of Math. (to appear).
11. S. Eilenbere, Cohomology and continuous mappings, Annald of Math. 41 (1940), 231-251.
12. S. Etienberg and S. Machane, Relations between homology and homotopy groups, Proc. Nat. Acad. Sci. $29(1943)$, 155-153: also Amels of Nuth. 46(1945), 480-509.
 55-106; 60(1954), 19-139; 60(1954), 513-557.
13. H. Hopf, boer die Abbildungen der s^{3} auf die s^{2}, Math. Annalen $104(1931), 637-665$.
14. Math. $42(1941), \frac{\text { Uber die Tologie der Gruppen-Manningfaltigketten, Annals of }}{22-52}$
15. gehooren Uber die Bettischen Gruppen die zu einer bellebigen Gruppen gehơren , Coment. Math. Helvo 17 (1944), 39-79.
16. J. Minor, The steenrod algebra and its dual, Annals of Math. (to appear).
17. J. Moore, Seminar notes 2955/1957, Princeton University.
18. I. Pontrjagin, A classification of mappings of K^{3} into S^{2}, Rec. Math. [Math. Sbornik]N. S.9 (51)(1941, 331-363.
19. SSSR $34{ }^{\prime}(2942), 35-37$. 3 -sphere into an n-complex, C.R.Akad. Wauk
20. M. M. Postnikov, on the homotopy theory of continuous mappiags, mrudy Mat. Inst. im Steklov No. 46. Izdat. Akad. Nauk SSSR, Moscow 1955.
21. J..-p. Serre, Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. HeIv. 27(1953), 198-231.
22. N. E. Steenrod, Products of cocycles and extensions of mappings, Annals of Math. $48(1947), 290-320$.
23. The topology of fibre bundles, Princeton Univ. Press 1951.
24.
25.
26. N. E. Steenrod and P. E. Thomas, Cohomology operations derived from cyclic groups, ivid. (to appear).
27. N. E. Steenrod and J. H. C. Whitehead, Vector fields on the nobphere,
Proc. Nat. Acad. Sci. $37(1951)$, 503.63.
28. P. E. Thonos, A generalization of the pontrjagin square cohomology operations, ibid. 42(1956), 266-269.
29.

[^0]: Work supported in part by U.E.Ar Force contract 18 . $18(600)$ - 1494.

