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APPROXIMATING CELLULAR MAPS BY HOMEOMORPHISMS

L. C. SIEBENMANN
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Our av expressed for closed manifolds, is to show that (with a few possible exceptions) a

_continuous map f: M — N is a limit of homeomorphisms if and only if each point preimage

S, y € N, is compact and contractible. Contractibility is here meant in the weak sense
of Borsuk [10], and is equivalent to the terms shape of a point or cell-like or UV, .

The space H(M, N) of homeomorphisms M to N of homeomorphic manifolds that are
compact without boundary (i.e. closed), and of dimension m > 0, is never closed in the
space of continuous maps M to N for the compact-open topology. In fact M. Brown has
proved [12] that if X is any compactum in M which is cellular in M (i.e. X has small open
neighbourhoods that are open m-cells), then M/X (=M with X collapsed to a point) is a
manifold, call it N, and the quotient map M — N is a limit of homeomorphisms. An example
of a compactum cellular in the plane R? is the closure of {(x, sin(1/x))|0 < x.< 1}. On the
other hand R. Finney [22] has observed that any map f: M — N, which is a limit of homeo-
morphisms, is cellular in the sense that f~'(y) is cellular for all y in N. The proof is a
pleasant exercise. One is thus led to conjecture that the limits of homeomorphisms are pre-
cisely the cellular maps (not less). And the conjecture is made miore significant by the fact
from engulfing [35] [42] that, if m # 3, 4, f is cellular <> each point preimage f ~*(y) has
the shape of a point. (= is clear). S. Armentrout has proved the conjecture for m = 3; we
shall prove it for m > 5, and give a new proof for m < 3.

To state our result in greater generality, we define CE maps f: X — Y to be proper
continuous maps such that, for each y in Y, f "*(y) is compact and cell-like.
Proper means that the preimage of each compactum is compact.

Adapting the arguments of [31], we prove:

APPROXIMATION THEOREM A (announced in [46]). Let f: M — N be a CE map of metric
topological m-manifolds, m # 4, with or without boundary, such that £|0M gives a CE map

OM — ON. Let e: M — (0, ) be continuous. Suppose that at least one of the following three
conditions holds.

(@) m+3,4,5

(b) m =5 and f: OM — 0N is a homeomorphism

(c) m =3, and for each y € N, f~'(y) has an open neighbourhood that is prime for con-
nected sumt (call such an f prime).

Then there exists a homeomorphism g: M — N such that d(f(x), g(x)) < &(x) for all
xeM.

tIf X is a 3-manifold possibly with boundary, which is not homeomorphlc to an (interior) connected sum
Y#Z where Z is a closed 3-manifold and neither Y nor Z is a 3-sphere, then we agree to call X prime
(for connected sumy).
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272 L. C. SIEBENMANN

Using the local contractibility theorem of Cernavskii [17] [18] and Edwards and Kirby
[19], one can join by isotopies a sequence of ¢’s obtained from Theorem A and converging
to fin order to prove

COMPLEMENT TO THEOREM A. There exists a level preserving CE map G: M x [0, 1] —
N x [0, 1] such that, if G(x, t) = (g(x), 1) defines g,, 0 < t < 1, theng, = fand, for0 <t <1,
g, is a homeomorphism with d(f(x), g(x)) < &(x).

There is a nearly canonical version of Theorem A and its complement that we will
report on elsewhere [47]. It attempts to make g and g, depend continuously on f for the
compact open topologies, and thus gives a foliated version of Theorem A.

We wonder if Theorem A will help to decide whether every triangulation of euclidean
space is a combinatorial manifold. A remark of R. D. Edwards in this direction is included
(end of §3).

A word about the development of the proof of Theorem A. In 1967, D. Sullivan
observed that the geometrical formalism, used by S. P. Novikov to prove that a homeo-
morphism k: M — N of manifolds preserves rational Pontrjagin classes, used only the fact
that 4 is proper, and a hereditary homotopy equivalence in the sense that for each open V' = N
the restriction #~'¥ — ¥V is a homotopy equivalence. Lacher [35] was able to identify such
proper equivalences as precisely CE maps providing one restricts attention to ENR'’s
(=euclidean neighbourhoods retracts = retracts of open subsets of euclidean space). Sullivan
exploited his observation to broaden his result concerning the Hauptvermutung [50] and
showed that a CE map #: M — N of PL manifolds has zero PL normal invariant if

() H3(M; Z,)/ImH3 M ; Z) = 0.

Hence, if M is for example closed, simply connected, and of dimension >35, surgery shows
that & is homotopic to a PL homeomorphism. Work of Kirby and Siebenmann [31] showed
that (*) is necessary to deform 4 to a PL homeomorphism as counterexamples exist where A
is a homeomorphism. Additionally it showed that the topological normal invariant of 4 is
always zero.

At this point Theorem A became very plausible. Further, Sullivan’s observation seemed
equally applicable to the key arguments surrounding the Main Diagram of [31]. And we are
grateful to Sullivan for reminding us of this. However close examination reveals that the
arguments of [31] break down badly in the dénoument when the Alexander isotopy is
introduced. One is faced with a difficult-looking problem of extending a CE homotopy. It
alone surely accounts for the year elapsed while a proof of Theorem A grew out of {31]. The
main new idea of our proof of Theorem A is an inversion device (explained in §2.3 later)
that allows one to divorce the Alexander isotopy from the arguments surrounding the Main
Diagram of [311. It applies in many situations, e.g. that of local contractibility theorems;
hence it may be of further use.

Our own interest in Theorem A was incidental to some unsuccessful attempts to prove
the
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CoNJECTURE (still unsettled). If M is a closed metric topological manifold and 6 > 0 is
prescribed, one can find & = &(M, ) > 0 so that the following holds: Given any map f: M - N
onto a closed manifold such that, for all y in N, f ~'(y) has diameter < ¢, there exists a homotopy
of f to a homeomorphism, through maps with point preimages of diameter < J.

Some comments on Theorem A for m = 3.If 0N = J, condition (¢) amounts to insisting
that the CE map f be cellular (see [54]). This condition cannot be dispensed with if the
classical Poincaré conjecture fails. For, if M> is a compact contractible 3-manifold, the
quotient map, smashing a spine of M? is a CE map to a 3-ball.

For m = 3, Theorem A has been proved by S. Armentrout in the last few years (see [2],
[3]. {41, [5]). Surely Armentrout’s arguments yield a proof for m < 2. Coming from [31],
the arguments of this article are radically different.

If M and N are PL (=piecewise-linear) manifolds of dimension <3, then the proof of
Theorem A can be strengthened to make g PL. And if fis a PL imbedding near a closed set
C = M, then g can equal f near C. One simply has to work piecewise linearly where pos-
sible. See [31] and [45, Remark in §5]. This is not new information, but it is not a bad way
to prove Moise’s approximation theorems.

In case f is a simplicial map of simplicial homotopy manifoldst a somewhat easier
proof of Theorem A has recently been given by M. Cohen [15].1 It is related to the obser-
vation that the (simplicial) mapping cylinder M(f) of f'is a simplicial homotopy manifold,
hence a topological manifold for m > 6. (See [44], also Appendix II.2 and [19A])

Here is a list of material to come: §1 Background; §2 Solution of a handle problem, the
inversion device, the main diagram; §3 Proof of Theorem A for dN = &, majorant topology,
local contractibility, the complement for 0N = &, Theorem A in general and its comple-
ment, why f: M — 0N is supposed CE, the meaning of Theorem A for cellular decompo-
sitions, Edwards’ remark; Appendix I—Identifying S"~! x R; Appendix II—Elementary
proofs in dimension > 5.

The preparation of this article was greatly assisted by Russ McMillan’s erudition in
the realm of decomposition spaces and by Bob Edwards’ eagle eye for errors. We sincerely
thank them both.

§1. DEFINITIONS AND BACKGROUND MATERIAL

Lacher’s articles {35], [36] make excellent preliminary reading. Perhaps the best de-
finition of a cell-like compactum C is as follows. C is cell-like iff it can be imbedded into an
ENR (=euclidean neighbourhood retract) X so that the following condition holds. UVw:
For each neighbourhood U of C in X there exists a smaller neighbourhood V of C in X such that
the inclusion map V < U is homotopic to a constant map. This property is independent of the

t i.e. simplicial complex in which the link of every simplex is homotopy equivalent to a sphere,
 The dimension 3 case was first established by Finney [21], 1963,
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imbedding. Further Borsuk has emphasized that this property is a homotopy type invariant
of C. In fact the compactum C is cell-like iff (=if and only if) C is metrizable of dimension
< oo and equivalent to a point in a new coarser *“ homotopy ” category of shapes [10] whose
relation to weak homotopy types explains the relation of Cech homology to singular homo-
logy.

A map f: X - Y is always understood to be a continuous map (=mapping) of Haus-
dorff topological spaces. Recall that £ is called cell-like if, for each point y € Y, f "1y isa
cell-like compactum. The numeral 6 is the image of an injective continuous map of the line.
This map is clearly cell-like but not proper.t Cell-like proper maps are called CE maps for
brevity. A map f: X — Y which gives a CE map X — f(X) but is perhaps not onto, is called
CE (into). A map of pairs f: (X, 4) — (¥, B) is CE if both f: X — Y and its restriction 4 — B
are CE maps (cf. §3.13 below). Similarly for triples etc. We say that a map f: X — Y has
a certain property over a subset B Y if the restriction f ~*B — B of f has this property. This
wording is used continually.

Without further mention we will repeatedly use the basic

THEOREM 1.1. Let f: X - Y be a map of ENR’s. If f'is CE, then f is a proper homotopy
equivalence.} Conversely, if a proper map f is a homotopy equivalence over small neighbour-
hoods of each point of Y then f is CE.

The converse part is clear from the definition of cell-like.

This result was first given by Lacher [35]; it has numerous antecedents going back at
least as far as Filenberg and Wilder [20]. It can be rapidly deduced from [20, Theorem 1]
using Lacher’s observation [36] that f: X — Y is CE iff, in the mapping cylinder M (f), the
subspace M(f) — Yis LC*® at Y.

Because of this theorem, a CE map f: X — Y imposes on Y many of the properties
enjoyed by X, at least if Y is supposed (unnecessarily ?) to have finite dimension. For one, if
Xisan ENR sois Y [35]. For another, if X is an open manifold and f'is cellular, then Y is at
least a homotopy manifold] (Kwun (1961) and Lacher [31].) Relating to this there are some
disturbing counterexamples. First, ¥ may not be a genuine manifold as Bing [7] showed with
his cellular dog-bone decomposition of R>.

An example showing that ¥ may not be a homotopy manifold if f: E3 > Yis CE but not
cellular is obtained by collapsing a non-cellular arc in E® [9]. Bing [9] gives an easy

+ However a cell-like (continuous) map f: M* — N of an open manifold onto an open manifold of the same
dimension is known to be proper. Viisila proves this in [51]. Connell [16] gives a simpler proof for M* = R,
which can be generalized. R. Solway (thesis, University of Wisconsin) even shows that a map fiM"—>N",
is proper if it is cell-like over some open subset of N and f~'() is a continuum for all y € N, cf. Olnick
[0, p. 187].

Similar facts for manifolds with boundary are deduced by doubling.
1 Homotopy equivalence in the category of proper continuous maps.
Il An ENR Y is a homotopy n-manifold if for each y € Y there exists a basis Ny @ N, = ... of neighbourhoods
of y so that, up to homotopy, N; —y o N, — ¥ o... is refined by a sequence Ni — Yy ST N,y
S"~1. . sothat the composed maps $"~! < §"~! «-... are up to homotopy the identity. Other definitions
demand less.
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example of a proper non-CE map f: E* — E* where the point preimages are points, circles,
and figure eights, all polyhedral (cf. [14]); however the mapping cylinder of f'is no manifold
in view of Lacher’s observation above.

Some conventions. Without some indication to the contrary the term manifold will
mean finite dimensional metrizable topological manifold, possibly with boundary. All
components are assumed to have the same dimension. If M is a manifold, 6M denotes its
boundary; standing alone @ is an abbreviation for *the boundary”. The symbol = stands
for homeomorphism.

Some notation. R" = euclidean n-space with norm |x| = (x,% + x,% + ... + x,2)'2;
B"={xeR"; |x| <1} the unit n-ball; rB" = {xe R"; |x| <r} = ball of radius r; rB" =
{x € R*; |x| < r}= open ball of radius r; T" = n-torus, the n-fold product of circles.

§2. SOLUTION OF A HANDLE PROBLEM

MAIN THEOREM 2.1. As data consider a CE map f: V" >B*x R, m=k +n, of a
topological manifold V™ onto the product of the standard k-ball B* = {x € R*; | x| < 1} with
euclidean n-space R", such that fis a homeomorphism over the neighbourhood (B* — 3 B*) x R
of 0B* x R™. If m = 3 suppose that f is prime.

For m # 4, it is possible to construct a CE map f': V™ — B* x R" such that f' is pﬁme
if m=3and ‘

(1) £ is a homeomorphism over B* x B".

() f’ = fover (6B* x R") U B* x (R" — rB") for some radius r.

If one regards B* x R" as an open model k-handle with core B* x 0 it is perhaps sug-
gestive to say that f poses a ““ CE handle problem that is solved by f”.

Imitating the analysis of the “handle straightening problem” of [31], [32] we will
prove:

MAIN LEMMA 2.2. Given the data of the Main Theorem one can construct a triangle

Bk x R"

in which ¢ is a homeomorphism, F is cell-like and
(1) F = identity over (B* — rB¥) x R" U B* x (R" — 4B") for some r < 1.
(2) F¢ = f over (0B* x R") u B* x B".

Discussion. In [31] it is shown that if V is a PL manifold, fis a homeomorphism PL
near ¢V and an obstruction d(f) € m(TOP,,, PL,) vanishes, then in addition F can be a
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homeomorphism and ¢ can be PL. In this situation an Alexander isotopy F,, 0 <t < 1, of F
to the identity fixing the complement of int(B* x 4B") yields an explicit isotopy

* fi=fpT'FT R ¢

of fy=f to f, =fp 'F'¢. Since f=Fp over B* x B", one has fi¢p™' =fp™'F ' =
identity on B* x B" whence f; is PL over B* x B". Thus f, “straightens” the* handle”
f: V™ B* x R" in the sense of [31] and f” =f; completes the parallel theorem of [31].
Unfortunately the formula (%) is not defined if F is CE with no inverse. Thus [31] gives no hint
how to deduce our Main Theorem from the Main Lemma. It is true that this difficulty can
be overcome as soon as a cellular homotopy extension theorem is proved, simply because
F,¢|f~(B* x B") is a cellular homotopy from f|f~(B* x B") to an imbedding. Such a
theorem can indeed be proved [47] but my proof uses 2.1 and a multi-parameter variant.
Frank Quinn intended to prove such an extension theorem directly by proving a version of
Browder’s M x R theorem [11] involving smallness conditions.

The following might be called the Main Idea of this:article. For its sake we postpone the
proof of 2.2.

2.3. Proof of Main Theorem 2.1 from Main Lemma 2.2. Roughly speaking the Main
Lemma 2.2 says that f can be altered mod boundary to produce a CE map¥ (viz. F¢) that is
a homeomorphism over a neighbourhood of oo and is equal to f over a neighbourhood of
B* x 0. Now the assertion of the Main Theorem is parallel with the roles of oo and B* x 0
interchanged. Hence we are able to deduce the Main Theorem from the Main Lemma and
an inversion device as follows. (Compare Fig. 2-a.)
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FiG. 2-a. Upsloping hatching as for g, indicates parts of B* X R" over which certain mappings are
one-to-one. Downsloping hatching indicates some parts over which they equal f.

With the data of the Main Theorem let f; = F¢p: V — B* x R" be as given by the Main
Lemma. The 1-point compactification R U oo is homeomorphic to S".

t Throughout 2.3, CE means CE and prime if m= 3,
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Clearly F and ¢ together provide a manifold ¥ = B* x S" containing ¥ and a CE map
fi: V- B* x (R" U ) extending f;. We apply the Main Lemma a second time to the
restriction g, of fy to V — f"'B* x 0

V — F71Bk x 0 -2 B* x {(R"H o) — 0} —» B* x R*
identifying the target to B* x R" by the inversion 0

0(x, ) = (x, y/ |y} if y # 0
0(x, o) = (x, 0).

Note that 0~ 1(B* x drB") = B* x 6(% B"). Now the Main Lemma changes g, fixing boundary
to a CE map
g2:V —f71B*x 0 B* x {(R" U ) — 0}
such that g, is a homeomorphism over B* x (}B" — 0) and g, = g, over B* x {{R"U w) — B
and over dB* x {(R" U o) — 0}. We can now define
h: V — f~Y(B* x 0) - B* x (R" — 0)

by setting £ equal to f over B* x (R” — B") and setting 4 = g, over B* x (B" — 0). Then A
is well-defined and continuous because over B* x 9B" one has g, = g, = f; = f; = f. Clearly
h is CE and equals f over dB* x (R" — 0). Thus we can extend A to

W:(V—f"'Bx0)udV—B*x R — B*x0
by setting 4’ = fon aV.
Now consider the (m — 1)-sphere &'~ 8(B* x {,;B"). It bounds a topological m-ball D

in ¥ by the Shoenflies theorem [12] since V 2 B* x R = R**". Thus the restriction of A’
to the complement of int(D) in V extends by coning to a CE map

f'1V—B*x R"
This f* enjoys the properties

(i) f* is a homeomorphism over B* x $B” (unfortunately not B* x B").
(i) f' =fover 0B* x R" U B* x (R" — rB") for some r (indeed r = 1).

Except for the } in (i) these contain the conditions (1), (2) of the Main Theorem 2.1. But
the Main Theorem with (i) in place of (1) is clearly equivalent. This completes the proof of
the Main Theorem assuming the Main Lemma.

Proof of the Main Lemma 2.2. As in [31] the engine of proof is a procrustean diagram
(2-b). In it one constructs in order: e, p, j, the six inclusions at right, o, Wy, f, g0, W, g, b,
F', F, ¢. A copy of this diagram should be kept at hand throughout the proof.

‘A ?;c;ut eand p‘ Regard T™ as the quotient R"/Z" of R" by the lattice of integer points and
define é: R" > T" = R"/Z" by é(x) = (class of x/8) in R*/Z". Define e = (id|B*) x é. Let
peT" be a point not in &(2B").
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F:CE, extends F’

~ > B x R" ' — B* x R
i id near @ and over B¥ » (R®—4B") A

imbedding i
id on B* x 2B" J

.

i standard

F":CE, covers gh 1 2
B* x R" » B x RV

bounded, id near ¢

e | id xcoveri 3
covering e Bl. X 2Bn

Y

h D
Bk X T I oneo W g CE
h=g near @ y homeo near &

(%

go CE
w, —2 _CE,
homeo ncar 8

R

B id % {immersion}

¢ homeo ! f CFE . \
- rm L Bx R
F¢=fon ¢ union f-i18%« pn homeo near &
FiG. 2-b.

’About j: B¥ x R"— B* x R™| It is the restriction of the unique ray-preserving embed-
ding J: R™ — R™ onto 4B* x 4B" which fixes precisely 2B* x 2B" and on each ray from the
origin is linearly conjugate to the embedding y: [0, c©) — [0, c0) onto [0, 2) with y(x) =
x,0<x<l,and y(x) =2 — (1/x), ] £ x < 0.

About i, i', a.| Of the imbeddings of B* x 2B" at right, the top two and the last are the

natural inclusions. The third i’ is the composition B* x 2B" g B* x R*5 B* x T" and p
is chosen outside e(B* x 2B") to provide the fourth also called i’. An immersion &: (T" — p) -
R" defining o = (id| B¥) x & is so chosen that «i’ is the standard inclusion (cf. [32, §3]).
Then the four triangles at right commute.

'About W, B and g,. l Define W, to be the fiber product

{(v, ) e V™ x (B x T" = p)| f(v) = ()}

and set B(v, x) = v and g,(v, x) = x. It is straightforward to check that go is CE because fis.
Also W, is a topological manifold and § is an immersion according to:
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LEMMA 2.3. Let

x -1,z

be a fiber product square such that « is locally a homeomorphism, i.e. each point y, of Y has

an open neighbourhood U that is mapped homeomorphically by o onto aneighbourhood of a(y,).
Then f is also locally a homeomorphism.

Proof of Lemma. We can assume that W = {x, ) e X x Y| f(x) = a(y)} and B(x, y) =
X, g(x, y) = y. Given (x,, y,) € W, and U chosen for Yo € Y, the set

Wnlx,»eXx Y|f(x)ea(U),ye U}

is an open set that f: (x, )~ x maps bijectively onto S/~ 'aU. Since « is an open map, B is
too. This completes the lemma.

71)_out w™ anTiZ We will need two lemmas.

LemmA 2.4 (D. R. McMillan [41]). If an open 3-manifold M> admits a proper cellular
map to R* then M* is homeomorphic to R3.

McMillan’s proof is based on Hempel and McMillan [25].

LEMMA 2.5. Let M be a topological m-manifold m # 4 without boundary that is properly
homotopy equivalent to S"~* x R and prime in case m = 3. Then M ~ S™ ! x R.

A direct proof of this for m > 5 using only engulfing and formalism is given in Appen-
dix L. For m = 3 see [29] and [53]. For m < 2 the result is trivial.

In applications of 2.5, M will be immersible in R™ hence smoothable. In this form the

result is well-known (Browder [11] for m > 6, Wall [55] for m = 5) though not so elemen-
tary.

Now the construction. Since fis a homeomorphism over (B* — 1B%) x R", g,isahomeo-
morphism over (B*—1B*) x (I" — p). Thus there is a natural extension of g, : Wy —
Bx (T"—p)toa CEmap g,: W, —» B* x T" — 1B* x p of a manifold W,, that is a homeo-
morphism over (B* — 1B*) x T". Let y: B* x T" — B* x T" be a continuous onto map that

maps }B* x p to 0 x p,is bijective elsewhere, and is the identity near e(B* x 2B") (see [12]).
Then

90 Wy, ——— BYxT"—0xp

is cell-like and yg, = g, near e(B* x 2B"). Next define g: W — B* x T" to be the 1-point
(Alexandroff) compactification of Y91, viz. W = W; U o0 and g(o0) =0 x p while g = yg,
on W;. Clearly g is CE.

ASSERTION. W is a manifold.
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If m # 3 this follows directly from Lemma 2.5. If m = 3 we must first check that if ¥ isa
small open 3-disc containing p then M* = (yg,)"'(N — p) is prime. Now (N — p) = S?x R
is a union of two open 3-discs. By Lemma 2.4 so is M. Hence M 3 is prime by a theorem of
Hempel and McMillan [25, Lemma 3].

About h: W™ — B* x T".| It is a homeomorphism such that = g on a neighbourhood
of W and h is homotopic to g.

The case m = 3. In this case we can triangulate W?> so that /i is PL near 8. We can
extend £ artificially to a prime CE (hence cellular) map A': W' — R x T". Passing to
universal coverings we get a cellular map i': W' — R* x R* = R®. By Lemma 2.4, W’ ~ R®.
Hence W is prime. Similarly V is prime. Then Stallings’ theorem of fibration over the
circle [49] shows W = B* x T" and we easily arrange a piecewise linear isomorphism A with
the wanted properties.

The case m < 2 is trivial.

The case m > 5. Here we present two proofs that A exists. Note that if a homeomor-
phism A’: W — B* x T" can be found with A’ = g on dW, there is a standard isotopy of /'
to make it agree with g near W (cf. Lemma 2.6 below).

1st proof that h exists (topological surgery). The problem of homotoping g fixing Jto
produce A, has an obvious PL analogue that has been analysed using non-simply-connected
surgery [53], [27]. In the PL case an obstruction in H 3(B* x T", 9; Z,) arises. The Z, comes
from Rochlin’s Theorem which is contradicted for topological manifolds [45, §5], [33], at
least to the extent that Z = n, G/PL — n, G/TOP = Z has cokernel Z, = n; TOP/PL. If one
carries out the analogous analysis for topological manifolds, as one can using work of
Kirby and Siebenmann [33], then no obstruction occurs at all. (See [47A])

2nd proof that h exists. In [28], Hsiang and Wall give an argument} showing that the
tangent bundle reduction obstruction, p(W, 0) is zero in H*(B* x T", 0; n,TOP/PL) for the
problem of introducing a PL structure T on W extending the one on 0W given by g| oW
(see [31], [32]). Their argument is explicitly given only if k£ = 0. In fact, this case suffices
because the obstruction to finding I is clearly the pull-back by the quotient map

g:iB x T"x [0, 1] x T" > T**"

of the obstruction to introducing a PL structure on the manifold (W/~) ~ T k+n where ~
denotes the identifications induced by oW 212, 9B* x T" €12, T**" Now g: Wy —» B* x
T™ is a homotopy triangulation of B* x T"rel boundary. Another homotopy triangulation g
W’ — B* x T" rel @ is said to be equivalent if one can find a PL isomorphism W = W'
so that g is homotopic to g’ rel . The equivalence classes form a set F'(B* x T 0) in
(1-1) correspondence with H3(B* x T", ; Z,) [33]. Clearly the set &(B* x T", d) = H®
(B* x T"; Z,) of isotopy classes fixing & of PL structures on B* x T" standard on & maps

t Warning: The homotopy invariance of p asserted in [28] is false in general, but valid (trivially) for spheres,
and hence for tori as required here,
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naturally to &'(B* x T", 9). Now an argument in [30A] using finite coverings of odd degree
¢ and local contractibility of the homeomorphism group shows that this map

o

f
‘ P BFx T", 0)— &'(B* x T", 0)
1 ; is injective and hence a bijection of sets having the same finite number of elements.
E Remarks towards a third proof that h exists. (i) For the purposes of the proof of the
n E Main Lemma, it would suffice (as in [31]) to pass first to a finite covering g of g. g W -
o ‘ B* x T" and then find a homeomorphism h:W -»B* x T" equal to g on 0.
b, ASSERTION. For k +n=5and k>0 this can be done for any large covering g using
1€ P topological engulfing and local contractibility of the homeomorphism group—but no surgery or
h handlebody theory. See Appendix II for details. This reduces Theorem A for m = 5 and
. dN = (¥ to pure geometry provided f: M —> N is a homeomorphism over some open set
in each component of N.
. Remark (ii). One can eliminate from the second proof that h exists the argument [28]
i of Hsiang and Wall. Indeed one can show directly that W admits a PL structure % so that
g|0W is a PL—as follows. If k =0, V™ and W, admit PL structures and as m = 5 there is
' ;f‘ no further obstruction to W admitting one. If k> 0 and m = k + n > 5 remark (i) asserts
to something more, at least after passage to a large covering of odd degree. But this doesn’t
ed change the obstruction p(W, 0) in H4(W, 8; Z,) to finding I
() Y e
at i &About F' and F.l\ Let F': B* x R" - B* x R" be a covering of gh™* (i.e. eF’ = (gh™")e),
ne fixing 9B* x R", and extend to Fo : R™ - R™ fixing (R* — B*) x R". Since gh~! fixes funda-
of ' mental group, Fy commutes with the translations by Z"=0x Z" < R™. Hence F; is
bounded, in fact | Fo(x) — x| attains its maximum in B* x [0, 81". Then we get a continuous
the , map F, : R" — R™ by setting Fy(x) = JFoJ “Yx)forxe 4B* x 4B" and Fo(x) = x otherwise,
the ; see [32, Section 3]. (Recall J was defined with j.) Being continuous, F, is obviously
S proper and CE. F: B* x R"— B* x R"is by definition the CE restriction of F,. Since gh™*
ces is the identity near 0, so is F; this gives condition (1) of 2.2. Definition makes F = F’
£ over B* x 2B" and F = identity over B* x (R" — 4B").
\—E&;}p\ The homeomorphism ¢ is constructed in two steps.
s~ 5 Step 1. Finding a natural homeomorphism y making the following triangle commute: |
Ky g
e . F1(B* x 2B") /
% F
W(
) in w‘: \‘ B* x 2B™
"H? . f
, —1pk n
aps v FH(B x 2B7)

The commutative triangles on the right of Main Diagram were arranged to make this
possible. ¥ can be expressed as the composition ¥ = Y, Y5 of three homeomorphisms

€eres,
lying in the commutative diagram:




.
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F'B*x2B"=jF " 'B*x2B" _E , B*x2B" ! S

Y1~ 11equalsej~! i’ equals e
|
B*x T">hg 'iB*x 2B" _#""', i'B*x2Bc B*x T"

Y2 | equals h

Wy > g, 'i'B* x 2B" 9, i'B* x 2B"

Vof 'B*x2B" L 5 B*x2B"

In it the horizontal arrows are CE restrictions of maps previously constructed. Noting that /
e| F'~1B* x 2B" is locally a homeomorphism and that (gh~')e = eF’ is CE on F'~'B* x 2B" :
we see that e| F’"'B* x 2B" is a homeomorphism onto its image hg~'i'B* x 2B". Define

¥, by ¥, T1(x) = ej 1(x). Define ¥, to be the restriction of 4. To define y, recall that
Wo ={(x,y)e V x [B* x (T" — p)]| f () = ay)}
and for points x € f ~!B* x 2B" set
Vs = (x, i (x))

which lies in W, since ai’ = identity. This /5 is a continuous bijective map onto g, 'i’'B* x
2B" = {(x, y) € W,|i'f(x) = y € i'B* x 2B"}. Its inverse is f: (x, y) — x. We have constructed

Y=y, ¥;. |
Step 2. Obtaining ¢ from Y and engulfing. If M > 5 the engulfing method of Stallings //
[47], [41] shows that there exist ““engulfing” homeomorphisms E: f ~'B* x 2B" — V'™ and o

E': FT1B* x 2B"— B* x R" fixing respectively f 'B* x B" and F~'B* x B". Piecewise
linear engulfing suffices. Indeed the obstruction theory of [31] (or topological immersion
theory [37]) shows that ¥ admits a piecewise linear structure extending the one near f ~!B* x
B"~ V given by f 'B* x 2B"-Y> F~1B* x 28" = B* x R". Essentially all the details of
argument needed to obtain E, E’ from the engulfining theorem are repeated in [42, §4]. All
the homotopy theoretic hypotheses needed (and more) are guaranteed by the fact that fand
Fare CE. .

If m = 3, the engulfing is possible because for each positive 4, the preimages under f
and F of B* x (R" — AB") are homeomorphic to B* x (R" — 1B") by the result of [3] or [41].
Here we need to know that V (like W) is prime (see the construction of /).

Consider now the composition ¢’ = E'yE~: V™ — B* x R". It satisfies the condition
(2)) F¢' = f over B* x B".

To complete the construction of ¢ we alter ¢’ to a homeomorphism ¢ satisfying the stronger
condition of the Main Lemma. )

(2) F¢ = f over (éB* x R") U B* x B".
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s To do this consider
0:0B* x R* #171, 3B x R".
By (2), 0 fixes (0B*) x B" pointwise. Thus a standard lemma provides an “Alexander”
isotopy of @ fixing B* x B" to the identity—namely:

b LeMMmA 2.6. Let f:M xR—-M xR be a self-homeomorphism with f|M x
F (—0, 0] = identity where M is a topological space. Then if f* and f* are the components
| offonM and R, a standard isotopy of f to the identity fixing M x (— o, 0] is given by

-1t 1—1t 1—1t

This isotopy of 0 to the identity together with a standard collaring of B* x R” provides

the change of ¢’ to ¢ satisfying (2). This completes the construction of ¢ and with it the proof
of the Main Lemma.

t t t
S, u) = (fl(m,u— ————-—), fz(m,u—— —————) +———), Jor 0 <t <1, and f| = identity.

3 §3. PROOF OF THEOREM A AND SOME COROLLARIES

Anyone who has read §2 will understand that progress in converting a CE map to a
s homeomorphism is inevitably measured in the target space. Hence a lemma is needed to
convert smallness measured in the source to smaliness measured in the target.

LemMma 3.1, Let f: X — Y be a proper continuous onto map of metric spaces and let
, 0: X = (0, c0) be a continuous map. Then there exists a continuous map 6': Y — (0, o) such
i that 5(x) > 6'(f(x)) for all x € X.

Proof of 3.1. For each point y € Y, f ~(y) is compact and we can find an open neigh-
bourhood U, of f “*(y) and a constant C, such that 5(x) > C, for all x e U,. The set of points
¥ € Y such that f ~*(y") = U, is an open neighbourhood V, of y. (Prove this by contradiction
exploiting the hypothesis that fis proper and onto.) For the cover {V,|y € Y} we can build
a locally finite refinement {W,} covering Y. Then for each W, there is a constant C, such that
o(x) > C, if f(x)e W,. Build a continuous map ¢': ¥ - (0, o) such that §'(y) < C, if

' ye W,. Then § > §'f as required.
E [I 3.2. Proof of Theorem A when ¢N = (. It is a straightforward consequence of the Main
: Theorem 2.1. A similar passage from the solution of a handle problem to a global theorem is

given in detail for the Concordance Implies Isotopy Theorem of [32, §4]. So here we are
content with an outline.

f Referring to the statement of Theorem A in §0, note first that the case dN = (F is
4 implied by inductive application of the case where the target N is an open subset of R™
. Recall that any m-manifold is a union of m + 1 open sets imbeddable in R™.

Suppose now that N is an open subset of R™. Using 3.1 choose a continuous function
¢t N— (0, o0) so small that e(x) > &'(f(x)) for all x e M. Find a linear triangulation T of N
r so fine that the diameter of the star St(v, T) of each vertex of T has diameter <sup{¢'(x)|x e
St(s, T)}. Associated to T one has a standard handle decomposition {H,|o € T} of N with
one k-handle H, for each k-simplex ¢ of T. H, is by definition the star of the barycenter of
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o in the second barycentric subdivision T” of T} its core is ¢ N H,. One applies the Main
Theorem 2.1 first to the 0-handles then to 1-handles, 2-handles etc. In applying it to a handle
H,, dim ¢ = k one identifies B* x R" with H, union a collar lying in St(s, T") of its frontier
in the union of handles of dimension >k so that B* x 1/2B" corresponds to H, .

After k + 1 steps, f has been changed to a homeomorphism over handles of dimensions
<k. After m + 1 steps one has a homeomorphism g: M — N and one easily checks that, for
all x, f(x) and g(x) lie in St(v, T) for some vertex v. Hence d(f(x),9(x)) < £'(f(x)) < &(x)
for all x e M, which completes Theorem A when N = (.

The case of Theorem A where ON # ¢ will depend on the Complement of Theorem A
for ON # &F. So we direct attention to the latter, which involves the local contractibility
theorems for homeomorphisms, and requires discussion of the majorant topology.

3.3. Definitions. Let M be a metric space. C(M) will henceforth denote the set of
continuous maps M to M.

A basis for what is called the majorant topology on C (M) can be described in any of the
following three ways.

(1) Call positive continuous functions 6: M — (0, c0) majorants, and for f in C(M)
define

Ni() = {g € COD|d(f (), o) < 5(/ (), ¥x € M},
The sets Ny(f) for varying fand 6 are the first basis.
(2) If U is any neighbourhood of the diagonal in M x M and f'e C(M), define
N(f; U) ={g e C(M)|(f(x), 9(x)) € U, Vx € M}.
Such N(f; U) form the second.

(3) If% is any covering of M by open sets and f'e C(M) define N(f; %) to be the set of
all gin C(M) such that f(x) and g(x) belong both to some one set in %. Such N(f; %) form
the third basis.

Note thatif M is compact the majorant and the compact open topologies on C(M) agree.

If we restrict attention to proper maps, then, by 3.1, one could replace 8(f(x)) in (1) by
d(x).

When M is non-compact but locally compact, the proper maps M — M constitute an
open and closed subset for the majorant topology.

(Proof. If % is a locally finite covering of M by relatively compact, open sets and g €
N(f; %), then f proper <> g proper.)

The rule of composition (f, g)+ fg is a majorant continuous map C(M)? - C(M), as
one easily sees using (2), and the existence, for given U, of ¥ with Vo V < U [29A, p. 157].

Here V o V is the set of all (x, y) in M x M so that for some z e M, (x, z) and (z, y) belong
to V.

To aneighbourhood U of the diagonalin M x M, there corresponds a neighbourhood of
the diagonal in C(M) x C(M)

. 3
A

fi

18

[1

al

ac
tl.

(
17

th



0

Uw -

APPROXIMATING CELLULAR MAPS BY HOMEOMORPHISMS 285

2(U) ={(f, 9| (f(x), g(x)) € U for all x in M}.

With the inherited majorant topology, H(M) < C(M) is a topological group. The con-
tinuity of fief ™! is easy using (2). Indeed (g~ f ") e D(U)<(id,f 1g) e D(U)<
(9 € 2(fU).

The majorant topology is needed to formulate a local contractibility theorem for a
noncompact topological manifold M.

Warning. If f,,0 <t <1, is a path in C(M) continuous for the majorant topology
where M is a manifold, then there exists a compactum K < M such that f, = f, on M — K
for all . Hence H(M) is not even locally path connected for the majorant topology.

Warning. If M is a disjoint union of infinitely many circles, then H(M) is not locally
connected in the compact-open topology.

Let H(M)' be the set of homeomorphisms M x I+ M x I respecting M x t for all
t € I. On it consider two topologies.

{(a) The majorant topology inherited from the majorant topology of H(M x I).

(b) The compact open topology inherited from the compact-open topology on H(M x I).
H(M)" is the set of all compact open paths in H(M) or isotopies of homeomorphisms of M.

Tueorem 3.4. Cernavskii (proofs in [18] [19] also [46A1). Consider a manifold M and a
majorant neighbourhood N, of (id|M) in H(M). There exists a majorant neighbourhood
N, e N, of (id| M) and a function

¢: HM) -~ HM)'

which is continuous for the c.o. (=compact-open) topologies such that for each f in N,, the
isotopy ¢(f) is a path from f to (id| M) in N;.

It is more usual to observe that ¢ is continuous for the majorant topologies, as in [18],
[19]. But see {46A]. The compact-open continuity will be needed in [47]. Here is an equiv-
alent restatement that better suits our purposes.

THEOREM 3.5. Consider a manifold M and a neighbourhood U, of the diagonal in M x M.
Then there exists a smaller such neighbourhood U, and a function

®: P(U,) 0 {H(M) x H(M)} ~ H(M)!

continuous for c.o. topologies, such that ®(f, g) is an isotopy f to g and (f, ®,(f, 9)) € 2(U)),
throughout the isotopy, 0 <t < 1.

Proof of 3.5 from 3.4. Let N; in 3.4 be N(id; U)) to obtain ¢. Then set ®(f, g) =
dgf "V)f. 0 <t<1. The continuity of ® is then clear. It remains only to check that
(f,9) € 2(U,) implies (f, ¢{af~")f) e 2(Uy) for all t. But (£, 9) € D(U,)<>(id, gf " e
D(U,)<>gf ~" € N(id; Up) = ¢(af ™1 € N(id; U= (f, ¢laf ")) € D(U)).

Consider a map p: A - C(M) of a parameter space A to C(M), continuous for
the c.o. topology. (Think at first of A = point; the generality is for [47].) Suppose that
p can be majorant approximated by such maps into H(M) in the following sense: Given any
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neighbourhood U of the diagonal in M x M, there exists a c.0. continuous map
p': A - H(M) such that (p(4), p'(M)) e 2(U) for all LeA.

PROPOSITION 3.6. In this situation, for any neighbourhood V of the diagonal in M x M
there exists a2 A x [0, 17— C(M) continuous for the c.o. topology on C(M) so that o(A X
[0, 1) < H(M) while 6(4, 1) = p(2) and (a(4, 1), p(1)) € D(U) for all Lin A, tin [0, 1].

Proof of 3.6. Theorem 3.5 provides neighbourhoods V=V, V; 2V, > ... of the
diagonal in M x M and c.o. continuous maps @' DV, N {HM) x HM)} - H(M)" so
that ®'(f, g) is an isotopy fto g with (£, ®@//(f, 9)) e 2(V),0 <t < 1. We arrange inductively
that {2(V;)} be a basis of neighbourhoods of the diagonal of C(M) x C(M) for the c.o.
topology and that V; is symmetric with V;o V; < V,_y.

Choose a sequence p;:A — HM), i=1,2,... of maps with (p;(%), p(1) € D(V)),
for all A in A. Then define ¢ on A X [a;,a;4,), ai=1~ 274 i>0, by setting
o(%, 1) = O,y (Pi+1(A), pi+2(1)) where 0; is the oriented linear map of [a;, a;4,] onto
[0, 1]. This makes sense as Vi3 o Vira & V,. Clearly 6(4, a) = p4), i = 1, and if we set
(1, 1) = p(2), then ¢ becomes the c.0. continuous map A x [0, 11— C(M) asserted.

Remark 3.7. For compact M, 3.6 shows that H(M) is LC” in C(M). Then [20, Theorem
1] assures that 3.6 holds with two alterations:

(i) Assume p(A) = I_JZIW) (= closure of H(M) in C(M) but suppose no approximability
of p. &

(ii) Assume A is separable metrizable of finite dimension.

Hence, letting A be a simplex we find that the inclusion HM) G IT(]\T) is a weak homotopy
equivalence for compact manifolds M (Haver [24]). Whether this inclusion is a genuine
homotopy equivalence seems to be a technically difficult question.

3.8. Proof of Complement to Theorem A when ON = . This follows immediately from
3.6 since A) has been proved in this case.

3.9. Proof of A when ON # . Adjoin M X [0, 1] to M making M x 1 =M and call
the result M’. Similarly form N’. We extend f: M — N tof: M’ — N’ so that f|M x {0, 11
is of the form f(x, ) = (fi(x), 1) where f; =f |0M and f,: M — ON is a homeomorphism
for t <1 with d(f(x),fi(x) <3e(x). (This applies the complement to f|dM.) Clearly
f: M’ — N'is then well-defined and a homeomorphism over N x [0, 1) = N".

Given collarings of @M and &N [13}, we have standard homeomorphisms ¢ : M - M’,
Y : N— N’ so that g = Yy Yp:M—> Nis a homeomorphism over dN. The reader will
check that for suitable collarings one can arrange that d(f, ¢) < e. Then apply the case of
Theorem A with no boundary to intM —£» intN tofind a homeomorphism f” :'int M — int N
with d(g, f') < ¢ so near g|int M that it extends to /*: M — N by f'|0M = g|dM. Then
f" is a homeomorphism and d(f, ') < ¢ as required.

This completes the proof of Theorem A. The complement to Theorem A now follows from
3.6.

To round off the discussion of Theorem A when dN # &, we explain why Theorem A
supposes that /1 M - 0N be CE. A CE map f: M — N of n-manifolds with boundary

’ .
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necessarily maps M onto N (use Theorem 1.1). However, f~'dN can, of course, contain
more than oM. In this case M —L»> 0N may not be CE. Hence this assumption cannot be
deleted from Theorem A.

Example. Let X™, m > 4, be any compact contractible manifold with 7,0X # 1. Let
M = X u. N be a boundary connected sum with any m-manifold N with ON # . Let f:
M — N collapse X to a point and be bijective elsewhere. The induced map n,0M — =,0N
has kernel containing =,0X.

All such examples involve fundamental group. Indeed:

PROPOSITION 3.10. Let f: M — N be a CE map of manifolds. If the restriction (f|0M):
OM — 0N is | — UV in the sense of [6], [35] then (f|0M) is CE.

Proof of 3.10.
First suppose N = R™"! x [0, c0).

For integral homology one has H,(M) = Hy(N) = 0. Also H,(M, 0M) = H *(M) =
H_*(N) =0, where H_ * is cohomology with compact supports, by Theorem 1.1. Hence
H (0M) =0.

Since (f|0M):dM — oN is 1-UV, n,0M = n,0N =0 [6], [35]. Thus =,0M =0 and
dM is contractible (using theorems of Hurewicz and Whitehead).

Applied to the general case, this discussion shows that for each open éubset U of ON
homeomorphic to R™~, (f|dM)™! (U) = 0M is contractible. Hence (f|0M) : 0M — 0N is
CE as 3.13 asserts.

This section will now taper off with some discussion of the meaning of Theorem A.

It is well known that the study of proper onto maps f: X — Y of metric spaces is
essentially equivalent to the study of u.s.c. (= upper semi-continuous) decompositions of
such spaces into compacta. The decomposition for fis & = {f “1(y)|y € Y}, and its decom-
position space X/2 is naturally homeomorphic to Y. See [26], [19A, appendix].

Suppose for the sake of argument that /1 X — Y = X/ can be majorant approximated
by homeomorphisms. Theorem A gives conditions that assure this.

STATEMENT 1. Let U be an open covering of X by @-saturated open sets. There exists a
proper onto self-map g : X — X such that 9 = {97 (x)|x € X} and for each compactum A € 2
there exists a U e U such that A U g(A) < U. Indeed g can be f "~1f where f” is a homeo-
morphism approximating f. Now g can itself be majorant approximated by homeomor-
phisms (cf. Lemma 3.1). So one can prove:

STATEMENT 2. If &: X — (0, o0) is a positive continuous function, there exists a homeo-
morphism h: X — X so that for all A€ P diameter h(A) < inf {e(x)|x e A} and A U h(A)
lies insome U e U.

The last statement shows that the decomposition 2 of X is shrinkable in the sense of
L. F. McAuley [39, p. 24] with respect to any metric on X. An argument of Bing and
McAuley (see [39, p. 24] and [38, p. 454]) shows that, given any u.s.c. decomposition 2’
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shrinkable for a complete metric, the quotient map X X/9' is majorant approximable by
homeomorphisms. For proof see [I9A], noting that the isotopies there are optional.

For certain X and @ there is a much used criterion of Bing which assures that (X/%) x R
is homeomorphic to X x R. To fix ideas suppose X = R" and @ consists of points and one
cell-like compactum C. Bob Edwards pointed out to me that if » 4+ 1 > 5, then Theorem A
implies that Bing’s criterion is necessary as well as sufficient for a homeomorphism (R"/C)
x R~ R**'. Here Bing’s criterion [8], [1] reads: For each ¢ >0 there exists a uniformly
continuous isotopy pt,,0 <t < 1,0f id : R* x R — R" x R fixing points at a distance > ¢ from
C x R such that u, changes the last co-ordinate < ¢ and p, (X x u) has diameter < ¢ for each
ueR.

If (R"/C) x R~ R"** and n+ 1>5, Bing’s criterion can be verified by applying
Theorem A and its complement to the restriction of the quotient map g : R” x S — (R"/C)
x S* over a neighbourhood of g(C x §') with preimage in the ¢/2 neighbourhood of C x S*.
This lets us construct an isotopy g,” of id] R* x S* of which the wanted u, is the covering.
Uniform continuity of u, and y,’ is clear since y,’ fixes points outside a compactum. To be
more specific, u,’ can be g, ™! g, where g,, 0 < ¢ < 1, with g, = g, comes from the comple-
ment applied as suggested with a small majorant, and 7 <1 is near 1.

It is amusing to note that, by a general principle [32, §6] 1" and y, can be diffeotopies or
PL isotopies.

APPENDIX 1
Here we give a proof avoiding surgery of:

LEMMA 2.5. If M", n > 5 is a (metrizable) topological n-manifold without boundary that
is homotopy equivalent to S"™* x Rand 1 — LC at co. Then M" is homeomorphic to "~ x R.

Proof of Lemma. By a method of Homma (see Gluck [23]) one can imbed locally flatly
and properly a line L ~ R* that joins the two ends of M. Of course one could use the recent
results of [31], [32] to do this.

ASSERTION. Since M is 1 — LC at o, M — L is also 1 — LC at co.

Proof of assertion. By an elementary stretching argument of Stallings [48], L has a
closed product neighbourhood in M that we identify with L x B*~!, Note that any compac-

. . . . | S— . ..
tum in M is contained in one of the form C = A4 u [—r, r] x = B*™!, where r is positive,
r

1 . 1
A is a compactum so that 4 N (L X = B"'l) lies in [—r, r] x - B""*, and M — C has two
r r

unbounded components {M — C},, {M — C}_ neighbourhoods of the positive and negative

1 .
ends of M. Then compacta of the form Cy = C — L x % B"~! contain any compactum in
r

M — L. By Van Kampen’s theorem,
*) M —L—Co)=mM —Co=m{M—-C}, » m{M—C}
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the injection of free factors being given by inclusion M — C ¢ M — C,. Choose a nest of
such compacta C, say C® = C' « C? ..., with { J{interior C'} = M, so that each map of

n{M — C%, M — C'}, & 1{M — C%}, « -
is zero, and likewise with — in place of +. This is possible because M is 1 — LC at o0.
Then in view of (*) the corresponding sequence

(M —L—Co® e« ny(M—L—Co") « m(M—L—~ Cp?) ¢+
also consists of zero maps. This means M — L is 1 — LC at o as asserted.
By a homological argument with Poincaré-Lefschetz duality, H,(M — L; Z) = 0. Also
nn(M-Ly=n M=0.
So M — Lis contractible as well as 1 — LC at co. Thus by engulfing [48] [42] M — L ~ R".

In M consider the meridian disc D =0 x B* ! if L. We can enlarge D to a locally flat
(n — 1)-sphere S > D separating the ends of M as follows. For the argument compactify
M — L with one point co. Then (M — L) U oo & S" naturally contains a copy 0 x (B! —0)
v oo of D locally flat except at its center point co, hence locally flat by [30]. Thus (trivially)
D is flat, and so is part of a locally flat (» — 1)-sphere S"~! < (M — L) U oo which clearly
gives the wanted S < M.

To complete the lemma, bicollar S in M [12]; check that the inclusion of S into M or
into either complementary domain is a homotopy equivalence; and finally [42] engulf M
in the bicollar.

APPENDIX II. ELEMENTARY PROOFS IN DIMENSION = 5.

Here we explain how Theorem A in dimension =5 can be proved by pure geometry—
provided that ON = ¢t and f: M — N is a homeomorphism over some open set in each
component of N. The geometric tools we use are engulfing and deformation of homeo-
morphisms; we shall avoid the surgery and handlebody theory used in §2 with their attendant
quadratic forms and algebraic K-theory.

Recalling the proof of Theorem A we need only check that one can solve as in 2.1
any CE handle problem V™ — B* x R", m = k + n, obtained by restricting suchanf: M - N
over a handle B* x R" in N. We deal first with index k& > 0 (which will not involve the
proviso) and second with index k = 0.

For index k > 0 we have already observed (§2, Remarks towards a third proof that %
exists) that it will suffice to prove the

PrOPOSITION IL.1. Let g : W™ > B* x T", m=n+k > 5, k > 1, be a homotopy equiva-
lence of a topological manifold giving a homeomorphism OW — 0B* x T". A large standard
covering g : W— B¥ x T" of g is homotopic rel boundary to a homeomorphism.

For each integer d > 0 we define a so-called standard covering map g, : B* x T" - B*
x T" by pu,x, ¥) = (x, dy) using multiplication by d in the abelian Lie group T".

+ Or that f: 9M — ON can be approximated by homeomorphisms—see §3.9, §3.6.
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The corresponding § = g, comes from forming the fiber product of g and p,

W _g=wata, By TH

y‘ual lua

w —f£, B‘xT"

COROLLARY IL.2 (see discussion in [44] [19A)). Let M> be a compact contractible 3-
manifold (fake 3-disc), and f: M* — B any map giving a homeomorphism oM 3 0B>. Then
fx T?: M3 x T* — B x T? is homotopic rel boundary to a homeomorphism.

Adding a circle at infinity to the R®-bounded covering homeomorphism M* x R* - B
x R% we get a homeomorphism of double suspensions S' x M* — S* « B*> ~ B sending S' to
St. (See [44, Theorem A] for details.)

Proof of I1.1. This is an extension of the disproof of the Hauptvermutung in [31] per-
mitting replacement of the s-cobordism theorem by engulfing and a now popular wrapping
argument. An earlier version of this proof was announced by Kirby and Siebenmann in
[44] and [45, §5]—see the exposition of Glaser [22A] based on indications of Kirby.

We identify B* topologically with B* x [0, 1], s =k — 1. Then W gives a cobordism
(triad) ¢ = (W; Vy, V,) where V; =g~ }(B* x i x T"), i =0, 1. Recall from {31, p.748] that it
will suffice to prove that ¢ is a product cobordism, i.e. (W; V,, V) = V, x ([0, 1], 0, 1),
~ indicating homeomorphism of triads. In the present context the argument of [31] runs
as follows. Supposing ¢ is a product, we have a homeomorphism A: (W;V,, V) —» B°
x ([0, 11;0, 1) x T". We can easily arrange that h =g on ¥, and also on oW — V;. If h
happens to equal g on all of W, then it is necessarily homotopic rel dW to g (— except if
s =0, in which case we can at least arrange that £~ g rel d by composing / with a self-
homeomorphism of [0, 1] x T" fixing boundary). To check this recall 7" = K(Z", 1). In
general h|dW differs from g|dW by a self homeomorphism 0 = (k| Vy)(g|V) ™! of
B* x 1 x T" fixing @ and homotopic rel 4 to the identity. Passing to coverings, g, ik, § =
(R|V) = (G| V)"t of g, b, 6 for p,, we can get § as small as we please (at least after a standard
isotopy recalled below). Then 8 is isotopic rel 0 to the identity by a deformation principle
for homeomorphisms [19] and we can use this isotopy to adjust & to equal § on @ thus
proving the proposition.

We now give a similar argument to show that any large standard covering ¢ of c is a
product cobordism. Begin with the fact that ¢ is an A-cobordism giving a product cobordism
from a8V, to &V, in 0W. Then by topological engulfing (see Connell, Newman, Stallings
references in [42]), ¢ is an invertible cobordism, i.e. W=C, u C; where Co = ¥, x [0, 1]
is a closed collar of V, in W — V¥, and C, is described similarly. Consider Fig. 1I-a (see
next page) in which W' =C; n C, and W;= W — ¢;, i=1, 2, are indicated.
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The construction of [42A, Fig. 5] provides a homeomorphism /: V, x T* — V; x T* as
follows. Identifying V; x [0, 1] to C; under a collaring homeomorphism a;, with o;(x, i) = x
for x € V;, and identifying T' = R'/Z, we can regard V; x T! as a quotient of C;. Then
V; x T! is the union of a copy of W' and a copy of W,. We let #| W’ be the identity map
onto W' < V; x T'. Then complete the definition of # by letting /| W, be the homeomor-
phism to W; < V; x T' given as a composition of two homeomorphisms W, ~ W~ W,.
The first uses W = W, u C,, the second W= Cy U W,. In order that & be well-defined
check that these two homeomorphisms need (only) to map ¥, x 0 and V, x 0 in the most
obvious way.

Since V;= B*x i x T" we can (and do) interpret 4 as a self-homeomorphism of
BSx T' x T"=(B° x i x T™ x T!. On the boundary, we arrange that A be a product
0B* x ¢ x T" where ¢ is a homeomorphism of T!. This occurs naturally if we choose «; s0
that ga; |0V, x [0, 1] is a product with an imbedding [0, 1] - [0, 1].

h necessarily fixes the fundamental group. Clearly so if dB° s . If s =0, at least
h|T" is (visibly) homotopic to the inclusion: We let the reader check the same for 4|T*
as there would be no harm in altering h on intW’ to make A fix n,T?, and so the whole
fundamental group.

Next we show how the isotopy class of /4 determines c; the same considerations apply
to the standard coverings of 4 and c.

Here is a simple process (cf. Notices AMS 15 (1968) p. 811) to extract an invariant
from any homeomorphism H: V x R — V x R where Vis a connected compact manifold
and H respects the ends of V x R (i.e. does not interchange them). Consider real numbers
A, psuch that H(V x (— o0, A] = V x (— 00, p). It is clear that the homeomorphism class of
the cobordism (triad) c(4, ) = (W,; H(V x 1), V x p), where W, =H(V x [A, 0)) V
x (— o0, ul, is independent of / and p—call it t(H). (A better invariant is the class of ¢(4, p)
as a cobordism of V to itself, see [42A].) If H’' is another such homeomorphism of ' x R
and H' = H on some V x J, then clearly t(H') = t(H). It follows that t¢(H) is an isotopy
invariant of H; for if H ~ H" (~ indicates isotopy) the isotopy extension principle [19]
yields H' so that H = H’ on V' x O and H’ = H" outside a compactum,
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The example we have in mind is an infinite cyclic covering H: B*x R x T" — B°
X R x T" of h (here V' = B* x T"). Qur construction of %2 makes it clear that =(H) is the
homeomorphism class of ¢. Further, if % is any standard covering of 4, and H such an
infinite cyclic cover of &, then t(H) is the class of the standard covering ¢ of ¢ for the same
integer d.

Next we assert that, since /4 fixes 7, and 4 is so simple on 9, any standard covering
h = h, of h for p,, is necessarily isotopic to the identity if d is large. It is trite that the com-
ponent of hon T* x T™"issmallf for d large, if h is suitably chosen (recall that / is in general
determined only up to covering translations, here “rotations ™ isotopic to the identity). An
Alexander-type isotopy of k involving only B co-ordinates then makes the component of &
on B as small as we please (For this see [45, p.66-7] and recall that the component on B*
of k|0 and |4 is projection.) Thus for d large, & is up to isotopy as near as we please to the
identity. So the assertion follows from the local contractibility of the homeomorphism
group of B® x T* x T" [19].

Over h choose an infinite cyclic covering H:B*x R x T" - B x R x T". Now
h~id = H ~ id = t(H) = 1(id) = ¢ is a product cobordism. Thus ¢ is a product cobordism
for all large standard coverings as required to complete 11.1}.

To conclude this appendix we show how to solve 0-handle problems V™ — R" coming
from restriction of f: M — N over a zero handle R" < N. If g: W™ — T™ is the CE map

derived from V™ — R™ in §2 we need only give an elementary construction of a homeo-
morphism 4 : W™ — T™,

Using the proviso about f, we find an isotopy H: [0, 1] x R*—[0,1] x N of the
inclusion H,: R™— N, so that fis a homeomorphism over H,(R™). Restricting [0, 1] x f
over H([0,1] x R <= [0,1] x N we get a CE map f': V' - [0, 1] x R™ such that, over
Ox R" f"is ¥—L 5 R™ while, over 1 x R*, ' is a homeomorphism. Further
p1 [ V' - [0, 1]is a submersion. We regard f” as a family of 0-handle problems, one for
each point in [0, 1], and begin to solve them all at once forming a fiber product square

g0

W, —— [0, 1]1x(T"-p)

=g l o« l id x {immecrsion}

Vv’ S'=H"1f 3 [0, l] X R™,

Since p; g, is a submersion W,’ — [0, 1], and g, is CE, it follows that W’ is a bundle over
[0, 1]1—by [32, 6.7], [46A, 6.9], cf. [47], a result using engulfing. Now the fiber of W’ over 0

t Small means near to the projection.

I Since we have proved I1.1 heuristically in two steps, its conclusion is proved only for g = §; where d = d,d,
and both 4y, d, are large. To prove it for all large d, one can easily make do with the 2nd argument only, by
using cobordisms rel 0 from B* x T™ to itself. Here rel ©@ means that the cobordism of boundaries is given as
a product of 9B° X T with a 1-dimensional cobordism; equivalence is homeomorphism of triads respecting
this extra structure as well as identifications of the *““ends” of the triad to B x T, cf. [42A].
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is W, = (W — point) as defined in §2, while the fiber over 1 is homeomorphic to (T™ — p)
by go. Hence there is a homeomorphism g: W — T™ as required in §2 to solve the handle
problem ¥V —L_, R™

19.
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