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Abstract

This thesis consists of three applications of Ranicki’s algebraic theory of surgery to the topology

of manifolds. The common theme is a decomposition of a global algebraic object into simple lo-

cal pieces which models the decomposition of a global topological object into simple local pieces.

Part I: Algebraic reconstruction of 4-manifolds. We extend the product and glueing

constructions for symmetric Poincaré complexes, pairs and triads to a thickening construction

for a symmetric Poincaré representation of a quiver. Gay and Kirby showed that, subject to cer-

tain conditions, the fold curves and fibres of a Morse 2-function F ∶M4 → Σ2 determine a quiver

of manifold and glueing data which allows one to reconstruct M and F up to diffeomorphism.

The Gay-Kirby method of reconstructing M glues the pre-images of disc neighbourhoods of

cusps and crossings with thickenings of regular fibres and thickenings of cobordisms between

regular fibres. We use our thickening construction for a symmetric Poincaré representation of

a quiver to give an algebraic analogue of the Gay-Kirby result to reconstruct the symmetric

Poincaré complex (C(M), φM) of M from a Morse 2-function.

Part II: The L-theory of triangular matrix rings. We construct a chain duality on the

category of left modules over a triangular matrix ring A = (A1,A2,B) where A1,A2 are rings

with involution and B is an (A1,A2)-bimodule. We describe the resulting L-theory of A and

relate it to the L-theory of A1,A2 and to the change of rings morphism B ⊗A2 − ∶ A2-Mod →
A1-Mod. By examining algebraic surgery over A we define a relative algebraic surgery opera-

tion on an (n+1)-dimensional symmetric Poincaré pair with data an (n+2)-dimensional triad.

This gives an algebraic model for a half-surgery on a manifold with boundary. We then give an

algebraic analogue of Borodzik, Némethi and Ranciki’s half-handle decomposition of a relative

manifold cobordism and show that every relative Poincaré cobordism is homotopy equivalent

to a union of traces of elementary relative surgeries.

Part III: Seifert matrices of braids with applications to isotopy and signatures.

Let β be a braid with closure β̂ a link. Collins developed an algorithm to find the Seifert

matrix of the canonical Seifert surface Σ of β̂ constructed by Seifert’s algorithm. Motivated

by Collins’ algorithm and a construction of Ghys, we define a 1-dimensional simplicial complex

K(β) and a bilinear form λβ ∶ C1(K(β);Z)×C1(K(β);Z)→ Z[ 1
2
] such that there is an inclusion

K(β)↪ Σ which is a homotopy equivalence inducing an isomorphism H1(Σ;Z) ≅H1(K(β);Z)
such that [λβ] ∶ H1(K(β);Z) ×H1(K(β);Z) → Z ⊂ Z[ 1

2
] is the Seifert form of Σ. We show

that this chain level model is additive under the concatenation of braids and then verify that

this model is chain equivalent to Banchoff’s combinatorial model for the linking number of two
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space polygons and Ranicki’s surgery theoretic model for a chain level Seifert pairing. We then

define the chain level Seifert pair (λβ , dβ) of a braid β and equivalence relations, called A and

Â-equivalence. Two n-strand braids are isotopic if and only if their chain level Seifert pairs are

A-equivalent and this yields a universal representation of the braid group. Two n-strand braids

have isotopic link closures in the solid torus D2 ×S1 if and only if their chain level Seifert pairs

are Â-equivalent and this yields a representation of the braid group modulo conjugacy. We use

the first representation to express the ω-signature of a braid β in terms of the chain level Seifert

pair (λβ , dβ).



Lay Summary

Imagine a sphere made out of rubber and suppose that you are allowed to squeeze, stretch or

twist it as much as you want but you are not allowed to cut it or to glue parts of it together.

Geometric properties of the sphere such as its surface area or the distance between two points

may change drastically under these transformations (imagine inflating the sphere). Other more

intrinsic properties may not change such as the fact that it a possible to draw a curve between

any two points on the sphere or that a sphere has an inside and an outside.

One of the main goals of topology is the classification problem: when can one continuously

deform one space to another or, slightly more generally, when can one continuously deform one

space to another through a family of deformations? For example, a doughnut can be continu-

ously deformed into to a coffee cup but it is not possible to continuously deform a sphere to a

point without puncturing the sphere first. A central idea is to first find topological invariants

of a space, namely properties of the space which do not change under continuous deformations.

If two spaces have different values for the same invariant then it is not possible to continuously

deform one into the other. Algebraic topology uses tools from algebra to help produce algebraic

invariants to distinguish spaces.

A manifold is a topological space which looks flat around each point but may have a more

complicated global structure. A hollow doughnut and the sphere are both 2-dimensional man-

ifolds (imagine what a tiny ant sees if it walks on them). There are natural operations one

can perform on two manifolds to produce a third manifold, such as taking a product or glueing

them over a particular piece.

Figure 1: The sphere can be obtained by glueing two discs over their boundary circle and the doughnut
can be obtained from a cylinder by gluing its two boundary circles.

3



4

Manifolds have a very rich set of invariants in algebraic topology and the invariants often

have intricate structures. Geometric surgery theory is a collection of tools developed to answer

the question of whether a topological space can be deformed into a manifold. Algebraic surgery

theory is an algebraic model for geometric surgery theory in which manifolds and the various

operations one can perform on them have precise algebraic analogues. The first part of this

thesis examines how some of the basic tools of algebraic surgery theory can be extended to give

an algebraic analogue of a geometric result which reconstructs a 4-dimensional manifold from

simple pieces. The second part of this thesis gives an algebraic model for a geometric operation

called a half-surgery and gives an algebraic analogue of a geometric result which decomposes a

manifold with boundary into the traces of half-surgeries.

The third part of this thesis is concerned with knot theory. A braid is a collection of pieces

of string travelling from left to right with the end points of each piece of string fixed on two

vertical walls. The strings are allowed to intertwine but can never meet or reverse their direction

of travel. Two braids can be concatenated by joining the right hand endpoints of the first braid

to the left hand endpoints of the second braid. Every braid can be written as concatenation of

elementary braids where each elementary braid has a single crossing.

Figure 2: A 4-strand braid with 10 crossings.

The closure of a braid is an object in knot theory called a link and is formed by joining the

end points of the braid as shown below.

Figure 3: The closure of a braid.

A Seifert surface of a braid is a surface which has boundary equal to the closure of the

braid. One can produce Seifert surfaces using Seifert’s algorithm.
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Figure 4: A Seifert surface constructed by Seifert’s algorithm.

The Seifert form of a braid is an algebraic object which encodes geometric linking informa-

tion about its Seifert surface. It is natural to ask how the Seifert form of a braid changes under

the concatenation of braids.

To each braid we associate an algebraic object called a chain level Seifert form. We show

that the chain level Seifert form of a braid determines its Seifert form and we then construct

an algebraic glueing operation for chain level Seifert forms which models the geometric glueing

of braids. This allows us to understand how the Seifert form of an arbitrary braid can be

constructed from the chain level Seifert forms of elementary braids.

The common theme running through each of the three parts is an algebraic decomposi-

tion of a complicated algebraic object into simple pieces which models the decomposition of a

complicated geometric object into simple pieces.
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Organisation

This thesis is split into three parts. Each part has its own introduction and it is recommend to

read the parts in order. The dependencies of the chapters in each of the parts is given by the

following flow diagram.
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3.2 Manifold and symmetric Poincaré thickenings . . . . . . . . . . . . . . . . . . . . . 59

3.3 Manifold and symmetric Poincaré pairs with boundary splittings . . . . . . . . . 63
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Algebraic reconstruction of

4-manifolds
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Introduction to Part I

Ranicki’s algebraic theory of surgery [Ran80a],[Ran80b] is an algebraic model for geometric

surgery theory in which manifold objects are modelled by chain complex objects with symmet-

ric structures encoding various chain level dualities and symmetries.

An n-dimensional symmetric Poincaré complex (C,φ) over a ring with involution A is an

algebraic model for a closed manifold. It consists of a finite dimensional chain complex C of

finitely generated projective A-modules together with a symmetric structure φ = {φs∣s ≥ 0}
where φ0 ∶ Cn−∗ → C is an abstract Poincaré duality and φs+1 is a higher chain homotopy

measuring the failure of φs to be symmetric. The symmetric construction associates to a

commutative ring R and an oriented n-dimensional manifold M , an n-dimensional symmetric

Poincaré complex (C(M ;R), φM) such that if [M] ∈ Hn(M ;R) is the fundamental class of M

determined by the orientation then (φM)0 = [M] ∩ − ∶ C(M ;R)n−∗ → C(M ;R) is the Poincaré

duality chain homotopy equivalence.

Figure 5: A schematic diagram from the symmetric construction.

The relative version of a symmetric Poincaré complex is a symmetric Poincaré pair (f ∶
C → D, (δφ,φ)). This is an algebraic model for a manifold with boundary and consists of a

chain map f ∶ C → D of finitely generated projective A-module chain complexes together with

a relative symmetric structure (δφ,φ) such that (δφ0 fφ0) ∶ C (f)n+1−∗ → D is an abstract

Poincaré-Lefschetz duality.

Figure 6: A schematic diagram for a symmetric pair.

The relative symmetric construction associates to a commutative ring R and an oriented (n+
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1)-dimensional manifold with boundary (Σ,M), an (n+1)-dimensional symmetric Poincaré pair

(C(M ;R) → C(Σ;R), (φΣ, φM)) such that if [Σ] ∈ Hn+1(Σ,M ;R) is the relative fundamental

class then ((φΣ)0, i(φM)0) = [Σ] ∩ − ∶ C(Σ,M ;R)n+1−∗ → C(Σ;R) is the Poincaré-Lefschetz

duality chain homotopy equivalence.

Figure 7: A schematic diagram for the relative symmetric construction.

A symmetric cobordism between two n-dimensional symmetric complexes (C,φ) and (C ′, φ′)
is a symmetric pair of the form ((f f ′) ∶ C ⊕C ′ → D, (δφ,φ⊕ −φ′)) and is an algebraic model

for a manifold cobordism. For a commutative ring R, the relative symmetric construction may

be applied to an (n + 1)-dimensional manifold cobordism (W ;M,M ′) to obtain an (n + 1)-
dimensional symmetric cobordism (C(M ;R)⊕C(M ′;R)→ C(W ;R), (φW , φM ⊕ −φM)).

Figure 8: A schematic diagram for the relative symmetric construction applied to a manifold cobordism.

The standard operations which one can perform on manifolds, such as taking products and

glueing adjoining cobordisms, also have algebraic models such that the symmetric construction

commutes with these operations up to homotopy equivalence.

Figure 9: The effect of applying the symmetric construction to a union of adjoining manifold cobor-
disms.

A quiver Q = (Q0,Q1; s, t ∶ Q1 → Q0) is a directed graph where each arrow α ∈ Q1 has a

source vertex s(α) ∈ Q0 and a target vertex t(α) ∈ Q0. A representation of a quiver typically as-

sociates to each vertex v ∈ Q0 a vector space and two each arrow α ∈ Q1 a linear map. We will
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work with n-dimensional oriented manifold (respectively n-dimensional symmetric Poincaré)

representations where to each vertex we associate an n-dimensional oriented manifold Mv (re-

spectively an n-dimensional symmetric Poincaré complex (Cv, φv)) and to each arrow α we

associate an (n+ 1)-dimensional oriented manifold cobordism (Wα;Ms(α),Mt(α)) (respectively

an (n + 1)-dimensional symmetric cobordism (Cs(α) ⊕ Ct(α) → Dα, (φα, φs(α) ⊕ −φt(α))). The

manifold and symmetric Poincaré trinities of [BNR12a] are a special case of manifold and

symmetric Poincaré quiver representations.

Figure 10: Representations of the trinity quiver.

We generalise the manifold and symmetric Poincaré trinity thickening operations of [BNR12a]

Figure 11: The manifold thickening operation

to thickening operations for oriented manifold and symmetric Poincaré representations of

arbitrary quivers where we allow the thickening to be twisted by a self-homotopy equivalence

of the data associated to the target vertex of each arrow. This yields:

Theorem 3.5.9. The symmetric construction commutes with the twisted thickening op-

erations up to homotopy equivalence of the resulting symmetric pair, yielding a homotopy



14

commutative diagram

(WQ;MQ,M
′
Q) (Ω, ∂Ω)

(C(MQ;R)⊕C(M ′
Q;R)→ C(WQ;R),

(φWQ
, φMQ

⊕ −φM ′

Q
))

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω))

≃

(∂D →D, (φD, φ∂D))

twisted geometric

thickening

symmetric

construction

symmetric

construction

twisted algebraic

thickening

A Morse 2-function is a smooth map F ∶Mn → Σ2 from a manifold to a surface which can be

written locally as a generic homotopy of Morse functions F (x) = (t, ft(x)). Each ft ∶ Rn−1 → R
is a Morse function except at finitely many values of t where either two critical values cross or

there is a birth-death singularity. Gay and Kirby [KG12] showed that if the fold curves of a

Morse 2-function F ∶ M4 → Σ2 bound simply-connected regions and the fibres are connected,

then the Morse 2-function determines a manifold representation of a quiver. One can then

reconstruct M4 up to diffeomorphism by thickening with a twist this representation and then

glueing in disc neighbourhoods of cusps and crossings. We give an algebraic analogue of their

result to show how, under the same hypotheses, a Morse 2-function F ∶M4 → Σ2 can be used to

reconstruct the symmetric Poincaré complex (C(M ;R), φM) of M by thickening with a twist

a symmetric Poincaré representation of a quiver and then glueing in the symmetric Poincaré

pairs obtained by applying the symmetric construction to disk neighbourhoods of cusps and

crossings. This also allows one to recover the signature of M . This yields:

Theorem 5.2.2. Let R be a commutative ring with identity. The symmetric Poincaré

complex (C(M ;R), φM) may be reconstructed up to homotopy equivalence by thickening with

a twist a symmetric Poincaré representation induced from the 3-dimensional oriented manifold

representation (WQ;MQ,M
′
Q) of Q .

Theorem 5.2.3. In the case R = Z the signature of M may be recovered from the 3-

dimensional oriented manifold representation (WQ;MQ,M
′
Q) of Q and the twisted glueing data.

Part I is organised as follows.

In chapter 1 we recall from [Ran80a] the ε-symmetric complex, pair and cobordism objects

which appear in the the L-theory of a ring with involution. We examine the symmetric construc-

tion and the glueing operation for adjoining ε-symmetric cobordisms to show that symmetric

Poincaré complexes, pairs and cobordisms are algebraic models for closed manifolds, manifolds

with boundary and cobordisms.

In chapter 2 we recall from [Ran81] the ε-symmetric triad objects and the triad definition

of a homotopy equivalence of symmetric pairs which appear in the the L-theory of a ring with

involution. We then examine a twisted glueing operation for ε-symmetric triads and show this

is a model for the twisted glueing of manifolds with boundary and manifold triads.
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In chapter 3 we extend the symmetric construction to a symmetric construction for an ori-

ented manifold representation of a quiver where the vertices parametrise manifolds and the

arrows parametrise cobordisms. This produces a symmetric Poincaré representation of a quiver

where the vertices parametrise symmetric Poincaré complexes and the arrows parametrise sym-

metric Poincaré cobordisms. We also extend the definition of a symmetric pair to a symmetric

pair with an `-fold boundary splitting and show that this is an algebraic model for a manifold

with boundary where the boundary can be written as a cyclic union of adjoining cobordisms.

We then define algebraic thickening operations which are algebraic models for taking the prod-

uct of a cobordism with an interval and for taking the product of a closed manifold with a disc

D2 where the boundary S1 = ∂D2 is split into ` pieces. We use the quiver symmetric construc-

tion together with the thickening operations to generalise the manifold and symmetric Poincaré

trinity thickening operations of [BNR12a, p.44-46] to thickening operations for manifold and

symmetric Poincaré representations of a quiver where parts of the data can be twisted by a

self-homotopy equivalence. We then show that the twisted thickening operations commute with

the symmetric construction up to homotopy equivalence.

In chapter 4 we examine Gay and Kirby’s definitions of Morse 2-functions [KG13a] and of

trisections of 4-manifolds [KG13b] as natural generalisations of Morse functions and Heegaard

splittings of 3-manifolds. We use trisections to produce some examples of fold loci of Morse

2-functions.

In chapter 5 we give an algebraic analogue of the result of Gay and Kirby [KG12] to show how

a Morse 2-function F ∶M4 → S2 which has connected fibres and whose fold lines bound simply

connected regions can be used to reconstruct the symmetric Poincaré complex (C(M ;R), φM)
of M .



Chapter 1

The L-theory of a ring with

involution: symmetric complexes

and pairs

In this chapter we recall from [Ran80a] the symmetric complex, pair and cobordism objects

which appear in the the L-theory of a ring with involution. We examine the symmetric con-

struction and the glueing operation for adjoining symmetric cobordisms to show that symmetric

Poincaré complexes, pairs and cobordisms are algebraic models for closed manifolds, manifolds

with boundary and manifold cobordisms.

1.1 Symmetric complexes

Definition 1.1.1. A ring with involution is a ring A with identity 1 together with a function

A→ A;a↦ a such that

a + b = a + b, ab = b ⋅ a, 1 = 1, a = a (a, b ∈ A).

Example 1.1.2.

(i) Complex conjugation is an involution on C.

(ii) The identity map of a commutative ring with identity is an involution.

From now on in Part I of this thesis let A denote a ring with involution and let all A-

modules be left A-modules unless stated otherwise. Modules over a ring with involution have

the following duals, transposes and tensor products.

Definition 1.1.3.

(i) The dual of an A-module M is the right A-module M∗ = HomA(M,A) equipped with the

scalar action

A ×M∗ →M∗; (a, f)↦ (x↦ f(x) ⋅ a).

16
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(ii) The dual of an A-module morphism f ∶M → N is the A-module morphism

f∗ ∶ N∗ →M∗; g ↦ (x↦ g(f(x))).

(iii) The tensor product of a right A-module M and a left A-module N is the Z-module

M ⊗A N =M ⊗Z N/{xa⊗ y − x⊗ ay ∶ x ∈M,y ∈ N,a ∈ A}.

(iv) The transpose of an A-module M is the right A-module M t such that M t =M as an abelian

group and M t is equipped with the scalar action

M t ×A→M t; (x, a)↦ ax

such that if N is an A-module then

M t ⊗A N =M t ⊗Z N/{ax⊗ y − x⊗ ay ∶ x ∈M,y ∈ N,a ∈ A}.

(v) For A-modules M,N the slant map is the morphism

/ ∶M t ⊗A N → HomA(M∗,N);x⊗ y ↦ (f ↦ f(x) ⋅ y)

and is an isomorphism if M,N are finitely generated (f.g.) projective A-modules.

The tensor product and slant map have the following extensions to chain complexes over a

ring with involution.

Definition 1.1.4. Let C,D be A-module chain complexes.

(i) The tensor product Ct ⊗AD is the Z-module chain complex defined by

(Ct ⊗AD)r = ⊕p+q=rCtp ⊗ADq

with differential

dCt⊗AD ∶ (Ct ⊗D)r → (Ct ⊗AD)r−1;x⊗ y ↦ x⊗ dD(y) + (−)qdC(x)⊗ y (x ∈ Ctp, y ∈Dq).

(ii) The Hom chain complex HomA(C,D) is the Z-module chain complex by

HomA(C,D)r = ⊕q−p=rHomA(Cp,Dq)

with differential

dHomA(C,D)
∶ HomA(C,D)r → HomA(C,D)r−1; f ↦ dDf + (−)qfdC (f ∈ HomR(Cp,Dq)).

(iii) The slant map is the chain map

/ ∶ Ct ⊗AD → HomA(C−∗,D);x⊗ y ↦ (f ↦ f(x) ⋅ y)
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and is an isomorphism if C is finite-dimensional. Here C−∗ is the A-module chain complex

defined by

C−∗
r = (C−r)∗, dC−∗ = d∗C .

We now turn to chain complexes over a ring with involution. As we will later be working

with chain complexes of manifolds which are homotopy equivalent to finite CW-complexes, it

is useful to have a definition of the dimension of a chain complex which is only defined up to

chain homotopy.

Definition 1.1.5. An A-module chain complex is n-dimensional (n ∈ Z≥0) if it is a chain

complex of f.g. projective A-modules which is chain homotopy equivalent to a f.g. projective

A-module chain complex of the form

C ∶ . . .→ 0→ Cn
dCÐ→ Cn−1

dCÐ→ . . .
dCÐ→ C1

dCÐ→ C0 → 0.

An A-module chain complex is finite-dimensional if it is n-dimensional for some n ∈ Z≥0.

The symmetric Q-groups of a finite-dimensional chain complex are defined in terms of the

following W% functor. The geometric motivation for this functor will become apparent in the

proof of Theorem 1.1.11 where we discuss the symmetric construction.

Definition 1.1.6. ([Ran80a, Proposition 1.1]). Let W be the standard free Z[Z2] resolution

of Z
W ∶ . . .→W3 = Z[Z2]

1−TÐÐ→W2 = Z[Z2]
1+TÐÐ→W1 = Z[Z2]

1−TÐÐ→W0 = Z[Z2]

and let C,D be finite-dimensional A-module chain complexes and let ε = ±1.

(i) There is a Z2 action of T on Ct ⊗A C defined by

Tε(x⊗ y) = (−)pqy ⊗ εx (x ∈ Ctp, y ∈ Cq)

such that Ct ⊗A C is a finite-dimensional Z[Z2]-module chain complex.

(ii) The Z-module chain complex W%C = HomZ[Z2](W,Ct ⊗A C) is such that under the slant

isomorphism / ∶ Ct ⊗A C ≅ HomA(C−∗,C) a chain φ ∈ (W%C)n can be identified with a

collection of morphisms

φ = {φs ∶ Cn−r+s → Cr ∣r ∈ Z, s ⩾ 0}

and the boundary dW%Cφ ∈ (W%C)n−1 may be identified with a collection of morphisms

dW%Cφ = {(dφ)s ∶ Cn−1−r+s → Cr ∣r ∈ Z, s ⩾ 0}

which satisfy

(dφ)s = dCφs + (−)rφsd∗C + (−)n+s−1(φs−1 + (−)sTεφs−1) ∶ Cn−1−r+s → Cr (r ∈ Z, s ⩾ 0, φ−1 = 0).

(iii) An A-module chain map f ∶ C →D induces a Z[Z2]-module chain map

f ⊗A f ∶ Ct ⊗A C →Dt ⊗AD
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and hence induces a Z-module chain map

f% ∶W%C →W%D; φ = {φs∣s ⩾ 0}↦ f%φ = {fφsf∗∣s ⩾ 0}

such that a chain homotopy k ∶ f ≃ g ∶ C →D induces a chain homotopy

k% ∶ f% ≃ g% ∶W%C →W%D.

One can think of the chain complex W%C = HomZ[Z2](W,Ct ⊗A C) as the ’homotopy fixed

points’ of the involution Tε.

Definition 1.1.7. Let C,D be finite-dimensional A-module chain complexes and let ε = ±1.

(i) The ε-symmetric Q-groups of C are the Z-module homology groups

Qn(C, ε) =Hn(W%(C)) (n ∈ Z).

(ii) The morphism of ε-symmetric Q-groups induced by a chain map f ∶ C →D is the morphism

f% ∶ Qn(C, ε) =Hn(W%C)→ Qn(D, ε) =Hn(W%D)

such that if f is a chain homotopy equivalence then f% is an isomorphism.

Definition 1.1.8. ([Ran80a, p.102-3]). Let ε = ±1.

(i) An n-dimensional ε-symmetric complex (C,φ) over A consists of an n-dimensional A-module

chain complex C together with an element φ ∈ Qn(C, ε). In the case ε = 1 we write Qn(C,1) =
Qn(C) and we call a 1-symmetric complex a symmetric complex.

(ii) An n-dimensional ε-symmetric complex (C,φ) over A is Poincaré if the chain map φ0 ∶
Cn−∗ → C is a chain homotopy equivalence.

(iii) A morphism f ∶ (C,φ) → (C ′, φ′) of n-dimensional ε-symmetric complexes over A is an

A-module chain map f ∶ C → C ′ such that f%(φ) = φ′ ∈ Qn(C ′, ε). A morphism f ∶ (C,φ) →
(C ′, φ′) is a homotopy equivalence if f ∶ C → C ′ is a chain homotopy equivalence.

Symmetric (Poincaré) complexes of dimension 0 are precisely (non-singular) symmetric

forms.

Example 1.1.9. Let M be a f.g. projective A-module. A 0-dimensional ε-symmetric structure

φ ∈ Q0(M,ε) is the same as a morphism φ0 ∶M →M∗ which satisfies the ε-symmetry condition

φ0 = εφ∗0 ∶M →M∗. It follows that (M,φ) is Poincaré if and only if φ0 = εφ∗0 ∶M →M∗ is an

isomorphism, that is to say the ε-symmetric form (M,φ0) is non-singular. If M ′ is another f.g

projective A-module then a map of 0-dimensional ε-symmetric complexes f ∶ (M,φ)→ (M ′, φ′)
is the same as an A-module morphism f ∶M →M ′ which satisfies φ0 = f∗φ′0f ∶M →M ′. In this

case f ∶ (M,φ)→ (M ′, φ′) is a homotopy equivalence if and only if f ∶M →M ′ is an A-module

isomorphism.

For (finite-dimensional) A-module chain complexes C,C ′ we have the identity

(C ⊕C ′)t ⊗A (C ⊕C ′) = (Ct ⊗A C)⊕ (C ′t ⊗A C ′)⊕ (Ct ⊗A C ′)⊕ (C ′t ⊗A C)
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and hence the symmetric Q groups fail to be additive under the direct sum of chain complexes.

By examining the Z2 action we see that W%(C ⊕C ′) =W%C ⊕W%C ′ ⊕ (C ⊗A C ′) and hence

Qn(C ⊕C ′, ε) = Qn(C, ε)⊕Qn(C ′, ε)⊕Hn(Ct ⊗A C ′). This inclusion of Q-groups determines a

direct sum operation.

Definition 1.1.10.

(i) The direct sum of n-dimensional ε-symmetric (Poincaré) complexes (C,φ ∈ Qn(C, ε)), (C ′, φ′ ∈
Qn(C ′, ε)) over A is the n-dimensional ε-symmetric (Poincaré) complex over A

(C,φ ∈ Qn(C, ε))⊕ (C ′, φ ∈ Qn(C, ε)′) = (C ⊕C ′, φ⊕ φ′ ∈ Qn(C ⊕C ′, ε))

determined by the inclusion

Qn(C, ε)⊕Qn(C ′, ε)↪ Qn(C ⊕C ′, ε).

(ii) The zero n-dimensional ε-symmetric Poincaré complex over A is (0,0 ∈ Qn(0, ε)).

(iii) The negative of an n-dimensional ε-symmetric (Poincaré) complex (C,φ ∈ Qn(C, ε)) over A

is the n-dimensional ε-symmetric (Poincaré) complex over A

−(C,φ ∈ Qn(C, ε)) = (C,−φ ∈ Qn(C, ε)).

The most important symmetric complexes are those which arise from geometry. For a

topological space X and a commutative ring R, the diagonal map ∆ ∶ X → X × X and the

Eilenberg-Zilber chain homotopy equivalence C(X × X;R) ≃ C(X;R)t ⊗R C(X;R) may be

used to produce an n-dimensional symmetric structure on the chain complex C(X;R) from a

homology class [X] ∈Hn(X;R).

Theorem 1.1.11. ([Ran80b, Proposition 1.2]). Let R be a commutative ring with identity

and let X be a topological space whose singular chain complex C(X;R) is of finite dimension

(e.g. X is any space homotopy equivalent to a finite CW-complex).

(i) The symmetric construction is a chain map

φX ∶ C(X;R)→W%C(X;R), [X] ∈ C(X;R)n ↦ φX([X]) ∈ (W%C(X;R))n

which associates to each chain in C(X;R) a natural chain homotopy class of R-module mor-

phisms.

(ii) The induced homomorphisms in homology

φX ∶H∗(X;R)→ Q∗(C(X;R)).

are such that a homology class [X] ∈ Hn(X;R) determines an n-dimensional symmetric com-

plex (C(X;R), φX([X]) ∈ Qn(C(X;R)) over R with the 0-dimensional part of the symmetric

structure φX([X]) given by the cap product with [X]

φX([X])0 = [X] ∩ − ∶ C(X;R)n−∗ → C(X;R).
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(iii) The symmetric construction is natural in the sense that a map of spaces f ∶X → Y induces

a commutative square of chain maps

C(X;R) W%C(X;R)

C(Y ;R) W%C(Y ;R)

φX

f f%

φY

giving a commutative square

H∗(X;R) Q∗(X;R)

H∗(Y ;R) Q∗(Y ;R)

φX

f∗ f%

φY

such that for a homology class [X] ∈Hn(X;R)

(C(Y ;R); f%(φX([X]))) = (C(Y ;R), φY (f∗([X]))).

Proof. We sketch the definition of φX in the case R = Z. Recall that by the Eilenberg-Zilber

theorem there is a natural chain choice of chain homotopy equivalence

θ ∶ C(X ×X;Z) ≃ C(X;Z)t ⊗Z C(X;Z)

such that θ is unique up to natural chain homotopy equivalence, see [Bre97, p.316]. If ∆ ∶X →
X ×X is the diagonal map then there is a natural morphism

∆0 ∶ C(X;Z) ∆Ð→ C(X ×X;Z) θÐ→ C(X;Z)t ⊗Z C(X;Z).

The composition with the slant map

C(X;Z) ∆0Ð→ C(X;Z)t ⊗Z C(X;Z)
/
Ð→ HomZ(C(X;Z)−∗,C(X;Z))

sends a cycle x ∈ Cn(X;Z) to the chain map

φ0 = /∆0(x) = x ∩ − ∶ Cn−∗(X;Z)→ C(X;Z).

Since the map Tε ∶ C(X;Z)⊗Z C(X;Z) → C(X;Z)⊗Z C(X;Z) is an involution it follows that

the composition Tεθ ∶ C(X ×X;Z)→ C(X;Z)⊗ZC(X;Z) is also a chain homotopy equivalence

and hence there is a natural chain homotopy θ ≃ Tεθ. This determines a degree 1 chain map

∆1 ∶ C(X;Z)∗ → (C(X;Z)⊗Z C(X;Z))∗+1.

providing a chain homotopy ∆1 ∶ ∆0 ≃ Tε∆0 which measures the failure of ∆0 to be symmetric.

If x ∈ Cn(X;Z) is a cycle then the map

φ1 = /∆1(x) ∶ Cn+1−∗(X;Z)→ C(X;Z)
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is a chain homotopy between φ0 and Tεφ0 so that

dC(X;Z)φ1 + (−1)rφ1d
∗
C(X;Z) + (−1)n(φ0 − Tεφ0) = 0 ∶ C(X;Z)n−∗ → C(X;Z).

This process may be iterated to obtain a sequence ∆i ∶ C(X;Z)∗ → C(X;Z)t ⊗C(X;Z)∗+i of

degree i chain maps which satisfy the relation

d∆i+1 + (−)i∆i+1d = Tε∆i + (−)i+1∆i (i ≥ 0)

and we can think of ∆i+1 as a measure of the failure of ∆i to be symmetric. This sequence may

be expressed as a natural degree 0 chain map

∆X ∶W ⊗C(X;Z)→ C(X;Z)⊗C(X;Z)

which has adjoint

∆X ∶ C(X;Z)→ HomZ[Z2](W,C(X;Z)⊗C(X;Z)) =W%(C(X;Z))

such that the image of a cycle x ∈ Cn(X;Z) is an n-dimensional symmetric structure with

0-dimensional component equal to x ∩ −.

The maps ∆i ∶ C(X;R)∗ → C(X;R)t ⊗R C(X;R)∗+i encode higher level information about

the intersection properties of X. The cup product of two cocycles x ∈ Cp(X;R), y ∈ Cp(X;R)
may be expressed as x ∪ y = ∆∗

0(x ⊗ y) and the chain homotopy ∆1 ∶ ∆0 ≃ T∆0 expresses the

failure of the cup product to commute on the cochain level. In the case R = Z2 the ith Steenrod

square may be expressed as

Sqi ∶Hn(X;Z2)→Hn+i(X;Z2); x↦∆∗
i−n(x⊗ x).

See [Bre97, chapter 4.16] for more details.

Example 1.1.12. Let R be a commutative ring with identity and let M be a closed, oriented n-

dimensional manifold with fundamental class [M] ∈ Hn(M ;R) determined by the orientation.

Applying the symmetric construction to (M, [M] ∈ Hn(M ;R)) produces an n-dimensional

symmetric complex (C(M ;R), φM([M)]) over R. The chain map of free R-module chain

complexes

(φM [M])0 = [M] ∩ − ∶ C(M ;R)n−∗ → C(M ;R)

is a chain homotopy equivalence since it induces the Poincaré duality isomorphisms

[M] ∩ − ∶Hn−∗(M ;R)→H(M ;R)

and hence (C(M ;R), φM([M])) is Poincaré . Applying the symmetric construction to (M,−[M] ∈
Hn(M ;R)) produces the n-dimensional symmetric Poincaré complex

(C(M ;R), φM(−[M])) = (C(M),−φM([M])) = −(C(M), φM([M])).

From now on we denote φM([M]) by φM and we think of symmetric (Poincaré) complexes as

algebraic models of closed (orientable) manifolds.
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In Section 2.2 we will apply a relative version of the symmetric construction to a manifold

cobordism to produce a symmetric cobordism. It is first necessary to understand the symmetric

construction for a disjoint union.

Proposition 1.1.13. ([BNR12a, Proposition 4.4.3]). Let R be a commutative ring with iden-

tity and let X,Y be topological spaces whose singular chain complexes C(X;R),C(Y ;R) are

of finite dimension (e.g. X,Y are any spaces homotopy equivalent to finite CW-complexes).

The symmetric construction on X ⊔ Y

φX⊔Y ∶H∗(X ⊔ Y ;R)→ Q∗(C(X ⊔ Y );R)

is given by the composition

H∗(X⊔Y ;R) =H∗(X;R)⊕H∗(Y ;R) φX⊕φYÐÐÐÐ→ Q∗(C(X;R))⊕Q∗(C(Y ;R))↪ Q∗(C(X;R)⊕C(Y ;R)).

The behaviour of the symmetric construction on the boundary of a manifold cobordism is

as follows.

Example 1.1.14. Let R be a commutative ring with identity and let M and M ′ be disjoint

closed, oriented n-dimensional manifolds with fundamental classes [M] ∈Hn(M ;R) and [M ′] ∈
Hn(M ′;R). The disjoint union M ⊔M ′ is a closed, oriented n-dimensional manifold with

fundamental class ([M], [M ′]) ∈ Hn(M ⊔M ′;R) = Hn(M ;R) ⊕Hn(M ′;R). The symmetric

construction applied to (M, [M]), (M ′, [M ′]) and (M ⊔M ′, ([M], [M ′])) produces three n-

dimensional symmetric Poincaré complexes over R

(C(M ;R), φM ∈ Qn(C(M ;R)))

(C(M ′;R), φM ′ ∈ Qn(C(M ′;R)))

(C(M ⊔M ′;R), φM⊔M ′ ∈ Qn(C(M ⊔M ′;R)))

which satisfy

(C(M ⊔M ′;R), φM⊔−M ′ ∈ Qn(C(M ⊔ −M ′;R)))

=(C(M ;R)⊕C(M ′;R), φM⊔−M ′ ∈ Qn(C(M ;R)⊕C(M ′;R)))

=(C(M ;R)⊕C(M ′;R), φM ⊕ −φM ′ ∈ Qn(C(M ;R))⊕Qn(C(M ′;R))

=(C(M ;R), φM ∈ Qn(C(M ;R)))⊕ (C(M ′;R),−φM ′ ∈ Qn(C(M ′;R)))

=(C(M ;R), φM ∈ Qn(C(M ;R)))⊕ −(C(M ′;R), φM ′ ∈ Qn(C(M ′;R))).

1.2 Symmetric pairs

Symmetric pairs are relative versions of symmetric complexes and are algebraic models of

manifolds with boundary.

Definition 1.2.1. The algebraic mapping cone of an A-module chain map f ∶ C → D is the

A-module chain complex C (f) defined by

dC (f) =
⎛
⎝
dD (−)n−1f

0 0

⎞
⎠
∶ C (f)n =Dn ⊕Cn−1 → C (f)n−1 =Dn−1 ⊕Cn−2 (n ∈ Z)
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with homology groups

Hn(f) =Hn(C (f)) (n ∈ Z).

Example 1.2.2. Let R be a commutative ring and let f ∶ X → Y be a cellular map of CW-

complexes with geometric mapping cone C geo(f). Cohen [Coh73, §3.9] showed that there is a

chain homotopy equivalence C(C geo(f);R) ≃ C (f ∶ C(X;R) → C(Y ;R)) so we can think of

algebraic mapping cones as a model for geometric mappings cones.

Definition 1.2.3. The relative ε-symmetric Q-groups of a chain map f ∶ C → D of finite-

dimensional A-module complexes are the relative Z-module homology groups

Qn(f, ε) =Hn(C (f% ∶W%C →W%D)) (n ∈ Z).

The following long exact sequence of Q-groups is not needed for Part I of the thesis but will

be used in Part II of the thesis.

Proposition 1.2.4. The relative ε-symmetric Q-groups of a chain map f ∶ C → D of finite-

dimensional A-module complexes fit into a long exact sequence of ε-symmetric Q-groups

. . .→ Qn+1(C, ε) f%

Ð→ Qn+1(D, ε)→ Qn+1(f, ε)→ Qn(C, ε) f%

Ð→ Qn(D, ε)→ . . .

with morphisms

Qn+1(D, ε)→ Qn+1(f, ε); δφ↦ (δφ,0)

Qn+1(f, ε)→ Qn(C, ε); (δφ,φ)↦ φ.

Proof. The A-module chain map f ∶ C → D induces a Z-module chain map f% ∶ W%C →
W%D. The algebraic mapping cone C (f%) determines a short exact sequence of Z-module

chain complexes

0→ (W%D)∗ → C (f%)∗ → (W%C)∗−1 → 0

which induces a long exact sequence of homology groups

. . .→ Qn+1(C, ε) f%

Ð→ Qn+1(D, ε)→ Qn(f, ε)→ Qn(C, ε) f%

Ð→ Qn(D, ε)→ . . .

Definition 1.2.5.

(i) An (n + 1)-dimensional ε-symmetric pair over A

(f ∶ C →D, (δφ,φ) ∈ Qn+1(f, ε))

consists of chain map f ∶ C → D from an n-dimensional A-module chain complex C to an

(n + 1)-dimensional A-module chain complex D together with a cycle

(δφ,φ) ∈ C (f% ∶W%C →W%D)n+1.

In the case ε = 1 we write Qn+1(f,1) = Qn+1(f) and we call a 1-symmetric pair a symmetric

pair.
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Figure 12: A schematic diagram for an ε-symmetric pair.

(ii) The boundary of an (n + 1)-dimensional ε-symmetric pair (f ∶ C → D, (δφ,φ) ∈ Qn+1(f, ε))
over A is the n-dimensional ε-symmetric complex over A

∂(f ∶ C →D, (δφ,φ) ∈ Qn+1(f)) = (C,φ ∈ Qn(C, ε)).

(iii) An (n + 1)-dimensional ε-symmetric pair (f ∶ C → D, (δφ,φ)) over A is Poincaré if the

A-module chain map

( δφ0 fφ0 ) ∶ C (f)n+1−∗ →D

is a chain homotopy equivalence.

The symmetric construction for a topological space X extends to a relative symmetric

construction which produces a symmetric pair from a map of topological spaces f ∶X → Y and

a relative homology class [Z] ∈Hn+1(f ;R) .

Theorem 1.2.6. ([Ran80b, Proposition 6.1]). Let R be a commutative ring with identity

and let X,Y be topological spaces with singular chain complexes C(X;R),C(Y ;R) of finite

dimension (e.g. X,Y are any spaces homotopy equivalent to finite CW-complexes).

(i) By the naturality of the symmetric construction a map f ∶ X → Y induces a natural chain

homotopy class of chain maps

φf ∶ C (f ∶ C(X;R)→ C(Y ;R))→ C (f% ∶W%C(X;R)→W%C(Y ;R)).

(ii) The induced morphisms in homology

φf ∶H∗(f ;R)→ Q∗(f), [Z] ∈Hn+1(f ;R)↦ φf([Z]) ∈ Qn+1(f)

determine a morphism of long exact sequences

. . . Hn+1(Y ;R) Hn+1(f) Hn(X;R) Hn(Y ;R) . . .

. . . Qn+1(C(Y ;R)) Qn+1(f) Qn(C(X;R)) Qn(C(Y ;R)) . . .

φY

∂

φf φX φY

such that for each homology class [Z] ∈Hn+1(f) there is an (n+1)-dimensional symmetric pair

over R

(f ∶ C(X;R)→ C(Y ;R), φf([Z]) ∈ Qn+1(f))

with the 0-dimensional component of φf([Z]) ∈ Qn+1(f) given by the cap product

φf([Z])0 = [Z] ∩ − ∶ C (f)n+1−∗ → C(Y ;R).
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(iii) The boundary of the (n + 1)-dimensional symmetric pair over R

(f ∶ C(X;R)→ C(Y ;R), φf([Z]) ∈ Qn+1(f))

is the n-dimensional symmetric complex over R

(C(X;R), φX([X]) ∈ Qn(C(X;R)), [X] = ∂[Z] ∈Hn(X;R))

obtained by applying the symmetric construction to (X, [X] ∈Hn(X;R)).

Our interest lies in the case where (Y,X) is an oriented manifold with boundary and the

map f ∶X → Y is the inclusion.

Example 1.2.7. Let R be a commutative ring with identity, let (Σ,M) be an oriented (n+1)-
dimensional manifold with boundary and let i ∶M → Σ denote the inclusion so that Hn+1(i) =
Hn+1(Σ,M ;R). Let [Σ] ∈ Hn+1(Σ,M ;R) and [M] ∈ Hn(M ;R) be the fundamental classes

determined by the orientations of Σ and M so that [M] = ∂[Σ] ∈ Hn(M ;R). The symmetric

construction applied to (i ∶ M → Σ, [Σ] ∈ Hn+1(Σ,M ;R)) produces an (n + 1)-dimensional

symmetric pair (i ∶ C(M ;R) → C(Σ;R), φi([Σ]) ∈ Qn+1(i)) which is Poincaré since the 0-

dimensional component of φi([W ]) is given by the chain homotopy equivalence

φi([Σ])0 = [Σ] ∩ − ∶ C(Σ,M ;R)n+1−∗ → C(Σ;R)

which induces the Poincaré-Lefschetz duality isomorphisms

φi([Σ])0 = [Σ] ∩ − ∶H(Σ,M ;R)n+1−∗ →H(Σ;R).

The boundary of the (n+1)-dimensional symmetric Poincaré pair (i ∶ C(M ;R)→ C(Σ;R), φi([Σ]) ∈
Qn+1(i)) is the n-dimensional symmetric Poincaré complex (C(M ;R), φM([M])) obtained

by applying the symmetric construction to (M, [M] ∈ Hn(M ;R)). From now on we write

Figure 13: A schematic diagram for the passage from a manifold with boundary to a symmetric Poincaré
pair.

φi([Σ]) = (φΣ, φM) ∈ Qn+1(i) and we think of symmetric (Poincaré) pairs as algebraic models

of (orientable) manifolds with boundary.

1.3 Symmetric cobordisms and unions

Symmetric cobordisms are algebraic models of manifold cobordisms with a glueing operation

which models the glueing of manifold cobordisms.
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Definition 1.3.1. The union of A-module chain complexes D,D′ along A-module chain maps

f ∶ C →D,f ′ ∶ C →D′ is the A-module chain complex

D ∪C D′ = C
⎛
⎝
⎛
⎝
f

f ′
⎞
⎠
∶ C →D ⊕D′

⎞
⎠

with differential

dD∪CD′ =
⎛
⎜⎜⎜
⎝

dD (−)r−1f 0

0 dC 0

0 (−)r−1f ′ dD′

⎞
⎟⎟⎟
⎠

∶ (D ∪C D′)r =Dr ⊕Cr−1 ⊕D′
r → (D ∪C D′)r−1 =Dr−1 ⊕Cr−2 ⊕D′

r−1 (r ∈ Z).

Example 1.3.2. Let R be a commutative ring with identity and let X be a topological space

with subsets X1,X2 ⊂X whose interiors cover X. Let C(X1+X2;R) denote the subcomplex of

C(X;R) consisting of sums of singular chains in X1 and singular chains in X2. Let i1 ∶X1∩X2 →
X1 and i2 ∶X1 ∩X2 →X2 be the geometric inclusion maps and j1 ∶ C(X1;R)→ C(X1 +X2;R)
and j2 ∶ C(X2;R) → C(X1 +X2;R) be the algebraic inclusion maps. There is a short exact

sequence of R-module chain complexes

0→ C(X1 ∩X2;R)

⎛
⎜
⎜
⎝

i1

i2

⎞
⎟
⎟
⎠

ÐÐÐÐ→ C(X1;R)⊕C(X2;R)
( j1 −j2 )

ÐÐÐÐÐÐÐÐ→ C(X1 +X2;R)→ 0

with chain homotopy equivalences

C(X;R) ≃ C(X1 +X2;R) ≃ C(X1;R) ∪C(X1∩X2;R) C(X2;R).

This shows that up to chain homotopy equivalence the algebraic union of chain complexes is

an algebraic model for a geometric union of spaces.

A symmetric cobordism is a symmetric pair where the boundary is split into two disjoint

pieces, just as for manifolds. The above glueing construction may be used to glue adjoining

symmetric cobordisms along the common component of their boundaries.

Definition 1.3.3. ([Ran80a, p.135]).

(i) An ε-symmetric cobordism between two n-dimensional ε-symmetric Poincaré complexes (C,φ), (C ′, φ′)
over A is an (n + 1)-dimensional ε-symmetric Poincaré pair over A of the form

((f f ′) ∶ C ⊕C ′ →D, (δφ,φ⊕ −φ′) ∈ Qn+1((f f ′), ε)).

Figure 14: A schematic diagram for an ε-symmetric cobordism.
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(ii) The union of adjoining (n + 1)-dimensional ε-symmetric cobordisms over A

c = ((fC fC′) ∶ C ⊕C ′ →D, (δφ,φ⊕ −φ′) ∈ Qn+1((fC fC′), ε))

c′ = ((f ′C′ f ′C′′) ∶ C ′ ⊕C ′′ →D′, (δφ′, φ′ ⊕ −φ′′) ∈ Qn+1(f ′C′ f ′C′′), ε)

is the (n + 1)-dimensional ε-symmetric cobordism over A

c ∪ c′ = ((f ′′C f ′′C′′) ∶ C ⊕C ′′ →D′′, (δφ′′, φ⊕ −φ′′) ∈ Qn+1((f ′′C f ′′C′′), ε))

with D′′ the A-module chain complex

D′′ =D ∪C′ D′ = C
⎛
⎝
⎛
⎝
fC′

f ′C′

⎞
⎠
∶ C ′ →D ⊕D′

⎞
⎠

with differential

dD′′ =
⎛
⎜⎜⎜
⎝

dD (−)r−1fC′ 0

0 dC′ 0

0 (−)r−1f ′C′ dD′

⎞
⎟⎟⎟
⎠

∶D′′
r =Dr ⊕C ′

r−1 ⊕D′
r →D′′

r−1 =Dr−1 ⊕C ′
r−2 ⊕D′

r−1 (r ∈ Z)

and A-module chain maps

f ′′C =
⎛
⎜⎜⎜
⎝

fC

0

0

⎞
⎟⎟⎟
⎠
∶ C ′

r →D′′
r =Dr ⊕C ′

r−1 ⊕D′
r (r ∈ Z)

f ′′C′′ =
⎛
⎜⎜⎜
⎝

0

0

f ′C′′

⎞
⎟⎟⎟
⎠
∶ C ′′

r →D′′
r =Dr ⊕C ′

r−1 ⊕D′
r (r ∈ Z)

and the δφ′′ part of the relative symmetric structure (δφ′′, φ⊕ −φ′′) given by

δφ′′s =
⎛
⎜⎜⎜
⎝

δφs 0 0

(−)n−rφ′sf∗C′ (−)n−r+s+1Tε(φ′s−1) 0

0 (−)sf ′C′φ′s δφ′s

⎞
⎟⎟⎟
⎠

∶D′′n+1−r+s =Dn+1−r+s ⊕C ′n−r+s ⊕D′n+1−r+s → D′′
r =Dr ⊕C ′

r−1 ⊕D′
r

(r ∈ Z, s ⩾ 0, φ′−1 = 0)

and from now on we denote δφ′′ = δφ∪φ′ δφ′ so that δφ′′ is obtained by glueing δφ and δφ′ over

φ′.
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Figure 15: A schematic glueing diagram for adjoining ε-symmetric cobordisms.

Example 1.3.4. Let R be a commutative ring with identity and let (W ;M,M ′) be an ori-

ented (n + 1)-dimensional cobordism of closed, oriented n-dimensional manifolds M,M ′ with

∂W = M ⊔ −M ′. Let [W ] ∈ Hn+1(W,M ⊔M ′;R), [M] ∈ Hn(M ;R), [M ′] ∈ Hn(M ′;R) be the

fundamental classes determined by the orientation with

∂[W ] = ([M],−[M ′]) ∈Hn(M ;R)⊕Hn(M ′;R) =Hn(M ⊔M ′;R).

Example 1.1.14 and Example 1.2.7 imply that applying the symmetric construction to

(i = iM ⊔ iM ′ ∶ ∂W =M ⊔M →W, [W ] ∈Hn+1(W,M ⊔M ′;R))

produces an (n + 1)-dimensional symmetric Poincaré pair over R

(i ∶ C(∂W ;R)→ C(W ;R), (φW , φ∂W ) ∈ Qn+1(i))

=((iM iM ′) ∶ C(M ;R)⊕C(M ′;R)→ C(W ;R), (φW , φM ⊕ −φM ′) ∈ Qn+1(iM iM ′))

which is a cobordism between the n-dimensional symmetric Poincaré complexes (C(M ;R), φM)
and (C(M ′;R), φM ′).

Figure 16: A schematic diagram for the passage from a cobordism of manifolds to a symmetric Poincaré
cobordism.

We will examine the effect of applying the symmetric construction to a union of adjoining

cobordisms (W ;M,M ′) ∪ (W ′;M ′,M ′′) in Chapter 2 once we have established the notions of

symmetric triads and of homotopy equivalences of symmetric pairs.

The cobordism of symmetric Poincaré complexes is an equivalence relation, just as for

manifolds.

Lemma 1.3.5. Cobordism is an equivalence relation on n-dimensional ε-symmetric Poincaré

complexes over A.

Proof. The identity map 1 ∶ (C,φ)→ (C,φ) determines an ε-symmetric cobordism

((1 1) ∶ C ⊕C → C, (0, φ⊕ −φ) ∈ Qn+1(f 1))
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so we have reflexivity. An ε-symmetric cobordism

((f f ′) ∶ C ⊕C ′ →D, (δφ,φ⊕ −φ′) ∈ Qn+1(f f ′))

between (C,φ) and (C ′, φ′) determines an ε-symmetric cobordism

((f ′ f) ∶ C ′ ⊕C →D, (δφ,φ′ ⊕ −φ) ∈ Qn+1(f ′ f))

between (C ′, φ′) and (C,φ) so this verifies symmetry. The glueing construction for adjoining

ε-symmetric cobordisms then verifies transitivity.

Definition 1.3.6. The n-dimensional ε-symmetric L-group Ln(A, ε) (n ⩾ 0) of a ring A with

involution is the abelian group of ε-symmetric cobordism classes of n-dimensional ε-symmetric

Poincaré complexes over A with addition

(C,φ ∈ Qn(C, ε)) + (C ′, φ′ ∈ Qn(C ′, ε)) = (C ⊕C ′, φ⊕ φ′ ∈ Qn(C ⊕C ′, ε)) ∈ Ln(A, ε)

and zero element (0,0 ∈ Qn(0, ε)) ∈ Ln(A, ε) and additive inverses

−(C,φ ∈ Qn(C, ε)) = (C,−φ ∈ Qn(C, ε)) ∈ Ln(A, ε).

In the case ε = 1 we write Ln(A,1) = Ln(A) and we call the 1-symmetric L-groups of A the

symmetric L-groups of A.

The symmetric L-groups of a ring with involution are a chain complex generalisation of the

Witt group of symmetric bilinear forms. Recall from Example 1.1.9 that a symmetric Poincaré

complex of dimension 0 is the same as a non-singular symmetric form. For a ring A with

involution, one can identify [Ran80a, Proposition 5.1] the symmetric L-group L0(A) with the

abelian group of equivalence classes of non-singular symmetric forms (M,λ ∶M ⊗M → A) over

A. The equivalence relation identifies two non-singular symmetric forms up to stabilisation by

a symmetric hyperbolic form of the form

H(L) =
⎛
⎝
L⊕L∗,

⎛
⎝

0 1

1 0

⎞
⎠
∶ L⊕L∗ → (L⊕L∗) = L∗ ⊕L

⎞
⎠

and the group addition is given by orthogonal direct sum

(M,λ) + (M ′, λ′) =
⎛
⎝
M ⊕M ′,

⎛
⎝
λ 0

0 λ′
⎞
⎠
⎞
⎠
.

The symmetric L-groups of Z are as follows.

Proposition 1.3.7. ([Ran80a, Proposition 7.2]). The symmetric L-groups of Z are given by

Ln(Z) ≅

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Z (signature) if n ≡ 0 mod 4

Z2 (de Rham invariant) if n ≡ 1 mod 4

0 if n ≡ 3 mod 4

0 if n ≡ 3 mod 4
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where the signature map is given by

σ(C,φ ∈ Q4k(C)) = σ((H2k(C), φ0 ∶H2k(C)→H2k(C)).

The symmetric L-groups of a ring with involution are not 4-periodic in general. Aside from

the case R = Z the most general criterion for 4-periodicity is when the element 2 ∈ A is invert-

ible, see [Ran80a, Proposition 3.3] for more details.

The signature map allows one to recover the signature of a manifold from its symmetric

Poincaré complex.

Example 1.3.8. Let Mn be a closed, oriented manifold of dimension n divisible by 4. If

[M] ∈Hn(M ;Z) is the fundamental class of M determined by the orientation then applying the

symmetric construction to (M, [M]) produces an n-dimensional symmetric Poincaré complex

(C(M), φM). In particular, the 0-dimensional component of the symmetric structure is give by

φM 0 = [M] ∩ − ∶ C(M ;Z)n−∗ → C(M ;Z) and hence (C(M), φM) maps to the signature of M

under the isomorphism Ln(Z) ≅ Z.

1.4 Algebraic surgery

There is an algebraic surgery operation on symmetric Poincaré complexes which is an algebraic

model for a geometric surgery on a manifold. The definition of algebraic surgery is not needed

for Part I of the thesis but will be used in Part II of the thesis.

Definition 1.4.1. ([Ran92, Definition 1.12, Proposition 4.1]).

(i) The effect of an algebraic surgery on an n-dimensional ε-symmetric complex (C,φ) over

A with data an (n + 1)-dimensional ε-symmetric pair (f ∶ C → D, (δφ,φ)) over A is the n-

dimensional ε-symmetric complex (C ′, φ′) over A with the chain complex C ′ defined by

dC′ =
⎛
⎜⎜⎜
⎝

dC 0 (−)n+1φ0f
∗

(−)rfC′ dD (−)rδφ0

0 0 (−)rd∗D

⎞
⎟⎟⎟
⎠

∶ C ′
r = Cr ⊕Dr+1 ⊕Dn+1−r → C ′

r−1 = Cr−1 ⊕Dr ⊕Dn+2−r (r ∈ Z)

and the symmetric structure φ′ defined by

φ′0 =
⎛
⎜⎜⎜
⎝

φ0 0 0

(−)n−rfTεφ1 (−)n−rTεδφ1 (−)r(n−r)ε
0 1 0

⎞
⎟⎟⎟
⎠

∶ C ′n−r = Cn−r ⊕Dn+1−r ⊕Dr+1 → C ′
r = Cr ⊕Dr+1 ⊕Dn+1−r (r ∈ Z)

φ′s =
⎛
⎜⎜⎜
⎝

φs 0 0

(−)n−rfTεφs+1 (−)n−r+sTεδφs+1 0

0 0 0

⎞
⎟⎟⎟
⎠

∶ C ′n−r+s = Cn−r+s ⊕Dn−r+s+1 ⊕Dr−s+1 → C ′
r = Cr ⊕Dr+1 ⊕Dn+1−r (r ∈ Z, s ⩾ 1).
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(ii) The trace of such an algebraic surgery is the (n + 1)-dimensional symmetric pair

((g g′) ∶ C ⊕C ′ →D′, (0, φ′ ⊕ −φ′) ∈ Qn+1(g g′))

defined by

dD′ =
⎛
⎝
dC (−)n+1φ0f

∗

0 (−)rd∗D

⎞
⎠
∶D′

r = Cr ⊕Dn+1−r →D′
r−1 = Cr−1 ⊕Dn+2−r (r ∈ Z)

g =
⎛
⎝

1

0

⎞
⎠
∶ Cr →D′

r = Cr ⊕Dn+1−r (r ∈ Z)

g′ =
⎛
⎝

1 0 0

0 0 1

⎞
⎠
∶ C ′

r = Cr ⊕Dr+1 ⊕Dn−r+1 →D′
r = Cr ⊕Dn−r+1 (r ∈ Z)

In fact, the cobordism relation on n-dimensional ε-symmetric Poincaré complexes is the

equivalence relation generated by surgery and homotopy equivalence, see [Ran80a, Proposition

4.1].

Example 1.4.2. [Ran02b, p.4]. As in [Ran80a, Proposition 7.3] suppose that (W ;M,M ′) is an

oriented (n + 1)-dimensional cobordism arising as the trace of an index i geometric surgery on

a closed n-dimensional manifold M . This surgery removes a framed embedding Si ×Dn−i ↪M

with effect

M ′ =M − Si ×Dn−i ∪Si×Sn−i−1 Di+1 × Sn−i−1.

The trace of the surgery is the cobordism (W ;M,M ′) given by

W =M × [0,1] ∪Si×Sn−i−1 Di+1 ×Dn−i

where W is obtained by attaching Di+1 × Dn−i to M × [0,1] along the framed embedding

Si × Sn−i−1 × {1}↪M × {1}.

Let R be a commutative ring with identity. As in Example 1.3.4, applying the symmetric

construction to the oriented (n + 1)-dimensional cobordism (W ;M,M ′) produces an (n + 1)-
dimensional symmetric cobordism over R

((iM iM ′) ∶ C(M ;R)⊕C(M ′;R)→ C(W ;R), (φW , φM ⊕ −φM ′) ∈ Qn+1(iM iM ′))

between (C(M ;R), φM) and (C(M ′;R), φM ′). Note that the chain map

⎛
⎝
iM

0

⎞
⎠
∶ C(M ;R)→ C (iM ′)

may be identified with the composition of chain maps

C(M ;R) iMÐ→ C(W ;R) πÐ→ C(W,M ′;R) = C (iM ′)

so that the cobordism over R

((iM iM ′) ∶ C(M ;R)⊕C(M ′;R)→ C(W ;R), (φW , φM ⊕ −φM ′) ∈ Qn+1(iM iM ′))
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induces an (n + 1)-dimensional symmetric pair over R

(πiM ∶ C(M ;R)→ C(W,M ′;R), (φW /φM ′ , φM)).

This determines an algebraic surgery on (C(M ;R), φM) with effect (C ′, φ′) an n-dimensional

symmetric Poincaré complex which is homotopy equivalent to (C(M ′;R), φM ′), see [Ran80b,

Proposition 7.3].

There is a dual geometric (n − i − 1)-surgery determined by the obvious embedding Di+1 ×
Sn−i−1 ↪M ′ and the trace of this surgery is an oriented (n + 1)-dimensional cobordism

W ′ =M ′ × [0,1] ∪Di+1×Sn−i−1 Di+1 ×Dn−i

satisfying (W ′;M ′,M) = −(W ;M,M ′). This induces a homotopy equivalence W ≃M ′ ∪Sn−i−1

Dn−i which induces a homotopy equivalence of pairs

(W,M ′) ≃ (W /M ′,M ′/M ′) = (Dn−i/Sn−i−1, Sn−i−1/Sn−i−1) = (Sn−i,∗)

and a hence there is a chain homotopy equivalence

C(W,M ′;R) ≃ C(Sn−i,∗;R) ≃ Ċ(Sn−i;R) ≃ Sn−iR = (n − i) − fold suspension of R

with

C ′
r = C(M ;R)r ⊕C(W,M)r+1 ⊕C(W,M)n+1−r ≃

⎧⎪⎪⎨⎪⎪⎩

Cr(M ;R)⊕R if r = n − i − 1, i + 1

Cr(M ;R) otherwise.

This shows that algebraic surgery on a symmetric Poincaré complex provides a model for

geometric surgery on an oriented manifold such that the effect is orientable.

Not every manifold is orientable. For a path-connected topological space X with universal

cover X̃ the fundamental group π1(X) can be identified with the group of covering automor-

phisms. In particular, there is an action of π1(X) on the set of singular simplices in X̃ so for

a commutative ring R the singular chain complex of X̃ with R-coefficients can be viewed as

an R[π1(X)]-module chain complex. A CW-structure on X can be lifted to a CW-structure

on X̃ in such a way that if X is a finite CW-complex then C(X̃;R) is a finite-dimensional

R[π1(X)]-module chain complex. The symmetric construction can be generalised to produce

a morphism φX ∶ H∗(X;R) → Q∗(C(X̃;R)) such that if [X] ∈ Hn(X;R) is a homology class

then φX[X] is an n-dimensional symmetric structure on C(X̃;R), see [Ran80b, Proposition

2.1]. For a manifold M it is then possible to produce a symmetric Poincaré structure on its

universal cover M̃ , see [Wal99, Theorem 2.1] and it is also true that algebraic surgery is an

algebraic model for any geometric surgery on a manifold, see [Ran80b, Proposition 7.3].

In Part I of this thesis we will only deal with oriented manifolds however. In chapter 5 we

will apply the symmetric construction to oriented cobordisms arising as the trace of a geometric

surgeries determined by a Morse 2-function.



Chapter 2

The L-theory of a ring with

involution: symmetric triads

In this chapter we recall from [Ran81] the ε-symmetric triad objects and the triad definition of

a homotopy equivalence of ε-symmetric pairs which appear in the the L-theory of a ring with

involution. We then examine a twisted glueing operation for ε-symmetric triads and show this

is a model for the twisted glueing of manifolds with boundary and manifold triads.

2.1 Symmetric triads

Symmetric triads are relative versions of symmetric pairs and are algebraic models for manifold

triads.

Definition 2.1.1. ([Ran81, §1.3]).

(i) A triad Γ over A is a chain homotopy commutative square

C D

C ′ D′

f

kg h

f ′

of A-module chain complexes. A triad is commutative if the above square of A-module chain

maps is commutative, that is if we can choose k = 0.

(ii) The chain complex of a triad Γ over A is the algebraic mapping cone

C(Γ) = C ((g, h;k))

of the the A-module chain map of algebraic mapping cones

(g, h;k) ∶
⎛
⎝
h (−)r−1k

0 g

⎞
⎠
∶ C (f)r =Dr ⊕Cr−1 → C (f ′)r =D′

r ⊕C ′
r−1

34
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with Z-module homology groups the triad homology groups

Hn(Γ) =Hn((g, h;k)) (n ∈ Z).

Definition 2.1.2. ([Ran81, p.43]). Let ε = ±1.

(i) The ε-symmetric Q-groups of a triad Γ of finite-dimensional A-module chain complexes

Γ =
C D

C ′ D′

f

kg h

f ′

are the relative homology groups

Qn(Γ, ε) =Hn((g, h;k)%) (n ∈ Z)

of the Z-module chain map

(g, h;k)% ∶ C (f% ∶W%C →W%D)→ C (f ′% ∶W%C ′ →W%D′)

determined by Z-module triad

W%C W%D

W%C ′ W%D′

f%

k%

g%
h%

f ′%

which is obtained by applying the functor HomZ[Z2](W,−) to the A-module triad

C ⊗A C D ⊗AD

C ′ ⊗A C ′ D′ ⊗AD′

f⊗f

(hf)⊗k+k⊗(g′f)
g⊗g h⊗h

f ′⊗f ′

(ii) An (n + 2)-dimensional ε-symmetric triad (Γ,Φ ∈ Qn+2(Γ, ε)) consists of a triad Γ over A

Γ =
C D

C ′ D′

f

kg h

f ′

together with an ε-symmetric structure Φ ∈ Qn+2(Γ, ε), subject to the condition that C is

an n-dimensional chain complex, C ′,D are (n + 1)-dimensional chain complexes and D′ is an

(n + 2)-dimensional chain complex.

The following diagram of long exact sequences of the ε-symmetric Q-groups of the con-

stituents of a triad is not needed for Part I of the thesis but will be used in Part II of the
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thesis.

Proposition 2.1.3. The ε-symmetric Q-groups of a triad Γ over A fit into a commutative

diagram of Z-modules with exact rows and columns

⋮ ⋮ ⋮ ⋮

. . . Qn+2(Γ, ε) Qn+1(g, ε) Qn+1(h, ε) Qn+1(Γ, ε) . . .

. . . Qn+1(f, ε) Qn(C, ε) Qn(D, ε) Qn(f, ε) . . .

. . . Qn+1(g, ε) Qn(C ′, ε) Qn(D′, ε) Qn(g, ε) . . .

. . . Qn+1(Γ, ε) Qn(g, ε) Qn(h, ε) Qn(Γ, ε) . . .

⋮ ⋮ ⋮ ⋮

f%

g%
h%

f ′%

Proof. The triad over Z

W%C W%D

W%C ′ W%D′

f%

k%

g%
h%

f ′%

determines a commutative diagram of short exact sequences of chain complexes over Z

0 0 0

0 (W%D′)∗ C (f ′%)∗ (W%C ′)∗−1 0

0 C (h%)∗ C ((g, h;k)%)∗ C (g%)∗−1 0

0 (W%D)∗−1 C (f%)∗−1 (W%C)∗−2 0

0 0 0

and we then take the long exact sequences associated to the mapping cones.
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Homotopy equivalences of symmetric pair and cobordisms are defined in terms of triads.

Definition 2.1.4. ([Ran81, p.45]).

(i) A homotopy equivalence of (n + 1)-dimensional ε-symmetric pairs over A

Γ ∶ (f ∶ C →D, (δφ,φ) ∈ Qn+1(f, ε)) ≃ (f ′ ∶ C ′ →D′, (δφ′, φ′) ∈ Qn+1(f ′, ε))

is a triad over A of the form

Γ =
C D

C ′ D′

f

kg h

f ′

such that the A-module chain maps g ∶ C → C ′, h ∶ D → D′ are chain homotopy equivalences

and the morphism of relative ε-symmetric Q-groups respects the relative symmetric structures,

that is

(g, h;k)%(δφ,φ) = (δφ′, φ′) ∈ Qn(f ′, ε).

(ii) A homotopy equivalence of (n + 1)-dimensional ε-symmetric cobordisms over A

Γ ∶ ((fC fC′) ∶ C ⊕C ′ →D, (δφ,φC ⊕−φC′)) ≃ ((fC′′ fC′′′) ∶ C ′′ ⊕C ′′′ →D′, (δφ′, φC′′ ⊕−φC′′′))

is a homotopy equivalence of the form

Γ =

C ⊕C ′ D

C ′′ ⊕C ′′′ D′

( fC fC′ )

( k k′ )⎛
⎜
⎜
⎝

g 0

0 g′

⎞
⎟
⎟
⎠

h

( fC′′ fC′′′ )

Example 2.1.5. Let (W ;M,M ′), (W ′;M ′,M ′′) be two adjoining oriented (n+1)-dimensional

cobordisms of manifolds. Glueing W and W ′ along M ′ produces an oriented (n+1)-dimensional

cobordism (W ∪M ′ W ′;M,M ′′). If R is a commutative ring with identity then applying the

symmetric construction produces three (n + 1)-dimensional symmetric cobordisms over R

((iM iM ′) ∶ C(M ;R)⊕C(M ′;R)→ C(W ;R), (φW , φM ⊕ −φM ′ ∈ Qn+1(iM iM ′)))

((i′M ′ i′M ′′) ∶ C(M ′;R)⊕C(M ′′;R)→ C(W ′;R), (φW ′ , φM ′ ⊕ −φM ′′ ∈ Qn+1(i′M ′ i′M ′′)))

((i′′M i′′M ′′) ∶ C(M ;R)⊕C(M ′′;R)→ C(W ∪M ′ W ′;R), (φW , φM ⊕ −φM ′ ∈ Qn+1(i′′M i′′M ′′))).

The triad
C(M ;R)⊕C(M ′′;R) C(W ;R) ∪C(M ′;R) C(W ′;R)

C(M ;R)⊕C(M ′′;R) C(W ∪M ′ W ′;R)

1 ≃

implies that the (n + 1)-dimensional Poincaré cobordism, obtained by glueing the adjoining
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(n + 1)-dimensional Poincaré cobordisms

((iM iM ′) ∶ C(M ;R)⊕C(M ′;R)→ C(W ;R), (φW , φM ⊕ −φM ′ ∈ Qn+1(iM iM ′)))

((i′M ′ i′M ′′) ∶ C(M ′;R)⊕C(M ′′;R)→ C(W ′;R), (φW ′ , φM ′ ⊕ −φM ′′ ∈ Qn+1(i′M ′ i′M ′′)))

over (C(M ′;R), φM ′), is homotopy equivalent to the (n + 1)-dimensional Poincaré cobordism

((i′′M i′′M ′′) ∶ C(M ;R)⊕C(M ′′;R)→ C(W∪M ′W ′;R), (φW∪M′W ′ , φM⊕−φM ′′ ∈ Qn+1(i′′M i′′M ′′)))

so that we may think of φW∪M′W ′ = φW ∪φM′
φW ′ .

Figure 17: A schematic diagram of the homotopy equivalence.

This shows that the union of adjoining symmetric cobordisms is, up to homotopy equiva-

lence, an algebraic model for the union of adjoining manifold cobordisms.

In chapter 3 we will work with symmetric pairs arising from a manifold with boundary

(Σn+1,Mn) where Σn+1 is contractible or deformation retracts onto a space of dimension at

most n. The following lemma shows that Σn+1 makes no contribution to the relative part of

the symmetric structure.

Lemma 2.1.6. Let (f ∶ C →D, (δφ,φ)) be an (n+1)-dimensional ε-symmetric (Poincaré) pair

over A. Suppose that D′ is an A-module chain complex of dimension m such that 2m ⩽ n + 1

and there is a homotopy equivalence h ∶ D → D′. Then there is a homotopy equivalence of

(n + 1)-dimensional ε-symmetric (Poincaré) pairs over A

(f ∶ C →D, (δφ,φ)) ≃ (hf ∶ C →D′, (0, φ))

Proof. If f ′ = hf ∶ C →D′ then there is a commutative triad over A

Γ =
C D

C D′

f

1 h

f ′

and applying the W% functor produces a commutative triad
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W%C W%D

W%C W%D′

f%

1 h%

f ′%

.

Since D′ is of dimension 2m ⩽ n+1 it follows that the algebraic mapping cone of f ′% degenerates

to dimensions n,n + 1, n + 2 to

C (f ′%)n+2 C (f ′%)n+1 C (f ′%)n

0 W%(C)n W%(C)n−1

d
C(f ′%)

d
C(f ′%)

0 d
W%C

and hence

Qn+1(f ′, ε) =Hn+1(C (f ′%)) = ker(dW%C ∶ (W%C)n → (W%C)n−1) = Qn(C, ε)

so that any element (δφ′, φ′) ∈ Qn+1(f ′, ε) is necessarily of the form (0, φ′) for some n-dimensional

ε-symmetric structure φ′ ∈ Qn(C, ε). It is clear then that (1, h; 0)%(δφ,φ) = (0, φ) ∈ Qn+1(f ′, ε)
so that the triad Γ defines a homotopy equivalence

Γ ∶ (f ∶ C →D, (δφ,φ)) ≃ (hf ∶ C →D′, (0, φ)).

Example 2.1.7.

(i) Think of (D1, S0) as a CW-pair such that S0 consists of two 0-cells and D1 consists of one

1-cell in addition to the 0-cells of S0. The constant map h ∶ D1 → {∗} is a cellular homotopy

equivalence determining a commutative diagram of CW-complexes and cellular maps

S0 D1

S0 ∗

i

1 h≃

hi

such that if R = Z there is a commutative diagram of chain maps of cellular chain complexes

C(S0;Z) C(D1;Z)

C(S0;Z) C(∗;Z) = Z

i

1 h≃

(1 1)

Applying the symmetric construction to (D1, S0) = ([0,1],{0} ⊔ {1}) with the orientation

produces a 2-dimensional symmetric Poincaré pair over Z
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(i ∶ C(S0;Z)→ C(D1;Z), (φD1 , φS0))

which is homotopy equivalent to the 2-dimensional symmetric Poincaré pair over Z

((1 1) ∶ Z⊕Z→ Z, (0,1⊕ −1)).

(ii) Think of (D2, S1) as a CW-pair such that S1 has one 0-cell ∗ and one 1-cell and D2 has

one 2-cell in addition to cells of S1. The constant map h ∶ D2 → {∗} from D2 to the 0-cell is

a cellular map defining a homotopy equivalence such that there is a commutative diagram of

CW-complexes and cellular maps

S1 D2

S1 ∗

i

1 h≃

hi

inducing a commutative diagram of cellular chain complexes and chain maps

C(S1;Z) C(D2;Z)

C(S1;Z) C(∗;Z) = Z

i

1 h≃

hi

If R = Z then applying the symmetric construction to (D2, S1) with the standard orientation

produces a 2-dimensional symmetric Poincaré pair over Z

(i ∶ C(S1;Z)→ C(D2;Z), (φD2 , φS1))

which is homotopy equivalent to the 2-dimensional symmetric Poincaré pair over Z

(hi ∶ C(S1;Z)→ Z, (0, φS1))

The definition from [Ran81, p.113] of the condition for an ε-symmetric triad to be Poincaré

is somewhat unwieldy and the following alternative description can be used to circumvent this

problem.

Proposition 2.1.8. There is a one-to-one correspondence between (n + 2)-dimensional ε-

symmetric triads (Γ,Φ) over A and quadruples consisting of:

(i) An n-dimensional ε-symmetric complex (C,φ) over A

(ii) An (n + 1)-dimensional ε-symmetric pair (f ∶ C →D, (δφ,−φ)) over A

(iii) An (n + 1)-dimensional ε-symmetric pair (f ′ ∶ C →D′, (δφ′, φ)) over A

(iv) An (n + 2)-dimensional ε-symmetric pair (e ∶D ∪C D′ → E, (φ′, δφ ∪φ δφ′)) over A
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where

Γ =
C D

D′ E

f

kf ′ g

g′

Φ = (φ′, δφ′, δφ, φ) ∈ Qn+2(Γ)

e = ( g (−)r−1k g′ ) ∶ (D ∪C D′)r =Dr ⊕Cr−1 ⊕D′
r → Er (r ∈ Z)

Figure 18: A schematic diagram for the data in an ε-symmetric triad.

Proof. See [Ran81, Proposition 2.1.1]. We have made a sign change in (ii) for convenience

later.

The Poincaré condition for a symmetric triad is then more naturally expressed in terms of

the three symmetric pairs induced by the triad.

Definition 2.1.9. An (n + 2)-dimensional ε-symmetric triad (Γ,Φ) over A

Γ =
C D

D′ E

f

f ′ k g

g′

Φ = (φ′, δφ′, δφ, φ)

is Poincaré if and only if the following four conditions are all satisfied:

(i) The n-dimensional ε-symmetric complex (C,φ) is Poincaré .

(ii) The (n + 1)-dimensional ε-symmetric pair (f ∶ C →D, (δφ,−φ)) is Poincaré .

(iii) The (n + 1)-dimensional ε-symmetric pair (f ′ ∶ C →D′, (δφ′, φ)) is Poincaré .

(iv) The (n + 2)-dimensional ε-symmetric pair (e ∶D′ ∪C D′ → E, (φ′, δφ ∪φ δφ′)) is Poincaré .

Example 2.1.10. Recall that an oriented (n + 2)-dimensional manifold triad (Ω; Σ,Σ′;M)
consists of an oriented (n+2)-dimensional manifold with boundary (Ω, ∂Ω) such that there are

two oriented codimension-0 submanifolds with boundary (Σ,−M), (Σ′,M) of ∂Ω such that Σ∩
Σ′ =M and ∂Ω = Σ∪MΣ′ . If R is a commutative ring with identity then applying the symmetric
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construction to (Σ,−M), (Σ′,M),(Ω, ∂Ω) produces two (n+1)-dimensional symmetric Poincaré

pairs over R

(C(M ;R)→ C(Σ;R), (φΣ,−φM))

(C(M ;R)→ C(Σ′;R), (φΣ′ , φM))

and one (n + 2)-dimensional symmetric Poincaré pair over R

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω))

where the chain maps are induced from the inclusions of subspaces. This determines an (n+2)-
dimensional commutative symmetric Poincaré triad over R

Γ =
C(M ;R) C(Σ;R)

C(Σ′;R) C(Ω;R)

, Φ = (φΩ, φΣ′ , φΣ, φM) ∈ Qn+2(Γ)

with the chain maps induced by inclusion. This shows that a symmetric Poincaré triad is an

are algebraic model for an oriented manifold triad.

Figure 19: A schematic diagram of the passage from a triad of manifolds to a symmetric triad.

A cobordism of symmetric pairs is a symmetric triad which respects the boundary decom-

position.

Definition 2.1.11. ([Ran81, p.114]). An ε-symmetric cobordism between (n + 1)-dimensional

ε-symmetric Poincaré pairs (f ∶ C → D, (δφ,φ)), (f ′ ∶ C ′ → D′, (δφ′, φ′)) over A is an (n + 2)-
dimensional ε-symmetric Poincaré triad (Γ,Φ) over A of the form

Γ =

C ⊕C ′ D ⊕D′

δC δD

⎛
⎜
⎜
⎝

f 0

0 f ′

⎞
⎟
⎟
⎠

( k k′ )

( g g′ ) ( h h′ )

δf

Φ = (δν, ν, δφ⊕ −δφ′, φ⊕ −φ′) ∈ Qn+2(Γ, ε).
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Figure 20: A schematic diagram for the data in an ε-symmetric cobordism of ε-symmetric pairs.

Example 2.1.12. Recall that an oriented (n+2)-dimensional relative cobordism (Ω; Σ,Σ′,W ;M,M ′)
consists of an oriented (n + 2)-dimensional manifold with boundary (Ω, ∂Ω), oriented (n + 1)-
dimensional manifolds with boundary (Σ,−M), (Σ′,M ′) and an oriented (n + 1)-dimensional

cobordism (W ;M,M ′) such that ∂Ω = Σ ∪M W ∪M ′ −Σ′. If R is a commutative ring with

identity then applying the symmetric construction to (Σ,M), (Σ′,M ′), (W ;M,M ′), (Ω, ∂Ω)
produces three (n + 1)-dimensional symmetric Poincaré pairs over R

(C(M ;R)→ C(Σ;R), (φΣ,−φM))

(C(M ′;R)→ C(Σ′;R), (φΣ′ , φM ′))

(C(M ;R)⊕C(M ′;R)→ C(W ;R), (φW , φM ⊕ −φM ′))

and one (n + 2)-dimensional Poincaré pair over R

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω))

where the chain maps are all induced from the inclusions of subspaces. This determines an

(n + 2)-dimensional commutative Poincaré triad (Γ,Φ) over R with

Γ =

C(M ;R)⊕C(M ′;R) C(Σ;R)⊕C(Σ′;R)

C(W ;R) C(Ω;R)

Φ = (φΩ, φW , φΣ ⊕ −φΣ′ , φM ⊕ −φM ′)

which can be viewed as a cobordism between the (n+1)-dimensional symmetric Poincaré pairs

(C(M ;R) → C(Σ;R), (φΣ, φM)) and (C(M ′ ∶ R) → C(Σ′;R), (φΣ′ , φM ′)). This shows that a

symmetric Poincaré cobordism of pairs is an algebraic model for a relative oriented manifold

cobordism.
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Figure 21: A schematic diagram for the passage from a relative cobordisms of manifolds to a symmetric
Poincaré cobordism between symmetric pairs.

2.2 Unions of symmetric triads

The glueing operation for adjoining cobordisms from Chapter 1 may be extended to a glueing

operation for adjoining symmetric triads and adjoining symmetric cobordisms of pairs. This

gives an algebraic model for glueing adjoining manifold triads and adjoining relative cobordisms.

Definition 2.2.1. ([Ran81, p.481]). The union of two adjoining (n+2)-dimensional ε-symmetric

(Poincaré) triads (Γ,Φ ∈ Qn+2(Γ, ε)) and (Γ′,Φ′ ∈ Qn+2(Γ′, ε)) over A of the form

Γ =
C D

δC δD

f

g k
h

δf

, Φ = (δν, ν,−δφ,−φ)

Γ′ =
C D

δC ′ δD′

f

g′
k′

h′

δf ′

, Φ′ = (δν′, ν′, δφ, φ)

is the (n + 2)-dimensional ε-symmetric (Poincaré) triad over A

(Γ,Φ ∈ Qn+2(Γ, ε)) ∪ (Γ′,Φ′ ∈ Qn+2(Γ′, ε)) = (Γ ∪ Γ′,Φ ∪Φ′ ∈ Qn+2(Γ ∪ Γ′, ε))

with

Γ ∪ Γ′ =

C δC

δC ′ δD ∪δC δD′

f

g′
k′′

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

h

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

δf ′

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, Φ ∪Φ′ = (δν ∪(δφ,φ) δν
′, ν′,−δφ,−φ)
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with chain homotopy

k′′ =
⎛
⎜⎜⎜
⎝

(−)r−1k

g

(−)r−1k′

⎞
⎟⎟⎟
⎠
∶ Cr → (δD ∪δC δD′)r+1 = δDr+1 ⊕ δCr ⊕ δD′

r+1 (r ∈ Z)

Figure 22: A schematic diagram glueing for the glueing of adjoining ε-symmetric triads.

By virtue of Proposition 2.1.8 the definition of a homotopy equivalence of symmetric pairs

has the following extension to triads.

Definition 2.2.2. A homotopy equivalence of (n + 2)-dimensional ε-symmetric triads Γ ≃ Γ’

over A with

Γ =
C D

C ′ D′

f

kg h

f ′

, Γ′ =
C ′′ D′′

C ′′′ D′′′

f ′′

k′
g′ h′

f ′′′

is a cube of morphisms with chain homotopy commutative faces

C D

C ′′ D′′

C ′ D′

C ′′′ D′′′

f

g

h
f ′′

g′
f ′

f ′′′

h′

.

inducing homotopy equivalences between the three ε-symmetric pairs determined by Γ and Γ′.
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Example 2.2.3. Two adjoining oriented (n+2)-dimensional manifold triads (Ω; Σ,Σ′;M), (Ω′; Σ′,Σ′′;M)
may be glued over Σ′ to produce an oriented (n+2)-dimensional manifold triad (Ω∪Σ′Ω′; Σ,Σ′′;M).
If R is a commutative ring with identity then applying the symmetric construction produces

three (n + 2)-dimensional symmetric commutative Poincaré triads over R

Γ =
C(M ;R) C(Σ;R)

C(Σ′;R) C(Ω;R)

, Φ = (φΩ, φΣ′ , φΣ, φM)

Γ′ =
C(M ;R) C(Σ′;R)

C(Σ′′;R) C(Ω′;R)

, Φ′ = (φΩ′ , φΣ′′ , φΣ′ , φM)

Γ′′ =
C(M ;R) C(Σ;R)

C(Σ′′;R) C(Ω ∪Σ′ Ω′;R)

, Φ′′ = (φΩ∪Σ′Ω
′ , φΣ′′ , φΣ, φM).

There is a homotopy equivalence of (n + 2)-dimensional symmetric Poincaré triads over R

(Γ′′,Φ′′) ≃ (Γ,Φ) ∪ (Γ′,Φ′) = (Γ ∪ Γ′,Φ ∪Φ′)

with

Γ ∪ Γ′ =
C(M ;R) C(Σ;R)

C(Σ′′;R) C(Ω;R) ∪C(Σ′;R) C(Ω′;R)

Φ ∪Φ′ = (φΩ ∪(φΣ′ ,φM′) φΩ′ , φΣ′′ , φΣ, φM)

Figure 23: A schematic diagram for the homotopy equivalence.
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The glueing of relative manifold cobordisms has the following algebraic model.

Definition 2.2.4. ([Ran81, p.117]). Let

(f ∶ C →D, (δφ,φ) ∈ Qn+1(f, ε))

(f ′ ∶ C ′ →D′, (δφ′, φ′)) ∈ Qn+1(f ′, ε))

(f ′′ ∶ C ′′ →D′′, (δφ′′, φ′′) ∈ Qn+1(f ′′, ε))

be three (n + 1)-dimensional ε-symmetric Poincaré pairs over A. The union of two adjoining

(n + 2)-dimensional ε-symmetric Poincaré cobordisms of pairs (Γ,Φ ∈ Qn+2(Γ, ε)), (Γ′,Φ′ ∈
Qn+2(Γ′, ε)) over A of the form

Γ =

C ⊕C ′ D ⊕D′

δC δD

⎛
⎜
⎜
⎝

f 0

0 f ′

⎞
⎟
⎟
⎠

( k k′ )

( g g′ ) ( h h′ )

δf

Φ = (δν, ν, δφ⊕ −δφ′, φ⊕ −φ′)

Γ′ =

C ′ ⊕C ′′ D′ ⊕D′′

δC ′ δD′

⎛
⎜
⎜
⎝

f ′ 0

0 f ′′

⎞
⎟
⎟
⎠

( k̃′ k′′ )

( g̃′ g′′ ) ( h̃′ h′′ )

δf ′

Φ′ = (δν′, ν′, δφ′ ⊕ −δφ′′, φ′ ⊕ −φ′′)

is the ε-symmetric Poincaré cobordism of pairs (Γ′′,Φ′′ ∈ Qn+2(Γ′′, ε)) over A defined by

Γ′′ =

C ⊕C ′′ D′ ⊕D′′

δC ∪C′ δC ′ δD ∪D′ δD′

⎛
⎜
⎜
⎝

f 0

0 f ′′

⎞
⎟
⎟
⎠

( k̃ k̃′′ )

( g̃ g̃′′ ) ( h̃ h̃′′ )

δf ′′

Φ′′ = (δν′′, ν′′, δφ⊕ −δφ′′, φ⊕ −φ′′)

with δC ∪C′ δC ′ and δD ∪D′ δD′ the A-module chain complexes

δC ∪C′ δC ′ = C
⎛
⎝
⎛
⎝
g′

g̃′

⎞
⎠
∶ C ′ → δC ⊕ δC ′

⎞
⎠

δD ∪D′ δD′ = C
⎛
⎝
⎛
⎝
h′

h̃′

⎞
⎠
∶D′ → δD ⊕ δD′

⎞
⎠
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with

dδC∪C′δC′ =
⎛
⎜⎜⎜
⎝

dδC (−)r−1g′ 0

0 dC′ 0

0 (−)r−1g̃′ dδC′

⎞
⎟⎟⎟
⎠

∶ (δC ∪C′ δC ′)r = δCr ⊕C ′
r−1 ⊕ δC ′

r → (δC ∪C′ δC ′)r−1 = δCr−1 ⊕C ′
r−2 ⊕ δC ′

r−1 (r ∈ Z)

dδD∪D′δD′ =
⎛
⎜⎜⎜
⎝

dδD (−)r−1h′ 0

0 dD′ 0

0 (−)r−1h̃′ dδD′

⎞
⎟⎟⎟
⎠

∶ (δD ∪D′ δD′)r = δDr ⊕D′
r−1 ⊕ δD′

r → (δD ∪D′ δD′)r−1 = δDr−1 ⊕D′
r−2 ⊕ δD′

r−1 (r ∈ Z)

and chain maps

( g̃ g̃′′ ) =
⎛
⎜⎜⎜
⎝

g 0

0 0

0 g′′

⎞
⎟⎟⎟
⎠
∶ Cr ⊕C ′′

r → (δC ∪C′ δC ′)r = δCr ⊕C ′
r−1 ⊕ δC ′

r (r ∈ Z)

( h̃ h̃′′ ) =
⎛
⎜⎜⎜
⎝

h 0

0 0

0 h′′

⎞
⎟⎟⎟
⎠
∶Dr ⊕D′′

r → (δD ∪D′ δD′)r = δDr ⊕D′
r−1 ⊕ δD′

r (r ∈ Z)

δf ′′ =
⎛
⎜⎜⎜
⎝

δf (−)r−1k′ 0

0 f ′ 0

0 (−)r−1k̃′ δf ′

⎞
⎟⎟⎟
⎠

∶ (δC ∪C′ δC ′)r = δCr ⊕C ′
r−1 ⊕ δC ′

r → (δD ∪D′ δD′)r = δDr ⊕D′
r−1 ⊕ δD′

r (r ∈ Z)

and a chain homotopy

( k̃ k̃′′ ) =
⎛
⎜⎜⎜
⎝

k 0

0 0

0 k′′

⎞
⎟⎟⎟
⎠
∶ Cr ⊕C ′′

r → (δD ∪D′ δD′)r+1 = δDr+1 ⊕D′
r ⊕ δD′

r+1 (r ∈ Z)

and symmetric structures ν′′, δν′′

ν′′s =
⎛
⎜⎜⎜
⎝

νs 0 0

(−)n−rφ′sg′∗ (−)n−r+s+1Tφ′s−1 0

0 (−)sg′φ′s ν′s

⎞
⎟⎟⎟
⎠

∶ (δC ∪C′ δC ′)n−r+s+1 = δCn−r+s+1 ⊕C ′n−r+s ⊕ δC ′n−r+s+1 → δC ′′
r = δCr ⊕C ′

r−1 ⊕ δC ′
r

(r ∈ Z, s ⩾ 0, φ′−1 = 0)
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δν′′s =
⎛
⎜⎜⎜
⎝

δνs 0 0

(−)n−r+1φ′sh
′∗ (−)n−r+s+2Tδφ′s−1 0

0 (−)sh̃′φ′s δν′s

⎞
⎟⎟⎟
⎠

∶ (δD ∪D′ δD′)n−r+s+2 = δCn−r+s+2 ⊕D′n−r+s+1 ⊕ δD′n−r+s+2 → δD′′
r = δDr ⊕D′

r−1 ⊕ δD′
r

(r ∈ Z, s ⩾ 0, δφ′−1 = 0)

From now on we write

(Γ′′,Φ′′) = (Γ,Φ) ∪ (Γ′,Φ′)

= (Γ ∪ Γ′,Φ ∪Φ′)

= (Γ ∪ Γ′, (δν ∪(δφ′,φ′) δν
′, ν ∪φ′ ν′, δφ⊕ −δφ′′, φ⊕ −φ′′)).

Figure 24: A schematic diagram for the glueing of adjoining ε-symmetric relative cobordisms.

Example 2.2.5. Two adjoining oriented (n+2)-dimensional relative cobordisms (Ω; Σ,Σ′,W ;M,M ′),
(Ω′; Σ′,Σ′′,W ′;M ′,M ′′) may be glued over (Σ′,M ′) to produce an oriented (n+2)-dimensional

relative cobordism (Ω∪M ′ Ω; Σ,Σ′′,W ∪M ′W ′;M,M ′′). If R is a commutative ring with identity

then applying the triad symmetric construction from Example 2.1.12 produces three (n + 2)-
dimensional symmetric Poincaré triads (Γ,Φ), (Γ′,Φ′), (Γ′′,Φ′′) over R with

Γ =
C(M ;R)⊕C(M ′;R) C(Σ;R)⊕C(Σ′;R)

C(W ;R) C(Ω;R)

Φ = (φΩ, φW , φΣ ⊕ −φΣ′ , φM ⊕ −φM ′)
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Γ′ =
C(M ′;R)⊕C(M ′′;R) C(Σ′;R)⊕C(Σ′′;R)

C(W ′;R) C(Ω′;R)

Φ′ = (φΩ′ , φW ′ , φΣ′ ⊕ −φΣ′′ , φM ⊕ −φM ′′)

Γ′′ =
C(M ;R)⊕C(M ′′;R) C(Σ;R)⊕C(Σ′′;R)

C(W ∪M ′ W ;R) C(Ω ∪Σ′ Ω;R)

Φ′′ = (φΩ∪Σ′Ω
′ , φW∪M′W ′ , φΣ ⊕ −φΣ′′ , φM ⊕ −φM ′′).

There is a a homotopy equivalence of (n + 2)-dimensional symmetric Poincaré triads over R

(Γ′′,Φ′′) ≃ (Γ,Φ) ∪ (Γ′,Φ′) = (Γ ∪ Γ′,Φ ∪Φ′)

with

Γ ∪ Γ′ =
C(M ;R)⊕C(M ′′;R) C(Σ;R)⊕C(Σ′′;R)

C(W ;R) ∪C(M ′;R) C(W ′;R) C(Ω;R) ∪C(Σ′;R) C(Ω′;R).

Φ ∪Φ′ = (φΩ ∪(φΣ′ ,φM′) φΩ′ , φW ∪φM′
φW ′ , φΣ ⊕ −φΣ′′ , φM ⊕ −φM ′′)

This shows that, up to algebraic homotopy equivalence, the glueing of symmetric cobordisms

of pairs is an algebraic model for the glueing of relative manifold cobordisms.

Figure 25: A schematic diagram for the glueing and homotopy equivalence.
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2.3 Twisted unions of symmetric pairs and triads

Symmetric pairs and triads may also be glued with a twist. This gives an algebraic model for

glueing manifolds with boundary and manifold triads with a twist.

Definition 2.3.1. ([Ran98, p.386-387]). Let

c = (f ∶ C →D, (δφ,−φ) ∈ Qn+1(f, ε))

c′ = (f ′ ∶ C →D′, (δφ′, φ) ∈ Qn+1(f ′, ε))

be two adjoining (n + 1)-dimensional ε-symmetric (Poincaré) pairs over A and let (h,χ) ∶
(C,φ) → (C,φ) be a self-homotopy equivalence h ∶ (C,φ) → (C,φ) together with a choice

of coboundary χ ∈ (W%C)n+1 between φ ∈ (W%C)n and h%φ ∈ (W%C)n.

(i) The twist of c with respect to (h,χ) is the (n + 1)-dimensional ε-symmetric (Poincaré) pair

over A

c(h,χ) = (fh ∶ C →D, (δφ + f%χ,−φ) ∈ Qn+1(fh, ε)).

(ii) The twisted union of c and c′ with respect to (h,χ) is the (n + 1)-dimensional ε-symmetric

(Poincaré) complex over A

(D ∪hD′, δφ ∪χ δφ′ ∈ Qn+1(D ∪hD′, ε)) = c ∪(h,χ) c
′ = c(h,χ) ∪ c′

obtained by glueing c(h,χ) to c′, so that the chain complex

D ∪hD′ = C
⎛
⎝
⎛
⎝
fh

f ′
⎞
⎠
∶ C →D ⊕D′

⎞
⎠

is given by

dD∪hD′ =
⎛
⎜⎜⎜
⎝

dD (−)r−1fh 0

0 dC 0

0 (−)r−1f ′ dD′

⎞
⎟⎟⎟
⎠
∶

(D ∪hD′)r =Dr ⊕C ′
r−1 ⊕D′

r → (D ∪hD′)r−1 =Dr−1 ⊕Cr−2 ⊕D′
r−1 (r ∈ Z)

and the symmetric structure δφ ∪χ δφ′ is given by

(δφ ∪χ δφ′)s =
⎛
⎜⎜⎜
⎝

δφs + fχsf∗ 0 0

(−)n−rφsh∗f∗ (−)n−r+s+1Tε(φs−1) 0

0 (−)sf ′φs δφ′s

⎞
⎟⎟⎟
⎠

∶ (D ∪hD′)n+1−r+s =Dn+1−r+s ⊕Cn−r+s ⊕D′n+1−r+s →

(D ∪hD)r =Dr ⊕C ′
r−1 ⊕D′

r (s ⩾ 0, r ∈ Z, φ−1 = 0).

Example 2.3.2.

(i) Let (Σ,M) be an oriented (n + 1)-dimensional manifold with boundary. Recall that the

twisted double of (Σ,M) with respect to an orientation preserving homeomorphism h ∶M →M

is the closed, oriented (n+1)-dimensional manifold Ω = Σ∪h−Σ. If R is a commutative ring with
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identity then applying the symmetric construction produces an (n + 1)-dimensional symmetric

Poincaré pair (C(M ;R) → C(Σ;R), (φΣ, φM)) over R and an (n + 1)-dimensional symmetric

Poincaré complex (C(Ω;R), φΩ) over R.

Since h ∶M →M is orientation preserving it follows that h%(φM) = φM ∈ Qn(C(M ;R)). More-

over, as C(M ;R) is n-dimensional it follows that (W%C(M ;R))n+1 = 0 and hence h%(φM) =
φM ∈ (W%C(M ;R))n so that χ = 0 ∈ (W%C(M ;R))n+1. By [Ran98, p.387] there is a homotopy

equivalence of (n + 1)-dimensional symmetric Poincaré complexes over R

(C(Ω;R), φΩ) ≃ (C(M ;R)→ C(Σ;R), (φΣ, φM)) ∪(h,0) (C(M ;R)→ C(Σ;R), (−φΣ,−φM)).

This shows that the twisted glueing of adjoining symmetric pairs is an algebraic model for the

twisted glueing of manifolds with boundary.

(ii) In the case that h = 1 ∶ M → M , the twisted geometric and algebraic unions degenerate to

untwisted unions so that

(C(Σ ∪M Σ;R), φΣ∪MΣ)

≃(C(M ;R)→ C(Σ;R), (φΣ, φM)) ∪(1,0) (C(M ;R)→ C(Σ;R), (−φΣ,−φM))

=(C(M ;R)→ C(Σ;R), (φΣ, φM)) ∪ (C(M ;R)→ C(Σ;R), (−φΣ,−φM)).

There is a relative notion of a self-homotopy equivalence of symmetric complex.

Definition 2.3.3. ([Ran98, p.393]). A self-homotopy equivalence

(δl, l, δχ,χ) ∶ (f ∶ C →D, (δφ,φ))→ (f ∶ C →D, (δφ,φ))

of an (n+1)-dimensional ε-symmetric (Poincaré) pair (f ∶ C →D, (δφ,φ)) over A is a quadruple

(δl, l, δχ,χ) consisting of two chain homotopy equivalences l ∶ C → C and δl ∶D →D determining

a commutative triad

C D

C D

f

l δl

f

together with chains χ ∈ (W%C)n+1) and δχ ∈ (W%D)n+2 such that

l%(φ) − φ = dW%Cχ ∈ (W%C)n, δl%(δφ) − δφ = dW%Dδχ ∈ (W%D)n+1

The twisted union of pairs has an extension to triads where we perform a twisted glueing of

two triads by twisting the second triad and then glueing.

Definition 2.3.4. Let (Γ,Φ ∈ Qn+2(Γ, ε)) and (Γ′,Φ′ ∈ Qn+2(Γ′, ε)) be two adjoining (n + 2)-
dimensional ε-symmetric (Poincaré) triads over A of the form

Γ =
C D

δC δD

f

g k
h

δf

, Φ = (δν, ν,−δφ,−φ)
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Γ′ =
C D

δC ′ δD′

f

g′
k′

h′

δf ′

, Φ′ = (δν′, ν′, δφ, φ)

and let (δl, l, δχ,χ) be a self-homotopy equivalence of (f ∶ C →D, (−δφ,φ)).

(i) The twist of (Γ,Φ ∈ Qn+2(Γ, ε)) with respect to (δl, l, δχ,χ) is the (n + 2)-dimensional ε-

symmetric (Poincaré) triad (Γ(δl,l),Φ(δχ,χ) ∈ Qn+2(Γl, ε)) over A with

Γ(δl,l) =
C D

δC δD

f

gl
k

hδl

δf

, Φ(δχ,χ) = (δν + hδχh∗, ν,−δφ + fχf∗,−φ).

(ii) The twisted union of (Γ,Φ ∈ Qn+2(Γ, ε)) and (Γ′,Φ′ ∈ Qn+2(Γ′, ε)) over (δl, l, δχ,χ) is the

(n + 2)-dimensional ε-symmetric (Poincaré) triad over A

(Γ ∪(δl,l) Γ′,Φ ∪(δχ,χ) Φ′ ∈ Qn+2(Γ ∪(δl,l) Γ′, ε))

obtained by glueing (Γ(δl,l),Φ(δχ,χ)) to (Γ′,Φ′) so that

(Γ,Φ) ∪(δl,l,δχ,χ) (Γ′,Φ′) = (Γ(δl,l),Φ(δχ,χ)) ∪ (Γ′,Φ′) = (Γ ∪(δl,l) Γ′,Φ ∪(δχ,χ) Φ′).

Example 2.3.5.

(i) Let (Ω; Σ,Σ′;M), (Ω′; Σ′,Σ′′;M) be two adjoining oriented (n + 2)-dimensional manifold

triads and let δl ∶ (Σ′,M) → (Σ′,M) be an orientation preserving homeomorphism which

restricts to an orientation preserving homeomorphism l ∶M →M . The two triads may be glued

over (Σ′,M) with the glueing twisted by δl to produce an oriented (n+2)-dimensional manifold

triad (Ω∪δlΩ′; Σ,Σ′′;M). If R is a commutative ring with identity then applying the symmetric

construction produces three (n + 2)-dimensional commutative Poincaré triads over R

Γ =
C(M ;R) C(Σ;R)

C(Σ′;R) C(Ω;R)

, Φ = (φΩ, φΣ′ , φΣ, φM)

Γ′ =
C(M ;R) C(Σ′;R)

C(Σ′′;R) C(Ω′;R)

, Φ′ = (φΩ′ , φΣ′′ , φΣ′ , φM)

Γ′′ =
C(M ;R) C(Σ;R)

C(Σ′′;R) C(Ω ∪l Ω′;R)

, Φ′′ = (φΩ∪δlΩ′ , φΣ′′ , φΣ, φM).
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Since (δl, l) ∶ (Σ′,M)→ (Σ′,M) is orientation preserving it follows that

(l, δl; 0)%(φΣ′ , φM) = (φΣ′ , φM) ∈ Qn+1(C(M ;R)→ C(Σ′;R))

and hence there are some chains δχ ∈ (W%C(Σ′;R))n+2, χ ∈ (W%C(M ;R))n+1 such that

δl%(φΣ′)−φΣ′ = dW%C(Σ′)(δχ) ∈ (W%C(Σ;R))n+1, l%(φM)−φM = dW%C(M)(χ) ∈ (W%C(M ;R))n+1

Since C(Σ′;R) is (n+1)-dimensional and C(M ;R) is n-dimensional it follows that (W%C(Σ′;R))n+2 =
0 and (W%C(M ;R))n+2 = 0 and hence δχ = 0 and χ = 0. Then there is a homotopy equivalence

(Γ′′,Φ′′) ≃ (Γ,Φ) ∪(δl,l,0,0) (Γ′,Φ′) = (Γ ∪(δl,l) Γ′,Φ ∪Φ′)

with

Γ ∪(δl,l) Γ′ =
C(M ;R) C(Σ;R)

C(Σ′′;R) C(Ω;R) ∪l C(Ω′;R)

Φ ∪Φ′ = (φΩ ∪ φΩ′ , φΣ′′ , φΣ, φM).

This shows that, up to homotopy equivalence, the twisted glueing of symmetric triads is an

algebraic model for the twisted glueing of triads.

(ii) In the case that δl = 1 ∶ Σ′ → Σ′, the twisted geometric and algebraic unions degenerate to

untwisted unions so that

(Γ,Φ) ∪(δl,l,0,0) (Γ′,Φ′) = (Γ,Φ) ∪ (Γ′,Φ′) ≃ (Γ′′,Φ′′).



Chapter 3

Thickening manifold and

symmetric Poincaré quiver

representations

In this chapter we extend the definition of a symmetric pair to a symmetric pair with an `-fold

boundary splitting and show that this is an algebraic model for a manifold with boundary where

the boundary can be written as a cyclic union of adjoining cobordisms. We define algebraic

thickening operations which are algebraic models for taking the product of a cobordism with

an interval and for taking the product of a closed manifold with a disc D2 where the bound-

ary ∂D2 is split into ` pieces. We then extend the symmetric construction to a symmetric

construction for an oriented manifold representation of a quiver where the vertices parametrise

manifolds and the arrows parametrise cobordisms. This produces a symmetric Poincaré rep-

resentation of a quiver where the vertices parametrise symmetric Poincaré complexes and the

arrows parametrise symmetric Poincaré cobordisms. We use the quiver symmetric construc-

tion together with the thickening operations to generalise the manifold and symmetric Poincaré

trinity thickening operations of [BNR12a, p.44-46] to thickening operations for manifold and

symmetric Poincaré representations of a quiver where parts of the data can be twisted by a

self-homotopy equivalence. We then show that the twisted thickening operations commute with

the symmetric construction up to homotopy equivalence.

3.1 Products of symmetric complexes and pairs

There is a product operation for symmetric complexes and pairs which gives an algebraic model

for products of manifolds and manifolds with boundary.

Definition 3.1.1. Let A,B be rings with involution.

(i) The tensor product of A and B is the ring with involution A⊗Z B where

a⊗ b = a⊗ b (a ∈ A, b ∈ B).

(ii) The tensor product of an A-module chain complex C and an B-module chain complex D is

55
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the A⊗Z B-module chain complex C ⊗ZD with the scalar action of A⊗Z B given by

A⊗Z B ×C ⊗ZD → C ⊗ZD; (a⊗ b, x⊗ y)↦ ax⊗ by.

The product operation for symmetric structures

⊗ ∶ Qm(C, ε)⊗Z Q
n(D,η)→ Qm+n(C ⊗ZD, ε⊗ η)

arises from the following chain level construction.

Proposition 3.1.2. ([Ran80a, p.174-6]). Let W be the standard free Z[Z2] resolution of Z

W ∶ . . .→W3 = Z[Z2]
1−TÐÐ→W2 = Z[Z2]

1+TÐÐ→W1 = Z[Z2]
1−TÐÐ→W0 = Z[Z2]→ → . . .

let Ŵ be the complete Z[Z2] resolution of Z

Ŵ ∶ . . .→ Ŵ3 = Z[Z2]
1−TÐÐ→ Ŵ2 = Z[Z2]

1+TÐÐ→ Ŵ1 = Z[Z2]
1−TÐÐ→ Ŵ0 = Z[Z2]

1+TÐÐ→ Ŵ−1 = Z[Z2]→ . . .

and let ε, η = ±1.

(i) For a finite-dimensional A-module chain complex C and a finite-dimensional B-module chain

complex D there is a natural identification of Z[Z2]-module chain complexes

(Ct ⊗A C)⊗Z (Dt ⊗B D) ≅ (C ⊗ZD)t ⊗A⊗ZB (C ⊗ZD)

respecting the Z2-action given by Tε ⊗ Tη on the left and Tε⊗η on the right.

(ii) It is possible to construct a diagonal chain map ∆ ∶ Ŵ → Ŵ ⊗Z Ŵ such that the restriction

∆ ∶W →W ⊗ZW defines a natural chain map

⊗ ∶W%(C)⊗ZW
%(D)→W%(C ⊗ZD)

such that the product of chains

φ = {φs ∶ Cm−r+s → Cr ∣s ⩾ 0, r ∈ Z} ∈ (W%C)m
θ = {θs ∶Dn−r+s →Dr ∣s ⩾ 0, r ∈ Z} ∈ (W%D)n

is the chain

φ⊗ θ = {(φ⊗ θ)s ∶ (C ⊗ZD)m+n−r+s → (C ⊗ZD)r ∣s ⩾ 0, r ∈ Z} ∈W%(C ⊗ZD)m+n

with

(φ⊗ θ)s =
s

∑
t=0

(−)(m+t)sφt ⊗ T rη θs−t ∶ (C ⊗D)m+n−r+s → (C ⊗D)r

(iii) The chain map ⊗ ∶ W%(C) ⊗Z W
%(D) → W%(C ⊗Z D) induces a natural morphism of

Q-groups

⊗ ∶ Qm(C, ε)⊗Z Q
n(D,η)→ Qm+n(C ⊗ZD, ε⊗ η)
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defined by the composition

Qm(C, ε)⊗Z Q
n(D,η) =Hm(W%(C))⊗ZHn(W%(D))→Hm+n(W%(C)⊗ZW

%(D))
⊗Ð→Hm+n(W%(C ⊗ZD))

=Qm+n(C ⊗ZD, ε⊗ η).

This construction allows us to take products of two symmetric pairs as follows.

Theorem 3.1.3. Let ε, η = ±1. The product of an m-dimensional ε-symmetric (Poincaré) pair

over A and an n-dimensional η-symmetric (Poincaré) pair over B

(f ∶ C →D, (δφ,φ) ∈ Qm(f, ε))⊗ (f ′ ∶ C ′ →D′, (δφ′, φ′) ∈ Qn(f ′, η))

is an (m+n)-dimensional ε⊗η-symmetric (Poincaré) triad (Γ,Φ ∈ Qm+n(Γ, ε⊗η)) over A⊗ZB

with

Γ =
C ⊗Z C

′ C ⊗ZD
′

D ⊗Z C
′ D ⊗ZD

′

1⊗f ′

f⊗1 f⊗1

1⊗f ′

Φ = (δφ⊗ δφ′, φ⊗ δφ′, δφ⊗ φ′, φ⊗ φ′)

Proof. The ε-symmetric (Poincaré) pair over A and the η-symmetric (Poincaré) pair over B

(f ∶ C →D, (δφ,φ) ∈ Qm(f, ε)), (f ′ ∶ C ′ →D′, (δφ′, φ′) ∈ Qn(f ′, η))

induce two commutative triads over Z

(W%C)⊗Z (W%C ′) (W%C)⊗Z (W%D)

(W%D)⊗Z (W%C ′) (W%D)⊗Z (W%D′)

1⊗f ′%

f%
⊗1 f%

⊗1

1⊗f ′%

W%(C ⊗Z C
′) W%(C ⊗ZD

′)

W%(D ⊗Z C
′) W%(D ⊗ZD

′)

(1⊗f ′)%

(f⊗1)%
(f⊗1)%

(1⊗f ′)%
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The naturality of the chain level product determines a commutative cube

(W%C)⊗Z (W%C ′) (W%C)⊗Z (W%D′)

W%(C ⊗Z C
′) W%(C ⊗ZD

′)

(W%D)⊗Z (W%C ′) (W%D)⊗Z (W%D′)

W%(D ⊗Z C
′) W%(D ⊗ZD

′)

⊗

1⊗f ′%

f%
⊗1

f%
⊗1

⊗

(1⊗f ′)%

(f⊗1)% 1⊗f%

⊗ ⊗

(1⊗f ′)%

(f⊗1)%

.

so that the cycles (δφ,φ) ∈ C (f%), (δφ′, φ′) ∈ C (f ′%) determine a cycle

Φ = (δφ⊗ δφ′, φ⊗ δφ′, δφ⊗ φ′, φ⊗ φ′)

representing an (n +m)-dimensional ε⊗ η-symmetric structure on the triad

C ⊗Z C
′ C ⊗ZD

′

D ⊗Z C
′ D ⊗ZD

′

1⊗f ′

f⊗1 f⊗1

1⊗f ′

over A⊗Z B.

The product of symmetric pairs then determines the product of a symmetric complex and

a symmetric pair as a special case.

Corollary 3.1.4. The product of an m-dimensional ε-symmetric (Poincaré) complex (C,φ ∈
Qn(C, ε)) over A and an n-dimensional η-symmetric (Poincaré) pair (f ′ ∶ C ′ → D′, (δφ′, φ′) ∈
Qn(f, η)) over B is the (m + n)-dimensional ε⊗ η-symmetric (Poincaré) pair

(C,φ ∈ Qn(C, ε))⊗ (f ′ ∶ C ′ →D′, (δφ′, φ′) ∈ Qn(f, η))

=(1⊗ f ′ ∶ C ⊗Z C
′ → C ⊗ZD

′, (φ⊗ δφ′, φ⊗ φ′) ∈ Qm+n(1⊗ f ′, ε⊗ η))

over A⊗Z B.

Proof. The m-dimensional ε-symmetric (Poincaré) complex (C,φ ∈ Qm(C, ε)) determines an

m-dimensional ε-symmetric (Poincaré) pair (0 ∶ 0→ C, (φ,0) ∈ Qm(0, ε)) such that the product

(0 ∶ 0→ C, (φ,0) ∈ Qm(0, ε))⊗ (f ′ ∶ C ′ →D′, (δφ′, φ′) ∈ Qn(f, η))

is the (m+n)-dimensional ε⊗η-symmetric (Poincaré) triad (Γ,Φ ∈ Qm+n(Γ, ε⊗η)) over R⊗ZS



Chapter 3. Thickening quiver representations 59

with

Γ =
0 0

C ⊗Z C
′ C ⊗ZD

′

1⊗f

Φ = (φ⊗ δφ′, φ⊗ φ′,0,0)

which determines the (m + n)-dimensional ε⊗ η-symmetric (Poincaré) pair over A⊗Z B

(1⊗ f ∶ C ⊗Z C
′ → C ⊗ZD

′, (φ⊗ δφ′, φ⊗ φ′))

Proposition 3.1.5. ([Ran80b, Proposition 8.1]). Let R be a commutative ring with identity.

The symmetric construction is natural with respect to absolute and relative products.

Examples of products are given in the next section.

3.2 Manifold and symmetric Poincaré thickenings

We now use the naturality of the symmetric construction with respect to products to examine

the symmetric pairs and triads obtained by thickening a manifold or cobordism by taking the

product with an closed interval or a disc.

Definition 3.2.1.

(i) The thickening of a closed, oriented n-dimensional manifold M is the oriented (n + 1)-
dimensional cobordism

M × (I ∶ {0},{1}) = (M × I;M × {0},M × {1}).

(ii) The thickening of an oriented (n + 1)-dimensional cobordism (W ;M,M ′) is the oriented

(n + 2)-dimensional triad

(M ⊔M ′) × {0,1} (M ⊔M ′) × I

W × {0,1} W × I

which is equal to the product of the oriented cobordisms (W ;M,M ′) and (I;{0},{1}).

(iii) The disc thickening of a closed, oriented n-dimensional manifold M is the oriented (n+ 2)-
dimensional manifold with boundary

M × (D2, S1) = (M ×D2;M × S1).

The effect of applying the symmetric construction to these geometric thickening operations

is as follows.
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Example 3.2.2. Let R be a commutative ring with identity and let (W ;M,M ′) be an (n+1)-
dimensional oriented cobordism.

(i) Thickening M and applying the symmetric construction to the oriented (n + 1)-dimensional

cobordism M×(I;{0},{1}) = (M×I;M×{0},M×{1}) produces an (n+1)-dimensional algebraic

cobordism over R

((i0 i1) ∶ C(M ;R)⊕C(M ;R)→ C(M × I;R), (φM×I , φM ⊕ −φM))

with the chain map i0 induced by the inclusion i0 ∶M =M × {0} ↪M × I and the chain map

i1 induced by the inclusion i1 ∶ M = M × {1} ↪ M × I. The symmetric construction may be

applied to M to produce an n-dimensional symmetric complex (C(M ;R), φM) over R. The

symmetric construction may be applied to (I;{0},{1}) to produce 1-dimensional symmetric

Poincaré pair over Z and by Example 2.1.7 this symmetric pair is homotopy equivalent to

((1 1) ∶ Z ⊕ Z → Z, (0,1 ⊕ −1)). The product of this symmetric complex and pair is then an

(n + 1)-dimensional symmetric pair over R = R⊗Z Z

(C(M ;R), φM)⊗ ((1 1) ∶ Z⊕Z→ Z, (0,1⊕ −1))

=((1 1) ∶ C(M ;R)⊕C(M ;R)→ C(M ;R), (0, φM ⊕ −φM)).

This (n + 1)-dimensional symmetric pair is homotopy equivalent to the (n + 1)-dimensional

symmetric pair

((i0 i1) ∶ C(M ;R)⊕C(M ;R)→ C(M × I;R), (φM×I , φM ⊕ −φM))

since the Eilenberg-Zilber chain homotopy equivalence C(M × I;R) ≃ C(M ;R) ⊗Z C(I;Z)
determines a triad over R

C(M ;R)⊕C(M ;R) C(M × I;R)

C(M ;R)⊕C(M ;R) C(M ;R)⊗Z C(I;Z)

(i0 i1)

1

(i0 i1)

where the two vertical maps are chain homotopy equivalences. This implies that up to homotopy

equivalence, the symmetric pair induced by the cobordism (M × I;M × {0},M × {1}) can be

obtained solely from the symmetric complex induced by M .

(ii) Thickening (W ;M,M ′) produces an oriented manifold triad

(M ⊔M ′) × {0,1} (M ⊔M ′) × I

W × {0,1} W × I

If R is a commutative ring with identity then applying the symmetric construction produces
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an (n + 2)-dimensional symmetric Poincaré triad (Γ,Φ) over R with

Γ =
C(M ;R)⊕C(M ′;R)⊕C(M ;R)⊕C(M ′;R) C(M × I;R)⊕C(M ′ × I;R)

C(W ;R)⊕C(W ;R) C(W × I;R)

Φ = (φW×I , φW ⊕ −φW ,−φM×I ⊕ φM ′×I , φM ⊕ −φ′M ⊕ −φM ⊕ φ′M).

There is a commutative cube

(M ⊔M ′) × {0,1} (M ⊔M ′) × I

(M ⊔M ′) × {0,1} M ⊔M ′

W × {0,1} W × I

W × {0,1} W

= ≃

= ≃

.

where each of the sloped arrows is a homotopy equivalence and all other arrows are inclusions.

Example 3.2.2 implies that there is a homotopy equivalence of (n + 2)-dimensional symmetric

Poincaré triads (Γ,Φ) ≃ (Γ′,Φ′) where

Γ′ =
C(M ;R)⊕C(M ′;R)⊕C(M ;R)⊕C(M ′;R) C(M ;R)⊕C(M ′;R)

C(W ;R)⊕C(W ;R) C(W ;R)

Φ′ = (0, φW ⊕ −φW ,0, φM ⊕ −φ′M ⊕ −φM ⊕ φ′M).

This shows that up to homotopy equivalence, the symmetric Poincaré triad induced from the

thickening of (W ;M,M ′) may be obtained from the symmetric Poincaré cobordism induced

from (W ;M,M ′).

(iii) A closed, oriented n-dimensional manifold M may be disc thickened to produce an oriented

(n+2)-dimensional manifold with boundary (M ×D2,M ×S1). If R is a commutative ring with

identity then applying the symmetric construction produces an (n + 2)-dimensional symmetric

Poincaré pair over R

(C(M × S1;R)→ C(M ×D2;R), (φM×D2 , φM×S1)).

The naturality of the symmetric construction with respect to products and Example 2.1.7 imply
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that there is a homotopy equivalence of (n + 2)-dimensional symmetric Poincaré pairs over R

(C(M × S1;R)→ C(M ×D2;R), (φM×D2 , φM×S1))

≃(C(M ;R), φM)⊗ (C(S1;Z)→ C(D2;Z), (φD2 , φS1))

≃(C(M ;R), φM)⊗ (C(S1;Z)→ Z, (0, φS1))

=(C(M ;R)⊗Z C(S1;Z)→ C(M ;R), (0, φM ⊗ φS1))

so that up to homotopy equivalence, the symmetric Poincaré pair induced from (M×D2,M×S1)
may be obtained from the symmetric Poincaré complexes induced from M and S1.

This motivates the following algebraic thickening operations.

Definition 3.2.3.

(i) The thickening of an n-dimensional ε-symmetric (Poincaré) complex (C,φ) over A is the

(n + 1)-dimensional ε-symmetric (Poincaré) pair over A

((1 1) ∶ C ⊕C → C, (0, φ⊕ −φ))

which is homotopy equivalent to the (Poincaré) product pair over A = A⊗Z Z

(C,φ)⊗ (C(S0;Z)→ C(D1;Z), (φD1 , φS0)).

(ii) The disc thickening of an n-dimensional ε-symmetric (Poincaré) complex (C,φ) over A is

the (n + 2)-dimensional ε-symmetric (Poincaré) pair over A

(C ⊗Z C(S1;Z)→ C, (0, φ⊗ φS1))

which is homotopy equivalent to the (Poincaré) product pair over A = A⊗Z Z.

(C,φ)⊗ (C(S1;Z)→ C(D2;Z), (φD2 , φS1)).

(iii) The thickening of an (n + 1)-dimensional ε-symmetric cobordism over A

((f f ′) ∶ C ⊕C ′ →D, (δφ,φ⊕ −φ′))

is the (n + 2)-dimensional ε-symmetric commutative (Poincaré) triad (Γ,Φ) over A with

Γ =

C ⊕C ′ ⊕C ⊕C ′ C ⊕C ′

D ⊕D D

⎛
⎜
⎜
⎝

1 0 1 0

0 1 0 1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

f f ′ 0 0

0 0 f f ′

⎞
⎟
⎟
⎠

(f f ′)

(1 1)

Φ = (0, δφ⊕ −δφ,0, φ⊕ −φ′ ⊕ −φ⊕ φ′)

which is homotopy equivalent to the ε-symmetric commutative (Poincaré) product triad over
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A = A⊗Z Z

((f f ′) ∶ C ⊕C ′ →D, (δφ,φ⊕ −φ′))⊗ (i ∶ C(S0;Z)→ C(D1;Z), (φD1 , φS0)).

Proposition 3.2.4. Let R be a commutative ring with identity. For manifolds and cobordisms,

the symmetric construction commutes, up to homotopy equivalence, with (disc) thickenings.

Proof. By Example 3.2.2.

3.3 Manifold and symmetric Poincaré pairs with bound-

ary splittings

We now extend the definition of a symmetric pair to a symmetric pair with an `-fold boundary

splitting and show that this is an algebraic model for a manifold with boundary where the

boundary can be written as a cyclic union of adjoining cobordisms.

Definition 3.3.1. An oriented (n + 1)-dimensional manifold with an `-fold boundary splitting

(W,∂W ;∂1W, . . . , ∂`W ) (` ⩾ 2)

consists of an oriented (n + 1)-dimensional manifold with boundary (W,∂W ) together with

a collection of ` cyclically adjoining, oriented n-dimensional cobordisms {(∂iW ;Mi,Mi+1)}`i=1

such that:

(i) each ∂iW is a codimension 0-submanifold of ∂W

(ii) ∂W = ∪`i=1∂iW where the orientations agree

(iii) ∂iW ∩ ∂i+1W =Mi+1 where the index i is understood cyclically

(iv) ∂iW ∩ ∂jW = ∅ if i ≠ j where the indices i, j are understood cyclically.

Figure 26: A schematic diagram for the boundary decomposition.

Example 3.3.2. If ` ⩾ 2 then subdividing S1 into arcs I1, I2, . . . , I` ⊂ S1 as shown below induces

an `-fold boundary splitting (D2, S1; I1, . . . , I`) of (D2, S1)
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Figure 27: A schematic diagram for the boundary decomposition of D2.

Definition 3.3.3. The disc thickening with an `-fold boundary splitting of a closed, oriented

n-dimensional manifold M is the `-fold boundary splitting

(M ×D2,M × S1;M × I1,M × I2, . . . ,M × I`) =M × (D2; I1, . . . , I`) (` ⩾ 2)

Figure 28: A schematic diagram for the boundary decomposition of M ×D2.

This motivates the definition of a symmetric pair with a split boundary.

Definition 3.3.4.

(i) An (n+1)-dimensional ε-symmetric (Poincaré) pair over A with an `-fold boundary splitting

(c; c1, . . . , c`) (` ≥ 2)

consists of an (n + 1)-dimensional ε-symmetric (Poincaré) pair over A

c = (f ∶ ∂D →D, (φD, φ∂D))

together with a collection of ` cyclically adjoining n-dimensional ε-symmetric (Poincaré) pairs

over A of the form

ci = ((f ii f ii+1) ∶ Ci ⊕Ci+1 → ∂iD, (φ∂iD, φCi ⊕ −φCi+1)) (1 ⩽ i ⩽ `)

such that there is a homotopy equivalence of n-dimensional ε-symmetric (Poincaré) pairs

(∂D,φ∂D) ≃ ∪`i=1ci over A
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Figure 29: A schematic diagram for the boundary decomposition defined in the homotopy equivalence.

(ii) A homotopy equivalence of (n+1)-dimensional ε-symmetric pairs over A with `-fold boundary

splittings

(Γ; Γ1, . . . ,Γ`) ∶ (c; c1, . . . , c`) ≃ (c′; c′1, . . . , c′`)

consists of a homotopy equivalence of (n + 1)-dimensional ε-symmetric pairs over A

Γ =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∂D D

∂D′ D′

f

kg h

f ′

⎞
⎟⎟⎟⎟⎟⎟
⎠

∶ c ≃ c′

together with a collection of homotopy equivalences of (n + 1)-dimensional ε-symmetric cobor-

disms over A

Γi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Ci ⊕Ci+1 ∂iD

C ′
i ⊕C ′

i+1 ∂iD
′

( fii fii+1
)

( kii kii+1
)⎛

⎜
⎜
⎝

gii 0

0 gii+1

⎞
⎟
⎟
⎠

hi

( f ′
i
i f ′

i
i+1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∶ ci ≃ c′i

such that there is a commutative diagram

⎛
⎜⎜⎜⎜⎜⎜
⎝

(∂D,φ∂D) ∪`i=1ci

(∂D′, φ∂D′) ∪`i=1c
′
i

≃

g≃ ≃∪
`
i=1Γi

≃

⎞
⎟⎟⎟⎟⎟⎟
⎠

respecting the ε-symmetric structures.

In the next section we will work with thickenings of manifolds and Poincaré pairs with split

boundaries where the geometric and algebraic data is parametrised by a quiver. It will be more

convenient to work with the schematic diagrams of the type in Definition 3.3.1 and Definition

3.3.4 rather than the schematic diagrams of chapter 1 of the type
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Figure 30: The schematic diagrams from chapter 1.

Example 3.3.5. Applying the symmetric construction over Z to the `-fold boundary splitting

(D2, S1; I1, . . . , I`) of (D2, S1) from Example 3.3.2 produces a 2-dimensional symmetric Poincaré

pair over Z with an `-fold boundary splitting (c; c1, . . . , c`) where

c = (C(S1;Z)→ C(D2;Z), (φD2 , φS1))

ci = (C(S0;Z)→ C(Ii;Z), (φIi , φS0)) (1 ⩽ i ⩽ `).

By Examples 2.1.7 and 2.1.7 there is a homotopy equivalence of 2-dimensional symmetric

Poincaré pairs over Z with `-fold boundary splittings (c; c1, . . . , c`) ≃ (c′; c′1, . . . , c′`) where

c′ = (C(S1;Z)→ Z, (0, φS1))

c′i = (Z⊕Z→ Z, (0,1⊕ −1)) (1 ⩽ i ⩽ `).

Let M be a closed, oriented n-dimensional manifold and let R be a commutative ring with

identity. Applying the symmetric construction over R to the disc thickening of M with an

`-fold boundary splitting

(M ×D2,M × S1;M × I1,M × I2, . . . ,M × I`)

produces an (n + 2)-dimensional symmetric Poincaré pair over R with an `-fold boundary

splitting (c′′; c′′1 , . . . , c′′` ) where

c′′ = (C(M × S1;R)→ C(M ×D2;R), (φM×D2 , φM×S1))

c′′i = (C(M ;R)⊕C(M ;R)→ C(M × Ii;R), (φM×Ii , φM ⊕ −φM)) (1 ⩽ i ⩽ `).

By the naturality of the symmetric construction with respect to products it follows that there

is a homotopy equivalence of (n + 2)-dimensional symmetric Poincaré pairs over R with `-fold

boundary splittings (c′′; c′′1 , . . . , c′′` ) ≃ (c′′′; c′′′1 , . . . , c
′′′
` ) where

c′′′ = (C(M ;R)⊗Z C(S1;Z)→ C(M ;R), (0, φM ⊗ φS1))

c′′′i = (C(M ;R)⊕C(M ;R)→ C(M ;R), (0, φM ⊕ −φM)) (1 ⩽ i ⩽ `).
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Figure 31: A schematic diagram for the homotopy equivalence.

The relative symmetric construction from Theorem 1.2.6 then extends to a symmetric con-

struction for manifolds with split boundaries.

Definition 3.3.6. Let R be a commutative ring with identity and let (W,∂W ;∂1W, . . . , ∂`W )
be an (n + 1)-dimensional oriented manifold with an `-fold boundary splitting. The (n + 2)-
dimensional symmetric Poincaré pair over R with an `-fold boundary splitting (c; c1, . . . , c`)
obtained by applying the symmetric construction over R is defined by

c = (C(∂W ;R)→ C(W ;R), (φW , φ∂W ))

ci = (C(Mi;R)⊕C(Mi+1;R)→ C(∂iW ;R), (φ∂iW , φMi ⊕ −φMi+1)) (1 ⩽ i ⩽ `).

This motivates the definition of product operation for a symmetric pair with a split bound-

ary.

Definition 3.3.7. The product of {an m-dimensional ε-symmetric (Poincaré) complex (E,φE)
overA} with {an (n+1)-dimensional η-symmetric (Poincaré) pair over Z with an `-fold boundary

splitting (c; c1, . . . , c`) (` ⩾ 2)} is the (m+n+1)-dimensional εη-symmetric (Poincaré) pair over

A = A⊗Z Z with an `-fold boundary splitting

(E,φE)⊗ (c; c1, . . . , c`) = (c′; c′1, . . . , c′`)

such that if

c = (f ∶ ∂D →D, (φD, φ∂D))

ci = ((f ii f ii+1) ∶ Ci ⊕Ci+1 → ∂iD, (φ∂iD, φCi ⊕ −φCi+1)) (1 ⩽ i ⩽ `)

then

c′ = (E,φE)⊗ c

= (1⊗ f ∶ E ⊗Z ∂D → E ⊗ZD, (φE ⊗ φD, φE ⊗ φ∂D))

c′i = (E,φE)⊗ ci
= ((1⊗ f ii 1⊗ f ii+1) ∶ (E ⊗Z Ci)⊕ (E ⊗Z Ci+1)→

E ⊗Z ∂iD, (φE ⊗ φ∂iD, (φE ⊗ φCi)⊕ −(φC ⊗ φCi+1))) (1 ⩽ i ⩽ `).

Definition 3.3.8. Let (C,φ) be an n-dimensional ε-symmetric (Poincaré) complex over A.
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The disc thickening with an `-fold boundary splitting (` ⩾ 2) of (C,φ) is the (n+2)-dimensional

ε-symmetric (Poincaré) pair over A = A ⊗Z Z with an `-fold boundary splitting (c; c1, . . . , c`)
where

c = (C ⊗Z C(S1;Z)→ C, (0, φ⊗ φS1))

ci = (C ⊕C → C, (0, φ⊕ −φ))

such that there is a homotopy equivalence (c; c1, . . . , c`) ≃ (C,φ)⊗(c′; c′1, . . . , c′`) where (c′; c′1, . . . , c′`)
is the 2-dimensional symmetric pair over Z with an `-fold boundary splitting from Exam-

ple 3.3.5 obtained by applying the symmetric construction to the `-fold boundary splitting

(D2, S1; I1, . . . , I`).

Proposition 3.3.9. Let R be a commutative ring with identity. For closed, oriented man-

ifolds the symmetric construction over R commutes, up to homotopy equivalence, with disc

thickenings with an `-fold boundary splitting.

Proof. By Example 3.3.5.

3.4 Manifold and symmetric Poincaré quiver representa-

tions

We now extended the symmetric construction for oriented manifolds and cobordisms to a sym-

metric construction for an an oriented manifold representation of a quiver where the vertices

parametrise manifolds and the arrows parametrise cobordisms. This produces a symmetric

Poincaré representation of the quiver where the vertices parametrise symmetric Poincaré com-

plexes and the arrows parametrise symmetric Poincaré cobordisms.

Definition 3.4.1. A semi-groupoid A consists of:

(i) A collection of objects Obj(A).

(ii) For each pair of objects A,B ∈ Obj(A) a collection of morphisms HomA(A,B) from A to B.

(iii) For each triple of objects A,B,C ∈ Obj(A) a composition map

HomA(A,B) ×HomA(B,C)→ HomA(A,C); (f, g)→ g ○ f

such that the composition of morphisms is associative.

Example 3.4.2.

(i) Every category is a semi-groupoid. One may think of semi-groupoids as categories without

identity morphisms.

(ii) For each integer n ⩾ 0 there is a semi-groupoid Mn where the objects are closed, oriented n-

dimensional manifolds and where a morphism from Mn to M ′n is an oriented (n+1)-dimensional

cobordism (W ;M,M ′). The composition of morphisms (W ;M,M ′), (W ′;M ′,M ′′) is the mor-

phism (W ∪M ′W ′;M,M ′′) obtained by glueing the cobordisms (W ;M,M ′) and (W ′;M ′,M ′′)
along M ′. In fact, we may form Mn into a category if we define a morphism from M to M ′ to
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be a cobordism between M and M ′ modulo oriented diffeomorphisms of the cobordism relative

to the boundary, but we shall not use this here.

(iii) For each integer n ⩾ 0 and each ring with involution A there is a semi-groupoid Ln(A, ε)
where the objects are n-dimensional ε-symmetric Poincaré complexes over A and where a mor-

phism from (C,φ) to (C ′, φ′) is an (n + 1)-dimensional ε-symmetric cobordism over A of the

form

((f f ′) ∶ C ⊕C ′ →D, (δφ,φ⊕ −φ′)).

The composition of morphisms

((fC fC′) ∶ C ⊕C ′ →D, (δφ,φ⊕ −φ′))

((f ′C′ f ′C′′) ∶ C ′ ⊕C ′′ →D′, (δφ′, φ′ ⊕ −φ′′))

is the morphism

((f ′′C f ′′C′′) ∶ C ⊕C ′′ →D ∪C′ D′, (δφ ∪φ′ δφ′, φ⊕ −φ′′))

obtained by the glueing construction for adjoining ε-symmetric cobordisms from Definition

1.3.3. In the case ε = 1 we write Ln(A, ε) = Ln(A).

Definition 3.4.3.

(i) A quiver Q = (Q0,Q1, s, t ∶ Q1 → Q0) is a directed multi-graph consisting of a collection of

vertices Q0, a collection of arrows Q1 and two functions s ∶ Q1 → Q0 respectively t ∶ Q1 → Q0,

assigning to each arrow α ∈ Q1 its source vertex s(α) ∈ Q0 respectively target vertex t(α) ∈ Q0.

A quiver is finite if it has finitely many vertices and arrows.

(ii) A representation M = ((Mv)v∈Q0 , (gα)α∈Q1) of a quiver Q in a semi-groupoid A is a collection

of objects Mv ∈ A indexed by the vertices v ∈ Q0 together with a collection of morphisms

gα ∈ HomA(Ms(α),Mt(α)) indexed by the arrows α ∈ Q1.

The most widely studied quiver representations are in the category of left R modules for

some commutative ring R. The data we will parametrise by a quiver will come from two different

sources: oriented manifolds and symmetric Poincaré complexes.

Definition 3.4.4.

(i) An (n + 1)-dimensional oriented manifold representation (WQ;MQ,M
′
Q) of a quiver Q is a

representation of Q in the semi-groupoid Mn, consisting of a closed, oriented n-dimensional

manifold Mv for each vertex v ∈ Q0 and an (n + 1)-dimensional cobordism (Wα;Ms(α),M
′
t(α))

for each arrow α ∈ Q1.

(ii) An (n + 1)-dimensional ε-symmetric Poincaré representation (fQ ∶ CQ → DQ, (δφQ, φQ))
of a quiver Q over A is a representation of Q in the semi-groupoid Ln(A, ε), consisting of an

n-dimensional ε-symmetric Poincaré complex (Cv, φv) over A for each vertex v ∈ Q0 and an

(n + 1)-dimensional ε-symmetric cobordism

((fs(α) ft(α)) ∶ Cs(α) ⊕Ct(α) →Dα, (δφα, φs(α) ⊕ −φt(α)))
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over A for each arrow α ∈ Q1. In the case ε = 1 an ε-symmetric Poincaré representation of Q

over A is called a symmetric Poincaré representation of Q over A.

A quiver Q can also be viewed as a ∆-set where the 0-simplices are the vertices, the 1-

simplices are the arrows and there are no simplices of higher dimension. The face maps from

1-simplices to 0-simplices are the source and target maps s, t ∶ Q1 → Q0. An (n+1)-dimensional

ε-symmetric Poincaré representation of Q over A is then the same as a ∆-map from Q to the

ε-symmetric L-spectrum of A, see [Ran92, p.136] for more details.

Example 3.4.5.

(i) The trinity quiver T

Figure 32: The trinity quiver.

has (n+1)-dimensional oriented manifold, respectively (n+1)-dimensional ε-symmetric Poincaré,

representations of the form

Figure 33: Manifold and symmetric Poincaré representations of the trinity quiver.

where by the data (Di, δφi) over an arrow we mean an (n+ 1)-dimensional ε-symmetric cobor-

dism over A of the form

((f0i fii) ∶ C0 ⊕Ci →Di, (δφi, φ0 ⊕ −φi) ∈ Qn+1((f0i fii), ε)) (1 ⩽ i ⩽ 3).

These representations are precisely the (n + 1)-dimensional manifold, respectively ε-symmetric

Poincaré, trinities of [BNR12a, p.44-46].

(ii) The Θ quiver
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Figure 34: The Θ quiver.

has (n+1)-dimensional oriented manifold, respectively (n+1)-dimensional ε-symmetric Poincaré,

representations of the form where by the data (Di, δφi) over an arrow we mean an (n + 1)-

Figure 35: Manifold and symmetric Poincaré representations of the Θ quiver.

dimensional ε-symmetric cobordism over A of the form

((f0i f1i) ∶ C0 ⊕C1 →Di, (δφi, φ0 ⊕ −φ1) ∈ Qn+1((f0i f1i), ε)) (1 ⩽ i ⩽ 3).

The symmetric construction may be applied to oriented manifold representations in order

to produce symmetric Poincaré representations.

Proposition 3.4.6. IfQ is a quiver and ifR is a commutative ring then the symmetric construc-

tion may be applied to an (n+1)-dimensional oriented manifold representation (WQ;MQ,M
′
Q)

of Q to produce an (n + 1)-dimensional symmetric Poincaré representation of Q over R.

Proof. For each vertex v ∈ Q0 applying the symmetric construction to the closed, oriented n-

dimensional manifoldMv produces an n-dimensional symmetric Poincaré complex (C(Mv;R), φMv)
over R. For each arrow α ∈ Q1 applying the symmetric construction to the oriented (n + 1)-
dimensional cobordism (Wα;Ms(α),Mt(α)) produces an (n + 1)-dimensional cobordism

((is(α) it(α)) ∶ C(Ms(α);R)⊕C(Mt(α);R)→ C(Wα;R), (φW (α), φMs(α)
⊕ −φMt(α)

))

over R. The collection

((is(α) it(α)) ∶ (C(Ms(α);R)⊕C(Mt(α);R)→ C(Wα;R), (φW (α), φMs(α)
⊕ −φMt(α)

))α∈Q1 ,

(C(Mv;R), φMv)v∈Q0)

is then an (n + 1)-dimensional symmetric Poincaré representation of Q over R. From now on
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we denote this representation by

(C(MQ;R)⊕C(M ′
Q;R)→ C(WQ;R), (φWQ

, φMQ
⊕ −φM ′

Q
)).

Example 3.4.7. Let R be a commutative ring with identity.

(i) Applying the symmetric construction to the (n+ 1)-dimensional oriented manifold represen-

tation of the trinity quiver from Example 3.4.5 (i) produces an (n + 1)-dimensional symmetric

Poincaré representation over R

Figure 36: A symmetric Poincaré representation of the trinity quiver obtained by applying the sym-
metric construction to a manifold representation.

where by the data (C(Wi;R), φWi) (1 ⩽ i ⩽ 3) over an arrow we mean the (n + 1)-dimensional

symmetric cobordism over A

(C(M0;R)⊕C(Mi;R)→ C(Wi;R), (φWi , φM0 ⊕ −φMi)).

(ii) Applying the symmetric construction to the (n+1)-dimensional oriented manifold represen-

tation of the theta quiver from Example 3.4.5 (ii) produces an (n + 1)-dimensional symmetric

Poincaré representation over R

Figure 37: A symmetric Poincaré representation of the Θ quiver obtained by applying the symmetric
construction to a manifold representation of the Θ quiver.

where by the data (C(Wi;R), φWi) over an arrow we mean the (n + 1)-dimensional symmetric
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cobordism over R

(C(M0;R)⊕C(M1;R)→ C(Wi;R), (φWi , φM0 ⊕ −φM1)).

In chapter 5 we will see that a Morse 2-function on an oriented 4-manifold yields a 3-

dimensional oriented manifold quiver representation to which we may apply the symmetric

construction.

3.5 Thickening manifold and symmetric Poincaré quiver

representations

We extend the thickening operations from Section 3.2 to thickening operations of oriented

manifold and symmetric Poincaré representations of a quiver in such a way that the symmetric

construction and thickening operations commute up to homotopy equivalence.

Definition 3.5.1.

(i) The degree of a vertex v ∈ Q0 of a quiver Q is the cardinality deg(v) of the set of arrows

{α ∈ Q1 ∶ s(α) = v or t(α) = v} with source or target vertex v.

(ii) An ordered quiver is a quiver Q such that at each vertex v ∈ Q0 there is an ordering of the

set of arrows {α ∈ Q1 ∶ s(α) = v or t(α) = v} such that the arrows with source vertex v are

ordered before the arrows with target vertex v.

Example 3.5.2. An ordered quiver where the vertices from left to right are of respective

degrees 1,3,2,8,2 and with the ordering of the edges at each respective vertex are denoted by

natural numbers

Figure 38: An ordered quiver.

The geometric thickening operations from Definition 3.2.1 have the following extension to

quivers.

Definition 3.5.3. The thickening of an (n + 1)-dimensional oriented manifold representation

(WQ;MQ,M
′
Q) of an ordered quiver Q is the (n+2)-dimensional oriented manifold with bound-

ary (Ω, ∂Ω) constructed as follows. For each vertex v ∈ Q0 with deg(v) ≠ 1,2 construct the

disc thickening of the n-dimensional closed, oriented manifold Mv with a deg(v)-fold boundary

splitting
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Figure 39: A schematic diagram for a deg(v)-fold boundary splitting of Mv ×D2.

and form the disjoint union ⊔v∈Q0Mv ×D2. For each arrow α ∈ Q1 construct the thickening

of the (n + 1)-dimensional oriented cobordism (Wα;Ms(α),Mt(α))

Figure 40: A schematic diagram for the thickening of (Wα;Ms(α),Mt(α)).

If α is an arrow from s(α) to t(α) where α is the ith arrow around s(α) and α is the jth

arrow around t(α) according to the orderings, use the boundary splittings of Ms(α) and Mt(α)

to glue Wα × I to Ms(α) ×D2 ⊔Mt(α) ×D2 ⊂ ⊔v∈Q0Mv ×D2 along Ms(α) × Ii and Mt(α) × Ij

Figure 41: A schematic diagram for glueing Ms(α) ×D2,Wα × I,Mt(α) ×D2.

If v is a vertex with deg(v) = 2 and if α,β are arrows such that t(α) = v = s(β) then we

glue the adjoining cobordisms (Wα;Ms(α),M
′
t(α)) and (Wβ ;Ms(β),Mt(β)) in directly without

disc thickening the manifold Mv. If v is a vertex with deg(v) = 1 and if α is an arrow with

s(α) = v or t(α) = v then we similarly glue the cobordism (Wα;Ms(α),Mt(α)) directly without

disc thickening the manifold Mv and we may contract Mv × I to Mv so that Wα × {0} and

Wα × {1} are glued directly.
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Example 3.5.4. The thickening of the oriented manifold representation of the quiver from

Example 3.5.2 is of the form

Figure 42: An oriented manifold representation of a quiver.

Figure 43: The thickening of the representation.

Note the procedure of thickening an oriented manifold representation of a quiver is only

well defined once the quiver is ordered since otherwise the homeomorphism type of the result-

ing manifold may change unpredictably.

The geometric thickening operation for quivers, the algebraic thickening operations from

Definition 3.2.3 together with the glueing operations for triads from Definition 2.2.1 and for

cobordisms of symmetric pairs from Definition 2.2.4 motivate the following algebraic thickening

operation for quivers.

Definition 3.5.5. The thickening of an (n + 1)-dimensional ε-symmetric Poincaré representa-

tion of an ordered quiver Q over A

(fQ ∶ CQ →DQ, (φDQ , φCQ))

is the (n + 2)-dimensional ε-symmetric Poincaré pair over A

(f ∶ ∂D →D, (φD, φ∂D))
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constructed as follows. For each vertex v ∈ Q0 with deg(v) ≠ 1,2 form the disc thickening with

a deg(v)-fold boundary splitting of the n-dimensional ε-symmetric Poincaré complex (Cv, φv)
over A

Figure 44: A schematic diagram for the disc thickening with a boundary splitting of the ε-symmetric
complex associated to the vertex v.

and for each arrow α ∈ Q1 construct the thickening of the (n + 1)-dimensional ε-symmetric

cobordism over A

((fs(α) ft(α)) ∶ Cs(α) ⊕Ct(α) →Dα, (δφα, φs(α) ⊕ −φt(α)))

Figure 45: A schematic diagram for the thickening of the ε-symmetric cobordism associated to the
arrow α.

and then form the direct sum

⊕v∈Q0(Cv ⊗Z C(S1;Z)→ Cv, (0, φv ⊗ φS1)).

If α is an arrow from s(α) to t(α), use the boundary splittings of (Cs(α), φs(α)) and (Ct(α), φt(α)),
the ordering of the arrow α around the vertices s(α) and t(α), and the glueing operation for

adjoining ε-symmetric triads to glue the thickening of

((fs(α) ft(α)) ∶ Cs(α) ⊕Ct(α) →Dα, (δφα, φs(α) ⊕ −φt(α)))

to

(Cs(α) ⊗Z C(S1;Z)→ Cs(α), (0, φs(α) ⊗ φS1))⊕ (Ct(α) ⊗Z C(S1;Z)→ Ct(α), (0, φt(α) ⊗ φS1))
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along

⎛
⎝
⎛
⎝

1 0 1 0

0 1 0 1

⎞
⎠
∶ Cs(α) ⊕Ct(α) ⊕Cs(α) ⊕Ct(α) → Cs(α) ⊕Ct(α), (0, φs(α) ⊕ −φt(α) ⊕ −φs(α) ⊕ φt(α))

⎞
⎠

Figure 46: Glueing the three pieces.

If v is a vertex with deg(v) = 2 and α,β are arrows such that t(α) = v = s(α) then we glue

the adjoining ε-symmetric cobordisms

((fs(α) ft(α)) ∶ Cs(α) ⊕Ct(α) →Dα, (δφα, φs(α) ⊕ −φt(α)))

and

((fs(β) ft(β)) ∶ Cs(β) ⊕Ct(β) →Dβ , (δφβ , φs(β) ⊕ −φt(β)))

directly without disc thickening the ε-symmetric Poincaré complex (Cv, φv). If v is a vertex with

deg(v) = 1 and α is an arrow with s(α) = v or t(α) = v then we similarly glue the ε-symmetric

cobordism

((fs(α) ft(α)) ∶ Cs(α) ⊕Ct(α) →Dα, (δφα, φs(α) ⊕ −φt(α)))

in directly without disc thickening the ε-symmetric Poincaré complex (Cv, φv).

One could also define the thickening of an ε-symmetric Poincaré representation of a quiver

in terms of the ε-symmetric L-spectrum L●(A, ε) = {Ln(A, ε)∣n ≥ 0} of [Ran92, Section 12].

This is an Ω-spectrum of pointed Kan ∆-sets with homotopy groups equal to the L-groups

of A πn(L●(A, ε)) ≅ Ln(A, ε). The 0-simplices of the ∆-set Ln(A, ε) are the n-dimensional

ε-symmetric complexes over A and the 1-simplices of Ln(A, ε) are the (n + 1)-dimensional

ε- symmetric cobordisms over A. One can thicken Q directly to produce a 2-dimensional

manifold (N,∂N) which contains Q as a deformation retraction with a projection p ∶ N → Q

which is a homotopy equivalence. An n-dimensional symmetric Poincaré representation (fQ ∶
CQ → DQ, (φDQ , φCQ)) of Q can then be regarded as a ∆-map C ∶ Q → Ln(A, ε). Choosing a

triangulation of (N,∂N) such that the projection map is a CW-map, and hence is a ∆-map, the

composition Cp ∶ N → Q → Ln(A, ε) then represents a cohomology class Cp ∈ H−n(N ;L(A, ε))
which is Poincaré dual to a homology class Cp∗ ∈ Hn+2(N,∂N ;L(A, ε)). This homology class

can be described combinatorially as a cycle in the sense of [Ran92, Section 12] and represents

the thickening of (fQ ∶ CQ →DQ, (φDQ , φCQ)). This approach uses the Kan extension condition

of Ln(A, ε) to glue symmetric triads and relative symmetric cobordisms rather than using the

glueing operations from chapter 1.

Example 3.5.6.
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(i) Thickening the (n + 1)-dimensional oriented manifold representation of the trinity quiver

T from Example 3.4.5 (i) produces an oriented (n + 2)-dimensional manifold with boundary

(Ω, ∂Ω)

Figure 47: A schematic diagram for the thickening of the manifold representation of the trinity quiver.

The inclusion W1 ∪W2 ∪W3 ↪ Ω is a homotopy equivalence and there is a homeomorphism

(W1 ∪M0 W2) ∪ (W2 ∪M0 W3) ∪ (W3 ∪M0 W1) ≅ ∂Ω

as shown by the diagram

Figure 48: A schematic diagram for the homotopy equivalence and the boundary decomposition.

so that Ω and ∂Ω can be recovered, up to homotopy equivalence, by glueing copies of the

cobordisms W1,W2,W3. If R is a commutative ring with identity then this implies that there

are chain homotopy equivalences C(Ω;R) ≃ E where

E = C (C(M0;R)→ C(W1;R)⊕C(W2;R)⊕C(W3;R))
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and C(∂Ω;R) ≃ ∂E where

∂E = C (C(M1;R)⊕C(M2;R)⊕C(M3;R)→ C (C(M0;R)→ C(W1;R)⊕C(W2;R))

⊕C (C(M0;R)→ C(W2;R)⊕C(W3;R))

⊕C (C(M0;R)→ C(W3;R)⊕C(W1;R))).

Applying the symmetric construction to (Ω, ∂Ω) produces the (n + 2)-dimensional symmetric

pair (C(∂Ω;R) → C(Ω;R), (φΩ, φ∂Ω)) over R and by Example 2.1.5 and Example 3.2.2 there

is a homotopy equivalence

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω)) ≃ (∂E → E, (φE , ∂φE))

where φ∂E = (−φW1 ∪φW2)∪(−φW2 ∪φW3)∪(−φW3 ∪φW1) If (∂D →D, (φD, ∂φD)) is the (n+2)-
dimensional symmetric pair over R obtained by thickening the (n + 1)-dimensional symmetric

Poincaré representation of Example 3.4.5 (i) then there is a homotopy equivalence

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω)) ≃ (∂E → E, (φE , ∂φE)) ≃ (∂D →D, (φD, ∂φD)).

(ii) Thickening the (n + 1)-dimensional oriented manifold representation of the theta quiver

Θ from Example 3.4.5 (ii) produces an (n + 2)-dimensional oriented manifold with boundary

(Ω, ∂Ω)

Figure 49: A schematic diagram for the thickening of the manifold representation of the Θ quiver.

such that the inclusion W1 ∪W2 ∪W3 ↪ Ω is a homotopy equivalence and there is a homeomor-

phism

(W1 ∪M0⊔M1 W3) ⊔ (W1 ∪M0⊔M1 W2) ⊔ (W2 ∪M0⊔M1 W3) ≅ ∂Ω

as shown by the diagram

so that Ω and ∂Ω can be recovered, up to homotopy equivalence, by glueing copies of the

cobordisms W1,W2,W3. If R is a commutative ring with identity then this implies that there

are chain homotopy equivalences C(Ω;R) ≃ E where

E = C (C(M0;R)⊕C(M1;R)→ C(W1;R)⊕C(W2;R)⊕C(W3;R))
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Figure 50: A schematic diagram for the homotopy equivalence and the boundary decomposition.

and C(∂Ω;R) ≃ ∂E where

∂E = C (C(M0;R)⊕C(M1;R)→ C(W1;R)⊕C(W2;R))

⊕C (C(M0;R)⊕C(M1;R)→ C(W2;R)⊕C(W3;R))

⊕C (C(M0;R)⊕C(M1;R)→ C(W3;R)⊕C(W1;R)).

Applying the symmetric construction to (Ω, ∂Ω) produces the (n + 2)-dimensional symmetric

Poincaré pair (C(∂Ω;R) → C(Ω;R), (φΩ, φ∂Ω)) over R and by Example 2.1.5 and Example

3.2.2 there is a homotopy equivalence

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω)) ≃ (∂E → E, (φE , φ∂E))

where φ∂E = (φW1∪−φW2)⊕(φW2∪−φW3)⊕(φW3∪−φW1) If (∂D →D, (φD, ∂φD)) is the (n+2)-
dimensional symmetric pair over R obtained by thickening the (n + 1)-dimensional symmetric

Poincaré representation from Example 3.4.5 (iii) there is a homotopy equivalence

((C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω)) ≃ (∂E → E, (φE , φ∂E)) ≃ (∂D →D, (φD, φ∂D)).

Theorem 3.5.7. The symmetric construction commutes with the thickening operations up to

homotopy equivalence of the resulting symmetric pair.

Proof. Let R be a commutative ring with identity and let (WQ;MQ,M
′
Q) be an (n + 1)-

dimensional oriented manifold representation of an ordered quiver Q. If (Ω, ∂Ω) be the thicken-

ing of (WQ;MQ,M
′
Q) then let (∂D →D, (φD, φ∂D)) is the thickening of the (n+1)-dimensional

symmetric Poincaré representation

(C(MQ;R)⊕C(M ′
Q;R)→ C(WQ;R), (φWQ

, φMQ
⊕ −φM ′

Q
))

obtained by applying the symmetric construction to (WQ;MQ,M
′
Q) over R. By Propositions

3.2.4 and 3.3.9 there is a homotopy equivalence of (n+2)-dimensional symmetric Poincaré pairs

over R

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω)) ≃ (∂D →D, (φD, φ∂D)).
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The following diagram is commutative up to the homotopy type of the resulting symmetric

pair.

(WQ;MQ,M
′
Q) (Ω, ∂Ω)

(C(MQ;R)⊕C(M ′
Q;R)→ C(WQ;R),

(φWQ
, φMQ

⊕ −φM ′

Q
))

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω))

≃

(∂D →D, (φD, φ∂D))

geometric

thickening

symmetric

construction

symmetric

construction

algebraic

thickening

Note that in Definition 3.5.3 one could choose to glue in the thickening of each cobordism

(Wα;Ms(α),M
′
t(α)) with a twist on the right hand side

Figure 51: A schematic diagram for a twisted geometric glueing.

and using the twisted glueing operations for triads from Definition 2.3.4 one could choose

to glue in the thickening of each cobordism ((fs(α) ft(α)) ∶ Cs(α) ⊕ Ct(α) → Dα, (δφα, φs(α) ⊕
−φt(α))) with a twist on the right hand side

Figure 52: A schematic diagram for a twisted algebraic glueing.

Definition 3.5.8. Let Q be a finite quiver.

(i) A twisted (n + 1)-dimensional oriented manifold quiver representation of Q consists of an

(n+1)-dimensional oriented manifold representation (WQ;MQ,M
′
Q) of Q together with twisted

glueing data at the right hand side of each cobordism (Wα;Ms(α),M
′
t(α)) determined by each

arrow α ∈ Q1.
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(ii) A twisted (n + 1)-dimensional ε-symmetric Poincaré quiver representation of Q consists of

an (n + 1)-dimensional ε-symmetric Poincaré representation (fQ ∶ CQ → DQ, (δφQ, φQ)) of

Q together with twisted glueing data at the right hand side of each symmetric cobordism

((fs(α) ft(α)) ∶ Cs(α) ⊕Ct(α) →Dα, (δφα, φs(α) ⊕ −φt(α))) determined by each arrow α ∈ Q1.

Since the twisted union of adjoining triads is an algebraic model for the twisted union of

adjoining manifold triads we have

Theorem 3.5.9. The symmetric construction commutes with the twisted thickening operations

up to a homotopy equivalence of the resulting symmetric pair with a homotopy commutative

diagram.

(WQ;MQ,M
′
Q) (Ω, ∂Ω)

(C(MQ;R)⊕C(M ′
Q;R)→ C(WQ;R),

(φWQ
, φMQ

⊕ −φM ′

Q
))

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω))

≃

(∂D →D, (φD, φ∂D))

twisted geometric

thickening

symmetric

construction

symmetric

construction

twisted algebraic

thickening

In chapter 5 we will show that a Morse 2-function on a 4-manifold M determines a twisted

quiver representation which can be used to reconstruct the symmetric Poincaré complex (C(M), φM).
Part of the reconstruction uses the twisted thickening operation.



Chapter 4

Morse 2-functions

In this chapter we examine Gay and Kirby’s definition of Morse 2-functions [KG13a] and tri-

sections of 4-manifolds [KG13b]. These are natural generalisations of Morse functions and

Heegaard splittings of 3-manifolds. The geometric results in this chapter will be applied in

chapter 5 in order to produce a symmetric Poincaré analogue of the Gay and Kirby’s technique

[KG13b] to reconstruct a 4-manifold M4 from a 3-dimensional manifold representation of a

quiver determined by a Morse 2-function.

4.1 Morse Functions, Heegaard Splittings and Heegaard

Diagrams

As a warm up, we first recall the relationship between a Morse function on a 3-manifold and a

Heegaard decomposition.

Definition 4.1.1. The standard index k Morse model in dimension m is the function

µmk ∶ Rm → R, (x1, . . . , xm)↦ −x2
1 − . . . − x2

k + x2
k+1 + . . . x2

m.

Let W be a smooth manifold with boundary and let N be a smooth 1-manifold. A smooth

function f ∶ W → N is locally Morse if f is locally of the form f(x) = µmk (x) around each

critical point p ∈ W and in this case we say that k is the index of p. A Morse function on a

smooth cobordism (W ;M0,M1) is a smooth map f ∶ W → [0,1] which is locally Morse such

that f−1(0) =M0 and f−1(1) =M1 and all critical points of f occur in the interior of W .

Example 4.1.2.

(i) The height function on the torus above a tangential plane as shown below is a Morse function

with four critical points p, q, r, s of respective indices 0,1,1,2.

83
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Figure 53: A Morse function on the torus.

(ii) The solid torus

S1 ×D2 = {(θ, x, y) ∈ S1 ×R2 ∶ x2 + y2 = 1}

has a Morse function

f ∶ S1 ×D2 → [0,1], (θ, x, y)↦ 1

2
(x2 + y2 + 1

2
cos(θ)(1 − x2 − y2) + 1)

such that f−1(0) = ∅ and f−1(1) = S1 × S1 and f has one critical point of index 0 at (π,0,0)
with critical value 1

4
and one critical point of index of 1 at (0,0,0) with critical value 3

4
.

If W is a finite-dimensional smooth manifold then space of Morse functions of W is a dense,

locally stable subspace of the space of all smooth functions on W so that generically every

smooth function is Morse. See [BH04, §5.5] for more details.

Definition 4.1.3.

(i) A Heegaard splitting of a closed, oriented, connected 3-manifold M is a triple (U1, U2,Σ) such

that M = U1∪ΣU2 where U1, U2 are 3-dimensional handlebodies with boundary Σ = ∂U1 = −∂U2.

The closed orientable surface Σ is called a Heegaard surface for M and the genus of the splitting

is the genus of Σ .

(ii) Two Heegaard splittings (U1, U2,Σ), (U ′
1, U

′
2,Σ

′) of a closed, oriented, connected 3-manifold

M are equivalent if there is an orientation preserving homeomorphism f ∶ M → M such that

f(U1) = U ′
1, f(U2) = U ′

2, f(Σ) = Σ′.

(iii) The stabilisation of a genus g Heegaard splitting (U1, U2,Σ) of a closed, oriented, connected

3-manifold M is the genus g+1 Heegaard splitting (U1 ♮(S1 ×D2), U2 ♮(D2 ×S1),Σ#(S1 ×S1))
obtained by taking the connected sum of the Heegaard splitting (U1, U2,Σ) of M with the genus

1 Heegaard splitting (S1 ×D2,D2 × S1, S1 × S1) of S3.

Morse functions can be used to yield Heegaard decompositions of 3-manifolds.

Theorem 4.1.4. Every closed, oriented, connected 3-manifold M admits a Heegaard splitting.

Proof. By [Sma61, Theorem C] one can find a Morse function f ∶M → R which is self-indexing

(the value of each critical point p ∈ M is equal to its index) such that f has exactly one

critical point of index 0 and one critical point of index 3. Then 3
2

is a regular value of f
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and f−1([0, 3
2
]), f−1([ 3

2
,3]) are handlebodies with boundary a closed oriented surface f−1( 3

2
)

of genus g equal to the number of index 1 critical points.

A Heegaard splitting (U1, U2,Σ) may be expressed combinatorially in terms of attaching

curves on the Heegaard surface Σ.

Definition 4.1.5. A set of attaching circles on a closed, oriented surface Σ of genus g is a

collection of simple closed curves γ = (γ1, γ2, . . . , γg) embedded in Σ such that

(i) The curves are disjoint from each other.

(ii) The homology classes [γ1], [γ2], . . . , [γg] ∈H1(Σ;Z) are linearly independent.

The handlebody determined by γ is the result of attaching 3-dimensional 2-handles to

Σ × [−1,1] along the curves γ1, γ2, . . . , γg ⊂ Σ × {1} to produce a cobordism between Σ and

a disjoint union of k − g + 1 spheres and then capping these spherical boundaries with disks.

A Heegaard diagram is a triple (Σ,α,β) where Σ is a closed oriented surface of genus g

and α = (α1, α2, . . . , αg),β = (β1, β2, . . . , βg) are sets of attaching circles. This determines a

Heegaard splitting (Uα, Uβ,Σ) of M = Uα ∪ΣUβ where Uα is the handlebody determined by α

and Uβ is the handlebody determined by β.

Example 4.1.6. A Heegaard diagram for the genus 1 Heegaard splitting of S3

Figure 54: A genus 1 Heegaard diagram for S3.

Certain standard moves can be performed on the attaching circles to transform one Heegaard

diagram into another.

Definition 4.1.7. Let γ1, γ2, . . . , γg be a set of attaching circles for a handle body U of genus

g.

(i) An isotopy is performed by moving γ1, γ2, . . . , γg through a one-parameter family of curves

parametrised by t ∈ [0,1] such that the curves remain mutually disjoint from each other at each

instant.

(ii) A handle-slide is performed by choosing two distinct curves γi and γj and replacing γi with

a new simple closed curve γ′i embedded in ∂U in such a way that γ′i is disjoint from γ1, γ2, . . . , γg

and γi, γ
′
i, γj bound an embedded pair of pants.

(iii) Attaching curves α,β for a Heegaard diagram (Σ,α,β) of genus g are in standard position

if it is possible to perform a finite sequence of isotopies and handle slides such they are of the

form
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Figure 55: Attaching curves in standard position.

(iv) Two attaching curves α,β are cancelling if they intersect transversely in a single point

Figure 56: Cancelling attaching curves.

(v) Two attaching curves are parallel if they are of the form

Figure 57: Parallel attaching curves.

Example 4.1.8.

(i) An isotopy between two attaching circles (γ1, γ2) and (γ′1, γ′2) for a handle body of genus 2.

Figure 58: An isotopy of attaching circles.

(ii) A handle-slide between two attaching circles (γ1, γ2) and (γ′1, γ′2) for a handle body of genus

2 with the embedded pair of pants cobordism bounded by γ1, γ2, γ
′
1.

Figure 59: A handle-slide of attaching circles.
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Theorem 4.1.9. ([Sin33]) Let (Σ,α,β) and (Σ′,α′,β′) be Heegaard decompositions of a

closed, oriented, connected 3-manifold M . It is possible to apply finitely many stabilisations,

isotopies and handle slides so that the resulting Heegaard diagrams are equivalent.

4.2 Generic homotopies and Morse 2-functions

Gay and Kirby’s Morse 2-functions are smooth maps from a manifold to a surface which look

locally like a generic homotopy of Morse functions but with no global time direction.

Definition 4.2.1. Let M be a smooth manifold and let N be a smooth 1-manifold.

(i) A homotopy of Morse functions f0, f1 ∶ M → N is a smooth map f ∶ I ×M → N such that

f(0, x) = f0(x) and f(1, x) = f1(x). We write ft = f(t,−) ∶M → N .

(ii) An arc of Morse functions is a homotopy f ∶ I ×M → N such that each ft ∶M → N is Morse.

(iii) Let f ∶ I ×M → N be a smooth homotopy between Morse functions f0, f1 ∶ M → N . The

singular locus of the map

F ∶ I ×M → I ×N, (t, x)↦ (t, ft(x))

is the set

ZF = {(t, x) ∶ x is a critical point of ft}

with image

F (ZF ) = {(t, ft(x)) ∶ x is a critical point of ft}

the Cerf graphic of F .

Cerf graphics allow one to track the evolution of critical values in a homotopy of Morse

functions as time passes.

Definition 4.2.2. The standard index k birth-death singularity model in dimension m is the

function

σkm ∶ Rm → R, (x1, . . . , xm)↦ −x2
1 − . . . − x2

k + x3
k+1 + x2

k+2 + . . . x2
m.

Definition 4.2.3. ( [Cer70] [KG13a, Definition 2.3]). Let M be a smooth m-dimensional

manifold and let N be a smooth 1-dimensional manifold. A homotopy f ∶ I ×M → N of Morse

functions f0, f1 ∶ M → N is called generic if each ft ∶ M → N is a Morse function except at

finitely many values of t. At those values t∗ where ft∗ is not Morse, exactly one of the following

events should occur:

(i) Two critical values cross at t∗. More precisely, ft∗ is locally Morse but not Morse and there

is a small ε > 0 such that such ZF ∩ ([t∗ − ε, t∗ + ε]×M) is a collection of arcs on which F is an

embedding except for exactly one transverse double point where the images of two arcs cross.

This event is called a crossing

(ii) A pair of cancelling critical points are born (or die). More precisely, there is a small ε > 0

such that for all t ∈ [t∗ − ε, t∗ + ε], ft is a Morse function outside of a ball and inside that ball

there are local coordinates (which may depend on t) such that

ft(x1, . . . , xm) = −x2
1 − . . . − x2

k + x3
k+1 − (t − t∗)xk+1 + x2

k+2 + ... + x2
m
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and ft has no other critical values near 0. This event is called a birth singularity.

In particular ft∗ has a birth singularity and ft is Morse when t ≠ t∗ with no critical points

in this ball when t < t∗ and are precisely two critical points in this ball, one of index k and

one of index k + 1, when t > t∗. Moreover, F is injective on ZF ∩ ([t∗ − ε, t∗ + ε] ×M) and

ZF ∩ ([t∗ − ε, t∗ + ε] ×M) is a collection of arcs. All but one arc has end points at t∗ − ε and

t∗ + ε and is smoothly embedded via F , and the remaining one arc has both end points at t∗ + ε
and is mapped via F to a semi-cubical cusp in [t∗ − ε, t∗ + ε] ×N . The effect of reversing the

direction of t is a death singularity.

Example 4.2.4. The figure below is a typical Cerf graphic for a generic homotopy of Morse

functions

Figure 60: A Cerf graphic.

Definition 4.2.5. ([KG13a, Definition 2.7]). LetX be a smooth, closed n-dimensional manifold

and let Σ be a smooth, closed 2-dimensional manifold. A smooth, proper map F ∶ X → Σ is

called a Morse 2-function if for each q ∈ Σ there is a compact neighbourhood S of q with

a diffeomorphism ψ ∶ S → I × I and a diffeomorphism φ ∶ F −1(S) → I × W for a smooth

(n−1)-dimensional cobordism (W ;M,M ′) such that the coordinate representation ψ ○F ○φ−1 ∶
I ×W → I × I is of the form (t, x) ↦ (t, ft(x)) for some generic homotopy of Morse functions

ft ∶ (W ;M,M ′) → (I;{0},{1}). A singular point of F is called a fold point if the homotopy

used to model F at that point is an arc of Morse functions. A singular point of F is called a

cusp point if the homotopy used to model F at that point has a birth or death at that point.

Example 4.2.6. The map

F ∶ S1 ×R2 → R2 ⊂ S2, (t, x, y)↦ (t, 1 + x2 + y2

2
)

is a Morse 2-function on the (open) manifold S1 ×R2. Here we are using polar coordinates on

the codomain. The function (x, y)↦ 1+x2
+y2

2
is Morse with a single critical point of index 0 at

(0,0) so that F has singular set S1 × {(0,0)}. The function ft(x, y) = 1+x2
+y2

2
is Morse for each

fixed time t so that each singular point of F is a fold point. The image of the singular set is a

circle of folds in R2 of radius 1
2

centred at the origin.
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4.3 Trisections, trisection diagrams and the existence of

Morse 2-functions

We now examine Kirby and Gay’s result that every 4-manifold admits a Morse 2-function in

order to produce some examples of fold loci of Morse 2-functions . The existence of Morse

2-functions on a 4-manifold be connected to the existence of a trisection of a 4-manifold and is

a generalisation of the relationship between a Morse function on a 3-manifold and a Heegaard

decomposition.

Definition 4.3.1. ([KG13b, Definition 1]). For integers 0 ⩽ k ⩽ g let Zk = ♮k(S1 ×D3) be the

4-manifold with boundary Yk = #k(S1 × S2) and let (Y +
k,g, Y

−
k,g,#g(S1 × S1)) be the genus g

Heegaard splitting of Yk obtained by stabilising (g − k) times the genus k Heegaard splitting

(♮k(S1 ×D2), ♮k(S1 ×D2),#k(S1 × S1)) of Yk.

A (g, k)-trisection of a smooth, closed, connected, oriented 4-manifold X is a decomposition

X = X1 ∪X2 ∪X3 of X into 3 codimension 0-submanifolds Xi with boundary satisfying the

following properties:

(i) For each i = 1,2,3 there is a diffeomorphism φi ∶Xi → Zk.

(ii) For each i = 1,2,3 φi(Xi−1 ∩ Xi) = Y +
k,g and φi(Xi ∩ Xi+1) = Y −

k,g where the index i is

understood modulo 3.

(iii) X1 ∩X2 ∩X3 is an orientable surface of genus g.

Figure 61: A schematic diagram for the trisection of X into the submanifolds X1,X2,X3 or into the
pieces Z1, Z2, Z3.

Example 4.3.2.

(i) The 4-sphere

S4 = {(z, x3, x4, x5) ∈ C ×R3 ∶ ∣z∣2 + x2
3 + x2

4 + x2
5 = 1}
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has a (0,0)-trisection with

Xj = {(reiθ, x3, x4, x5) ∶ r2 + x2
3 + x2

4 + x2
5 = 1,0 ⩽ r, 2πj

3
⩽ θ ⩽ 2π(j + 1)

3
}

≅ {(r, x3, x4, x5, θ)∣r2 + x2
3 + x2

4 + x2
5 = 1,0 ⩽ r, 2πj

3
⩽ θ ⩽ 2π(j + 1)

3
}

=D3
+ × [2πj

3
,
2π(j + 1)

3
]

≅D4

= ♮
0
(S1 ×D3)

where D3
+ is the northern hemisphere of

S3 = {(r, x3, x4, x5)∣r2 + x2
3 + x2

4 + x2
5 = 1}.

(ii) The clutching function ω written in complex coordinates

ω ∶ S1 → SO(2), (x↦ (y ↦ xy))

determines a vector bundle ηω over S2 whose sphere bundle S(ηω) is the Hopf Bundle S1 →
S3 → S2. It is shown in [GS99, Example 4.24] that ηω has a disc bundle

(D2, S1)→ (D(ηω), S(ηω)) = (CP 2 −D4, S3)→ S2.

Decompose the base sphere S2 =D2
+∪S1D2

− as the union of a northern and southern hemisphere

which intersect in the equator. The disc bundle D(ηω) can be expressed as a union of the

induced bundles over the contractible spaces D2
+ and D2

−. The induced bundles are the trivial

disc bundles D2 ×D2
+,D

2 ×D2
− and hence we may decompose CP 2 as the union of three balls

D4.

Figure 62: A trisection of CP 2.

The diagram on the right shows how the central torus S1 × S1 sits inside of each of the three

pieces D2
+ × S1,D2

− × S1S1 ×D2. This determines a (1,0)-trisection of CP 2.
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The 4-manifold analogue of a Heegaard diagram is a trisection diagram which allows one to

combinatorially record a trisection of a 4-manifold.

Definition 4.3.3. ([KG13b, p.8]). For integers 0 ⩽ k ⩽ g a (g, k) trisection diagram is a quadru-

ple (Σ,α,β,γ) where Σ is a closed oriented surface of genus g and (Σ,α,β), (Σ,β,γ), (Σ,γ,α)
are genus g Heegaard diagrams for #k(S1 × S2). This determines a 4-manifold X(Σ,α,β,γ)
obtained by attaching 4-dimensional 2-handles to Σ ×D2 along

α × {1},β × {e
2πi
3 },γ × {e

4πi
3 } ⊂ Σ × S1 = ∂(Σ ×D2)

and filling in the rest with 3 and 4-handles (by [LP72] there is only one way to fill in with 3 and

4-handles ). Equivalently, we may think of X(Σ,α,β,γ) as being obtained by glueing three

copies of ♮k(S1 ×D3) over their boundaries, using the Heegaard decompositions

#k(S1 × S2) = Uα ∪Σ Uβ = Uβ ∪Σ Uγ = Uγ ∪Σ Uα

Figure 63: The trisection determined by a trisection diagram.

Example 4.3.4. ([KG13b, p.7-8]).

(i) A (1,0)-trisection diagram which determines the (1,0) trisection of CP 2 from Example 4.3.2

Figure 64: A trisection diagram for CP 2.

(ii) A (2,0) trisection diagram for S2 × S2
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Figure 65: A trisection diagram for S2 × S2.

(iii) A (1,1) trisection diagram for S1 × S3

Figure 66: A trisection diagram for S1 × S3.

The connection between Morse 2-functions and trisections is as follows.

Theorem 4.3.5. ([KG13b, Theorem 4, §3]). If X is a smooth, closed, connected, oriented

4-manifold then there exists a Morse 2-function F ∶X → R2 ⊂ S2 with a fold locus of the form

Figure 67: The prescribed fold locus.

where each sector

R2
j = {(r cos(θ), r sin(θ)) ∈ R2 ∶ 0 ⩽ r, 2πj

3
⩽ θ ⩽ 2π(j + 1)

3
} (1 ⩽ j ⩽ 3)

contains the same number of fold curves. If k is the number of fold curves without cusps in each

sector R2
j then this induces a (g, k)-trisection of X with Xj = F −1

3 (R2
j) and g = χ(X) + 2k − 2.

The key idea is that by Cerf’s 1-parameter theorem [Cer70] any two Morse functions f0, f1 ∶
M → [0,1] on a 3-manifold can be connected by a generic homotopy ft ∶ f0 ≃ f1. The homotopy

can be chosen to keep the index one critical values below 1
2

and the index two critical values

above. During the homotopy are births and deaths of cancelling pairs of index one and two

critical points but these stabilise the Heegaard splittings of M induced by f0 and f1 such that

the induced handle slides taken one Heegaard splitting to the other. One can start with a
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trisection diagram (Σ,α,β,γ) of X and use Cerf’s 1-parameter theorem to extend a Morse

function on Uα, Uβ , Uγ , which realises the Heegaard decompositions in the trisection diagram,

to a Morse 2-function on X. In terms of handles this corresponds to performing handle slides

and handle cancellations to transform any one of the Heegaard diagrams of Uα, Uβ , Uγ into any

of the other Heegaard diagrams.

Example 4.3.6. We now show that there exists a Morse 2-function F ∶ CP 2 → R2 ↪ S2 such

that the image of the fold locus in Theorem 4.3.5 is of the form

Figure 68: The fold locus for a Morse 2-function on CP 2.

By Example 4.3.4 there is a genus 1 trisection diagram inducing a genus 1 trisection of CP 2

into three discs D4

Figure 69: Trisection and trisection diagram for CP 2.

By Example 4.1.2 there is a Morse function

f ∶ S1 ×D2 → I, (θ, x, y)↦ 1

2
(x2 + y2 + 1

2
cos(θ)(1 − x2 − y2) + 1)

which has exactly one critical point of index 0 and one critical point of index 1. Glueing the

two of S1 ×D2,D2
+ × S1,D2

− × S1 over S1 × S1 produces a sphere S3 with a genus 1 Heegaard

decomposition arising from one of the Heegaard diagrams
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Figure 70: Three heegaard diagrams for S3.

and glueing the two Morse functions produces a Morse function on S3 which has two critical

points of index 0 and two critical points of index 1 and the results may be glued together

Figure 71: The critical points on the union.

We may thicken each of the three copies of S1×D2,D2
+×S1,D2

−×S1 and their Morse functions

by crossing each of the three copies of S1 ×D2 and their Morse functions with the closed unit

interval I to produce a Morse 2-function

F ∶ S1 ×D2 × I → R × I ↪ R ×R, (θ, x, y, t)↦ (f(θ, x, y), t)

in such a way that after glueing a critical point of f becomes a fold of F , as shown below

Figure 72: Extending the Morse function.

The resulting Morse 2-function then arises by performing handle slides and cancellations

to transform any one of the Heegaard diagrams of S3 into any of the other of the Heegaard

diagrams.
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Example 4.3.7. We now show that there exists a Morse 2-function F ∶ S2 × S2 → R2 ↪ S2

such that the fold locus has an image of the form

Figure 73: The fold locus for a Morse 2-function on S2 × S2.

By Example 4.3.4 there is a genus 2 trisection diagram inducing a genus 2 trisection of

S2 × S2

Figure 74: Trisection and trisection diagram for S2 × S2.

The Morse function

S1 ×D2 → I, (θ, x, y)↦ 1

2
(x2 + y2 + 1

2
cos(θ)(1 − x2 − y2) + 1)

from Example 4.1.2 with one critical point of index 0 and one critical point of index 1 induces a

Morse function S1 ×D2 ⊔S1 ×D2 → I with two critical points of index 0 and two critical points

of index 1. This in turn induces a Morse function on the connected sum (S1 ×D2) ♮(S1 ×D2)
with two critical points of index 0 and three critical points of index 1. The 1-handle I ×D2

attached to S1×D2⊔S1×D2 to form the connected sum cancel with the 0-handle in the second

copy of S1 ×D2 and so it is possible to a Morse function f ∶ (S1 ×D2) ♮(S1 ×D2)→ I with one

index 0 critical point and two index 1 critical points. Glueing two copies of (S1×D2) ♮(S1×D2)
over (S1 ×S1)#(S1 ×S1) produces a sphere S3 with a genus 2 Heegaard decomposition arising

from one of the Heegaard diagrams
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Figure 75: Three Heegaard diagrams for S3.

and also produces a Morse function on S3 which has two critical points of index 0 and four

critical points of index 1 We may thicken by crossing with the closed unit interval I to produce

a Morse 2-function

F ∶ ((S1 ×D2) ♮(S1 ×D2)) × I → R × I ↪ R ×R, (θ, x, y, t)↦ (f(θ, x, y), t)

in such a way that a critical point of f becomes a fold of F as shown below

Figure 76: Critical points on the union.

The resulting Morse 2-function then arises by performing handle slides and cancellations

to transform any one of the Heegaard diagrams of S3 into any of the other of the Heegaard

diagrams.

Example 4.3.8. The (1,1) trisection diagram for S1 × S3 from Example 8
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Figure 77: Trisection diagram and trisection for S1 × S3.

induces a Morse 2-function such that the fold locus has an image consisting of no cusps, no

crossings and two circles.

Figure 78: The fold locus of a Morse 2-function on S1 × S3.



Chapter 5

Algebraic reconstruction of

4-manifolds

Gay and Kirby [KG12] showed that, subject to certain conditions, the fold curves and fibres of

a Morse 2-function F ∶ M4 → S2 determine a manifold representation of a quiver from which

one to reconstruct M4 up to diffeomorphism. The reconstructions thickens with a twist the

quiver representation and then glues in disc neighbourhoods of cusps and crossings. We give

an algebraic analogue of their result by applying the symmetric construction at each step to

show how a Morse 2-function F ∶M4 → S2 can be used to reconstruct the symmetric Poincaré

complex (C(M ;R), φM) ofM . The algebraic reconstruction thickens with a twist the symmetric

Poincaré representation of a quiver and then glues the result to the symmetric Poincaré pairs

obtained by applying the symmetric construction to disk neighbourhoods of cusps and crossings.

This section follows closely the method in [KG12] and we recall the geometric reconstruction

method presented there in order to motivate the algebraic reconstruction method.

5.1 Determining the quiver and its representations

From now on let Mn and Σ2 be smooth, closed, connected oriented manifolds of dimension

n and 2 respectively and let F ∶ Mn → Σ2 be a Morse 2-function with connected fibres. By

definition each point p ∈ M has a Euclidean neighbourhood R × Rn−1 and f(p) ∈ Σ has a

Euclidean neighbourhood R ×R so that locally F (x) = F (t, x) = (t, ft(x)) where ft ∶ Rn−1 → R
is a generic homotopy of Morse functions. It follows for each point p ∈ M the rank of the

differential DF (p) ∶ TpM → TF (p)Σ is at least 1 so F has no critical points. The set of points

in M for which the rank of the differential DF is precisely 1 is an embedded 1-dimensional

submanifold of M with image under F an immersed 1-manifold in Σ2, see [AGZV12, p.28].

Definition 5.1.1. The fold graph of F is the embedded graph Γ ⊂ Σ2 which is formed from

the immersed 1-manifold in Σ2 by placing a degree 2 vertex at each cusp and a degree 4 vertex

at each crossing.

The fold graph Γ then divides Σ into a collection of finitely many regions which we label

R1,R2, . . . ,Rm. For each region Ri fix a representative point yi ∈ Ri in the interior of Ri so

that yi does not lie on any of the edges surrounding Ri.

98
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Example 5.1.2. A fold graph Γ ⊂ R2 in the case where Σ = S2 = R2 ∪ {∞}.

Figure 79: A fold graph.

Lemma 5.1.3.

(i) Let Mi = F −1(yi) be the preimage of the representative point yi under f . Then Mi is a

smooth, closed, oriented (n − 2)-dimensional embedded submanifold of M .

(ii) In the interior of each region Ri the map F is the projection of a locally trivial fibration, so

that for any point y in the interior of Ri there is a small disc neighbourhood D2 of y with a

homeomorphism h ∶ F −1(D2)→D2 × F −1(y) such that there is a commutative diagram

F −1(D2) D2 × F −1(y)

D2

h

f
π

.

(iii) If each region Ri is simply connected then F is a trivial fibre bundle over the interior of Ri.

Proof.

(i) The compactness of Mi follows from the fact that M is compact and Mi is a closed subset of

M . By assumption yi lies in the interior of the region Ai and hence is a regular value of F . By

the Thom transversality theorem [Tho54] F is transverse regular to {yi} ⊂ Σ2 and hence Mi is

smooth, closed (n − 2)-dimensional submanifold of M . There is a commutative diagram

M Σ2

Mi {yi}

F

F ∣

such that the normal bundle of Mi in M is the pullback of the normal bundle of {yi} in Σ and

hence the normal bundle of Mi is trivial. The bundle isomorphism TMi ⊕ νMi↪M ≅ TM ∣Mi then

implies that TMi ⊕ ε2 = TM ∣Mi so that the tangent bundle of Mi is oriented and hence Mi is

oriented.

(ii) The map F is proper and each point in the interior of Ri is a regular value so by Ehresmann’s

fibration theorem [Ehr51] it follows that F is a locally trivial fibration on the interior of Ri

(iii) The interior of Ri is then a simply-connected open subset of Σ which embeds into R2 and

hence is contractible. This implies that hence F is a trivial bundle over the interior of Ri.
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Suppose now that Ri and Rj are adjacent regions with the points yi and yj chosen close to

an edge which separates Ri and Rj . Choose a path α ∶ [0,1]→M from yi to yj which intersects

the separating edge between Ri and Rj transversely at a single point p which is neither a cusp

nor a crossing, as shown below

Figure 80: An edge between regions separated by a fold curve.

Lemma 5.1.4. Let Mi = F −1(yi),Mj = F −1(Mj),Wi,j = F −1(αi,j). The points p, yi, yj and

the arc α can be chosen such that (Wi,j ;Mi,Mj) is an oriented (n − 1)-dimensional cobordism

which arises as the trace of a surgery on Mi with effect Mj .

Proof. Since F is a Morse 2-function there is a compact neighbourhood of p diffeomorphic to

I × I and an (n − 1)-dimensional cobordism W such that locally F is of the form

I ×W → I × I, (t, x)↦ (t, ft(x))

for some generic homotopy of Morse functions ft ∶ W → I. Since p is a fold point the generic

homotopy ft can be chosen to be an arc of Morse functions. Choosing yi, yj and the path α

such that the image of α has the same t coordinate as p then implies that there is a Morse

function f ∶W → [0,1] such that yi and yj are regular values of f and p is the only critical value

of f between yi and yj . Ordinary Morse theory then implies that (Wi,j ;Mi,Mj) is a cobordism

which arises as the trace of a surgery on Mi with effect Mj .

We now specialise to the case n = 4 and assume that each regular fibre is connected so that

each Mi is homeomorphic to a a standard, closed, oriented, connected surface Fi of genus gi.

In the context Lemma 5.1.4 it follows that Fi and Fj differ by one in their genus since the

surgery relates the Euler characteristics by χ(Fj) = χ(Fi) ± 2, see Proposition 4.33 [Ran02a].

This naturally determines a quiver.

Definition 5.1.5. The ordered quiver of F is the ordered quiver Q = (Q0,Q1, s, t;Q1 → Q0)
defined as follows:

(i) The vertices Q0 are the representative points {yi}mi=1.

(ii) If Ri and Rj are adjacent regions such that Fi has higher genus than Fj then there is an

arrow α ∈ Q1 with source yi and target yj for each edge of the fold graph Γ which separates Ri

and Rj .

The quiver contains no cycles because the regular fibres Fi are all assumed to be connected the

genus of the regular fibres is strictly decreasing along the directed edges.
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Example 5.1.6. The fold graph in Example 5.1.2 determines the quiver

Figure 81: The quiver determined by a fold graph.

where, for example, F1, F2, F3 have genus 3, F4 has genus 2 and F5 has genus 1 as shown

below

Figure 82: Regular fibres.

Lemma 5.1.4 then determines a 3-dimensional oriented manifold representation of the quiver.

Definition 5.1.7. The 3-dimensional oriented manifold representation (WQ;MQ,M
′
Q) of Q

associates to each vertex yi ∈ Q0 the 2-dimensional oriented manifold Mi and associates to each

arrow α ∈ Q1 from yi to yj the 3-dimensional oriented cobordism (Wi,j ;Mi,Mj).

Example 5.1.8. The quiver from Example 5.1.6 has a 3-dimensional oriented manifold repre-

sentation of the form

Figure 83: A manifold representation of a quiver.

as in Example 3.5.4 where each cobordism (W ;Mi,Mj) arises at the trace of a surgery.

This determines a symmetric Poincaré representation.
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Definition 5.1.9. Let R be a commutative ring with identity. The 3-dimensional symmetric

Poincaré representation

(C(MQ;R)⊕C(M ′
Q;R)→ C(WQ;R), (φWQ

, φMQ
⊕ −φM ′

Q
))

of Q over R is obtained by applying the symmetric construction over R from Proposition 3.4.6

to the 3-dimensional oriented manifold representation (WQ;MQ,M
′
Q) of Q.

5.2 Algebraic Reconstruction

The 3-dimensional oriented manifold representation (WQ;MQ,M
′
Q) of Q together with glueing

data is enough to reconstruct M and F geometrically.

Theorem 5.2.1. ([KG12, p.6-8]). Let F ∶ M4 → Σ2 be a Morse 2-function and suppose that

all the regions bounded by F are simply-connected and the regular fibres of F are all of genus

at least one and are connected. Then the following data suffice to reconstruct M and F up to

diffeomorphism:

(i) The fold graph Γ.

(ii) The standard fibre over an interior point in each region Ri, that is a drawing of a standard

closed, oriented surface Fi of genus gi.

(iii) An attaching circle Cα for each arrow α of the quiver Q such that passing from from Fi to

Fj along the arrow α is achieved by attaching attaching a 2-handle to Fi via Cα.

(iv) Glueing data for each arrow α of the quiver Q , that is a collection of 2(gi−1) simple closed

curves on Fi

a1,α, b1,α, . . . , agi−1,α, bgi−1,α

which are disjoint from Cα such that ak,α∩bk,α = {∗} is a single transverse point of intersection

and (ak,α ∪ bk,α) ∩ al,α ∩ bl,α = ∅ if k ≠ l, so that the genus gi − 1 surface obtained from Fi by

surgery along Cα should be identified with Fj in such a way that the curves

a1,α, b1,α, . . . , agi−1,α, bgi−1,α

map to the standard basis for Fj .

Figure 84: The standard basis for the standard surface of genus g.

Proof. The full proof of existence and uniqueness is given in [KG12]. We only sketch the

existence part of a reconstruction ofM and use it later as a template for an an algebraic analogue

to reconstruct (C(M), φM). Part (iii) of Lemma 5.1.3 implies that F is a trivial fibre bundle
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over the interior of each region Ri. It follows that the thickening of the 3-dimensional oriented

manifold representation (WQ;MQ,M
′
Q) of Q from Definition 5.1.7 is an oriented 4-manifold

with boundary (Ω, ∂Ω) which determines M outside of the preimage of disc neighbourhoods of

cusps and crossings. We invite the reader to look the sequence of diagrams from Examples 5.1.2,

5.1.6, 5.1.8 and 3.5.4 to see this process. If we wish to work with the standard fibre over an

interior point yi in each region Ri as in part (ii) of Theorem 5.2.1, then instead of working with

the preimage F −1(yi) directly as in (WQ;MQ,M
′
Q), we must use the glueing data from part

(iv). By assumption M is an extension of (Ω, ∂Ω) over the preimages of disk neighbourhoods of

cusps and crossings. Gay and Kirby then show that this extension is unique. The preimage of a

disc neighbourhood of a cusp z between regions Ri and Rj is a 4-manifold Ωi,j with boundary

∂Ωi,j = W 1
i,j ∪Mi⊔Mj −W 2

i,j such that Ωi,j deformation retracts onto the central fibre F −1(z)
which has the same topological type as Mi.

Figure 85: The pre-image of the disc neighbourhood of a cusp.

The preimage of a disc neighbourhood of a crossing z between regions Ri,Rj ,Rk,Rl is

a 4-manifold Ωi,j,k,l with boundary ∂Ωi,j,k,l = Wi,j ∪Wj,l ∪ −Wk,l ∪ −Wi,k such that Ωi,j,k,l

deformation retracts onto the central fibre F −1(z). The central fibre is homotopy equivalent

to the space obtained from Mi by separately collapsing the disjoint framed embeddings Smi ×
D4−mi ↪Mi and Smj ×D4−mj ↪Mi on which we do surgery to obtain Mj and Mk.

Figure 86: The pre-image of the disc neighbourhood of a crossing.

The symmetric Poincaré complex (C(M), φM) may then be reconstructed by applying the

symmetric construction to the twisted thickening of the 3-dimensional oriented manifold rep-

resentation (WQ;MQ,M
′
Q) of Q and to the preimages of disc neighbourhoods of cusps and

crossings, and then glueing the results.

Theorem 5.2.2. Let R be a commutative ring with identity. The symmetric Poincaré com-

plex (C(M ;R), φM) may be reconstructed up to homotopy equivalence from the 3-dimensional

oriented manifold representation (WQ;MQ,M
′
Q) of Q with twisted glueing data.
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Proof. By Theorem 3.5.9 the symmetric construction commutes with the twisted thickening

operations up to homotopy equivalence of the resulting symmetric pair, as expressed in the

diagram

(WQ;MQ,M
′
Q) (Ω, ∂Ω)

(C(MQ;R)⊕C(M ′
Q;R)→ C(WQ;R),

(φWQ
, φMQ

⊕ −φM ′

Q
))

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω))

≃

(∂D →D, (φD, φ∂D))

twisted geometric

thickening

symmetric

construction

symmetric

construction

twisted algebraic

thickening

This implies that up to homotopy equivalence, the 4-dimensional symmetric Poincaré pair

(C(∂Ω;R)→ C(Ω;R), (φΩ, φ∂Ω))

can be reconstructed by thickening the algebraic Morse 2-function determined by the 3-dimensional

symmetric Poincaré representation

(C(MQ;R)⊕C(M ′
Q;R)→ C(WQ;R), (φWQ

, φMQ
⊕ −φM ′

Q
))

and twisted algebraic glueing data obtained by applying the symmetric construction to the

3-dimensional oriented manifold representation (WQ;MQ,M
′
Q) of Q and twisted geometric

glueing data.

The symmetric construction may be applied to the pre-images of disk neighbourhoods of

cusps and crossings described in the sketch of the proof of Theorem 5.2.1. In the case of a

cusp the resulting 4-dimensional symmetric Poincaré pair has a 2-fold split boundary. Since

Ωi,j deformations retracts onto Mi and Mi is 2-dimensional, it follows by Lemma 2.1.6 that the

relative part of the symmetric pair is given up to homotopy equivalence by (C(Mi),0).

Figure 87: A schematic diagram for a homotopy equivalence of the algebraic data associated to a cusp.

In the case of a crossing, the resulting 4-dimensional symmetric Poincaré pair has a 4-fold

split boundary. Since Ωi,j,k,l deformations retracts onto Mi, it again follows that the relative

part of the symmetric pair is given, up to homotopy equivalence by (C(Mi),0).
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Figure 88: A schematic diagram for a homotopy equivalence of the algebraic data associated to a
crossing.

Glueing in the symmetric Poincaré pairs obtained by applying the symmetric construction

to each cusp and crossing produces a 4-dimensional symmetric complex which is homotopy

equivalent to (C(M), φM).

Corollary 5.2.3. The signature of M may be recovered from the 3-dimensional oriented man-

ifold representation (WQ;MQ,M
′
Q) of Q and the twisted glueing data.

Proof. If R = Z then the isomorphism L4(Z) ≅ Z from Proposition 1.3.7 sends (C(M ;Z), φM)
to σ(M).

5.3 An open question

Ranicki showed [Ran80a, Proposition 4.7] that every (n+1)-dimensional ε-symmetric cobordism

is homotopy equivalent to a union of elementary ε-symmetric cobordisms arising as the traces

of elementary surgeries. This is an exact algebraic analogue of the result of Thom [Tho49]

and Milnor [Mil61] that every manifold cobordism has a handle decomposition as a union of

elementary cobordisms which arise as the traces of elementary surgeries. We may think of this

manifold and algebraic data as being parametrised by quiver representations of the form

Figure 89: Quiver representations for a sequence of adjoining cobordisms.

In [BNR12a, Theorem 4.5.6] it was shown that every relative symmetric Poincaré cobordism

is homotopy equivalent to the thickening of a symmetric Poincaré representation of the trinity

quiver.
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Figure 90: A symmetric Poincaré representation of the trinity quiver.

This suggests the following:

Open question: Is every (n + 2)-dimensional symmetric Poincaré pair (f ∶ C → D, (δφ,φ))
homotopy equivalent to a twisted thickening of an n-dimensional symmetric Poincaré represen-

tation of a quiver?

Open question: Does every (n + 2)-dimensional symmetric Poincaré complex (C,φ) arise

from data which can parametrised in an n-dimensional symmetric Poincaré representation of a

quiver. In the sense of Meyer [Mey73], is there an explicit cocycle on the space of n-dimensional

symmetric Poincaré representations of a quiver which realises the signature of (C,φ)?
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Introduction to Part II

Recall from Part I that the algebraic model for a surgery on a closed n-dimensional manifold

M with surgery data a framed embedding Si ×Dn−i ↪ M and effect an n-dimensional mani-

fold M ′ is an algebraic surgery on an n-dimensional ε-symmetric complex (C,φ) with surgery

data an (n+ 1)-dimensional ε-symmetric pair (f ∶ C →D, (δφ,φ)) with effect an n-dimensional

ε-symmetric complex (C ′, φ′). The algebraic model for the trace (W ;M,M ′) of the geomet-

ric surgery is the trace of the algebraic surgery which is an (n + 1)-dimensional ε-symmetric

cobordism ((g g′) ∶ C ⊕C ′ → D′, (0, φ ⊕ −φ′)). Milnor [Mil61] and Thom [Tho49] used Morse

theory to show that every (n + 1)-dimensional cobordism (W ;M,M ′) can be expressed as

a union of elementary cobordisms which arise as the traces of surgeries. Ranicki [Ran80a,

Proposition 4.7] gave a precise algebraic analogue of this decomposition and showed that every

(n + 1)-dimensional ε-symmetric cobordism is homotopy equivalent to a union of elementary

ε-symmetric cobordisms arising as the traces of elementary algebraic surgeries.

Borodzik, Némethi and Ranicki [BNR12a] generalised the ordinary surgery operation on a

closed manifold M to a half-surgery operation on an (n+1)-dimensional manifold with boundary

(Σ,M) as follows:

(i) The effect of an index i+1 right half-surgery with surgery data a framed embedding Si×Dn−i ↪
M is the (n + 1)-dimensional manifold with boundary

(Σ′,M ′) = (Σ ∪Si×Dn−i Di+1 ×Dn−i,M − Si ×Dn−i ∪Si×Sn−i−1 Di+1 × Sn−i−1).

Figure 91: The effect of a right half-surgery.

If (W ;M,M ′) is the trace of the ordinary surgery on M removing the framed embedding
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Si × Dn−i ↪ M , then the trace of the right-half surgery is the (n + 2)-dimensional relative

cobordism

(Σ′ × I; Σ × {0},Σ′ × {1},W ;M,M ′)

between (Σ,M) and (Σ′,M ′).

(ii) The effect of an index i + 1 left half-surgery with surgery data a framed embedding (Di+1 ×
Dn−i, Si ×Dn−i)↪ (Σ,M) is the (n + 1)-dimensional manifold with boundary

(Σ′,M ′) = (Σ −Di+1 ×Dn−i,M − Si ×Dn−i ∪Si×Sn−i−1 Di+1 × Sn−i−1).

Figure 92: The effect of a left half-surgery.

If (W ;M,M ′) is the trace of the ordinary surgery on M removing is the framed embedding

Si × Dn−i ↪ M , then the trace of the left-half surgery is the (n + 2)-dimensional relative

cobordism

(Σ × I; Σ × {0},Σ′ × {1},W ;M,M ′)

between (Σ,M) and (Σ′,M ′).

Borodzik, Némethi and Ranicki [BNR12b, Theorem 4.18] used Morse theory on a manifold

with boundary to show that every (n+2)-dimensional relative cobordism (Ω; Σ,Σ′,W ;M,M ′),
such that Σ,Σ′,Ω have no closed connected components, can be expressed as a union of adjoining

elementary relative cobordisms

Ω = Ω0 ∪Ω 1
2
∪Ω1 ∪Ω 3

2
∪ . . . ∪Ωn+ 3

2
∪Ωn+2

where Ω0 arises as the effect of an index 0 handle attachment, Ωi arises as the trace of an index

i right-half surgery, Ωi+ 1
2
arises as the trace of an index i left half-surgery and Ωn+2 arises as

the effect of an index (n + 2)-handle attachment.

This suggests that the algebraic model for a half-surgery on an (n+1)-dimensional manifold

with boundary should be a relative algebraic surgery on an (n + 1)-dimensional ε-symmetric

pair (f ∶ C → D, (δφ,φ)) with algebraic surgery data an (n + 2)-dimensional ε-symmetric triad
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(Γ,Φ) of the form

Γ =
C D

δC δD

f

g h

δf

Φ = (φ′′, δφ′′, δφ, φ).

The effect of the algebraic surgery should be an (n+1)-dimensional ε-symmetric pair (f ′ ∶ C ′ →
D′, (δφ′, φ′)) with trace an (n+2)-dimensional ε-symmetric relative cobordism (Γ′,Φ′) between

(f ∶ C →D, (δφ,φ)) and (f ′ ∶ C ′ →D′, (δφ′, φ′)) of the form

Γ′ =
C ⊕C ′ D ⊕D′

δC ′ δD′

⎛
⎜
⎜
⎝

f 0

0 f ′

⎞
⎟
⎟
⎠

( g′ g′′ ) ( h′ h′′ )

δf ′

Φ′ = (0,0, δφ⊕ −δφ′, φ⊕ −φ′).

Moreover, (C ′, φ′) should be the effect of an algebraic surgery on (C,φ) with algebraic surgery

data the (n + 1)-dimensional symmetric pair (g ∶ C → δC, (δθ, φ)) and trace the (n + 1)-
dimensional ε-symmetric cobordism ((g′ g′′) ∶ C ⊕ C ′ → δC ′, (0, φ ⊕ −φ′)). In addition, every

(n+2)-dimensional commutative ε-symmetric Poincaré relative cobordism should be homotopy

equivalent to a union of traces of elementary relative surgeries.

The obstruction to doing an algebraic surgery on an (n + 1)-dimensional ε-symmetric pair

(f ∶ C → D, (δφ,φ)) is that the symmetric structure (δφ,φ) is a relative cycle in the algebraic

mapping cone of f% ∶W%C →W%D. There is no chain homotopy equivalence between C (f%)
and W%C (f) and so we cannot interpret (δφ,φ) as a non-relative symmetric structure directly.

The triangular matrix ring A determined by two rings with identity A1,A2 and an (A1,A2)-
bimodule B is the matrix ring

A =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a1 b

0 a2

⎞
⎠
∶ a1 ∈ A1, a2 ∈ A2, b ∈ B

⎫⎪⎪⎬⎪⎪⎭
.

By the work of Green [Gre82] an n-dimensional A-module chain complex C can be identified

with a triple (C,C ′, µ ∶ B ⊗A2 C
′ → C) where C is an n-dimensional A1-module chain complex,

C ′ is an n-dimensional A2-module chain complex and µ ∶ B ⊗A2 C
′ → C is an A1-module chain

map. A chain map f ∶ C→D can be identified with a pair of chain maps (f ∶ C →D,f ′ ∶ C ′ →D′

such that there is a commutative triad

B ⊗A2 C
′ C

B ⊗A2 D
′ D

µ

1⊗f ′ f

ν
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This suggest that the relative surgery problem could be solved by working over a triangular

matrix ring. However, if A1,A2 are rings with involution then the extension of the involutions

of A1,A2 to A given by

a ∶
⎛
⎝
A1 B

0 A2

⎞
⎠
→

⎛
⎝
A1 B

0 A2

⎞
⎠

;
⎛
⎝
a1 b

0 a2

⎞
⎠
↦

⎛
⎝
a1 b

0 a2

⎞
⎠
=
⎛
⎝
a1 b

0 a2

⎞
⎠

is in fact not an involution since

⎛
⎝
a1 b

0 a2

⎞
⎠
⎛
⎝
a′1 b′

0 a′2

⎞
⎠
=
⎛
⎝
a1a′1 a1b

′ + ba2

0 a2a′2

⎞
⎠
=
⎛
⎝
a′1a1 a1b

′ + ba2

0 a′2a2

⎞
⎠

whereas

⎛
⎝
a′1 b′

0 a′2

⎞
⎠
⋅
⎛
⎝
a1 b

0 a2

⎞
⎠
=
⎛
⎝
a′1 b′

0 a′2

⎞
⎠
⎛
⎝
a1 b

0 a2

⎞
⎠
=
⎛
⎝
a′1a1 a1b

′ + ba2

0 a′2a2

⎞
⎠
.

It follows that the techniques from chapter 1 cannot be applied directly to determine the sym-

metric L-theory of A. To resolve this problem, one must construct a chain duality on the

additive category A-Mod of A-modules which allows to dual of an object in A-Mod to be a

chain complex in A-Mod.

The L-theory of triangular matrix rings was first considered [Ran06] in connection with

generalised free products and noncommutative localisation A→ Σ−1A of a ring with involution

A. Ranicki made a suggestion [Ran06, Section 2.5] for a chain duality on A-Mod and gave a

claim that there was a long exact sequence

. . .→ Ln+1(A2, ε)→ Ln+1(A1, ε)→ Ln(A, ε)→ Ln(A2, ε)→ Ln(A1, ε)→ . . .

relating the L-theory of A to the L-theory of A1 and A2 via the change of rings morphism

B ⊗A2 − ∶ A2-Mod→ A1-Mod.

Under the assumption that B is equipped with a non-degenerate bilinear pairing β ∶ B×B →
A1 which is symmetric modulo the involution on A1, we show that:

Theorem 7.2.7. The contravariant additive functor

T ∶ A-Mod→ A −Chain

M = (M,M ′, µ ∶ B ⊗A2 M
′ →M)↦C = (C,C ′, µ̂ ∶ B ⊗A2 C

′ → C)

where C is the 1-dimensional chain complex

C = (C,C ′, µ̂) =

⎛
⎜⎜⎜⎜
⎝

M∗

B ⊗A2 M
′∗

(β−1
⊗1)µ∗ ,

0

M ′∗

0 ,

0 M∗

B ⊗A2 M
′∗ B ⊗A2 M

′∗

0

0

(β−1
⊗1)µ∗

1

⎞
⎟⎟⎟⎟
⎠

determines a 1-dimensional local chain duality (T, e) on A-Mod.



112

We then examine the resulting L-theory of A-Mod to show that ε-symmetric complexes over

A may be described in terms of symmetric pairs over A1:

Theorems 7.4.2, 7.4.4. A locally n-dimensional symmetric Poincaré complex C = (C,C ′, µ)
over A determines an (n+1)-dimensional symmetric Poincaré pair (µ ∶ B⊗A2C

′ → C, (δφ, β−1⊗
φ)) over A1.

We then describe ε-symmetric pairs over A in terms of ε-symmetric triads over A1 and ε-

symmetric cobordisms over A in terms of ε-symmetric relative cobordisms over A1:

Theorems 8.1.4, 8.2.3. A locally (n + 1)-dimensional symmetric pair f = (f, f ′) ∶ C =
(C,C ′, µ) → D = (D,D′, ν) over A determines an (n + 2)-dimensional symmetric Poincaré

triad (Γ, φ) over A1 where

Γ =
B ⊗A2 C

′ C

B ⊗A2 D
′ D

µ

1⊗f ′ f

ν

Φ = (φ′, β−1 ⊗ δφ′, δφ′′, β−1 ⊗ φ).

Theorem 8.2.5. A locally (n + 1)-dimensional ε-symmetric cobordism ((f f′) ∶ C ⊕ C′ →
D, (∆Φ,Φ ⊕ −Φ′)) over A determines an (n + 2)-dimensional symmetric relative cobordism

(Γ,Φ) over A1

Γ =
(B ⊗A2 C

′)⊕ (B ⊗A2 C
′′′) C ⊕C ′′

B ⊗A2 D
′ D

⎛
⎜
⎜
⎝

µ 0

0 µ′

⎞
⎟
⎟
⎠

(1⊗f ′ 1⊗f ′′′) (f f ′′)

ν

Φ = (φ′′, β−1 ⊗ δφ′′, δφ⊕ −δφ′, β−1 ⊗ (φ⊕ −φ′)).

The description of cobordisms yields a long exact sequence of ε-symmetric L-groups which

recovers [Ran81, Proposition 2.2]:

Theorem 8.2.8. For a triangular matrix ring A = (A1,A2,B) there is a long exact sequence

of ε-symmetric L-groups

. . .→ Ln+1(A2, ε)→ Ln+1(A1, ε)→ Ln(A, ε)→ Ln(A2, ε)→ Ln(A1, ε)→ . . .

such that an element in Ln(A, ε) is a pair

((C ′, φ ∈ QnA2
(C ′, ε)), (µ ∶ B ⊗A2 C

′ → C, (δφ, β−1 ⊗ φ) ∈ Qn+1
A1

(µ, ε)))

consisting of an n-dimensional ε-symmetric Poincaré pair (C ′, φ) over A2 and an (n + 1)-
dimensional ε-symmetric Poincaré pair (µ ∶ B⊗A2 C

′ → C, (δφ, β−1⊗φ)) over A1 subject to the
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equivalence relation

((C ′, φ), (µ ∶ B ⊗A2 C
′ → C, (δφ, β−1 ⊗ φ))) ∼ ((C ′′′, φ′), (µ′ ∶ B ⊗A2 C

′′′ → C ′′, (δφ′, β−1 ⊗ φ′)))

if and only if there exists an (n + 1)-dimensional ε-symmetric cobordism over A2 of the form

((f ′ f ′′′) ∶ C ′ ⊕C ′′′ →D′, (δφ′′, φ⊕ −φ′))

and an (n + 2)-dimensional ε-symmetric Poincaré triad (Γ,Φ) over A1 of the form

Γ =
B ⊗A2

(C ′ ⊕C ′′′) C ⊕C ′′

B ⊗A2 D
′ D

(µ µ′)

1⊗(f ′ f ′′′) (f f ′′)

ν

Φ = (φ′′, β−1 ⊗ δφ′′, δφ⊕ −δφ′, β−1 ⊗ (φ⊕ −φ′))

We then examine the effect of algebraic surgery on an ε-symmetric complex in A-Mod with

surgery data an ε-symmetric pair in A-Mod and as an application we consider the special case

A = (R,R,R) where R is a ring with involution. This allows us to define a relative alge-

braic surgery operation on an (n+1)-dimensional symmetric Poincaré pair over R with surgery

data an (n + 2)-dimensional symmetric triad over R and is an algebraic model for geometric

half-surgeries. This is used to give an algebraic analogue of Borodzik, Némethi and Ranicki’s

half-handle decomposition theorem:

Theorem 8.3.5. Every (n+2)-dimensional commutative ε-symmetric Poincaré relative cobor-

dism over a ring with involution is homotopy equivalent to a union of traces of elementary

relative surgeries.

Part II is organised as follows.

In chapter 6 we present the basic constructions of [Ran92] needed to determine the L-theory

of an additive category with a chain duality. This is a generalisation of the L-theory of a ring

with involution where the dual of an object in A is allowed to be a finite chain complex in A
rather than just an object in A.

In chapter 7 we use the techniques of chapter 6 to construct a local chain duality on the

additive category of left modules over a triangular matrix ring A = (A1,A2,B). We then use

the results of chapter 1 to show that an ε-symmetric (Poincaré) structure on an A-module chain

complex C = (C,C ′, µ) over A can be described in terms of a relative ε-symmetric (Poincaré)

structure on the A1-module chain map µ ∶ B ⊗A2 C
′ → C.

In chapter 8 we extend the description of ε-symmetric complexes over a triangular matrix

ring A = (A1,A2,B) to ε-symmetric pairs, cobordisms and surgery on ε-symmetric complexes

over A1. We then use the results of chapter 2 to show that a relative ε-symmetric (Poincaré)

structure on an A-module chain map can be described in terms of an ε-symmetric (Poincaré)

structure on a commutative A1-module triad in such a way that an ε-symmetric cobordism over
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A can be viewed as a relative ε-symmetric cobordism over A1. We then describe the effect of a

surgery on an ε-symmetric complex over A and examine the special case A = (R,R,R) to prove

the relative surgery decomposition theorem.



Chapter 6

The L-theory of an additive

category with a chain duality

The L-theory of an additive category A with a chain duality is a generalisation of the L-theory

of a ring with involution where the dual of an object in A is allowed to be a finite chain complex

in A rather than just an object in A. This chapter is based on [Ran92] and presents the basic

constructions needed to determine the L-theory of an additive category with a chain duality.

6.1 Chain complexes in an additive category

Definition 6.1.1. An additive category is a category A satisfying the follow properties:

(i) For any pair of objects A,B ∈ A, the set of morphisms HomA(A,B) has the structure of an

abelian group such that for any object C ∈ A the composition of morphisms

HomA(A,B) ×HomA(B,C)→ HomA(A,C); (f, g)↦ gf

is bilinear over Z. The zero element in HomA(A,B) is the zero morphism.

(ii) There is a zero object 0 ∈ A such that for each object A ∈ A the groups HomA(A,0) and

HomA(0,A) are trivial and contain only the zero morphism.

(iii) For any pair of objects A,B ∈ A there is an object C ∈ A together with morphisms

A

iA ))
C

πA

hh
πB

55 B
iBvv

such that πAiA = 1A, πBiB = 1B , iAπA + iBπB = 1C . Such an object C is a biproduct of A and

B and we write C = A ⊕B and it follows that C is necessarily both a product and coproduct

of A and B.

Example 6.1.2. Let A be a ring with involution. The category of f.g. free left A-modules is

a full additive subcategory of the additive additive category of f.g. projective left A-modules.

Chain complexes, chain maps and chain homotopies in A are defined as follows.
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Definition 6.1.3. Let A be an additive category.

(i) A chain complex in A is a collection of objects C = {Cr}r∈Z in A together with a collection

of morphisms

dC = {dC ∈ HomA(Cr,Cr−1)}r∈Z

such that

dCdC = 0 ∈ HomA(Cr,Cr−2) (r ∈ Z).

(ii) A chain map of chain complexes C,D in A is a collection of morphisms

f = {fr ∈ HomA(Cr,Dr)}r∈Z

such that the following diagram is commutative

Cr Dr

Cr−1 Dr−1

fr

dC dD

fr−1

(r ∈ Z)

that is

dDfr = fr−1dC ∈ HomA(Cr,Dr−1) (r ∈ Z).

(iii) A chain homotopy k ∶ f ≃ g ∶ C →D between chain maps f, g ∶ C →D in A is a collection of

morphisms

k = {kr ∈ HomA(Cr,Dr+1)}r∈Z

such

fr − gr = kr−1dC + dDkr ∈ HomA(Cr,Dr) (r ∈ Z).

(iv) A chain map f ∶ C → D in A is a chain homotopy equivalence if there exists a chain map

g ∶D → C in A such that there are chain homotopies k and h with

k ∶ gf ≃ 1 ∶ C → C, h ∶ fg ≃ 1 ∶D →D.

As in the case of a ring with involution, it is useful to have a definition of the dimension of

a chain complex which is only defined up to chain homotopy.

Definition 6.1.4. A chain complex C in an additive category A is

(i) finite if Cr = 0 for all but finitely many r ∈ Z.

(ii) strictly n-dimensional if n ≥ 0 and Cr = 0 except possibly when 0 ≤ r ≤ n.

(iii) n-dimensional if it is chain homotopy equivalent to a strictly n-dimensional chain complex

in A.

The additive category of finite-dimensional chain complexes in A and chain maps is denoted by

B(A).
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Example 6.1.5. For an additive category A there is a natural embedding 1 ∶ A↪ B(A) which

identifies an object M ∈ A with the 0-dimensional chain complex M given by

Mr =
⎧⎪⎪⎨⎪⎪⎩

M if r = 0

0 otherwise.

Double complexes in A and total complexes thereof are defined as follows.

Definition 6.1.6. Let A be an additive category.

(i) A double complex in A is a collection of objects C = {Cp,q}p,q∈Z in A together with two

collections of morphisms

d′ = {d′p,q ∈ HomA(Cp,q,Cp−1,q)}p,q∈Z, d′′ = {d′′p,q ∶∈ HomA(Cp,q,Cp,q−1)}p,q∈Z

such that

d′d′ = 0 ∈ HomA(Cp,q,Cp−2,q)

d′′d′′ = 0 ∈ HomA(Cp,q,Cp,q−2)

d′d′′ = d′′d′ ∈ HomA(Cp,q,Cp−1,q−1) (p, q ∈ Z).

(ii) The total complex of a double complex C in A is the chain complex C in A defined by

d = ⊕
p+q=r

(d′′ + (−1)qd′) ∶ Cr = ⊕
p+q=r

Cp,q → Cr−1 = ⊕
p+q=r−1

Cp,q (r ∈ Z).

Example 6.1.7. Let C,D be chain complexes in an additive category A. There is a double

complex of Z-modules HomA(C,D) with chain groups

HomA(C,D)p,q = HomA(C−p,Dq) (p, q ∈ Z)

and differentials

d′(f) = fdC ∶ C−p+1 →Dq

d′′(f) = dDf ∶ C−p →Dq−1 (f ∈ HomA(C−p,Dq)).

The total complex HomA(C,D) is given by

HomA(C,D)r = ⊕
p+q=r

HomA(C−p,Dq) (r ∈ Z)

with differential

dHomA(C,D)
∶ HomA(C,D)r → HomA(C,D)r−1

f ↦ dDf + (−1)qfdC (f ∈ HomA(C−p,Dq)).

The total complex of a double complex is used in the following extension construction.

Definition 6.1.8. Let A be an additive category. The standard extension of a contravariant
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additive functor

T ∶ A→ B(A); M ↦ T (M)

is the contravariant additive functor

T ∶ B(A)→ B(A); C ↦ T (C)

defined to send a finite chain complex C in A to the total complex T (C) of the double complex

T (C) in A with

T (C)p,q = T (C−p)q, d′ = T (dC), d′′ = dT (C−p)

so that

dT (C) = ⊕p+q=r(dT (C−p) + (−)qT (dC)) ∶ T (C)r = ⊕p+q=rT (C−p)q → ⊕p+q=r−1T (C−p)q
(r ∈ Z)

6.2 A chain duality on an additive category

A chain duality on an additive category A is a generalisation of the functor from Definition

1.1.3 in Part I which sends a left A-module M to its dual M∗.

Definition 6.2.1. ([Ran92, p.27]). A chain duality (T, e) on an additive category A is a

contravariant additive functor

T ∶ A→ B(A)

together with a natural transformation of covariant functors

e ∶ T 2 → 1 ∶ A→ B(A)→ TB(A)

such that for each object M ∈ A

(i) e(T (M))T (e(M)) = 1 ∶ T (M)→ T 3(M)→ T (M)

(ii) e(M) ∶ T 2(M)→M is a chain equivalence.

A chain duality (T, e) on an additive category A is n-dimensional if for each object M ∈ A the

chain complex T (M) is strictly n-dimensional.

A chain duality is used to define duels of objects and chain complexes in A as follows.

Definition 6.2.2. Let (A, T, e) be an additive category with chain duality and let C,D be

finite chain complexes in A and let f ∶ C →D be a chain map:

(i) The dual of C is the finite chain complex in D defined by C∗ = T (C)−∗.

(ii) The dual of f is the chain map of finite chain complexes in A defined by

f∗ = T (f) ∶D∗ = T (D)−∗ → C∗ = T (C)−∗

(iii) The n-dual of C is the finite chain complex Cn−∗ in A defined by

dCn−∗ = (−1)rd∗T (C) ∶ C
n−r = T (C)r−n → Cn−r+1 = T (C)r−1−n (r ∈ Z).
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(iv) The n-dual of f is the the chain map of finite chain complexes in A defined by

f∗ = T (f) ∶Dn−∗ → Cn−∗.

Example 6.2.3.

(i) Let A be a ring with involution and denote by A-Mod the additive category of f.g. projective

left A-modules and by A-Chain the additive category of finite chain complexes in A-Mod. Recall

that the the dual of a A-module M is the left A-module M∗ = HomA(M,A) with action

A ×M∗ →M∗; (a, f)↦ (x↦ f(x) ⋅ a)

such that if M if f.g. projective then there is a natural isomorphism

e(M)−1 ∶M →M∗∗; x↦ (f ↦ f(x))

This implies that the contravariant additive functor

T ∶ A-Mod→ A −Chain; M ↦ T (M) =M∗

and the natural transformation

e(M) ∶ T 2(M) ≅Ð→M

define a 0-dimensional chain duality (T, e) on A-Mod.

(ii) In chapter 7 we will construct a 1-dimensional chain duality on the category of left modules

over a triangular matrix ring A = (A1,A2,B). This will resolve the difficulty of the non-existence

of a 0-dimensional chain duality as mentioned in the introduction.

A chain duality (T, e) on an additive category A determines a tensor product of finite chain

complexes complexes C,D in such a way that a slant equality holds C ⊗AD = HomA(T (C),D)
and there is an ε-duality involution TC,ε ∶ C ⊗A C → C ⊗A C.

Definition 6.2.4. Let (A, T, e) be an additive category with chain duality.

(i) The tensor product of two objects M,N ∈ A is the finite Z-module chain complex

M ⊗A N = HomA(T (M),N)

defined to be the total complex of the double complex HomA(T (M),N) such that

(M ⊗A N)r = HomA(T (M)−r,N) (r ∈ Z).

(ii) The tensor product of two finite chain complexes C,D in A is the finite Z-module chain

complex

C ⊗AD = HomA(T (C),D)

defined to be the total complex of the double complex HomA(T (C),D) such that

(C ⊗AD)n = ⊕p+q+r=n(Cp ⊗ADq)r (r ∈ Z).
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Proposition 6.2.5. ([Ran92, p.28-29]). Let (A, T, e) be an additive category with chain duality

and let ε = ±1.

(i) For objects M,N ∈ A there is an ε-duality isomorphism

Tε = TM,N,ε ∶M ⊗A N
≅Ð→ N ⊗AM

of Z-module chain complexes with

TM,N,ε ∶ (M ⊗A N)r = HomA(T (M)−r,N)→ (N ⊗AM)r = HomA(T (N)−r,M)

given by

(f ∶ T (M)−r → N)↦ (TM,N(f) ∶ T (N)−r →M)

with

TM,N,ε(f) = εe(M)T (f) ∶ T (N)−r
T (f)
ÐÐÐ→ (T (M)−r)−r ↪ T 2(M)0

εe(M)
ÐÐÐ→M0 =M

and inverse

T −1
M,N,ε = TN,M,ε ∶ N ⊗AM →M ⊗A N

(ii) For finite chain complexes C,D in A there is an ε-duality isomorphism

Tε = TC,D,ε ∶ C ⊗AD
≅Ð→D ⊗A C

of Z-module chain complexes with

TC,D,ε =⊕(−)pqTCp,Dq,ε ∶ (C ⊗AD)n = ⊕
p+q+r=n

(Cp ⊗ADq)r →

(D ⊗A C)n = ⊕
p+q+r=n

(Dq ⊗A Cp)r (n ∈ Z)

and inverse

T −1
C,D,ε = TD,C,ε ∶D ⊗A C → C ⊗AD.

(iii) For finite chain complex C in A the ε-duality isomorphism

Tε = TC,ε = TC,C,ε ∶ C ⊗A C → C ⊗A C

is an involution which defines a Z2-action on C ⊗A C.

6.3 Symmetric complexes in an additive category

The generalisation of the W% functor from a ring with involution to an additive category with

chain duality is as follows.

Definition 6.3.1. ([Ran92, p.29-30]). Let W be the standard free Z[Z2] resolution of Z

W ∶ . . .→W3 = Z[Z2]
1−TÐÐ→W2 = Z[Z2]

1+TÐÐ→W1 = Z[Z2]
1−TÐÐ→W0 = Z[Z2].
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Let (A, T, e) be an additive category with chain duality and let C,D be finite-dimensional chain

complexes in A and let ε = ±1.

(i) The ε-duality isomorphism

Tε ∶ C ⊗A C → C ⊗A C

defines a Z2-action on C ⊗A C so that C ⊗A C is a finite Z[Z2]-module chain complex.

(ii) The Z-module chain complex

W%C = HomZ[Z2](W,C ⊗A C)

is such that under the definition

C ⊗A C = HomA(T (C),C)

a chain φ ∈ (W%C)n can be identified with a collection of morphisms

φ = {φs ∈ HomA(Cn−r+s,Cr)∣r ∈ Z, s ⩾ 0}

such that the boundary dW%Cφ ∈ (W%C)n−1 can be identified with a collection of morphisms

dW%Cφ = {(dφ)sHomA(Cn−1−r+s,Cr)∣r ∈ Z, s ⩾ 0}

satisfying

(dφ)s = dCφs + (−)rφsd∗C + (−)n+s−1(φs−1 + (−)sTεφs−1) ∈ HomA(Cn−1−r+s,Cr)

(r ∈ Z, s ⩾ 0, φ−1 = 0).

(iii) An chain map f ∶ C →D induces a Z[Z2]-module chain map

f ⊗A f ∶ C ⊗A C →D ⊗AD

and hence induces a Z-module chain map

f% ∶W%C →W%D; φ = {φs∣s ⩾ 0}↦ f%φ = {fφsf∗∣s ⩾ 0}

in such a way that a chain homotopy k ∶ f ≃ g ∶ C →D induces a chain homotopy

k% ∶ f% ≃ g% ∶W%C →W%D.

The ε-symmetric Q-groups of a finite chain complex C over A are then defined in the same

way as for a ring with involution.

Definition 6.3.2. Let (A, T, e) be an additive category with chain duality and let ε = ±1.

(i) The ε-symmetric Q-groups of a finite chain complex C in A are the Z-module homology

groups

Qn(C, ε) =Hn(W%C) (n ∈ Z).
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(ii) The morphism of ε-symmetric Q-groups induced by a chain map f ∶ C → D of finite chain

complexes in A is the morphism of Z-module homology groups

f% ∶ Qn(C, ε) =Hn(W%C)→ Qn(D, ε) =Hn(W%D).

Similarly, ε-symmetric Poincaré complexes and homotopy equivalences thereof are defined

as for a ring with involution.

Definition 6.3.3. Let (A, T, e) be an additive category with chain duality.

(i) An n-dimensional ε-symmetric complex (C,φ ∈ Qn(C, ε))) in A is an n-dimensional chain

complex C in A with a cycle φ ∈ (W%C)n

(ii) An n-dimensional ε-symmetric complex (C,φ) in A is Poincaré if the chain map φ0 ∶ Cn−∗ →
C is a chain equivalence.

(iii) A morphism of n-dimensional ε-symmetric complexes f ∶ (C,φ) → (C ′, φ′) in A is a chain

map f ∶ C → C ′ in A such that f%(φ) = φ′. A morphism of n-dimensional ε-symmetric

complexes f ∶ (C,φ)→ (C ′, φ′) is a homotopy equivalence if the chain map f ∶ C → C ′ is a chain

homotopy equivalence.

The ε-symmetric Q-groups again have the same failure to be additive.

Proposition 6.3.4. Let (A, T, e) be an additive category with chain duality and let C,C ′ be

finite-dimensional chain complexes in A. The ε-symmetric Q-groups of the finite-dimensional

chain complex C ⊕C ′ are given by

Qn(C ⊕C ′, ε) = Qn(C, ε)⊕Qn(C ′, ε)⊕Hn(C ⊗A C
′, ε)

so that there is an inclusion

Qn(C, ε)⊕Qn(C ′, ε)↪ Qn(C ⊕C ′, ε).

One may also form direct sums and negatives of ε-symmetric Poincaré complexes.

Definition 6.3.5. Let (A, T, e) be an additive category with chain duality.

(i) The direct sum of n-dimensional ε-symmetric (Poincaré) complexes (C,φ ∈ Qn(C, ε)), (C ′, φ′ ∈
Qn(C ′, ε)) in A is the n-dimensional ε-symmetric (Poincaré) complex in A

(C,φ ∈ Qn(C, ε))⊕ (C ′, φ ∈ Qn(C ′, ε)) = (C ⊕C ′, φ⊕ φ′ ∈ Qn(C ⊕C ′, ε))

determined by the inclusion

Qn(C, ε)⊕Qn(C ′, ε)↪ Qn(C ⊕C ′, ε).

(ii) The zero n-dimensional ε-symmetric Poincaré complex in A is (0,0 ∈ Qn(0, ε)).

(iii) The negative of an n-dimensional -symmetric (Poincaré) complex (C,φ ∈ Qn(C, ε)) in A is

the n-dimensional ε-symmetric (Poincaré) complex in A

−(C,φ ∈ Qn(C, ε)) = (C,−φ ∈ Qn(C, ε)).
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If we wish to emphasise the additive category A then we write W%C =W%
A C and Qn(C, ε) =

QnA(C, ε). In chapter 7 when A = (A1,A2,B) is a triangular matrix ring we will work with the

additive category A = A-Mod. We will relate the Q-groups of a chain complex C = (C1,C2, µ)
over A to the Q-groups of C1 over A1 and C2 over A2 and it will be necessary decorate the

Q-groups with the subscripts A,A1,A2 to keep track of which category we are working over.

6.4 Symmetric pairs and cobordisms in an additive cate-

gory

An ε-symmetric pair in an additive category with chain duality is a generalisation of an ε-

symmetric complex over a ring with involution where a relative symmetric structure of a chain

map f ∶ C →D is defined in terms of a cycle of the mapping cone of f% ∶W%C →W%D.

Definition 6.4.1. The algebraic mapping cone of a chain map f ∶ C → D in an additive

category A is the chain complex C (f) in A defined by

dC (f) =
⎛
⎝
dD (−)n−1f

0 dC

⎞
⎠
∶ C (f)n =Dn ⊕Cn−1 → C (f)n−1 =Dn−1 ⊕Cn−2 (n ∈ Z)

and homology groups

Hn(f) =Hn(C (f)) (n ∈ Z).

It will be useful in chapter 7 to have a definition of an algebraic mapping cone with different

signs.

Definition 6.4.2. The algebraic mapping cone of a chain map f ∶ C → D in an additive

category A is the chain complex C̃ (f) in A defined by

dC̃ (f) =
⎛
⎝
dD f

0 −dC
⎞
⎠
∶ C̃ (f)n =Dn ⊕Cn−1 → C̃ (f)n−1 =Dn−1 ⊕Cn−2 (n ∈ Z)

and homology groups

H̃n(f) =Hn(C̃ (f)) (n ∈ Z).

These two definitions of mapping cones are in fact the same up to isomorphism.

Lemma 6.4.3. If f ∶ C → D is a chain map in an additive category A then the algebraic

mapping cones C (f) and C̃ (f) are isomorphic.

Proof. The commutative diagram

Dr ⊕Cr−1 Dr ⊕Cr−1

Dr−1 ⊕Cr−2 Dr−1 ⊕Cr−2

⎛
⎜
⎜
⎝

dD (−)
r−1f

0 dC

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

1 0

0 (−)
r−1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

dD f

0 −dC

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

1 0

0 (−)
r

⎞
⎟
⎟
⎠
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implies that there is a chain map θ ∶ C (f)→ C̃ (f) defined by

θ =
⎛
⎝

1 0

0 (−)r−1

⎞
⎠
∶ C (f)r → C̃ (f)r (r ∈ Z)

and it is clear that θ is an isomorphism.

Relative symmetric structures are expressed in terms cycles of the algebraic mapping cone

C (f% ∶W%C →W%D).

Proposition 6.4.4. ([Ran92, p.31]). Let (A, T, e) be an additive category with chain duality

and let f ∶ C → D be a chain map of finite-dimensional chain complexes in A. The Z-module

chain map f% ∶ W%C → W%D has an algebraic mapping cone C (f%) such that a cycle

(δφ,φ) ∈ C (f%)n+1 consists precisely of a cycle

φ = {φs ∈ HomA(Cn−r+s,Cr)∣s ⩾ 0, r ∈ Z} ∈ (W%C)n

together with a chain

δφ = {δφs ∈ HomA(Dn+1−r+s,Dr)∣s ⩾ 0, r ∈ Z} ∈ (W%D)n+1

such that

dDδφs + (−)rδφsd∗D + (−)n+s(δφs−1 + (−)sTε(δφs−1)) + (−)nfφsf∗ = 0 ∈ HomA(Dn−r+s,Dr)

(r ∈ Z, s ⩾ 0, δφ−1 = 0, φ−1 = 0).

Definition 6.4.5. Let (A, T, e) be an additive category with chain duality and let ε = ±1. The

relative ε-symmetric Q-groups of a chain map f ∶ C → D of finite-dimensional chain complexes

in A are the relative Z-module homology groups

Qn(f, ε) =Hn(C (f% ∶W%C →W%D)) (n ∈ Z).

If we wish to emphasis the additive category A over which we are working we will decorate

the relative Q-groups with the symbol A as in the absolute case.

An ε-symmetric Poincaré pair is then defined as follows.

Definition 6.4.6. Let (A, T, e) be an additive category with chain duality and let ε = ±1.

(i) An (n + 1)-dimensional ε-symmetric pair (f ∶ C → D, (δφ,φ) ∈ Qn+1(f, ε)) in A consists of

chain map f ∶ C → D from an n-dimensional chain complex C in A to an (n + 1)-dimensional

chain complex D in A, together with a cycle (δφ,φ) ∈ C (f% ∶W%C →W%D)n+1.

(ii) An (n+1)-dimensional ε-symmetric pair (f ∶ C →D, (δφ,φ)) over A is Poincaré if the chain

map

(δφ0 fφ0) ∶ C (f)n+1−∗ →D

is a chain homotopy equivalence.

A chain map f ∶ C → D determines a long exact sequence of ε-symmetric Q-groups as

follows.
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Proposition 6.4.7. Let (A, T, e) be an additive category with chain duality. The relative

ε-symmetric Q-groups of a chain map f ∶ C → D of finite-dimensional chain complexes in A fit

into a long exact sequence of ε-symmetric Q-groups

. . .→ Qn+1(f, ε) f%

Ð→ Qn+1(D, ε)→ Qn(f, ε)→ Qn(C, ε) f%

Ð→ Qn(D, ε)→ . . .

with

Qn+1(f, ε)→ Qn(C, ε); (δφ,φ)↦ φ

Qn(D, ε)→ Qn(f, ε); δφ↦ (δφ,0).

Proof. As in the case for a ring with involution using the long exact sequence associated to the

chain map f% ∶W%C →W%D. See the proof of Proposition 1.2.4 in Section 2.2.

An ε-symmetric cobordism in an additive category with chain duality is a generalisation of

an ε-symmetric Poincaré complex over a ring with involution.

Definition 6.4.8. Let (A, T, e) be an additive category with chain duality. An ε-symmetric

cobordism between n-dimensional ε-symmetric Poincaré complexes (C,φ), (C ′, φ′) in A is an

(n + 1)-dimensional ε-symmetric Poincaré pair in A of the form

((f f ′) ∶ C ⊕C ′ →D, (δφ,φ⊕ −φ′) ∈ Qn+1((f f ′), ε)).

The n-dimensional ε-symmetric L-group Ln(A, ε) of A is the abelian group of cobordism classes

of n-dimensional ε-symmetric Poincaré complexes in A with addition

(C,φ ∈ Qn(C, ε)) + (C ′, φ′ ∈ Qn(C ′, ε)) = (C ⊕C ′, φ⊕ φ′ ∈ Qn(C ⊕C ′, ε)) ∈ Ln(A, ε)

and zero element

(0,0 ∈ Qn(0, ε)) ∈ Ln(A, ε)

and additive inverses

−(C,φ ∈ Qn(C, ε)) = (C,−φ ∈ Qn(C, ε)) ∈ Ln(A, ε).

Example 6.4.9.

(i) Let A be a ring with involution and equip A-Mod with the 0-dimensional chain duality (T, e)
from Example 6.2.3. Then the L-theory of the ring A is the same as the L-theory of the additive

category (A −Mod, T, e).

(ii) In chapter 8 we will show in Theorem 8.2.8 that for a triangular matrix ring A = (A1,A2,B)
there is a long exact sequence of L-groups

. . .→ Ln+1(A2, ε)
(µ,β)%

ÐÐÐÐ→ Ln+1(A1, ε)→ Ln(A, ε)→ Ln(A2, ε)
(µ,β)%

ÐÐÐÐ→ Ln(A1, ε)→ . . .
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6.5 Algebraic surgery in an additive category

Algebraic surgery in an additive category with a chain duality is a generalisation of algebraic

surgery over a ring with involution with an analogous trace construction constructing a cobor-

dism between the input and the output of the surgery.

Definition 6.5.1. ([Ran92, Definition 1.12]). Let (A, T, e) be an additive category with chain

duality.

(i) The effect of algebraic surgery on an n-dimensional ε-symmetric Poincaré complex (C,φ) in A
with data an (n+1)-dimensional ε-symmetric pair (f ∶ C →D, (δφ,φ)) in A is the n-dimensional

ε-symmetric Poincaré complex (C ′, φ′) in A with the chain complex C ′ defined by

dC′ =
⎛
⎜⎜⎜
⎝

dC 0 (−)n+1φ0f
∗

(−)rf dD (−)rδφ0

0 0 (−)rd∗D

⎞
⎟⎟⎟
⎠

∶ C ′
r = Cr ⊕Dr+1 ⊕Dn+1−r → C ′

r−1 = Cr−1 ⊕Dr ⊕Dn+2−r (r ∈ Z)

and the ε-symmetric structure φ′ defined by

φ′0 =
⎛
⎜⎜⎜
⎝

φ0 0 0

(−)n−rfTεφ1 (−)n−rTεδφ1 (−)r(n−r)e
0 1 0

⎞
⎟⎟⎟
⎠

∶ C ′n−r = Cn−r ⊕Dn+1−r ⊕ (T 2D)r+1 → C ′
r = Cr ⊕Dr+1 ⊕Dn+1−r (r ∈ Z)

φ′s =
⎛
⎜⎜⎜
⎝

φs 0 0

(−)n−rfTεφs+1 (−)n−r+sTεδφs+1 0

0 0 0

⎞
⎟⎟⎟
⎠

∶ C ′n−r+s = Cr ⊕Dr+1 ⊕ (T 2D)r−s+1 → C ′
r = Cr ⊕Dr+1 ⊕Dn+1−r (r ∈ Z, s ⩾ 1).

(ii) The trace of such an algebraic surgery is the (n + 1)-dimensional ε-symmetric pair in A

((g g′) ∶ C ⊕C ′ →D′, (0, φ′ ⊕ −φ′) ∈ Qn+1(g g′))

defined by

dD′ =
⎛
⎝
dC (−)n+1φ0f

∗

0 (−)rd∗D

⎞
⎠
∶D′

r = Cr ⊕Dn+1−r →D′
r−1 = Cr−1 ⊕Dn+2−r (r ∈ Z)

g =
⎛
⎝

1

0

⎞
⎠
∶ Cr →D′

r = Cr ⊕Dn+1−r (r ∈ Z)

g′ =
⎛
⎝

1 0 0

0 0 1

⎞
⎠
∶ C ′

r = Cr ⊕Dr+1 ⊕Dn−r+1 →D′
r = Cr ⊕Dn−r+1 (r ∈ Z)

Proof. The proof is the same as in the case of a ring with involution, see [Ran80a, Proposition].

Note the presence of summand involving T 2 in the C ′n−r and the natural transformation e in

φ′0.



Chapter 7

The L-theory of a triangular

matrix ring: symmetric

complexes

As mentioned in the introduction to Part II a triangular matrix ring A = (A1,A2,B) does not

admit a natural involution. Using the techniques of chapter 6 we construct a local chain duality

on the additive category of left modules over A. We take the candidate contravariant additive

functor T ∶ A-Mod→ A−Chain of [Ran06], find its standard extension T ∶ A-Chain→ A-Chain

and show there exists a natural transformation e ∶ T2 → 1 ∶ A-Mod → A-Chain such that

the triple (A,T,e) satisfies a weakened version Definition 6.2.1. We then use the results of

chapter 1 to show that an ε-symmetric (Poincaré) structure on an A-module chain complex

C = (C,C ′, µ) over A can be described in terms of a relative ε-symmetric (Poincaré) structure

on the A1-module chain map µ ∶ B⊗A2C
′ → C in such a way that there is a long exact sequence

of ε-symmetric Q-groups

. . .→ Qn+1
A1

(C, ε)→ QnA(C, ε)→ QnA2
(C ′, ε)→ QnA1

(C, ε)→ . . . .

7.1 Chain complexes and chain maps over a triangular

matrix ring

Definition 7.1.1. The triangular matrix ring A determined by rings A1,A2 with identities

1A1 ,1A2 and an (A1,A2)-bimodule B is the matrix ring

A =
⎧⎪⎪⎨⎪⎪⎩

⎛
⎝
a1 b

0 a2

⎞
⎠
∶ a1 ∈ A1, a2 ∈ A2, b ∈ B

⎫⎪⎪⎬⎪⎪⎭

127
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with addition

+ ∶
⎛
⎝
A1 B

0 A2

⎞
⎠
×
⎛
⎝
A1 B

0 A2

⎞
⎠
→

⎛
⎝
A1 B

0 A2

⎞
⎠

⎛
⎝
⎛
⎝
a1 b

0 a2

⎞
⎠
,
⎛
⎝
a′1 b′

0 a′2

⎞
⎠
⎞
⎠
↦

⎛
⎝
a1 + a′1 b + b′

0 a2 + a′2

⎞
⎠

and multiplication

∗ ∶
⎛
⎝
A1 B

0 A2

⎞
⎠
×
⎛
⎝
A1 B

0 A2

⎞
⎠
→

⎛
⎝
A1 B

0 A2

⎞
⎠

⎛
⎝
⎛
⎝
a1 b

0 a2

⎞
⎠
,
⎛
⎝
a′1 b′

0 a′2

⎞
⎠
⎞
⎠
↦

⎛
⎝
a1a

′
1 a1b

′ + ba2

0 a2a
′
2

⎞
⎠

and identity

1A =
⎛
⎝

1A1 0

0 1A2

⎞
⎠

For brevity we write A = (A1,A2,B).

In order to describe symmetric complexes over a triangular matrix ring A it is first necessary

to describe modules and chain complexes over A. Left A-modules and morphisms thereof have

the following descriptions in terms of the data A1,A2,B.

Proposition 7.1.2. ([Gre82]).

(i) A left A-module M can be identified with a triple

(M1,M2, µ ∶ B ⊗A2 M2 →M1)

where M1 is an A1 module, M2 is an A2 module and µ is an A1-module homomorphism.

(ii) A left A-module morphism

f ∶ M = (M1,M2, µ ∶ B ⊗A2 M2 →M1)→N = (N1,N2, ν ∶ B ⊗A2 N2 → N1)

can be identified with a pair of morphisms

(f1 ∈ HomA1(M1,N1), f2 ∈ HomA2(M2,N2))

such that the following diagram is commutative

B ⊗A2 M2 M1

B ⊗A2 N2 N1

µ

1⊗f2 f1

ν

.

(iii) The addition of morphisms

f = (f ∈ HomA1(M,N), f ′ ∈ HomA2(M ′,N ′)) ∈ HomA(M,N)

g = (g ∈ HomA1(M,N), g′ ∈ HomA2(M ′,N ′)) ∈ HomA(M,N)
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is given by

f + g = (f + g ∈ HomA1(M,N), f ′ + g′ ∈ HomA2(M ′,N ′)) ∈ HomA(M,N)

and the composition of morphisms

f = (f ∈ HomA1(M,N), f ′ ∈ HomA2(M ′,N ′)) ∈ HomA(M,N)

g = (g ∈ HomA1(N,P ), g′ ∈ HomA2(N ′, P ′)) ∈ HomA(N,P)

is given by

gf = (gf ∈ HomA1(M,P ), g′f ′ ∈ HomA2(M ′,N ′)) ∈ HomA(M,P).

(iv) A left A-module M = (M1,M2, µ ∶ B ⊗A2 M2 →M1) is a (f.g.) projective if and only if M1

if (f.g.) projective, coker(µ) is (f.g.) projective and µ is split injective.

The above description of A-modules extends to one of A-module chain complexes.

Proposition 7.1.3. Let A = (A1,A2,B) be a triangular matrix ring.

(i) An n-dimensional A-module chain complex C can be identified with a triple

C = (C,C ′, µ ∶ B ⊗A2 C
′ → C)

where C is an n-dimensional A1-module chain complex, C ′ is an n-dimensional A2-module

chain complex and µ ∶ B ⊗A2 C
′ → C is a chain map of A1-module chain complexes with

Cr = (Cr,C ′
r, µ ∶ B ⊗A2 C

′
r → Cr) (0 ⩽ r ⩽ n).

(ii) Let (C,C ′, µ) and D = (D,D′, ν) be A-module chain complexes. A chain map f ∶ C → D

can be identified with a pair of chain maps

(f ∶ C →D,f ′ ∶ C ′ →D′)

such that the following diagram is commutative

B ⊗A2 C
′
r Cr

B ⊗A2 D
′
r Dr

µr

1⊗f ′ f

νr

(r ∈ Z).

(iii) The addition and composition of morphisms is componentwise.

(iv) An A-module chain complex C = (C,C ′, µ ∶ B ⊗A2 C
′ → C) is (f.g.) projective if and only if

C ′ is (f.g.) projective, coker(µ) is (f.g.) projective and µ is split injective.

Proof.

(i) Suppose that C has chain groups Cr and differential dC ∶ Cr →Cr−1. Write

Cr = (Cr,C ′
r, µr ∶ B ⊗A2 C

′
r → Cr)
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so that the differential dC ∶ Cr →Cr−1 may be identified with a pair

dC = (dC ∈ HomA1(Cr,Cr−1), dC′ ∈ HomA2(C ′
r,C

′
r−1)).

The composition d2
C ∈ HomA(Cr,Cr−2) is then identified with the pair

d2
C = (d2

C ∈ HomA1(Cr,Cr−2), d2
C′ ∈ HomA2(C ′

r,C
′
r−2))

and hence

d2
C = 0 ∈ HomA(Cr,Cr−2) ⇐⇒ d2

C = 0 ∈ HomA(Cr,Cr−2) and d2
C′ = 0 ∈ HomA(C ′

r,C
′
r−2).

It follows that (C, dC) is an n-dimensional A-module chain complex if and only if (C,dC) is

an n-dimensional A1-module chain complex and (C ′, dC′) is an n-dimensional A2-module chain

complex and µ ∶ B ⊗A2 C
′ → C is a chain map of A1-module chain complexes.

(ii) As in (i) we may identify the morphism fr ∈ HomA(Cr,Cr) with a pair of morphisms

fr = (fr ∈ HomA1(Cr,Dr), f ′r ∈ HomA2(C ′
r,D

′
r))

and it remains to show that the diagram

Cr Dr

Cr−1 Dr−1

fr

dC dD

fr−1

(0 ⩽ r ⩽ n)

is commutative. The composition dDfr ∈ HomA(Cr,Dr−1) is represented by the composition

of the commutative diagrams

⎛
⎜⎜⎜⎜⎜
⎝

B ⊗A2 Dr D′
r

B ⊗A2
Dr−1 D′

r−1

νr

1⊗dD dD′

νr−1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

B ⊗A2 C
′
r Cr

B ⊗A2
D′
r Dr

µr

1⊗f ′r fr

νr

⎞
⎟⎟⎟⎟⎟
⎠

=
B ⊗A2 C

′
r C ′

r

B ⊗A2 D
′
r−1 D′

r−1

µr

1⊗(dD′f
′

r) dD′fr

νr−1

and the composition fr−1dC ∈ HomA(Cr,Dr−1) is represented by the composition of the com-

mutative diagrams

⎛
⎜⎜⎜⎜⎜
⎝

B ⊗A2 C
′
r−1 Cr−1

B ⊗A2 D
′
r−1 Dr−1

µr−1

1⊗f ′r−1 fr−1

νr−1

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

B ⊗A2 C
′
r Cr

B ⊗A2 C
′
r−1 Cr−1

µr

1⊗dC′ dC

µr−1

⎞
⎟⎟⎟⎟⎟
⎠

=
B ⊗A2 C

′
r Cr

B ⊗A2 D
′
r−1 Dr−1

µr

1⊗(f ′r−1dC′) fr−1dC

νr−1

It follows that we have commutativity of the required diagram if and only if dD′f ′ = f ′dC′ and

dDf = fdC , that is if and only if f ∶ C → D is an A1-module chain map and f ′ ∶ C ′ → D′ is an

A2-module chain map.

(iii) Follows from part (iii) of Proposition 7.1.3.

(iv) Follows from part (iv) of Proposition 7.1.3.
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7.2 A local chain duality for a triangular matrix ring

We now take the candidate contravariant additive functor T ∶ A-Mod → A −Chain of [Ran06],

find its standard extension T ∶ A-Chain→ A-Chain and show there exists a natural transforma-

tion e ∶ T2 → 1 ∶ A-Mod → A-Chain such that the triple (A,T,e) satisfies a weakened version

Definition 6.2.1.

From now on we assume that B is f.g. as a left A1-module and B is equipped with a pairing

β ∶ B ×B → A1 such that for all a1, a
′
1 ∈ A1, a2 ∈ A2, b, b

′, b′′ ∈ B

(i) β(b, b′ + b′′) = β(b, b′) + β(b, b′′) ∈ A1

(ii) β(b′, b) = β(b, b′) ∈ A1

(iii) β(b, b′a2) = β(ba2, b
′)

(iv) β(a1b, a
′
1b
′
1) = a′1β(b, b′1)a1

(v) The A1-module morphism

β ∶ B → B∗ = HomA1(B,A1); (b↦ (b′ ↦ β(b, b′)))

is an isomorphism such that β = β∗ ∈ HomA1(B,B∗).

Proposition 7.2.1. There is a contravariant additive functor

T ∶ A-Mod→ A −Chain

M = (M,M ′, µ ∶ B ⊗A2 M
′ →M)↦C = (C,C ′, µ̂ ∶ B ⊗A2 C

′ → C)

where C is the strictly 1-dimensional chain complex

C = (C,C ′, µ̂) =

⎛
⎜⎜⎜⎜
⎝

M∗

B ⊗A2 M
′∗

(β−1
⊗1)µ∗ ,

0

M ′∗

0 ,

0 M∗

B ⊗A2 M
′∗ B ⊗A2 M

′∗

0

0

(β−1
⊗1)µ∗

1

⎞
⎟⎟⎟⎟
⎠

and µ̂ ∶ B ⊗C ′ → C the inclusion chain map of A1-module chain complexes.

Proof. We first check the functoriality of T and then check the additivity of T.

(i) Proposition 7.1.3 implies that C is a chain complex of A-modules so that T sends objects to

objects.

(ii) Let N = (N,N ′, ν ∶ B ⊗A2 N
′ → N) be a second A-module with

D = (D,D′, ν̂) =

⎛
⎜⎜⎜⎜
⎝

N∗

B ⊗A2 N
′∗

(β−1
⊗1)ν∗ ,

0

N ′∗

0 ,

0 N∗

B ⊗A2 N
′∗ B ⊗A2 N

′∗

0

0

(β−1
⊗1)ν∗

1

⎞
⎟⎟⎟⎟
⎠

.
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A morphism f ∈ HomA(M,N) may be identified with a pair of morphisms

f = (f ∈ HomA1(M,N), f ′ ∈ HomA2(M ′,N ′))

such that the following diagram commutes

B ⊗A2 M
′ M

B ⊗A2 N
′ N

µ

1⊗f2 f1

ν

The dual of this square with respect to A1 is the commutative square

N∗ M∗

B∗ ⊗A2 N
′∗ B∗ ⊗A2 M

′∗

f∗

ν∗ µ∗

1⊗f ′∗

which when composed with the commutative square

B∗ ⊗A2 N
′ B∗ ⊗A2 M

′

B ⊗A2 N
′∗ B ⊗A2 M

′∗

1⊗f ′∗

β−1
⊗1 β−1

⊗1

1⊗f ′∗

yields the commutative square

N∗ M∗

B ⊗A2 N
′∗ B ⊗A2 M

′∗

f∗

(β⊗1)−1ν∗ (β⊗1)−1µ∗

1⊗f ′∗

which then defines a chain map T (f) ∶ D → C of A1-module chain complexes. The dual

morphism f ′∗ ∈ HomA2(N ′∗,M ′∗) then defines an A2-module chain map T (f)′ ∶ D′ → C ′. It

follows that the pair (T (f), T (f)′) defines a chain map T(f) ∶ T(D)→ T(C) of A-module chain

complexes if and only if the following diagram is commutative

B ⊗A2 D
′ D

B ⊗A2 C
′ C

µ̂

1⊗T (f)′ T (f)

ν̂

Since D′ is 0-dimensional, commutativity needs to only be checked in dimension 0 and this

follows by the trivial commutativity of the diagram

B ⊗A2 N
′∗ B ⊗A2 N

′∗

B ⊗A2 M
′∗ B ⊗A2 M

′∗

1

1⊗f ′∗ 1⊗f ′∗

1



Chapter 7. The L-theory of a triangular matrix ring 133

so T sends morphisms to morphisms.

(iii) Note that

T ′(1M) = (1 ∶M ′∗ →M ′∗) = 1T ′(M)

and

T (1M) =

⎛
⎜⎜⎜⎜⎜
⎝

M∗ M∗

B ⊗A2 M
′∗ B ⊗A2 M

′∗

1

(β−1
⊗1)µ∗ (β−1

⊗1)µ∗

1

⎞
⎟⎟⎟⎟⎟
⎠

= 1T (M)

so that T(1M) = 1T(M) as required.

(iv) Let P = (P,P ′, ξ ∶ B ⊗A2 P
′ → P ) be a third A-module and let g ∈ HomA(N,P) be a

morphism. Under the identification

g = (g ∈ HomA1
(N,P ), g′ ∈ HomA2

(N ′, P ′))

the composition gf ∈ HomA(M,P) is identified with the pair

gf = (gf ∈ HomA1(M,P ), g′f ′ ∈ HomA2(M ′, P ′)).

It is clear from (ii) that T (gf) = T (f)T (g) and T (gf)′ = T (f)′T (g)′ and so that T(gf) =
T(f)T(g) as required and hence T is contravariant.

(v) For A-modules M,N it is clear that the map

T ∶ HomA(M,N)→ HomA(T (N), T (N)), f↦ T(f)

is a homomorphism of abelian groups so that T is additive.

We may now write down explicitly the standard extension of T.

Proposition 7.2.2. The standard extension of the contravariant additive functor

T ∶ A-Mod→ A −Chain; M↦ T(M)

is the contravariant additive functor

T ∶ A −Chain→ A −Chain; C↦ T(C)

such that if C = (C,C ′, µ) is a finite chain complex of A-modules then

T(C)∗ =
⎛
⎝
C̃ (µ(β−1 ⊗ 1))1−∗,C ′−∗,

⎛
⎝

1

0

⎞
⎠
∶ B ⊗A2 C

′−∗ → C̃ (µ(β−1 ⊗ 1))1−∗⎞
⎠

where µ(β−1 ⊗ 1) is the A1-module chain map

µ(β−1 ⊗ 1) ∶ B∗ ⊗A2 C
′ → B ⊗A2 C

′ → C
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so that T(C) has chain groups given by

T(C)r =
⎛
⎝
(B ⊗A2 C

′−r)⊕C1−r,C ′−r,
⎛
⎝

1

0

⎞
⎠
∶ B ⊗A2 C

′−r → (B ⊗A2 C
′−r)⊕C1−r)

⎞
⎠

and differential dT(C) ∶ T(C)r → T(C)r−1 given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(B ⊗A2 C
′−r)⊕C1−r

(B ⊗A2 C
′1−r)⊕C ′2−r

(
1⊗d∗

C′
(β−1

⊗1)µ∗

0 −d∗
C

) ,

C ′−r

C ′1−r

d∗
C′
,

B ⊗A2 C
′−r (B ⊗A2 C

′−r)⊕C1−r

B ⊗A2 C
′1−r (B ⊗A2 C

′1−r)⊕C2−r

1⊗d∗
C′

(
1

0
)

(
1⊗d∗

C′
(β−1

⊗1)µ∗

0 −d∗
C

)

(
1

0
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proof. Recall from Definition 6.1.8 that T(C) is the total complex of the double complex

T(C)∗,∗ with chain groups

T(C)p,q = T(C−p)q
d′p,q = T(dC ∶ C1−p →C−p) ∶ T(C−p)q → T(C1−p)q
d′′p,q = dT(C−p) ∶ T(C−p)q → T(C−p)q−1 (p, q ∈ Z)

so that

T(C)r = T(C−r)0 ⊕T(C1−r)1

= T(C−r,C ′
−r, µ ∶ B ⊗A2 C

′
−r → C−r)0 ⊕T(C1−r,C

′
1−r, µ ∶ B ⊗A C ′

1−r → C1−r)1

= (B ⊗A2 C
′−r,C ′−r,1 ∶ B ⊗A C ′−r → B ⊗A2 C

′−r)⊕ (C1−r,0,0 ∶ 0→ C1−r)

=
⎛
⎝
(B ⊗A2 C

′−r)⊕C1−r,C ′′−r,
⎛
⎝

1

0

⎞
⎠
∶ B ⊗A2 C

′−r → (B ⊗A2 C
′−r)⊕C1−r)

⎞
⎠

The chain complex T(C) has differential

dT(C) =
⎛
⎝

d′r,0 d′′r−1,1

0 −d′r−1,1

⎞
⎠
∶ T(C)r = T(C−r)0⊕T(C1−r)1 → T(C)r−1 = T(C1−r)0⊕T(C2−r)1

where

d′′r−1,1 = ((β−1 ⊗ 1)µ∗ ∈ HomA1(C ′1−r,B ⊗A2 C
′′1−r),0 ∈ HomA2(0,C ′′1−r))

d′r,0 = (1⊗ d∗C′′ ∈ HomA1(B ⊗A C ′′−r,B ⊗A C ′′1−r), d∗C′′ ∈ HomA2(C ′′−r,C ′′1−r))

d′r−1,1 = (d∗C′ ∈ HomA1(C ′1−r,C ′2−r),0 ∈ HomA2(0,0))

so that dT(C) ∶ T(C)r → T(C)r−1 is represented by the pair of morphisms

⎛
⎜⎜⎜
⎝

⎛
⎝

1⊗ d∗C′ (β−1 ⊗ 1)µ∗

0 −d∗C

⎞
⎠
∈ HomA1((B ⊗A2 C

′−r)⊕C1−r, (B ⊗A2 C
′1−r)⊕C2−r)

d∗C′ ∈ HomA2(C ′−r,C ′1−r)

⎞
⎟⎟⎟
⎠
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so that

T(C)∗ =
⎛
⎝
C̃ (µ(β−1 ⊗ 1))1−∗,C ′−∗,

⎛
⎝

1

0

⎞
⎠
∶ B ⊗A2 C

′−∗ → C̃ (µ(β−1 ⊗ 1))1−∗⎞
⎠

as required. By comparison with Proposition 7.2.1 is clear that T ∶ A-Chain → A-Chain is an

extension of T ∶ A-Mod → A-Chain. It then remains to check the functoriality and additivity

of T.

(i) Proposition 7.1.3 implies that T(C) is indeed an A-module chain complex so that T sends

objects to objects.

(ii) Let D = (D,D′, ν ∶ B ⊗A2 D
′ → D) be another A-module chain complex. Proposition 7.1.3

implies that an A-module chain map f ∶ C→D may be identified with a pair of chain maps

f = (f ∶ C →D,f ′ ∶ C ′ →D′)

such that the following diagram commutes

B ⊗A2 C
′ C

B ⊗A2 D
′ D

µ

1⊗f ′ f

ν

Note that f ′∗ ∶D′−∗ → C ′−∗ defines an A2-module chain map. Since fµ = ν(1⊗f) the following

diagram is commutative

(B ⊗A2 D
′−r)⊕D1−r (B ⊗A2 D

′1−r)⊕D2−r

(B ⊗A2 C
′−r)⊕C1−r (B ⊗A2 C

′1−r)⊕C2−r

(
1⊗f ′∗ 0

0 f∗
)

(
1⊗d∗

D′
(β−1

⊗1)ν∗

0 −d∗
D

) (
1⊗d∗

C′
(β−1

⊗1)µ∗

0 −d∗
C

)

(
1⊗f ′∗ 0

0 f∗
)

so that
⎛
⎝

1⊗ f ′∗ 0

0 f∗
⎞
⎠
∶ C̃ (ν(β−1 ⊗ 1))1−∗ → C̃ (µ(β−1 ⊗ 1))1−∗

is an A1-module chain map. The commutative diagram

B ⊗A2 D
′−r (B ⊗A2 D

′−r)⊕D1−r

B ⊗A2 C
′−r (B ⊗A2 C

′−r)⊕C1−r

(
1

0
)

1⊗f ′∗ (
1⊗f ′∗ 0

0 f∗
)

(
1

0
)

and Proposition 7.1.3 implies that the pair

T(f) =
⎛
⎝
⎛
⎝

1⊗ f ′∗ 0

0 f∗
⎞
⎠
, f ′∗

⎞
⎠
∶ T(D)→ T(C)

defines an A-module chain map and hence T sends morphisms to morphisms.
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(iii) It is clear from (ii) that T(1C) = 1T(C)

(iv) Let E = (E,E′, ξ ∶ B⊗A2E
′ → E) be third A-module chain complex and let g ∈ HomA(N,P)

be a morphism. Under the identification

g = (g ∶D → E, g′ ∶D′ → E′)

the composition gf is identified with the pair

gf = (gf ∶ C → E, g′f ′ ∶ C ′ → E′)

and it is clear from (ii) that T(gf) = T(f)T(g) so T ∶ A − Chain → A − Chain defines a

contravariant functor.

(v) For finite A-module chain complexes C,D it is clear from (ii) that the map

T ∶ HomA(C,D)→ HomA(T(C),T(D)), f↦ T(f)

is a homomorphism of Z-modules.

We next need to find a natural transformation e ∶ T2 → 1 ∶ A-Mod→ A-Chain. The effect of

T2 on an object in A-Mod is as follows.

Corollary 7.2.3. For an A-module M = (M,M ′, µ), the chain complex T2(M) is a strictly

1-dimensional A-module chain complex with

T2(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B∗ ⊗A2 M
′

(B ⊗A2 M
′)⊕M

⎛
⎜
⎜
⎝

β−1
⊗1

−µ(β−1
⊗1)

⎞
⎟
⎟
⎠

,

0

M ′

0 ,

0 B∗ ⊗A2 M
′

B ⊗A2 M
′ (B ⊗A2 M

′)⊕M

0

0

⎛
⎜
⎜
⎝

β−1
⊗1

−µ(β−1
⊗1)

⎞
⎟
⎟
⎠

(
1

0
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proof. Use Proposition 7.2.1 to write down T(M) and then use Proposition 7.2.2 to write down

T2(M) = T(T(M)).

In order for the chain map e(M) ∶ T2(M) → M to be a chain homotopy equivalence it is

necessary to work with the weaker class of morphisms in the category A-Mod.

Definition 7.2.4. Let C = (C,C ′, µ) and D = (D,D′, ν) be A-module chain complexes.

(i) A local A-module chain map is a pair of chain maps

f = (f ∈ HomA1(C,D), f ′ ∈ HomA2(C ′,D′)).

(ii) An A-module chain map

f = (f ∈ HomA1(C,D), f ′ ∈ HomA2(C ′,D′))
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is a local chain equivalence if both f and f ′ are chain homotopy equivalences.

Note that the forgetful functor

(A-Mod,A-module chain maps)→ (A-Mod, local A-module chain maps)

(f1, f2)↦ (f1, f2)

is not in general surjective since a local chain map f = (f ∈ HomA1(C,D), f ′ ∈ HomA2(C ′,D′))
does not necessarily determine a commutative diagram

B ⊗A2 C
′ C

B ⊗A2 D
′ D

µ

1⊗f ′ f

ν

Proposition 7.2.5. There is a natural transformation of covariant functors

e ∶ T2 → 1 ∶ A-Mod→ A −Chain

such that for each A-module M the A-module chain map

e(M) ∶ T2(M)→M

is a local A-module chain equivalence.

Proof. Let M = (M,M ′, µ) be an A-module which we may view as a strictly 0-dimensional

A-module chain complex. By Corollary 7.2.3 we may write

T2(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B∗ ⊗A2 M
′

(B ⊗A2 M
′)⊕M

⎛
⎜
⎜
⎝

β−1
⊗1

−µ(β−1
⊗1)

⎞
⎟
⎟
⎠

,

0

M ′

0 ,

0 B∗ ⊗A2 M
′

B ⊗A2 M
′ (B ⊗A2 M

′)⊕M

0

0

⎛
⎜
⎜
⎝

β−1
⊗1

−µ(β−1
⊗1)

⎞
⎟
⎟
⎠

(
1

0
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Each component of the chain map e(M) ∶ T2(M) → M is necessarily zero apart from the

0-dimensional component e(M) ∶ T2(M)0 →M0 = M. The pair of morphisms

e(M) = (( µ 1 ) ∈ HomA1((B ⊗A2 M
′)⊕M,M),1 ∈ HomA2(M ′,M ′))

determine a commutative diagram

B ⊗A2 M
′ (B ⊗A2 M

′)⊕M1

B ⊗A2 M
′ M

(
1

0
)

1⊗1 ( µ 1 )

µ
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so that e(M) ∶ T2(M)0 →M0 is an A-module morphism. The commutative diagram

B∗ ⊗A2 M
′ 0

(B ⊗A2 M
′)⊕M M

0

⎛
⎜
⎜
⎝

β−1
⊗1

−µ(β−1
⊗1)

⎞
⎟
⎟
⎠

0

( µ 1 )

implies that there is a commutative diagram

T2(M)1 0

T2(M)0 M

0

dT2
(M) 0

e(M)

so that e(M) ∶ T2(M) → M is an A-module chain map. It remains to show that e(M) is a

local chain equivalence. We explain after the proof why it is not possible to choose e(M) to be

a genuine chain equivalence.

For ease of notation, let f = e(M). Since M is a strictly 0-dimensional A-module chain complex,

a local chain map g = (g1, g2) ∶ M → T2(M) is uniquely determined by an arbitrary local

morphism of A-modules g ∶ M0 = M0 → T2(M)0 with no commutativity requirements . Define

a local A-module chain map g ∶ M→ T2(M) by the pair of morphisms

⎛
⎝
⎛
⎝

0

1

⎞
⎠
∈ HomA1(M, (B ⊗A2 M

′)⊕M),1 ∈ HomA2(M ′,M ′)
⎞
⎠
.

The composition fg ∶ M→ T2(M)→M is represented by the pair of morphisms

(1 ∈ HomA1(M,M),1 ∈ HomA2(M ′,M ′))

so that fg = 1M and hence there is a chain homotopy 0 ∶ fg ≃ 1M.

Denote by C the strictly 1-dimensional chain complex

⎛
⎜⎜⎜⎜⎜⎜
⎝

C1

C0

dC

⎞
⎟⎟⎟⎟⎟⎟
⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

B∗ ⊗A2 M
′

(B ⊗A2 M
′)⊕M

⎛
⎜
⎜
⎝

β−1
⊗1

−µ(β−1
⊗1)

⎞
⎟
⎟
⎠

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

The composition h = gf ∶ T 2(M)→M→ T 2(M) is represented by the pair of morphisms

h = (h,h′) =
⎛
⎝
⎛
⎝

0 0

µ 1

⎞
⎠
∈ HomA1((B ⊗A2 M

′)⊕M, (B ⊗A2 M
′)⊕M),1 ∈ HomA2(M ′,M ′)

⎞
⎠
.

Since h is only required to be a local chain equivalence, it is then enough to find a chain

homotopy k ∶ 1 ≃ h ∶ C → C. The morphism
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k = ( β ⊗ 1 0 ) ∈ HomA1((B ⊗A2 M
′)⊕M,B∗ ⊗A2 M

′)

defines a degree one morphism k ∶ C∗ → C∗+1 satisfying

kdC = ( β ⊗ 1 0 )
⎛
⎝

β−1 ⊗ 1

−µ(β−1 ⊗ 1)
⎞
⎠

= 1 − h ∈ HomA1(C1,C1)

dCk =
⎛
⎝

β−1 ⊗ 1

−µ(β−1 ⊗ 1)
⎞
⎠
( β ⊗ 1 0 )

=
⎛
⎝

1 0

−µ 0

⎞
⎠

=
⎛
⎝

1 0

0 1

⎞
⎠
−
⎛
⎝

0 0

µ 1

⎞
⎠

= 1 − h ∈ HomA1(C0,C0)

so that k ∶ 1 ≃ h ∶ C → C is a chain homotopy as required.

Note that if we require that e(M) to be a genuine A-module chain map then necessarily

e(M) = ± (( µ 1 ) ∈ HomA1
((B ⊗A2 M

′)⊕M,M),1 ∈ HomA2(M ′,M ′))

so that e(M) is unique up to sign. A genuine A-module chain map g ∶ M→ T2(M) is uniquely

determined by a genuine morphism of A-modules g ∶ M0 = M0 → T2(M)0 determining a

commutative square

B ⊗A2 M
′ M

B ⊗A2 M
′ (B ⊗A2 M

′)⊕M

µ

1⊗g3

⎛
⎜
⎜
⎝

g1

g2

⎞
⎟
⎟
⎠

⎛
⎜
⎝

1

0

⎞
⎟
⎠

Given the data available, the only natural choice for g3 is g3 = 1 so that necessarily g2µ = 0 and

g1µ = 1. Proposition 7.1.2 implies that µ ∶ B⊗A2M
′ →M is split-injective since M is projective.

Choose a morphism κ ∶M → B ⊗A2 M
′ which splits µ and then set g1 = κ. Recall that we want

g to be a chain homotopy inverse to f. Note that the composition fg ∶ M → M is represented

by (µκ,1). Since M is a zero-dimensional chain complex, the requirement that fg ≃ 1 ∶ M→M

is equivalent to the requirement that fg = 1 ∶ M → M. However κ is only a left inverse for µ

so it is not necessarily true that µκ = 1 unless µ is invertible and this is too strong of a restriction.

This difficulty can be resolved if we weaken the requirement that g is a chain map to g is

a local chain map. See [Ran92, chapters 4,7] for other examples of local morphisms and local

homotopy equivalences used elsewhere in L-theory.

We now check that (T,e) satisfies the remaining requirements of Definition 6.2.1.
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Proposition 7.2.6. For each A-module M

e(T(M))T(e(M)) = 1 ∶ T(M)→ T3(M)→ T(M)

Proof. If M = (M,M ′, µ) then let C = T(M),D = T2(M). By Proposition 7.2.1

C =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

M∗

B ⊗A2 M
′∗

(β−1
⊗1)µ∗ ,

0

M ′∗

0 ,

0 M∗

B ⊗A2 M
′∗ B ⊗A2 M

′∗

0

0

(β−1
⊗1)µ∗

1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

and since C is a strictly 1-dimensional chain complex it is enough to verify the identity

e(T(M))T(e(M)) = 1 only in dimensions 0,1. By Corollary 7.2.3 the chain complex D is

strictly 1-dimensional

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

B∗ ⊗A2 M
′

(B ⊗A2 M
′)⊕M

⎛
⎜
⎜
⎝

β−1
⊗1

−µ(β−1
⊗1)

⎞
⎟
⎟
⎠

,

0

M ′

0 ,

0 B ⊗A2 M
′

B ⊗A2 M
′ (B ⊗A2 M

′)⊕M

0

0

⎛
⎜
⎜
⎝

β−1
⊗1

−µ(β−1
⊗1)

⎞
⎟
⎟
⎠

(
1

0
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

and by Proposition 7.2.2 the chain complex T(D) is given in dimensions 0 and 1 by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(B∗ ⊗A2 M
′∗)⊕M∗

(B ⊗A2 M
′∗)⊕ (B ⊗A2 M

′∗)

(
β−1

⊗1 0

β−1
⊗1 −(β−1

⊗1)µ∗
) ,

0

M ′∗

0 ,

0 (B ⊗A2 M
′∗)⊕M∗

(B ⊗A2 M
′∗)⊕M∗ (B ⊗A2 M

′∗)⊕ (B ⊗A2 M
′∗)

0

0

(
β−1

⊗1 0

β−1
⊗1 −(β−1

⊗1)µ∗
)

(
1

0
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Dimension 0: By Proposition 7.2.5 we have

e(M) = (( µ 1 ) ∈ HomA1((B ⊗A2 M
′)⊕M,M),1 ∈ HomA2(M ′,M ′)) ∈ HomA(T2(M)0,M)

and hence by Proposition 7.2.2 the morphism T(e(M))0 ∈ HomA(T(M)0,T
3(M)0) is identified

with the pair of morphisms

⎛
⎝
⎛
⎝

1

0

⎞
⎠
∈ HomA1(B ⊗A2 M

′∗, (B ⊗A2 M
′∗)⊕ (B ⊗A2 M

′∗)),1 ∈ HomA2(M ′∗,M ′∗)
⎞
⎠
.

Similarly the morphism e(T(M)) ∈ HomA(T3(M)0,T(M)0) is identified with the pair of
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morphisms

(( 1 1 ) ∈ HomA1((B ⊗A2 M
′∗)⊕ (B ⊗A2 M

′∗),B ⊗A2 M
′∗),1 ∈ HomA2(M ′∗,M ′∗))

so that the composition e(T(M))T(e(M)) ∈ HomA(T(M)0,T(M)0) is identified with the pair

of morphisms

(1 ∈ HomA1(B ⊗A2 M
′∗,B ⊗A2 M

′∗),1 ∈ HomA2(M ′∗,M ′∗))

which is the identity morphism 1 ∈ HomA(T(M)0,T(M)0).

Dimension 1: By Proposition 7.2.2 the morphism T(e(M))1 ∈ HomA(T(M)1,T
3(M)1) is

identified with the pair of morphisms

⎛
⎝
⎛
⎝
µ∗

1

⎞
⎠
∈ HomA1(M∗, (B∗ ⊗A2 M

′∗)⊕M∗),0 ∈ HomA2(0,0)
⎞
⎠

and the morphism e(T(M)) ∈ HomA(T3(M)1,T(M)1) is identified with the pair of morphisms

(( 0 1 ) ∈ HomA1((B ⊗A2 M
′∗)⊕M∗),B ⊗A2 M

′∗),0 ∈ HomA2(0,0))

so that the composition e(T(M))T(e(M)) ∈ HomA(T(M)1,T(M)1) is identified with the pair

of morphisms

(1 ∈ HomA1(M∗,M∗),0 ∈ HomA2(0,0))

which is the identity morphism 1 ∈ HomA(T(M)1,T(M)1) as required.

Theorem 7.2.7. The pair (T,e) defines a local chain duality on the additive category A-Mod.

Proof. By Propositions 7.2.1, 7.2.2, 7.2.5, 7.2.6.

7.3 Symmetric complexes over a triangular matrix ring

Having established the existence of a local chain duality (T,e) on the additive category A-Mod

we may now describe the ε-symmetric Q-groups of a triangular matrix ring A = (A1,A2,B). We

start by obtaining a description of the tensor products of objects M⊗A N and of the ε-duality

involution TM,N,ε ∶ M⊗A N→N⊗A M for A-modules M,N.

Lemma 7.3.1. Let M = (M,M ′, µ),N = (N,N ′, ν) be A-modules. The tensor product M⊗AN

is the Z-module chain complex concentrated in dimensions 0 and −1 with chain groups

(M⊗A N)0 = HomA((B ⊗A2 M
′∗,M ′∗,1 ∶ B ⊗A2 M

′∗ → B ⊗A2 M
′∗), (N,N ′, ν ∶ B ⊗A2 N

′ → N))

(M⊗A N)−1 = HomA((M∗,0,0), (N,N ′, ν ∶ B ⊗A2 N
′ → N))

and differential

dM⊗AN ∶ (M⊗A N)0 → (M⊗A N)−1
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which sends a pair of morphisms

f = (f = ν(1⊗ f ′) ∈ HomA1(B ⊗A2 M
′∗,N), f ′ ∈ HomA2(M ′∗,N ′)) ∈ (M⊗A N)0

to the pair of morphisms

dM⊗AN(f) = (ν(β−1 ⊗ f ′)µ∗ ∈ HomA1(M∗,N),0 ∈ HomA2(0,M ′)) ∈ (M⊗A N)−1.

Proof. Recall from Definition 6.2.4 that

(M⊗A N)r = HomA(T(M),N)r = ⊕p+q=rHomA(T(M)−p,Nq) = HomA(T(M)−r,N).

Since T is a 1-dimensional chain duality it follows that (M⊗A N)r is zero except for

(M⊗A N)0 = HomA((B ⊗A2 M
′∗,M ′∗,1 ∶ B ⊗A2 M

′∗ → B ⊗A2 M
′∗), (N,N ′, ν ∶ B ⊗A2 N

′ → N))

(M⊗A N)−1 = HomA(M∗,0,0), (N,N ′, ν ∶ B ⊗A2 N
′ → N))

The chain complex T(M) has differential

dT(M) = ((β−1 ⊗ 1)µ∗ ∈ HomA1(M∗,B ⊗A2 M
′∗),0 ∈ HomA2(0,M ′∗)))

and the differential of the chain complex M⊗A N is given by the composition

HomA(T(M)0,N)→ HomA(T(M)1,N), f↦ fdT(M)

so that if

f = (ν(1⊗ f ′) ∈ HomA1(B ⊗A2 M
′∗,N), f ′ ∈ HomA2(M ′∗,N ′))

then

dM⊗AN(f) = (ν(β−1 ⊗ f ′)µ∗ ∈ HomA1(M∗,N),0 ∈ HomA2(0,M ′))

as required.

Lemma 7.3.2. Let M = (M,M ′, µ),N = (N,N ′, ν) be A-modules. The abelian group chain

complex isomorphism

TM,N,ε ∶ M⊗A N→N⊗A M

is zero in all dimensions apart from dimension 0 where it is given by

(ν(1⊗ f ′) ∈ HomA1(B ⊗A2 M
′∗,N), f ′ ∈ HomA2(M ′∗,N ′))↦

(εµ(1⊗ f ′∗) ∈ HomA1(B ⊗A2 N
′∗,M), εf ′∗ ∈ HomA2(N ′∗,M ′))

and in dimension −1 where it is given by

(f ∈ HomA1(M∗,N),0 ∈ HomA2(0,N ′))↦

(εf∗ ∈ HomA1(N∗,M),0 ∈ HomA2(0,M ′))

Proof. Recall from part (i) of Proposition 6.2.5 that the abelian group homomorphism TM,N,ε ∶
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(M⊗A N)r → (N⊗A N)r sends an element

f ∈ (M⊗A N)r = HomA(T (M),N)r = HomA(T (M)−r,N)

to the composition

(T(N)−r
T(f)
ÐÐ→ T(T(M)−r)−r

inclusionÐÐÐÐÐ→ T2(M)0
εe(M)
ÐÐÐ→M0 = M) ∈ HomA(T(N)−r,M).

By Lemma 7.3.1 it follows that TM,N,ε = 0 ∶ (M⊗A N)r → (N⊗A M)r unless r = 0 or r = −1.

Dimension 0: If f ∈ (M⊗A N)0 is identified with

f = (ν(1⊗ f ′) ∈ HomA1(B ⊗A2 M
′∗,N), f ′ ∈ HomA2(M ′∗,N ′))

then T(f) ∶ T(N)0 → T(T(M)0)0 is identified with

T(f) = (1⊗ f ′∗ ∈ HomA1
(B ⊗A2

N ′∗,B ⊗A2 M
′), f ′∗ ∈ HomA2(N ′∗,M ′)).

The inclusion T(T(M)0)0 ↪ T2(M)0 is identified with

⎛
⎝
⎛
⎝

1

0

⎞
⎠
∈ HomA1(B ⊗A2 M

′, (B ⊗A2 M
′)⊕M),1 ∈ HomA2(M ′,M ′)

⎞
⎠

and T2(M)0 →M0 = M is identified with

e(M) = (( µ 1 ) ∈ HomA1((B ⊗A2 M
′)⊕M,M),1 ∈ HomA2(M ′,M ′))

so the composition

T(M)0
T(f)
ÐÐ→ T(T(M)0)0

inclusionÐÐÐÐÐ→ T2(M)0
εe(M)
ÐÐÐ→M0 = M

is identified with

(εµ(1⊗ f ′∗) ∈ HomA1(B ⊗A2 N
′∗,M), εf ′∗ ∈ HomA2(N ′∗,M ′))

Dimension −1: If f ∈ (M⊗A N)−1 is identified with

f = (f ∈ HomA1(M∗,N),0 ∈ HomA2(0,N ′))

then T(f) ∶ T(N)1 → T(T(M)1)1 is identified with

T(f) = (f∗ ∈ HomA1(N∗,M),0 ∈ HomA2(0,0))

and the inclusion T(T(M)1)1 ↪ T2(M)0 is identified with

⎛
⎝
⎛
⎝

0

1

⎞
⎠
∈ HomA1(M, (B ⊗A2 M

′)⊕M),0 ∈ HomA2(0,M ′)
⎞
⎠
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and e(M) ∶ T2(M)0 →M0 = M is identified with

e(M) = (( µ 1 ) ∈ HomA1((B ⊗A2 M
′)⊕M,M),1 ∈ HomA2(M ′,M ′))

so the composition

T(N)1
T(f)
ÐÐ→ T(T(M)1)1

inclusionÐÐÐÐÐ→ T2(M)0
εe(M)
ÐÐÐ→M0 = M

is identified with

(εf∗ ∈ HomA1(N∗,M),0 ∈ HomA2(0,M ′))

as required.

We may now describe the tensor product C⊗AC and the ε-duality involution TC,ε ∶ C⊗AC→
C⊗A C for an A-module chain complex C.

Proposition 7.3.3. Let C = (C,C ′, µ) be a finite-dimensional A-module chain complex. The

Z-module chain complex C ⊗A C is such that there is a one-to-one correspondence between

chains Φ ∈ (C⊗A C)n and collection of pairs of morphisms

(δφ,φ) = {(δφr ∈ HomA1(Cn+1−r,Cr), φr ∈ HomA2(C ′n−r,C ′
r))∣r ∈ Z}

such that each pair (δφr, φr) determines a commutative diagram

B ⊗A2 C
′n−r (B ⊗A2 C

′n−r)⊕C ′n+1−r

B ⊗A2 C
′
r Cr

(
1

0
)

1⊗φr (µr(1⊗φr) δφr)

µr

Proof. Proposition 7.2.2 implies that we may write

T(C)r−n =
⎛
⎝
(B ⊗A2 C

′n−r)⊕Cn+1−r,C ′n−r,
⎛
⎝

1

0

⎞
⎠
∶ B ⊗A2 C

′n−r → (B ⊗A2 C
′n−r)⊕Cn+1−r)

⎞
⎠

and by Definition 6.2.4 the tensor product (C⊗A C) has chain groups

(C⊗A C)n = HomA(T(C),C)n = ⊕rHomA(T(C)r−n,Cr).

It follows that a chain Φ ∈ (C⊗A C)n can be identified with a collection of pairs

{(( µ(1⊗ φr) δφr ) ∈ HomA1((B ⊗A2 C
′n−r)⊕Cn+1−r,Cr), φr ∈ HomA2(C ′n−r,C ′

r)) ∣r ∈ Z}

with the data of each pair determining a commutative diagram

B ⊗A2 C
′n−r (B ⊗A2 C

′n−r)⊕C ′n+1−r

B ⊗A2 C
′
r Cr

(
1

0
)

1⊗φr (µr(1⊗φr) δφr)

µr

.
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Such a pair

(( µ(1⊗ φr) δφr ) ∈ HomA1((B ⊗A2 C
′n−r)⊕Cn+1−r,Cr), φr ∈ HomA2(C ′n−r,C ′

r))

is uniquely determined by, and uniquely determines, a pair

(δφr ∈ HomA1(Cn+1−r,Cr), φr ∈ HomA2(C ′n−r,C ′
r)).

We may then write the ε-duality involution on A-Mod in terms of the ε-duality involutions

on A1-Mod and A2-Mod.

Corollary 7.3.4. The ε-duality involution TC,ε ∶ C⊗A C→C⊗A C is given by

TC,ε(δφ,φ) = (TC,ε(δφ), TC′,ε(φ)).

Proof. As Proposition 6.2.5 write

TC,ε =
⎛
⎝
⊕r(−)(n−r)rTCn−r,Cr,ε 0

0 ⊕r(−)(n+1−r)rTCn+1−r,Cr,ε

⎞
⎠
∶ (C⊗A C)n → (C⊗A C)n

where the domain is decomposed as

[⊕r(Cn−r ⊗A Cr)0]⊕ [⊕r(Cn+1−r ⊗A Cr)−1]

and the codomain is decomposed as

[⊕r(Cr ⊗A Cn−r)0]⊕ [⊕r(Cr ⊗A Cn+1−r)−1].

By Proposition 7.3.3 we may identify an element Φ ∈ (C⊗A C)n with a collection of pairs

(δφ,φ) = {(δφr ∈ HomA1(Cn+1−r,Cr), φr ∈ HomA2(C ′n−r,C ′
r))∣r ∈ Z}

so that

TCn−r,Cr,ε(µ(1⊗ φr) ∈ HomA1(B ⊗A2 C
′n−r,Cr), φr ∈ HomA2(C ′n−r,C ′

r))

=(εµ(1⊗ φ∗r) ∈ HomA1(B ⊗A2 C
′r,Cn−r), εφ∗r ∈ HomA2(C ′r,C ′

n−r))

and

TCn+1−r,Cr,ε(δφr ∈ HomA1(Cn+1−r,Cr),0 ∈ HomA2(0,C ′
r))

=(εδφ∗r ∈ HomA1(Cr,Cn+1−r),0 ∈ HomA2(0,C ′
n+1−r)).

Under the identifications of Proposition 7.3.3 it follows that TC,ε(δφ,φ) = (TC,ε(δφ), TC′,ε(φ))
as required. From now on we write Tε = TC,ε = (TC,ε, TC′,ε) = (Tε, Tε).

The description of the ε-duality involution on A-Mod may then be used to determine the

chain complex W%
A C and its differential.
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Proposition 7.3.5. Let C = (C,C ′, µ) be a finite A-module chain complex and let ε = ±1. A

chain Φ ∈ (W%
A C)n may be identified with a collection of pairs

(δφ,φ) = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}

such that if Φ has differential the chain χ ∈ (W%
A C)n−1 then χ is identified with the collection

of pairs

(δχ,χ) = {δφ′s ∈ HomA1(Cn−r+s,Cr), φ′s ∈ HomA2(C ′n−1−r+s,C ′
r)∣s ⩾ 0, r ∈ Z}

where

δχs = dCδφs + (−)r+1δφsd
∗
C + (−)n+s−1(δφs−1 + (−)sTε(δφs−1)) + (−)rµ(β−1 ⊗ φs)µ∗

χs = dC′φs + (−)rφsd∗C′ + (−)n+s−1(φs−1 + (−)sTε(φs−1)).

Proof. By Definition 6.3.1 the chain Φ = {Φs ∈ HomA(Cn−r+s,Cr)∣s ⩾ 0, r ∈ Z} has differential

χ = {dCΦs + (−)rΦsd
∗
C + (−)n+s−1(Φs−1 + (−)sTε(Φs−1)) ∈ HomA(Cn−1−r+s,Cr)∣s ⩾ 0, r ∈ Z}.

From Proposition 7.3.3 we may identify

Φs = (δφs, φs) = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣r ∈ Z}

where we have now dropped the r indices on δφs and φs. The composition dCΦs ∈ HomA(Cn−1−r+s,Cr)
is then identified with

(dCδφs ∈ HomA1(Cn+1−r+s,Cr), dC′φs ∈ HomA2(C ′n−r+s,C ′
r)).

Note that

(( µ(1⊗ φs) δφs ) , φs)
⎛
⎝
⎛
⎝

1⊗ d∗C′ (β−1 ⊗ 1)µ∗

0 −d∗C

⎞
⎠
, d∗C′

⎞
⎠

=
⎛
⎝
( µ(1⊗ φs) δφs )

⎛
⎝

1⊗ d∗C′ (β−1 ⊗ 1)µ∗

0 −d∗C

⎞
⎠
, φsd

∗
C′

⎞
⎠

=(( µ(1⊗ φsd∗C′) µ(β−1 ⊗ φs)µ∗ − δφsd∗C ) , φsd∗C′)

so by Proposition 7.2.2 the composition Φsd
∗
C ∈ HomA(Cn−r+s−1,Cr) is identified with

(µ(β−1 ⊗ φs)µ∗ − δφsd∗C ∈ HomA1(Cn−r+s,Cr), φsd∗C′ ∈ HomA2(C ′n−1−r+s,C ′
r)) .

By Corollary 7.3.4 it follows that we may identify Φs−1 + (−)sTε(Φs−1) ∈ HomA(Cn−r+s−1,Cr)
with

(δφs−1 + (−)sTε(δφs−1) ∈ HomA1
(Cn−r+s,Cr), φs−1 + (−)sTε(φs−1) ∈ HomA2(C ′n−1−r+s,C ′

r))
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and hence we may identify

dCΦs + (−)rΦsd
∗
C + (−)n+s−1(Φs−1 + (−)sTε(Φs−1)) ∈ HomA(Cn−r+s−1,Cr)

with

{δχs ∈ HomA1(Cn−r+s,Cr), χs ∈ HomA2(C ′n−1−r+s,C ′
r)∣r ∈ Z}

where

δχs = dCδφs + (−)r+1δφsd
∗
C + (−)n+s−1(δφs−1 + (−)sTε(δφs−1)) + (−)rµ(β−1 ⊗ φs)µ∗

χs = dC′φs + (−)rφsd∗C′ + (−)n+s−1(φs−1 + (−)sTε(φs−1))

as required.

We now work towards showing that each A-module chain complex C = (C,C ′, µ) induces a

long exact sequence of ε-symmetric Q-groups

. . .→ Qn+1
A2

(C ′, ε)
(µ,β)%

ÐÐÐÐ→ Qn+1
A1

(C, ε)→ QnA(C, ε)→ QnA2
(C ′, ε)

(µ,β)%

ÐÐÐÐ→ QnA1
(C, ε)→ . . .

The key idea is to identify the ε-symmetric Q-groups QnA(C, ε) with the relative ε-symmetric

Q-groups of a chain map induced by µ and β.

Proposition 7.3.6. A finite-dimensional A-module chain complex C = (C,C ′, µ) induces a Z-

module chain map (µ,β)% = µ%(β−1 ⊗ −) ∶W%
A2
C ′ →W%

A1
C such that there is an isomorphism

of Z-module chain complexes W%
A (C, ε)∗ ≅ C ((µ,β)%)∗+1.

Proof. If

φ = {φs ∈ HomA2(C ′n−r+s,C ′
r)∣s ⩾ 0, r ∈ Z} ∈ (W%

A2
C ′)n

then define

β−1 ⊗ φ = {β−1 ⊗ φs ∈ HomA1(B ⊗A2 C
′n−r+s,B ⊗A2 C

′
r)s ⩾ 0, r ∈ Z} ∈W%

A1
(B ⊗A2 C

′).

Since the differential of the chain complex B ⊗A2 C
′ is given by 1⊗ dC′ it is clear that there is

a commutative diagram

(W%
A2
C ′)n (W%

A1
(B ⊗A2 C

′))n

(W%
A2
C ′)n−1 (W%

A1
(B ⊗A2 C

′))n−1

β−1
⊗−

d
W%
A2

C′
d
W%
A1
(B⊗A2

C′)

β−1
⊗−

so that β−1⊗− defines a Z-module chain map. Since µ% is a Z-module chain map the composition

(µ,β)% is a Z-module chain map. By Proposition 7.3.5 an element Φ ∈ (W%
A C)n is identified

with a collection

(δφ,φ) = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}
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and there is a bijection

θn ∶W%
A (C)n → C ((µ,β)%)n+1

{(δφs, φs)∣s ⩾ 0, r ∈ Z}↦ {((−)n+1−rδφs, φs)∣s ⩾ 0, r ∈ Z} (n ≥ 0).

Clearly θn is an isomorphism of Z-modules so it is enough to show that the following diagram

is commutative

(W%
A C)n C ((µ,β)%)n+1

(W%
A C)n−1 C ((µ,β)%)n

θn

d
W%
A

C
d

C((µ,β)%)

θn−1

By Proposition 7.3.5 the differential χ = dW%
A

(C)Φ ∈ (W%
A C)n−1 is identified with the collection

(δχ,χ) = {δχs ∈ HomA1(Cn−r+s,Cr), χs ∈ HomA2(C ′n−1−r+s,C ′
r)∣s ⩾ 0, r ∈ Z}

where

δχs = dCδφs + (−)r+1δφsd
∗
C + (−)n+s−1(δφs−1 + (−)sTε(δφs−1)) + (−)rµ(β−1 ⊗ φs)µ∗

χs = dC′φs + (−)rφsd∗C′ + (−)n+s−1(φs−1 + (−)sTε(φs−1)).

If ψ = θn−1(χ) ∈ C ((µ,β)%)n is identified by the collection

(δψ,ψ) = {δψs ∈ HomA1
(Cn−r+s,Cr), ψs ∈ HomA2

(C ′n−1−r+s,C ′
r)∣s ⩾ 0, r ∈ Z}

then

δψs = (−)n−r(dCδφs + (−)r+1δφsd
∗
C + (−)n+s−1(δφs−1 + (−)sTε(δφs−1)) + (−)rµ(β−1 ⊗ φs)µ∗)

= (−)n−rdCδφs + (−)n+1δφsd
∗
C + (−)s−r−1(δφs−1 + (−)sTε(δφs−1)) + (−)nµ(β−1 ⊗ φs)µ∗

ψs = dC′φs + (−)rφsd∗C′ + (−)n+s−1(φs−1 + (−)sTC′,ε(φs−1)).

On the other hand, if υ = θn(Φ) ∈ C ((µ,β)%)n+1 then υ is identified with the collection

(δυ, υ) = {δυs = (−)n+1−rδφs ∈ HomA1(Cn+1−r+s,Cr), υs = φs ∈ HomA2(C ′n−r+s,C ′
r)∣s ⩾ 0, r ∈ Z}.

The algebraic mapping cone C ((µ,β)%) has differential

dC ((µ,β)%) =
⎛
⎜
⎝

dW%
A1

(C) (−)n(µ,β)%

0 dW%
A2

(C′)

⎞
⎟
⎠

∶ C ((µ,β)%)n+1 =W%
A1

(C)n+1 ⊕W%
A2

(C ′)→ C ((µ,β)%)n =W%
A1

(C)n ⊕W%
A2

(C ′)n−1

so that if ω = dC ((µ,β)%)υ is identified with the collection

(δω,ω) = {δωs ∈ HomA1(Cn−r+s,Cr), ωs ∈ HomA2(C ′n−1−r+s,C ′
r)∣s ⩾ 0, r ∈ Z}
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then

δωs = dC′δνs + (−)rδνsd∗C′ + (−)n+s(δνs−1 + (−)sTε(δφs−1)) + (−)nµ(β−1 ⊗ νs)µ∗

= (−)n−rdC′δφs + (−)n+1δφsd
∗
C′ + (−)s+r+1(δνs−1 + (−)sTε(δφs−1)) + (−)nµ(β−1 ⊗ φs)µ∗

ωs = dC′φs + (−)rφsd∗C′ + (−)n+s−1(φs−1 + (−)sTC′,ε(φs−1)).

It follows that ψ = ω and hence the diagram is commutative.

Theorem 7.3.7. An A-module chain complex C = (C,C ′, µ) induces a long exact sequence of

ε-symmetric Q-groups

. . .→ Qn+1
A2

(C ′, ε)
(µ,β)%

ÐÐÐÐ→ Qn+1
A1

(C, ε)→ QnA(C, ε)→ QnA2
(C ′, ε)

(µ,β)%

ÐÐÐÐ→ QnA1
(C, ε)→ . . .

Proof. The Z-module chain map (µ,β)% ∶ W%
A2
C ′ → W%

A1
C induces a short exact sequence of

Z-module chain complexes

0→ (W%
A1
C)∗ → C ((µ,β)%)∗ → (W%

A2
C ′)∗−1 → 0

which induces a long exact sequence of ε-symmetric Q-groups

. . .→ Qn+1
A2

(C ′, ε)
(µ,β)%

ÐÐÐÐ→ Qn+1
A1

(C, ε)→ Qn+1((µ,β), ε)→ QnA2
(C ′, ε)

(µ,β)%

ÐÐÐÐ→ QnA1
(C, ε)→ . . .

The isomorphism of Z-module chain complexes W%
A (C, ε)∗ ≅ C ((µ,β)%)∗+1 induces an isomor-

phism of homology groups

QnA(C, ε) =Hn(W%
A (C, ε)) ≅Hn+1(C ((µ,β)%)) = Qn+1((µ,β), ε)

and hence there is a long exact sequence of ε-symmetric Q-groups

. . .→ Qn+1
A2

(C ′, ε)
(µ,β)%

ÐÐÐÐ→ Qn+1
A1

(C, ε)→ QnA(C, ε)→ QnA2
(C ′, ε)

(µ,β)%

ÐÐÐÐ→ QnA1
(C, ε)→ . . .

as required.

Example 7.3.8.

(i) Let A1 and A2 be rings with involution determining the triangular matrix ring A = (A1,A2,0).
A finite-dimensional A-module chain complex C is then the same as a pair (C,C ′) with C an

A1-module chain complex and C ′ an A2-module chain complex. Since β = 0 it follows that

(µ,β)% = 0 ∶W%
A2
C ′ →W%

A1
C and hence

C ((µ,β)%)∗ = (W%
A1
C)∗ ⊕ (W%

A2
C ′)∗−1.

Proposition 7.3.6 implies that there is an isomorphism

QnA(C, ε) ≅ Qn+1
A1

(C, ε)⊕QnA2
(C ′, ε)
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and by Theorem 7.3.7 there is a long exact sequence of Q-groups

. . .→ Qn+1
A2

(C ′, ε) 0Ð→ Qn+1
A1

(C, ε)→ QnA(C, ε) ≅ Qn+1
A1

(C, ε)⊕QnA2
(C ′, ε)

→QnA2
(C ′, ε) 0Ð→ QnA1

(C, ε)→ . . .

(ii) Let R be a ring with involution determining the triangular matrix ring A = (R,R,R) where

the third copy of R with R is viewed as an (R,R)-bimodule in the standard way. Let C =
(C,C ′, µ) be a finite-dimensional A-module chain complex. The isomorphism of rings

R → HomR(R,R), x↦ (y ↦ xy)

gives an identification such that the map

β ∶ R ×R → R; (x, y)↦ xy

has adjoint

β̂ = 1 ∶ R → R = HomR(R,R)

and hence by Proposition 7.3.6 there is an isomorphism of Q-groups QnA(C, ε) ≅ Qn+1
R (µ, ε) and

there is a long exact sequence of Q-groups

. . .→ Qn+1
R (C ′, ε) µ%

ÐÐ→ Qn+1
R (C, ε)→ QnA(C, ε) ≅ Qn+1

R (µ, ε)→ QnR(C ′, ε) µ%

ÐÐ→ QnR(C, ε)→ . . .

This recovers the standard long exact sequence of Q-groups associated to the chain map µ ∶
C ′ → C of R-module chain complexes from Proposition 1.2.4 from Part I.

We may now interpret a symmetric complex over A as a pair consisting of a symmetric

complex over A2 and a symmetric pair over A1.

Theorem 7.3.9. Let C = (C,C ′, µ) be a finite-dimensional A-module chain complex. An

n-dimensional ε-symmetric structure

Φ = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z} ∈ QnA(C, ε)

determines

(i) An n-dimensional ε-symmetric complex (C ′, φ ∈ QnA2
(C ′, ε)) over A2.

(ii) An (n + 1)-dimensional ε-symmetric pair over A1

(µ ∶ B ⊗A2 C
′ → C, (δφ′, β−1 ⊗ φ) ∈ Qn+1(µ, ε))

where

δφ′s = (−)n+1−rδφs ∈ HomA1(Cn+1−r+s,Cr).

Proof. This follows from the long exact sequence of Theorem 7.3.7
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7.4 The Poincaré condition for a symmetric complex

Having described the ε-symmetric Q-groups of a triangular matrix ring A = (A1,A2,B) we now

describe the Poincaré condition for symmetric complexes over A.

Definition 7.4.1. An n-dimensional ε-symmetric complex (C,Φ ∈ QnA(C, ε)) overA is Poincaré

if and only if Φ0 ∶ Cn−∗ →C is a local A-module chain equivalence.

Theorem 7.4.2. Let C = (C,C ′, µ) be a n-dimensional A-module chain complex. An n-

dimensional ε-symmetric structure

Φ = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z} ∈ QnA(C, ε)

is Poincaré if and only if both of the following conditions hold:

(i) (C ′, φ) is an n-dimensional ε-symmetric Poincaré complex over A2.

(ii) (µ ∶ B ⊗A2 C
′ → C, (δφ′, β−1 ⊗ φ)) is an (n + 1)-dimensional ε-symmetric Poincaré pair over

A1, where

δφ′s = (−)n+1−rδφs ∈ HomA1(Cn+1−r+s,Cr).

Proof. Definition 7.2.4 and Proposition 7.3.3 imply that Φ is Poincaré if and only if both of

the following conditions hold:

(1)φ0 ∶ C ′n−∗ → C ′ is an A2-module chain homotopy equivalence.

(1)( µ(1⊗ φ0) δφ0 ) ∶ C ((µ,β)%)n+1−∗ → C is an A1-module chain homotopy equivalence.

The commutative diagram of A1-module chain maps

B∗ ⊗A2 C
′ C

B ⊗A2 C
′ C

µ(β−1
⊗1)

β−1
⊗1 ≅ ≅1

µ

induces an isomorphism of algebraic mapping cones

⎛
⎝
β−1 ⊗ 1 0

0 1

⎞
⎠
∶ C ((µ,β)%)→ C (µ%)

with dual an isomorphism of A1-module chain complexes

⎛
⎝
β−1 ⊗ 1 0

0 1

⎞
⎠
∶ C (µ%)n+1−∗ → C ((µ,β)%)n+1−∗.

Hence the A1-module chain map

(µ(1⊗ φ0), δφ0) ∶ C ((µ,β)%)n+1−∗ → C

is a chain homotopy equivalence if and only if the A1-module chain map

( µ(β−1 ⊗ φ0) δφ0 ) ∶ C (µ%)n+1−∗ → C
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is a chain homotopy equivalence. By Proposition 7.3.6 it follows that Φ is Poincaré if and only

if both of the following conditions hold:

(i) (C,φ) is an n-dimensional ε-symmetric Poincaré complex over A2.

(ii) (µ ∶ B ⊗A2 C
′ → C, (δφ′, β−1 ⊗ φ)) is an (n + 1)-dimensional ε-symmetric Poincaré pair over

A1.

Recall from Definition 6.1.4 that a chain complex in an additive category A is n-dimensional

if and only it is chain homotopy equivalent to a strictly n-dimensional chain complex in A.

This implies that any n-dimensional chain complex can be viewed as an (n + 1)-dimensional

chain complex. In the context of Theorem 7.4.2 where A = A-Mod, if C = (C,C ′, µ) is an

n-dimensional A-module chain complex then C is an n-dimensional chain complex over A1 and

C ′ is an n-dimensional chain complex over A2. By the above remark we can view C as an

(n + 1)-dimensional chain complex over A1 so that (µ ∶ B ⊗A2 C
′ → C, (δφ′, β−1 ⊗ φ)) is an

(n+1)-dimensional symmetric pair over A1. As such it is useful to introduce a weaker notion of

dimensionality to allow C to be a chain complex which is (n+1)-dimensional but not necessarily

n-dimensional.

Definition 7.4.3. A chain complex C = (C,C ′, µ) over A is locally n-dimensional if C is an

(n+ 1)-dimensional chain complex over A such that C ′ is an n-dimensional chain complex over

A2.

Theorem 7.4.4. Under the assumption that C = (C,C ′, µ) is a locally n-dimensional A-module

chain complex, Theorem 7.3.9 gives a one-to-one correspondence and Theorem 7.4.2 still holds.



Chapter 8

The L-theory of a triangular

matrix ring: symmetric pairs and

surgery

Using the results of chapter 2 and chapter 7 we now extend the description of ε-symmetric

complexes over a triangular matrix ring A = (A1,A2,B) to ε-symmetric pairs, cobordisms and

surgery on ε-symmetric complexes over A. We show that a relative ε-symmetric (Poincaré)

structure on an A-module chain map f = (f, f ′) ∶ C = (C,C ′, µ),→ D = (D,D′, ν) can be

described in terms of an ε-symmetric (Poincaré) structure on the commutative A1-module

triad
B ⊗A2 C

′ C

B ⊗A2 D
′ D

µ

1⊗f ′ f

ν

in such a way that an ε-symmetric cobordism over A can be viewed as a relative ε-symmetric

cobordism over A1. This determines a long exact sequence of L-groups

. . .→ Ln+1(A2, ε)→ Ln+1(A1, ε)→ Ln(A, ε)→ Ln(A2, ε)→ Ln(A1, ε)→ . . .

We then describe the effect of a surgery on an ε-symmetric complex over A and examine the

special case A = (R,R,R) to define a relative algebraic surgery operation on an an ε-symmetric

pair over R. This is an algebraic model for geometric half-surgeries on a manifold with boundary.

We then show that every ε-symmetric relative cobordism over R is homotopy equivalent to a

union of relative algebraic surgeries.

8.1 Symmetric pairs and cobordisms over a triangular

matrix ring

The first step is to understand relative symmetric structures over A is to examine the morphism

f% ∶W%
A (C)→W%

A (D) induced by a chain map f ∶ C→D.

153
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Proposition 8.1.1. Let f = (f, f ′) ∶ C = (C,C ′, µ) → D = (D,D′, ν) be a chain map of finite

dimensional A-module chain complexes and let ε = ±1.

(i) The Z-module chain complex map f% ∶W%
A (C)→W%

A (D) is given by

Φ = {(δφs, φs)∣s ⩾ 0, r ∈ Z}↦ fΦf∗ = {(fδφsf∗, f ′φsf ′∗)∣s ⩾ 0, r ∈ Z}.

(ii) A chain (∆Φ,Φ) ∈ C (f%)n+1 is represented by a collection of morphisms

∆Φ = {(φ′s ∈ HomA1(Dn+2−r+s,Dr), δφ′s ∈ HomA2(D′n+1−r+s,D′
r))∣s ⩾ 0, r ∈ Z}

Φ = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}

and has differential (∆χ,χ) ∈ C (f%)n represented by the collection of morphisms

∆χ′ = {(χ′s ∈ HomA1(Dn+1−r+s,Dr), δχ′s ∈ HomA2(D′n−r+s,D′
r))∣s ⩾ 0, r ∈ Z}

χ′ = {(δχs ∈ HomA1(Cn−r+s,Cr), χs ∈ HomA2(C ′n−1−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}

where

χ′s = dDφ′s + (−)rφ′sd∗D + (−)n+s(φ′s−1 + (−)sTε(φ′s−1)) + (−)nfδφsf∗ + (−)n+1+sν(β−1 ⊗ δφ′s)ν∗

δχ′s = dD′δφ′s + (−)rδφ′sd∗D′ + (−)n+s(δφ′s−1 + (−)sTε(δφ′s−1)) + (−)nf ′φsf ′∗

δχs = dCδφs + (−)rδφsd∗C + (−)n+s−1(δφs−1 + (−)sTε(δφs−1)) + (−)n+sµ(β−1 ⊗ φs)µ∗

χs = dC′φs + (−)rφsd∗C′ + (−)n+s−1(φs−1 + (−)sTε(φs−1))

Proof.

(i) Proposition 7.3.3 implies that an element Φ ∈W%
A (C)n can be identified with a collection of

pairs

{(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}.

By Proposition 7.2.2 the map f∗ ∶ Dn−r+s →Cn−r+s is then identified with

⎛
⎜⎜⎜
⎝

⎛
⎝

1⊗ f ′∗ 0

0 f∗
⎞
⎠
∈ HomA1((B ⊗A2 D

′n−r+s)⊕Dn+1−r+s, (B ⊗A2 C
′n−r+s)⊕Cn+1−r+s)

f ′∗ ∈ HomA2(D′n−r+s,C ′n−r+s)

⎞
⎟⎟⎟
⎠
.

The composition Φsf
∗ ∈ HomA(Dn−r+s,Cr) is then identified with the collection of pairs

⎛
⎝
( µ(1⊗ φs) δφs )

⎛
⎝

1⊗ f ′∗ 0

0 f∗
⎞
⎠
, φsf

′∗
⎞
⎠
= (( µ(1⊗ φsf ′∗) δφsf

∗ ) , φsf ′∗)

so that we may identify Φsf
∗ with the collection of pairs

{(δφsf∗ ∈ HomA1(Dn+1−r+s,Cr), φsf ′∗ ∈ HomA2(D′n−r+s,C ′
r))∣r ∈ Z}

and hence the composition fΦsf
∗ is then identified with the collection of pairs

{(fδφsf∗ ∈ HomA1(Dn+1−r+s,Dr), f ′φsf ′∗ ∈ HomA2(D′n−r+s,D′
r))∣r ∈ Z}
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as required.

(ii) The chain map f% of Z-module chain complexes has an algebraic mapping cone with differ-

ential

dC (f%) =
⎛
⎝
dW%

A
(D) (−)nf%

0 dW%
A

(C)

⎞
⎠

∶ C (f%)n+1 =W%
A (D)n+1 ⊕W%

A (C)n → C (f%)n =W%
A (D)n ⊕W%

A (C)n−1.

The result then follows from part (i) and Proposition 7.3.5.

We now show that a relative ε-symmetric structure (∆Φ,Φ) ∈ Qn+1
A (f) determines an ε-

symmetric structure on a commutative triad.

Theorem 8.1.2. An (n + 1)-dimensional ε-symmetric pair (f ∶ C → D, (∆Φ,Φ) ∈ Qn+1
A (f, ε))

over A with

∆Φ = {(φ′s ∈ HomA1(Dn+2−r+s,Dr), δφ′s ∈ HomA2(D′n+1−r+s,D′
r))∣s ⩾ 0, r ∈ Z}

Φ = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}

determines

(i) An n-dimensional ε-symmetric complex (C ′, φ) over A2.

(ii) An (n + 1)-dimensional ε-symmetric pair (µ ∶ B ⊗A2 C
′ → C, (δφ′′, β−1 ⊗ φ)) over A1.

(iii) An (n + 1)-dimensional ε-symmetric pair (f ′ ∶ C ′ →D′, (δφ′, φ)) over A2.

(iv) An (n + 2)-dimensional ε-symmetric triad (Γ,Φ) over A1 where

Γ =
B ⊗A2 C

′ C

B ⊗A2 D
′ D

µ

1⊗f ′ f

ν

Φ = (φ′, β−1 ⊗ δφ′, δφ′′, β−1 ⊗ φ)

where

δφ′′s = (−)n+1−rδφs ∈ HomA1(Cn+1−r+s,Cr)

Proof. Note that if (f ∶ C → D, (∆Φ,Φ) ∈ Qn+1
A (f, ε)) is an (n + 1)-dimensional ε-symmetric

pair then necessarily (C,Φ ∈ QnA(C, ε)) is an n-dimensional ε-symmetric complex so that

(i) Follows from Theorem 7.3.9.

(ii) Follows from Theorem 7.3.9.

(iii) Follows from part (ii) of Proposition 8.1.1.
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(iv) Follows from part (ii) of Proposition 8.1.1.

As in the case of ε-symmetric complexes over A, it is useful to introduce a weaker notion of

dimensionality for ε-symmetric pairs over A.

Definition 8.1.3. A locally (n+1)-dimensional ε-symmetric pair is an ε-symmetric pair (f ∶ C→
D, (∆Φ,Φ) ∈ Qn+1(f, ε)) such that the chain complex C = (C,C ′, µ) is locally n-dimensional

and the chain complex D = (D,D′, ν) is locally (n + 1)-dimensional.

The following is an analogue of Proposition 2.1.8 from Section 2.5 of Part I.

Theorem 8.1.4. Under the assumption that (f ∶ C → D, (∆Φ,Φ) ∈ Qn+1
A (f, ε)) is a locally

(n + 1)-dimensional ε-symmetric pair, Theorem 8.1.2 gives an one-to-one correspondence.

We now describe the long exact sequence for ε-symmetric pair structures over A and relate

it to the long exact sequences for ε-symmetric triad structures.

Proposition 8.1.5. A chain map f = (f, f ′) ∶ C = (C,C ′, µ) → D = (D,D′, ν) of finite dimen-

sional A-module chain complexes determines:

(i) A commutative triad Γ of A1-module chain complexes

Γ =
B ⊗A2 C

′ C

B ⊗A2 D
′ D

µ

1⊗f ′ f

ν

(ii) A commutative triad Γ̂ of Z-module chain complexes

Γ̂ =

W%
A2
C ′ W%

A1
C

W%
A2
D′ W%

A1
D

(µ,β)%

f ′% f%

(ν,β)%

(iii) A Z-module chain map

(f, f ′)% =
⎛
⎝
f% 0

0 f ′%
⎞
⎠
∶ C ((µ,β)%)→ C ((ν, β)%)

given by

{(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}↦

{(fδφsf∗ ∈ HomA1(Dn+1−r+s,Dr), f ′φsf ′∗ ∈ HomA2(D′n−r+s,D′
r))∣s ⩾ 0, r ∈ Z}.

(iv) A Z-module chain map

(µ, ν, β)% =
⎛
⎝

(µ,β)% 0

0 (ν, β)%

⎞
⎠
∶ C (f ′%)→ C (f%)



Chapter 8. The L-theory of a triangular matrix ring 157

given by

{(δφs ∈ HomA2(D′n+1−r+s,D′
r), φs ∈ HomA2(C ′n−r+s,C ′

r))∣s ⩾ 0, r ∈ Z}↦

{(ν(β−1 ⊗ δφs)ν∗ ∈ HomA1(Dn+1−r+s,Dr), µ(β−1 ⊗ φs)µ∗ ∈ HomA1(Cn−r+s,Cr))∣s ⩾ 0, r ∈ Z}.

(v) A commutative diagram of chain maps of Z-module chain complexes

W%
A (C)∗ W%

A (D)∗

C ((µ,β)%)∗+1 C ((ν, β)%)∗+1

f%

θC θD

(f,f ′)%

where the two vertical maps are isomorphisms.

(vi) A commutative diagram of ε-symmetric Q-groups

Q∗
A(C, ε) Q∗

A(D, ε)

Q∗+1((µ,β), ε) Q∗+1((ν, β), ε).

f%

θC θD

(f,f ′)%

where the two vertical maps are isomorphisms.

(vii) An isomorphism of Z-module chain complexes

Θ =
⎛
⎝
θD 0

0 θC

⎞
⎠
∶ C (f%)∗

≅Ð→ C ((f, f ′)%)∗+1.

(viii) An isomorphism Θ ∶ Q∗
A(f, ε) ≅H∗+1(Γ̂).

Proof.

(i) Follows from part (iv) of Theorem 8.1.2.

(ii) Follows from Proposition 7.3.6.

(iii) Immediate from the commutativity of Γ̂.

(iv) Immediate from the commutativity of Γ̂.

(v) Follows from part (iii) and Propositions 7.3.6, 8.1.1.

(vi) Follows from part (v) by taking homology groups.

(vii) The chain map Θ of algebraic mapping cones is an isomorphism with inverse

Θ−1 =
⎛
⎝
θ−1
D 0

0 θ−1
C

⎞
⎠
∶ C ((f, f ′)%)→ C (f%).

(viii) Follows from (vii) and the definition

H∗(Γ̂) =H∗((f%, f ′%; 0)) =H∗(C ((f, f ′)%)
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of the homology of a symmetric triad from Definition 2.1.2 of Section

Corollary 8.1.6. A chain map f = (f, f ′) ∶ C = (C,C ′, µ)→D = (D,D′, ν) of finite dimensional

A-module chain complexes determines:

(i) A commutative diagram of short exact sequences of Z-module chain complexes

0 0 0

0 W%
A1

(D)∗ C ((ν, β)%)∗ W%
A2

(D′)∗−1 0

0 C (f%)∗ C ((f, f ′)%)∗ C (f ′%)∗−1 0

0 W%
A1

(C)∗−1 C ((µ,β)%)∗−1 W%
A2

(C ′)∗−2 0

0 0 0

(
1

0
)

(
1

0
)

(
1

0
)

(
1

0
) (

1

0
)

(
1

0
)

(
1

0
)

(
1

0
)

(
0

1
) (

1

0
)

(
1

0
) (

1

0
)

(ii) A commutative diagram of long exact sequences of Z-modules

⋮ ⋮ ⋮ ⋮

. . . Qn+2(Γ, ε) Qn+1A2
(f ′, ε) Qn+1A1

(f, ε) Qn+1(Γ, ε) . . .

. . . Qn+1(µ,β, ε) QnA2
(C′, ε) QnA1

(C, ε) Qn(µ,β, ε) . . .

. . . Qn+1(ν, β, ε) QnA2
(D′, ε) QnA1

(D, ε) Qn(ν, β, ε)% . . .

. . . Qn+1(Γ, ε) QnA2
(f ′, ε) QnA(f, ε) Qn(Γ, ε) . . .

⋮ ⋮ ⋮ ⋮

(µ,ν,β)%

(f,f ′)%

(µ,β)%

f ′% f% (f,f ′)%

(ν,β)%

(µ,ν,β)%
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(iii) A commutative diagram of long exact sequences of Z-module chain complexes

⋮ ⋮ ⋮ ⋮

. . . Qn+1
A (f, ε) Qn+1

A2
(f ′, ε) Qn+1

A1
(f, ε) QnA(f, ε) . . .

. . . QnA(C, ε) QnA2
(C ′, ε) QnA1

(C, ε) QnA(C, ε) . . .

. . . QnA(D, ε) QnA2
(D′, ε) QnA1

(D, ε) QnA(D, ε) . . .

. . . QnA(f, ε) QnA2
(f ′, ε) Qn+1

A (f, ε) Qn−1
A (f, ε) . . .

⋮ ⋮ ⋮ ⋮

(µ,ν,β)%

f%

(µ,β)%

f ′% f% f%

(ν,β)%

(µ,ν,β)%

Proof.

(i) The three vertical and three horizontal short exact sequences of chain complexes are those

associated to algebraic mapping cones.

(ii) Follows by taking the homology groups in part (i).

(iii) Follows from part (ii) and the isomorphisms QnA(C) ≅ Qn+1(µ,β) and QnA(D) ≅ Qn+1(ν, β)
from Proposition 7.3.6 and the isomorphism QnA(f) ≅ Qn+1(Γ) from part (vii) of Proposition

8.1.5.

Example 8.1.7. As in Example 7.3.8 let R be a ring with involution determining the triangular

matrix ring A = (R,R,R) and let f = (f, f ′) ∶ C = (C,C ′, µ ∶ C ′ → C)→D = (D,D′, ν ∶ D′ → D)
be a chain map of finite A-module chain complexes. The commutative triad of A-module chain

complexes from part (i) of Proposition 8.1.5 reduces to the commutative triad of R-module

chain complexes

Γ =
C ′ C

D′ D

µ

f ′ f

ν

such that Q∗(Γ) = H∗(Γ̂) and the commutative diagram of exact sequence from part (ii) of
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Corollary 8.1.6 reduces to the commutative diagram of exact sequences

⋮ ⋮ ⋮ ⋮

. . . Qn+2(Γ, ε) Qn+1
A2

(f ′, ε) Qn+1
A1

(f, ε) Qn+1(Γ, ε) . . .

. . . Qn+1(µ, ε) QnA2
(C ′, ε) QnA1

(C, ε) Qn(µ, ε) . . .

. . . Qn+1(ν, ε) QnA2
(D′, ε) QnA1

(D, ε) Qn(ν, ε) . . .

. . . Qn+1(Γ, ε) QnA2
(f ′, ε) QnA(f, ε) Qn(Γ, ε) . . .

⋮ ⋮ ⋮ ⋮

(µ,ν,1)%

(f,f ′)%

µ%

f ′% f% (f,f ′)%

ν%

(µ,ν,1)%

This is the same diagram for the ε-symmetric Q-groups of a triad of R-module chain complexes

as Proposition 2.1.3 from Section 1.5 of Part I.

8.2 The Poincaré condition for a symmetric pair

We now examine the Poincaré condition for an ε-symmetric pair and show that every ε-

symmetric Poincaré pair determines a commutative ε-symmetric Poincaré triad.

Definition 8.2.1. Let f ∶ C → D be a chain map of finite dimensional A-module chain com-

plexes. A relative ε-symmetric structure (∆Φ,Φ) ∈ Qn+1
A (f, ε) is Poincaré if and only if

( fΦ0 ∆Φ0 ) ∶ C (f)n+1−∗ →D

is a local A-module chain equivalence.

We first need a technical lemma to compute the (n + 1)-dual of a chain complex C in the

sense of Definition 6.2.2.

Lemma 8.2.2. A chain map f = (f, f ′) ∶ C = (C,C ′, µ) → D = (D,D′, ν) of finite dimensional

A-module chain complexes determines:

(i) An A1-module chain map

( ν µ ) ∶ B ⊗A2 C (f ′)→ C (f)

given by

⎛
⎝
ν 0

0 µ

⎞
⎠
∶ (B ⊗A2 D

′
r)⊕ (B ⊗A2 C

′
r−1)→Dr ⊕C ′

r−1 (r ∈ Z)
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(ii) An algebraic mapping cone

C (f)∗ = (C (f)∗,C (f ′)∗, ( ν µ ) ∶ B ⊗A2 C (f ′)∗ → C (f)∗)

which is a finite A-module chain complex with differential

dC (f) ∶ C (f)r → C (f)r−1

given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C (f)r

C (f)r−1

dC(f) ,

C (f ′)r

C (f ′)r−1

dC(f ′)
,

B ⊗A2 C (f ′)r C (f)r

B ⊗A2 C (f ′)r−1 C (f)r−1

1⊗dC(f ′)

( ν µ )

dC(f)

( ν µ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(iii) An A1-module chain map

( ν µ ) (β−1 ⊗ 1) ∶ B∗ ⊗A2 C (f ′)→ B ⊗A2 C (f ′)→ C (f).

(iv) A dual algebraic mapping cone

C (f)−∗ = (C (( ν µ ) (β−1⊗1))1−∗,C (f ′)−∗,
⎛
⎝

1

0

⎞
⎠
∶ B⊗A2C (f ′)−∗ → C (( ν µ ) (β−1⊗1))1−∗)

which is a finite A-module chain complex with differential

dC (f)−∗ ∶ C (f)−r → C (f)1−r

given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C (( ν µ ) (β−1 ⊗ 1))1−r

C (( ν µ ) (β−1 ⊗ 1))2−r
d∗

C((ν µ)(β−1
⊗1))

,

C (f ′)−r

C (f ′)1−r
d∗

C(f ′)
,

B ⊗A2 C (f ′)−r C (( ν µ ) (β−1 ⊗ 1))1−r

B ⊗A2 C (f ′)2−r C (( ν µ ) (β−1 ⊗ 1))2−r
1⊗d∗

C(f ′)

(
1

0
)

d∗
C((ν µ)(β−1

⊗1))

(
1

0
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

Proof.

(i) By assumption µ ∶ B ⊗A2 C
′ → C and ν ∶ B ⊗A2 D

′ → D are A1-module chain maps and so

the commutative diagrams

B ⊗A2 C
′
r Cr

B ⊗A2
C ′
r−1 Cr−1

µ

1⊗dC′ dC

µ

B ⊗A2 D
′
r Dr

B ⊗A2
D′
r−1 Dr−1

ν

1⊗dD′ dD

ν
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imply that there is a commutative diagram

B ⊗A2 (D′
r ⊕C ′

r−1) Dr ⊕Cr−1

B ⊗A2 (D′
r−1 ⊕C ′

r−2) Dr−1 ⊕Cr−2

⎛
⎜
⎜
⎝

ν 0

0 µ

⎞
⎟
⎟
⎠

1⊗(
dD′ (−)

r−1f ′

0 dC′
) (

dD (−)
r−1f

0 dC
)

⎛
⎜
⎜
⎝

ν 0

0 µ

⎞
⎟
⎟
⎠

which can be written as

B ⊗A2 C (f ′)r C (f)r

B ⊗A2 C (f ′)r−1 C (f)r−1

( ν µ )

1⊗dC(f ′) dC(f ′)

( ν µ )

as required. Note that we are using ( ν µ ) as a shorthand for
⎛
⎝
ν 0

0 µ

⎞
⎠

.

(ii) By definition the algebraic mapping cone C (f) has chain groups

C (f)r = Dr ⊕Cr−1

= (Dr,D
′
r, ν ∶ B ⊗A2 D

′
r →Dr)⊕ (Cr,C ′

r, µ ∶ B ⊗A2 C
′
r → Cr)

= (Dr ⊕Cr−1,D
′
r ⊕C ′

r−1, ( ν µ ) ∶ B ⊗A2 (D′
r ⊕C ′

r−1 →Dr ⊕Cr−1))

and differential

dC (f) =
⎛
⎝
dD (−)r−1f

0 dC

⎞
⎠
∶ C (f)r = Dr ⊕Cr−1 → C (f)r−1 = Dr−1 ⊕Cr−2

given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Dr ⊕Cr−1

Dr−1 ⊕Cr−2

(
dD (−)

r−1f

0 dC
) ,

D′
r ⊕C ′

r−1

D′
r−1 ⊕C ′

r−2

(
dD′ (−)

r−1f ′

0 dC′
) ,

B ⊗A2 (D′
r ⊕C ′

r−1) Dr ⊕Cr−1

B ⊗A2 (Dr ⊕Cr−1) Dr−1 ⊕Cr−2

1⊗(
dD (−)

r−1f

0 dC
)

( ν µ )

(
dD (−)

r−1f

0 dC
)

( ν µ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

which by part (ii) can be written as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

C (f)r

C (f)r−1

dC(f) ,

C (f ′)r

C (f ′)r−1

dC(f ′)
,

B ⊗A2 C (f ′)r C (f)r

B ⊗A2 C (f)r C (f)r−1

1⊗dC(f ′)

( ν µ )

dC(f)

( ν µ )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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as required.

(iii) This is the composition of the A1-module chain map β−1 ⊗ 1 ∶ B∗ ⊗A2 C
′ → B ⊗A2 C

′ with

the A1-module chain map ( ν µ ) ∶ B ⊗A2 C (f ′)→ C (f) from part (i).

(iv) The dual algebraic mapping cone is C (f)−∗ = T(C (f))∗ where the chain duality T is as in

Proposition 7.2.2. The rest follows from part (iii) and Proposition 7.2.2.

It then follows that every ε-symmetric Poincaré pair over A determines a commutative

ε-symmetric Poincaré triad over A1.

Theorem 8.2.3. An (n + 1)-dimensional ε-symmetric pair (f ∶ C→D, (∆Φ,Φ)) over A with

∆Φ = {(φ′s ∈ HomA1(Dn+2−r+s,Dr), δφ′s ∈ HomA2(D′n+1−r+s,D′
r))∣s ⩾ 0, r ∈ Z}

Φ = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}

is Poincaré if and only if

(i) (C ′, φ) is an n-dimensional ε-symmetric Poincaré complex over A2.

(ii) (µ ∶ B ⊗A2 C
′ → C, (δφ′′, β−1 ⊗ φ)) is an (n + 1)-dimensional ε-symmetric Poincaré pair over

A1

(iii) (f ′ ∶ C ′ →D′, (δφ′, φ)) is an (n + 1)-dimensional ε-symmetric Poincaré pair over A2.

(iv) (Γ,Φ) is an (n + 2)-dimensional ε-symmetric Poincaré triad over A1 where

Γ =
B ⊗A2 C

′ C

B ⊗A2 D
′ D

µ

1⊗f ′ f

ν

Φ = (φ′, β−1 ⊗ δφ′, δφ′′, β−1 ⊗ φ)

with

δφ′′s = (−)n+1−rδφs ∈ HomA1(Cn+1−r+s,Cr)

δφ′′′s = (−)n+1−rδφ′s ∈ HomA2(D′n+1−r+s,Dr)

Proof. Recall that a relative ε-symmetric structure (∆Φ,Φ) is Poincaré if and only if the A-

module chain map (∆Φ0 fΦ0) ∶ C (f)n+1−∗ → D is a local chain equivalence. In the case that

(f ∶ C → D, (∆Φ,Φ)) is Poincaré then necessarily (C,Φ) is Poincaré. Theorem 7.4.2 implies

that parts (i) and (ii) are equivalent to (C,Φ) being Poincaré.

The chain groups and differential of the dual algebraic mapping cone C (f)n+1−∗ were identified

in part (iii) of Lemma 8.2.2. Note that fΦ0 ∶ Cn−∗ →D is identified with the collection

{(fδφ0 ∈ HomA1(Cn+1−r,Dr), f ′φ0 ∈ HomA2(C ′n−r,D′
r))∣r ∈ Z}
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and ∆Φ0 ∶ Dn+1−∗ →D is identified with the collection

{(δφ′0 ∈ HomA1(Dn+2−r,Dr), φ′0 ∈ HomA2(D′n+1−r,D′
r))∣r ∈ Z}

so that (∆Φ0 fΦ0) ∶ C (f)n+1−∗ →D is identified with the collection

{(δφ′0 fδφ0) ∈ HomA1(Dn+2−r⊕Cn+1−r →Dr), (φ′0 f ′φ0) ∈ HomA2(D′n+1−r⊕C ′n−r →D′
r)∣r ∈ Z}.

By Definition 7.2.4 and Proposition 7.3.3 it follows that (∆Φ,Φ) ∈ Qn+1
A (f) is Poincaré if and

only if both of the following conditions hold:

(a)( δφ′0 f ′φ0 ) ∶ C (f ′)n+1−∗ →D′ is an A2-module chain homotopy equivalence.

(a)( ν(1⊗ f ′φ0) ν(1⊗ δφ′0) fδφ0 φ′0 ) ∶ C (( ν µ ) (β−1⊗1))n+2−∗ →D is an A1-module

chain homotopy equivalence.

It is clear (iii) is equivalent to (a). The commutative diagram of A1-module chain maps

B∗ ⊗A2 C (f ′) C (f)

B ⊗A2 C (f ′) C (f)

(ν µ)(β−1
⊗1)

β−1
⊗1 ≅ ≅1

(ν µ)

induces an isomorphism of algebraic mapping cones

⎛
⎝
β−1 ⊗ 1 0

0 1

⎞
⎠
∶ C (( ν µ ) (β−1 ⊗ 1))→ C ( ν µ )

with dual an isomorphism of dual algebraic mapping cones

⎛
⎝
β−1 ⊗ 1 0

0 1

⎞
⎠
∶ C ( ν µ )

n+2−∗
→ C (( ν µ ) (β−1 ⊗ 1))

n+2−∗

so that (b) is equivalent to

(b’)( δφ0 fδφ0 ν(β−1 ⊗ f ′φ0) ν(β−1 ⊗ φ0) ) ∶ C ( ν µ )
n+2−∗

→D is anA1-module chain

homotopy equivalence.

If parts (i), (ii) and (iii) hold then (iv) is equivalent to

(iv’)( δφ′0 fδφ0 ν(β−1 ⊗ f ′φ0) β−1 ⊗ φ0 ) ∶ C ( f 0 ν )
n+2−∗

→ D is an A1-module

chain homotopy equivalence.

and it is then enough to show that (iv′) is equivalent to (b′). Indeed, the chain map

( f 0 −ν ) ∶ C ∪B⊗A2
C′ (B ⊗A2 D

′)→D

has an algebraic mapping cone with chain groups

C ( f 0 −ν )
r
=Dr ⊕ (C ∪B⊗A2

C′ (B ⊗A2 D
′))r−1

=Dr ⊕Cr−1 ⊕ (B ⊗A2 C
′
r−2)⊕ (B ⊗A2 D

′
r−1)
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and differential

dC (f 0 ν) =

⎛
⎜⎜⎜⎜⎜
⎝

dD (−)r−1f 0 (−)r−1ν

0 dC (−)r−1µ (−)r1⊗ f ′

0 0 1⊗ dC′ 0

0 0 0 1⊗ dD′

⎞
⎟⎟⎟⎟⎟
⎠

∶Dr ⊕Cr−1 ⊕ (B ⊗A2 C
′
r−2)⊕ (B ⊗A2 D

′
r−1)→Dr−1 ⊕Cr−2 ⊕ (B ⊗A2 C

′
r−3)⊕ (B ⊗A2 D

′
r−2).

On the other hand the chain map

( ν µ ) ∶ B ⊗A2 C (f ′)→ B ⊗A2 C (f)→ C (f)

has an algebraic mapping cone with chain groups

C ( ν µ )
r
= C (f)r ⊕ (B ⊗A2 C (f ′)r−1) =Dr ⊕Cr−1 ⊕ (B ⊗A2 D

′
r−1)⊕ (B ⊗A2 C

′
r−2)

and differential

dC (ν µ) =

⎛
⎜⎜⎜⎜⎜
⎝

dD (−)r−1f (−)r−1ν 0

0 dC 0 (−)r−1µ

0 0 1⊗ dD′ (−)r1⊗ f ′

0 0 0 1⊗ dC′

⎞
⎟⎟⎟⎟⎟
⎠

∶Dr ⊕Cr−1 ⊕ (B ⊗A2 D
′
r−1)⊕ (B ⊗A2 C

′
r−2)→Dr−1 ⊕Cr−2 ⊕ (B ⊗A2 D

′
r−2)⊕ (B ⊗A2 C

′
r−3).

and hence the algebraic mapping cones of ( f 0 −ν ) and ( ν µ ) are isomorphic so (iv′)
is equivalent to (b′).

Theorem 8.2.4. Theorem 8.2.3 holds under the assumption that (f ∶ C → D, (∆Φ,Φ)) is a

locally (n + 1)-dimensional ε-symmetric pair over A.

It then follows that every ε-symmetric cobordism over A determines a commutative ε-

symmetric relative cobordism over A1.

Theorem 8.2.5. A (n+1)-dimensional ε-symmetric cobordism ((f f′) ∶ C⊕C′ →D, (∆Φ,Φ⊕
−Φ′)) over A with

C = (C,C ′, µ)

C′ = (C ′′,C ′′′, µ′)

D = (D,D′, ν)

f = (f ∈ HomA1(C,D), f ′ ∈ HomA2(C ′,D′))

f′ = (f ′′ ∈ HomA1(C ′′,D′′), f ′′′ ∈ HomA2(C ′′′,D′′′))

Φ = {(δφs ∈ HomA1(Cn+1−r+s,Cr), φs ∈ HomA2(C ′n−r+s,C ′
r))∣s ⩾ 0, r ∈ Z}

Φ′ = {(δφ′s ∈ HomA1(C ′′n+1−r+s,C ′′
r ), φ′s ∈ HomA2(C ′′′n−r+s,C ′′′

r ))∣s ⩾ 0, r ∈ Z}

∆Φ = {(φ′′s ∈ HomA1(Dn+2−r+s,Dr), δφ′′s ∈ HomA2(D′n+1−r+s,D′
r))∣s ⩾ 0, r ∈ Z}
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determines an (n + 2)-dimensional ε-symmetric Poincaré triad (Γ,Φ) over A1 with

Γ =
B ⊗A2 (C ′ ⊕C ′′′) C ⊕C ′′

B ⊗A2 D
′ D

(µ µ′)

1⊗(f ′ f ′′′) (f f ′′)

ν

Φ = (φ′′, β−1 ⊗ δφ′′, δω ⊕ −δω′, β−1 ⊗ (φ⊕ −φ′))

where

δωs = (−)n+1−rδφs ∈ HomA1(Cn+1−r+s,Cr)

δω′s = (−)n+1−rδφ′s ∈ HomA2(C ′′n+1−r+s,C ′′
r )

such that (Γ,Φ) can be viewed as a relative ε-cobordism

Γ =
(B ⊗A2 C

′)⊕ (B ⊗A2 C
′′′) C ⊕C ′′

B ⊗A2 D
′ D

⎛
⎜
⎜
⎝

µ 0

0 µ′

⎞
⎟
⎟
⎠

(1⊗f ′ 1⊗f ′′′) (f f ′′)

ν

Φ = (φ′′, β−1 ⊗ δφ′′, δω ⊕ −δω′, β−1 ⊗ (φ⊕ −φ′))

between the (n + 1)-dimensional ε-symmetric Poincaré pairs (µ ∶ B ⊗A2 C
′ → C, (δω, β−1 ⊗ φ))

and (µ′ ∶ B ⊗A2 C
′′′ → C ′′, (δω′, β−1 ⊗ φ)) over A1.

Proof. The statements about the symmetry conditions follow from Theorem 8.1.2 and the

statements about the Poincaré conditions follow from Theorem 7.3.9.

Theorem 8.2.6. Theorem 8.2.5 holds under the assumption that ((f f′) ∶ C⊕C′ →D, (∆Φ,Φ⊕
−Φ′)) is a locally (n + 1)-dimensional ε-symmetric pair over A.

We may now use the description of cobordisms to obtain a long exact sequence of ε-symmetric

L-groups.

Definition 8.2.7. The n-dimensional ε-symmetric L-group of a triangular matrix ring A =
(A1,A2,B) is the abelian group Ln(A, ε) of cobordism classes of locally n-dimensional chain

complexes C = (C,C ′, µ) over A.

Theorem 8.2.8. For a triangular matrix ring A = (A1,A2,B) there is a long exact sequence

of L-groups

. . .→ Ln+1(A2, ε)→ Ln+1(A1, ε)→ Ln(A, ε)→ Ln(A2, ε)→ Ln(A1, ε)→ . . .

such that an element in Ln(A, ε) is a pair

((C ′, φ ∈ QnA2
(C ′, ε)), (µ ∶ B ⊗A2 C

′ → C, (δφ, β−1 ⊗ φ) ∈ Qn+1
A1

(µ, ε)))



Chapter 8. The L-theory of a triangular matrix ring 167

consisting of an n-dimensional ε-symmetric Poincaré pair (C ′, φ) over A2 and an (n + 1)-
dimensional ε-symmetric Poincaré pair (µ ∶ B⊗A2 C

′ → C, (δφ, β−1⊗φ)) over A1 subject to the

equivalence relation

((C ′, φ), (µ ∶ B ⊗A2 C
′ → C, (δφ, β−1 ⊗ φ))) ∼ ((C ′′′, φ′), (µ′ ∶ B ⊗A2 C

′′′ → C ′′, (δφ′, β−1 ⊗ φ′)))

if and only if there exists an (n + 1)-dimensional ε-symmetric cobordism over A2 of the form

((f ′ f ′′′) ∶ C ′ ⊕C ′′′ →D′, (δφ′′, φ⊕ −φ′))

and an (n + 2)-dimensional ε-symmetric Poincaré triad (Γ,Φ) of the form

Γ =
B ⊗A2 (C ′ ⊕C ′′′) C ⊕C ′′

B ⊗A2 D
′ D

(µ µ′)

1⊗(f ′ f ′′′) (f f ′′)

ν

Φ = (φ′′, β−1 ⊗ δφ′′, δφ⊕ −δφ′, β−1 ⊗ (φ⊕ −φ′))

Proof. The long exact sequence follows from Theorems 7.3.7, 7.4.2 and Theorem 8.2.5 and the

equivalence relation follows from Theorem 8.2.3.

Example 8.2.9.

(i) When (A1,A2,B) = (B,A2,B) and β = 1 ∶ B → B ≅ B∗ then the long exact sequence of

ε-symmetric Q-groups

. . .→ Qn+1
A2

(C ′, ε) µ%

ÐÐ→ Qn+1
B (C, ε)→ Qn+1(µ, ε)→ QnA2

(C ′, ε) µ%

ÐÐ→ QnB(C, ε)→ . . .

induces the long exact sequence of L-groups

. . .→ Ln+1(A2, ε)
µ%

ÐÐ→ Ln+1(B, ε)→ Ln+1(µ, ε)→ Ln(A2, ε)
µ%

ÐÐ→ Ln(B, ε)→ . . .

This recovers the long exact sequence of ε-symmetric Q-groups associated to the change of rings

morphism µ ∶ A2 → B,a2 ↦ 1.a2 from [Ran81, Proposition 2.2]. The description of cobordisms

over A from Theorem 8.2.5 is a generalisation of the equivalence relation [Ran81, p.123] used

to define the relative L-groups of the change of rings morphism µ ∶ A2 → B.

(ii) The long exact sequence of ε-symmetric Q-groups from Example 7.3.8 (i) determines the

long exact sequence of L-groups

. . .→ Ln+1(A2, ε)
0Ð→ Ln+1(A1, ε)→ Ln(A, ε)→ Ln(A2, ε)

0Ð→ Ln(A1, ε)→ . . .

with an isomorphism of L-groups Ln(A, ε) ≅ Ln+1(A1, ε)⊕Ln(A2, ε).

8.3 Algebraic surgery over a triangular matrix ring

Having established a description of symmetric complexes, pairs and cobordisms over A we may

now describe the effect of algebraic surgery over A. We will be particularly interested in the
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special case A = (R,R,R) to obtain a definition of algebraic surgery on an ε-symmetric Poincaré

pair (f ∶ C → D, (δφ,φ)) over R with data an ε-symmetric triad over R. This will provide an

algebraic model for geometric half-surgeries on a manifold with boundary.



Chapter 8. The L-theory of a triangular matrix ring 169

P
ro

p
o
si

ti
o
n

8
.3

.1
.

T
h

e
eff

ec
t

of
su

rg
er

y
on

an
n

-d
im

en
si

o
n

a
l
ε-

sy
m

m
et

ri
c

P
o
in

ca
ré
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We now show that the definition of algebraic surgery on a symmetric Poincaré pair over R

with data a symmetric triad over R provides an algebraic model for geometric half-surgeries of

Borodzik, Némethi and Ranicki on a manifold with boundary.

Definition 8.3.3. [BNR12a, p.5-10] Let (Σ,M) be an (n+1)-dimensional manifold with bound-

ary.

(i) The effect an index i + 1 right half-surgery removing a framed embedding Si ×Dn−i ↪M is

the (n + 1)-dimensional manifold with boundary

(Σ′,M ′) = (Σ ∪Si×Dn−i Di+1 ×Dn−i,M − Si ×Dn−i ∪Si×Sn−i−1 Di+1 × Sn−i−1).

Figure 93: The effect of a right half-surgery.

If (W ;M,M ′) is the trace of the ordinary surgery on M removing the framed embedding

Si × Dn−i ↪ M , then the trace of the right half-surgery is the (n + 2)-dimensional relative

cobordism

(Σ′ × I; Σ × {0},Σ′ × {1},W ;M,M ′)

between (Σ,M) and (Σ′,M ′).

(ii) The effect of an index i+1 left half-surgery removing a framed embedding (Di+1×Dn−i, Si×
Dn−i)↪ (Σ,M) is the (n + 1)-dimensional manifold with boundary

(Σ′,M ′) = (Σ −Di+1 ×Dn−i,M − Si ×Dn−i ∪Si×Sn−i−1 Di+1 × Sn−i−1).

Figure 94: The effect of a left half-surgery.
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If (W ;M,M ′) is the trace of the ordinary surgery on M removing is the framed embedding

Si × Dn−i ↪ M , then the trace of the left half- surgery is the (n + 2)-dimensional relative

cobordism

(Σ × I; Σ × {0},Σ′ × {1},W ;M,M ′)

between (Σ,M) and (Σ′,M ′).

Example 8.3.4. ([BNR12a, p.49-51]). Write the half-surgery traces as (Ω; Σ,Σ′,W ;M,M ′).
If R is a commutative ring with identity then applying the symmetric construction to the

(n + 2)-dimensional relative cobordism (Ω; Σ,Σ′,W ;M,M ′) produces an (n + 2)-dimensional

commutative symmetric Poincaré triad (Γ,Φ) over R with

Γ =

C(M ;R)⊕C(M ′;R) C(Σ;R)⊕C(Σ′;R)

C(W ;R) C(Ω;R)

Φ = (φΩ, φW , φΣ ⊕ −φΣ′ , φM ⊕ −φM ′)

which can be viewed as a cobordism between the (n+1)-dimensional symmetric Poincaré pairs

(C(M ;R)→ C(Σ;R), (φΣ, φM)) and (C(M ′ ∶ R)→ C(Σ′;R), (φΣ′ , φM ′)).

In the case of a left half-surgery the inclusion (W,M ′)↪ (Ω,Σ′) is a homotopy equivalence

so there is a chain homotopy equivalence

C(Ω,Σ′;R) ≃ C(W,M ′;R) ≃ Sn−iR = (n − i)-fold suspension of R

so that

C ′
r≃

⎧⎪⎪⎨⎪⎪⎩

C(M ;R)r ⊕R if r = i + 1, n − i − 1

C(M ;R)r otherwise
(r ∈ Z).

D′
r≃

⎧⎪⎪⎨⎪⎪⎩

C(Σ;R)r ⊕R if r = i + 1, i + 2, n − i − 1

C(Σ;R)r otherwise
(r ∈ Z).

In the case of a right half-surgery the inclusion Σ′ ↪ Ω is a homotopy equivalence so there is a

chain homotopy equivalence

C(Ω,Σ′;R) ≃ C(Σ′,Σ′;R) ≃ Ċ(∗;R) ≃ S0R = 0-fold suspension of R

so that

C(M ′;R)r≃
⎧⎪⎪⎨⎪⎪⎩

C(M ;R)r ⊕R if r = i + 1, n − i − 1

C(M ;R)r otherwise
(r ∈ Z)

C(Σ′ ∶ R)r≃
⎧⎪⎪⎨⎪⎪⎩

C(Σ;R)r ⊕R if r = i + 1, i + 2, n − i − 1

C(Σ;R)r otherwise
(r ∈ Z).

In fact, the (n+1)-dimensional symmetric Poincaré pair (C(M ′ ∶ R)→ C(Σ′;R), (φΣ′ , φM ′))
is homotopy equivalent to the effect (C ′ → D′, (δφ,φ)) of relative algebraic surgery on the
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(n + 1)-dimensional symmetric Poincaré pair (C(M ;R) → C(Σ;R), (φΣ, φM)) with data the

(n + 2)-dimensional symmetric triad (Γ′,Φ′) over R with

Γ′ =

C(M ;R) C(Σ;R)

C(W,M ′;R) C(Ω,Σ′;R)

Φ′ = (φΩ/φΣ′ , φW /φM ′ , φΣ, φM)

with

C ′
r = C(M)r ⊕C(W,M ′)r+1 ⊕C(W,M ′)n+1−r (r ∈ Z)

D′
r = C(Σ)r ⊕C(Ω,Σ′)r+1 ⊕C(W,M ′)n+1−r ⊕C(Ω,Σ′)n+2−r (r ∈ Z).

such that the triad (Γ,Φ) arises as the trace of this relative algebraic surgery. This shows that

relative algebraic surgery gives an algebraic model for a geometric half-surgeries.

Milnor [Mil61] and Thom [Tho49] used Morse theory to show that every (n+1)-dimensional

cobordism (W ;M,M ′) can be expressed as a union of elementary cobordisms

(W ;M,M ′) = (W0;M0;M1) ∪ (W1;M1;M2) ∪ . . . ∪ (W`;M`;M`+1) (M0 =M,M`+1 =M ′)

where (Wi;Mi,Mi+1) arises the trace of a surgery on Mi with effect Mi+1. Ranicki [Ran80a,

Proposition 4.7] gave a precise algebraic analogue of this and showed that every (n + 1)-
dimensional ε-symmetric cobordism over a ring with involution is homotopy equivalent to a

union of elementary ε-symmetric cobordisms arising as the traces of elementary algebraic surg-

eries.

Borodzik, Némethi and Ranicki [BNR12b, Theorem 4.18] used Morse theory on a manifold

with boundary to show that every (n+2)-dimensional relative cobordism (Ω; Σ,Σ′,W ;M,M ′),
such that Σ and Σ′ have no closed connected components and Ω has no connected components,

can be expressed as a union of adjoining elementary relative cobordisms

Ω = Ω0 ∪Ω 1
2
∪Ω1 ∪Ω 3

2
∪ . . . ∪Ωn+ 3

2
∪Ωn+2

where Ω0 arises as the effect of an index 0 handle attachment, Ωi arises as the trace of an index

i right-half surgery, Ωi+ 1
2
arises as the trace of an index i left half-surgery and Ωn+2 arises as

the effect of an index (n + 2)-handle attachment. Ranicki [BNR12b, Theorem 4.71] gave an

algebraic analogue and showed that every (n + 2)-dimensional ε-symmetric relative Poincaré

cobordism is homotopy equivalent to a union of traces of algebraic half-surgeries. Whereas

Ranicki’s proof was indirect and made use of the thickening operation for algebraic trinities,

we can give a more direct proof using triangular matrix rings.

Theorem 8.3.5. Let R be a ring with involution. Every (n + 2)-dimensional commutative ε-

symmetric Poincaré relative cobordism is homotopy equivalent to a union of traces of elementary

relative surgeries.

Proof. Let A = (R,R,R) be the triangular matrix ring determined by R. By Theorem 8.2.5 an
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(n + 2)-dimensional ε-symmetric relative Poincaré cobordism (Γ,Φ) over R with

Γ =
C ⊕C ′ D ⊕D′

δC δD

⎛
⎜
⎜
⎝

f 0

0 f ′

⎞
⎟
⎟
⎠

( g′ g′′ ) ( h′ h′′ )

δf ′

Φ = (φ′′, δφ′′, δφ⊕ −δφ′, φ⊕ −φ′).

determines a locally (n+1)-dimensional ε-symmetric cobordism ((f f′) ∶ C⊕C′ →D, (∆Φ,Φ⊕
−Φ′)) over A. It follows from [Ran92, Proposition 1.13] that ((f f′) ∶ C ⊕C′ → D, (∆Φ,Φ ⊕
−Φ′)) can be realised, up to homotopy equivalence, as the trace of a surgery over A and it

follows from the additive category with chain duality generalisation of [Ran80a, Proposition

4.7] that this surgery can be decomposed as a sequence of elementary surgeries over A. By

Example 8.3.2 the trace of an elementary surgery over A can be interpreted as the trace of an

elementary relative surgery over R.

8.4 An open question

We end with an open question reality relating the L-theory of the triangular matrix ring A =
(R,R,R) to the L-theory of (R,K)-modules.

Definition 8.4.1. Let R be a ring and let K be a simplicial complex.

(i) An (R,K)-module is a f.g. projective R-module M with a fracturing over K, that is a choice

direct sum decomposition M = ⊕σ∈KM(σ) such that each summand M(σ) is a f.g. projective

R-module and at most finitely many summands M(σ) are non-zero.

(ii) A morphism of (R,K)-modules f ∶ M = ⊕σ∈KM(σ) → N = ⊕τ∈KN(τ) is a collection of

morphisms

f = {f(τ, σ) ∈ HomR(M(σ),N(τ))∣σ, τ ∈K ∣f(τ, σ) = 0 unless σ ≥ τ}

between the summands.

Example 8.4.2. Let K be a locally finite simplicial complex. The simplicial chain complex

∆(K;R) of K with R-coefficients is an (R,K)-module chain complex where a simplex σ ∈ K
contributes the summand

∆(K,R)(σ) = S ∣σ∣R = ∣σ∣-fold suspension of R

to ∆(K;R).

Ranicki and Weiss [RW90] examined when an R-module chain complex admits a fracturing

over a simplicial complex K. The L-theory of (R,K)-modules was determined by Ranicki by

constructing a chain duality on the category of (R,K)-modules, see [Ran92, chapter 5].

Example 8.4.3. ([Ran92, Example 5.4]) Let R be a ring with involution and let ∆n =
[0,1, . . . , n] denote the standard n-simplex.
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(i) An n-dimensional ε-symmetric Poincaré complex over ∆0 is the same as an n-dimensional

ε-symmetric Poincaré complex over R.

(ii) An n-dimensional ε-symmetric Poincaré complex over ∆1 = [0,1] is the same as an n-

dimensional ε-symmetric Poincaré cobordism over R which is fragmented over [0,1] as shown

below

Figure 95: An ε-symmetric complex fragmented over a 1-simplex.

(iii) An n-dimensional ε-symmetric Poincaré complex over ∆2 = [0,1,2] is the same as an n-

dimensional ε-symmetric Poincaré pair over R with a 3-fold boundary splitting (recall Definition

3.3.4 of Section 3.1 of Part I) and is fragmented over [0,1,2] as shown below

Figure 96: An ε-symmetric complex fragmented over a 2-simplex.

Note that the category of (R,K)-modules is a small abelian category and hence by the

Freyd-Mitchell embedding theorem [Fre03] there exists some ring A such that the category of

(R,K)-modules can be embedded as a full subcategory of the category of A-modules. In Ex-

ample 8.4.3 (i) we can take A = R and in Example 8.4.3 (ii) we can take A to be the triangular

matrix ring (R,R,R). In general, one would wish to find a simple model for A.

Open Question: Given a simplicial complex K and a ring R with involution, does there exist

a generalisation of a triangular matrix ring A such that the L-theory of (R,K)-modules is

equivalent to the L-theory of A-modules?
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Introduction to Part III

Let β be a braid with closure β̂ a link. The canonical Seifert surface of β constructed by Seifert’s

algorithm resolves each crossing of β̂

Figure 97: Resolving overcrossings and undercrossings.

to produce a collection of disjoint, oriented, simple, planar circles called Seifert circles. Each

Seifert circle bounds a planar disc and we may push the planar disks vertically to make them

disjoint. Attaching a twisted band between the Seifert circles for each resolution of a crossing,

with the twist matching the type of the crossing, then produces the canonical Seifert surface of

β̂, which is a closed orientable surface of genus g ≥ 0 with boundary β̂.

Figure 98: A Seifert surface produced by Seifert’s algorithm.

Choosing an ordered basis {[γi]}2g
i=1 of H1(Σ;Z), with each basis homology class [γi] rep-

resented by simple, closed curve γi ⊂ Σ, we may push each γi in the positive normal di-

rection to produce a simple closed curve γ+i which lies in S3 − Σ. The Seifert form V ∶
H1(Σ;Z) × H1(Σ;Z) → Z is the bilinear form determined on the basis homology classes by

the linking numbers Lk(γi, γ+j ).

183
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Two n-strand braids β,β′ may be concatenated to produce an n-strand ββ′. The effect of

the concatenation of braids is a gluing of Seifert surfaces along parts of their boundaries. The

Mayer-Vietoris sequence then provides an obstruction for the Seifert form to be additive under

the concatenation of braids. This suggests that one could try to find a chain level Seifert form,

expressed in terms of partial linking numbers, which is additive on the chain level under the

concatenation of braids and descends to the Seifert form on the homology level.

Banchoff [Ban76] gave a combinatorial linking formula for two disjoint space polygons ex-

pressed in terms of partial linking numbers of pairs of edges as follows. LetX = {X0,X1, . . . ,Xm−1}
respectively Y = {Y0, Y1, . . . , Yn−1} be a set of points in general position in R3. For a unit vector

ξ ∈ S2 let pξ ∶ R3 → P denote the projection map from R3 onto the plane P orthogonal to ξ. A

vector ξ ∈ S2 in called general for X and Y if the projections pξ(X), pξ(Y ) ⊂ R2 are in general

position. For a vector ξ ∈ S2 which is general for X and Y , define Ci,j(X,Y, ξ) to be the sign

of Pξ(Yj+1 − Yj) × Pξ(Xi+1 −Xi).(Xi − Yj) if there are interior points Xi of the edge XiXi+1

and Yj of the edge YjYj+1 such that pξ(Xi) = pξ(Yj) and define Ci,j(X,Y, ξ) to be zero otherwise.

The linking number of two space polygons is then expressible as the sum of the partial

linking numbers of all edge pairs.

Theorem [Ban76, p.1176-1177] For disjoint polygonal knots X,Y ⊂ R3 the value

C(X,Y, ξ) = ∑
0⩽i⩽m−1
0⩽j⩽n−1

Ci,j(X,Y, ξ) ∈ Z

is independent of the choice of general vector ξ ∈ S2. The linking number of the polygonal knots

determined by X and Y is the average value of C(X,Y, ξ), that is

Lk(X,Y ) = 1

4π
∫
ξ∈S2

C(X,Y, ξ)dω = 1

4π
∑

0⩽i⩽m−1
0⩽j⩽n−1

∫
ξ∈S2

Ci,j(X,Y, ξ)dω ∈ Z

where ω is the volume form on S2. Moreover this integral may be expressed in terms of dihedral

angles of tetrahedra.

The closure of an n-strand braid with `-crossings arises as the trace of ` 0-surgeries on

a disjoint union of n circles. Ranicki [Ran14] applied the algebraic theory of surgery to the

geometric surgeries to obtain a chain level formula which is defined inductively in terms of Seifert

graphs. The Seifert graph of a braid β is the 1-dimensional CW-complex X(β) constructed

from the canonical Seifert surface of β by collapsing each Seifert disc to a point and collapsing

each twisted band to its core. If β is an n-strand braid with `-crossings then the Seifert graph

X(β) has ` 1-cells and n 0-cells and has a cellular chain complex of the form

d ∶ C1(X(β);Z) ≅ Z` → C0(X(β);Z) ≅ Zn

where d is a signed incidence matrix. If β′ is another n-strand braid with `′ crossings then the
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Seifert graph X(β′) has a cellular chain complex of the form

d′ ∶ C1(X(β′);Z) ≅ Z`
′

→ C0(X(β′);Z) ≅ Zn.

The Seifert graph of the concatenated braid ββ′ is a CW-complex which can be formed from

the Seifert graphs of β,β′ by identifying the 0-cells so that X(ββ′) has (`+ `′) 1-cells, n 0-cells

and a cellular chain complex of the form

d′′ = ( d d′ ) ∶ C1(X(ββ′);Z) ≅ Z` ⊕Z`
′

→ C0(X(ββ′);Z) ≅ Zn.

Ranicki defined the canonical generalised Seifert matrices of the elementary regular n-strand

braids σi, σ
−1
i to be the 1 × 1 matrices

ψσi = ( 1 ) , ψσ−1
i
= ( −1 )

and inductively defined the generalised Seifert matrix of the concatenated braid ββ′ to be the

matrix

ψββ′ =
⎛
⎝
ψβ −d∗χd′

0 ψβ′

⎞
⎠
∶ C1(X(ββ′);Z) ×C1(X(ββ′);Z)→ Z

where χ is the lower triangular n × n matrix with ones below the diagonal.

Theorem [Ran14, p.37-38] Let β,β′ be regular n-strand braids. The generalised Seifert matrix

ψββ′ ∶ C1(X(ββ′);Z) ×C1(X(ββ′);Z)→ Z

induces the Seifert form of ββ′

ψββ′ ∶H1(X(ββ′);Z) ×H1(X(ββ′);Z)→ Z.

Motivated by the space polygon linking formula of Banchoff [Ban76] and the surgery-

theoretic linking formula of Ranicki [Ran14] we construct a new chain level Seifert form. Fol-

lowing a suggestion of Étienne Ghys, to each braid β we associate a 1-dimensional simplicial

complex K(β) called a fence. The fence of an elementary n-strand braid σ±1
i with a single

crossing between strand i and strand i + 1 is the oriented 1-dimensional simplicial complex

K(β) with 2n 0-simplices and (n + 1) 1-simplices as shown below

Figure 99: The fences associated to the elementary n-strand braids σ±1i .
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The fence of a regular n-strand braid β = β1β2 . . . β` with ` crossings is the concatenation of

the fences of the elementary braids from left to right and there is a natural embedding of the

fence of β into the canonical Seifert surface of β.

Figure 100: The embedding of the fence K(β) in to the canonical Seifert surface for β̂.

By examining how a fence links with itself when it is pushed in the positive normal direction

to the canonical Seifert surface

Figure 101: Pushing part of the fences in the positive normal direction.

we can associate to each fence a Z[ 1
2
]-valued bilinear form λβ ∶ C1(K(β);Z)×C1(K(β);Z)→

Z[ 1
2
] which encodes partial self-linking information. This descends to the Seifert form of β on

the homology level:

Theorem 10.2.1. The embedding K(β) ↪ Σ is a homotopy equivalence inducing an isomor-

phism H1(K(β);Z) ≅H1(Σ;Z) with a commutative diagram

H1(K(β);Z) ×H1(K(β);Z)

≅

��

[λβ] // Z ⊂ Z[ 1
2
]

H1(Σ;Z) ×H1(Σ;Z)

V

44

Moreover, this chain level Seifert form is additive under the concatenation of braids:

Theorem 10.3.4. Let β = β1β2 . . . β` be a braid where each βi is an elementary braid. The
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chain level pairing λβ ∶ C1(K(β);Z) × C1(K(β);Z) → Z[ 1
2
] can be represented by a block

diagonal matrix

⎛
⎜⎜⎜⎜⎜
⎝

λβ1 0 . . . 0

0 λβ2 . . . 0

⋮ ⋮ ⋮
0 0 . . . λβ`

⎞
⎟⎟⎟⎟⎟
⎠

We then compare our model to Banchoff’s and Ranicki’s. Our model has the advantage

that the partial linking numbers are Z[ 1
2
]-valued and not R-valued as in Banchoff’s model.

Moreover, the concatenation behaviour in our model is additive and gives an instant chain level

Seifert form whereas Ranicki’s model is inductively defined.

Propositions 10.4.7, 10.4.8. Our model is chain equivalent to Banchoff’s combinatorial

model for the linking number of two space polygons and chain equivalent to Ranicki’s surgery-

theoretic chain level Seifert pairing model.

We give two applications of this chain level Seifert form to the isotopy of braids and to the

signature of braids.

Two n-strand braids β,β′ are isotopic if β can be continuously deformed to β′ through a

family of n-strand braids. Isotopy is an equivalence relation on the set of n-strand braids and the

set of isotopy classes form a group Bn called the n-strand braid group. Artin [Art47] showed

that there is a presentation of the braid group Bn with generators the elementary n-strand

braids {σ1, σ2, . . . , σn−1} and relations of the form

σiσj = σjσi for ∣i − j∣ ⩾ 2, σiσjσi = σjσiσj for ∣i − j∣ = 1, σiσ
−1
i = σ−1

i σi = 1.

We define the chain level Seifert pair (λβ , dβ) of a braid β and two equivalence relations,

called A and Â-equivalence, such that:

Propositions 11.1.7, 11.1.13. The A-equivalence class of the chain level Seifert pair of an

n-strand braid β is a complete isotopy invariant. The Â-equivalence class of the chain level

Seifert pair of an n-strand geometric braid β is an isotopy invariant of the closure β̂ inside the

solid torus.

The A-equivalence relation yields a universal representation of the braid group and the Â-

equivalence relation yields a representation of the braid group modulo conjugacy:

Theorems 11.1.8, 11.1.14. Let n ⩾ 2 and denote by Fn the free group on the set of elementary

n-strand braids {σ1, σ2, . . . , σn−1} and denote by Bn denote the braid group. The map

(λ, d) ∶ Fn → {chain level Seifert pairs}, β ↦ (λβ , dβ)

is a bijection such that words β,β′ ∈ Fn differ by the relations in the braid group if and only if

the chain level Seifert pairs (λβ , dβ), (λβ′ , dβ) are A-equivalent. Moreover two words β,β′ ∈ Bn
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are conjugate if and only if the chain level Seifert pairs (λβ , dβ), (λβ′ , dβ) are Â-equivalent.

This induces an isomorphism of groups

(λ, d) ∶ Bn →
{chain level Seifert pairs}

A − equivalence
, [β]↦ [(λβ , dβ)]

and descends to a bijection

(λ, d) ∶ Bn
conjugacy

→ {chain level Seifert pairs}
Â − equivalence

, [β]↦ [(λβ , dβ)]

such that there is a commutative diagram

Fn {chain level Seifert pairs}

Bn
{chain level Seifert pairs}

A−equivalence

Bn
conjugacy

{chain level Seifert pairs}
Â−equivalence

(λ,d)

≅

(λ,d)

≅

(λ,d)

≅

For a unit complex number ω ≠ 1 the ω-signature of a braid β with Seifert matrix V is the

signature σω(β) of the hermitian form (H1(Σ;Z), (1 − ω)V + (1 − ω)V t). We can express the

ω-signature of a braid in terms of its chain level Seifert pair:

Theorem 11.2.6. Let β be a braid with chain level Seifert pair (λβ , dβ) and let ω ≠ 1 be a

unit complex number. The ω-signature of β is the signature of the hermitian pair

⎛
⎝
C1(K(β);C)⊕C0(K(β);C),

⎛
⎝

(1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0

⎞
⎠
⎞
⎠

so that

σω(β) = σ
⎛
⎝
⎛
⎝

(1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0

⎞
⎠
⎞
⎠
.

Part III is organised as follows.

In chapter 9 we introduce the basic operations one can perform on braids such as concatena-

tion, taking the closure, performing an isotopy and constructing a Seifert form from a canonical

Seifert surface.

In chapter 10 we define the 1-dimensional simplicial complex K(β) and the Z[ 1
2
]-valued

bilinear form λβ ∶ C1(K(β);Z) ×C1(K(β);Z)→ Z[ 1
2
]. We show that there is an embedding of

K(β)↪ Σ with image a deformation retract of the canonical Seifert surface Σ of β̂ constructed

by Seifert’s algorithm. We examine how the image K(β) is pushed along the positive normal

to the Seifert surface to show that λβ descends to the Seifert form on the homology level.

We then show that the bilinear form λβ is additive under the concatenation of braids and we
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compare our chain level Seifert form to the space polygon linking model of Banchoff and the

surgery-theoretic Seifert form of Ranicki.

In chapter 11 we define the A and Â-equivalence relations and use the chain level Seifert

pair (λβ , dβ) of a braid β to produce a representation of the braid group and of the braid group

modulo conjugacy. We then construct a chain level formula for the ω-signature of a braid.



Chapter 9

Braids and Seifert forms

In this chapter we introduce the basic operations one can perform on braids such as concatena-

tion, taking the closure, performing an isotopy and constructing a Seifert form from a Seifert

surface.

9.1 Links and linking numbers

Definition 9.1.1. An n-component link is an embedding L ∶ ⊔nS1 ↪ S3 of n disjoint, piecewise

smooth, simple, closed curves. A knot is a one-component link. Let P ⊂ R3 be a 2-dimensional

subspace of R3 and let p ∶ R3 → P be the orthogonal projection map onto P . We say that

p ∶ R3 → R is a regular projection of a link L if for each x ∈ P the intersection p−1(x)∩L consists

of at most two points, in which case the link diagram is the image p(L) ⊂ P with the over and

under crossings recorded. An oriented link is a link for which each connected component has

been given an orientation and this is recorded on a link diagram by a choice of arrow on each

component of the link diagram. Two links L,L′ are ambient isotopic if there is a homotopy

of orientation preserving homeomorphisms ft ∶ ⊔nS1 ↪ S3 with (0 ≤ t ≤ 1)such that f0 is the

identity and f1(L) = L′.

We will abuse the terminology in the standard way, with the word ’link’ sometimes referring

to the embedding and sometimes referring to the image of the embedding.

Example 9.1.2. Regular projections of an oriented trefoil knot and oriented Hopf link.

Figure 102: Projections of the trefoil knot and hopf link.

The linking number of two knots is an important numerical invariant in knot theory and

may be defined in any of the following ways.

190
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Definition 9.1.3. Let J,K be two disjoint oriented knots in S3.

(i) Let p ∶ R3 → P be a regular projection of the link J ⊔ K ⊂ R3. The linking number is

half the sum of the signed crossings Lk1(J,K) = 1
2 ∑x∈p(J)∩p(K) εx ∈ Z where each crossing

x ∈ p(J) ∩ p(K) is assigned a sign εx = ±1 as follows

Figure 103: The signs associated to an overcrossing and an undercrossing.

(ii) Orienting S1 ×S1 and S2, the linking number Lk2(J,K) ∈ Z is the degree of the Gauss map

f ∶ S1 × S1 → S2; f(u, v) = J(u) −K(v)
∥J(u) −K(v)∥

.

(iii) The linking number Lk3(J,K) is the Gauss integral

1

4π
∫
J
∫
K

(x′ − x)(dydz′ − dzdy′) + (y′ − y)(dzdx′ − dxdz′) + (z′ − z)(dxdy′ − dydx′)
[(x′ − x)2 + (y′ − y)2 + (z′ − z)2]3/2

∈ Z

Theorem 9.1.4. [Rol90, p.132-135]. The above definitions of linking numbers agree and the

linking number is an ambient isotopy invariant.

9.2 Seifert surfaces and Seifert matrices of links

Definition 9.2.1. A Seifert surface for an oriented link L is a compact oriented surface Σ ⊂ S3

with oriented boundary ∂Σ = L such that the normal bundle νΣ⊂S3 is trivial.

Seifert’s algorithm [Sei35] produces a Seifert surface for an oriented link L in the following

way. Fix a regular projection of L and resolve each crossing as shown below.

Figure 104: Resolving an overcrossing and an undercrossing.

Doing so produces a collection of disjoint, oriented, simple, planar circles called Seifert

circles. Each Seifert circle bounds a planar disc. If some of the discs are not disjoint, because the

corresponding Seifert circles are nested, we may push some the discs in a direction perpendicular



Chapter 9. Braids and Seifert forms 192

to the plane to make them disjoint. We then attach a twisted band between the Seifert circles

for each resolution of crossing with the twist matching the type of the crossing.

Example 9.2.2. Seifert surfaces for an oriented trefoil knot and oriented Hopf link constructed

by Seifert’s algorithm. We have labelled the Seifert circles to keep track of them when we move

the discs they bound.

Figure 105: Seifert’s algorithm performed on a trefoil knot and Hopf link.

A link has many regular projections so the Seifert surfaces constructed by Seifert’s algorithm

are highly non-unique. A Seifert surface for a link is however unique up to a certain relation

called S-equivalence.

Definition 9.2.3. Two compact surfaces with boundary (Σ1, ∂Σ1) and (Σ2, ∂Σ2) are S-

equivalent if (Σ2, ∂Σ2) can be obtained from (Σ1, ∂Σ1) by a combination of ambient isotopy

and adding or subtracting finitely many handles by ambient surgery.

Theorem 9.2.4. [Kaw96, Lemma 5.2.4] Any two Seifert surfaces of a link L are S-equivalent.

Let L be an oriented link with Seifert surface Σ of genus g. Then H1(Σ;Z) is a f.g. free

abelian group of rank 2g. Choose a basis {[γi]}2g
i=1 of H1(Σ;Z) with each basis homology classes

[γi] represented by simple, closed curve γi ⊂ Σ. Use the triviality of the normal bundle νΣ⊂S3 to

define a small bi-collar Σ×[−1,1] of Σ ⊂ S3 and for each 1 ⩽ i ⩽ n define γ+i = γi×{1} ⊂ Σ×[−1,1]
to be the simple, closed curve in S3 obtained by pushing γi in the positive normal direction to

Σ.

Definition 9.2.5. The Seifert matrix of Σ with respect to this bi-collar and this choice of basis

is the 2g × 2g matrix V defined by

Vi,j = Lk(γi, γ+j ), (1 ⩽ i, j ⩽ 2g)
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and the Seifert form of Σ is the bilinear form

V ∶H1(Σ;Z) ×H1(Σ;Z)→ Z.

The ambiguity in the choice of Seifert surface for a link means that the Seifert matrix of a

link is only unique up to an algebraic S-equivalence relation.

Definition 9.2.6. Two n×n integral matrices are S-equivalent if one can be transformed into

the other by a finite sequence of the following operations:

(i) V ↦ PV P t with P integral and unimodular.

(ii) V ↦
⎛
⎝
V ξ 0

0
0

0 1
0 0

⎞
⎠

(iii) V ↦
⎛
⎝
V 0 0

ξ
0

0 0
1 0

⎞
⎠

.

Theorem 9.2.7. [Mur65, Theorem 3.1] The S-equivalence class of the Seifert matrix of a link

is an isotopy invariant.

In chapter 10 we will develop a chain level lift of the Seifert matrix for a link which can be

expressed as the closure of a braid. In chapter 11 we will develop equivalence relations, called

A- and Â-equivalence, such that the A-equivalence class of the chain level lift is an isotopy

invariant of the braid and the Â-equivalence class of the chain level lift is an isotopy invariant

of the closure of the braid.

9.3 Regular braids, geometric braids and closures

We are particularly interested in those links which can be written as the closure of a braid.

Definition 9.3.1. For 1 ⩽ i ⩽ n − 1 the elementary n-strand braid σi is the n-strand braid of

polygonal arcs with a single crossing of strand i over strand i + 1 and no crossings between

any other pairs of adjacent stands and the elementary n-strand braid σ−1
i is the n-strand braid

with a single crossing of strand i under strand i+1 and no crossings between any other pairs of

adjacent strands. The trivial n-strand braid 1 is the n-strand braid of polygonal arcs with no

crossings.

Figure 106: The elementary n-strand braids.
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A regular n-strand braid β = β1β2 . . . β` is the concatenation from left to right of finitely

many elementary n-strand braids and trivial n-strand braids.

Regular braids are combinatorial models for geometric braids.

Definition 9.3.2. Let n ⩾ 1. A geometric n-strand braid β with permutation σ ∈ Sn of the set

{1,2, . . . , n} is an embedding

β ∶ {1,2, . . . , n} × [0,1]↪ R2 × [0,1]; (k, t)↦ β(k, t)

such that

β(k,0) = (k,0,0) ∈ R2 × {0} (1 ⩽ k ⩽ n)

β(k,1) = (σ(k),0,1) ∈ R2 × {1} (1 ⩽ k ⩽ n)

and each composition

[0,1]
β(k,−)
ÐÐÐ→ R2 × [0,1]

projection
ÐÐÐÐÐÐÐ→ [0,1] (1 ⩽ k ⩽ n)

is a homeomorphism.

Example 9.3.3. A geometric 4-strand braid with permutation σ = (123)(4) ∈ S4

Figure 107: A 4-strand braid.

Definition 9.3.4. The concatenation of geometric n-strand braids β with permutation σ ∈ Sn
and β′ with permutation σ′ ∈ Sn is the geometric n-strand braid

ββ′ ∶ {1,2, . . . , n} × [0,1]↪ R2 × [0,1]

with permutation σσ′ ∈ Sn defined by

ββ′(k, t) =
⎧⎪⎪⎨⎪⎪⎩

β′(k,2t) if 0 ⩽ t ⩽ 1
2

β(k,2t − 1) if 1
2
⩽ t ⩽ 1.
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Definition 9.3.5. Two geometric n-strand braids β,β′ are isotopic if there exists a family of

geometric n-strand braids

βs ∶ {1,2, . . . , n} × [0,1]↪ R2 × [0,1] (s ∈ [0,1])

such that β0 = β and β1 = β′ and each function function

{1,2, . . . , n} × [0,1] × [0,1]→ R2 × [0,1]; (k, t, s)↦ βs(k, t) (1 ⩽ k ⩽ n)

is continuous.

Lemma 9.3.6. Isotopy of geometric n-strand braids is an equivalence relation. The set of

isotopy classes of geometric n-strand braids is a group with:

(i) The composition of the isotopy classes [β], [β′] of geometric n-strand braids β,β′ equal to

the isotopy class [ββ′] of the geometric n-strand braid ββ′.

(ii) The identity element equal to the isotopy class of the geometric n-strand braid

{1,2, . . . , n} × [0,1]↪ R2 × [0,1]; (k, t)↦ (k,0, t)

(iii) The inverse of the isotopy class [β] of a geometric n-strand braid β

β ∶ {1,2, . . . , n} × [0,1]↪ R2, (k, t)↦ β(k, t)

equal to the isotopy class of the geometric n-strand braid

{1,2, . . . , n} × [0,1]↪ R2, (k, t)↦ β(k,1 − t).

Regular braids can be used to give a presentation of the braid group.

Theorem 9.3.7. [Art47] Each geometric n-strand braid is isotopic to a regular n-strand braid

so that the braid group Bn of isotopy classes of geometric n-strand braids has a presentation

⟨σ1, σ2, . . . , σn−1∣σiσj = σjσi for ∣i − j∣ ⩾ 2, σiσjσi = σjσiσj for ∣i − j∣ = 1⟩.

In particular, two geometric n-strand braids β,β′ are isotopic if and only if they are isotopic to

regular n-strand braids determined by braid words β,β′ from the alphabet

{σ1, σ2, . . . , σn−1, σ
−1
1 , σ−1

2 , . . . , σ−1
n−1} such that β′ can be obtained from β by applying finitely

many of the relations

(i) σiσ
−1
i = σ−1

i σi = 1

(ii) σiσj = σjσi for ∣i − j∣ ⩾ 2

(iii) σiσjσi = σjσiσj for ∣i − j∣ = 1.

Every braid β determines a link β̂ by a closure operation.

Proposition 9.3.8. [KT08, p.18] Let U ⊂ R2 be an open disc containing the set of points

{(1,0), (2,0), . . . , (n,0)}.
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(i) Any geometric n-strand braid

β ∶ {1,2, . . . , n} × [0,1]↪ R2 × [0,1]

is isotopic to a geometric n-strand braid

β′ ∶ {1,2, . . . , n} × [0,1]↪ U × [0,1]↪ R2 × [0,1]

with image contained in U × [0,1].

(ii) Any two geometric n-strand braids which are isotopic in R2×[0,1] and have image in U×[0,1]
are isotopic in U × [0,1].

(iii) The quotient map

D2 × [0,1]→D2 × S1 = D2 × [0,1]
(x,0) ∼ (x,1)

sends a geometric n-strand braid β′ contained in U × [0,1] ⊂ D2 × [0,1] ⊂ R2 × [0,1] to a

canonically oriented link β̂ contained in U × S1 ⊂D2 × S1.

(iv) Given a geometric n-strand braid β, the isotopy class of the link β̂ in D2 × S1 relative to

the boundary S1 × S1 depends only on the isotopy class of β.

Definition 9.3.9. The closure of a regular n-strand braid β is the isotopy class of the link β̂

formed from any geometric n-strand braid isotopic to the regular n-strand braid β.

Proposition 9.3.8 ensures that the closure operation is well-defined. It is often convenient

to picture the closure of a braid, which is oriented from left to right, as follows

Figure 108: The closure of a braid.

Theorem 9.3.10. [Ale23] Every oriented link in S3 is isotopic to the closure of a regular braid.

The choice of such a braid is highly non-canonical. However, by Markov’s theorem [Mar] any

two such braids (with the same braid axis) differ only by a braid isotopy and a finite number

of braid stabilisations and destabilisations.
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Figure 109: The stabilisation and destabilisation operations.



Chapter 10

A chain level Seifert form

In this chapter we associate to each braid β a 1-dimensional simplicial complex K(β) and a

Z[ 1
2
]-valued bilinear form λβ ∶ C1(K(β);Z) × C1(K(β);Z) → Z[ 1

2
]. We show that there is an

embedding K(β) ↪ Σ with image a deformation retract of the canonical Seifert surface Σ of

β̂ constructed by Seifert’s algorithm. We examine how the image K(β) is pushed along the

normal to the Seifert surface to show that λβ descends to the Seifert form on the homology

level. We then show that the bilinear form λβ is additive under the concatenation of braids

and we compare our chain level Seifert form to the space polygon linking model of Banchoff

and the inductive surgery-theoretic Seifert form of Ranicki.

10.1 Pushing fences

Definition 10.1.1. The fence of the elementary n-strand braid σ±1
i with a single crossing

between strand i and strand i + 1 is the oriented 1-dimensional simplicial complex K(β) with

2n 0-simplices and (n + 1) 1-simplices as shown below. The fence of the trivial n-strand braid

1 is the 0-dimensional simplicial complex K(1) with n 0-simplices as shown below.

Figure 110: The fences associated to the elementary braids σ±1i and the trivial braid.

The fence of a regular n-strand braid β = β1β2 . . . β` is the concatenation of the fences

K(β1),K(β2), . . . ,K(β`) from left to right so that K(β1β2 . . . β`) = ∪`i=1K(βi) where K(βi)
intersects K(βi+1) in the right hand vertex set of K(βi) and the left hand vertex set of K(βi+1).

198
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Example 10.1.2. The 3-strand braid β = σ1σ1σ2σ
−1
1 σ2

Figure 111: The braid σ1σ1σ2σ
−1
1 σ2.

has the fence

Figure 112: The fence K(σ1σ1σ2σ
−1
1 σ2).

Proposition 10.1.3. For a regular braid β with closure β̂ let Σ be the canonical Seifert surface

of β̂ constructed by Seifert’s algorithm. There is an inclusion K(β) ↪ Σ which is a homotopy

equivalence.

Proof. Suppose that β = β1β2 . . . β` is a regular n-strand braid with ` crossings where each βi is

an elementary n-strand braid . The orientation of the n strands of the braid from left to right

induces an orientation of the link β̂ in a natural way. Seifert’s algorithm resolves the ` crossings

of β̂ to produce n Seifert circles. The Seifert circles may be labelled 1,2, . . . , n, stacked one

below the other with 1 at the top and n at the bottom and then filled in with discs. For each

1 ⩽ k ⩽ ` we then attach a twisted band between the Seifert circles corresponding the crossing

encoded by βk. The order in which the bands are attached from left to right is determined by

the order in the braid word β1β2 . . . β`.

Firstly suppose that Σ is connected. A deformation retraction of Σ onto an embedding of

K(β) is obtained by pushing the left and right most parts of the discs to meet the ends of K(β)
and then contracting each of the twisted bands to its central vertical core and contracting each

of the discs to a part of its horizontal diameter. The inclusion K(β)↪ Σ is a homotopy inverse.

The reader should try to visualise this in the case β = σ1σ1σ2σ
−1
1 σ2.
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Figure 113: The inclusion of K(β) into Σ.

Now suppose that Σ = Σ1 ⊔ Σ2 ⊔ . . . ⊔ Σk is disconnected with k connected components.

It is then possible to write β = β′1 ⊔ β′2 ⊔ . . . ⊔ β′k for sub-braids β′i ⊂ β such that Σi is the

connected Seifert surface for the closure of the braid β′i. Similarly we may write K(β) =
K(β′1) ⊔K(β′2) ⊔ . . .K(β′k). It follows from the connected case that the inclusion K(βi) ↪ Σi

is a homotopy equivalence and the inclusion K(β)↪ Σ is a homotopy equivalence.

Definition 10.1.4. For a regular n-strand braid β with a fence K(β) define a bilinear form

λβ ∶ C1(K(β);Z)×C1(K(β);Z)→ Z[ 1
2
] with values on the basis oriented 1-simplices as follows:

λβ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2

if if x = y =↓= a vertical simplex corresponding to a σi

1
2

if x = y =↓= a vertical simplex corresponding to a σ−1
i

1
2

if (x, y) = (→, ↓) are adjacent simplices meeting like

1
2

if (x, y) = (↓,→) are adjacent simplices meeting like

0 otherwise.

Example 10.1.5. If the 1-simplices in the fence K(β) from Example 1 are labelled as follows

Figure 114: Labelled 1-simplices in the fence K(σ1σ1σ2σ
−1
1 σ2).

then C1(K(β);Z) = Z⟨e1, e2, . . . , e24⟩ and for pairs of basis elements (x, y) ∈ {e1, e2 . . . , e24}2
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we have

λβ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

if (x, y) ∈ {(e1, e2), (e2, e3), (e5, e6), (e6, e7)(e9, e10), (e10, e11), (e14, e15),

(e15, e15), (e15, e16), (e17, e18), (e18, e19), (e22, e23), (e23, e24)}

− 1
2

if (x, y) ∈ {(e2, e2), (e6, e6), (e10, e10), (e18, e18), (e23, e23)}

0 otherwise.

The motivation for the chain level pairing λβ ∶ C1(K(β);Z) × C1(K(β);Z) → Z[ 1
2
] is as

follows. Let β = σi be the elementary n-strand braid with a single crossing of strand i over

strand i + 1. The Seifert surface for β̂ consists of a disjoint union of n disks, stacked one above

the other with a single twisted band attached from disc i to disc i+1. Smooth the corners of Σ

and choose the positive normal direction to the smoothed Seifert surface to be in the upwards

direction. Let Ki be the embedded part of K between disc i and disc i+1. If K+
i is obtained by

pushing Ki in the direction of the positive normal, then ’reversing’ the embeddings produces

disjoint simplicial complexes with crossings of the following type

Figure 115: Pushing Ki in the normal direction.

The twist in the diagram refers to the direction of the twist in the attached band and the

resulting twist of the positive normal vector to the Seifert surface along the vertical part of the

red curve. In the case β = σ−1
i we obtain crossings of the type

Figure 116: Pushing Ki in the normal direction.

Recall that from Definition 9.1.3 that the linking number of the components of a two compo-

nent oriented link may be computed as one half of the sum of the signed crossings between one

component and the other. The crossings above define a pairing λ ∶ C1(Ki;Z) × C1(K+
i ;Z) →

Z[ 1
2
]. Since Ki and K+

i are simplicially isomorphic we may equivalently think of this as a

pairing λ ∶ C1(Ki;Z) ×C1(Ki;Z)→ Z[ 1
2
] which is given by
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λ(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2

if if x = y =↓= a vertical simplex corresponding to a σi

1
2

if x = y =↓= a vertical simplex corresponding to a σ−1
i

1
2

if (x, y) = (→, ↓) are adjacent simplices meeting like

1
2

if (x, y) = (↓,→) are adjacent simplices meeting like

0 otherwise.

10.2 Descending to homology

We now show that the chain level formula gives the Seifert form on the homology level.

Theorem 10.2.1. Let β be a braid with Seifert surface Σ constructed by Seifert’s algorithm

and Seifert form V ∶ H1(Σ;Z) ×H1(Σ;Z) → Z. If K is the fence of β then inclusion K ↪ Σ

induces an isomorphism H1(K;Z) ≅H1(Σ;Z) with a commutative diagram

H1(K;Z) ×H1(K;Z)

≅

��

[λ] // Z ⊂ Z[ 1
2
]

H1(Σ;Z) ×H1(Σ;Z)

V

55

Proof. Suppose that β = β1β2 . . . β` is a regular n-strand braid with ` crossings where each βi is

an elementary n-strand braid. Proposition 10.1.3 implies that there is an inclusion K ↪ Σ which

is a homotopy equivalence and hence H(K;Z) ≅ H(Σ;Z). Suppose that Σ has k connected

components. For 1 ⩽ i ⩽ n−1 let li denote the number of crossings between strand i and strand

i + 1. By [Col12, Lemma 3.1] we may write

b1(K;Z) = b1(Σ;Z) =
n−1

∑
i=1

(li − 1) = l − k + n

and Collins shows that there is a basis of H1(Σ;Z) with one basis element for each pair of

consecutive crossings between between adjacent strands. More explicitly, a pair of consecutive

crossings between strand i and strand i + 1

Figure 117: A pair of consecutive crossings between strand i and strand i + 1.

determines a 1-cycle, shown in red below as an embedded polygonal circle oriented in the

clockwise direction, in the part of Σ which is created by attaching to two Seifert disc two twisted

bands corresponding to the two crossings between the same strands.



Chapter 10. A chain level Seifert form 203

Figure 118: The 1-cycle.

The cycles may be labelled c1, c2, . . . , c`−n+k ∈ Z1(Σ;Z) according to their positions from left

to right along the braid diagram. The set of homology classes [c1], [c2], . . . , [c`−n+k] is then a ba-

sis for H1(Σ). The cycles c1, c2, . . . , c`−n+k ∈ Z1(Σ;Z) induce cycles c′1, c
′
2, . . . ,c

′
`−n+k ∈ Z1(K;Z)

giving a basis [c′1], [c′2], . . . , [c′`−n+k] of H1(K;Z). The homology class [c′i] ∈ H1(K;Z) maps

to the homology class [ci] ∈ H1(Σ;Z) under the isomorphism H1(K;Z) ≅ H1(Σ;Z) induced

by the inclusion K ↪ Σ. If c+j is the push of the cycle cj in the positive normal to Σ then it

suffices to show that λ(c′i, c′j) = Lk(ci, c+j ) for 1 ⩽ i, j ⩽ ` − n + k. Note that since the linking

number Lk(ci, c+j ) is always an integer and H1(K;Z) is a free abelian group this implies that

λ ∶ H1(K;Z) ×H1(K;Z) → Z[ 1
2
] factors through a map H1(K;Z) ×H1(K;Z) → Z. The proof

now proceeds by cases.

Diagonal Entries: Suppose that i = j. The diagram below shows ci in red and its push off c+i
in blue

Figure 119: The cycle ci and its pushoff c+i .

so that the self-linking numbers are given by

Lk(ci, c+i ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if both crossings correspond to a σi

1 if both crossings correspond to a σ−1
i

0 otherwise.

The cycle ci ∈ Z1(Σ;Z) corresponds to a cycle c′i ∈ Z1(K;Z) which may be written as c′i =
−e1 + (∑s+2

p=2 ep) − (∑2s+2
p=s+3 ep) as in the diagram
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Figure 120: Labelled 1-simplices in the cycle c′i.

It follows that

λ(c′i, c′i) = λ(−e1,−e1) + λ(es+1, es+2) + λ(es+2, es+2) + λ(es+2,−es+3)

= λ(e1, e1) +
1

2
+ λ(es+2, es+2) −

1

2

= λ(e1, e1) + λ(es+2, es+2)

and hence

λ(c′i, c′i) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

−1 if both crossings correspond to a σi

1 if both crossings correspond to a σ−1
i

0 otherwise.

Non-Diagonal Entries: Suppose that 1 ⩽ i < j ⩽ ` − n + k. . Let the cycle c′i be written as in

the diagonal case and let the cycle c′j be written as c′j = −f1 + (∑t+2
q=2 fq) − (∑2t+2

i=t+3 fq) as in the

diagram

Figure 121: Labelled 1-simplices in the cycle c′j .

Let E = {ep}2s+2
p=1 and F = {fq}2t+2

q=1 . It is enough to consider the five cases of the relative

positions of the cycles as in [Col12, Section 3.3]:

1. Either E ∩ F = {es′ , es′+1, . . . , es′′} = {ft+3, ft+4, . . . , f2t+2} for some 2 < s′ < s′′ < s + 1 with

es′ = f2t+2 and es′′ = ft+3 as in

Figure 122: The cycles c′i and c′j .
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or E ∩ F = {e2, e3, . . . , es+1} = {ft′ , ft′+1, . . . , ft′′} for some t + 3 < t′ < t′′ < 2t + 2 with

e2 = ft′′ and es+1 = ft′ as in

Figure 123: The cycles c′i and c′j .

so that in the first case

λ(c′i, c′j) = 0

λ(c′j , c′i) = λ(−f1, es′−1) + λ(ft+2, es′′) = −
1

2
+ 1

2
= 0

and in the second case

λ(c′i, c′j) = 0

λ(c′j , c′i) = λ(−ft′′+1,−e1) + λ(−ft′ , es+2) =
1

2
− 1

2
= 0.

The push-off c+j of cj in relation to ci is given in the first (respectively second) case by

Figure 124: The cycles c+j and ci.

and in either case Lk(ci, c+j ) = 0. The push-off c+i of ci in relation to cj is given in the first

(respectively second) case by and in either case Lk(cj , c+i ) = 0.

Figure 125: The cycles c+i and cj .
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2. In this case E and F are disjoint as in

Figure 126: The cycles c′i and c′j .

so it is immediate that λ(c′i, c′j) = λ(c′j , c′i) = 0. The push-off c+j of cj in relation to ci

(respectively the push-off c+i of ci in relation to cj) is given by

so that Lk(cj , c+i ) = Lk(c+i , cj) = 0.

3. In this case E ∩ F = {es+2} = {f1} as in

Figure 127: The cycles c′i and c′j .

and it follows that

λ(c′i, c′j) = λ(es+1,−f1) + λ(es+2,−f1) = −
1

2
− λ(f1, f1)

and hence

λ(c′i, c′j) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if f1 corresponds to a σi

−1 if f1 corresponds to a σ−1
i .

The push-off c+j of cj in relation to ci is given in the first (respectively second) case by

so that

Lk(ci, c+j ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if f1 corresponds to a σi

−1 if f1 corresponds to a σ−1
i .
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Figure 128: The cycles c+j and ci.

Similarly

λ(c′j , c′i) = λ(−f1, es+2) + λ(−f1,−es+3) = −λ(f1, f1) +
1

2

and hence

λ(c′j , c′i) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if f1 corresponds to a σi

0 if f1 corresponds to a σ−1
i .

The push-off c+i of ci in relation to cj is given in the first (respectively second case) by

Figure 129: The cycles c+i and cj .

so that

Lk(cj , c+i ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if f1corresponds to a σi

0 if f1 corresponds to a σ−1
i .

4. In this case E and F are disjoint as in

Figure 130: The cycles c′i and c′j .

so it is immediate that λ(c′i, c′j) = λ(c′j , c′i) = 0. The push-off c+j in relation to ci and

c+i in relation to cj are given by the similar figures as in case 2 and it follows that

Lk(cj , c+i ) = Lk(c+i , cj) = 0.
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5. Either E ∩ F = {es+3, es+4, . . . , es′} = {f2, f3, . . . , ft′} for some s + 3 ⩽ s′ < 2s + 2 and

2 ⩽ t′ < t + 1 with es′ = f2 and es+3 = ft′ as in

Figure 131: The cycles c′i and c′j .

or E ∩ F = {es′ , es′+1, . . . , es+1} = {ft′ , ft′+1, . . . , f2t+2} for some 2 < s′ ⩽ s + 1 and some

t + 3 < t′ ⩽ 2t + 2 with es′ = f2t+2 and es+1 = ft′ as in

Figure 132: The cycles c′i and c′j .

In the first case

λ(c′i, c′j) = λ(es+2, ft′−1) + λ(−es′+1,−f1) =
1

2
+ 1

2
= 1

λ(c′j , c′i) = −λ(ft′ , es+2) = 0.

and in the second case

λ(c′i, c′j) = 0

λ(c′j , c′i) = λ(−f1, es′−1) + λ(−ft′ , es+2) = −
1

2
− 1

2
= −1

The push-off c+j of cj in relation to ci is given in the first (respectively second case) by
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Figure 133: The cycles c+j and ci.

so that

Lk(ci, c+j ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 in the first case

0 in the second case.

The push-off c+i of ci in relation to cj is given in the first (respectively second) case by so

Figure 134: The cycles c+i and cj .

that

Lk(cj , c+i ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 in the first case

−1 in the second case.

This motivates the following definition.

Definition 10.2.2. The chain level Seifert pair of a regular n-strand braid β is the pair

(λβ , dβ) = (λβ ∶ C1(K(β);Z) ×C1(K(β);Z)→ Z[1

2
], dβ ∶ C1(K(β);Z)→ C0(K(β);Z))

Corollary 10.2.3. A regular n-strand braid β with chain level Seifert pair (λβ , dβ) has Seifert

form

λβ ∶ ker(dβ) × ker(dβ)→ Z ⊂ Z[1

2
].

Proof. The fence K(β) is a 1-dimensional simplicial complex and hence

H1(Σ) ≅H1(K(β)) = ker(dβ ∶ C1(K(β);Z)→ C0(K(β);Z))

Example 10.2.4. The 2-strand braid β = σ1σ1σ1 with closure β̂ the trefoil knot
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Figure 135: The braid σ1σ1σ1.

has the fence K(β)

Figure 136: The fence K(σ1σ1σ1).

such that C1(K(β);Z) is a free abelian group of rank 9 with a basis {e1, e2, . . . , e9}. The

bilinear pairing λβ ∶ C1(K(β);Z) × C1(K(β);Z) → Z[ 1
2
] is represented with respect to the

ordered basis (e1, e2, . . . , e9) by the upper triangular matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 1
2

0 0 0 0 0 0 0

0 −1
2

1
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 1
2

0 0 0 0

0 0 0 0 − 1
2

1
2

0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1
2

0

0 0 0 0 0 0 0 − 1
2

1
2

0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

If γ = e4 + e5 − e6 − e2 and δ = e7 + e8 − e9 − e5 then

H1(K(β);Z) = ker(dβ ∶ C1(K(β);Z)→ C0(K(β);Z)

is a free abelian group of rank 2 with a basis {γ, δ}. One then checks that the Seifert matrix

with respect to the ordered basis (γ, δ) of H1(K(β);Z) is given by

⎛
⎝
−1 0

1 −1

⎞
⎠

as usual.
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10.3 The effect of concatenation

We now examine the effect of the concatenation of braids on Seifert surfaces and fences to

obtain an inductive formula for the chain level pairing λβ ∶ C1(K(β);Z)×C1(K(β);Z)→ Z[ 1
2
].

We first construct the Seifert surface of a closure of a braid in a way which mirrors more closely

the decomposition of a braid into a concatenation of elementary braids.

Definition 10.3.1. The open Seifert surface Σσ±1
i

of the elementary n-strand braid σ±1
i with

a single crossing between strand i and strand i+ 1 is the disjoint union of a single twisted band

and n − 1 line segments, stacked vertically one above the other, as shown below

Figure 137: The open Seifert surfaces associated to the elementary braids σ±1i .

The open Seifert surface Σβ of a regular n-strand braid β = β1β2 . . . β` is the concatenation

of the open Seifert surfaces Σβ1 ,Σβ2 , . . . ,Σβ` from left to right so that Σβ = ∪`i=1Σβi where Σβi

intersects Σβi+1 in the right hand part of Σβi and the left hand part of Σβi+1 as shown below

Figure 138: The concatenation of open Seifert surfaces associated to two adjacent elementary braids.

The closure Σ̂β of the open Seifert surface of a regular n-strand braid β = β1β2 . . . β` is the

union of the open Seifert surface Σβ with n horizontal discs as shown in the diagram below
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Figure 139: The closure of an open Seifert surface.

Proposition 10.3.2. Let β be a regular n-strand braid. The closure of the open Seifert surface

for β is the Seifert surface for the closure of β constructed by Seifert’s algorithm, that is Σ̂β = Σβ̂ .

Proof. By induction on the length of the braid.

In order to obtain an inductive formula for the chain level pairing λβ ∶ C1(K(β);Z) ×
C1(K(β);Z)→ Z[ 1

2
] we first consider the effect of concatenating a braid β with an elementary

braid βi.

Proposition 10.3.3. Let β be a regular n-strand braid with ` crossings and fence K. Let βi

be an elementary n-strand braid with a single crossing between strand i and strand i+1. Define

an (n + 1) × (n + 1)-matrix λβi by

(λβi)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2

if j = k = i and βi = σi
1
2

if j = k = i and βi = σ−1
i

1
2

if j = i and k = i + 1

1
2

if j = i + 1 and k = i + 2

0 otherwise.

Then the chain level Seifert pairing for ββi is represented by the matrix

λββi =
⎛
⎝
λβ 0

0 λβi

⎞
⎠
.

Proof. The fence K(βi) is a simplicial complex with n 0-simplices, n-horizontal simplices and

a single vertical 1-simplex as shown below. With respect to the ordered basis (f1, f2 . . . , fn+1),
the pairing λβi ∶ C1(K(βi);Z)×C1(K(βi);Z)→ R is represented by the (n+1)× (n+1)-matrix
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λβi with

(λβi)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2

if j = k = i and βi = σi
1
2

if j = k = i and βi = σ−1
i

1
2

if j = i and k = i + 1

1
2

if j = i + 1 and k = i + 2

0 otherwise.

Suppose that we have a matrix representation λβ ∶ C1(K(β);Z) × C1(K(β);Z) → R with

respected to an ordered basis eK(β) of C1(K(β);Z). The fence K(ββi) of ββi is obtained from

K(β) by the fence K(βi) as follows

Figure 140: The fences of β, βi and ββi.

Here the red simplices are simplices added to K(β) and the 1-simplices of K(β) and K(βi)
are disjoint. This gives an ordered basis eK(ββi) = (ek, f1, f2, . . . , fn+1) of C1(K(ββi);Z) and it

follows that with respect to eK(ββi) that the pairing λββi ∶ C1(K(ββi);Z) ×C1(K(ββi);Z) →
Z[ 1

2
] is represented by the block diagonal matrix

λββi =
⎛
⎝
λβ 0

0 λβi

⎞
⎠

as required.

Theorem 10.3.4. Let β = β1β2 . . . β` be a regular n-strand braid with ` crossings, where each

βi is an elementary n-strand braid with a single crossing between strand ji and ji+1. The chain

level pairing λβ ∶ C1(K(β);Z) × C1(K(β);Z) → Z[ 1
2
] can be represented by a block diagonal

matrix

⎛
⎜⎜⎜⎜⎜
⎝

λβ1 0 . . . 0

0 λβ2 . . . 0

⋮ ⋮ ⋮
0 0 . . . λβ`

⎞
⎟⎟⎟⎟⎟
⎠
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where

(λβi)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
2

if j = k = ji and βi = σji
1
2

if j = k = ji and βi = σ−1
ji

1
2

if j = ji and k = ji + 1

1
2

if j = ji + 1 and k = ji + 2

0 otherwise.

Proof. By the definition of the concatenation of fences we may write K(β) = ∪`i=1K(βi). Since

K(βi) intersects K(βi+1) in a set of 0-simplices then C1(K(β);Z) = ⊕`i=1C1(K(βi);Z). The

proof follows induction on the number ` of crossings in the braid with the concatenation formula

from Proposition 10.3.3.

10.4 Comparison with other models

We now show that this model of a chain level Seifert pairing is chain equivalent to Banchoff’s

formula for the linking number of two space polygons and Ranicki’s surgery-theoretic chain

level linking formula.

Motivated by the Gauss map in Definition 9.1.3, Banchoff [Ban76] gave a combinatorial

linking formula for two disjoint space polygons expressed in terms of the partial linking numbers

of pairs of edges as follows.

Definition 10.4.1. Let X = {X0,X1, . . . ,Xm−1} respectively Y = {Y0, Y1, . . . , Yn−1} be a set of

points in general position in R3.

(i) For a unit vector ξ ∈ S2 let pξ ∶ R3 → P denote the projection map from R3 onto the

plane P orthogonal to ξ. A vector ξ ∈ S2 in called general for X and Y if the projections

pξ(X), pξ(Y ) ⊂ R2 are in general position.

(ii) For a vector ξ ∈ S2 which is general for X and Y , define Ci,j(X,Y, ξ) to be the sign of

Pξ(Yj+1 − Yj) × Pξ(Xi+1 −Xi).(Xi − Yj) if there are interior points Xi of the edge XiXi+1 and

Yj of the edge YjYj+1 such that pξ(Xi) = pξ(Yj) and define Ci,j(X,Y, ξ) to be zero otherwise

The linking number of two space polygons is then expressible as the sum of partial linking

numbers of all edge pairs.

Theorem 10.4.2. [Ban76, p.1176-1177] For disjoint polygonal knots X,Y ⊂ R3 the value

C(X,Y, ξ) = ∑
0⩽i⩽m−1
0⩽j⩽n−1

Ci,j(X,Y, ξ) ∈ Z

is independent of the choice of general vector ξ ∈ S2. The linking number of the polygonal knots

determined by X and Y is the average value of C(X,Y, ξ), that is

Lk(X,Y ) = 1

4π
∫
ξ∈S2

C(X,Y, ξ)dω = 1

4π
∑

0⩽i⩽m−1
0⩽j⩽n−1

∫
ξ∈S2

Ci,j(X,Y, ξ)dω ∈ Z

where ω is the volume form on S2. Moreover this integral may be expressed in terms of dihedral

angles of tetrahedra.
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Ranicki gave an alternative chain level formula in terms of the Seifert graph. The Seifert

graph of a braid records which strands of the braid cross but not whether the crossings and

over-crossings or under-crossings.

Definition 10.4.3. The Seifert graph of a braid β is the 1-dimensional CW-complex X(β)
constructed from the canonical Seifert surface of β by collapsing each Seifert disc to a point

and collapsing each twisted band to its core.

If β is an n-strand braid with `-crossings then the Seifert graph X(β′) has ` 1-cells and n

0-cells and has a cellular chain complex of the form

d ∶ C1(X(β);Z) ≅ Z` → C0(X(β);Z) ≅ Zn.

If β′ is another n-strand braid with `′ crossings then the Seifert graph X(β′) has a cellular

chain complex of the form

d′ ∶ C1(X(β′);Z) ≅ Z`
′

→ C0(X(β′);Z) ≅ Zn.

The Seifert graph of the concatenated braid ββ′ is a CW-complex which can be formed from

the Seifert graphs of β and β′ by identifying the 0-cells in pairs so that X(ββ′) has (` + `′)
1-cells, n 0-cells and a cellular chain complex of the form

d′′ = ( d d′ ) ∶ C1(X(ββ′);Z) ≅ Z` ⊕Z`
′

→ C0(X(ββ′);Z) ≅ Zn.

The closure of an n-strand geometric braid with `-crossings arises as the trace of ` 0-surgeries

on a disjoint union of n circles. Ranicki applied the algebraic theory of surgery to the geometric

surgeries to obtain a formula which is defined inductively.

Definition 10.4.4.

(i) The canonical generalised Seifert matrices of the elementary regular n-strand braids σi, σ
−1
i

are the 1 × 1 matrices

ψσi = ( 1 ) , ψσ−1
i
= ( −1 ) .

(ii) Let β,β′ be regular n-strand braids and let χ be the lower triangular n × n matrix with

ones below the diagonal. The generalised Seifert matrix for the concatenated braid ββ′ is the

inductively defined matrix

ψββ′ =
⎛
⎝
ψβ −d∗χd′

0 ψβ′

⎞
⎠
∶ C1(X(ββ′);Z) ×C1(X(ββ′);Z)→ Z

Theorem 10.4.5. [Ran14, p.37-38] Let β,β′ be regular n-strand braids. The generalised Seifert

matrix

ψββ′ ∶ C1(X(ββ′);Z) ×C1(X(ββ′);Z)→ Z

induces the Seifert form of ββ′

ψββ′ ∶H1(X(ββ′);Z) ×H1(X(ββ′);Z)→ Z

on the homology level.
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The equivalences of Banchoff’s and Ranicki’s models to the model we developed are both

established via the following lemma.

Lemma 10.4.6. Let C and D be Z-module chain complexes with C finitely generated free and

concentrated in dimensions 0 and 1 and D concentrated in dimensions 1 and 2. If H0(C) is

torsion free then the morphism

H0(HomZ(C,D))→ HomZ(H1(C),H1(D)); f ↦ f∗

is an isomorphism, that is any two chain maps f, g ∶ C → D are chain homotopic if and only if

f∗ = g∗ ∶H1(C)→H1(D).

Proof. Any Z-module homomorphism f ∶ C1 →D1 fits into the commutative diagram

0 // 0

��

// C1
dC //

f

��

// C0

��

// 0

0 // D2
dD

// D1
// 0 // 0

so that there is an one-to-one correspondence between chain maps f ∶ C → D and Z-module

homomorphisms f ∶ C1 → D1. It is then enough to show that if f, f ′ ∶ C → D are chain maps

satisfying f∗ = f ′∗ ∶ H∗(C) → H∗(D) then there is chain homotopy ∆ ∶ f ≃ f ′ ∶ C → D. We

can clearly choose ∆r = 0 ∶ Cr → Dr+1 if r ≠ 0,1 and it then suffices to construct Z-module

homomorphisms ∆0 ∶ C0 →D1 and ∆1 ∶ C1 →D2 such that f − f ′ = ∆0dC + dD∆1 ∶ C1 →D1.

The Z-module im(dC) ⊂ C0 is a submodule of a finitely generated free Z-module and hence

is also finitely generated free. Choose a basis {xi}mi=1 of im(dC) and for each xi choose a point

zi ∈ C1 such that dC(zi) = xi. The short exact sequence

0→ im(dC)→ C0 →H0(C)→ 0

splits since H0(C) is f.g. free and hence there is an isomorphism C0 ≅ im(dC) ⊕H0(C). The

Z-module homomorphism g ∶ im(dC) → D1 defined by g(xi) = (f − f ′)(zi) induces a Z-module

homomorphism

∆0 = (g,0) ∶ im(dC)⊕H0(C)→D1.

The Z-module homomorphism s ∶ im(dC) → C1 defined by s(xi) = zi satisfies dCs = idim(dC)

and hence provides a splitting of the short exact sequence

0→ ker(dC)→ C1 → im(dC)→ 0

and induces an isomorphism im(dC)⊕ker(dC)→ C1. The Z-module ker(dC) ⊂ C1 is also finitely

generated free and so choose a basis {yj}nj=1 of ker(dC). By assumption

(f − f ′)∗ = 0 ∶H1(C) = ker(dC)→H1(D) = D1

im(dD)

and hence for each basis element yj we may choose an element wj ∈ D2 such that (f −
f ′)(yj) = dD(wj). The Z-module homomorphism f ∶ ker(dC) → D2 defined by f(yj) = wj



Chapter 10. A chain level Seifert form 217

induces a Z-module homomorphism ∆1 = (0, f) ∶ im(dC) ⊕ ker(dC) → D2. For element

c = (∑mi=1 λizi,∑
n
j=1 µjyj) ∈ C1 it follows that

∆0dC(c) = ∆0(
m

∑
i=1

λixi,0) =
m

∑
i=1

λig(xi) =
m

∑
i=1

(f − f ′)(zi) = (f − f ′)(
m

∑
i=1

λizi)

and

dD∆1(c) = dDf(
n

∑
j=1

µjyj) =
n

∑
j=1

µjdDf(yj) =
n

∑
j=1

µjdD(wj) =
n

∑
j=1

µj(f − f ′)(yj)

= (f − f ′)(
n

∑
j=1

µjyj)

and hence (∆0dC + dD∆1)(c) = (f − f ′)(c) as required.

Proposition 10.4.7. Our model is chain homotopy equivalent to Banchoff’s model.

Proof. Let X = {X0,X1, . . . ,Xm−1} respectively Y = {Y0, Y1, . . . , Yn−1} be a set of points in

general position in R3. The set of vertices X respectively Y determines an oriented one-

dimensional simplicial complex X respectively Y in R3 with positively oriented edges {ei =
XiXi+1∣0 ⩽ i ⩽ m − 1} respectively {fj = YjYj+1∣0 ⩽ j ⩽ n − 1} where Xm = X0 respectively

Yn = Y0. By [Ban76, p.1176-1177] the linking number of the space polygons X and Y is given

by

Lk(X,Y ) = 1

4π
∑

0⩽i⩽m−1
0⩽j⩽n−1

∫
ξ∈S2

Ci,j(X,Y, ξ)dω ∈ Z

where ω is the volume form on S2. For basis elements ei, fj the associated integral 1
4π ∫ξ∈S2 Ci,j(X,Y, ξ)dω

is in general a real number and not an integer. Banchoff’s formula induces a bilinear pairing

µ ∶ C1(X;Z) ×C1(Y ;Z)→ R

⎛
⎝

m−1

∑
i=0

aiei,
n−1

∑
j=0

bjfj
⎞
⎠
↦ 1

4π
∑

0⩽i⩽m−1
0⩽j⩽n−1

aibj ∫
ξ∈S2

Ci,j(X,Y, ξ)dω.

which has adjoint a Z-module homomorphism

µ ∶ C1(X;Z)→ HomZ(C1(Y ;Z),R) = C1(Y ;R).

Since X and Y are 1-dimensional simplicial complexes this is the same as a chain map µ ∶
C∗(X;Z)→ C2−∗(Y ;R) by Lemma 10.4.6.

Now consider the special case where X = K and Y = K+ where K = K(β) is the fence for

a braid β and K+ is its push off in the positive normal direction. This yields a chain map

µ ∶ C∗(K;Z) → C2−∗(K+;R). Recall that the simplicial complexes K+ and K are simplicially

isomorphic and the bilinear form λ ∶ C1(K;Z) × C1(K;Z) → Z[ 1
2
] may be considered as a

bilinear form λ ∶ C1(K;Z) × C1(K+;Z) → Z[ 1
2
] ⊂ R. As above, this yields a chain map λ ∶

C∗(K;Z)→ C2−∗(K+;R). Both λ and µ compute linking numbers when we pass to homology,
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that is

[λ] = [µ] ∶H∗(K;Z)→H2−∗(K+;Z)→H2−∗(K+;R).

By the universal coefficients theorem there is an isomorphism

H2−∗(K+;R) ≅ HomZ(H2−∗(K+;Z),R)

and the inclusion Z ⊂ R induces a monomorphism

HomZ(H2−∗(K+;Z),Z)↪ HomZ(H2−∗(K+;Z),R).

It follows that there is a factorisation

[λ] = [µ] ∶H∗(K;Z)→ HomZ(H2−∗(K+;Z),Z)↪ HomZ(H2−∗(K+;Z),R)

with both maps admitting the same factorisation through HomZ(H2−∗(K+;Z),Z). By Lemma

10.4.6 there is a chain homotopy λ ≃ µ ∶ C∗(K;Z) → C2−∗(K+;R) so that the models are the

same up to chain homotopy.

Our model has the advantage over Banchoff’s in that the averaged partial linking numbers

are Z[ 1
2
]-valued and not R-valued.

Proposition 10.4.8. Our model is chain homotopy equivalent to Ranicki’s model.

Proof. Let β be a braid with Seifert graph X and fence K. We work with the opposite orien-

tations to Ranicki, so the differential d ∶ C1(X;Z)→ C0(X;Z) is the negative of the differential

Ranicki uses. This does not effect the definition of generalised Seifert matrix [Ran14, p.37-38].

Ranicki also chooses the opposite positive normal direction when defining linking numbers. This

implies that the canonical generalised Seifert 1 × 1 for the elementary n-strands braids σi and

σ−1
i are defined in our situation by ψσi = ( −1 ) and ψσ−1

i
= ( 1 ).

The Seifert graph X = X(β) can be produced from the fence K = K(β) by individually

collapsing each horizontal row of simplices to a point so that the quotient map q ∶ K → X is

a homotopy equivalence. The chain map q ∶ C(K;Z) → C(X;Z) of cellular chain complexes is

then a chain homotopy equivalence. The diagram

H1(K;Z) ×H1(K;Z)

q∗×q∗ ≅

��

[λ] // Z ⊂ R

H1(X;Z) ×H1(X;Z)

[ψ]

77

is commutative since both [λ] and [µ] compute the Seifert matrix of the Seifert surface of the

link β̂. This is implies that

[λ] = [q−1ψq] ∶H∗(K;Z)→H2−∗(K;Z)↪H2−∗(K;R)

where as before the injection H2−∗(K;Z)↪H2−∗(K;R) is induced by the inclusion Z ⊂ R and
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the universal coefficients theorem. By Lemma 10.4.6 there is a chain homotopy

λ ≃ q−1ψq ∶ C∗(K;Z)→ C2−∗(K;R)

giving a chain homotopy equivalence to Ranicki’s model.

Our model has the advantage over Ranicki’s model in that the concatenation behaviour is

additive and gives an instant chain level Seifert form whereas Ranicki’s model is inductively

defined.



Chapter 11

Applications to isotopy and

signatures

We now define equivalence relations, called A- and Â-equivalence, on the chain level Seifert

pair (λβ , dβ) of a braid β to produce a universal representation of the braid group and a

representation of the braid group modulo conjugacy. We then construct a chain level formula

for the ω-signature of a braid.

11.1 Isotopy of braids and their closures

We first examine the effect of isotopy on the chain level Seifert pair (λβ , dβ), firstly by an

isotopy of β and secondly by an isotopy of its closure β̂ in the solid torus D2 × S1.

Definition 11.1.1. Two square matrices with entries in 1
2
Z ⊂ R are A-equivalent if one can be

transformed into the other by a finite sequence of A-operations defined as follows:

(i)

⎛
⎜⎜⎜⎜⎜
⎝

A 0 0 0

0 λσi 0 0

0 0 λσj 0

0 0 0 B

⎞
⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜
⎝

A 0 0 0

0 λσj 0 0

0 0 λσi 0

0 0 0 B

⎞
⎟⎟⎟⎟⎟
⎠

with ∣i − j∣ ⩾ 2

⎛
⎜⎜⎜⎜⎜⎜
⎝

A 0 0 0

0 λσ−1
i

0 0

0 0 λσ−1
j

0

0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜
⎝

A 0 0 0

0 λσ−1
j

0 0

0 0 λσ−1
i

0

0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟
⎠

with ∣i − j∣ ⩾ 2

(ii)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A 0 0 0 0

0 λσi 0 0 0

0 0 λσj 0 0

0 0 0 λσi 0

0 0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A 0 0 0 0

0 λσj 0 0 0

0 0 λσi 0 0

0 0 0 λσj 0

0 0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with ∣i − j∣ = 1

220
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⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A 0 0 0 0

0 λσ−1
i

0 0 0

0 0 λσ−1
j

0 0

0 0 0 λσ−1
i

0

0 0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

↦

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

A 0 0 0 0

0 λσ−1
j

0 0 0

0 0 λσ−1
i

0 0

0 0 0 λσ−1
j

0

0 0 0 0 B

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

with ∣i − j∣ = 1

(iii)
⎛
⎝
A 0

0 B

⎞
⎠
↦

⎛
⎜⎜⎜⎜⎜
⎝

A 0 0 0

0 λσi 0 0

0 0 λσ−1
i

0

0 0 0 B

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎝
A 0

0 B

⎞
⎠
↦

⎛
⎜⎜⎜⎜⎜
⎝

A 0 0 0

0 λσ−1
i

0 0

0 0 λσi 0

0 0 0 B

⎞
⎟⎟⎟⎟⎟
⎠

⎛
⎜⎜⎜⎜⎜
⎝

A 0 0 0

0 λσ−1
i

0 0

0 0 λσ−1
i

0

0 0 0 B

⎞
⎟⎟⎟⎟⎟
⎠

↦
⎛
⎝
A 0

0 B

⎞
⎠

⎛
⎜⎜⎜⎜⎜
⎝

A 0 0 0

0 λσi 0 0

0 0 λσ−1
i

0

0 0 0 B

⎞
⎟⎟⎟⎟⎟
⎠

↦
⎛
⎝
A 0

0 B

⎞
⎠

We now examine the effect of an A-operation on the chain level Seifert pair (λβ , dβ) of

a braid β. Once we write β as a concatenation of elementary braids then the effect of an

A-operation on λβ is clear from Theorem 10.3.4. It then remains examine the effect of an A-

operation on the differential dβ . We first give a matrix representation for the differential dβi of

an elementary n-strand braid and then examine the effect of concatenation on the differential.

Lemma 11.1.2. The elementary n-strand braid βi has a fence K(βi) with differential

dβi ∶ C1(K(βi);Z)→ C0(K(βi);Z)

represented by the (n + 1) × 2n matrix

(dβi)j,k =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 1 ⩽ k ⩽ i and j = n + k

−1 if 1 ⩽ k ⩽ i and j = i

1 if k = i + 1 and j = n + i + 1

−1 if k = i + 1 and j = n + i

1 if i + 2 ⩽ k ⩽ n + 1 and j = n + k − 1

−1 if i + 2 ⩽ k ⩽ n + 1 and j = n + k − 2

0 otherwise.

Proof. This is the representation with respect to the ordered bases (f1, f2, . . . , fn+1) of C1(K(βi);Z)
and (v1, v2, . . . , v2n) of C0(K(βi);Z) as shown below
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Lemma 11.1.3. Let βiβj be the concatenation of two elementary n-strand braids βi and βj

with fences K(βi) and K(βj).

(i) The decompositions

K(βi) = (K(βi) ∖K(βj)) ⊔ (K(βi) ∩K(βj))

K(βj) = (K(βi) ∩K(βj)) ⊔ (K(βj) ∖K(βi))

imply that the differentials

dβ ∶ C1(K(βi);Z)→ C0(K(βi);Z)

dβ′ ∶ C1(K(βj);Z)→ C0(K(βj);Z)

may be written as

⎛
⎝
d′βi
d′′βi

⎞
⎠
∶ C1(K(βi);Z)→ C0(K(βi) ∖K(βj);Z)⊕C0(K(βi) ∩K(βj);Z)

⎛
⎝
d′βj
d′′βj

⎞
⎠
∶ C1(K(βj);Z)→ C0(K(βi) ∩K(βj);Z)⊕C0(K(βj) ∖K(βi);Z)

where (n + 1) × 2n-matrix representation of dβi from Lemma 11.1.2 induces (n + 1) × n-matrix

representations of d′βi and d′′βi with

(d′βi)k,l = (dβi)k,l, (d′′βi)k,l = (dβi)n+k,l (1 ⩽ k ⩽ n,1 ⩽ l ⩽ n + 1)

and similarly for dβj and d′βj , d
′′
βj

.

(ii) The decomposition

K(βi) ∪K(βj) = (K(βi) ∖K(βj)) ⊔ (K(βi) ∩K(βj)) ⊔ (K(βj) ∖K(βi))

implies that the regular n-strand braid with two crossings βiβj has a fence K(βiβj) with
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differential

dβiβj ∶ C1(K(βiβj);Z)→ C0(K(βiβj);Z)

has a block decomposition

⎛
⎜⎜⎜
⎝

d′βi 0

d′′βi d′βj
0 d′′βi

⎞
⎟⎟⎟
⎠
∶C1(K(βi);Z)⊕C1(K(β′j);Z)→

C0(K(βi) ∖K(βj);Z)⊕C0(K(βi) ∩K(βj);Z)⊕C0(K(βj) ∖K(βi);Z).

Proof. The simplicial complexes K(βi),K(βj) ⊂K(βiβj) intersect in a 0-dimensional simplicial

complex so that

C0(K(βi);Z) = C0(K(βi) ∖K(βj);Z)⊕C0(K(βi) ∩K(βj);Z)

C0(K(βj);Z) = C0(K(βi) ∩K(βj);Z)⊕C0(K(βj) ∖K(βi);Z)

C0(K(βiβj);Z) = C0(K(βi) ∖K(βj);Z)⊕C0(K(βi) ∩K(βj);Z)⊕C0(K(βj) ∖K(βi);Z)

C1(K(βiβj);Z) = C1(K(βi);Z)⊕C1(K(βj);Z)

from which the decomposition of the differentials is clear.

This decomposition may be extended to a concatenation of elementary braids.

Proposition 11.1.4. Let β = β1β2 . . . β` be a regular n-strand braid with ` crossings where

each βi is an elementary n-strand braid. The decompositions

K(βi) = (K(βi) ∖K(βi+1)) ⊔ (K(βi) ∩K(βi+1))

K(βi+1) = (K(βi) ∩K(βi+1)) ⊔ (K(βi+1) ∖K(βi))

imply that the differentials

dβi ∶ C1(K(βi);Z)→ C0(K(βi);Z)

dβi+1 ∶ C1(K(βi+1);Z)→ C0(K(βi+1);Z)

may be written as

⎛
⎝
d′βi
d′′βi

⎞
⎠
∶ C1(K(βi);Z)→ C0(K(βi) ∖K(βi+1);Z)⊕C0(K(βi) ∩K(βi+1);Z)

⎛
⎝
d′βi+1

d′′βi+1

⎞
⎠
∶ C1(K(βi+1);Z)→ C0(K(βi) ∩K(βi+1);Z)⊕C0(K(βi+1) ∖K(βi);Z).

The decomposition

K(β) = ∪`i=1K(βi) = (K(β1) ∖K(β2)) ⊔ (⊔`−1
i=1 (K(βi) ∩K(βi+1))) ⊔ (K(β`) ∖K(β`−1))
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implies β has a fence K(β) with differential

dβ ∶ C1(K(β);Z)→ C0(K(β);Z)

which has a block decomposition

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d′β1
0 . . . 0 0

d′′β1
d′β2

. . . 0 0

0 d′′β2
. . . 0 0

⋮ ⋮ ⋮ ⋮
0 0 . . . d′β`−1

0

0 0 . . . d′′β`−1
d′β`

0 0 . . . 0 d′′β`

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∶

⊕ni=1 C1(K(βi);Z)→ C0(K(β1) ∖K(β2))⊕ (⊕`−1
i=1C0(K(βi) ∩K(βi+1);Z))⊕C0(K(β`) ∖K(β`−1)).

Proof. Follows by induction on ` with the base case ` = 2 given by Lemma 11.1.3 and the

equality

C0(K(βi) ∖K(βi+1);Z) = C0(K(βi−1) ∩K(βi);Z) (2 ⩽ i ⩽ ` − 1).

Corollary 11.1.5. The elementary n-strand braid relations

(i) σiσj = σjσi for ∣i − j∣ ⩾ 2

(ii) σiσjσi = σjσiσj for ∣i − j∣ = 1

(iii) σiσ
−1
i = σ−1

i σi = 1

have the effect of replacing the differentials

(i)

⎛
⎜⎜⎜
⎝

d′σi 0

d′′σi d′σj
0 d′′σj

⎞
⎟⎟⎟
⎠
∶ C1(K(σiσj);Z)→ C0(K(σiσj);Z)

respectively

⎛
⎜⎜⎜⎜
⎝

d′
σ−1
i

0

d′′
σ−1
i

d′
σ−1
j

0 d′′
σ−1
j

⎞
⎟⎟⎟⎟
⎠

∶ C1(K(σ−1
i σ

−1
j );Z)→ C0(K(σ−1

i σ
−1
j );Z)

(ii)

⎛
⎜⎜⎜⎜⎜
⎝

d′σi 0 0

d′′σi d′σj 0

0 d′′σj d′σi
0 0 d′′σi

⎞
⎟⎟⎟⎟⎟
⎠

∶ C1(K(σiσjσi);Z)→ C0(K(σiσjσi);Z)

respectively
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⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

d′
σ−1
i

0 0

d′′
σ−1
i

d′
σ−1
j

0

0 d′′
σ−1
j

d′
σ−1
i

0 0 d′′
σ−1
i

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∶ C1(K(σ−1
i σ

−1
j σ

−1
i );Z)→ C0(K(σ−1

i σ
−1
j σ

−1
i );Z)

(iii)

⎛
⎜⎜⎜
⎝

d′σi 0

d′′σi d′
σ−1
i

0 d′′
σ−1
i

⎞
⎟⎟⎟
⎠
∶ C1(K(σiσ−1

i );Z)→ C0(K(σiσ−1
i );Z)

and

⎛
⎜⎜⎜
⎝

d′
σ−1
i

0

d′′
σ−1
i

d′σi

0 d′′σi

⎞
⎟⎟⎟
⎠
∶ C1(K(σ−1

i σi);Z)→ C0(K(σ−1
i σi);Z)

by the differentials

(i)

⎛
⎜⎜⎜
⎝

d′σj 0

d′′σj d′σi
0 d′′σi

⎞
⎟⎟⎟
⎠
∶ C1(K(σjσi);Z)→ C0(K(σjσi);Z)

respectively

⎛
⎜⎜⎜⎜
⎝

d′
σ−1
j

0

d′′
σ−1
j

d′
σ−1
i

0 d′′
σ−1
i

⎞
⎟⎟⎟⎟
⎠

∶ C1(K(σ−1
j σ

−1
i );Z)→ C0(K(σ−1

j σ
−1
i );Z)

(ii)

⎛
⎜⎜⎜⎜⎜
⎝

d′σj 0 0

d′′σj d′σi 0

0 d′′σi d′σj
0 0 d′′σj

⎞
⎟⎟⎟⎟⎟
⎠

∶ C1(K(σjσiσj);Z)→ C0(K(σjσiσj);Z)

respectively

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

d′
σ−1
j

0 0

d′′
σ−1
j

d′
σ−1
i

0

0 d′′
σ−1
i

d′
σ−1
j

0 0 d′′
σ−1
j

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

∶ C1(K(σ−1
j σ

−1
i σ

−1
j );Z)→ C0(K(σ−1

j σ
−1
i σ

−1
j );Z)

(iii) 0 ∶ C1(K(1);Z) = 0→ C0(K(1);Z)

Definition 11.1.6. Let β and β′ be regular n-strand braids. The chain level Seifert pairs

(λβ , dβ) and (λβ′ , dβ′) are A-equivalent if there exists a finite sequence of A-operations which

transforms both λβ to λβ′ and dβ to dβ′ .

Proposition 11.1.7. The A-equivalence class of the chain level Seifert pair of an n-strand

geometric braid β is an isotopy invariant.

Proof. Two geometric n-strand braids β,β′ are isotopic if and only if they are isotopic to regular

n-strand braids determined by braid words β,β′ from the alphabet {σ±1
1 , σ±1

2 , . . . , σ±1
n−1} such

that β′ can be obtained from β by applying finitely many of the relations
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(i) σiσj = σjσi for ∣i − j∣ ⩾ 2

(ii) σiσjσi = σjσiσj for ∣i − j∣ = 1

(iii) σiσ
−1
i = σ−1

i σi = 1

and their inverses. By Theorem 10.3.4 and Proposition 11.1.4, these relations and their inverses

correspond to transformations (i)-(iii) in the definition of A-equivalence of a chain level Seifert

pair.

The isotopy invariance of the A-equivalence class of the chain level Seifert pair of a braid

yields a universal representation of the braid group.

Theorem 11.1.8. Let n ⩾ 2 and denote by Fn the free group on the set of elementary n-strand

braids {σ1, σ2, . . . , σn−1} and denote by Bn denote the braid group. The map

(λ, d) ∶ Fn → {chain level Seifert pairs}, β ↦ (λβ , dβ)

is a bijection which respects the concatenation of braid words such that words β,β′ ∈ Fn differ

by the relations in the braid group if and only if the chain level Seifert pairs (λβ , dβ), (λβ′ , dβ)
are A-equivalent. This induces a well defined bijection

(λ, d) ∶ Bn →
{chain level Seifert pairs}

A − equivalence
, [β]↦ [(λβ , dβ)]

which is group homomorphism and which determines a commutative diagram

Fn {chain level Seifert pairs}

Bn
{chain level Seifert pairs}

A−equivalence

(λ,d)

≅

(λ,d)

≅

where the vertical maps are quotient maps.

Proof. This follows from Corollary 11.1.5 and Proposition 11.1.7.

Example 11.1.9. Let β be the regular 4-strand braid with 8-crossings represented by the braid

word β = σ1σ3σ2σ1σ
−1
2 σ−1

1 σ−1
3 σ1. The sequence of isotopies

σ1σ3σ2σ1σ
−1
2 σ−1

1 σ−1
3 σ1 = σ3σ1σ2σ1σ

−1
2 σ−1

1 σ−1
3 σ1

= σ3σ2σ1σ2σ
−1
2 σ−1

1 σ−1
3 σ1

= σ3σ2σ
−1
3 σ1

= σ2σ3σ
−1
3 σ1

= σ2σ1

arising from applying the relations of the braid group B4, implies that the chain level Seifert

pairing

λβ ∶ C1(K(β);Z) ×C1(K(β);Z)→ Z[1

2
]
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and differential

dβ ∶ C1(K(β);Z)→ C0(K(β);Z)

is A-equivalent to the chain level pairing

λσ2σ1 =
⎛
⎝
λσ2 0

0 λσ1

⎞
⎠

∶(C1(K(σ2);Z)⊕C1(K(σ1);Z)) × (C1(K(σ2);Z)⊕C1(K(σ1);Z));Z)→ Z[1

2
]

and differential

dσ2σ1 ∶ C1(K(σ2σ1);Z)→ C0(K(σ2σ1);Z)

We now construct a second equivalence relation which corresponds to isotopy of the closure

of a braid inside in the solid torus.

Definition 11.1.10. Two square real matrices with entries in 1
2
Z ⊂ R are Â-equivalent if one

can be transformed into the other by a finite sequence of Â-operations defined as follows:

(i) A-operations

(ii) A↦
⎛
⎜⎜⎜
⎝

λα 0 0

0 A 0

0 0 λα−1

⎞
⎟⎟⎟
⎠

for α an elementary n-strand braid

(iii)

⎛
⎜⎜⎜
⎝

λα 0 0

0 A 0

0 0 λα−1

⎞
⎟⎟⎟
⎠
↦ A for α an elementary n-strand braid

The Â-operations have the following effect on the differential of a fence.

Proposition 11.1.11. Let β = β1β2 . . . β` be a regular n-strand braid with ` crossings where

each βi is an elementary n-strand braid and let α be an elementary n-strand braid. The

conjugacy transformation β ∈ Bn ↦ αβα−1 is such that if the fence K(β) has differential

represented by the block matrix as in Proposition 11.1.4

dβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d′β1
0 . . . 0 0

d′′β1
d′β2

. . . 0 0

0 d′′β2
. . . 0 0

⋮ ⋮ ⋮ ⋮
0 0 . . . d′β`−1

0

0 0 . . . d′′β`−1
d′β`

0 0 . . . 0 d′′β`

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∶ C1(K(β);Z)→ C0(K(β);Z)
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then the fence K(αβα−1) has differential represented by the block matrix

dαβα−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

d′α 0 0 . . . 0 0

d′′α d′β1
0 . . . 0 0

0 d′′β1
d′β2

. . . 0 0

0 0 d′′β2
. . . 0 0

⋮ ⋮ ⋮ d′β` 0

0 0 0 . . . d′′β` d′α−1

0 0 0 . . . 0 d′′α−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

∶ C1(K(αβα−1);Z)→ C0(K(αβα−1);Z)

Proof. Follows from Proposition 11.1.4.

Definition 11.1.12. Let β,β′ be regular n-strand braids. The chain level Seifert pairs (λβ , dβ)
and (λβ′ , dβ′) are Â-equivalent if there exists a finite sequence of Â-operations which transforms

both λβ to λβ′ and dβ to dβ′ .

Proposition 11.1.13. The Â-equivalence class of the chain level Seifert pair of an n-strand

geometric braid β is an isotopy invariant of the closure β̂ inside the solid torus.

Proof. By [KT08, Theorem 2.1] for any regular n-strand braids β,β′ ∈ Bn, the closed braids

β̂, β̂′ are isotopic in the solid torus if and only if β and β′ are conjugate in Bn. The proof is

then similar to the proof of Proposition 11.1.7 but now with the conjugacy of elements in the

braid group corresponding to operations (ii) and (iii) in the definition of Â-equivalence.

The isotopy invariance of the Â-equivalence class of the chain level Seifert pair of a braid

yields a representation of the quotient of the braid group by the conjugacy relation.

Theorem 11.1.14. Let n ⩾ 2 and denote by Fn the free group on the set of elementary n-strand

braids {σ1, σ2, . . . , σn−1} and by let Bn denote the braid group. The map

(λ, d) ∶ Fn → {chain level Seifert pairs}, β ↦ (λβ , dβ)

is a bijection such that conjugate words β,β′ ∈ Bn have chain level Seifert pairs (λβ , dβ), (λβ′ , dβ)
which are Â-equivalent. This induces a well-defined bijection

(λ, d) ∶ Bn
conjugacy

→ {chain level Seifert pairs}
Â − equivalence

, [β]↦ [(λβ , dβ)]

and determines a commutative diagram

Bn
{chain level Seifert pairs}

A−equivalence

Bn
conjugacy

{chain level Seifert pairs}
Â−equivalence

(λ,d)

≅

(λ,d)

≅

Moreover, words β,β′ ∈ Fn differ by the relations in the braid group plus conjugacy if and only

if the chain level Seifert pairs (λβ , dβ), (λβ′ , dβ) are Â-equivalent so that there is commutative

diagram
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Fn {chain level Seifert pairs}

Bn
conjugacy

{chain level Seifert pairs}
Â−equivalence

(λ,d)

≅

(λ,d)

≅

which factors as

Fn {chain level Seifert pairs}

Bn
{chain level Seifert pairs}

A−equivalence

Bn
conjugacy

{chain level Seifert pairs}
Â−equivalence

(λ,d)

≅

(λ,d)

≅

(λ,d)

≅

.

Proof. Follows from Theorem 11.1.8 and Proposition 11.1.13.

11.2 Signatures of braids

We now use the chain level Seifert pair (λβ , dβ) of a braid β to give a chain level combinatorial

formula for the ω-signature of a braid.

Definition 11.2.1. If L is an oriented link with Seifert matrix V then the signature of L is the

signature σ(L) of the symmetric form (H1(Σ;Z), V +V t). For a unit complex number ω ≠ 1 the

ω-signature of L is the signature σω(L) of the hermitian form (H1(Σ;C), (1−ω)V +(1−ω)V t).

The −1-signature of an oriented link is the same as its signature.

Proposition 11.2.2. [Rol90, p.219] For an oriented link L and a unit complex number ω ≠ 1

the value σω(L) does not depend on the choice of Seifert surface for L.

The signature of a link may also be interpreted as the signature of a 4-manifold with bound-

ary.

Proposition 11.2.3. [KT76] Let L ⊂ S3 be a link with Seifert surface Σ ⊂ S3 = ∂D4. Keeping

the boundary of Σ fixed in S3, push Σ inside D4 to form a new surface Σ′ with boundary L.

If W is the two-fold branched cover of D4 branched along Σ′ then W is an oriented 4-manifold

with boundary such that ∂W is a 2-fold cover of S3 branched over L. Moreover, there exists a

choice of basis such that the intersection form on H2(W ) is represented by the matrix V + V t

so that σ(L) = σ(W ).

Definition 11.2.4. If β is braid and if ω ≠ 1 is a unit complex number then the ω-signature

of β is the ω-signature σω(β) of the oriented link β̂.

Example 11.2.5. From Example 10.2.4 the 2-strand braid β = σ1σ1σ1 with closure β̂ the

trefoil knot has Seifert matrix V and symmetrisation V + V t given by

V =
⎛
⎝
−1 0

1 −1

⎞
⎠
, V + V t =

⎛
⎝
−2 1

1 −2

⎞
⎠
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so that σ(β) = −2.

Theorem 11.2.6. Let β be a braid with chain level Seifert pair (λβ , dβ) and let ω ≠ 1 be a unit

complex number. The ω-signature of β may be expressed on the chain level as the signature of

the hermitian form

⎛
⎝
C1(K(β);C)⊕C0(K(β);C),

⎛
⎝

(1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0

⎞
⎠
⎞
⎠

so that

σω(β) = σ
⎛
⎝
⎛
⎝

(1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0

⎞
⎠
⎞
⎠
.

Proof. The C-coefficients chain level Seifert pair λβ ∶ C1(K(β);C) × C1(K(β);C) → C deter-

mines a commutative diagram

0 C0(K(β);C)

C1(K(β);C) C1(K(β);C)

C0(K(β);C) 0

0

0 d∗β

(1−ω)λβ+(1−ω)λ
t
β

dβ

0

.

The algebraic lemma of [RS76, p.26] implies that the signature of the hermitian form

(H1(K(β);C), (1 − ω)V + (1 − ω)V t)

is equal to the signature of the hermitian form

⎛
⎝
C1(K(β);C)⊕C0(K(β);C),

⎛
⎝

(1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0

⎞
⎠
⎞
⎠

and hence

σω(β) = σ
⎛
⎝
⎛
⎝

(1 − ω)λβ + (1 − ω)λtβ dtβ
dβ 0

⎞
⎠
⎞
⎠
.

This chain level formula shows that the signature of a braid is not additive under the

concatenation of braids.

Corollary 11.2.7. Let ω ≠ 1 be a unit complex number. The ω-signature concatenation defect

σω(ββ′) − σω(β) − σω(β′)

is equal to the difference in signature between the block matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ d′tβ d′′tβ 0 0

d′β 0 0 0 0

d′′β 0 0 0 d′β′

0 0 0 0 d′′β′

0 0 d′tβ′ d′′tβ′ (1 − ω)λβ′ + (1 − ω)λtβ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
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and the block matrix

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ d′tβ d′′tβ 0 0 0

d′β 0 0 0 0 0

d′′β 0 0 0 0 0

0 0 0 0 0 d′β′

0 0 0 0 0 d′′β′

0 0 0 d′tβ′ d′′tβ′ λβ′ + λtβ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

where we have decomposed the differential of K(ββ′) in terms of the differentials of K(β) and

K(β′) as in Proposition 11.1.4.

Proof. By Proposition 10.3.3 the chain level Seifert pairing for the concatenation ββ′ is repre-

sented by the block diagonal matrix

λββ′ =
⎛
⎝
λβ 0

0 λβ′

⎞
⎠

so that there is an equality of block matrices

⎛
⎝

(1 − ω)λββ′ + (1 − ω)λtββ′ dtββ′

dββ′ 0

⎞
⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ 0 d′tβ d′′tβ 0

0 λβ′ + λβ′ t 0 d′tβ′ d′′tβ′

d′β 0 0 0 0

d′′β d′β′ 0 0 0

0 d′′β′ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

One can then perform identical row and column exchanges to find a congruence

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ 0 d′tβ d′′tβ 0

0 (1 − ω)λβ′ + (1 − ω)λβ′ t 0 d′tβ′ d′′tβ′

d′β 0 0 0 0

d′′β d′β′ 0 0 0

0 d′′β′ 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

≃

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ d′tβ d′′tβ 0 0

d′β 0 0 0

d′′β 0 0 0 d′β′

0 0 0 0 d′β′

0 0 d′tβ′ d′′tβ′ (1 − ω)λβ′ + (1 − ω)λtβ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

so that by Theorem 11.2.6

σω(ββ′) = σ
⎛
⎝
λββ′ + λtββ′ dtββ′

dββ′ 0

⎞
⎠
= σ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − ω)λβ + (1 − ω)λtβ d′tβ d′′tβ 0 0 0

d′β 0 0 0 0 0

d′′β 0 0 0 0 d′β′

0 0 0 0 0 d′β′

0 0 0 d′tβ′ d′′tβ′ λβ′ + λtβ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.
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On the other hand, there is an equality and congruence of block matrices

⎛
⎝

(1 − ω)λβ′ + (1 − ω)λtβ′ dtβ′

dβ′ 0

⎞
⎠
=
⎛
⎜⎜⎜
⎝

(1 − ω)λβ′ + (1 − ω)λtβ′ d′tβ′ d′′tβ′

d′β′ 0 0

d′′β′ 0 0

⎞
⎟⎟⎟
⎠
≃
⎛
⎜⎜⎜
⎝

0 0 d′β′

0 0 d′β′

d′tβ′ d′′tβ′ λβ′ + λtβ′

⎞
⎟⎟⎟
⎠

so that

σω(β) + σω(β′) = σω
⎛
⎝
λβ + λtβ dtβ
dβ 0

⎞
⎠
+ σ

⎛
⎝
λβ′ + λtβ′ dtβ′

dβ′ 0

⎞
⎠

= σ

⎛
⎜⎜⎜⎜⎜
⎝

λβ + λtβ dtβ 0 0

dβ 0 0 0

0 0 λβ′ + λtβ′ dtβ′

0 0 dβ′ 0

⎞
⎟⎟⎟⎟⎟
⎠

= σ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

λβ + λtβ d′tβ d′′tβ 0 0 0

d′β 0 0 0 0 0

d′′β 0 0 0 0 0

0 0 0 0 0 d′β′

0 0 0 0 0 d′β′

0 0 0 d′tβ′ d′′tβ′ λβ′ + λtβ′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

11.3 An open question

One would wish to find an elementary closed form expression for the ω-signature concatenation

defect, but this is not possible in general. In the spirit of [KT76] Gambaudo and Ghys [GG05]

constructed from n-strand braids β,β′ an oriented, compact, connected 4-manifold M(β,β′)
of signature zero in such that way that M(β,β′) can be obtained by glueing three oriented

4-manifold manifolds C(β),C(β′),C(ββ′) with signatures which satisfy

σ(C(β)) = σ(β), σ(C(β′)) = σ(β′), σ(C(ββ′)) = σ(ββ′).

They extended this to an equivariant version for branched cyclic covers where there is an action

of Zk on M(β,β′),C(β),C(β′), C(ββ′) which respects the decomposition of M(ββ′) and used

an equivariant version of Wall’s non-additivity theorem for the signature [Wal69] to express

the ω-signature concatenation defect in in terms of the Meyer cocycle and the Burau-Squier

hermitian representation of the braid group Bω ∶ B∞ → Sp(∞,R). Bourrigan [Bou13] gave a

different proof using infinite cyclic covers.

Theorem 11.3.1. ([GG05, Theorem A], [Bou13, Chapter V]). Let ω ≠ 1 be a root of unity.

The ω-signature of the concatenated braid ββ′ is related to the ω-signature of the braids β,β′

by

σω(ββ′) = σω(β) − σω(β′) −Meyer(Bω(β),Bω(β′)).

This suggests the following:
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Open question: Is it possible to use the chain level Seifert pair (λβ , dβ) of a braid and the

L-theory techniques of [Ran98] to express the ω-signature concatenation defect in terms of an

L-theoretic analogue of the Meyer cocycle?
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