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51. INTRODUCTION AND IMAIN THEOREMS 

LETL bea tame link in S3 and VL(f) the Jones polynomial of L defined in [Z]. For a projection 

E of L, c(L) denotes the number of double points in L and c(L) the minimum number of 

double points among all projections of L. 

A link projection t is called proper if L does not contain “removable” double points 
-. 

like ,<_: or /.+_, . \/;‘I 

In this paper, we will prove some of the outstanding classical conjectures due to 

P.G. Tait [7]. 

THEOREM A. (P. G. Tait Conjecture) Two (connected and proper) alternating projections of 

an alternating link have the same number of double points. 

THEOREM B. The minimal projection of an alternating link is alternating. In other words, an 

alternating link always has an alternating projection that has the minimum number of double 

points among all projections. Moreover, a non-alternating projection of a prime alternating link 

cannot be minimal. 

The primeness is necessary in the last statement ofTheorem B, since the connected sum of 

two figure eight knots is alternating, but it has a minimal non-alternating projection. Note 

that the figure eight knot is amphicheiral. 

Theorems A and B follow easily from Theorems l-4 (stated below) which show strong 

connections between c(L) and the Jones polynomial Vr(t). 

Let d maxVL(t) and d,i,v~(t) denote the maximal and minimal degrees of V,(t), 

respectively, and span V,(t) = d,,, Vr(t) - d,;,VL(t). 

THEOREM 1. For any projection E of a link L, 

span V,(t) I c(L)+;.- 1, (I) 

where i is the number of connected components of L, and therefore, if L has i. split 

components, then 

span VL(t) I c(L)+i.- 1. (2) 

If L is an alternating link, then we are able to prove the following: 

l The work was done while the author was visiting at the University of Geneva, Switzerland. This research was 
partially supported by NSERC-No. A4034. 
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THEOREM 2. If L is a connected proper alternating projection of an alternating link L, then 

span V,(t) = c(L). (3) 

(1) and (3) now yield that for any alternating link with j. split components, 

span V,(t) = c(L) + i - 1. (4) 

If L is prime, we can prove the converse of Theorem 2. In fact, we have 

THEOREM 3. Let L be a prime link. Then for any non-alternating projection L of L, 

span V,(t) c c(2). (5) 

We should note that the primeness is necessary in Theorem 3, since the equality in (5) 

holds for a non-alternating projection of the square knot. 

Using Theorems 2 and 3 we are able to give the complete characterization of links for 

which (4) holds. 

THEOREM 4. Let L be a non-split link. Then (4) holds for L if and only if L is the connected 

sum of alternating links. 

Besides Theorems A and B, these Theorems 1-4 yield several other consequences. 

COROLLARY 5. If a knot K is alternating and amphicheiral, then any proper alrernating 

projection has an even number of double points. 

Proof. Let K* be the mirror image of K. Then V&t) = V,(t-‘), [Z]. Since K = K*, 

VK(t) is symmetric and hence, span VK(f) is even and Corollary 5 follows from Theorem 2. 

COROLLARY 6. If L1 and Lt are alternating links, then 

c(L, # LJ = c(L,) + c(Lz), 

where # means the connected sum. 

This solves Problem 1 in [l] for alternating links. 

Corollary 6 follows from (4) and Theorem 4 since 

span VL,xr,(t) = span v,,(t) + span v&). 

To state the final corollary, we define the twist number w at each double point v in a 

projection 2 as indicated in Fig. 1. 

w v w Define NJ(~) = V;L ( ), h ere the summation is taken over all double points in L. 

\ 

/ 
” 

\ 
w(v)=+ 1 

\ / 
l 

w(v) = - 1 

Fig. 1. 
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COROLLARY I. Let e, and L2 be proper alternating projections of a special alternating 

link L. Then w(L1) = w(i.1). 

Proof. Since L is special alternating, any proper alternating projection must be proper 

special alternating [j]. Therefore, M!(Ei) = c(zi) or -c(&), i = 1, 2, and hence, w(E,) 

= L(:(E~) or - w(&). However, the sign of the signature of L is determined by the sign of 

M.(L) of any special alternating projection l of L, [S]. Therefore, w(L,) = w(L2), q.e.d. 

Corollary 7 shows that W(R) is a knot type invariant as long as we consider a special 

alternating knot K and its proper alternating projections. It is still not known whether or not 

b\‘(R) is a knot type invariant when K is an alternating knot and R a proper alternating 

projection. 

Proofs of Theorems l-4 will be given in the next two sections. 

This work is inspired by the work of L. Kauffman [4] and conversations with C. Weber 

of the University of Geneva, to whom I would like to express my gratitude. 

After submitting the paper, I learned that M. B. Thistlethwaite also obtained the same 

results using a completely different method [8]. 

Finally, I would like to thank the referee for his invaluable suggestions. 

$2. PROOF OF THEOREM 1 

We use the bracket polynomial PL(A) defined by L. Kauffman [4] rather than the original 

Jones polynomial. 

For a projection L of a link L, Pt(A) is defined recursively by using the following 

fundamental identities (6~(8): 

(6) If t = 0, then PL(A) = 1. 

(7) If E is the disjoint union of two link projections Li and 2, then 

P&4) = - (A2 + A-2)P&4)P&4). 

(8) If L,‘LO and L, are completely identical projections except at a small neighborhood of 

one crossing in t, where they are related by the diagrams below, then 

Pt(A) = AP,JA) + A -‘PL*(A). 

It is shown that Pi(A) is uniquely determined by these identities. However, PL(A) may be 

different from Pt.(A) for another projection L’ of the same link. Nevertheless, PL(A) and the 

Jones polynomial V,(t) are related by the following formula [4]: 

I’,(t) = (- t3/4)NOp,(t- l/4), (9) 

where w(t) is the integer defined in Section 1. 

Since span V,(t) = span Pt(t - ‘j4) = span Pt(t”4) = l/4 span PL(t) = l/4 span PL(A), to 

prove Theorem 1 it is sufficient to show the following: 

Fig. 2. 



190 Kunio Murasugi 

For any connected projection 1 of a link L, 

span Pi(A) 1.4c(L). (10) 

Proofof(l0). Let 2 be a proper connected projection of L in S’. t divides S2 into finitely 

many domains, which we will classify as shaded or unshaded. Let r be the graph of a link 

projection L such that each vertex of I- corresponds to an unshaded domain and each edge of 

r corresponds to a double point of E. We call an edge e of I- positive or negative according to 

the diagrams shown in Fig. 3. 

We should note that t is alternating if and only if either all the edges of r are positive 

or all the edges are negative. A graph r is called oriented if every edge is either positive or 

negative. 

Let p and n be the number of positive and negative edges in I-, respectively, and hence 

p+n = c(L). 

Now to evaluate PL(A), we have to smooth a double point on an edge e. For convenience, 

we call these smoothings parallel or transverse according to the diagrams shown in Fig. 4. 

When we apply either a parallel or a transverse smoothing on every edge in r, we obtain a 

trivial link of several components, and Pi(A) is the sum of the bracket polynomials of these 

links multiplied by A’ with some integer k. In order to obtain a more precise formula of 

Pt(A), we will use the folllowing notation in the rest of the paper. 

For an oriented graph I-, we denote by r* the dual graph of r which is oriented in such a 

way that an edge e* in r* is positive (or negative) if and only if e* intersects a positive (or 

negative) edge in I-. 

I- + and I’_ denote, respectively, the subgraphs of r that consist of all positive edges and 

their end vertices, and of all negative edges and their end vertices. 

For integers a and b,O I a I p and 0 < b I n, pr(a, b) denotes the link projection 

obtained from the link projection with I- as its oriented graph, by applying parallel 

smoothings on exactly a positive edges and b negative edges, and by applying transverse 

smoothings on p - a positive edges and n - b negative edges in I-. (,?r(a, b) is called a state 

in [4].) _@ r(a, b) is a trivial link. For each pair (a, b), there exist 
P n 

00 a b 
such trivial links. Let 

S(a, b) denote the collection of these links. 

(a) Positive 

Fig. 3. 

(a) Parallel 

(b) Negative 

(b) Transverse 

Fig. 4. 
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Let /~~(a, b) (or ~(a, 6) when no confusion may occur) be the maximal number of 

components a link in S(a, b) can have. For each of the following pairs (a, b) = (0, 0), (p, 0), 

(0, n) and (p, n), S(a, b) consists of only one link and we know that ~(0, 0) and ~(p, n) are, 

respectively, the number of vertices of I and that of r*, and hence p (0,O) + p (p, n) - 2 is the 

number of edges in r. 

First we prove the following: 

LEMMA 1. For any integers a and 6, 0 I a 5 p and 0 2 b I n, ,u(a. b)+ a + b is an 

increasing function of a and b, and /c(a, b) - a - b is a decreasing function of a and 6. 

Proof. If we change a transverse smoothing to a parallel smoothing, or vice versa, the 

number of components of the resulting trivial link increases or decreases by one. Therefore, 

/~(a+ 1, b)-~(a, b)l I 1, and 

I~(a,b+l)-~(a,b)l 5 1, (11) 

and hence, we have 

(1) P(u+1,6)+1 2~(a,b)2~(u+l,b)--1, 

(2) ~(a, 6 + 1) + 1 2 ~(a, b) 2 p(a, b + 1) - 1. 

An easy induction now gives us a proof of Lemma 1. 

Using Lemma 1, we can see that 

(1) p(O,n)+n-bkp(O,b)2p(u,b)-a, 

(2) P(P, 0) + P - a 2 p(a, 0) 2 ~(a, b) -b. 

Now let b,(r) denote the ith Betti number of a graph I as a l-complex. 

LEMMA 2. If r is the graph of L, then 

(1) /h&O) = b,u-+)+b,C)+ 1, 

(2) p(O,n) = ho--)+b,W+ 1, 

(14 

(13) 

(14) 

and hence 

(3) ~(p,O)+~(O,n)Ic(~)+2. 

Proof: Since p(p, 0) and ~(0, n) are dual, it may suffice to prove (14) (1). 

To compute ~(p, 0), we first remove all negative edges (but no vertices) from r, and 

denote by To the resulting (possibly disconnected) planar subgraph of r. Then the 

boundary of a regular neighborhood of To in S ’ is exactly the trivial link k,(p, 0). 

Therefore, p( p, 0), the number of components of 2 r( p, 0) is given by b, (r,) + b,, (I’,). Since 

b,(r,) = rank H,(r,), i = O,l, we have b,(T,) = b,(r+), and b,(T,) = bi(S’- r,)+ 1 yields 

b,(T,) = b,(I?)+ 1. This proves (14) (1). 

TO show (14) (3), note that ,u(p, n) is the number of boundary components of a regular 

neighborhood of r(= r+ u r-) in S’. Since b,(F+ n r_) = 0, we have b,(r,)+ bI(T_) 
I b,(r). Furthermore, since r is connected and p(p, n) = b,(T)+ b,(r), it follows that 

bl(T+)+bI(T-)+l Ip(p,n). Similarly, b,(r~)+b,(I?)+l Ip(O,O), and therefore, 

p@, 0) + ~(0, n) 5 ~(p, n) + ~(0, 0) = c(E) + 2. This proves Lemma 2. 
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We now return to the proof of (10). Repeated applications of (6~(8) give us the following: 

pL(~) = C ~-~+(p-d~b-(n-W{ _ (~2 +/y’)}lS’i-I, 

P 
(13 

where the summation runs over all trivial link diagrams _@ in S(a, b), and 0 I a _< p and 

0 I b I n, and 121 denotes the number of components of 2. Since I ?I I ~(a, b), 

by definition, in (lj), we see that 

d,,,Pr(A) I max {p-n-2a+26+2g(a, b)-2j and 
(1. b 

d,i,P L (A) 2 min {p - n - 2a + 2b - 2,u(a, b) + 2). 
o. b 

However, (13) shows that 

2p(a,b)-2a+2b-ZnI2p(O,n), and 

and hence 

- 2p(u, b) - 2u + 2b 2 - 2p(p, 0) - Zp, 

d,,,P i(A) I p + n -t 2/r(O, n) - 2, and 

d,i”Pi(A) 2 -p-n-2/l@, 0)+2. 

Using (14) (3), we obtain finally 

spanPL(A) 22 2(p+n)+2p(O,n)+2p(p,O)-4 

5 2c(L)+2(c(i)+2j-4 

= 4c(L). 

This proves (10) and the proof of Theorem 1 is now complete. 

(16) 

(17) 

(18) 

$3. PROOFS OF THEOREiMS 2-4 

We will use the same notation used in Section 2. 

Proof of Theorem 2. Let L be a non-split alternating link and t a proper connected 

alternating projection. We may assume without loss of generality that all edges of the graph I- 

of L are positive. Therefore, I-+ = randI-_ =4,andhence,p=c(l)andn=O(andb=O). 

Now to prove Theorem 2 we must show that 

(1) d,,,P#l) = p + 2~(0,0) - 2, and 

(2) d,i,P,(A) = -P-2P@, o)+2. (19) 

However, to prove (19X it suffices to show that each of Ap+zp(o~o)-2 and A-P-Zafp*0)+2 

appears exactly once in the summation (15). [See (17).] In other words, it is enough to show 

that 

(1) P(O,O) > 1(&0)-a, for 0 c a S p, and 

(2) p(p.O)+p>~(u,O)-t-a, for OSn-cp. (20) 

Now we know that p(O,O) = v(T), the number of vertices in I-, and p(p, 0) = v(T*) the 

number of vertices in r*, and further since L is proper, we see easily from the definition that 

p(l,O) = v(T)- 1 and hence trivially p(O,O) > p(l,O)-1. Since p(u,O)-a is a decreasing 
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function of a (Lemma l), it follows that ~(0, 0) > ,u( 1, 0) - 1 2 ~(a, 0) - a, for 0 < a I p. This 

proves (20) (1). 

Similarly, since L is proper, ~(p, 0) = ~(p - 1, 0) + 1 and trivially p(p, 0) + 1 > ,~(p - 1,O). 

Since p (a, 0) + a is an increasing function of a, it follows that p ( p, 0) + p > ,u ( p - 1,0) + p - 1 

2 ,~(a, 0) + a, for 0 I a < p. This proves (20) (2), and the proof of Theorem 2 is complete. 

Remark. We actually proved that for an alternating link L, the coefficients of the terms of 

V’,(t) of maximal and minimal degrees are + 1 or - 1. (See [S].) 

Another proof of Theorem 2 is also given in [S]. 

Proof of Theorem 3. We may assume that 2 is connected and proper. Let I be the graph 

of L. If l’- has a cut vertex, then l’- is the one-point union of two subgraphs I-i and r2. Let E, 

and J?, be the link projections whose graphs are I-i and Tz, respectively. Then L is the 

connected sum of two links L, and L, whose projections are Li and L,, respectively. Since L 

is prime, one of Li, say L,, is unknotted, and hence, V,(t) = VL,(t). Therefore, Theorem 1 

yields that span V,(r) = span Vr,(t) I c(t,) < c(E,)+c(L,) = c(L), since ~(2,) 7 0. 

Therefore, we may assume that T has no cut vertices. 

Now suppose span V,(t) = c(t). Then span Pz(,4) = 4c (I), and hence, as we have seen in 

theproofofTheorem 1, wemust have theequalityin (14) (3).Therefore,b,(T_) +b,(T_)+ 1 

= ,u(p, n) and b,(T*_) +b,(r*_)+ 1 = p(O,O). However, the first equality (and hence the 

second equality as well) holds if and only if b, (r,) + b, (r_) = b, (r). This is possible only if 

I is a positive or negative graph. Therefore, E must be an alternating projection. This proves 

Theorem 3. 

Proof of Theorem 4. If a non-split link L is the connected sum of alternating links Li, 

i=l,2,..., k, then L has a connected proper projection L and each Li has a connected 

proper alternating projection Ei such that 

k 

c(L) = 2 C(Li). 
1=1 

Since 

span PL(A) = i span Pi,(A), 
i=l 

it follows from (3) that 

span VL(t) = t span V,(t) = i c(Zi) = c(L). 
i= 1 i=l 

Conversely, if span PL(A) = 4c(z) for some connected proper projection E of a link L, 

then, as we have seen in the proof of Theorem 3, the equality in (14) (3) must hold; therefore, r 

is either a positive or negative graph, or r has cut vertices ui, . , u, which separate r into 

positive and/or negative graphs. Therefore, L is the connected sum of (positive or negative) 

alternating links. This proves Theorem 4. 

REFERENCES 

1. J. C. HAUSMANN (ed.): Knot theory, Proceedings flans-sur-vex, Switzerland, Springer Lecture !Votes in 
Mathemntics 685 (1977). 

2. V. F. R. JONES: A polynomial invariant for knots via van Neumann algebras, Bull. rl.MS. 89 (1985). 103-l 11. 



194 Kunio Murasugi 

3. L. H. KAUFFMAN: Formal knot theory. Lecture Notes 30, Princeton University Press, Princeton, 1983 

4. L. H. KAUFFMAN: State models for knot polynomials, to appear. 

5. K. MURASUG~: On a certain numerical invariant of link types, Trans. A.!fS. 117 (1965). 387-422. 

6. K. M URASUCI: Jones polynomials of alternating links, Trans. AIMS. 295 (1986). 147-174. 

7. P. G. TAIT: On knots, Scienrific paper I, 273-347, Cambridge University Press, London, 1898. 

8. M. B. THISTLETHWAITE A spanning tree expansion of the Jones polynomial, to appear. 

University of Toronto, 

Toronto, Canada, 

MSSlAl. 


