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Preface 

A number of sophisticated people tend to disparage category theory as 
consistently as others disparage certain kinds of classical music. When obliged. 
to speak of a category they do so in an apologetic tone, similar to the way some 
sa,y, “I t  was a gift-I’ve never even played it” when a record of Chopin 
Nocturnes is discovered in their possession. For this reason I add to the usual 
prerequisite that the reader have a fair amount of mathematical sophistication, 
the further prerequisite that he have no other kind. 

Functors, categories, natural transformations, and duality were introduced 
in the early 1940’s by Eilenberg and MacLane [ 10,11]. Originally, the purpose 
of these notions was to provide a technique for clarifying certain coficepts, 
such as that of natural isomorphism. Category theory as a field in itself lay 
relatively dormant during the following ten years. Nevertheless some work was 
done by MacLane [28, 291, who introduced the important idea of defining 
kernels, cokernels, direct sums, etc. , in terms of universal mapping properties 
rather than in terms of the elements of the objects involved. MacLane also 
gave some insight into the nature of the duality principle, illustrating it with 
the dual nature of the frees and the divisibles in the category of abelian groups 
(the projectives and injectives, respectively, in that category). Then with the 
writing of the book “Homological Algebra” by Cartan and Eilenberg [6], it 
became apparent that most propositions concerning finite diagrams of 
modules could be proved in a more general type of category and, moreover, 
that the number of such propositions could be halved through the use of 
duality. This led to a full-fledged investigation of abelian categories by 
Buchsbaum [3] (therein called exact categories). Grothendieck’s paper [20] 
soon followed, and in it were introduced the important notions of A.B.5 
category and generators for a category. (The latter idea had been touched on 
by MacLane [29] .) Since then the theory has flourished considerably, not only 
in the direction of generalizing and simplifying much of the already known 
theorems in homological algebra, but also in its own right, notably through 
the imbedding theorems and their metatheoretic consequences. 

In Chapters 1-111 and V, I have attempted to lay a unified groundwork 
for the subject. The other chapters deal with matters of more specific interest. 
Each chapter has an introduction which gives a summary of the material to 
follow. I shall therefore be brief in giving a description of the contents. 

In Chapter I, certain notions leading to the definition of abelian category 
are introduced. Chapter I1 deals with general matters involving diagrams, 
limits, and functors. In the closing sections there is a discussion of generators, 

vii 
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projectives, and small objects. Chapter I11 contains a number of equivalent 
formulations of the Grothendieck axiom A.B.5 (herein called C,) and some of 
its consequences. In particular the Eckmann and Schopf results on injective 
envelopes [8] are obtained. Peter Freyd’s proof of the group valued imbedding 
theorem is given in Chapter IV. The resulting metatheorem enables one to 
prove certain statements about finite diagrams in general abelian categories 
by chasing diagrams of abelian groups. A theory of adjoint functors which 
includes a criterion for their existence is developed in Chapter V. Also 
included here is a theory of projective classes which is due to Eilenberg and 
Moore [ 121. The following chapter is devoted to applications of adjoints. 
Principal among these are the tensor product, derived and coderived functors 
for group-valued functors, and the full imbedding theorem. The full imbedding 
theorem asserts that any small abelian category admits a full, exact imbedding 
into the category of R-modules for some ring R. The metatheory of Chapter IV 
can thus be extended to theorems involving the existence of morphisms in 
diagrams. Following Yoneda [36], in Chapter VII we develop the theory of 
Ext in terms of long exact sequences. The exactness of the connected sequence 
is proved without the use of projectives or injectives. The proof is by Steven 
Schanuel. Chapter VIII contains Buchsbaum’s construction for satellites of 
a.dditive functors when the domain does not necessarily have projectives [5]. 
The exactness of the connected sequence for cosatellites of half exact functors 
is proved in the case where the codomain is a C, category. In  Chapter I X  we 
obtain results for global dimension in certain categories of diagrams. These 
include the Hilbert syzygy theorem and some new results on global dimension 
of matrix rings. Here we find the main application of the projective class 
theory of Chapter V. Finally, in Chapter X we give a theory of sheaves with 
values in a category. This is a reorganization ofsome work done by Gray [ 191, 
and gives a further application of the theory of adjoint functors. 

We shall be using the language of the Godel-Bernays set theory as presented 
in the appendix to Kelley’s book “General Topology” [25]. Thus we shall be 
distinguishing between sets and classes, where by definition a set is a class which 
is a member of some other class. A detailed knowledge of the theory is not 
essential. The words farnib and collection will be used synonymously with the 
word set. 

With regard to terminology, what has previously been called a direct 
product is herein called a product. In the category of sets, the product of a 
family is the Cartesian product. Generally speaking, if a notion which com- 
mutes with products has been called a gadget, then the dual notion has been 
called a cogadget. In particular what has been known as a direct sum here goes 
under the name of coproduct. The exceptions to the rule are monomorphism- 
epimorphism, injective-projective, and pullback-pushout. In these cases 
euphony has prevailed. In any event the words left and right have been 
eliminated from the language. 
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The system of internal references is as follows. Theorem 4.3 of Chapter V is 
referred to as V, 4.3 if the reference is made outside of Chapter V, and as 
4.3 otherwise. The end of each proof is indicated by 1. 

I wish to express gratitude to David Buchsbaum who has given me much 
assistance over the years, and under whose supervision I have worked out a 
number of proofs in this book. I have received encouragement from MacLane 
on a number of occasions, and the material on Ext is roughly as presented 
in one of his courses during 1959. The value of conversations with Peter 
Freyd cannot be overestimated, and I have made extensive use of his very 
elegant work. Conversations with Eilenberg, who has read parts of the 
manuscript, have helped sharpen up some of the results, and have led to the 
system of terminology which I have adopted. In  particular he has suggested 
a proof of IX, 7.2 along the lines given here. This has replaced a clumsier 
proof of an earlier draft, and has led me to make fairly wide use of the pro- 
jective class theory. 

This book has been partially supported by a National Science Foundation 
Grant at Columbia University. 

I particularly wish to thank Miss Linda Schmidt, whose patience and 
accuracy have minimized the difficulties in the typing of the manuscript. 

B. MITCHELL 
Columbia University, New York 

May, 1964 
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CCHAPTER I] 

Prelim in aries 

Introduction 

In  this chapter the basic notions and lemmas involving finite diagrams are 
given. These notions are equalizers, pullbacks, intersections, unions, images, 
inverse images, kernels, normality, products, and the duals of these. In  
general, the material is organized in such a way as to lead up to a very eco- 
nomical characterization of abelian categories (20.1) although some of the 
propositions will not be needed until much later. In  the last section we give a 
discussion of the category of abelian groups, and the technique of diagram 
chasing is illustrated with the 5 lemma. 

1. Definition 

A category is a class d, together with a class A which is a disjoint union 
of the form 

A = u [A,B],. 
( A , B ) € d X d  

To avoid logical difficulties we postulate that each [A,  B], is a set (possibly 
void. When there is danger of no confusion we shall write [A ,  B] in place of 
[A, B],.) Furthermore, for each triple ( A ,  B, C )  of members of d we are to 
have a function from [B, C ]  x [A,  B ]  to [A, C ] .  The image of the pair (8, a)  
under this function will be called the composition of /I by a ,  and will be 
denoted by pa .  The composition functions are subject to two axioms. 

(i) Associativity : Whenever the compositions make sense we have 

(ii) Existence of identities: For each A E&’ we have an element 1, E [A, A] 
such that l A a  = a and /31A = /3 whenever the compositions make sense. 

The members of d are called objects and the members of A are called 
morphisms. If a E [ A ,  B] we shall call A the domain of a and B the 

(rB). = r(B.). 

1 



2 I. PRELIMINARIES 

codomain, and we shall say “ a is a morphism from A to B.” This last state- 

ment is represented symbolically by “ a  : A +B,” or sometimes “ A +  B.” 
When there is no need to name the morphism in question, we shall simply 
write A + B .  

Observe that 1, can be the only identity for A,  for if e is another we must 
have e =el, = 1,. We sometimes write 1, : A = A  in the case of identity 
morphisms. 

I f d  is a set, then the category will be called small. In  this case A, being a 
union of sets indexed over a set, is also a set. 

We shall commit a common notational inconsistency in denoting the above 
category by the underlying class d. 

a 

2. The Nonobjective Approach 

Reluctant as we are to introduce any abstraction into the theory, we must 
remark that there is an alternative definition for category which dispenses 
with the notion of objects. A category can be defined as a class A, together 
with a binary operation on A, called composition, which is not always 
defined (that is, a function from a subclass of d x A to A). The image of 
the pair (8, a )  under this operation is denoted by pa (if defined). An element 
e E A is called an identity if eu = a and ,Re = #? whenever the compositions 
are defined. We assume the following axioms : 

(1) If either (yp )  u or y(/3u) is defined, then the other is defined, and they are 

(2) If y/? and pa are defined and #? is an identity, then ya is defined. 
(3) Given a E A, there are identities e,  and t?R in A? such that e ,a  and aeR are 

(4) For any pair ofidentities eL and eR,  the class {a E ( e L a ) e R  is defined} is a 

Clearly our first definition of category gives us a category of the second type. 
Conversely, given a class A satisfying the postulates (1) to (4), we proceed to 
show how this can be associated with a category of the first type. We index 
the class of identities in A by a class d, denoting the identity corresponding 
to il E d by 1,. Now if a E A, then there can be only one identity such that 
a l ,  is defined. For if 1,. is another, then we have al,. = (a1,)lA’, and so by 
(1) the composition l,l,, is defined. Since both are identities we must then 
have 1, = 1,. The unique A E &’such that al ,  is defined is called the domain 
of a. Similarly, the unique B ~d such that lBa is defined is called the 
codomain of a. We denote by [A ,  B ]  the class of members o f d  with domain 
A and codomain B .  Then [ A ,  B] is a set by (4), and by (3) A is the disjoint 
union u [A,  B ] .  

Next we show that #?u is defined if and only if the codomain of a is the 

equal. 

defined (and hence equal a) .  

set. 



3. EXAMPLES 3 

domain of p. Suppose that pa is defined, and let B be the codomain of a. 
Then /I( lBa) is defined, and so 81, is defined by (1). In  other words, B is the 
domain of 8. Conversely, if the codomain of a is the same as the domain of 8, 
then pa is defined by (2). 

Therefore composition can be regarded as a union of functions of the type 
[B, C] x [ A ,  B]  +A. We must show, finally, that the image ofsuch a function 
is in [ A ,  C]. That is, we must show that if pa is defined, then the domain of 
pa is the domain of a, and the codomain of pa is the codomain of p. But this 
follows easily from ( 1).  

3. Examples 
1. The category Y whose class of objects is the class of all sets, where 

[ A ,  BIY is the class of all functions from A to B, is called the category of sets. 
It is not small. 

2. A similar definition applies to the categoryy ofall topological spaces, 
where the morphisms from space A to space B are the continuous functions 
from A to B. 

3. The category Yo of sets with base point is the category whose objects 
are ordered pairs ( A ,  u )  where A is a set and a E A .  A morphism from (A ,  a)  
to ( B ,  6) is a functionffrom A to B such thatf(a) = b. 

4. Replacing sets by topological spaces and functions by continuous func- 
tions in example 3 we obtain the category Yo of topological spaces with 
base point. 

5 .  If A has only one identity (so that composition is always defined), we 
call the category a semigroup and we replace the word “composition” by 
“multiplication.” Hence an alternative word for “ category ” would be 
“ semigroupoid ”-a semigroup where multiplication is not always defined. 
If pa = ap for every pair of morphisms in a semigroup, then the semigroup is 
called abelian. In  this case composition is usually called addition, and a + 6 
is written in place of ap. Furthermore, the identity is called zero and is 
denoted by 0. 

6.  We shall say that a category d’ is a subcategory of a category &xi‘ under 
the following conditions : 

(i) d’ c d.  
(ii) [ A ,  BIN c [ A ,  B ] ,  for all ( A ,  B )  ~ d ’  x d’, 

(iii) The composition of any two morphisms in d’ is the same as their 

(iv) 1, is the same in d’ as in d for all A E d‘. 
If furthermore [ A ,  BIM = [ A ,  B], for all ( A ,  B)  ~ d ’  x d’ we say that d’ 

is a full subcategory of d. 
7. An ordered class is a category d with at most one morphism from 

an object to any other object. If A and B are objects in an ordered class and 

composition in d. 
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if there is a morphism from A to B we write A < B and we say that A precedes 
B or that B follows A. Hence A < A for all objects A, and if A < B and B < C, 
then A < C. If A < B and A # B, then we write A < B. Conversely any class 
possessing a relation which satisfies these two properties may be considered as 
an ordered class. If for any pair of objects in d there is an object C which 
follows both of them, then we call d a directed class. d is a linearly 
ordered class if A < B and B < A implies A = B, and if for every pair A, B 
it is true either that A < B or B < A .  An ordered subclass of the ordered 
class d is a full subcategory of d, We call d inductive if every linearly 
ordered subclass 9 o f d  has an upper bound in d (that is, a member X E d 
such that L < X for each L E 9). A maximal member M of an  ordered 
class d is one such that for each A E d the relation M < A implies A < M. 
If d is a small category, then the word class is replaced by the word set in 
each of the above definitions. We shall be using the following form of Zorn's 
lemma : 

I f d  is an inductive ordered set, then d has a maximal member. 
8. Let d be a category, and for each (A, B) ~d x d suppose that 

[A, B], is divided into equivalence classes. Denoting the equivalence class 
of a by [a], suppose further that whenever [a] = [a'] we have [fa] = [fa'] and 
[ag] = [a'g] when the compositions make sense. Then we can form a new 
category d" called the quotient category of d with respect to the given 
equivalence relation. The objects o f d "  are the same as the objects o f d ,  and 
the set of morphisms [A, B],. is defined as the set of equivalence classes of 
[A, B],. Composition is defined by the rule [p][a] = [pa]. 

4. Duality 
The dual category of a category d, denoted by d*, has the same class of 

objects as d,  and is such that 

[A, BI, = [B, A],*. 

The composition pa in d* is defined as the composition ap in d. It will be 
convenient notationally to represent an object A ~d by A* when it is 
considered as an object of the dual category. Clearly (d*) * = d, and con- 
sequently every theorem about categories actually embodies two theorems. 
If statement p is true for category d,  then there is a dual statementp* which 
will be true f o r d * .  If the assumptions on J&' used to prove p hold also in d*, 
then p* is true for (d*)* = d. We have not bothered to write out the dual 
statements for most of the theorems. 

5. Special Morphisms 
A morphism 8 : A -+B is called a coretraction if there is a morphism 

0' : B + A  such that 8'8 = 1,. We shall say that A is a retract of B in this 
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case. If 8 : A + B and T : B +C are coretractions, then T8  is a coretraction. 
On the other hand, if n-8 is a coretraction, then 8 is a coretraction, but not 
necessarily T. Dually we say that 8 is a retraction if there is a morphism 
8" : B + A  such that 88" = 1,. If 8 is both a retraction and a coretraction, then 
we call it an isomorphism. In  this case we have 

8' = 8'1, = eyee.) = ( e ' e ) e n  = i,e" = 8". 

We call 8' = 8" the inverse of 8 and we denote it by 8-I. Then by definition 
we have ( 8-I)-1 = 8. A semigroup in which every morphism is an  isomorphism 
is called a group. In the case of abelian groups we use the additive notation 
for inverses, writing - 8 in place of 8-I. 

If 8 E' [A, B ] ,  is a retraction and d" is a quotient category o f d ,  then [el is 
a retraction in d". However, i f d '  is a subcategory o f d  and 8 E [A, B],. is a 
retraction in d, it does not necessarily follow that 8 is a retraction in d' unless 
d' is a full subcategory o f d .  

We shall say "A is isomorphic to B" if there is an isomorphism from A to B.  
It must be kept in mind, however, that there may be many isomorphisms from 
A to B, and that the above statement will usually be used with reference to a 
specific isomorphism 8 : A + B. The notation 8 : A M B will often be used to 
express the fact that 8 is an isomorphism. If 8 and T are isomorphisms and 7r8 
is defined, then T 8  is an isomorphism with inverse 8-lr-l. Also every object is 
isomorphic to itself by means of its identity morphism. Hence the relation 
"is isomorphic to '' is an equivalence relation. 

A morphism whose codomain is the same as its domain is called an endo- 
morphism. The set [A, A] of endomorphisms on A is a semigroup, and is 
sometimes denoted by End(A), or End,(A) when there is more than one 
category in question. An endomorphism which is an isomorphism is called an  
automorphism. The set of automorphisms of A is a group and is denoted by 
Aut(A), or Autd(A). 

A morphism a E [A, B] is called a monomorphism if af = ag implies that 
f = g for all pairs of morphismsf; g with codomain A. If a is a monomorphism in 
d, then it will be a monomorphism in any subcategory. However, a morphism 
may be a monomorphism in a subcategory without being a monomorphism 
in d. Moreover it is not necessarily true that if a is a monomorphism in d, 
then [a] is a monomorphism in a quotient category of d. If a and j3 are 
monomorphisms and if j3a is defined, then Pa is a monomorphism. On  the 
other hand, if j3a is a monomorphism, then a is a monomorphism, but not 
necessarily j3. 

A morphism a is called an epimorphism iffa = ga implies that f = g. The 
notion of epimorphism is dual to that of monomorphism in the sense that a is 
an epimorphism in d if and only if it is a monomorphism in d*. Thus if a 
and j3 are epimorphisms and a/? is defined, then aj3 is an epimorphism, and 
if aj3 is an epimorphism, then a is an epimorphism but not necessarily 8. 
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A coretraction is necessarily a monomorphism and a retraction is an epi- 
morphism. Thus an isomorphism is both a monomorphism and an epi- 
morphism. Nevertheless a morphism can be at once a monomorphism and an 
epimorphism but fail to be an isomorphism (exercise 1).  We shall call a 
category balanced if every morphism which is both a monomorphism and an 
epimorphism is also an isomorphism. 

Proposition 5.1. If a : A -+ B is a coretraction and is also an epimorphism, then 
it is an isomorphism. 

Proof. Letting #?a = 1, we have 

(a#?). = a(#?.) = alA = a = lBa 

and consequently a#? = 1 ,  since a is an epimorphism. This shows that a is an 
isomorphism. I 

The dual proposition reads as follows. 

Proposition 5.1*. I f a  : B + A  is a retraction and is also a monomorphism, then it is 
an isomorphism. I 

If a : A' -+A is a monomorphism, we shall call A' a subobject of A ,  and we 
shall refer to a as the inclusion ofA' in A .  Sometimes we shall write a : A' c A ,  
or simply A' c A when we want to indicate that A' is a subobject of A ,  and we 
shall say that A' is contained in A,  or that A contains A'. However, it is 
important to remember that in general there is more than one monomorphism 
from A' to A,  and that whenever we speak of A' as a subobject of A we shall be 
referring to a specific monomorphism a. In  this loose language, the statement 
that the composition of two monomorphisms is a monomorphism becomes : 
If A is a subobject of B and B is a subobject of C, then A is a subobject of C. 
If the monomorphism a : A'-+A is not an isomorphism, we shall call A' a 
proper subobject of A.  The composition of a monomorphism a : A' -+A with 
a morphism f : A -+ B is often denoted by f [A' and is called the restriction of 
f to A'. 

If a ,  : A ,  + A  and a2 : A ,  + A  are monomorphisms, we shall write a ,  < a, 
if there is a morphism y : A ,  + A z  such that a2y = a,. If y exists, then it is 
unique, and is also a monomorphism. Ifalso a2 < a ,  so that there is a morphism 
6 : A 2 + A 1  such that a2 = a16, then we have 

a2y6 = a16 = a2 = a21A,. 

Hence since a, is a monomorphism we have y6 = l,,. Similarly, 6y = lA, ,  and 
so y is an isomorphism with inverse 6 .  We shall then say that A ,  and A ,  are 
isomorphic subobjects of A .  However, A ,  and A ,  may be isomorphic 
objects without being isomorphic subobjects of A .  More precisely, there may 
be an isomorphism y : A ,  z A, ,  without it being true that azy  is the same as a, .  
If a3 : A 3 + A  is another monomorphism, and a ,  < a2 < a3, then a ,  < a3. 
Hence the class of subobjects of A (or, rather, monomorphisms into A )  is an 
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ordered class with the property that two subobjects precede each other if and 
only if they are isomorphic subobjects. 

A class V of subobjects of A will be called a representative class of sub- 
objects forA ifevery subobject ofA is isomorphic as a subobject tosome member 
of W. More generally, if every member of %? has a certain property p, then V is 
called a representative class forp if every subobject ofA which has property 
p is isomorphic as a subobject to some member of %?. If every A ~d has a 
representative class of subobjects which is a set, then d is called a locally 
small category. 

Dually, if a : A +A’ is an epimorphism, we call A’ a quotient object of A .  
If aI : A + A l  and a, : A +A2 are epimorphisms we write a1 < a, if there is a 
morphism y : A ,  + A l  such that ya2 = aI. That is, aI < a2 in &’ if and only if 
a1 6 a ,  as monomorphisms in A?*. We shall say that d is colocally small if 
A?* is locally small. 

If d’ is locally small, it does not necessarily follow that a subcategory d’ 
is locally small. The reason is twofold. In  the first place there may be mono- 
morphisms in d’ which are not monomorphisms in &’, and in the second place 
two monomorphisms may be isomorphic in d but not in d‘. 

6. Equalizers 

B 
We call a diagram of the form 

commutative if /3u = y ,  and we shall say in this case that the morphism y 
factors through B.  Likewise a diagram of the form 

A - - k - c  

I 8  
4 .L 
B ’ * D  

is commutative if /3a = 6y. In 11, $1 we shall give a general definition of 
diagram and commutativity, but the above two types and various simple 
combinations thereof will be all that we need for the present. 

If ( 1 )  is commutative and /3 is a coretraction, say /3‘/3 = l,, then 

Y 
A-C 
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is commutative. Furthermore if p and y are both isomorphisms, then 

B 8-1 D 

is commutative. 
Given two morphisms u, p : A + B, we say that u : K + A is an equalizer for 

u and p if uu = flu, and if whenever u' : K' + A  is such that uu' = flu' there is a 
unique morphism y : K' + K making the diagram 

K' 

commutative. 

Proposition 6.1. r f u  is an equalizer f o r  u and 8, then u is a monomorphism. Any two 
equalizers for u and f l  are isomorphic subobjects of A.  

Proof. Suppose that y l ,  y2 : K + K  are such that u y ,  = uy2. Then y I  and y2 
are factorizations through K ofthe morphism u y I  = uy2 : K' +A.  Furthermore 
we have u(uyI )  = ( a u ) y I  = ( p u ) y l  = p ( u y l ) .  But then by definition of equal- 
izer, the factorization of u y I  through K must be unique; that is, y ,  = y2.  This 
proves that u is a monomorphism. 

Now suppose that u' : K' + A  in ( 2 )  is also an equalizer for u and p. Then we 
have a morphism y' : K + K  such that u'y' = u. Hence uyy' = u'y' = u = ul,. 
Since u is a monomorphism, it follows that yy' = 1,. Similarly y'y = l,,, and 
so y is an isomorphism with inverse y'. I 

Thus in some sense we can talk about "the" equalizer of two morphisms. 
The equalizer of a and p will sometimes be denoted Equ(u, /3), and an un- 
named morphism Equ(a, p) + A  will refer to the morphism u above. We shall 
not be inconvenienced too much by the fact that Equ(u, 8) can stand for any 
one of a class of isomorphic subobjects of A .  If Equ(a, p )  exists for all pairs of 
morphisms in d with the same domain and the same codomain, then we shall 
simply say that d has equalizers. Observe that u = /3 if and only if 1, is the 
equalizer of a and 8. 

Dually we say that B+Coequ(u, 8) is the coequalizer of u and /3 if it is 
the equalizer of these two morphisms in the dual category. Hence if d* has 
equalizers, then d has coequalizers. The statement of 6.1* is left to the 
reader. 
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7. Pullbacks, Pushouts 
Given two morphisms a I  : A l  +A and az  : A ,  +A with a common co- 

domain, a commutative diagram 

"I Ia2 
4 * A  

is called a pullback for a I  and tr2 if for every pair of morphisms 8; : P' + A l  
and 8; : P ' - + A 2  such that alp; = a&,, there exists a unique morphism 
y : P'+P such that 8; = Ply  and 8; = P2y. If P' is also a pullback, then there 
must exist a morphism y' : P + P' such that PI = P;y' and = /?;y'. Then we 
have PIyy' = P;y' = PI  = PI 1, and similarly P2yy' = P2 1,. Therefore, by 
uniqueness of factorizations through the pullback we have yy'= 1, and 

Proposition 7.1. Relative to the pullback diagram ( 1 ), if a ,  is a monomorphism, 
then so is /!Iz. 

Proof. Suppose that Pz f = P2g. Then a l p l  f = a2P2 f = a2P2g = a l P l g ,  and so 
since a I  is a monomorphism we must have 8, f = Pig. Therefore by uniqueness 
of factorizations through the pullback we have f = g.  This shows that P2 is a 
monomorphism. I 

It is not true in general that if aI is an epimorphism then so is P2. However 

y'y = l,.. 

this will be a true statement in abelian categories (20.2). 

Proposition 7.2. Ifeach square in the diagram 

P - Q - B '  

A - I - B  

is a pullback and B' + B is a monornorphism, then the outer rectangle is a pullback. 

Proof. Given morphisms X - t A  and X+B' such that 

X + A + I + B  = X + B ' + B ,  

we must find a unique morphism X+ P such that X+P+A = X+A and 
X+P+Q +B' = X+B'. Now since the right-hand square is a pullback we 
have a morphism X+Q such that X+Q+Z= X+A+Zand 

X+Q+B' = X+B' .  
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Then since the left-hand square is a pullback we have a morphism X+P such 
that X+P-tA = X+Aand X+P+Q = X+Q. The morphism X + P  then 
satisfies the required conditions. By two applications of 7.1 we see that P+A 
is a monomorphism, and from this follows the uniqueness of the morphism 
X+P. I 

The dual of a pullback is called a pushout. Thus a pushout diagram is 
obtained by reversing the direction of all arrows in the diagram (1). Propo- 
sitions 7.1* and 7.2* are left to the formulation of the reader. 

8. Intersections 
Let {ui : Ai + A}iEI be a family (set) of subobjects of A. We shall call a mor- 

phism u : A‘ +A the intersection of the family if for each i E I we can write 
u = uivi for some morphism ui : A’+Ai (necessarily unique) and furthermore 
if every morphism B-tA which factors through each ui factors uniquely 
through u. From the uniqueness condition one shows easily that u is a mono- 
morphism, and that any two intersections for the same family are isomorphic 
subobjects of A. We shall denote A’ by n 4, or simply by n Ai when there is 

no doubt as to the index set. Consider a union of sets I = u Ix. If n Ai is 

defined for each h E A and if n n Ai is defined, then n Ai is defined and 

we have 

&I 

AEA i€IA 

AEA 0 iPIA iEI  

n n A, = n4. (1)  
AEA ( i€IA 1 iEI 

n 

i= 1 
For a finite family A,,  A,, ..., A, of subobjects we often write n Ai or 

A,  n A, n A, n.. . n An for the intersection. Observe that the intersection of 
the empty class of subobjects of A is A itself. If the intersection of the family Ai 
exists, then it is the largest subobject of A which precedes each of the Ai. How- 
ever, a subobject may have this maximal property without the intersection 
existing. If the intersection exists for every set of subobjects of every object in 
d, we shall say that sit’ has intersections. If intersections exist only for 
finite sets of subobjects then we shall say that d has finite intersections. 

Proposition 8.1. I f A ,  -+A, and A, +A are monomorphisms in a category sit‘, then 
the diagram 

P - A2 
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is apullback diagram i fand onb i f P + A 2  + A  = P + A I  + A  is the intersection o j  A ,  
and A,.  Hence if.2 has pullbacks then a?' has.finite intersections. 

Proof. That the diagram is a pullback if and only if it is an intersection follows 
immediately from the definitions of pullback and intersection. If& has pull- 
backs, then using (1) the intersection of n subobjects may be obtained induc- 
tively by the formula 

n / " - I  \ 

i= I 

We reserve no special notation for the dual notion of the cointersection 
of a family of quotient objects. 

9. Unions 
Consider a diagram 

A' B' 

A I I  * B  

where f is any morphism and the vertical morphisms are monomorphisms. 
Then we say that the subobject A' is carried into the subobject B' by f if 
there exists a morphism A' +B' (necessarily unique) making ( 1) commutative. 

The union of a family {Ai}iEI of subobjects of an object A is defined as a 
subobject A' of A which is preceded by each of the Ai, and which has the 
following property: I f f :  A + B  and each Ai is carried into some subobject B' 
byf, then A' is also carried into B' byf. By taking f = I, we see that if each 
Ai precedes some subobject A ,  of A,  then A' must also precede A , .  In  particular 
any other subobject of A which behaves as a union for the above family must 
be isomorphic as a subobject to A'. The object A' will be denoted by u Ai. 

iEI  

Remark that the union is in no sense dual to the intersection, although in 
exact categories a relationship exists between the union and the cointersection 
( 15.2). An associativity formula analogous to ( 1) of the previous section applies 
to unions, as well as the notational remarks made there. Observe again that 
while the union of a family of subobjects is necessarily the smallest subobject 
which contains every member of the family, nevertheless an object may exist 
having this minimal property without being the union. If the union exists for 
every set of subobjects of any object in d, we shall say that d has unions. 

Proposition 9.1. Suppose that a, /3 : A -+ B in a category which has equalizers, and 
suppose that for each member Ai of a family  o f  subobjects of A we have &[Ai = pIAi. 
Then i f t he  union exists we have ml u Ai = /3I u Ai.  
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Proof. Letting K be the equalizer of the two morphisms aIu Ai and ,3lu Ai, 
we see that each Ai is a subobject of K .  Hence u Ai is a subobject of K ,  and so 
K =  U Ai.  I 

10. Images 

The image of a morphismf: A +B is defined as the smallest subobject of 
B whichffactors through. That is, a monomorphism u : Z+B is the image of 
f if f = uf’ for somef’ : A + I ,  and if u precedes any other monomorphism into 
B with the same property. The object Z will sometimes be denoted by Im( f ) ,  
If every morphism in a category has an image, then we shall say that the 
category has images. If, moreover, the morphismf’ is always an epimor- 
phism, we say that d has epimorphic images. If d has intersections and 
is locally small, then d has images. In  fact, given a morphismf, we can find 
a representative set for the class of subobjects of the codomain which f factors 
through. The intersection of such a set of subobjects clearly serves as an image 
forf. Iff is a monomorphism, then f is its own image. 

Proposition 10.1. Let f : A + B in a category with equalizers and let A +I+ B be 
the factorization off through its image. Thenf’ is an epimorphism. 

Proof. Suppose that af’ =,3f’. Then f’ (and hence f) factors through 
Equ( a, ,3), and the latter is a subobject of I .  But by the definition of image we 
must then have I = Equ(a, 8). Therefore a = /I, and sof’ is an  epimorphism. I 
Proposition 10.2. Let f: A+B in a balanced category, and suppose that f has an 

f’ 

I ’ u  
image. rff can be factored as A +I+ B withf’ an epimorphism and u a monomorphism, 
then u is the image of$ 

Proof. By definition of Im(f) we know thatf’ factors through Im( f ) .  But then 
sincef’ is an epimorphism, the inclusion of Im(J’) in Z is an epimorphism. 
Therefore since the category is balanced this inclusion must be an iso- 
morphism. I 

Iff : A +B and A’ + A  is a monomorphism, we shall denote the image of 

the composition A’ +A + B byf( A ’ ) .  Then using the fact that the composition 
of two epimorphisms is an epimorphism, we have the following corollary of 
10.2. 

Corollary 10.3. Let d be a balanced category with epimorphic ima.qes. Zf f ; A +B, 
g : B+C, and A’ is a subobject $A,  then g( f ( A ’ ) )  =&(A‘) .  I 

We call an epimorphism A + I  the coimage of a morphism f if it is the 
image off in the dual category. In  this case we denote the object Zby Coim(f). 
In  exact categories it will turn out that Coim(f) and Im( f )  are isomorphic, 
but in general there is no relation between these two objects. 

f 
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11. Inverse Images 
Iff : A-tB and B' is a subobject of B, then the inverse image of B' by f 

is the pullback diagram 

P - B' 

I 1  f 

A - B  

The object Pis usually denoted by f-I(B'). Then by 7.l,f1(B') is a subobject 
ofA. It is the largest subobject of A which is carried into B' by$ However, the 
existence of such a maximal subobject does not guarantee the existence of the 
inverse image. 

Suppose that in the diagram (1) the morphism P-tB' factors through a 
subobject B, ofB'. Then it is easy to see that P i s  also the inverse image ofB, .  
In particular if I is a subobject of B which f factors through (such as Im(f))  
and the intersection I n B' is defined, then f-' ( I  n B') is defined and equals 

Proposition 11.1. Let f :  A+B, and consider inclusions A ,  c A ,  c A and 
B, c B, c B. Then the following relations hold whznever both sides are dejined: 

f - I (B'). 

(9 f ( A  I )  'f (4) 
(4 f l ( B , )  =f-'(B2) 

(iii) A ,  c f - l ( f ( A 1 ) )  

(iv) B, 'f ( f 1 ( B I ) )  
(v) f ( A J  =f(f-l(f(A,))) 
(4 f-'(B,) =f - ' ( f ( f - ' (Bd)) .  

Proof. Statements (i) to (iv) are trivial consequences of the definitions of 
image and inverse image. To  prove (v), apply (i) to statement (iii) to obtain 

f ( A , )  c f (f-'(f(Al))), and then apply (iv) to the object f (A,)  to obtain 
f ( A  ,) 3 f (fl( f ( A  ,))). Statement (vi) follows similarly. 

Proposition 11.2. Let f :  A+B in a category with images and inverse images, and 
let {Ai} be a fa rn ib  o f  subobjects of A for which u Ai is deJined. Then u f ( A i )  is dejined 
and equals f (u Ai). 

Proof. Consider a morphismg : B +Cand suppose that eachf(Ai) is carried by 
g into some subobject C' of C. Then each Ai is carried by gfinto C', and so by 
definition of union, u Ai is carried by gjinto C' .  Hence u Ai is carried by f into 
g-I(C'), and so f (u  Ai) is asubobject ofg-'(C'). But this means that f (u Ai) 
is carried by g into C'. Since by 1 1.1, f (u Ai)  contains each of the f ( A i ) ,  this 
shows that f (u Ai)  is the union ofthe family { J ( A i ) } .  I 

The proof of the following analogous proposition is left to the reader. 
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Proposition 11.3. Let f: A+B in a category with inverse images, and let {Bi} be a 
f a m i b  ofsubobjects OfB f o r  which the intersection n Bi is  dejined. Then n f - ' (B i )  i s  
dejined and is equal to f-' (n Bi). 

Iff: A -+ B is a monomorphism and if A' is a subobject of A ,  then it is trivial 
to see that f-I( f (A ' ) )  = A'. However, iff is an epimorphism and B' is a 
subobject of B we will have to put some hypothesis on the category before we 
can prove f (f-*(B')) = B' (see 16.4). In the case where f is an isomorphism, 
the inverse image of B' is the same as the image of B' under the morphism f-l, 
hence there is no ambiguity in notation. 

12. Zero Objects 

An object 0 is called a null object for d if [A, 01 has precisely one element 
for each A E d. If 0' is another null object, then [0, 0'1 and [O', 01 each have 
one morphism, say 8 and 9', respectively. Then 8'9 is the unique morphism 
in [0, 01, hence must be 1,. Likewise 88' = 1,. Thus any two null objects are 
isomorphic. In the dual category 0 becomes a conull object. We say that 0 
is a zero object for d if it is at once a null object and a conull object. In this 
case we will call a morphism il +B a zero morphism if it factors through 0. 
Each set [A, B] has precisely one zero morphism, which we denote sometimes 
by OAB, but more often simply by 0. The composition of a zero morphism with 
any other morphism is a zero morphism. On the other hand, suppose that d 
is a category (with or without a zero object) such that each set [A, B] has a 
distinguished element e,, with the property that the composition of a dis- 
tinguished morphism with any other morphism is again a distinguished mor- 
phism. Then one shows that there can be at most one such class of distinguished 
morphisms, and that a zero object can be adjoined to d so that the distin- 
guished morphisms become zero morphisms and so that d remains essentially 
unchanged (exercise 6). 

13. Kernels 

Let d be a category with a zero object, and let a : A -+B. We will call a 
morphism u : K + A  the kernel of a if au = 0, and if for every morphism 
u' : K + A  such that au' = 0 we have a unique morphism y : K + K  such that 
uy = u'. Equivalently, the kernel of o! is given by the pullback diagram 

A - B  
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In  other words K = a-l(O), so that in particular u must be a monomorphism, 
and any two kernels must be isomorphic subobjects of A.  The object K is 
frequently denoted by Ker(a). If a is a monomorphism then Ker(a) = 0, but 
the converse is not true in general (cf. exercise 9*).  If Ker(pa) and Ker(a) are 
defined, then Ker(a) c Ker(pa). If p is a monomorphism, then 

Ker(a) = Ker(pa) 

in the sense that if either side is defined then so is the other and they are equal. 
Also if either of Equ(a, 0) and Ker( a) are defined then so is the other and they 
are equal, so that in particular if d has equalizers then d has kernels. Fre- 
quently we will want to know ifa morphism u is the kernel ofsome morphism a, 

knowing in advance that au = 0 and that u is a monomorphism. In  such a 
case it suffices to test for the existence of the morphism y. Uniqueness will be 
automatic since u is a monomorphism. 

A morphism B + Coker (a) is called the cokernel of a if it is the kernel of a 
in the dual category. When speaking of kernels and cokernels we will always 
be implying tacitly that the category in question has a zero, for otherwise the 
terms make no sense. 

Proposition 13.1. Consider a commutative diagram 

K d A ,  'I' t A  

where the right-hand square is apullback, u is the kernel o f  al, and y is the morfihisrn into 
the pullback induced by the two morphisms u : K + A I  and 0 : K + A 2 .  Then y is the 
kernel of p2. 
Proof. First observe that since p l y  = u and u is a monomorphism, y must be a 
monomorphism. Also, p2y = 0 by construction of y.  Now let v : X+P such 
that p 2 u  = 0. Then 0 = a2p2v = a I p I v ,  and so since u is the kernel of aI we 
must have a morphism w : X + K  such that uw = p,v. We then see that y w  = u 
since each of these morphisms gives the same thing when composed with 
both P I  and p2. This proves that y is the kernel of p2. I 
Proposition 13.2. Consider a diagram 

A' - A 

I 
B' - B 
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where B' + B is the kernel of some morphism B -+ B". Then the diagram can be extended 
to a pullback if and only if A' + A  is the kernel of the composition A -+ B -+ B". 

Proof. Suppose that A' -+A is the kernel A + B -+ B". Then A' + A  + B + B" is 
0, and so since B' -+B is the kernel of B +B" we get a unique morphism 
A'+B' making ( 1 )  commutative. Suppose that X + A - + B  = X+B'+B.  
Then X + A + B -+ B" is zero, hence there is a unique morphism X -+ A' such 
that X+A'-+A = X - t A .  Then also 

X + A ' - + B ' + B  = X + A ' - + A + B  = X + B ' + B ,  

and so since B' --+ B is a monomorphism it follows that X + A' -+ B' = X + B'. 
This proves that (1) is a pullback. The converse is left to the reader. I 
Proposition 13.3. Let u : K -+ A be the kernel of a : A -+ B and let p : A +C be the 
cokernel of u. Then u is the kernel o f p .  

Proof. Consider the diagram 

where v is any morphism such that pv = 0 and q is defined by virtue of the fact 
that au = 0 and p is the cokernel of u. Then av = qpv = 0, and so since u is the 
kernel of a there is a morphism y : X+K such that uy = v. Since u is a mono- 
morphism and p u  = 0 it follows that u is the kernel ofp. I 

14. Normality 

If A' + A  is the kernel ofsome morphism then we call A' a normal subobject 
of A.  If every monomorphism in a category is normal then we say that the 
category is normal. 

The following is an immediate consequence of 13.2. 

Proposition 14.1. A normal category with kernels has inverse images, and in parti- 
cular,Jinite intersections. I 

Dually, if A+A" is the cokernel of some morphism, then we call A" a 
conormal quotient object of A ,  and if every epimorphism in a category is 
conormal then we say that the c a t e g w a  conormal category. 

Proposition 14.2. Let at' be a normal category with cokernels. Then there is a uni- 
valent function from the class of equivalence classes of  subobjects of an object A to the class 
of equivalence classes of quotient objects of A.  In particular, if&' is colocally small, then 
it  is locally small. Ifat' is normal and conormal and has kernels and cokernels, then the 
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above function is a one to one correspondence between the (equivalence classes o f )  sub- 
objects of A and the (equivalence classes o f )  quotient objects ofA.  

Proof. The function in question is the one which assigns to every monomor- 
phism u its cokernel. Proposition 13.3 assures that if we take the kernel of the 
cokernel we get back to u, hence the assignment is univalent. The inverse 
function in the case where & is conormal and has kernels is the one which 
assigns to each epimorphism its kernel. I 
Proposition 14.3. Let a : A+B be a monomorphism with cokernel 0 in a normal 
category. Then a is an isomorphism. Hence a normal category is balanced. 

Proof. By normality a is the kernel of its cokernel(13.3). But since the cokernel 
is B+O, a kernel for it is 1,. From this it follows that a must be an iso- 
morphism. I 
Lemma 14.4. Let d be any category with zero. Let a : A + B be any morphism, and 
suppose that p : B +C is its cokernel. Finally suppose that u : I+ B is the kernel o f  p. 
Then there is a unique morphism q : A + I  such that uq = a. If& has cokernels and is 
normal, then v is the image of a. I f ,  further,& has equalizers, then q is the coimage o f  a. 

Proof. The existence and uniqueness of q follow sincepa = 0 and I i s  the kernel 
ofp.  Suppose that & has cokernels and is normal and let B' +B be a subobject 
of  B through which a factors. Consider the following commutative diagram 

B" 

where B+B" is the cokernel of B'+B (and hence B'+B is the kernel of 
B + B"), and C-t B" is defined since the composition A + B + B" is zero. Then 
I+B+B" = I+B+C+B" = 0 and so v can be factored through B'+B. 
This shows that v is the image of a .  

If .d has equalizers, then by 10.1, q is an epimorphism. Consider any 

factorization A+ I'+B of a with q' an epimorphism. Then pu' = 0, and so 
there is an induced morphism I'+I. Using the fact that u is a monomorphism 
it  follows that I precedes I' as a quotient object of A .  This shows that q is the 
coimage of a. I 

'I' u' 
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15. Exact Categories 

Let d be a normal and conormal category with kernels and cokernels. 
We shall call d an exact category if every morphism a : A -+ B can be written 

as a composition A +  I+B where q is an epimorphism and v is a monomor- 

phism. Let K+ A be the kernel of q and B-+ C be the cokernel of v. Then u is 
also the kernel of a andp is the cokernel of a. Furthermore, by normality and 
conormality it follows that v is the kernel ofp and q is the cokernel of u. Then 
by 14.4, v is the image of a, and dually q is the coimage of a. Furthermore, 14.4 
tells us that a normal and conormal category with cokernels and equalizers 
is an exact category. Observe the self-dual nature of the axioms for an exact 
category ; d is exacJ if and only if d* is exact. 

9 v  

U P 

A sequence of morphisms 

in an exact category is called an exact sequence if Ker(ai+,) = Im(ai) as 
subobjects ofAi+l for every i .  If, for every i, the weaker condition ai+,ai = 0 is 
satisfied (or equivalently, Im(ai) c Ker(aj+,)), then the sequence is said to be 
oforder two. 

Proposition 15.1. The following statements are true in an exact category d: 

U B  U B  

1. A -+ B +C is exact in d if and only $A* +- B* t C* is exact in d*. 

2 .  0 -+A -+ B is exact if and only if a is a monomorphism. 
3 .  A + B  +O is exact if and only zfa is an epimorphism. 

4. 0 + A + B -+O is exact if and o n b  f a  is an isomorphism. 

U 

U 

Proof. 1. Consider 

q u r w  
A + I + B + J - + C  

where v is the image of a and w is the image of /3. Then r is the coimage of /3. If 
A+B+C is exact, then u is the kernel of f l  and hence also the kernel of r. 
Therefore r is the cokernel of v and hence also the cokernel of a. In  the dual 
category r then becomes the kernel of a as well as the image of f l ,  and so 
A* c B *  t C* is exact. 

2. If 01 is a monomorphism then its kernel is 0, and so clearly 0 -+A -+B is 

exact. Conversely, if 0 + A  + B is exact, then a has kernel 0. Let A -+I + B be a 
factorization of a as an epimorphism followed by a monomorphism. Then q is 

9 u  
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the cokernel of the kernel of a. Since the latter is 0, q must be an  isomorphism. 
But then a = uq must be a monomorphism. 

3. Follows from 1 and 2. 
4. Since a normal category is balanced, 4 follows from 2 and 3. I 
I t  follows from 15.1 that, in an exact category, a sequence 

is exact if and only if CL is a monomorphism, p is an epimorphism, and CL is the 
kernel of p (or equivalently, /3 is the cokernel of a ) .  An exact sequence of the 
type (1) will be called a short exact sequence. We shall frequently denote C 
by BIA. An undesignated morphism B + B / A  will be understood to be p. Given 
a diagram of the form 

o - A --+ B ---- B/A - o 

0 - A' B' - B'/A' - 0 

then there is a morphism A+A'  making the diagram commutative if and 
only if there is a morphism B / A  +B'/A' making the diagram commutative. In  
particular, taking B = B' with 1, for B+B' ,  we see that A precedes A' as a 
subobject of B if and only if BIA' precedes BIA as a quotient object of B.  

Proposition 15.2. Let {Ai} be aset of subobjects of A in an exact category, and suppose 
AIA' is the cointersection o f  the fa rn ib  of quotient objects A/Ai.  Then A' is the union o f  
thefarnib { A i } .  

Proof. Consider a morphisnif: A + B  and a subobject B' of B such that each 
Ai is carried into B' by$ Then for each i we have a morphism AIA, +BIB' such 
that A+B+B/B'  = A - + A / A i - + B / B ' .  Consequently, since AIA' is the co- 
intersection we have a morphism A/A'+B/B' such that 

A -+ A/A' +BIB' = A -+ B +BIB'. 

But this implies that A' is carried into B' by j :  Now since each A/Ai is preceded 
by AIA', it follows that each Ai precedes A'. Therefore A' is the union of the 
family {Ai} .  I 

Corollary 15.3. A n  exact category hasfinite unions. 

Proof. By 14.1* an exact category has finite cointersections. Therefore the 
result follows from 15.2. I 
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16. The9Lemma 

Proposition 16.1 (The 9 Lemma). Given a commutative diagram 

0 0 0 

A' A A" 

0 0 0 

in an exact category where all the rows and columns are exact, then there are morphisms 
A' + A  and A +  A" keeping the diagram commutative. Furthermore, the sequence 
O+A'+A+A"+O is exact. 

Proof. We have seen the existence of the morphisms A' + A  and A +A" in the 
preceding section. Now since A' +B'-+B is a monomorphism it follows that 
A'+A must also be a monomorphism. To prove the exactness assertion we 
first show that 

0 +A' + A  +B" +C" + O  

is exact, where A + B" is the composition A + B + B". Now 

A'+A+B" = A ' + B ' + B + B "  = 0. 

Suppose that X - t A  is such that X - t A + B + B "  = O .  Then we have a 
morphism X+B' such that X-+B'+B = X + A + B .  Also 

X+B'+C'+C = X + B ' + B + C  = X + A - + B + C  = 0. 

Since C' +C is a monomorphism we then have X + B' +C' = 0. Therefore we 
have a morphism X+A' such that X+A'+B' = X+B'. Then 

X + A ' + A + B  = X + A ' + B ' - + B  = X + B ' + B  = X + A + B .  
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Since A + B  is a monomorphism this means that X + A ' + A  = X + A .  Con- 
sequently we have shown that A' + A  is the kernel o f A  -+ B", or, in other words, 
that O+A'-+A-+B" is exact. By duality it follows that A->B"+C"+O is 
exact. Now since A" +B" is the kernel of B" -+C" we see that the factorization 
of A --+ B" through its image is just A +A" + B". Exactness of 

now follows. I 
Corollary 16.2 (First Noether Isomorphism Theorem). Let B c A2 c A ,  in an 
exact category. Then we have a commutative diagram with exact rows 

0 +A' + A -+A" +O 

0 - A2 A1 - Al/A2 - 0 

I 
0 - A2/B - AI/B - A I / A ~  - 0 

(In other words A2 /B  is a subobject of A,IB, and ( A , / B ) / ( A , / B )  = A I / A 2 ) .  

Proof. The proof follows immediately from 16.1 * applied to the diagram 

0 0 0 

0-B- B-0-0  

i l l  
0 -A,--+ A,---+ A I / A 2 - +  0 

I I II 
HI 0 0 0 

Corollary 16.3. Consider a pullback diagram in an exact category 

B' - C' 
I 

B - C  
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where B-tC is an epimorphism and C'+C is a monomorphism. Then this can be 
extended to a commutative diagram 

0 0 

0 - A  - B'- (2'- 0 

0 0 

with exact rows and columns. 

Proof. Let C+Cn be the cokernel ofC'+C and A+B the kernel of B-tC.  
Then by 13.2, B'+B is the kernel of  B+C+C", and since the latter is an 
epimorphism we have exactness of the columns. Exactness of the top row then 
follows from 16.1. I 
Corollary 16.4. Let f :  A + B  in an exact category, and let I be the image ofJ IfB' 
is a subobject of B we have an epimorphism 

f - ' (B' )  + In  B' 

and an exact sequence 

0 -+f-'(B') + A  + 1/1 n B' -+ 0. 

Proof. By 7.2 we have a pullback diagram 

f - l (B')  - InB' 

I I  
A - I  

Both our results then follow by applying 16.3 to ( 1 ) .  I 
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Proposition 16.5. In an exact category consider the diagram 

23 

0 

0 - A ' -  

0 - B ' -  

o +  C'- 

I 
0 

0 

A -  

B -  

I I V  
C- 

I 
0 

0 

4 
A " -  0 

0 

where the middle row and middle column are exact. Then the diagram is commutative 
with exact rows and columns ifand only i f I I  i5 apullback, IV i5 apushout, and I and III 
are factorizations of A 3 B +B" and B' + B -4 through their respective images. 

Proof. Suppose that (2) is commutative with exact rows and columns. Then 
A +A" being an epimorphism and A" +B" being a monomorphism we must 
have I as described. Likewise I11 is as described. Now A'+B' is the kernel of 
B'+C', and so since C'+C is a monomorphism it is also the kernel of 
B'+C'+C= B'+B+C.  Therefore by 13.2, I1 is a pullback. Dually IV is a 
pushout. 

Conversely, given the middle row and column exact, construct I1 as the 
pullback, IV as the pushout, and I and I11 as factorizations through images. 
We show that the top row is exact. The left column will be exact bysymmetry, 
and the bottom row and right column will be exact by duality. By 13.2 we 
know that A' + A  is the kernel of A 3 B + B" = A +A" + B", and so since 
A" +B" is a monomorphism it is also the kernel of A +A". Therefore since 
A+A" is an epimorphism the top row is exact. I 

The pullback of two subobjects A , ,  A ,  c A is A ,  n A , .  Also by 15.2 the 
pushout of two quotient objects AIA, and AIA, is AIA, U A, .  Hence: 

Corollary 16.6. r f  A ,  and A ,  are subobjects of A in an exact category, then we have a 
commutative diagram with exact rows and columns 
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0 0 0 

0 __f A , n  Ap+ A2 - A2/A,  n A2+ 0 

0 - A , / A , n  A 2 + A / A 2 - +  A / A I u A 2  -f 0 

0 0 0 

Corollary 16.7 (Second Noether Isomorphism Theorem). If A ,  and A ,  are 
subobjects of A in an exact category, then we have a commutative diagram with exact rows 

0 - + A , n A 2  L_, A2-- - ,A2/AlnAS-f0  

Proof. This follows by replacing A by A ,  

Corollary 16.8. In an exact category consider exact sequences 0 --f A -+ B -4 -+O and 
O-+B’+B-+B”+O. Then B’-tR-tCisanepimorphism i fandonlyi fA+B-+B“ 
is an epimorphism. Dually, the same is true of monomorphisms. Consequently B’ -+ B -+C 
is an isomorphism if and onb i f A  +B-+B” is an isomorphism. 

Proof. Form the diagram (2) according to 16.5. If B’+B+C is an epimor- 
phism, then C’ +Cis an epimorphism and so C” = 0. But then this means that 
A”+B” is an epimorphism, and hence 21 -+B-+B” is an epimorphism. 

A ,  in ( 3 ) .  I 

17. Products 
Let {Ai}iEI be a set of objects in an arbitrary category d. A product for the 

family is a family of morphisms {pi : A +.4i)iEI with the property that for any 
family {ai : A’ +Ai}iEI there is a unique morphism ci : A’ - + A  such thatpicL = cq 
for all i E I .  Hence for all A’ E& the set of morphisms [A‘ ,  A ]  is in one to one 
correspondence with the Cartesian product of sets x [A‘, 4 1 .  If the family {ai} 

above is also a product, then one shows as usual that ci is an isomorphism. 
i E I  
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The object A will be denoted by x .Ai, or simply x Ai. For a finite family of 

objects A , ,  A 2 ,  ..., A, the product will sometimes be denoted x Ai or 

A ,  x A ,  x . . . x A,. An object is a null object f o r d  if and only if it serves as a 
product for the empty family. Also a product of null objects is again a null 
object . 

The morphisms pi  are called the projection morphisms from the product. 
If i is a fixed index in I ,  and if there is a morphismx : Ai + Aj for a l l j  E I such 
tha t j  # i, then we can takeA = lAi to obtain a morphism f: A i + A  such that 
pi f = lAd. This shows that pi is a retraction. In  particular, this will always 
be true when d has a zero object. In  this case we can define morphisms 
ui : Ai + A ,  called the injection morphisms into the product, such that 
p.u.-+6.. I 1 11’ where 6, = 0 for i # j  and 6ii = lAd. 

Proposition 17.1. Consider a product A ,  x A ,  with  injections u,, u2 andprojections 
pI ,  p2 in a category with zero. Then  u l  is the kernel o f  p2. 

Proof. Let a : A ‘ + A l  x A ,  be such that p2a = 0. Define a I  : A’+A1 by 
a1 =# ,a .  Then ulaI = a,  since both morphisms give the same thing when 
composed with the projection morphisms. Since u, is a monomorphism and 
p2ul = 0, this shows that u1 is the kernel ofp,. I 

i E I  n 

i =  I 

I t  is not true in general that p2 is the cokernel of u l ,  although of course this 
is true in a conormal category. 

Let {AijiEr be any family, and let I =  u I ,  be a disjoint union of sets. 

Suppose that the product Ah =x Ai is defined with projections {pi}iElA for all 

A, and suppose further that x Ah is defined with projections { p ~ } ~ ~ n .  Then the 

family of morphisms {piphIi E I ,  A E (I} gives x Ah the structure of a product 

AEA 

iEIA 

AEA 

AEA 

for { A i j i E I .  

Let {AijiEr be any set of objects and suppose that J is a subset of Z, Then if 
x Ai and x Ai are both defined, we have a morphism 
iEJ i E I  

which is such that if we compose with thejth projection from x Ai we obtain 
iF .1  

thejth projection from x Ai .  I f d  has a zero object thenp, is an  epimorphism. 

In factpJ, can be interpreted as one ofthe projection morphismsph relative to a 
suitable decomposition of the set I as in the preceding paragraph. 

Consider a family of morphisms {J : Ai;.Bi}iEr. Then these define a 
morphism 

iEI  

xji : x A i + X  Bi. 
i E I  i E I  iEI  
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This is the unique morphism such that for each i E I the diagram 

X A i  -XBi  

is commutative. Observe the relations 

which are valid whenever the products involved are defined and the compo- 
sitions make sense. 

The coproduct of the family {Ai}iEI is defined dually to the product. Thus 
the coproduct is a family of morphisms {ui : Ai-+A} called injections, such 
that for each family of morphisms {ai : Ai + A'},.€' we have a unique morphism 
a : A +A' with aui = ai for all i E I. The object A will be denoted by 0 Ai.  

i E I  

For a finite family alternative notations will be @ Ai and A @ A ,  @ . . . @ A,. 

If d has a zero object then we can define projections pi : A + Ai such that 
i =  1 

p.u. = s... 
I I I1 

Proposition 17.2. If& has images, inverse images, and coproducts, then & has 
unions. In f a c t  i f { A i }  is  a f a r n i b  of subobjects o f A ,  then their union isgiven by the image 
of the morphism f: @ A i + A  such that f o r  each i ,  f u i  is  the inclusion $Ai  in A .  

Proof. Considering the Ai as subobjects of @ Ai by means of the injections, it 
is trivial to verify that their union is @ Ai. Consequently our result follows 
from 11.2. I 

Suppose that for all i E Zwe have Ai = A.  In  this case we denote the product 
of the family by A' and the coproduct by 'A .  We have the diagonal morphism 
d : A +A' defined by pid = 1, for all i E I, and dually the codiagonal 
morphism V : 'A -+A defined by Vui = 1, for all i E I .  Then d is necessarily a 
monomorphism and V is necessarily an epimorphism. 

In a general category&, a morphism f from a coproduct @ Aj to a product 

x Bi is completely determined by its coordinate morphisms dj =pi'fu, 

where uj is thejth injection into the coproduct and pi is the ith projection from 

the product. Hence @ Aj, x Bi is in one to one correspondence with the set 

of all I x J matrices of the form (Aj) whereJj E [Aj,  43. We shall frequently 
denote such a morphism by its corresponding matrix. In  particular when d 

j € J  

iEI 

[ jeJ iEI ] 
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has a zero object, we have the morphism 6 = (aij) : @ Ai+ X A i .  If 6 is an 

isomorphism then we call @ Ai a biproduct. 

Proposition 17.3. The following statements are equivalent in a category d. 

(a) d hasjnite intersections andjni te  products. 
(b) d has equalizers andjnite products. 

(c) d has pullbacks and a null object. 

i E I  iEI  

i E I  

The above statements imply 

Proof. T o  prove the proposition we first prove three lemmas which give US 

more detailed information. 

Lemma 17.4. Consider two morphisms a ,  p : A -+ B in an arbitrary category. Then 
the diagram 

is an intersection i f and  only i f u  is the equalizer of a and p. 
Proof. We have used the word intersection rather than pullback since the 

morphisms (b) and (k) are necessarily monomorphisms. Now in order that 

( 1 )  be commutative we must have au = f lu.  From this the lemrna easily 
follows. I 

The proofs of the following two lemmas are straightforward and are left to 
the reader. 

Lemma 17.5. Given tulo morphisms a ,  : A ,  -+A and a2 : A ,  + A ,  consider the 
diagram 

A ,  4 P 

where P I  and p 2  are projectionsjrom the product and pi  = p i p  f o r  i = 1,  2.  Then the 
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square is a pullback diagram if and only i f  j3 is the equalizer of the two morphisms 
and a2P2. I 

Lemma 17.6. Let 0 be a null object for a category and let -4 and A ,  be any objects. 
Then the diagram 

A ,  -0 

is apullback i fand only i f P  is the product of A ,  and A2  with projectionsp, andp2. I 

(c) 
by 17.5 and the fact that a null object is the product of the empty family. 
(c) * (a) follows from 17.6. I 

Returning now to the proofof 17.3, we have (a) 3 (b) by 17.4, and (b) 

18. Additive Categories 

A semiadditive category is a category d together with an abelian semi- 
group structure on each of its morphism sets, subject to the following 
conditions : 

(i) The composition functions [B,  C] x [A,  B] + [ A  C ]  are bilinear. That 
is, if a, j3 E [ A ,  B]  and y E [B, C ] ,  then y(a + j3) = ya + y/3, and if 
y E [A, B] and a, /3 E [B, C] then (a + j3)y = ay + By. 

(ii) The zero elements of the semigroups behave as zero morphisms. 

That is a0 = 0 and Oa = 0 whenever the compositions make sense. (Observe 
that the 0 on the right-hand side of the equations is not in general the same as 
the 0 on the left-hand side). 

Condition (ii) together with exercise 6 tells us that we can always assume 
that a semiadditive category has a zero object. 

If, further, each set [A, B] is an abelian group, then we call d an additive 
category. In this case condition (ii) follows from condition (i), for we have 
a0 = a(0 + 0) = a0 + a0, and so subtracting a0 from both sides we obtain 
0 = ao. Also 

a(- ,$)+a,$ = a((- j3)+,$)  = a0 = 0 

so that a( - j3) = - (a,$). Similarly ( - a)j3 = - (aj3) and ( - a) ( - j3) = a/3. 
The kernel of a difference a - j3 is the same as the equalizer of the two mor- 
phisms a and j3. Hence an additive category has kernels if and only if it has 
equalizers. A morphism is a monomorphism in an additive category if and 
only if its kernel is 0. 



18. ADDITIVE CATEGORIES 29 

A ring is an additive category R which has only one object. The dual 
category R* is called the opposite ring. If R = R*, then R is called a com- 
mutative ring. A commutative ring in which every nonzero morphism is a 
monomorphism (and hence also an epimorphism) is called an integral 
domain. A ring in which every nonzero morphism is an isomorphism is 
called a division ring, and a commutative division ring is called a field. 

Proposition 18.1. Let A , ,  A P ,  . . ., An be a Jinite collection o f  objects in a semi- 
additive category. Then a f a m i b  ofmorphisms {ui : Ai + A }  is a coproduct f o r  the f a r n i b  
if and only zf there is a f a m i b  o f  morphisms { p i  : A --f Ai}  such that piuj = 6, and 

n 

Proof. Suppose first that A is the coproduct. Then we know that the mor- 
phisms pi  exist satisfying the relations piuj = 6,. Now we have for each i 

n 

Hence, by definition of coproduct, we must have U k p k  = 1,. 
k= I . .  

Conversely, suppose that we are given morphisms pi satisfying the given 
n 

conditions, and 1etA : A i - + A ’  for 1 < i < n. Define f = c f , p k .  Then we have 
k= 1 

Furthermore, ifj” is another morphism satisfying the conditionsf’h =J for all 
i, then we have 

n n n 

k=l k=l k= I 
f’ = f’lA = f’ c ukPk = Cyukpk  = ZhPk =f: 

Hence f is unique, and so A is the coproduct. I 
Remark. In the case n=2 ,  the conditions p2uI = O  and p l u 2  = O  follow from 
the conditions p l u l  = 1, p2u2 =0, and u l p l  +u2p2 = 1,. 

Corollary 18.2. I n  a semiadditive category every finite product (coproduct) is a 
biproduct. I 

Let 

and 

in a semiadditive category where I, J,  and K are finite sets, and we have 
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written @ in place of x in the codomains by virtue of 18.2. Let h = &. Then 
we have 

h,  = p f g  fu;’ = p f g  .”p” fuf 
( j E J  ’ ’) 

That is, the matrix corresponding to the composition gf is the product of 
matrices‘(ceij)(L;). In particular, for a finite set Z, [‘A, ‘A] isisomorphic to the 
ring of Z x Z matrices over the ring [A,  A ] .  

Lemma 18.3. Zn a semiadditive category the sum a + f i  of two morphisms a, f i  : A + B 
is given by any ofthe three compositions 

A (f 3 V 
A + A  @ A + B  @ B + B .  (3) 

Proof. Writing A = 

matrix multiplications. I 
and V = ( lA, 1”) the results follow from a few trivial (3 

Observe that the middle morphism of (3) is the same as the morphism 

The following proposition was first observed in part by MacLane [29]. The 
a @ f i  defined in $1 7. 

proof given here was devised by Eckmann, Hilton, and Eilenberg. 

Proposition 18.4. Suppose that d is a category with biproducts ofthe form A @ A 
f o r  all A E d. Then &‘has a unique semiadditive structure. v, further, d is exact, 
then it is additive. 

Proof. For a, f i  : A - + B  define a + f i  as the composition (1). This definition is 
forced on us by 18.3; hence we already have our uniqueness assertion. Also 
define a x fl as the composition (2). Letting p, be the first projection from 
A @ A we have (a, 0) = a#,, and from this we see that a + 0 = a. Similarly 
0 + a = a, and dually a x 0 = a and 0 x a = a. 

Next let y : B + B .  Then we have y(a,  8) = (ya,  yfi) and from this follows 
the equation 

r ( a  + F )  = (YQ) + (rfi). 

(a x 8 ) P  = (4 x ( f iP) *  

(4) 

( 5 )  

Dually, if p : A’ + A  we have 
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Finally, let x,  y, z, w be any four morphisms from A to B. Then we have 

Setting z and y zero we get x + w = x x w, hence + = x . Setting x and w 
zero we then have z +y =y + z. Settingy zero we have 

( x  + z) + w = x + ( z  + w). 

Therefore + makes [A, B] an abelian semigroup, and bilinearity of compo- 
h ion  follows from (4) and (5). 

Now suppose that &' is exact, and consider the morphism 

B : A @ A - + A @ A  

given by the matrix (k i).  If a: A 0 A -+ B is such that aO=8, then 

expressing a as a matrix it is a simple matter to verify that a = 0. 
Hence 8 is an epimorphism. Dually 8 is a monomorphism and so, since at is 

balanced, 8 is an isomorphism. Writing B - l  = (" ') the relation 
c d '  

= (i y )  yields 1 + b = 0. Then for any morphism x : A + B  we have 

x + x b  = xl + x b  = x(l + b )  = x 0  = 0 

and so xb is an additive inverse for x.  I 
An endomorphism 8 : A - + A  is called idempotent if 88 = 8. If 8 is idem- 

potent in an additive category, then 1, - 8 is also idempotent. 

Proposition 18.5. Consider a coretraction u1 : A ,  + A  in an additive category, and 
suppose that p l u l  = I A 1 .  Then 8 = ulpl is idempotent, and u1 is the kernel of 1, - 8. 
On the other hand, if 8 : A + A  is idempotent and u I : A I + A  and u2 : A ,  + A  art the 
kernels of 1, - 8 and 8, respectively, then A is the coprodtcct ofu, and u2. 

Proof. Ifplul = l,,, then we have 

ee = u,p,u,p, = u,i,lp, = u,p, = 8. 

Also if ( 1 , -  8)a  = 0, then we have ul(pla)  = 8a = a, and so since ul  is a 
monomorphism and (1, - 8 ) u 1  = u1 - u l p l u l  = 0, we see that uI  is the kernel 

Now suppose that 0 is idempotent and u l  and up  are the kernels of 1, - 8 and 
8. Since (1 ,  - 8)8 = 0, there is a morphism pI : A + A I  such that u,p, = 8. 
Then we have ulp lu l  = 8ul = u , ,  and sop,u,  = 1,. since u1 is a monomorphism. 
Likewise we have p2 : A + A 2  such that u2p2 = 1, - 8, and p2u2 = l,,. Then 
since u,p, + u2p2 = 8 + (1 ,  - 8) = l,, we see from the remark following 18.1 
that A is the coproduct of u1 and u p .  I 

of 1, - 8. 
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19. Exact Additive Categories 

In an exact category sd we shall say that a short exact sequence 

splits if @ is a retraction. 

Proposition 19.1. rf in an exact additive category the exact sequence ( 1 )  splits, say 
B y  = l,, then B is the coproduct qf ci and y .  Furthermore p : B -+ A can be chosen 
such that t9 and p are the projections from the coproduct. 

Proof. This follows immediately from 18.5. I 
Corollary 19.2. In an exact additive category, if 

a B  
A + B + C  

P Y  

A t B t C  

are exact sequences such that p a  = 1, and B y  = l,, then B is the coproduct oj'A and C 
with injections ci and y andprojections /3 and p. 

Proof, Since 16 is a retraction, it is an epimorphism. Similarly a is a mono- 
morphism, and so the sequence O+A-+B+C+O is exact. Consequently by 
19.1, ci and y are the injections of a coproduct and /? is one of the projections. 
The relations p a  = 1, and pv=O show that p is the other projection. I 
Proposition 19.3. Let u l  : A ,  +A and u2 : A,  +A be monomorphisms in an exact 
category&. IfAisthecoproductofA, andA2 withinjections~~ andu,, thenA, n A,=O 
and A , u  A,= A. On the other hand assuming further that &' is additive, if 
A ,  n A ,  = 0 and A , u  A ,  = A, then A is the coproduct of A ,  and A,. 

Proof. We refer to the diagram (3) of 16.6. If A is the coproduct, then by 
17.1* we can take A / A ,  = A , ,  so that A ,  +A+A/A, becomes the identity 
morphism on A,.  From this it follows that A ,  n A,  = 0 and A ,  U A,  = A. 

Now suppose that d is exact and additive, and that A ,  n A ,  = 0 and 
A ,  U A ,  = A. Then b y  16.6 A ,  +A-+A/A, is an isomorphism. Consequentlyit 
follows from 19.1 that A is the coproduct of A ,  and the kernel of A +A/A2;  that 
is, A is the coproduct of A ,  and A,. I 
Proposition 19.4. Consider an order two sequence 

in an exact additive category, and suppose that there are morphism s, : A ,  -+A,  and 
52 : A ,  -+A2 such that d,s, -k s2d2 = lA1. Then ( 2 )  is exact. 
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Proof. Let A ,  + I + A 2  be the factorization of d ,  through its image. We have 
0 = d2d,  = d2up, and so d2u = 0 sincep is an epimorphism. Now ifd2a = 0, then 

a = ( d l s l  + s 2 d 2 ) a  = upsla.  

P U  

This shows that u is the kernel of d2 and so ( 2 )  is exact. I 

20. Abelian Categories 

An abelian category is an exact additive category with finite products. 
The following theorem is due to Peter Freyd. 

Theorem 20.1. The following statements are equivalent : 

(a) d is an abelian category. 
(b) d has kernels, cokernels, finite products, finite coproducts, and is normal and 

(c) d has pushouts and pullbacks and is normal and conormal. 

Proof. (a) => (b) This is immediate from the definition of exact category and 
the fact that finite products and coproducts coincide in an additive category. 

(b) a (c) By 14.1, d has finite intersections, and so by 17.3 d has pullbacks. 
Dually d has pushouts. 

(c) 3 (a) By 17.3 and 17.3*, d has finite products, finite coproducts, 
equalizers, and coequalizers. Hence, by 14.4, d is exact. To  show that d is 
additive, by 18.4 it suffices to show that the morphism 6 : A @ B + A  x B is 
an isomorphism for any pair of objects A ,  B E d .  Let K and K' be defined by 
the exact sequence 

conormal. 

6 

O + K + A @ B + A x B + K ' + O .  

Then K + A  @ B - t A  = K + A  @ B + A  x B - t A  = 0, and so K is a sub- 
object of B in A @ B. Similarly K is a subobject of A ,  and so K = 0 by 19.3. 
By duality K' = 0. Consequently, by 15.1, 6 is an isomorphism. I 

Consider a pullback diagram 

A,  * A  

In 7.1 we saw that if a ,  is a monomorphism then j12 is a monol,,orphism. In  
16.3 it was proved among other things that, in an exact category, if a I  is an 
epimorphism and a2 is a monomorphism then j12 is an epimorphism. The 
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following important proposition tells us that in an abelian category the latter 
statement is true without the assumption that a2 be a monomorphism. 

Proposition 20.2. If (1) is a pullback diagram in an abelian category and ; f a l  is an 
epimorphism, then p2 is an epimorphism. 

Proof. Consider the diagram 

0-P 

0 

0 
where u ,  is the first injection into the product, p2 is the second projection from 
the product, and exactness of the row defines the pullback P by 17.5. Then the 
triangles are commutative, and so since a 1  is an epimorphism the same must 
be true of a l p l  - a2pp. Therefore by 16.8, we see that p2 is an epimorphism. I 

Combining 20.2 and 13.1 we have 

Corollary 20.3. In an abelian category, an exact sequence 0 + A  -+ B +C-+O and a 
morphism y : C' +C can be put into a commutative diagram 

- 
O - A - - - - - + B - C ' - O  

0 - A - B - C - 0  

where the top row is exact and the right square is a pullback. I 

21. The Category of Abelian Groups 3 

This is the category whose class of objects is the class of all abelian groups. 
The morphisms from group A to group B are the additive functions from A to 



2 1. THE CATEGORY OF ABELIAN GROUPS 3 35 

B ;  that is, functionsf: A + B  such that f ( a  + b )  = f (a) + f ( 6 )  for all a, b E A .  
The set [ A ,  B] becomes an abelian group if we define f +g by the rule 
(f +g)(n) = f ( a )  +g(a) for all Q E A .  An identity for A is the morphism 1, 
defined by l A ( a )  = a for all a E A .  Then composition given by the usual com- 
position of functions is bilinear, and 8 is an additive category. 

Let f :  A + B  be any morphism of groups, and let K = {a E A1 f (a) = O}. 
Then K is closed under subtraction in A, hence has an induced abelian group 
structure such that the inclusion function u : K + A  defined by u(k) = k is a 
group morphism. It  is easy to verify that u is a kernel forf. Now we can put an 
equivalence relation on B by defining b N 6‘ if and only if b - b‘ = f (a) for 
some a E A.  Denoting the resulting set of equivalence classes by K‘ and the 
equivalence class of b by [b] ,  we define a group structure on K‘ by the rule 
[ b , ]  + [b2] = [ b ,  + b2].  Then the function p : B+K‘ given byp(b) = [ b ]  is a 
morphism of groups. Again it is easy to check thatp is a cokernel forf. 

A group morphism is a monomorphism if and only if it is univalent, an 
epimorphism if and only if it is onto, and an isomorphism if and only if it is a 
one to one correspondence. Iff is a monomorphism, then it is easy to see that f 
is a kernel for p. Similarly, iff is an epimorphism then it is a cokernel for u. 
In other words 8 is normal and conormal and so by 14.4 3 is exact. Explicitly, 
the decomposition off into an epimorphism followed by a monomorphism is 

given by A + I + B  where I = { f ( a )  la E A } ,  q is defined by q(a) = f (a), and v 
is defined by v (b )  = 6. 

If {Ai} iEI is any set ofabelian groups, then a product is given by the Cartesian 
product x Ai with addition defined by the rule (ai)  + (bi) = (ai + bi). The 

projectionp, : x Ai+A, is given bypk((ai)) = a,. In particular this shows that 

8 is an abelian category. A coproduct for the above family is obtained by taking 
the subgroup of x Ai consisting of all those elements (ai) such that a, = 0 for all 

but a finite number ofk E 1. The injection Uk from A, to the coproduct is given 
by uk(a) = (ai)  where ai = 0 for i # k and a, = a. 

The simple characterizations of monomorphisms and epimorphisms in B 
enable us to handle diagrams in this category with comparative ease. Let us 
prove, for example, the “ 5  lemma.” 

q v  

i E I  

&I 

i E I  

Proposition 21.1. Suppose that the following diagram is commutative and has exact 
rows in 8: 
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(i) I f  y1 is an epimorphism and y2 and y4 are monomorphisms, then y 3  is a 

(ii) If y5 is a monomorphism and y2 and y4 are epimorphismr, then y3 is an 

(iii) Ifyl is an epimorphism, y5 is a monomorphism, and y, and y4 are isomorphisms, 

monomorphism. 

epimorphism. 

then y3 is an isomorphism. 

Proof. (i) To  show that y3 is a monomorphism we must prove that if a E A ,  
and y3(a) = 0, then a = 0. Now if y 3 ( a )  = 0, then 0 = ,!13(y3(a)) = y4(a3(a)) .  
Since y4 is a monomorphism this means that a3(a) = 0. By exactness of the 
top row we then have a = a2(a ' )  for some a' E A,.  Then 

Hence, by exactness of the bottom row we can find b E B ,  such that 
y2(a ' )  = Bl(b) .  Since y I  is an epimorphism we can write 6 = y l ( a " )  for some 
a" E A , .  Then y2(a l (a" ) )  = /?l(yl(a")) = /3,(b) = y 2 ( a ' ) ,  and so since y2 is a 
monomorphism we have a l (a" )  = a'. Hence a = a2(a ' )  = a2(a l (a" ) )  = 0 by 
exactness (order two) of the top row. 

(ii) This is the dual of statement (i). However we cannot say that (ii) 
follows from (i) by duality, since we have proved (i) only for the category 9. 
If we apply duality we are no longer in the category of abelian groups. State- 
ment (ii) is proved by the same type of "diagram chasing'' used to prove (i). 

(iii) This follows by combining (i) and (ii). 
We could have assumed a weaker hypothesis in 21.1 than that the rows be 

exact. In  some instances we used kernel c image and in other instances we 
used image c kernel. Likewise it is informative to prove the 9 lemma ( 16.1 ) 
for 9 by diagram chasing and to list precisely the exactness conditions needed. 

Of course the 5 lemma is true in any abelian category (in fact, in any exact 
category, see exercise 14). Usually, however, it is not as easy to prove a state- 
ment in a general abelian category as it is to prove it in the category 3 where 
we can always chase diagrams. In Chapter IV we shall prove a theorem which 
tells us that any general enough statement about a finite diagram which is 
true in the category ofabelian groups is also true in any abelian category. 

Exercises 

1. In  the categories Y,Y, Yo, Yo  (examples 1-4, $3) a morphism is a mono- 
morphism if and only if it is a univalent function, and an epimorphism if and 
only if it is onto. All four categories are locally small, colocally small, have 
equalizers, coequalizers, intersections, cointersections, unions, counions, 
images, coimages, pushouts, pullbacks, products (Cartesian products), and 
coproducts (disjoint unions, with base points identified in the cases of Y o  and 
Yo). Y and Y o  are balanced, but not Y and Yo. In 9 and Y any set with 
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precisely one element is a null object, and the empty set 0 is a conull object. 
Yo and To are categories with zero, and have kernels and cokernels. Y o  is 
normal, but To is neither normal nor conormal. However, the full subcategory 
of Y o  consisting of all compact Hausdorff spaces is normal, and moreover is 
balanced. 
2. In  the category of all Hausdorff spaces a morphism can be an epimorphism 
without being onto as a function. In  fact, in order that a continuous function 
f : X --t Y be an epimorphism it suffices thatf( X) be a dense subspace of Y .  
3. Let I denote the closed unit interval of real numbers. Define two mor- 
phisms E ,  p : A +B in T to be equivalent if there is a continuous function 
h : A x Z+B such that h(a, 0) = .(a) and h ( ~ ,  1 )  = P(a)  for all a E A .  Then 
this is an equivalence relation which behaves in the right way with respect to 
composition so as to define a quotient category o f y .  
4. Consider f: A +B in any category, and let { A i }  be a set of subobjects of A. 
I f u  Aiand uf (Ai)  aredefined, thensoisf(U Ai) andwe haveUf(A,) =f(UAi) .  
Likewise if {Bi} is a set ofsubobjects ofB and if n Bi and nf-' (Bi) are defined, 
then so isf- ' (n Bi) and we have nf- '(Bi) =f-'(n Bi). (Cf. 11.2 and 11.3). 
5. In 1 I .  1 i t  suffices to assume thatf-'(f(A,)) exists in (v) and thatf(f-'(B,)) 
exists in (vi). 
6. I f& has a set of distinguished morphisms in the sense of $12, then a zero 
object can be adjoined without changing any of the pullbacks, products, 
unions, etc., that already exist. 
7. Proposition 7.2 is true if the assumption that B '+B be a monomorphism 
is removed. 
8. If Ai +A is the kernel of A + Aj" for each i, then A' + A  is the intersection 
of the Ai's if and only if it is the kernel of the morphism A + x A,.". Hence a 
normal category with products and kernels has intersections. 
9. In  a normal category with equalizers, a morphism is an epimorphism if 
and only if its cokernel is 0. 
10. Iff: A-tB is an epimorphism and B' +B  is a subobject in a normal and 
conormal category with kernels and cokernels, thenf(f-'(B')) = B' (use 13.2 
and 14.4). 
11. For any category d define a category Add(&) as follows. The objects of 
' ,dd(d)  are the same as the objects o f d .  The set of morphisms from A to B 

in Add(&) is the free abelian group generated by the elements of [A ,  B],; 
that is, the set of all finite formal linear combinations of the form C nicei where 

ni is an integer and ai E [A, B],. Composition in A d d ( d )  is defined by the 
rule 

t 
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Then Add(&) is an additive category which contains d as a subcategory. If 
d is a category with zero, then denoting the zero morphism from A to B by 
oAB we can factor [A, B]~dd(&) by the subgroup generated by oAB, and in this 
way we obtain a quotient category Add(&) of Add(.#) which is additive, 
contains d as a subcategory, and has the same set of zero morphisms as d. 

12. In any category & with zero we can define a sequence A+B+C to be 
coexact if the cokernel of a is the same as the coimage of 8. If d is a normal 
category with kernels and coequalizers and if the above sequence is coexact, 
then it is exact (use 10.15 and 14.4). 

13. Let A? be the category of not necessarily abelian groups. A morphism 
'p : M+G ofgroups is a function from M to G such that ' p (mlm2)  = 'p( ml) 'p(m,) 
for all m,, m2 E M. Then 'p is a monomorphism if and only if it is a univalent 
function, but in such a case it is the kernel ofsome morphism ifand only if A is a 
normal subgroup of B. A? has kernels, images, equalizers, unions, intersections, 
pullbacks, and products. 

Less trivially 'p is an epimorphism if and only if it is onto as a function. 
(Suppose that 'p is not onto, and let H= 'p(M). If G / H  has just two cosets, then 
H must be a normal subgroup of G, and so it is clear in this case that 'p is not 
an epimorphism. Otherwise there is a permutation y of GIH whose only fixed 
point is H.  Let n : G+G/H be the obvious function and choose 8 : G / H + G  
such that no = 1. Let T : G + H  be such that x = T ( X ) ~ ~ ( X )  for all x E C and 
define h : G+G by h(x)  = T ( x ) d y n ( x ) .  Then A is a permutation of G. Let P be 
the group of permutations of G, and let a, P : G+ P be defined by a(g) ( x )  = gx 
for g, x E G and P(g) = h-'a(g)A. Then a and P are morphisms of groups, and 
a(g) = P(g)  if and only ifg E H. Hence a'p= P'p. This proof is due to Eilenberg 
and Moore.) X is conormal and has cokernels, coimages, coequalizers, co- 
unions, cointersections, pushouts, and coproducts (free products). By exercise 
12* a sequence in X is coexact if it is exact. 

Discuss also the category of finite groups. 

14. Prove the 5 lemma (21.1) as follows in an exact category. In proving part 
(i) replace A, by Im(al)  and B ,  by Im(PI) and show that the induced mor- 
phism Im(al)  +Irn(P1) is an isomorphism. Then by 16.2 the induced mor- 
phism Im(a2) +Im(P2) is a monomorphism. Hence we may assume that 
a,, P2, and y2 are all monomorphisms. From the fact that y4 is a monomor- 
phism it then follows that y3 is a monomorphism. Part (ii) now follows by 
duality. 

15. In an exact additive category, if A, B 1 ,  and B2 are subobjects of C and 
A u B , ,  A u B ,  are coproducts, and if ( A U B , )  n ( A U B , )  = A ,  then 
A u B I  u B, is a coproduct. 

16. Prove the following proposition in an exact additive category. Consider a 
commutative diagram 

a 8  



EXERCISES 39 

where pLh = 0 and the diagonals are exact. Then u,pl + u2p2 = 1,; that is, A 
is the coproduct of A ,  and A,.  Furthermore ya + 87 = 0. 

17. Inanabeliancategoryifoneoftwomorphismsal : A l  - tAanda2 : A,+A 
is an epimorphism, then the corresponding pullback diagram is also a pushout 
diagram (use 20.2). 

18. Let d be any abelian category. Let d be the class ofshort exact sequences 
in se'. A morphism a : E-tF of short exact sequences is a commutative 
diagram 

4 E :  0 ---+ A, - A2 

Then d is an additive category. The kernel of a is the sequence 

where K ,  = Ker(al)  and K ,  = Ker (q ) .  The cokernel K' is given by the dual 
construction. Hence a is a monomorphism (epimorphism) if and only if a2 is a 
monomorphism (epimorphism), and so a is a monomorphism and an epi- 
morphism if and only if a2 is an isomorphism. Let I' be the cokernel of K -t E 
and I the kernel ofF-tK'. Then the induced morphism I '-+Iis a monomor- 
phism and an epimorphism. I f& has (infinite) products or coproducts, then 
so has 8. 
19. Let {Ai  c A}i, ,  be a family of subobjects in 3. Show that u Ai is the set of 

elements in A of the form C, ui where ai E Ai for all i E I, and ai = 0 for all but a 

finite number of i. 

20. Prove the following proposition in the category '3. Consider the com- 
mutative diagram with exact rows 

iE1  

i E l  
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A’ ” , A  a2 +A”-O 

Then the induced sequences 

and 
Ker(d’) +Ker(d) +Ker(d”) 

Coker(d’) + Coker(d) + Coker(d”) 

areexact. Define afunction 6 : Ker(d”) +Coker(d’) asfollows. For x E Ker(d“) 
let q ( y )  = x. Then P2d(y) = 0, so d(y) = p1(z) for some z E B’. Define 
6 ( x )  = [ z ]  E Coker(d’). Then 6 is well defined morphism of groups, and the 
sequence 

is exact. 
21. Consider the exact sequence 

8 

Ker(d) --f Ker(d”) + Coker(d’) + Coker(d) 

in an exact category. Then 19 is a retraction if and only if u is a coretraction. 
(Use 16.8). 

22. Let 8 : A @ B + A  @ B be an idempotent of the form (t i) in an 

additive category with kernels and finite products. Then f and g are idem- 
potents, and so we can find factorizations off and g of the form 

f l  f r  
A + A I + A  

PI Pr 
B+B2+B 

such that f l  f 2  = 1 and g1g2 = 1. Find morphisms p : A @ B + A I  @ B ,  and 
h : A l  @ B 2 + A  @ B  such that h p = e  and p h =  1. Hence show that if 
[A, B] = 0 in such a category, then any retract of A @ B is isomorphic to an 
object of the form A ,  @ B l  where Al  is a retract of A and B l  is a retract of B. 
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Diagrams and 'Functors 

Introduction 

We begin by giving a formal definition of the terms diagram scheme and 
diagram (due to Grothendieck [20]). It is pointed out that the diagrams in a 
category over a given scheme themselves form a category, but a detailed 
examination of diagram categories is postponed until $1 2 where the notions 
of functor and functor category are studied. At that time it will be shown that 
a diagram can be regarded simply as a functor from an appropriate category. 

In  $2 we introduce the notion of limit for a diagram. This generalizes the 
older notion of inverse limit for an inverse system, and embraces inverse 
limits, products, pullbacks, and intersections as special cases. Necessary and 
suficient conditions for the existence of limits in a category are given. 

Sections 3 and 4 are devoted mainly to examples and the classification of 
certain types offunctors according to the notions they preserve. In  $5 we show 
how the set valued morphism functors (group-valued in the case of additive 
categories) can be used to characterize limits in a category. This is followed by 
an analysis of limit preserving functors. Then in $7 we examine faithful 
functors. I t  is seen that the main feature offaithful functors is that they preserve 
unpleasant situations. 

After some exposition on functors of several variables and natural equi- 
valences and a section on equivalences of categories, in $8 1 1 and 12 we turn 
to the study of functor categories. In general it is shown that the category of 
functors from a category d' to a category A? inherits the properties ofA?. The 
main result here is that the functor from a diagram category [C, A?] t o g  which 
assigns to each diagram its limit is a limit preserving monofunctor. In  $13 we 
study categories of additive functors, and in particular R-modules. The last 
three sections are devoted to the special types of objects which will be needed 
in the sequel; namely, generators, projectives, and small objects. Each of 
these can be defined in terms of the preservation properties of the morphism 
functors associated with them. 

41 
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1. Diagrams 
A diagram scheme Z is a triple (I, M, d)  where Z is a set whose elements 

are called vertices, M is a set whose elements are called arrows, and d is a 
function from M to Zx I. Ifm E Mand d(m) = ( i , j ) ,  then we call i the origin 
of m and j the extremity. A diagram in a category d over the scheme 2 is a 
function D which assigns to each vertex i E Z an object Di E d, and to each 
arrow m with origin i and extremity j a morphism D(m)  E [Di, Dj]. If Zand M 
are finite sets then we call Z a finite scheme and D a finite diagram. 

Let [Z, d]  denote the class of all diagrams in d over Z. We make this into 
a category by defining a morphism f from diagram D to diagram D' as a 
family of morphisms {A : Di+ D/}iEr in d such that for each m E M with 
d(m) = ( i , j )  we have&D(m) = D'(m)h. Composition defined by (gf)i =giJ is 
clearly associative, and 1, is given by the relation ( lD)i = 1,'. 

A composite arrow in 2 is a finite sequence c = mpmp,. , .m2ml of arrows 
such that the origin of m,,, is the extremity of m, for 1 6 k < p - 1. The length 
of the composite arrow c is p. The origin of m l  is called the origin of c, and the 
extremity of mp is called the extremity of c. If b = msms-,. . .m2m1 and 
a = mPmp-,. . .mst2mrtl, we shall write c = ab. If D is a diagram over Z we define 

Let Zo be the diagram scheme with the same vertices as Z, and whose 
arrows are those of Z together with one new arrow from i to i, called the 
identity arrow at  i and denoted by li, for all vertices i. Let - be an equi- 
valence relation on the set of all composite arrows of Zo. We call - a com- 
mutativity relation if the following conditions hold : 

W C )  = D(mp)W$-1). ..D(m2)D(m1). 

(i) Equivalent composite arrows have the same origin and the same 
extremity. (The common origin and extremity of the members of an 
equivalence class are called the origin and the extremity of the class.) 

(ii) If c - c' and ca is defined, then ca - c'a. Likewise if bc is defined then 
bc - bc'. 

(iii) cli - c and ljc - c whenever the left-hand expression make sense. 

Corresponding to a commutativity relation - and a category d we let 
[Z/ - , d]  be the full subcategory of [Z, d] whose objects are diagrams D in 
d over Zsuch that D(c) = D(c')  for c - c', where D(li) is defined as lo,. 

The smallest commutativity relation for Z is that which identifies two 
composite arrows in Zo if and only if they become the same after removing 
all identity arrows from their decompositions. In this case we have 
[Z, d]  = [Z/-, d] .  The largest commutativity relation for Z i s  that which 
identifies any two composite arrows in Z,-, which have the same origin and 
the same extremity. In this case the objects of [Z/-, d]  are called com- 
mutative diagrams in d over z. Note that if D is a commutative diagram 
in d over Z, and m is an arrow such that d(m) = (i, i), then D(m) = l,,. 



1. DIAGRAMS 43 

Let Z = (I, M ,  d )  a n d C  = ( I r ,  M‘, d ’ )  be two diagram schemes. We define 
the product scheme Z x 2 as the scheme whosevertex set is I x I’ and whose 
arrow set is (A4 x I’) u (I x M’).  An arrow of the form (m, i’) has origin 
(i ,  i’) and extremity ( j ,  i f )  where d(m)  = ( i , j ) .  Similarly an  arrow of the form 
(i,  m‘) has origin ( i ,  i’) and extremity (i,j’) where d’(m’) = (i’,j’). If Z, 2, 
and 2’ are any three schemes, then we have an isomorphism between 
(Z x 27) x 2“ and Z x (2 x Z”) ;that is, a one to one correspondence 
between their vertices and arrows which preserves origins and extremities. 

For example, if Z is the scheme represented by 1+2 (that is, Z has two 
vertices and one arrow) then 2 x Z is represented by the square 

(1, 2) - (2,2) 

Similarly, ifwe draw (2 x Z) x Zwe obtain a cubical configuration. We define 
inductively 2 = Z”’ x Z, and we call 2 the n-cube scheme. 

The following proposition concerning commutativity of diagrams over the 
3-cube is fundamental in the study of categories. 

Proposition 1.1. Consider a diagram over the 3-cube: 

If A ,  +A5 is an epimorphism and all faces of the cube are commutative save possibly the 
face involving A5, A,, A, ,  A,, then this face is also commutative. 
Proof. Denote the morphism from Ai to Aj byAj. Then we have 

f 7 8 f 5 7 f l 5  = f 7 s f 3 7 f n  

= f 4 8 f 3 4 f l 3  

= f 4 8 f 2 4 f l 2  

= f 6 8 f 2 6 f l 2  

= f 6 8 f 5 6 f 1 5 .  

Therefore since f i 5  is an epimorphism we have f 7 ,  f 5 7  = f 6 8  f 5 6  as required. I 
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2. Limits 
If D is a diagram in d over Z = ( I ,  M ,  d )  we call a family of morphisrns 

{ X - t  Di}iE, a compatible family for D if for every arrow m E M the diagram 

is commutative. The family is called a limit for D if it is compatible, and if for 
every compatible family { Y-t  Di}iEI there is a unique morphism Y+ X such 
that for each i E I we have Y-t  X+ Di = Y+ Di. If { Y-t  Di}iEI is also a limit 
for D ,  then Y+ X is an isomorphism. 

We have the following trivialities. 

Proposition 2.1. I f { X - t D i }  is a limit for D and ye: Y - t X i s a n  isomorphism, 

then { Y += X -t Di} is a limit for D .  [ 

Proposition 2.2. Let 6 : D +D' be an isomorphism in [Z, d] (that is, for each i ,  

Bi : Di-tD:isan isomorphism i n d ) .  I f {X+Di}  isalimitforD, then {X-+Di+D~} 
is a limit for D'. [ 

We say that a category a? is Ccomplete if every diagram in d over 2 has 
a limit. If d is Z-complete for all diagram schemes Z, then d is called 
complete. If d is 2-complete for all finite diagram schemes Z, then d is 
called finitely complete. 

Proposition 2.3. Ifd isjnitely complete, then d has pullbacks. Ifd is complete, 
then d has intersections and products. 

Proof. The limit of the diagram 

8 

01 

A2 

.1 
A 1 - A  

is the pullback. The intersection of a family {Ai}iEI of subobjects of A is given 
by the limit of the following diagram D. The scheme of D has vertex set 
Iu {p} wherep is some element not in I, and has an arrow from i top for each 
i E I .  Then Di = Ai, Dp = A, and if m is the arrow from i top  we take D(m) as 
the inclusion of Ai in A .  Finally, the product of a family of objects {Ai}iEI is the 
limit of the diagram D over the scheme whose vertex set is Z and whose arrow 
set is empty, defined by Di = Ai for all i E I. [ 
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Let D be a diagram in d over Z = ( I ,  M, d ) .  In looking for a limit forD 
we may always assume that Z has the property that if i is any vertex, then there 
is an arrow whose extremity is not i. For if this is not the case, we can construct 
a new scheme Z' which has this property. The vertices of Z are the vertices 
of Z together with one new vertex v. The arrows of Z' are the arrows of Z 
together with an arrow cc from i to v and an arrow f l  from u to i. We extend D 
to a diagram D' over Z by defining D: = Di, D ( a )  = 1,' = D(fl). Clearly the 
restriction to D of a limit for D' will be a limit for D. 

Now define P = x Di, and let pi : P+ Di denote the ith projection. Also for 

m E Mlet qm : PM+ P denote the mth projection. Let p : P+ P M  be defined as 
follows. If m E M and d ( m )  = ( j ,  k ) ,  then for i # k let piqmp =pi,,., and let 
pkqmp = D(m)pj .  Then we have the following theorem, due to Freyd. 

Theorem 2.4. Let D be a diagram over a scheme Z which is such that no vertex is the 
extremity of all arrows, and let p : P+PM be as dejned above. Then p is a monomor- 
phism. Furthermore, letting A : P + PM be the diagonal morphism, ;f the diagram 

i E I  

i 1. 
P z P M  

is apullback (intersection) , then a limit for  D isgiven by the family Thus if& 
has products andjnite intersections then d is complete. 

Conversely, f ( y i  : L + Di) is a limit for  D and if y : L --f P is the morphism induced 
by this farnib, then replacing each ofd and p by y in (1)  we obtain a pullback diagram. 

Proof. We first prove that p is a monomorphism. Suppose that p a  = pfl. For 
i E I choose an arrow m which does not have extremity i. Then we have 

Pi@ = PiqmpU = Piqmpfl = Pifl 

and since this can be done for each i E I we must have a = 8. Therefore p is a 
monomorphism. 

Next we show that d =p. Again given i E I let m be an arrow which does 
not have extremity i. Then 

PiA = PiqmpA = PiqmAP = Pip 

and so d =p. 

m E M with d(m)  = ( j ,  k ) .  Then 
Now we show that {pidliE1 is a compatible family. Consider an arrow 

D(m)pjd = Pkqmpd = PkqmAp = P k p  = Pka  
as required. 
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Finally, we show that {pid},, is the limit. Let {J;.  : X+Di}iEI be a com- 
patible family. Then we have an induced morphism f :  X+P.  For m E M 
with d ( m )  = ( j ,  k )  we have for i # k 

Piqmpf = Ptf = PiqmAf, 

and for i = k ,  using the fact that the family is compatible, 

Pkqmpf = O(,)Pjf = D(m)f;.  = h  = PkqmAf. 

Therefore Af = pf, and so there is a unique morphismf’ : X+L such that 
df’ =f, or in other words, such that pidf’ =A for all i E I. This shows that 
{pid},, is the limit for D. 

Conversely assume that {y i  : L+Di} is the limit and replace d and i; by 
the induced morphism y :  L+P in (1). Then as we showed for f above we 
have A y = p y .  Now i f f :  X+P and g : X+P are such that p f  = Ag,  then 
replacing d and i; by f and g respectively in the above, we see that f = g 
and that {pif}i,r is a compatible family. Consequently it follows from the 
definition of limit that there is a unique morphism f’ : X+L such that 
yf’ =f. This shows that the diagram is a pullback. I 
Corollary 2.5. Suppose that d is either additive or normal. Then d is complete ifand 
only if it has kernels and products. 

Proof. If d is complete, then since kernels and products are special cases of 
limits, d must have kernels and products. Conversely, suppose that & is 
additive and has kernels and products. Then d has equalizers and so by I, 
17.3, d has finite intersections. Likewise, if& is normal then by I, 14.1, d has 
finite intersections. Hence in either case it follows from 2.4 that& is complete. I 

If D is a finite diagram in 2.4 then P and PM will be finite products. Hence 
we have 

Corollary 2.6. A category isjinitely complete ifand only ;fit hasjinite intersections and 
finite products. I 

The dual notions of cocompatible family, colimit, Gcocomplete 
category, finitely cocomplete category, and cocomplete category are 
left to the reader. Combining 2.6 and 2.6* with I, 20.1, we then have: 

Corollary 2.7. A category is abelian i f  and only if it is.finitely complete andjinitely 
cocomplete and is normal and conormal. I 

We see now that an abelian category is complete (cocomplete) if and only 
if it has products (coproducts). In particular the category of abelian groups 
is complete and cocomplete. 

Proposition 2.8. Let d be a category with images and inverse images, and let {Di +L}  
be the colimit for  a diagram D in &. If{A : Di + A }  is a cocompatible system for  D and 
i f f :  L + A is the induced morphism, then u Im(fi) is deJined andis the same as Im( f ). 
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Proof. Let g : A + B, and let B' be a subobject of B such that Im(J) is carried 
into B' by g for each i. Then the compositions Di+ Im(A) + B' form a co- 
compatible system for D, and we get an induced morphism L+B'. Further- 
more, due to the uniqueness of morphisms induced on limits we must have 

L+B'+B = L+A+B. Hence f factors through g- ' (B ' ) ,  and consequently 
Im(f) c g- ' (B ' ) .  But then since g- ' (B ' )  is carried into B' by g,  the same must 
be true of Im(f). Since it is clear that Im(A) c Im(f) for each i, it follows that 

f g  

Wf) = u Im(.h). I 
Proposition 2.9. Let &' be a category with products andjnite intersections and let D be 
a diagram in &' over a scheme ( I ,  M ,  d ) .  Then a limit for D is given by the f a m i b  of 
composit ions 

where d ( m )  = ( j ,  k ) ,  and pi represents the ith projection from the product. 

Proof. It follows easily from the definitions of equalizer and intersection that 
the family (2) is compatible. Now let {A : A+Di}iEI be any other compatible 
family. Then there is a unique morphism f : A-tX Dh such that pi f =A for 
each i, and the condition that the family {A} be compatible is precisely the 
condition thatf factor through thesubobject n Equ(pk, D(rn)pj). Th' is proves 

that (2) is the limit. 1 
mEM 

In an additive category the subobject EqU(pk, D ( m ) p j )  is the same as 
Ker(pk-D(m)p j ) .  Therefore if we apply duality to 2.9 and use I, 15.2, we 
obtain 

Corollary 2.10. Let d be a cocomplete abelian category, and let D be a diagram in a? 
over ( I ,  M ,  d ) .  Then a colimit for D is given by the famitv of compositions 

where d ( m )  = (k ,  j )  and ui is the ith injection into the coproduct. 1 
Let I be a directed set, and consider the diagram scheme whose set ofvertices 

is I and which has precisely one arrow from i t o j  if i < j and no arrows from 
i to j otherwise. A commutative diagram D in &' over this scheme is called a 
direct system in stover I .  Commutativity of the diagram requires that if i < j 
then there is only one morphism from Di to Dj in the diagram, and so there is no 
ambiguity in denoting it by qj. Then we must have ?rjkvG = .rr, for i < j < k, 
and rii = I,, for all i E I. The colimit {Di+L}iEI for D is called the direct 
limit for D ,  and the object L is denoted by lim D,. The above direct system 

+ 
iEI 
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D will be denoted by {Di,  n}iEI, and the limit morphism Di+L will be denoted 
by ni. If Di = A for all i E I and nG = 1, whenever i < j ,  then it is trivial to 
verify that { 1, : A + Di}iEI is the direct limit of D. 

Recall that a subset J of a directed set I is called a cofinal subset of I if for 
every element i E I there is an element j E J such that i <j. If the ordered 
subset J is cofinal then J is itself a directed set. Thus if D is a direct system 
in d over I, then the restriction of D to J is a direct system in d over J .  The 
set of all elements which follow a given element is an  example of such a set J .  
We then have the following proposition, whose proof is left to the reader. 

Proposition 2.11. Let D be a direct system in d over Iand let J be a coJinal subset of I. 
If {ni : Di --+ L}iEr is a direct limit for D, then {ni : Di + L}iEJ is a direct limit for the 
restriction of D to J .  I 

In  other words, the direct limit of a system is determined by the values of 
the system on any cofinal subset. In  particular, if d has a zero object and if 
Di = 0 for all i in a cofinal subset of I, then lim Di = 0. 

2 
We consider two examples of direct limits. 

1. Let { A h } h , ~  be any set of objects in a category, and suppose that for any 
finite subset F c /1 the coproduct @ Ah is defined. Let I be the set of all finite 

subsets of A, and for F, G E I define F 6 G if and only i fF  c G. Then for F < G 
we have the obvious morphism uFG : @ Ah --+ @ Ah whose dual is described in 

I, $17, and in this way we obtain a direct system in d over I. The direct limit 
exists if and only if @ Ah exists, in which case they are equal. Hence if a 

category has direct limits and finite coproducts, then it has coproducts. In  
particular an abelian category is cocomplete if and only if it has direct limits. 

2. Let {ui : Ai+A}iE, be a set of subobjects. Define i < j  if and only if 
ui < uj. We will say that the family is a direct family of subobjects if I 
becomes a directed set under this ordering. Then taking for nG the inclusion 
morphism Ai+ Aj we obtain a direct system over I. Supposing that the direct 
limit exists, we have the morphism u : lim A,.--+ A induced by the compatible 

family {ui}. In  general u is not a monomorphism. That is, the direct limit of a 
direct family ofsubobjects is not necessarily a subobject. The most that can be 
said is that i f d  has images and inverse images, then Im(u) = UAi  (2.8). In  

the following chapter we shall find conditions on a cocomplete abelian cate- 
gory which are necessary and sufficient in order that u be always a mono- 
morphism. 

An inverse system in d over Zis a system of objects and morphisms which 
is a direct system in d*. Hence an inverse system is a family of objects {Di}iEr 

AEF 

AEF AEG 

AEA 

z? 

iEI 
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and a family of morphisms {rij : Dj-+Di}iGj such that for i < j < k we have 
rpjk = rik, and rii = 1,‘ for all i E 1. In this case the limit is called the inverse 
limit of D and is denoted by lim Di. 

t 
i E I  

3. Functors 

Let d and 9 be categories. A covariant functor T : d-+9 is an  assign- 
ment of an object T ( A )  €99 to each object A E &  and a morphism 
T( a )  : T(A) + T(A’)  to each morphism a : A +A’  in d, subject to the follow- 
ing conditions : 

(1) Preservation of composition. If a’a is defined in d, then 

T(a‘a) = T(a‘)  T(a). 

(2) Preservation of identities. For each A E d’ we have T( lA)  = 1 T ( A ) .  

I t  follows easily from (1) and (2) that if 0 is a retraction in d ,  then T(0) is 
a retraction in 29. We shall call & the domain of T and 9 the codomain, 
and we shall say that T has values in a. 

An additive functor is one whose domain and codomain are additive cate- 
gories, and which satisfies the condition T ( a  + /I) = T ( P )  + T(B) whenever 
a + /? is defined in the domain. Hence T : d+g is additive if and only if 
the functions 

L A >  ’Id-+ [T(A)J T(B) l ,  
induced by Tare morphisms ofabelian groups. If Tis additive, then T ( 0 )  = 0 
for any zero morphism. 

Keplacing the conditions a : A-+A’* T ( a )  : T ( A )  + T(A’) and T(a‘a) = 
T(a‘)  T ( a )  by theconditionsa : A - + A ’ a  T ( a )  : T(A‘)+ T ( A )  and T(a’a) = 
T( a )  T(  a’) in the above, we obtain the definition of a contravariant functor 
from d to 9. The unqualified term “functor” will usually mean covariant 
functor. 

We consider some examples of functors. 

1. The covariant functor 1, : d+d such that l,(A) = A for all A E Lc4 
and l,(a) = a for all morphisms a in d is called the identity functor on d.  

2. The contravariant functor D : &+d* such that D ( A )  = A* for all 
A E d and D(a)  = a for all morphisms a in & is called the duality functor 
on d. 

3. I f d ’  is a subcategory o f d ,  then the covariant functor I : &‘+d such 
that I ( A )  = A for all A E d’ and Z(a) = I for all morphisms a in d’ is called 
the inclusion functor of d‘ in d. 

4. I f d “  is a quotient category of&, then the covariant functor P : d+&” 
such that P ( A )  = A for all A E &  and P(a)  = [a]  for all morphisms a in A is 
called the projection functor of&’ onto &”. 
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5. The forgetful functor F : 9+9 from the category of abelian groups 
to the category of sets is the functor which forgets the abelian group structure 
on the objects of 9. That is, if G is an  abelian group, then F (C) is the underlying 
set of G, and if Q! is a group morphism, then F ( a )  = a. Likewise we have a 
forgetful functor Fo : %+Yo which assigns to the abelian group G the 
object (G, 0) where 0 is the zero element of G. 

6. Let T :  d+3? and S : a+% be two functors. We define the com- 
position ST: d-+% by the rules ST(A) = S( T(A)) and ST(a) = S( T(Q!)). 
If Tand S are both covariant or contravariant, then STis covariant, whereas 
if one is covariant and the other is contravariant, then ST is contravariant. 
If S and Tare additive functors, then ST is also additive. 

7. If T : &--+??I is a covariant (contravariant) functor, then we obtain a 
contravariant (covariant )functor T* : &*+a by composing T with the 
duality functor on d. Likewise we obtain a contravariant (covariant) functor 
T* : d +a* by composing T with the duality functor on a. We write 
T,* = (T*) ,  = (T,)*. 

8. Let d be any category and let A ~ d ,  We have a covariant functor 
H A  : d+Y called the covariant morphism functor with respect to A. 
Explicitly, if B E a then HA(B)  = [A, B ] ,  and if a : B+C then 

HA(.) : [A,  B] + [A ,  C ]  

is given by the rule HA(  a)  ( x )  = ax. If d is a category with zero, then H A  can 
be regarded as a functor with values in Y o  by defining H A ( B )  = ([A, B ] ,  OAB). 
I f d  is an additive category, then H A ( B )  is an abelian group, and HA(.) is a 
group morphism. Furthermore, in this case we have 

H A ( a  + 8) = HA(.) +HA(/?) .  

Hence HA may be considered as an additive functor with values in 97, or an 
additive group valued functor as we shall say. Composing this group valued 
functor with the forgetful functor F : 9-+9 gives us the set valued morphism 
functor defined originally. 

Likewise we have the contravariant morphism functor HA : d+Y 
defined by HA(B)  = [B,  A]  and HA(Q)(x) = x a  for Q : B-tC and x E [C, A ] .  
The remarks made for H A  in the case where d has a zero or is additive apply 
to HA. Notice that ( H A ) ,  = HA'. 

9. If 'p : R+S is a covariant functor and R and S are semigroups (that is, 
categories with one object each) then we call 'p a semigroup morphism, 
and if R and S are rings and 'p is additive, then we call 'p a ring morphism. 

4. Preservation Properties of Functors 

Let T : d+a be a covariant functor. We shall call T a monofunctor if 
T(a) is a monomorphism in 9 whenever Q is a monomorphism in d. Dually 
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we call T an epifunctor if T( a)  is an epimorphism whenever a is an  epi- 
morphism. Hence T is an epifunctor if and only if T$ is a monofunctor. If 
d and g are categories with zero objects, then Tis  called a zero preserving 
functor if T(0) is a zero object in 9 for 0 a zero object in d. In  this case T 
necessarily takes zero morphisms into zero morphisms. Conversely, if T takes 
zero morphisms into zero morphisms, then using the fact that a zero object 
is characterized by its identity morphism being zero we see that T must be 
zero preserving. In particular an additive functor is zero preserving. 

We call T kernel preserving if T(u) is the kernel of T(a)  when u : K+ A 
is the kernel of a : A+ B. Taking K = A = B = 0, we see that a kernel preserv- 
ing functor is necessarily zero preserving. If d is normal and T is kernel 
preserving then T is a monofunctor. 

If d and 34 are exact categories, then we say that T is an exact functor if 
T(A)-+ T(B)-+ T(C)is exact for every exact sequence A+B-+C. 

Proposition 4.1. Let d and 34 be exact categories, and let T : d - t g  be any 
covariant, functor. Then 

1. T is kernel preserving if and onLy $for euery short exact sequence 

O+A+B+C+O (1) 

in d, the sequence 0 -+ T ( A )  + T ( B )  + T ( C )  is exact in S7. 

T ( A )  --f T(B)  -t T ( C )  -tO is exact. 
2 .  T is cokernelpreseruing if and only iffor every short exact sequence ( 1 ), the sequence 

3 .  T is exact if and only iffor every short exact sequence ( l ) ,  the sequence 

0 + T(A)  + T ( B )  --f T ( C )  +O 
is exact. 

Proof. 1. If T is kernel preserving, then clearly O+ T(A)+ T(B)+  T ( C )  is 
exact. Conversely, suppose that T satisfies the given condition and let 
a : A , + A 2  be any morphism i n d .  Then we can find two short exact sequences 

O+ K-+ A ,  + I + O  
O +  I+ A2-+ K’+O 

where K +  A is the kernel of a, A2+ K’ is the cokernel of a, and A --+ I+A2 
is a. The condition on T then says that O+ T ( K ) +  T(A,)+ T(Z) and 
O+ T(Z) -+ T(A2) + T(K’ )  are exact. Hence T ( K )  + T(A,)  is the kernel of 
T(A,)+ T(Z), and T(Z)+ T ( A 2 )  is a monomorphism. Consequently 
T(K) + T(A,)  is the kernel of T(A ,) + T(Z) + T(A2).  But since T preserves 
compositions, the last composition is just T( a). 

Part 2 follows from part 1 by duality, and part 3 is proved similarly to 
part 1. I 

The functor T is called a faithful functor if for every pair of objects 
A ,  B E d the function 

[A,  BI --f T ( A ) ,  T(B)I (2) 
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induced by T is univalent. That is, T is 'faithful if it preserves distinctness of 
morphisms. If T is additive, then T is faithful if and only if it takes nonzero 
morphisms into nonzero morphisms. A faithful functor which takes distinct 
objects into distinct objects is called an imbedding. 

If instead of being univalent, the functions (2) are all onto, then T is 
called full. We shall say that T is representative if for every B E 9? there is 
an object A E d such that T(A) and B are isomorphic. A full representative, 
faithful functor is called an equivalence. An equivalence which actually 
produces a one to one correspondence between the objects of d and is 
called an isomorphism. However, isomorphisms of categories are rare. 
As we shall see presently the thing to look for when we wish to show that two 
categories are essentially the same is an equivalence ($10). 

Let D be a diagram in d over a scheme Z = ( I ,  M ,  d )  . We define a diagram 
TD ingover  Zby  taking TDi = T(Di) and TD(m) = T(D(m)). If{ai : X+Di} 
is a compatible system for D in d, then {T(a i )  : T(X)+ T(Di)} is a com- 
patible system for TD in 9?. However if {ai} is the limit of D, it does not 
necessarily follow that { T(ai)} is the limit of TD. In fact we shall call T a 
limit preserving functor if { T(ai)} is the limit of TD whenever {ai} is the 
limit ofD. If Tis limit preserving, then Tmust preserve pullbacks and products. 
Since a zero object is the product of the empty class of objects it follows that a 
limit preserving functor is zero preserving. Using the description of the kernel 
of a morphismfasf-'(O) we see then that a limit preserving functor is kernel 
preserving. However, a limit preserving functor need not be a monofunctor 
unless the domain is normal. 

Dually Tis called a colimit preserving functor if T,* is limit preserving. 
The forgetful functor F : 9349 is mono, epi, and limit preserving. It is also 
faithful and representative, but it is neither full nor colimit preserving. The 
same remarks apply to Fo : g+ Yo. 

Let d be a category and d' a subcategory. Then the inclusion functor 
I : d'+d is an imbedding, but it need not be mono, epi, limit preserving, 
or colimit preserving. If&' is complete and Zis limit preserving then we shall 
say that d' is a complete subcategory o f d .  Equivalently, d' is a complete 
subcategory if every diagram in d' has a limit in d and this limit is in d'. 
This says more than simply that d' is a cocomplete category which is a 
subcategory of d. If d' and d are exact categories and I is an exact functor 
then we call d' an exact subcategory of d, and if I is additive we call 
d' an additive subcategory. If I is an equivalence then d' is called an 
equivalent subcategory o f d .  Thus d' is an equivalent subcategory if and 
only if it is a full subcategory such that every object in d has an isomorphic 
object in d'. 

The properties of functors defined in this section are called preservation 
properties of functors. If T : d+9J and S : a+%? are covariant functors 
both having a certain preservation property, then ST also has that property. 

. 
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We shall say that a contravariant functor T :  d+B has a preservation 
property if and only if the covariant functor T* : d*+g has that property. 

5. Morphism Functors 

Proposition 5.1. A morphism B +C is a monomorphism in a category&‘ i fandonly 
if the induced morphism HA(B) -+HA(C) is a monomorphism in Y f o r  all A E&‘. 

Similarly a family of morphisms 9 = {A : L -+ Di> is a limit f o r  a diagram D in &’ if 
andonCy ifthe family H A ( g )  = {HA(L) : HA(L) -+ HA(Di)} is a limit for HAD in 9 

f o r  all A E d. 
Ifd has a Zero object (resp., is additive) then the category 9 may be replaced by the 

category Yo(resp .  ?I) in the above. 

Proof. By definition a morphism B-tC is a monomorphism if and only if for 
each A E d the induced morphism [A, B] -t [A ,  C] is univalent. But a mor- 
phism in the category of sets is univalent if and only if it is a monomorphism, 
hence we have the first statement. 

Now suppose that 9 is the limit of D, and consider a compatible family 
{ai : X-tHA(Di)} for HAD in 9. Then for each x E X we have a compatible 
family {ai(.) : A+Di}forDind,  andsowegetuniquemorphismsa(x) : A+L 
into the limit such thatJa(x) = ai(x) for all i. It follows that a : X+HA(L) 
is the unique morphism in Y such that HA(J)a = a, for all i. Therefore 
H A ( 9 )  is the limit of HAD. 

Conversely, suppose that 5 is not a limit for D. There are three possibilities. 

1. 9 is not a compatible family. Then for some arrow m the diagram 

is not commutative. By examining what happens to 1, E HL(L) we see that 
the diagram 

is not commutative. Hence H’-(P) is not a limit for HLD. 

there are two distinct factorizations y ,  y’ : X - t  L. Then 
2. There exists a compatible family {yi : X+ Di} corresponding to which 
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and consequently H X ( y )  and H X ( y ' )  are distinct factorizations for the family 
{ H x ( y i ) } .  Therefore Hx(2F) is not the limit of HxD. 

3. For some compatible family {X+Di}  there is no factorization X+L. 
Then there is no factorization p : H X ( X )  + H X ( L )  corresponding to the family 
{ H x ( X )  +Hx(Di) } .  For if there were such a p, then p( 1,) : X - t  Lwould yield 
a factorization for {X+Bi}.  Hence H x ( . F )  is not the limit of HxD. 

If Y is replaced by Yo  the only difference in the proof comes at the point 
where we show that H A ( 9 )  is a limit for HAD. Here it must be checked that 
the morphism a defined is actually a morphism of sets with base point. But 
this follows since the morphisms ai are all necessarily morphisms of sets with 
base point. A similar remark applies to the case where Y is replaced by $2'. I 

Using the relation (HA)* = HA' we have: 

Proposition 5.1*. A morphism C+ B is an epimorphism in a category d ifand only i f  
the induced morphism H,(B) +HA(C) is a monomorphism in Y f o r  all A ~ d .  
Similarly a f a m i b  of morphisms {Di + L }  is a colimit f o r  a diagram D in d if and only if 
the corresponding f a m i b  {HA(L) +HA(Di)} is a limit f o r  HAD in Y f o r  all A E sd. I 

6. Limit Preserving Functors 

We shall say that T : d+g is finite intersection preserving if when- 
ever T preserves two monomorphisms for which the intersection is defined, 
then T preserves this intersection. Notice that this definition does not say that 
T is a monofunctor nor does it require that T take every pullback diagram 
describing an intersection into a pullback diagram. 

Proposition 6.1. Ifd has products and g is arbitrary, then T : d+a is limit 
preserving if and only i f  it preserves products and finite intersections. 

Proof. If Tis limit preserving, then since products and intersections are special 
cases of limits it follows that T preserves products and finite intersections. 

Conversely suppose that T preserves products and finite intersections. Let 
{L+ Di} be the limit of a diagram D in d and form the diagram 

.I lA 
of 2.4. As usual there is no loss in generality by assuming that in D n o  vertex 
is the extremity of all arrows, so that by 2.4, (1) is an intersection diagram. 
Now T ( d )  : T(P) + T(P') = again a diagonal morphism. Similarly 
the morphism T(p) bears the same relation to the diagram TD that p bears 
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to D. In particular, this means that T(d) and T(p) are monomorphisms, and 
consequently ifwe apply T to the diagram ( l ) ,  by assumption on Twe  get an 
intersection diagram. Afinal application of2.4 then shows that { T(L) +T(Di)} 
is the limit for TD. I 
Corollary 6.2. Let d be a category with products and let g be any category. Then the 
functor T : d +a is limit preserving if and only if i t  preserves products and equalizers. 

Proof. It follows from I ,  17.4, that if T preserves limits, then T preserves 
equalizers. Conversely if T preserves products and equalizers, then by I, 
17.5, we see that T preserves pullbacks, and in particular finite intersections. 
Therefore, by 6.1, T is limit preserving. I 
Corollary 6.3. Ifd is a normal category with products, then T : &'+A? is limit 
preserving if and onb  if i t  preserves products and kernels. 

Proof. We have already seen that if T is limit preserving, then T preserves 
products and kernels. Conversely it follows from I, 13.2, that if T preserves 
kernels then T is finite intersection preserving. Hence if T also preserves 
products, then by 6.1 T is limit preserving. I 
Proposition 6.4. Let d be an additive category withjni te  products, and let A? be an 
additive category. Then T : d -47  preservesjnite products if and onb if i t  is additive. 

Proof. If T preserves finite products then it follows from I, 18.3, that T is 
additive. Conversely if T is additive, then T preserves finite products by I, 
18.1. I 
Corollary 6.5. Let d be an additive category with j n i t e  products, and let A? be an 
additive category. Then T : d-9 preserves limits of  j n i t e  diagrams if and onb if 
T is kernel preserving and additive. 

Proof. If T is additive and kernel preserving, then T must preserve equalizers. 
Hence the conclusion follows from 6.4 and from 6.2 restricted to finite 
diagrams. I 

Let d and 8 be exact categories. We shall call a functor T :  &'+A? a 
half-exact functor if relative to every short exact sequence 

O+A+B+C+O 

in d, the sequence T(A) + T(B) -+ T ( C )  is exact in L@. 

Proposition 6.6. Consider a halfexact functor T : &' +A? where&' is abelian and99 
is exact and additive. Then T is additive. 

Proof. From I, 19.2, it follows that T preserves finite products, and so by 6.4, 
T is additive. I 

Combining 6.5 and 6.6 we have 
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Corollary 6.7. Ifd is abelian a n d B  is exact and additive, then a functor T : S? +@ 
preserves limits offinite diagrams if and only if i t  is kernel preserving. I 

From 6.7 and 6.7* we see now that i f d  and @ are abelian categories, then 
a functor T : d+@ is exact if and only if it preserves limits and colimits of all 
finite diagrams. If T is the inclusion of one abelian category into a larger 
abelian category and if T is exact, then we shall call S? an abelian sub- 
category of @. Again this is to be distinguished from a subcategory of @ 
which is an abelian category. 

7. Faithful Functors 

We say that a functor T : d-+@ reflects a property of a diagram D in S? 
if the condition that TD has the property implies that D has the property. 
Thus for example T reflects limits if {ai : L+ Di} is a limit for the diagram 
D whenever { T(ai) : T(L)  + TD;} is a limit for TD for all diagrams D in d.  

Theorem 7.1 (Freyd). Let T : &'+@ be a faithful  functor where d and @ are 
arbitrary categories. Then T reJects monomorphisms, epimorphisms, and commutative 
diagrams. Ifd and @ are categories with zero, then T reJIects Zero objects. Ifd and @ 
are exact categories and T is zero preserving, then T reJects exact sequences. If& is an 
abelian category, 9 is an additive category, and T is additive, then T rejects limits and 
colimits ofjnite diagrams. Finally, if T is fu l l ,  then without any conditions on & and 9Y, 
T rejlects limits and colimits. 

Proof. Consider a morphism a in d, and suppose that af= ag. Then 
T(a)  T ( f )  = T(a)  T ( g ) ,  and so if T(a)  is a monomorphism we must have 
T ( f )  = T ( g ) .  Since T is faithful this implies f = g .  In other words a is a 
monomorphism. Thus T reflects monomorphisms and by duality T reflects 
epimorphisms. 

Anoncommutative diagram is one in which two compositions with common 
origin and common extremity are not the same. Since T preserves composi- 
tions it is clear then that T carries noncommutative diagrams into non- 
commutative diagrams, or in other words that T reflects commutative 
diagrams. 

Since a zero object is characterized by its identity morphism being equal 
to its zero endomorphism we see that T reflects zero objects. 

Suppose that d and @ are exact categories. There are two ways in which a 

sequence A'+A+A" in d can fail to be exact. First we may have pa # 0. 
Then T(pa)  = T(p)T(a) cannot be zero since T is faithful, and so 
T(A')  + T(A)  + T(A") is not exact. Second, Ker(p) may nct be a subobject 
of Im(a). Letting u : K+ A and p :A+F be the kernel of /3 and the cokernel 

Q B  
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of a, respectively, we then see that the composition p u  is not zero. Applying 
T we have a commutative diagram 

T(F) 

Consequently T(u) factors through Ker T(6) and T(p) factors through 
Coker T(a) .  If the horizontal sequence were exact then the composition 
Ker T(/3+ T(A)+Coker T(a) would be zero. Thus T(pu) = T(p)T(u) 
would be zero, contradicting the faithfulness of T. 

Finally, without making any assumptions on d and a, there are three ways 
in which a f ami ly9  = {L-t Di} can fail to be a limit for D in d. First, 9 is not 
compatible. Second, there exists a compatible family which factors through 5 
but not uniquely. Third, 9 is compatible, and for every other compatible 
family there is at most one factorization through 9, but for some compatible 
family 9’ = {L’+Di}  there is no factorization. In  the first two cases it is 
immediate from the faithfulness of T that T ( 9 )  is not a limit for TD. If, 
further, Tis full then it is clear in the third case that T ( 9 ’ )  cannot be factored 
through T ( 9 ) ,  and so again T ( 9 )  is not a limit for TD. If T is not full, then 
assume that d is abelian, 9 and Ta re  additive, and D is finite. Consider the 
finite product x Di and the morphisms L-t x Di and L‘+ x Di induced by 

9 and 9‘, respectively. The uniqueness of factorizations tells us that the 
first of these morphisms is a monomorphism. Consequently, ifwe let x Di+F 
be its cokernel, then the nonexistence of a factorization for 9’ shows that the 
composition L’+ x Di+F is not zero. Now T, being additive, preserves 
finite products. Hence if T ( 9 ’ )  could be factored through T ( 9 )  then we 
would have 

t 

T(L’) + T(X Di) -t T(F) = T(L‘) + T ( L )  -t T(X Di) + T(F) = 0. 

Since T is faithful this is a contradiction. Therefore again T ( 9 )  cannot be the 
limit of TD. That T reflects colimits now follows by duality. I 
Proposition 7.2. Let .a? be an abelian category and 9 an exact additive category. r f  
T : d+9 is an exact functor which rejects zero objects then T is faithful .  

Proof. By 6.6, Tis additive and so it suffices to show that i fa  # 0 then T(a) # 0. 
Now if a # 0 then Im(a) # 0, and so T(Im(a))  # 0 by hypothesis. But by 
exactness of Twe have T(Im(a)) = Im( T(a)), and consequently T(a) # 0. I 
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8. Functors of Several Variables 

Consider n + 1 categories dl ,  d,,. . ., d,,, A?, and let I u J be a partition 
of the integers between 1 and n. A functor of n variables 

T : d l  x d 2  x ... x d , , - + B  

covariant in the ith variable for i E I and contravariant in the j th  variable for 
j E J is defined as follows. To each n-tuple of objects ( A l ,  A,,  . . ., A,) with 
di €di for 1 < i < n there is assigned an object T(A, ,  A2, ..., A,,) in 9. 
Furthermore, to each n-tuple ofmorphisms (a1,a2,. . ., a,,) where ai : Ai+A: is 
in di for i E I and aj : A;+ Aj is in dj for j E J ,  there is assigned a morphism 

T(al ,  a,,. . ., an) : T(Al,. . ., A,,)-+ T(A;,. . ., A:) 

in a. If yi = Piai for i E I and yj = ajPj for j  E J ,  then we require that 

T(yl,* - -, Y J  = T(P1,- * * >  PJ Val,. * ., 4, 
and if ai = l,, for 1 < i < n, then we require that T(al,.  . ., a,,) be the identity 
morphism on T(A ,,. , ., A,,). If n = 2 we call T a bifunctor, and if n = 3 we 
call T a trifunctor. 

Let k be an integer between 1 and n, and let Ai E di for i # k. Then we have 
the single variable functor 

T(A1, A2,* * Ak-1, > Ak+l,* * * ,  An) : dk+g 

which gives the object A the value T(Al ,  A,,. . ., Ak-l, A ,  Ak+, , .  . ., A,,) 
and the morphism a in dk the value T(A . ., Ak-l, a, Ak+l, .  . ., An) ,  where we 
have written Ai in place of l,, for i # k. Such a functor is called a partial 
functor of one variable for T. Likewise we could define various partial 
functors of several variables for T by fixing corresponding subsets of the 
variables. We will say that Tis mono, kernel preserving, limit preserving, etc., 
if all of its partial functors of one variable have the corresponding property. 
Likewise, ifall n + 1 categories are additive, we call Tadditive ifall its partial 
one variable functors are additive. 

Let dl  and d2 be any two categories. We form the product category 
d1 x d2 as follows. The class of objects in d l  x d, is the class of ordered 
pairs { A , ,  A , )  with A ,  E d1 and A, E d2. The set ofmorphisms from ( A l ,  A 2 )  
to (Bl, B2)  is the product of sets [ A , ,  BJdl x [A, ,  B2]&,. Composition is 
defined by the rule (PI,  P2)  (a1, a,) = (Plal, P2a2). Then a covariant bifunctor 
T : d ,  x d2+9 can be regarded as a functor of a single variable from the 
product category t o g .  If Tis contravariant in the first variable, then T can be 
considered as a covariant functor ofa single variable from the product category 
J$: x d,. Similarly, we can define the product category for any number of 
categories, and then a functor of any number of variables and any variance 
can be regarded as a functor of one variable from a suitable product category. 
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However, it must be observed that the preservation properties of T as a 
functor of several variables in general differ from the preservation properties 
of T as a functor of a single variable. Always in speaking of a preservation 
property of T we shall be referring to the preservation property of T as a 
functor of several variables. 

I f d  is any category, then the definition of category gives us a bifunctor 

[ ,  3 : d x d + Y  

whose value on the pair ( A , ,  A 2 )  is [ A , ,  A 2 ] .  For a pair of morphisms 
a ,  : A ; + A I  and a2 : A2+A;  we have 

defined by [a , ,  a2]  ( x )  = a2xaI.  Then it is immediately verified that [ , ] 
satisfies the rules for a bifunctor, contravariant in the first variable and co- 
variant in the second. If d has a zero (resp. is additive) then [ , ] can be 
regarded as a bifunctor into .Yo (resp. 9). The partial one variable functors 
of [ ,  ] are the functors H A  and HA described in $3. From 5.1 and 5.1* it 
follows that [ , ] is a limit preserving monofunctor. 

9. Natural Transformations 

Let S, T :  d-tg be covariant functors. Suppose that for every object 
A E .XI we have a morphism qA : S ( A )  -+ T ( A )  in A? such that for every 
morphism a : A - t  A' in d the diagram 

S ( A )  ' A  f T ( A )  

S ( A ' )  +T(A') 

is commutative. Then we call 7 a natural transformation from S to Tand  
we write 7 : S-t  T. If qA is an isomorphism for each A E d then 7 is called a 
natural equivalence. In this case we have a natural equivalence 7-I : T - t S  
defined by ( T - ' ) ~  = \vA)-'. If 7 : S+ T and p : T + U  then we have a 
composition p7 : S+ U defined by ( ~ 7 ) ~  = P A V A .  For any functor T we have 
the identity transformation 1 : T-t  T such that (1 T ) A  = 1 T ( A )  for all A E d. 
If 7 : S+ T where S, T : d + B  and U : B-+% is any functor, then we have 
a natural transformation U7 : US+ U T  defined by ( U V ) ~  = U ( v A )  for all 
A €.XI. Similarly if V : 9+d then 7 V : SV+ T V  is given by ( v V ) ~  = vv(D) 
for all D E 9. 

More generally, if S and Tare  functors of several variables which have the 
same variables, the same variance for each of the variables, and the same 
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codomain, then a natural transformation from S to T is simply a natural 
transformation of the single variable functors from the product category 
which were associated with S and T i n  $8. 

Let T : d l  x dz x . . . x dn-+$3Y be an  n-variable functor, where in order 
to simplify the notation we assume that all variables are covariant. For fixed 
objects Ai E di, 1 < i < k < n, denote the corresponding partial functor of T 
by T A , A , . . . A k ,  Then morphisms ai : Ai+Ai, 1 < i < k, induce a natural trans- 
formation 

Val a:... ah TA,A , . . . A ~ +  TA;A; ... At* (1) 

(2) 

and i fyi  = &ai then we have 
- 

’ Iy ,y  ,...y k - V ~ l ~ , . . . ~ i r l u , a , .  .ak* 

\~ 

Conversely, suppose that to each k-tuple ofobjects ( A l ,  A2, .  . ,, A,) with Ai E di 
for 1 < i < k we have a covariant functor 

TAIA:.. .Ak :&,+I &&+Z ... & n j g  

and to each k-tuple of morphisms (a,, az,. . ., a,) with ai : Ai+Ai we have a 
natural transformation (1) such that (2) is satisfied. Then defining 

and 
T ( A l ,  ’2,’ * * 3  = TA,A: . . .Ak(Ab+l ,  Ak+2,* “ J  An) 

T(al ,  tL2,‘ * * )  %I) = r]or,a:...UkTAIA:...Ah(~,+l, ak+2>’ * * >  

- 
- T A i A , ’ . . . A k ’ ( a k + I ,  %+Z,. . * )  ‘%)r)alar...a~ 

we obtain an n-variable functor T. 
Consider a natural transformation v : S-t T, and suppose that for each 

A ~d the morphism qA : S ( A ) +  T(A) is a monomorphism. Then we call 
q a pointwise monomorphism. A dual definition applies to pointwise 
epimorphisms. If 7 is a pointwise monomorphism and if T is an  additive 
functor, then it is easy to see that S is also additive. Dually if q is a pointwise 
epimorphism and S is additive, then T is additive. 

Let S, T : d + B  be covariant, and let 8 : S+ T be a natural equivalence. 
If D is a diagram in d, then SD and T D  are isomorphic diagrams in B.  Now 
suppose that S is limit preserving, and let {L+Di}  be a limit for D. Then 
{S(L)+S(D,) }  is a limit for SD. Hence by 2.2 { S ( L ) + S ( D i ) + T ( D i ) }  is a 
limit for TD. Therefore, letting T ( L ) - t S ( L )  be 6’ we see by 2.1 that 
{ T ( L ) + S ( L ) + S ( D , ) +  T(D,) }  is a limit for TD.  But by naturality of 8 this 
last family is just { T ( L )  -+ T(D,) } .  In  other words, if T is naturally equivalent 
to S and S is limit preserving, then T is also limit preserving. In a similar way 
we can show that T has any of the preservation properties which S has. Since 
the preservation properties functors of several variables are defined in terms 
of the preservation properties of the partial one variable functors, it is clear 
that these remarks apply to functors of any number of variables and any 
variance. 
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10. Equivalence of Categories 

Let d and .49 be any two categories. Write d - &I if there is an equivalence 
T : d+g. Then N is clearly a reflexive, transitive relation. The following 
proposition tells us that N is also a symmetric relation. 

Proposition 10.1. A functor T : d +a is an equivalence ;f and only if there is a 
functor S : L43 +d together with natural equivalences 

'p : 1, M TS, # : S T  M 1,. 

Ifsuch is the case, then we can always choose #such that T# = ('p T)-'  andS'p = (#S)-'. 

Proof. Suppose first that we are given 'p and #. Then the relation B M T ( S ( B ) )  
for all B E 28 shows that T is representative. Relative to a morphism A +  A' 
we have a commutative diagram 

from which it follows that T is faithful. Then by symmetry S is also faithful. 
A morphism /3 : T(A)+ T(A') induces a morphism a : A+A' via ( l ) ,  and 
we have S(/3) = S (  T(a)). Since S is faithful it follows that /3 = T ( a ) .  This 
shows that T is full, and consequently T is an equivalence. 

Conversely, suppose that T is an equivalence. Then for B E 98 we can find 
an object S ( B )  E~@' and an isomorphism ' p B : B z  TS(B) .  A morphism 
/3 : B+ B' in B induces the morphism 

'pe./3'pi' : T S ( B )  + TS(B'). 

Since T is full and faithful there is a unique morphism S(8) : S ( B )  - + S ( B ' )  
such that 'pe./3'p;' = T( S(/3)) ,  or in other words such that the diagram 

B 

TS(  B') u % B' 

is commutative. Using the uniqueness of S(/3) and the functorial properties of 
Ti t  is easily checked that Sis a functor. From (2) we then see that 'pis a natural 
equivalence. Now for A E d we have an isomorphism 

(PT(A) : T(4 -+ T J ' T ( 4  
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and so again since T is full and faithful, there is a unique isomorphism 
$A : S T ( A )  + A  such that 

To show that $ is a natural equivalence we must show that relative to a 
morphism A+ A’ the diagram (1) is commutative. Applying T to (1) and 
using (3) we obtain a commutative diagram by naturality of cp. Since T is 
faithful it follows that (1)  is commutative. 

Finally, observe that the relation T$ = (cpT)-’ is just (3).  I t  remains to be 
shown that S(cp,) = $& for all B E 99. Since T is faithful it suffices to show 
that T S ( y B )  = T($&). Using (3) we have T($&) = cpTs(B).  The result 
then follows by replacing 

Proposition 10.2. Let T : &‘+A? be an equivalence. Then T is mono, epi, limit 
preserving, and colimit preserving. Furthermore, &‘ is complete, cocomplete, normal, 
conormal, or exact if and only ifg has the corresponding property. If either category is 
additive then there is a unique additive structure on the other making T additive. 

by rps in (2). I 

Proof. Let S : 99+d be the equivalence of 10.1. To  show that T is limit 
preserving, let {L+D,}be the limit ofa  diagram D in &‘.If{ T(L)+ T(D,)}  is 
not a limit for T D ,  then by 7.1 { S T ( L ) + S T ( D , ) }  is not a limit for STD. But 
then as we saw at the end of the previous section {L+Di} is not a limit for D 
in view of the natural equivalence $. This contradiction shows that T is 
limit preserving. The other preservation properties of T follow similarly. 

Suppose that &? is complete. Then if D is a diagram in d, we can find a 
limit { X - t  T(D,)}  for T D  in B’. Since S is limit preserving this means that 

{ S ( X ) + S T ( D , ) }  is a limit for STD. Therefore by 2.2 { S ( X ) + S T ( D i ) + D i }  
is a limit for D. This shows that at is complete. The proofs of the other asser- 
tions are similar and are left to the reader. I 

If we define the image of a functor T :  d + g  (or Im( T ) )  as the class 
{ T ( A )  IA ~ d }  ofobjects together with the class { T ( a )  la is a morphism in&} 
of morphisms, it is not necessarily true that Im( T )  is a subcategory o f g .  The 
difficulty arises from the fact that T may not be univalent on objects. If 
aI : A I + A  and a2 : A‘--+A2 where T(A) = T(A‘) butA # A’,  then T(a , )  and 
T ( a 2 )  are in Im( T ) ,  but T ( q )  T ( a l )  need not be in Im( T ) .  However, if T 
is univalent with respect to objects, then Im( T )  is a subcategory of 9l. The 
following proposition says that in a sense we lose no generality by assuming 
always that T is univalent on objects. 

* 

Proposition 10.3. Let T : d +9? be any functor. Then there is a catpgory B’ which 
contains g as an equivalent subcategory, and a functor T : a?’-+.%” such that T’ ts  

univalent on objects and is naturally equivalent to I T  where I : 99 -+a’ is the inclwion 
functor. 
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Proof. Define a category 28, as follows. The class of objects of is &’ x 9’. 
AmorphisminA?, from ( A ,  B)  to (A’ ,  B‘) isa triple ( A ,  A’, B),wherep : B+B‘ 
is a morphism in 28. Composition is defined by the rule 

Fix an object A ,  E d and define I ,  : 9i+9il by I l ( B )  = (A, ,  B)  for objects 
and I , ( /? )  = (A,,, A , ,  6) for morphisms. Then I ,  is a full imbedding. Further- 
more, I ,  is an equivalence since for any ( A ,  B)  E 28, we have an  isomorphism 
( A ,  A , ,  le)  : ( A ,  B)+ (A, ,  B)  = I ,  (B ) .  We define a functor TI  : d + B ,  by 
T l ( A )  = ( A ,  T(A))  for objects A and T,(a) = ( A ,  A’ ,  T(a)) for a morphism 
a: A+A’.ThenforeachA Edwehaveanisomorphismt?A : T1(A)-+llT(A) 
in gI, given by On = ( A ,  A, ,  1 T ( A ) ) .  The naturality of t? is readily verified. Since 
I ,  is univalent on objects and morphisms we obtain a category 9’‘ from 3Yl by 
replacing Im(Zl) by .#. Then composing T I  with the “replacement” functor 
a,+.%’‘ we obtain T’ as required. I 

The following proposition shows that if we replace 3Y by 9 in 10.2, then we 
can always take .B‘ = ’9. The reason is essentially that ’9 has an “inexhaust- 
able” supply of objects which are isomorphic to any given one. 

Proposition 10.4. I f  T : d +9 is any group valued functor, then T is naturally 
equivalent to a functor T’: d +9 which is univalent with respect to objects. 

Proof. For A E d ,  define T’(A) to be the group whose elements are ordered 
pairs ( A ,  x ) ,  where x runs through all elements of the group T(A).  Addition 
in T’(A)  is defined by ( A ,  x )  + (A ,y )  = ( A ,  x + y ) .  For a morphism LY : A+A’ 
in a?’ we define T’(a)(A, x )  = (A’ ,  T(a)(x)). The natural equivalence 
B : T-t T’, given by t?,(x) = ( A ,  x ) ,  then gives us the result. I 

11. Functor Categories 

For any two categories d and A? let [d, !8] denote the class of all covariant 
functors f r o m d  t o g .  For S, T E [d, ,B] let [S, TI denote the class ofnatural 
transformations from S to T. With the law of composition of natural trans- 
formations offunctors given in $9, [&, g] comes very close to being a category. 
The only requirement that is missing is that [S, 77 may not be a set. However 
if we assume that .d is small, then the natural transformations from S to T 
may be regarded as a subclass of the Cartesian product x [ S ( A ) ,  T ( A ) ] ,  and 

A € d  

since the latter is a set so is [S,  TI. In speaking of the functor category [d, a] 
we shall always assume that d is small. 

Corresponding to T E [d,g]  we have the covariant functor TZ E [d*,28*], 
and corresponding to a natural transformation 7 : S+ T we gct a natural 
transformation 7; : TT+SS, defined by the rule vSAI = qA where r lA is 
regarded as a morphism in 9?*. Clearly this gives us a contravariant isomor- 
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phism from [d, A?] to [d*, A?*]. In other words [d*, a*] is isomorphic to 
the dual category of [d, A?]. 

In general, [d, A?] inherits the properties of A?, and a morphism r ]  : S+ T 
in [ d , B ]  has the properties which are common to all the morphisms 
y A  : S ( A )  -+ T(A) in A?. Thus r] is an isomorphism if and only if it is pointwise 
an isomorphism; in other words, if and only if eA is an ikomorphism in A? 
for every A E d. If 7 is a pointwise monomorphism, then r ]  is a monomorphism 
in [d, A?]. For otherwise we would have r]cp = r]$ for some ‘p # $. Now 
rp#  $ means that for some A E d, cpA # But then since r ] A v A  = qA $A 

this contradicts the fact that is a monomorphism in a. The converse 
need not be true, although it will be true if A? is an exact category. 
That is, if r] is a monomorphism in [d, a], it need not be a pointwise mono- 
morphism. 

If A? has a zero object 0, then the functor T : &+A? such that T(A) = 0 
for all A E d is a zero object for [d, a]. In  this case T also will be denoted by 0. 
If.@ is additive and ‘p, $ : S+ Tare two natural transformations, then we can 
define ‘p +$ : S-tT by the relation (‘p + # ) A  = cpA + $A,  and in this way 
[d, A?] becomes an additive category. 

Suppose that D is a diagram in [d, a] over a scheme ,Z = ( I ,  M ,  d ) .  Let 
D(A)  be the diagram in A? over Z defined for each A E d as follows. We take 
D(A) ,  = Di(A) for i E Z and D ( A ) ( m )  = D(m)A for m E M. Suppose that 
{L(A)-+Di(A)} iEl  is a limit for D(A)  for every A ~ d .  We make L into a 
functor, that is, an object in [d, 93’1, as follows. If Q : A+A‘ and m E M is 
such that d ( m )  = (i, j ) ,  then we have 

L(A)+Di(A) +Di(A’)- tDj(A’)  = L(A) - tDi (A)  +Dj (A)+Dj (A’ )  
= L(A)+Dj (A)  +Dj(A’) .  

The first equality comes from the fact that D(m)  is a natural transformation, 
and the second from the fact that { L ( A )  +Di(A)}iEI is a compatible family. 
Hence {L(A)+Di (A)+Di (A’ ) }  is a compatible family for D(A’) ,  and so 
since L(A’)  is the limit ofD(A’) we have a unique morphism L(a)  : L(A)  +L(A’)  
such that 

L(A)+L(A’ )+Di (A’ )  = L(A)+Di (A)+Di (A‘ )  (1) 

for all i E I. The functorial properties of L now follow from the uniqueness of 
the morphism L(a) ,  and Eq. (1) shows that for each vertex i the family 
{ L ( A )  +Di(A)},,,isanatura1 transformation from L to Di. Then {L-t  Di } i E ,  

is a compatible family for D since it is so pointwise. One can then check using 
arguments similar to the above that {L-tDi}i,=l is actually the limit of D in 
the category [d, A?]. 

I t  follows that ifA? is 2’-complete then the same is true of [d, a]. In parti- 
cular, if A? has products, then the product x Ti of a family in [d, A?] is such 
that (x q) ( A )  = x ( A ) ,  and the kth projection (natural transformation) 
x q+ Tk is given pointwise by the projection x T ( A ) +  Tk(A) from the 
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product i n 2 .  If a : A+A' then (x Ti)(.) = x Ti(.). I f B  has kernels, then 
the kernel K+S of a transformation S-t T is such that K ( A ) + S ( A )  is the 
kernel of S ( A )  + T(A) for all A E d. 

Suppose now that B is an exact category. Let 'p : TI-+ T be a monomor- 
phism in [d, 21. Then 'p has kernel 0. Hence y A  has kernel 0 in B for every 
A E d, and so since 9? is exact this implies that 'p, is a monomorphism. Let 
T-t T" be the cokernel of 'p in [d, B],  so that by the above T ( A )  + T"(A) is 
the cokernel of ' pA  for all A .  Then by normality for ~2, 'p, is the kernel of 
T(A) + T"(A),  and so 'p is the kernel of T+ T". Therefore [d, B] is normal 
and by duality it is conormal. If S+ T is any natural transformation, we let 
I+ T be the kernel of its cokernel. Then I (A)-+  T(A) is the image of 
S ( A ) +  T(A),  and so we get an epimorphism S ( A ) + I ( A )  for all A ~ d .  
That this gives us a natural transformation S+Z is easily verified from the 
fact that I+ T is a pointwise monomorphism. Therefore we have shown that 
every morphism in [d, 21 can be written as an  epimorphism followed by a 
monomorphism, and so [d, B] is an exact category. Hence by the preceding 
paragraph we see that i f B  is abelian then so is [d, B]. 

Suppose that 2 is exact and locally small. Given an object T E [d, 9'1, 
for each A E d let be a representative set of subobjects of T(A).  Then a 
representative set of subobjects for T can be found as a subset of the Cartesian 
product x VA.  Consequently we see that [d, a] is also locally small. 

A€& 
Let xi' and ,!2l be any categories with d small. We have a bifunctor 

E : [d, 21 x d+B defined by E( T, A )  = T ( A )  and 

E(rl,$) = 7 ' 4 4 4  = T ( + A  

for 7 : S-t T and a : A+A'.  For fixed T the partial one variable functor 
associated with Eis just T. For fixed A the partial one variable functor is called 
the evaluation functor at A and is denoted by EA. Hence EA( T )  = T(A), and 
EA(q)  = qA. If B is an exact category, then E is an exact functor. If B is an 
additive category, then we have 

E,4('p +$) = (9 -k $ ) A  = (PA + #A = E A ( ' p )  -k EA(+) 

and so EA is an additive functor. Finally, i f 9  is Z-complete (cocomplete) then 
EA preserves limits (colimits) of diagrams over Z. Hence if L8 is complete 
(cocomplete) then E, is limit (colimit) preserving. 

12. Diagrams as Functors 

In  $1 it was pointed out that the diagrams over a scheme 2 in a category 
d themselves form a category. More generally, if Zo is the scheme obtained 
from Z by adding identity arrows at each vertex and N is a commutativity 
relation, then the diagrams in d over Z which are compatible with - form a 
category [Z/-, d].  We define a category Z/- as follows. The objects in 
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Z/N are the vertices of Z. The morphisms from i t o j  are the equivalence 
classes modulo - of composite arrows in Z0 from i toj. If b and c are composite 
arrows such that the origin of c is the extremity of 6 ,  then we define the com- 
position of the two morphisms [b] and [c]  by [c] [b]  = [cb].  Then rule (ii) for 
commutativity relations insures that composition is independent of representa- 
tives, and rule (iii) shows that [ li] behaves as an identity for the object i. I t  is 
then clear that the functors from Z/- to a category d are in one to one 
correspondence with the diagrams in d over L' satisfying - , and the natural 
transformations between two functors from Z/ N to d are in one to one corre- 
spondence between the morphisms of the corresponding diagrams. In other 
words the category of diagrams [Z/-, d]  is isomorphic to the category of 
covariant functors from Z/ N to d. 

Conversely, if &' is any small category, then d is isomorphic to a category 
of the type Z/ N for some diagram scheme Zand some commutativity relation 
N (exercise 13). Hence the study of functor categories is entirely equivalent 
to the study of categories of diagrams. 

If - is the largest commutativity relation for 2, then Z/ - has the property 
that from any object to any other object there is at  most one morphism. In  
other words a commutative diagram can be interpreted as a functor from an 
ordered set. 

I t  follows from $11 that if a is A-complete for some scheme A,  then 
[Z/ - , g] is A-complete. The limit of a diagram in [Z/ - , a] over A is 
obtained by taking pointwise the limits in for each vertex in 2, and then 
using induced morphisms to turn this into a diagram over Z. Since this process 
has nothing to do with -, we see that if - is a subrelation of a commutativity 
relation 9, then [Z/ -, g]  is a A-complete subcategory of [Z/-, a]. In 
terms of functor categories this principle is as follows: If &'" is a quotient 
category of d and if a is A-complete, then [d", A?] is a A-complete sub- 
category of [&', g] . 

Suppose that g is Z-complete. If D is a diagram in 93 over 2, denote the 
limit of D by L ( D ) .  Then a morphism f : D-t D' of diagrams induces a unique 
morphism L ( f )  : L(D)+L(D')  of the limits, and in this way L becomes a 
functor from the category [L', a] to the category 9. We define a functor 
Z : a+ [Z, a] by taking Z(B) as the diagram which has B at every vertex with 
identity morphisms throughout. If p : B+B' then I (p )  is taken to be 6 at 
every vertex. It is clear from the definition of limit that we have a one to 
one correspondence 

for every B EG? and D E [z, a]. Furthermore, it is easy to check that 7 is 
natural in B and D. More generally suppose that we have covariant functors 
T : &'+a and S : a+-& where&' and 9 are arbitrary categories, and 

TB,A : [S (B) ,  + K B ,  T ( A ) l  (2) 
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is a natural equivalence of set-valued bifunctors. Then we say that T is an 
adjoint for S,  or that S is a coadjoint for T. 

Proposition 12.1. If T : d+G9 has a coadjoint S : B+d, then T is a limit 
preserving monofimctor. 

Proof. Let 9 = {X+ Di} be a limit for a diagram D in d. Then by 5.1, 
Hs(B)(.F) is a limit for H S @ ) D  i n 9  for all B E a. In view of the natural equi- 
valence (2) this says that for each B E B the family H B (  T ( 9 ) )  is a limit for 
the diagram H B T D  in 9. Hence, again by 5.1 this shows that T ( 9 )  is a limit 
for T D  in a, and so T is limit preserving. In  the same way it can be shown 
that T is a monofunctor. I 
Corollary 12.2. Ij-B is Z-complete and L : [Z, B] +G' is the functor which assigm 
to a diagram its limit then L is a limit preserving monofunctor. I 
Corollary 12.3. I f  {ui} is a farnib of monomorphisms in a category withproducts, then 
x ui is a monomorphism. I f u i  is the kernel ofA for each i, then x ui is the kernel of 
I i 

)(.A. I 
Corollary 12.4. Let d be a small category and let 9 be a complete category. For some 
class 9 o f  diagrams in d and some class A? o f  monomorphisrns in d, let 9 denote the 

fit11 subcategory o f  [d, B] whose objects are those functors T which preserve limits o f  
diagrams in 9 and which preserve monomorphisms in A. Then 9 is a complete 
subcategory o f  [d, ,491. I 

13. Categories of Additive Functors; Modules 
I f d  and 9Y are additive categories with d small we let (d, 93') denote the 

full subcategory of [d, ,491 consisting of all additive functors from d to G'. 
I f g  is Z-complete (Z-cocomplete) then it is easily seen that the limit (colimit) 
of a diagram D in [d, 9?] over 2 is also in (d, g). That is, (d, 3Y) is a Z- 
complete (Z-cocomplete) subcategory of [d, B] . Furthermore if B is exact, 
then (d, 2d) is an exact subcategory of [d, 371. The discussion of the preserva- 
tion properties of the evaluation functors E ,  given in $1 1 applies also to the 
restriction of EA to (d, B) (which we denote also by EA). 

Let d be any small category and let T :  B+V be a covariant functor. 
Then we have a n  induced functor To : [d, a]+ [d, V] defined by 
T o ( S )  = T S  for S E [d, 93'1 and To(?) = T y  for a morphism 7 in [d, g]. If 
99 and V are additive and T is an additive functor, then To is additive. If, 
furthermore, d is additive and S is additive, then T o ( S )  is additive. In other 
words the restriction of To to (d, g) gives us a functor from (d, B) to 
(d, U )  (also denoted by To). A contravariant functor T : B+V induces a 
covariant functor To : [d, B]+ [d*, V] defined by T o ( S )  = TS,. 

O n  the other hand a covariant functor T : d + d '  of small categories 
induces a covariant functor T o  : [d', .@I + [d, for any category 99, 
defined by To(S) = ST and To(q) = qT. I f 3  is additive then Tois additive, 
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and if furthermore d and d’ are additive and T is an additive functor, then 
T o  induces a functor from (d‘, 33) to (d, 33). 

Let R be a ring; that is, an additive category with a single object X .  If 93’ 
is any additive category, we shall call (R, B) the category of left R-objects 
in A?. A left R-object in is therefore an object B E 33 together with a mor- 
phism ofrings p : R-t [B, B] .  Formally this is the functor S : R+33 such that 
S ( X )  = B and S ( r )  = p ( r )  for r a morphism in R. Informally we shall say that 
B has a left R-object structure, or simply that B is a left R-object, but in doing 
so we will always have a particular ring morphism p in mind. The category 
(R*, .9#) is called the category of right R-objects ha. We shall frequently 
denote the categories (R, B) and (R*, a) by R98 and BR, respectively. A 
morphism of left R-objects (B ,  p)  -+ (B’,  p ’ )  is a morphism 13 : B+ B’ in 93’ 
such that for every r E R the diagram 

B - B’ 

B - B’ 
is commutative. The group of left R-object morphisms from B to B‘ will be 
denoted by R[B, B’]. If B and B’ are right R-objects then the right R-object 
morphisms from B to B‘ are denoted by [B, B‘IR. 

If Z is the ring of integers, then =33 is isomorphic to B. This is a result of the 
fact that for B E 

An additive covariant functor T : 33+% induces the additive functor 
To : %-tR% discussed above. Hence if B is an R-object in B, then T(B)  
becomes an R-object in %. If Tis contravariant, then To : RB+%R. Similarly 
a morphism of rings cp : R-tS induces the “change of rings” functor 

Let R and S be rings, and let 3 be any additive category. The category 
s(Rg) is called the category of left S, left R-biobjects in 93. From the iso- 
morphism of categories (S, (R, 33)) z (R, (S, 33)) (exercise 4) we see that a 
left S, left R-biobject may be regarded also as a left R, left S-biobject. A right 
S, left R-biobject is an object in the category (R33)s zR(33’), with a similar 
definition of right S, right R-biobjects. The reader may formulate a more 
general definition for multiobjects over any number of rings. 

If T :  d x ,g+% is an additive covariant bifunctor and ( A ,  p )  is a left 
R-object in d, then T(A, B )  takes on a left R-object structure for any B E 33. 
Furthermore, if a : A + A ’  is morphism of R-objects and /3 : B-tB’ is any 
morphism in B, then for r E R we have 

there is one and only one morphism of rings Z+ [B, B] .  

‘Po : %?+%?. 
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In  other words T(a, /3) is a morphism ofR-objects and consequently Tinduces 
a covariant functor from Rd x 9 to RV. Likewise if A is a left R-object 
and B is a left S-object, then T(A, B)  is a left R, left S-biobject, and so T 
induces a bifunctor from Rd x 'L8 to RS%. If T is contravariant in d and 
covariant in g, then the induced bifunctor goes from Rd x 'a to 'gR. Again 
these are just a few examples of a general principle. 

The category R9? (resp. 9?R) is called the category of left (resp. right) 
R-modules. Hence a left R-module is an ordered pair (C, p)  where G is an  
abelian group and p : R+[G, GI is a morphism of rings. If we write, 
p ( r )  (x) = rx for r E R and x E G, then we see that a left R-module satisfies the 
following rules : 

( l ) I x = x  forall X E G .  
(2) r ( x I  + x 2 )  = r x I  + rxq.  

(4) r l ( r 2 4  = (r1r2)x. 
(3) ( T I  f T p ) X  = r 1 x - t  r2x. 

Conversely, given an abelian group G and an operation R x G+ G satisfying 
the rules (1 )  to (4), then this defines a left R-module. For a right R-module 
the first three rules are the same, but the fourth rule must be replaced by 
r I ( r 2 x )  = ( r 2 r l ) x .  For this reason we write xr instead of rx for right R-modules, 
in which case rule (4) becomes ( x r 2 ) r 1  = x ( r 2 r I ) .  Notice thatamorphismof left 
R-modules is a morphism a : A + B  of abelian groups such that a(rx) = r a ( x )  
for all r E R and x E A .  If S is another ring, then the objects of the category 
sR9? are called left S, left R-bimodules. An abelian group A is a bimodule 
if it is at once an R-module and an S-module, and if the operations of R 
and S on A commute; that is, if r (sx)  = s(rx)  for all r E R, s E S, and x E G. 

Since 9 is a complete and cocomplete abelian category, the same is true 
of the functor category R9. Furthermore, from general properties of functor 
categories we know that a sequence in R9 is exact, or that a family of mor- 
phisms is a limit for a diagram in R9?, if and only if the corresponding statement 
is true after we apply the evaluation functor (forgetful functor) from R9? to '??. 

14. Projectives, Injectives 
An object P in a category a? is projective if the functor H p  : d+9 is 

an epifunctor. Equivalently, P is projective if and only if for every diagram 

P 

.1 
A - A" 

with A +  A" an epimorphism there is a morphism P+ A making the diagram 
commutative. I f d  is an exact additive category we know by 5.1 that the 
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group valued functor H P  is kernel preserving for every object P. Hence in this 
case Pis projective if and only if H P  is an exact functor. 

Proposition 14.1. If P is a retract of P' and P' is projective, then P is projective 

Proof. Let P-t PI+ P = 1,. If '4+ A" is an  epimorphism and P+ A" is any 
morphism, then using projectivity of P' we have 

P+ A" = P+P'+ P+ A" = P+ PI+ A+ A" 

for some morphism P'+A. This establishes projectivity of P. I 
We say that a category d has projectives if for each A E d there is an 

epimorphism P+ A with P projective. 

Proposition. 14.2. IfP isprojective in d, then every epimorphism A +. P is n retrac- 
tion. Conversely ifP has theproperty that every epimorphism A +  P is a retraction, and ;f 
d either hasprojectives or is abelian, then P is projective. 

Proof. If P is projective, then given an epimorphism A+ P there is a morphism 
P+ A such that P+ A+ P is 1,. I n  other words P-t A is a retraction. 

Conversely, suppose that every epimorphism A+ P is a retraction. I f d  has 
projectives then we may take A projective and then it follows from 14.1 that P 
is projective. On the other hand, i f d  is abelian, then, given an epimorphism 
f : A +  A" and a morphism u : P+ A", we can form the pullback diagram 

where we know by I, 20.2, that g is an epimorphism. Then by assumption we 
can find h : P+ X such that gh = 1,. Then we have 

f v h  = ugh = U. 

This proves that P is projective. 

Proposition 14.3. If P = @ Pi and if rach Pi is projective, then P is projective. 

conversely, in a category with Zero, ifP is projective then each P, is projective. 

Proof. Suppose that Pi is projective for each i and let A+ A" be an epimorphism. 
A morphism P+ A" is determined by a family of morphisms Pi-+ A" for each 
ofwhich we can write Pi+ A" = Pi+ A +  A". Then the morphisms Pi+ A give 
us a morphism P+ A with the right property. 

The converse follows from 14.1 since in a category with zero, injections into 
coproducts are coretractions. 1 

i 
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An object is called injective if it is projective in the dual category. Hence 
Q is injective if and only if for every diagram 

A‘ - A 

Q 
with A’+,4 a monomorphism there is a morphism A +  Q making the diagram 
commutative. If every object A E d’ admits a monomorphism A+ Q then we 
say that a? has injectives. Retracts and products of injectives are injective, 
and if a product is injective in a category with zero, then each component is 
injective. 

In an exact category d we say that an infinite sequence 

. . .Pi+l +Pi+ Pi-, +. . .+Pi -+Po+ A+O (1) 

is a projective resolution for A if it is exact and if P is projective for each 
i 0. 

Proposition 14.4. The  exact category d has projective resolutions f o r  each of i ts  
objects $and only if it hasprojectives. 

Proof. If,4 E d has a projective resolution ( l ) ,  then in particular Po+A must 
be an epimorphism. Hence if &’ has projective resolutions, then &’ has 
projectives. 

Conversely, suppose that .a? has projectives. Given A we can find an epi- 
morphism P 0 + A  with Po projective. Let Kl+Po be the kernel. Define 
inductively Pi + K ,  as an epimorphism with Pi projective, and Ki+, + Pi as its 
kernel. Then letting Pi+PiPl be the composition Pi-+Ki+Pi-, we get an  
exact sequence ( 1 ) .  I 

The sequence ( 1 )  becomes an injective resolution for A* in the dual 
category. An exact category has injective resolutions if and only if it has 
injectives. 

15. Generators 

A family of objects { Ui}iE, is called a family of generators for a category 
d if for every pair of distinct morphisms a ,  /3 : A+B there is a morphism 
u : Ui+ A for some i such that au # f lu. In  an additive category the above is a 
family of generators if and only if for each nonzero morphism a in &’ there is a 
morphism u : Uj+A such that au # 0. 

Proposition 15.1. A balanced category with ,finite intersections and a f a m i l y  of 
generators is locally small. 
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Proof. We show that a subobject of A is completely characterized by the 
morphisms Ui+A which factor through it. That is, if A ,  and A ,  are non- 
isomorphic subobjects of A then there is a morphism Ui+ A for some i which 
factors through one of A ,  or A,  but not the other. Our result will then follow 
from the fact that [ Ui, A]  is a set for all i. 

Suppose that A ,  and A ,  are nonisomorphic subobjects of A.  Now A ,  n A ,  
is a subobject of both of them. If A ,  n A,+ A ,  is an epimorphism, then since 
d i s  balanced, A ,  n A ,  and A,  areisomorphicsubobjects. Hence A ,  n A,+ A ,  
cannot also be an epimorphism, and so there are distinct morphisms 
a , p :  A,+Bsuchthat 

a B 
A , n  A , + A , + B  = A l n  A 2 + A I + B .  

Let u : Ui+A,  be such that au # Py. Then u cannot be factored through 

A ,  n A,, and so Ui+ A , - +  A cannot be factored through A,. I 
An object U in d is called a generator for d if { U }  is a family of generators 

f o r d .  Equivalently U is a generator f o r d  if and only if the set valued functor 
H' is an imbedding functor. If U = @ Ui and if [ Q, A] is not empty for all 

i E Z and A E d, then U is a generator for at if and only if { Ui}iEI is a family of 
generators for d. An object C is called a cogenerator for d if and only if 
it is a generator for d*. 

Proposition 15.2. Zfd has coproducts, then U is a generator for d if and only if 
for each A E d there is an epimorphism y : 'U --f A for some set Z. Furthermore, in this 
case we can take I = [U, A ]  with y the morphism whose uth coordinate'is u for all 
u E [U, A ] .  

Proof. Suppose that U is a generator. Taking Z= [U, A ]  and y as described 
above, it is immediate that y is an epimorphism. Conversely, suppose that 
'U+A is an epimorphism and let a, /3 : A + B  be distinct morphisms. Then 
for some injection into the coproduct we must have 

U 

i E I  

a 5 
U + ' U + A + B  # U+'U-+A+B. 

This shows that U is a generator. I 
We shall call an object finitely generated with respect to a family of 

generators {Ui}iEI if it is a quotient object of a finite coproduct of the form 

6 Ui, where ik E Z for 1 < k < R. We shall call an object free with respect to 
k - 1  
the abovc family if it is of the form @ Uik where ik E Z for all k E K ( K  not 

kEK 

necessarily finite). 
Of particular interest are generators which are also projective. If in a cate- 

gory with projectives we can find a generator, then we can also find a projective 
generator. For i f P  -+ U is an epimorphism and U is a generator, then clearly 
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Pis also a generator. On the other hand if& is a category with coproducts and 
a projective generator, then we see from 14.3 and 15.2 that at has projectives. 

Proposition 15.3. g& is an abelian category and U is a projective object such that 
[ U, A ]  # 0 for all A E at with A # 0, then U is a generator ford. 

Proof. Since U is projective, H u  is an exact, group-valued functor. By hypo- 
thesis H u  preserves nonzero objects, hence by 7.2 H u  is an imbedding. 
Therefore U is a generator. I 

Let R be any ring. Using ring multiplication, R can be considered as a left 
R-module over itself. (Actually R is a left R, right R-bimodule.) If A is a left 
R-module, then the left R-module morphisms from R to A are in one to one 
correspondence with the elements of A. Corresponding to a E A we have the 
morphism cpa : R+A defined by cp,(r) = ra for r E R (exercise 11). Hence, 
given a diagram of R-module morphisms 

R 

A a A" 

where a is an epimorphism, let a E A be such that .(a) = 6 .  Then cp,, : R+A 
is such that avo = cpb. This shows that R is a projective object in RS. Further- 
more, if A is a nonzero R-module, say 0 # a E A, then 0 # cp, E R[R, A]. 
Therefore by 15.3, R is a projective generator for RS. In particular RS has 
projective resolutions. 

I t  is a more difficult job to show that RS has an injective cogenerator. We 
begin by showing that 3 has an injective cogenerator (that is, that the state- 
ment is true when R = Z). An abelian group D is called divisible if for any 
d E D and any nonzero integer n there is an element x E D  such that nx = d. 

Lemma 15.4. A divisible abelian group is an injective object in 9. 

Proof. Let D be a divisible group and consider a diagram of abelian groups 

A' ' > A  

D 
where u is a monomorphism. We may assume that u is the inclusion of a subset 
of A .  We wish to extend f to A. Consider the set of pairs (B, g) such that B is a 
subgroup of A ,  A' c B, and g : B+D extendsf. Define ( B , ,  g,) < (B2, 9,) if 
B ,  c B,  and g2  extends g , .  Then this set is clearly inductive, hence by Zorn's 
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Lemma it has a maximal element (B,, go). Suppose B,  # A ,  and let a E 

A - B,. Then the subgroup 
B' = {b  + nalb E B,, n E Z} 

properly contains B,. If nu 4 B, for all nonzero integers n, then go can be 
extended tog' : B'+ D by defining g'(b + nu) = go(b ) .  Otherwise let m be the 
least positive integer such that ma E B,, and let d = go(ma).  Define g' : B'+D 
by the rule g'(b + nu) = go(b )  + nx where x E D is such that mx = d. Then 
again g' extends go. Hence in any case the maximality of (B,, go) is contra- 
dicted, and so B,  = A .  This shows that D is injective. I 

The converse of 15.4 is also true (exercise 17). 
The additive group Q o f  rational numbers is clearly divisible, and since any 

quotient group of a divisible group is again divisible, it follows that Q / Z  is 
divisible, hence injective. Also for any nonzero group A we have[A, Q/Z],# 0. 
To see this, let a be a nonzero element in A ,  and let A' = {naln E Z}. We show 
that we can find a nonzero morphism f: A'+Q/Z. This is trivial if a is not a 
torsion element (that is, if nu # 0 for all n E Z). Otherwise we let m be the first 
positive integer such that ma=O and we define f ( n a )  as the class of n/m in 
Q/Z.  Then we can extend f to A by injectivity of Q/Z.  Hence by 15.3*, Q / Z  
is an injective cogenerator for 93. 

It is now easy to show that R93 has an injective cogenerator for any ring R. 
One establishes first the natural equivalence of group valued functors of the 
left R-module A, 

9.4 : R[A, [R, GI91 + [ F ( A ) ,  GI,. (1) 
Here G is any fixed abelian group, F is the forgetful functor from left R-modules 
to groups, and [R, GI, is considered as a left R-module by means of the opera- 
tion of R on the right of itself. Explicitly we define 'pA(a) (a) = .(a) (1) where 
a : A+ [R, GI, is a left R-module morphism and a E A .  The inverse s', of 'p is 
given by #.4((B)(a)(r) = p ( r a )  where /3 : F(A)+.G,  a E A ,  and r E R. In parti- 
cular, if we take G = Q/Z,  then the right-hand side of (1) is an exact functor 
of A which takes nonzero objects into nonzero objects. Therefore the same is 
true of the left-hand side. This shows that [R, Q/Z], is an injective cogenerator 
for %3'. Similarly, if we regard [R, Q/Z], as a right R-module by means of 
left operations o f R  on itself, we obtain an injective cogenerator for gR. In the 
following chapter we shall extend this result to certain classes of cocomplete 
abelian categories which have a generator. A proof that R9 has injectives was 
first given by Baer [ 1 1 .  

16. Small Objects 
We shall call an object A E& a small object if whenever we have a mor- 

phism A + @  Ai from A into a coproduct, there is a factorization 
i E I  
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for some finite set J C  I .  In  the category BR the right R-module R is easily 
seen to be small. 

Lemma 16.1. In an additive category a morphism a : A +  @ Ai factors through a 
iEI 

' J 1  
jinite coproduct o j '  the form @ Ai--- t@Ai if and only i f a  = C uipia, where ui and 

pi are the ith injection and projection, respectively, f o r  the coproduct @ Ai .  
iEJ iEI i E  J 

&I 

Proof. Denote by Ui and),, respectively, the ith injection and projection for the 
finite coproduct @ A,. Then the morphism u J I  is C u&. Now if a factors 

i E J  ieI -~ 

through the finite coproduct we have 

a = C uQiCL. 
iEJ 

Composing both sides of ( 1 )  withp, for any k E J we seep,, =ikkoz. Hence (1) 
can be rewritten a = Z; uipia. Conversely if this last equation holds, then we 

can define koz = Z; ziipia and we have 
iEJ  

iEJ 

Proposition 16.2. Let d be an additive category with coproducts. Then an object 
A E d is small if and onb if the group valued functor H A  is coproduct preserving. 

Proof. Consider a coproduct @ Ai in d with injections ui and projections pi.  

The family of morphisms { H A ( ~ i ) } i E I  gives rise to a morphism of groups 
iEI 

@ H A ( A i )  + H A ( @  Ai) .  
iE I  iEI 

To say that H A  is coproduct preserving is equivalent to saying that (2) is an  
isomorphism for every coproduct in d, Now a member of the left side of (2) 
can be considered as a family ai : A+Ai  such that ai = 0 for all but a finite 
number of i E I .  Under (2) the element a is carried into C uiai. If a # 0, then 

a, # 0 for some k ,  and so we have 
iEI  

p k  uiai = ak # 0. 
iEI  

Therefore C u p i  # 0, and so this shows that under any circumstances (2) is a 

monomorphism. Now suppose that (2) is an epimorphism, and consider a 
morphism a : A + @  A i .  Then we can write a = C uiai for some family ai, 

and composing both sides with P k  we have pka = ak for all k E I .  Hence 
a = uipia and so by 16.1, a factors through a finite coproduct. Hence A is 

small. Conversely, suppose that A is small and consider a morphism a in the 
right side of (2). 'Then writing a, = pis, we have a = C u p i  by 16.1. This shows 

that (2) is an epimorphism, hence an isomorphism. I 

iE I  

i E I  i E I  

i E I  

i E I  
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Exercises 

1. Examine the preservation properties of the various forgetful functors that 
exist among the categories 9, F, Yo, Yo, and show that they are all repre- 
sen tative . 
2. The forgetful (evaluation) functor from to g is representative if and 
only if there exists a morphism of rings ‘p : R+Z.  

3. If T : G’+U is an equivalence, then for any small category d the functor 
To : [d, G’] + [&+%I is also an equivalence. Likewise if T : d+d’ is an 
equivalence of small categories, then for any category 3Y the functor 
To : [d’, 931 + [d, G’] is an equivalence. 

4. I f d  and 37 are small categories and V is arbitrary, then we have isomor- 
phisms of categories 

[d, [G’, Vll = [d x G’, %I = [a, Id, %I]. 
If d, G’, and U are additive, then (d, (G’, U)) and (3Y, (d, U)) are iso- 
morphic to the category of covariant additive bifunctors from d x G’ to $9. 
5. Let d‘ be a full subcategory of d and suppose that 0 E d’ where 0 is a 
zero object f o r d .  Let a : A+B be a morphism in d’ and let u : K +  A be the 
kernel of a in d. If K E d’ then u is also the kernel of a in d’. Hence, if d 
is an exact category and if d’ contains representatives for kernels and co- 
kernels in d of all its morphisms, then d’ is an exact subcategory of d. If, 
further, d is an abelian category and d‘ contains representatives for all 
finite products in d of its objects, then d’ is an abelian subcategory o f d .  
6. Consider T: d+g, and for each A ~d let S, be a subset (possibly 
empty) of.  T(A). The subfunctor of T generated by S is defined as the 
smallest subfunctor M of T such that S, c M ( A )  for all A ~d (that is, the 
intersection of all such subfunctors). Show that M(A) is the subgroup of 
T(A) consisting of all finite sums of the form T(ai) ( x i )  where ai : Ai + A  

and xi E SA,. 

element xo E T(Ao) is given by 

: 

If T is an additive functor, then the subfunctor of T generated by a single 

M ( A )  = {T(a)(xo)la: A o + A } .  

If S is a subset of a left R-module A, then (S) is defined as the smallest 
submodule of A containing each member of S. Show that (S) is the set of all 
finite sums of the form risi where ri E R, si E S. Interpret this as a special case 

of the above. 

7. Let T :  d x 37+U be a limit preserving bifunctor, covariant in both 
variables, Let D be a diagram in d over a scheme .Z with limit {ai: L+Di}iE I 

i 

Show that 1, E H A ( A )  generates all of HA. 
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over a scheme (1 with limit (16, : M-+q} jE, .  and let E be a diagram in 
Show that 

is the limit of the diagram T(D, E )  over Z x A. In  particular, if x Ai is a 
i E I  

product in d with projections p i  and x B, is a product in 9 with projections 

qj, then T( X A , ,  x Bj) is a product in 5f with projections T(pi, qj). 
j E J  

i E I  IEJ 

Generalize this result to n-variable functors of arbitrary variance. 

8. If& is an additive category with products and @ is any category with zero, 
then T :  d+g is limit preserving if and only if it preserves kernels and 
products. (Cf. 6.3. Normality for d was assumed in 6.3 to assure that 
d : P+ PM is the kernel of some morphism. However, if d is additive, then 
one can construct a morphism PM+ P M  whose kernel is d.) 
9. If T is an additive functor between exact additive categories such that T 
reflects either limits or exact sequences, then T is faithful. 

10. Let T : a2 x LZL+5f  be an additive covariant bifunctor where d, 28, and 
% are abelian categories. Then T is kernel preserving as a bifunctor if and only 
if for every pair of exact sequences 

a1 ax 

O+ A’+ A+ A“ 
81 B* 

O+B’+B+B”, 

the sequence 

O+ T(A’, B’) -+ T(A, B)  + T(A”, B )  x T(A, B”)  

is exact, where the first morphism is T ( a , ,  8,) and the second morphism has 
coordinates T ( q ,  B)  and T(A, P 2 ) .  
11. PoincarC duality for discrete and compact abelian groups says that the 
dual of 9 is equivalent to the category of compact (Hausdorff) abelian groups 
with continuous group morphisms as morphisms. Show that the dual of%? is 
equivalent to the category of compact abelian groups on which R acts con- 
tinuously on the right, with continuous right R-module morphisms as 
morphisms. 
12. Let R be any ring. Then the ring of endomorphisms of the right (left) 
R-module R is ring isomorphic to R (R*). 

I fA is any left R-module, then considering R as a left R, right R-bimodule, 
the group R[R, A ]  has a left R-module structure. Show that qA : L ~ + ~ [ R ,  A ]  
defined by q A ( a )  ( r )  = ra gives us a natural equivalence of functors of the left 
R-module A .  
13. Let A? be an additive category and let A be a fixed object in d. Suppose 
that for each B E d the group [ A ,  B]  has a left R-object structure, and that 
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for each morphism B+B' in d the induced morphism [A ,  B] + [A ,  B'] is a 
morphism of R-modules. Show that there is a unique right R-object structure 
on A which induces the given left R-object structure on [ A ,  B] for all B E &, 
14. I f d  is any small category, find a diagram scheme Z and a commutativity 
relation N for Z such that d is isomorphic to 21 N . 
15.. Let & be any category and let Add(&) be as in I, exercise 11. If,%? is any 
additive category establish an isomorphism of categories 

Cd, 9 1  x (Add(J4, @. 
16. Generalize the notion of commutativity for diagrams in an additive 
category as follows. Let Z be a diagram scheme, and let S be a set of formal 
linear combinations of the form nici where I is finite, the ni's are integers, 

and the ci's are composite arrows in Z,, with the same origin and the same 
extremity for all i E I. Let ,%? be an additive category and let (Z/S, a) be the 
full subcategory of [Z, ,%?I consisting of all diagrams D satisfying &D(ci) = 0 

for &ci E S, where D( li) is understood to be lD,. Define an additive category 

Z/S so that the above diagram category (Z/S, ,%?)) is actually the category of 
additive functors from Z/S to &? (use exercise 15). 

What are the objects and morphisms in Z/S corresponding to the category 
of anticommutative diagrams in a; that is, diagrams of the form 

i E I  

&I 

i E I  

suchthat flu + 6y = O ?  
If d is any small additive category, interpret (d, 9) as a category of 

diagrams satisfying a generalized commutativity relation. 
17. If R is a left Noetherian ring, then the full subcategory of RS consisting 
of all finitely generated R-modules is an abelian subcategory of RS. In parti- 
cular this is true ifR = Z. Hence ifwe let q b e  a full subcategory of 93 consisting 
of one group from every class of isomorphic finitely generated groups, t h e n 3  
is a small abelian subcategory of '3. Furthermore, ??has projective resolutions 
(but not injective resolutions). 
18. Let R be an integral domain. An R-module A is called divisible if for 
every nonzero element Y E R and every a E A there is an element x E A such 
that rx = a. Then an injective R-module is divisible. Hence an abelian group 
is injective if and only if it is divisible, and consequently a quotient of an 
injective group is injective. 
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19. If U is a small generator in an  exact category and if A is finitely generated, 
then A is small. In  particular, any finitely generated R-module is small. 

If P is a small projective in a category with a generator, then P is finitely 
generated. Hence a projective R-module is small if and only if it is finitely 
generated. 

20. In the category of sets, 9, every set is projective and every nonempty set 
is injective. Any one element set is a generator and any two-element set is a 
cogenerator. A set is small if and only if it has only a finite number of elementS. 

In  the category of topological spaces 9- a space is projective if and only if 
it has the discrete topology and is injective if and only if it is nonempty and has 
the indiscrete topology. Any one-point space is a generator and any two-point 
space with the indiscrete topology is a cogenerator. A space is small if and only 
if it is finite. 

21. Let R be a commutative ring, and let dR be the category of algebras 
over R (so that in particular .dz is the category of rings). The polynomial 
algebra in one variable R[X] is a generator for dR. A morphism in dR is a 
monomorphism ifand only ifit is univalent as a function. dR has products and 
coproducts. (For the coproduct of a family of algebras Ai, consider an appro- 
priate quotient algebra of the polynomial algebra over R with variables the 
disjoint union of sets u di where the variables do not commute). Also dR has 

pullbacks and pushouts, and hence is complete and cocomplete. The trivial 
algebra consisting ofone element is a null object f o r d R ,  whereas R considered 
as an  algebra over itself is a conull object. Hence dR does not have a zero 
object. Furthermore, a morphism in dR may be an epimorphism without 
being onto as a function. (Let R = Z, and consider the inclusion Z c Qwhere 
Q i s  the rationals.) 

Examine also the categories with base point Y o  and To. 

i 
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[CHAPTER 1111 

Co mple te Categories 

Introduction 

We now study categories satisfying the Grothendieck axiom A. B. 5 [20] 
(herein called a C3 category). In $1 we establish a few equivalent formulations 
of this axiom. A number of the results here were first stated in [20]. In  $2 we 
generalize the Eckmann-Schopf theory of injective envelopes [8] to abelian 
categories satisfying the axiom C,. Section 3 is devoted to showing the existence 
of injective resolutions for C, categories having a generator. This was first 
proved in [20] using a transfinite induction method. The proof given here 
utilizes the fact that the result is already known for R-modules (11, $15). 

1. C, Categories 

A category d with coproducts is called a C ,  category if for every family of 
monomorphisms {ui : Ai-+Bi} the morphism @ ui : @ Ai+ @ Bi is a 

monomorphism. d is called a C ,  category if it has products, coproducts, and 
a zero, and if the morphism 6 : @ Ai+ x Ai is a monomorphism for any 
family of objects { A i }  in d. 

Proposition 1.1. A C, category is C,. 

Proof. Relative to a family of monomorphisms {ui: Ai +Bi}  we have a com- 
mutative diagram 

I 1 i 

OAi @ B i  

X A i  - X B i  

where the top morphism is @ ui and the bottom morphism is x ui. Now 6 is a 
monomorphism by assumption, and x ui is a monomorphism by 11, 12.3. 
Hence it follows that @ ui is a monomorphism. I 

81 
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Observe that a C, category has the following property : If 0 Ai is a coproduct 

with projectionsp, and if,f, g : A+ 0 A i  are such that pi f =pig for all i E I, 

then f = g. 

i E I  

&I 

The familiar distributivity relation for sets 

(U A i ) n  B = U ( A i n  B )  (1) 

does not hold in general in the category 8. However, ifwe assume that {Ai} is a 
direct family of subgroups of an abelian group A and B is another subgroup 
of A, then it can be seen that (1) holds (exercise 1 ) .  We shall call a category& 
a C, category if s8 is a cocomplete abelian category such that (1) holds for 
any direct family {Ai} and any subobject B. 

Proposition 1.2. Let 
if the direct limit ofevery direct fa rn ib  ofsubobjects { A i }  oj'an object A is u Ai. 

Proof. Suppose that & is C, and let {Ai}  be a direct family of subobjects of A. 
Let {ri : Ai+L} be the direct limit. Then we have the induced morphism 
u : L + A  whose image is u Ai by 11, 2.8. We wish to show that u is a mono- 
morphism. Let K be the kernel of u,  and let A: be the image of ri. Then again 
by II,2.8, we know L = u A:., and by C3 we have K = U(A;.n K ) .  If K # 0, 
then A$! n K # 0 for some i, and so by I, 16.4, we have n ~ '  ( K )  # 0. It follows 
that Ai+ A has a nonzero kernel, contradicting the fact that Ai is a subobject 
of A.  Therefore K = 0 and so u is a monomorphism. 

Conversely, suppose that direct limits of direct families of subobjects are 
subobjects. Let { A i }  be a family of subobjects of A and let B be another sub- 
object. By assumption the direct limit of the family { A i u B }  is 

be a cocomplete abelian category. Then & is C3 i fand only 

U (A iUB)  = ( U A i ) U B .  

By 11, 12.2*, the family of exact sequences 

B+AiUB+ ( A , u B ) / B + O  

gives rise to an exact direct limit sequence 

B+ (u Ai) UB+l im(AiUB) /B-+O 

which shows that the direct limit of the family {Ai  U BIB} is (u  Ai)  u BIB. 
Then the family of exact sequences 

+ 

O+ A i n  B -+ Ai+ A, U BIB-+ 0 

(see I, 16.7) gives an exact direct limit sequence 

O+u ( A i n  B ) + U  A i + ( U  A i ) u B / B - + O .  (2) 

But by I, 13.2, (2) is just another way of expressing (1). I 
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Corollary 1.3. A complete C3 category d is C,. 

a3 

Proof. Given a family of objects {Ai}iEI , the objects of the form @ Ai for F a 

finite subset of Z, form a direct family of subobjects of the product x Ai. The 

direct limit is @ Ai, and by 1.2 the limit morphism 6 : @ Ai + x Ai is a 

monomorphism. Therefore d is C,. 1 
Corollary 1.4. Let A be an object in a C3 category d with a f a r n i b  of generators. 
Then the,firiitely generated subobjects of A f o r m  a direct f a m i b  of subobjects whose direct 
limit is A .  

Proof. By 11, 15.1, d is locally small, and so the class of all finitely generated 
subobjects of A form a set (or better, have a representative subclass which is a 
set). Furthermore, from I, 17.2, we see that the union oftwo finitely generated 
subobjects is also finitely generated, so that we have a direct system. By 1.2 the 
direct limit L.is a subobject ofA. If L is not equal to A, then there is a morphism 
from one of the generators to A which does not factor through L. But the image 
of such a morphism is finitely generated, hence is contained in L. This contra- 
diction proves that L = A. 1 
Lemma 1.5. Let {AiJiEI be a direct f a m i b  of subobjects of A in a cocomplete abelian 
category. Then the direct limit of the corresponding fami l y  of quotient objects {A/Ai} is 
A / U  Ai. 

Proof. The family of exact sequences 

iEF 

iEI 

iEI iEI iEI  

O+ Ai+ A +  A/A,+ 0 

gives us an exact limit sequence 

U 

lim Ai+ A +  lim A/Ai+ 0 
+ --f 

by 11, 12.2*. But by 11, 2.8, the image of u is u Ai. In other words 
limA/Ai = A / U  Ai. 1 

Proposition 1.6. L e t  d bP a cocomplete abelian categor_)l. Then d is C3 if and onb $ 
for every direct family  of subobjects {Ai} of an object A and every morphism f :  B -+A we 
have 

- 
f - ' ( U  Ai)  = U f P 1 ( A i ) .  (3) 

Proof. If& satisfies condition (3) ,  then taking for f the inclusion ofa subobject 
B c A we obtain Eq. ( 1 ) .  Conversely, suppose that d is C3 and let Z be the 
imaBe of$ Then by I, 16.4, we have the exact sequence 

O+f-'(Ai) +B+Z/Ain Z+O. 



84 111. COMPLETE CATEGORIES 

Passing to direct limits and using 1.2 and 1.5 we obtain an  exact sequence 

O+u f - ' ( A i ) - + B + I / U  ( A i n  I)+O. (4) 

But by C, we have u ( A , n  I )  = (u Ai)  n I,  so that by I, 16.4, we see that (4) 
is simply another way of expressing (3). I 
Proposition 1.7. Let {Ai ,  T} be a direct system in a c, category. Denote by Kkp the 
kernel of q p  for k < p, and let  Kk be the kernel of T k .  Then 

Kk = u Kkj. 

Proof. First it is clear that u Kkp C Kk, so that we need only prove the reverse 

inclusion. Let R be the subset of I x I consisting of all ordered pairs ( i , j )  such 
that i < j .  Let A = 0 Ai with injections ui. If S is any subset of R, let 

k 4 p  

k SP 

i E I  

u Im(ui - uj7rij) = As c A .  
( i j )  ES 

Then by 11, 2.10, we have limAi = A / A p  Now A,  = u A,  where F runs 

through all finite subsets of R. Hence by 1.6 we have 

--f P 
i E I  

Kk = UL1(AR) = '1 U;l(Ap), 

and so it suffices to show that for each finite subset Fof  R we have u;'(AF) c Kk 
for somep 2 k.  Given F, let! be any index which follows k and all indices which 
appear either in the first position or the second position in a member of F. 
Now u;' (AF) is the kernel of the composition 

'k 
A --+ A/AF.  

Define a morphism f : A+ Ap by taking fui = rip for i < p, and fui  = 0 otherwise. 
Then for ( i , j )  E F we have 

f ( u . - u . * . . )  = 7. -T.T..= rip-rip = 0. 
I J IJ J@ IJ 

Consequently, f factors through A+ A/A,, and so using I, 10.3, we have 

= f(Uk(UF1 ( A F ) ) )  = T k p ( u c '  ( A F )  ) 

This shows that ur'(AF) C Kkp as required. I 
Corollary 1.8. Consider a direct system {4, T } ~ ~ ~  in a c3 category, and let f : B -+Ak 

f o r  some k E I. Then 

Proof. We form a new directed set Zo by adding one new vertex io to I and 
defining io < i if and only ifk < i. A direct system over I ,  is obtained by taking 
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the original direct system, adding B at the vertex io, and using the morphisms 
rkp f for p 2 k.  Now I is a cofinal subset of I,. Consequently the conclusion 
follows from 1.5 and 11, 2.1 1. 1 
Theorem 1.9. A cocomplete abelian category d is C, if and only If, relative to every 
directed set I ,  the functor which assigns to each direct system over I its direct limit is an 
exact functor. 

Proof. Direct limit functors are cokernel preserving by 11, 12.2*. Hence it 
suffices to show that .r9 is C3 if and only if the morphism induced on the direct 
limits by a family ofmonomorphisms is again a monomorphism. Suppose that 
d has the latter property, and let { A i }  be a direct familyofsubobjects ofA. Then 
the limit morphism of the family Ai+A,  which can be regarded as a morphism 
from the direct system { A , }  to the constant direct system which has A at every 
vertex, is a monomorphism. Therefore, by 1.2, &' is Cs. 

Conversely, suppose that d is C3 and let {ui : Ai+Bi}iE, be a family of 
monomorphisms defining a morphism from the direct system (A i ,  T } ~ , ~  to the 
direct system {B, ,  pJiE,. Consider the commutative diagram 

0 - K - A  A B  

where K is the kernelofu. Let A:. = Im(ri),so that by II,2.8,we haveA = u A:.  

By C, we can then write K = u (A:n K ) ,  and so if K # 0, then A; n K # 0 

forsomek E I.DenotingM =r;'(A;n K )  weseefrom1, 16.4,thatrk(M) # 0. 
On the other hand using I, 10.3, we have 

iE I  

i E f  

& ( u k ( M ) )  = U ( T k ( M )  = u ( T k ( T F l ( A ; n  K ) ) )  
c u ( A ; n  K )  c u ( K )  = 0. 

Therefore by 1.7, u k ( M )  is a subobject of u Lkp where Lkp = Ker(pkp). Again 

using C, we then have 
k s p  

uk(M) = u Lkpn u k ( h f ) .  
k 4 n  

Hence 

M = uTl(Uk(M)) = UT' U Lkpn u J M )  = U q l ( L k p n  u k ( M ) ) ,  ( 5 )  LP k < p  

the first equality being true because uk is a monomorphism, and the third 
equality being true by 1.6. I t  follows from the fact that up is a monomorphism 
that T k p ( q l ( L k p n  u k ( M ) ) )  = O forp 2 k, and so Tk(urI(Lkpn u , ( M ) ) )  = O for 
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all@ 2 k. But then using (5) and I, 11.2, wesee q ( M )  = 0. This contradiction 
proves that K = 0, and so u is a monomorphism. I 

We shall say that d is a C: category ( i  = 1, 2, or 3) if d* is a Ci category. 
It follows from pointwise considerations that a functor category [d, B] or 
(d, B) has any of the properties Ci or C? that B has. In  particular, since 9 has 
properties C3 and C;", the same is true for R9? for any ring R. 

Proposition 1.10. A complete C3 category d, which is also C;, consists only of zero 
objects. 

Proof. By 1.3, d is C,, and so since it is also C; we have @ Ai = x Ai for every 
i E I  i E I  

set {Ai},.,[ of objects in d.  In particular, given A E d, let I be the set of positive 

integers and take Ai = A for all i E I. Let A" = @ Ai for n a positive integer 

and let A" = @ .4i. Then we have the diagonal morphism d : A+A" 

which is such thatpid = 1, for all projectionspi from the coproduct. Also it is 

n 

i =  I 
m 

i = l  

00 m 

clear that A" = u An and so from 1.6 we have A = u d - I ( A n ) .  We show that 
n = l  n = l  

A 

d - I ( A " )  = 0 for all n. Let d be the composition A+A"-tA"/A".  Then the 
exact sequence - 

A 

O + d - ' ( A n ) + A + A m / A n  

defines d-I(A") .  Alsop,+, IAn = 0, so that we have a morphismj,+l : A/An-+A,+, 
which when composed with A"+ A"/A" gives USP,,+~. Then the composition 

A P"+l 
A+A"/A"+A,+, 

is l,, and so d must be a monomorphism. Therefore 

d - l ( A n )  = Ker(d) = 0. I 

2. Injective Envelopes 

Throughout this section all categories will be abelian. 
We define an essential extension of an object A' to be a monomorphism 

u : A'+A such that for any nonzero subobject A ,  of A we have A ' n  A ,  # 0. 
Equivalently, by I, 19.3, A ' + A  is an essential extension if and only if A' is a 
retract of no other subobject of A .  We call u a proper extension if u is not an 
isomorphism. An inclusion A' c A is an essential extension in R9 if and only if 
for each a E A with a # 0 there is an r E R such that ra E A' and ra # 0. 

Lemma 2.1. A monomorphism u : A' - + A  is an essential extension ifand only i fevery 
morphism f : A + B such that fu is a monomorphism is itselfa monomorfihism. 
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Proof. Iffis not a monomorphism, the K=Ker  (f) is not zero, hence 
K n  A' # 0. But K n  A' is the kernel of.fu, so that fil is not a monomorphism. 

If u is not an essential extension, then there is a subobject A ,  # O  such that 
A ,  n .4' = 0. Then the composition A'+A-+A/A,  is a monomorphism, but 
A + A / A I  is not a monomorphism. I 

Lemma 2.2. Let Q be an object in a locally small C, category. Then Q is injective if 
and on(y if Q admits no proper essential extensions. 

Proof. Let Q be injective and suppose that u : Q 3  A is an essential extension. 
By 11, 14.2*, we know u is a coretraction and so by I, 19.1, we can write 
A = Q @ Q' for some subobject Q'. But then Q n Q' = 0 and so Q' = 0 since u 
is essential. Hence u is an isomorphism. 

Conversely, suppose that Q admits no proper essential extensions. To  show 
that Q is injective it suffices to show that Q is a retract of every containing 
object (11, 14.2*). Suppose that Q is a subobject of A but not a retract. Let V 
be the set of subobjects of A which intersect Q trivially. Under the natural 
ordering of subobjects, if {Ai} is a linearly ordered subset of V then by C, 

(U A i ) n  Q = u ( A i n  &) = 0. 

Hence $?is inductive, and so by Zorn's lemma we can find a maximal member 
A ,  for $?. Since Q n -1, = 0 the composition Q- A +  A / A ,  is a monomorphism. 
Furthermore, it cannot be an epimorphism for then it would be an isomor- 
phism, and so Q would be a retract ofA. Therefore, by assumption we can find 
a nonzero subobject B o f A / A o  such that Q n B = 0. Consider the commutative 
diagram 

where each of the squares is a pullback. Then by I ,  7.2, the rectangle is a 
pullback; that is ,  Q n B = Q n B = 0. Now by I ,  16.3, the morphism B-+B 
is an epimorphism, and so i t  follows that R-A- tAIA ,  is not zero. Conse- 
quently H properly contains "lo as a subobject of A ,  contradicting maxi- 
mality of A,.  Therefore Q is a retract of A .  [ 

Lemma 2.3. In a C3 category suppose that each inernber of a direct family of sub- 
objects { A i }  ofan object A is an essential extension of another subobject A' ofA.  Then u Ai 
is also an esscntial extension o f  A'. 
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Proof. Let A be a nonzero subobject of u Ai.  Then by C, we can write 
A = u ( A i n  A), and so for some i we have A i n  A # 0. Therefore since Ai is 
an essential extension of A’ we have 

0 # ( A i n  A) n A’ c A n  A’. 

This shows that U A ,  is an  essential extension of A’. I 
The proof of the following lemma is left to the reader. 

Lemma 2.4. I f u  : A + B  and v : B+C are monomorphisms, then vu is an essential 
extension if and only if both u and v are essential extensions. I 

An injective envelope for an object A is an essential extension A + Q  
with Q injective. 

Proposition 2.5. Let u : A + Q  and u’ : A +Q’ be injective envelopes f o r  A.  Then 
there is an isomorphism 8 : Q z Q‘ (not necessarily unique) such that Bu = u’. 

Proof. Let 6’ : Q+Q’ be such that u‘ = Bu (injectivity of Q ‘ ) .  Then 8 is a 
monomorphism (essentiality of u )  and so by 2.4 B is an essential extension 
(essentiality of u’) .  Therefore 8 is an isomorphism (injectivity of Q ) .  I 
Proposition 2.6. Let A be an object in a locally small C3 category, and suppose that A 
is a subobject of an injective object Q .  Then A has an injective envelope. 

Proof. Let V be the set of all subobjects of Q which contain A and which are 
essential extensions of A.  Then A E V so that V is not empty, and by 2.3 we see 
that V is inductive. Hence let Q l  be a maximal element. We show that Q I  
is injective. If Q 1  is not injective, then by 2.2 there is a proper essential exten- 
sion u : Q I + B .  Since Q is injective there is a morphism v : B + Q  such that 
vu is the inclusion of Q ,  in Q .  Since u is essential it follows from 2.1 that v is a 
monomorphism. But then by 2.4, B is an essential extension of A in Q, con- 
tradicting the maximality of Q 1. Therefore Q is injective, and so A+ Q , is an 
injective envelope. I 

3. Existence of Injectives 

Let U be any object in an additive category d, and let R denote the ring 
of endomorphisms of U. Then we have a functor T : d + g R  defined by 
T(A) = [U, A],, where [U, A ]  is considered as a right R-module by defining 
the product of a ring element r E [ U, U ]  and a group element f E [ U, A ]  as 
the composition f r  E [ U, A ] .  Then T is kernel preserving, and if U is a genera- 
tor then T is an imbedding. 

Lemma 3.1. Let U be a generator in an abelian category d and let T be as above. 
I f u  : A + B  is an essential extension, then T ( u )  is an essential extension. 
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Proof. Since T is kernel preserving, T ( u )  is a monomorphism. Suppose that 
f E [U,  B] = T ( B )  and f # 0. We must find r E R = [U, U ]  such that 0 # f r  
and f r  E [ U ,  A ]  (or, more correctly, Im(frj c Im(u)). Consider the diagram 

V - A n I A A  
g 

u q >  I - - -  t B  

where the bottom row is the factorization o f j  through its image and each 
square is a pullback. Since f # 0 we know I #  0, and so since u is essential we 
have A n I # 0. Since q is an epimorphism, so is g ,  and consequently g # 0. 
Therefore there is a morphism k : U-t  V such that g k  # 0, and so since u and 
w are monomorphisms, uwgk # 0. Therefore vqhk = fhk # 0 and we can take 
Y = hk .  I 
Theorem 3.2. A C3 category d with  a generator U har injective envelopes for  each of 
ils objects. 

Proof. By 2.6 i t  would suffice to show that &’ has injectives. However we shall 
construct the injective envelope directly, without use of 2.6. 

Let R and T be as above, and let A be any object in d. Then by 11, $15, 
we can find a monomorphism T( A )  + M in the category gR with M injective. 
Let V be the class of all triples (B ,  u , f )  such that u : A + B  is an essential 
extension and f: T(B)+M is a morphism of right R-modules making the 
diagram 

commutative. By 3.1, T ( u )  is an essential extension, and so f must be a mono- 
morphism. We write (B ,  u , f )  < (B’, u ’ , f ‘ )  if there is a morphism v : B+B‘ 
such that the diagrams 

are commutative. This defines an ordering on %‘. Notice that u must be a 
monomorphism since u is an essential extension. Also v is unique, for if v ,  
were another morphism having the properties of u, thenf’T(vj =f’T(u, j and 
so T(v) = T(v,)  sincef’ is a monomorphism. Therefore v = v 1  since T is an 
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imbedding. It follows that if also (B’, u ‘ , f ) )  < (B, u , f ) ,  then u is an iso- 
morphism. In  this case we say that (B ,  u, f) and (B’, u ’ , f ) )  are equivalent. 
Now since f: T(B)+M is a monomorphism, the cardinal number of 
T(B) = [ U, B] is less than or equal to the cardinal number of M. Hence by 11, 
15.2 B is a quotient object of MU. But d is locally small by 11, 15.1, and so 
there are no more than a set of such quotient objects. Consequently the class 
Vo of equivalence classes in %? is a set. Let { (Bi, ui , . f;.)} represent a linearly 
ordered subset of Vo. Again making use of the uniqueness of v we see that A ,  
together with the Bi’s, form a direct system in which all the morphisms are 
rnonomorphisms. Let 8 be the direct limit, and let zi be the limit morphism 
from A to 8. From 1.7 it follows that zi and all the other limit morphisms Bi+ 8 
are monomorphisms. Then by 2.3 we see that zi is an essential extension of A .  
Now T(A) ,  together with the T(Bi)’s, form a direct system of submodules of 
T ( 8 ) .  Let L be the direct limit (or union, since ’ZiR is C3). The morphisms 
f; : T(Bi) +M define a morphism f : L - t M  which can be extended to a 
morphismf : T ( 8 ) - + M  by injectivity of M .  Therefore (B,  zi,f) follows every 
(Bi , ui , f i ) .  Thus Yo is inductive, and so let (Q, w, h )  be a maximal element. 
If Q is not injective, then there is a proper essential extension Q+ Q, by 2.2, 
and so A +  Q-+ Q, is an essential extension of A by 2.4. Also by injectivity of 
A4 the morphism h can be extended to a morphism h ,  : T(Q,)+M. But this 
contradicts the maximality of (Q,  w,  h) .  Therefore Q is injective, and so 
A+ Q is an injective envelope for A .  I 
Proposition 3.3. A complete (cocomplete) abelian category d with a generator U and 
injectives has an injective cogenerator. 

Proof. Let C be the product (coproduct) of all quotient objects U/ V where V 
runs through the set (11, 15.1) of subobjects of U. By assumption there is an 
injective Q containing C. We show that Q is a cogenerator. By 11, 15.3* it 
suffices to show that for each nonzero A ~d there is a nonzero morphism 
A+ Q. We know there is a nonzero morphism U+ A since U is a generator. 
The image ofsuch a morphism is isomorphic to U/ Vfor some subobject V # U. 
The injection U/V+C composed with C+Q is not zero since each of the 
morphisms is a monomorphism. Then, by injectivity of Q, this composition 
can be extended to a morphism A+ Q as required. I 

Corollary 3.4. A C3 category wi th  a generator has an  injective cogenerator. 1 
Combining 3.2 and 3.3 we have 

Exercises 
1. Find three subgroups A,,& and B of Z @ Z such that 

( A ,  u A 2 )  n B # ( A ,  n B)  u ( A 2  n B) .  

Show that 3 is C3 and C:. 
2. A category with projectives and products is Cf.  
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3. If d is a category with products, coproducts, and a zero, and if L49 is a C, 
category, then for any functor T : d+3? and any coproduct @ Ai in d the 

morphism 

0 ' ( A , )  + r (0  Ai) 
i i 

is a monomorphism. 

4. An abelian group A is called a torsion group if for each a E A there is a 
nonzero integer n such that n~ = 0. Let go be the full subcategory of 9 consist- 
ing of all torsion groups. Then go is an abelian subcategory of 9, and co- 
products in are the same as in 9. However the product in go ofa family {Gi} 
of torsion groups is given by the subgroup of the product in 9 consisting of 
all elements of the form (xi) such that the xi E Gi have uniform order; that is, 
there is a nonzero integer n such that nxi = 0 for all i. For each positive 
integer m, letf, : Z2,,,+Z2 be the morphism which takes the coset of r modulo 
2" into the coset of r modulo 2. Then each f m  is an epimorphism, but x fm is 

m>O 

not an epimorphism. Thus a complete and cocomplete abelian category need 
not be CI.  
5. Let P be a small projective in a cocomplete abelian category. Then P has 
the following property: If {Pi} is a direct family of proper subobjects of 
P, then u Pi is a proper subobject of P. 

Conversely, if A is any object in a C, category and if A has the above 
property with respect to subobjects, then A is small. 

6. Generalize 1.7 to the case where I is an ordered set with the property that 
if i < j and i < k then there is a vertexp such tha t j  < p and k < p .  (If i a n d j  are 
vertices of a scheme, write i - j  if there is a composite arrow from i t o j  or from 
j to i. Then - is an equivalence relation, and in this way the scheme can be 
broken up into components. The colimit of a diagram over the scheme is the 
coproduct of the colimits of the components. Show that for an ordered set I 
with the given property, the components are all directed sets.) 

7. The additive group Q of rational numbers is an injective envelope for Z. 
Letp be any positive integer. The group Z,, can be regarded as the collection 

of cosets of rational numbers of the form nip in Q / Z .  Let Z p  be the set of 
cosets in Q / Z  represented by rational numbers whose denominator is a power 
ofp. Show that Z,," is divisible, and therefore injective. Hence show that Zp" 
is the injective envelope of Zp. (To prove Zpm divisible, we must show that 
given x = 1 /p"' and n an integer > 0, there is a number y of the form s/pm+k 
such that ny - x is an integer. Equivalently, we must find positive integers 
s, k ,  and t such that 11s = p k (  1 + tp"). Let n l  be the product of all prime factors of 
n which divide p ,  and take k large enough so that nl  divides pk .  Then use the 
fact that n / n I  and /I"' are relatively prime to find s and t.) 

8. Prove the converse of 3.1 ; namely, if T(u) is an essential extension, then 
so is u. 
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Group Valued Functors 

Introduction 

The central result in this chapter is the group valued imbedding theorem: 
Every small abelian category admits an exact imbedding into the category of 
abelian groups (2.6). Proofs of this theorem have been given by Heron, 
Lubkin 1271, and Freyd [14]. The one given here is by Freyd. The meta- 
theoretic consequences of such a theorem are also examined. In general, any 
statement involving exactness, commutativity, and limits for a finite diagram 
which is true in the category of abelian groups is true in any abelian category. 
Furthermore, certain statements involving the existence of morphisms which 
are true in 9 are also true in the general abelian category. The connecting 
morphism provides a well-known example. In Chapter VI we shall prove that 
every small abelian category admits a full exact imbedding into a category of 
modules. This will enable us to improve on the metatheory developed in this 
chapter. In  $3 it is proved that certain classes of abelian categories (not neces- 
sarily small) also admit exact, group valued imbeddings. 

Let U be a projective generator in an abelian category d, and let R be the 
ring of endomorphisms of U .  Then the functor T :  &+'?IR defined by 
T(A)  = [U,  A ]  is an exact imbedding. A more careful analysis of this functor 
enables us to draw a characterization of module categories in 4.1. The result 
is generalized in 55 to functor categories. 

The material in $1-53 has been taken almost exclusively from the work of 
Peter Freyd. 

1. Metatheorems 

Let U be an object in an abelian category d. We know that the functor 
H U  : d+ 9 is kernel preserving. If U is projective then H u  is exact, and if U 
is a generator then Huis an imbedding. Hence if& has a projective generator, 
then .d admits an exact, covariant, group valued imbedding. The same is 
true i f d  has an injective cogenerator (exercise 1 ) .  We are going to examine 

93 
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the implications of an abelian category a? admitting an exact group valued 
imbedding T : d+ '3. 

In the first place T, as do all functors, preserves commutative diagrams. 
By 11, 6.7, T preserves limits and colimits for finite diagrams. Furthermore, 
by 11, 7.1, T reflects commutative diagrams, limits and colimits for finite 
diagrams, and exact sequences. Let us say that a statement about a diagram in 
an abelian category is categorical if it states that certain parts of the diagram 
are or are not commutative, that certain sequences in the diagram are or are 
not exact, and that certain parts of the diagram are or are not limits or colimits 
for certain other finite parts of the diagram. Then in view of the above remarks 
we have the following metatheorem. 

Metatheorem 1.1. r f  a theorem is of the form " p  implies q" where p and q are 
categorical statements about a diagram in an abelian category a? admitting an exact 
group valued imbedding, and $the theorem is true in the category of abelian groups, then 
the theorem is true in d, I 

Let us see how 1.1 works in a particular case. Consider the 5 lemma which 
was proved for '3 in I, 21.1. Suppose that the diagram of that lemma is a 
diagram in an abelian categorydadmitting an exact group valued imbedding 
T. Let us prove part (i) of the lemma. Suppose that under the given conditions 

0 0 0 

0 0 0 
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y3 is not a monomorphism. Applying T t o  the diagram we obtain a diagram in 
3 satisfying the same conditions. But since y 3  is not a monomorphism, T ( y 3 )  
is not a monomorphism, contradicting the fact that the lemma is true in 9. 

Metatheorem 1 . 1  does not handle a case where we are required to show the 
existence of morphism having certain properties with regard to a diagram. 
We consider a familiar example. Suppose that we have the commutative 
diagram ( 1 )  in an abelian category d, where the middle two rows and all 
columns are exact. 1 f . d  is 9, then we can show without much difficulty that 
there is a morphism K"+F' (called the connecting morphism for the dia- 
gram) such that the sequence 

K'+K+K"+I; '+F+F" (2) 

is exact ( I ,  exercise 20). The morphism K"+F' is definedas acompositionof 
relations; namely, the function K"+ .I", followed by the inverse of A+A" 
(which is not a function, in general)) followed by A + R, followed by the inverse 
of'B'+ B, followed by B ' b F ' .  One checks that this composition of relations 
is actually a function whose domain is all ofK", that this function is a morphism 
of groups, and finally that the sequence (2) is exact. Now if we were to try 
to prove the assertion in an abelian category d admitting an exact group 
valued imbeddiiig T,  we would apply T to ( l ) ,  and we would obtain a 
morphism d : T ( K " )  + T(F') as above. The difliculty now lies in the fact 
that we do not know if d is of the form T(6)  for some 6 : K"+F', since in 
general Twill not be full. However, we can prove in this particular case that 
there is such a morphism 6. 

First of all there is no loss in generality in supposing that & is an abelian 
subcategory o f 9 .  Let us define an antimorphism to be a relation which is the 
inverse of a morphism of abelian groups. If & is any subcategory of 9, then 
we define an .&'-relation from group A to group B as a composition u,. . .u2aI, 
where for each i, 1 < i < n, u, is a morphism in & from Ai to A,, (that is, an 
d-morphism) or the inverse of a morphism in d from A ,  to A I f l  (that is, 
an d-antimorphism), and A ,  = A ,  A,,, = R. An d-relation from A to B 
which is a function with domain A is called an &-function from A to B. 

Proposition 1.2. ud is an abelian Jubcategory of 9) then all &-functions are 
d-morpliisrns. 

Proof. First we define a simple .d-relation as an &'-relation which can be 
written as the composition ofand-antimorphism followed by and-morphism. 
Then we have : 

Lemma 1.3. All &-relations are simple &-relations. 

Proof. It  is clear that all &-relations are compositions of simple &'-relations. 
Hence we need only prove that the composition of two simple d-relations is 
simple. We have the following situation: 
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C - A  

I 
E - D  (3) 

B 

that is, a simple &-relation from A to D followed by a simple &-relation from 
D to B. Consider the pullback diagram in d (and hence in 9) 

P - c  

E - D  

Then the simple &-relation given by 

P - C - A  

I 
E 

B 

is the same as that given by (3). Indeed it is readily verified that the two 
relations from C to D given by 

P-C C 

E E - D  

are the same. One uses the expression P = { (x,y)  E C x Ela(x)  = /3(y)} for the 
pullback of abelian groups (I, 17.5). 1 
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Lemma 1.4. I f a  simple &-relation is an &-function, then i t  is an d-morphism.  

Proof, Let an d-function be given by the diagram 

C - A  

97 

+ 
B 

Its being defined on all of A is equivalent to C-tA being an epimorphism. 
Let K- tC  be the kernel ofC+A in& and hence in 9’. Then the relation being 
well defined is equivalent to the composition K+C+B being zero. Since 
C+ Ais the cokernel of K - t  C, this means that there is a morphism A +  B in at’ 
such that C-t A 4  B = C+ B.  Then A +  B is the given &-function. 1 

Proposition 1.2 now follows from 1.3 and 1.4. I 
If we define construction by diagram chasing as the process of defining 

a morphism in 9’ by composing morphisms and antimorphisms in a diagram, 
we can now state the following improvement on 1.1. 

Metatheorem 1.5. Let d be an abelian category admitting an exact group valued 
imbedding. I f a  theorem is of the form “ p  implies q ” ,  wherep is a categorical statement 
concerning a diagram in d,  and q states that additional morphisms exist between certain 
objects in the diagram and that sorne‘categorical statement is true ofthe extended diagram, 
and if the theorem can be Proved in 9 by constructing the additional morphisms through 
diagram chasing, then the theorem is true in d. 1 

We remark that a morphism A+ B constructed by diagram chasing in an 
abelian category d must be such as to make a diagram (4) in &commutative. 
Since (4) is independent ofany particular imbeddingd-+9’  and since C+ A 
is an epimorphism, it follows that any morphism in d constructed by diagram 
chasing is independent of the particular imbedding used to define it. I n  parti- 
cular, the connecting morphism of the diagram ( 1 ) is well defined. 

2. The Group Valued Imbedding Theorem 
We shall show in this section that every small abelian category admits an  

exact (covariant) group valued imbedding. Our approach is to study the 
functor category (d, 9). The required imbedding will fall out as a special 
object in this category. 

The following lemma, due to Yoneda, is crucial. 

Lemma 2.1. Let d be any category, and consider a covariant set valued functor 
T : d +Y. Then for any object A E d we have a one to one correspondence 

6 = BA,T : [HA, TI -+ T(A)  
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where [HA,  TI is the class ofnatural transformations from the set valued functor H A  to 
the set valued functor T. Furthermore, b’ is natural in both T and A .  

is an additive functor, then the same conclusion is 
valid relative to the group valued functor H A .  In this case b’ is an isomorphism Ofgroups. 

If& is additive and T : d 

Proof. For q E [HA,  TI we define b’(q) = qA(lA).  Also we define a function 
0’ : T(A)-+[HA,  T ]  by the rule 

e ’ ( x ) B ( f )  = T ( f )  (’) (1) 

where x E T(A) and f E HA(B)  = [A,  B].  That e ’ ( x )  is a natural transfor- 
mation is an easy consequence of the functorial property T(gf) = T(g) T( f ) .  
We show that 8‘8 is the identity function on [HA,  T] .  For q E [ H A ,  TI we must 
prove that b“(e(q))  = 9; that is, for each B E&’ we must show that 
b”(b’(q))B( f )  = qB( f )  where f E [A,  B] .  By naturality of q the diagram 

is commutative. Chasing the element l A  clockwise gives us 

T( f ) (b’ (d)  = w % ) ) B ( f ) .  

Chasing the same element counterclockwise gives us qB( f )  as required. To 
show that 80‘ is the identity, we have for x E T(A), 

b’(b’’(2)) = b”(X)A(lA) = T(l,)(x) = X .  

Finally, we show that b’ is natural. For a morphismf : A+ B we must prove 
that the diagram 

is commutative. Starting with in [ H A ,  TI and going clockwise we obtain 
T( f )  (qA( 1 A ) ) .  Going counterclockwise we obtain qB( f ) .  Hence the result 
follows from the commutativity of the diagram (2). On  the other hand, given 
a natural transformation p : T+S we must prove that the diagram 
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i iPA 
is commutative. Starting with T E [ H A ,  T ]  we obtain clockwise pA(vA(lA)) 
and counterclockwise ( p ~ ) ~ (  l A ) .  That these are equal follows from the 
definition of the composition of natural transformations. 

In the case where d and T a r e  additive, it is seen immediately from the 
definition of 8 that i t  is additive. The only further detail that must be checked 
in this case is that 8 ’ ( x ) B  is actually a morphism of groups. But this we see 
from ( 1 )  using the fact that Tis additive. I 
Corollary 2.2. The funciion 8 : [ H A ,  H c ]  +[C, A] deJined by 8(,) = qA( lA) is a 
one to one correspondence, natural in both A and C. The inverse 8’ of 8 is given by 
8‘(x),( f) = f x  where x E [C, A ]  and f E H A ( B )  = [ A ,  B]. In the case o f a n  additive 
category 8 is an isomorphism of groups. I 

A functor T : d+Y( T : d+ 9 in the case where d is additive) is called 
a representable functor if it is naturally equivalent to a morphism functor 
HA for some A E d. It follows from 2.2 that if T is representable, then the 
object A E d which represents it is unique up to isomorphism. 

Proposition 2.3. Ifd is a small additive category and A E d, then H A  is a small 
projective in (d, 9). Furthermore, the functor G = @ H A  is an imbedding, and is 

a projective generator f o r  (d, 9). 

Proof. We first show that H A  is projective. Since a coproduct of projectives is 
projective, it will follow that G is projective. Let T+ T” be an  epimorphism 
in (d, 8).  Then from 2.1 (using naturality of 8 with respect to T )  we see that 
[ H A ,  T]+ [ H A ,  T”] is an epimorphism. Therefore H A  is projective. 

T o  prove H A  small, we must show that [ H A ,  ] is a coproduct preserving 
functor (11, 16.2). But this follows again from 2.1 since we have 

A € d  

Since G is projective we will know it is a generator if [G, T ]  # 0 for any 
nonzero functor T (11, 15.3). We have 

[G, T ]  = [@ H A ,  T ]  = X [ H A ,  T ]  = X T ( A )  

where the middle equality comes from 11, 5.1.* But x T ( A )  = 0 if and only 

if T ( A !  = 0 for all A E d; that is, if and only if T = 0. Hence G is a generator. 

A € d  A€& A€& 

A€& 
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It is trivial that G is an imbedding, for if B- t  B' is a nonzero morphism in 
d', thenHB(B) +HB(B') is notzero,and consequently@ HA(B) + @HA(B') 

cannot be zero. I 
Proposition 2.4. Suppose that d is a small, exact, additive category. If T is an 
injective object in (d, 8), then T is a cokernel preserving functor. 

Proof. Suppose that A'+A+ A"+O is exact in d. Then O+ HA"+ HA+ H A  
is exact in (d, 9). Since T is injective, this means that the sequence 

[HA', T]+ [ H A ,  7'1 + [HA", TI-. 0 

A€& A€& 

is exact in 8, or applying 2.1 and using naturality of 0 in A, 

T ( A ' )  + T ( A )  + T ( A " )  + 0 

is exact. In  other words T is cokernel preserving. I 
Remarks. (1)  A cokernel preserving functor is not necessarily injective. 
Furthermore, an injective functor need not have injective values, nor is it 
true that an injective valued functor is an injective. 

(2) It is true that a projective group valued functor is kernel preserving, 
although it does not follow from 2.4 by duality (exercise 3). 

(3) Proposition 2.4 need not be true if 9 is replaced by a general abelian 
category (exercise 6 ) .  

Lemma 2.5. Consider a pointwise monomorphism M + Q whereM, Q : d +8 are 
additive functors and d is any abelian category. If M is a monofunctor, and i f  
f o r  any other pointwise monomorphism N +  Q with N # 0 there is an object A such 
that 0 # M ( A )  n N ( A )  c & ( A ) ,  then Q is a monofunctor. 

Remark. If d is a small abelian category, then 2.5 states simply that an  
essential extension in (d, 8) of a monofunctor is again a monofunctor. 

Proof. Suppose that Q is not a monofunctor. Then there is a monomorphism 
a : A ' + A  i n d  such that & ( a )  is not a monomorphism. Let x E Q(A')  be such 
that &(a)(.) = 0, x # 0. Define & as the subfunctor of Q generated by x ;  that 
is, &(B)  = ( Q ( P ) ( x ) l P  E [A' ,  B ] }  (11, exercise 6 ) .  Then # 0, and so by 
assumption we can find B €&'such that &(B)  n M ( B )  # 0. In other words 
there is a morphism /? : A'+B such that & ( P ) ( x )  # 0 and Q ( P ) ( x )  E M ( B ) .  
Consider the pushout diagram 

A' A A 
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where & is a monomorphism by I, 20.2*. Applying Q we obtain 

0 = Q(b)Q(.)(x) = Q(&)&(P) (x )  = M(&)Q(P) (x ) .  
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But this gives a contradiction since Q(P) (x )  # 0 and M (&) is a monomorphism. 
Therefore Q is a monofunctor. I 
Theorem 2.6 (The Group Valued Imbedding Theorem). Any  small abelian 
category d admits an exact covariant imbedding into the category o f  abelian groups. 

Proof. The category (d, 9) is aC3 category possessing a generator G = @ H A  

(2.3). Therefore by 111, 3.2, (d, 9) has injective envelopes for each of its 
objects. In particular, let G+Q be an injective envelope for G. Then Q is 
cokernel preserving by 2.4. Also since G is a monofunctor the same must be 
true of Q by 2.5. Therefore Q is an exact functor. Since G preserves nonzero 
objects the same is true of Q, and so by 11, 7.2, Q is faithful. The conclusion 
now follows from 11, 10.3. I 

We see now that Metatheorem 1.5 applies to any small abelian category. 
We would like to show that the smallness condition can be removed. We’ 
accomplish this by proving the following lemma. 

Lemma 2.7. Let .do bc a small subcategory of an abelian category d. Then there is a 
small,jull, abelian subcafegory d’ o j d  such that do is a subcategory o f  d‘. 

Proof. We define inductively a sequence {d,,}nao of subcategories of d as 
follows. The subcategory is the full subcategory of d consisting of the 
objects in dn together with single representatives for kernels and cokernels 
in d of every morphism in d, and single representatives for all finite products 
in d of objects in If&“ is small, then so is d,,,,. I t  follows that since do 

is small, so is d,, for all n 2 0. Consequently, d’ = u dn is small, and it 

is easily shown that d‘ is a full abelian subcategory o f d  (11, exercise 5). I 

A€& 

m 

n=O 

Combining 1.5, 2.6, and 2.7 we now have: 

Metatheorem 2.8. Le!  d be any abelian category. r f  a theorem is o f  the form “ p  
implies q,” where p is a categorical statement concerning a diagram in d, and q states 
that additional morphism exist between certain objects in the diagram and that some 
categorical statement is true of the extended diagram, and if the theorem can be proved in 
97 by constructing the additional morphism through diagram chasing, then the theorem is 
true in d. I 

3. An Imbedding for Big Categories 

Given an object A in an additive category d and an abelian group E, we 
define a covariant additive functor JA,E : d+9 by the relation 
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Lemma 3.1. Let T : d-+9 be any covariant additive functor. Then we have an 
isomorphism of groups 

e : [ T, JA,EI +. [ T(A), El * 

Furthermore, 8 is natural in T, A ,  and E. 

Proof. For 77 E [ T, JA,E] and x E T(A) we define 8(q )  ( x )  = r l A ( x ) (  lA) .  Then it 
is clear that 8 is a morphism of groups. To  show that it is an isomorphism we 
define 8’ : [ T(A),  El -+ [ T, JA,E] by the rule d’(J’)&) ( g )  =f( T(g) ( y ) )  where 
f E [ T(A), E] ,y  E T(B), and g E [B,  A ] .  Additivity of T is used in showing 
that O’(.f)&) is a morphism of groups. Now forfE [ T(A) ,  El and x E T(A) 
we have 

e(e’(f ) )  ( x )  = 8 ‘ ( f ) A ( x )  ( l  A )  = f( T ( l A )  ( x ) )  = f 
Thus 88’ is the identity. On  the other hand we have 

e ’ ( e ( r ) ) B W ( g )  = Q w w ( y ) )  = 77A(T(p.)Cy))(lA) = r l s ( y ) (g ) .  

The last equality comes from the diagram 

’ T ( 4  
T ( g )  

T(B) 

which is commutative by naturality of 7. Hence 8‘8 is the identity, and so 0 
is an isomorphism. 

The proof of the naturality of 8 in all three variables is left to the reader. I 
Lemmas 2.1 and 3.1 suggest that JA,E plays some sort of dual role to H A .  

In Chapter VI both of these functors will be generalized, and at  that time we 
shall see more clearly the duality that exists between them. 

Suppose for the moment that d is small. If E is an injective object in 9 
(that is, a divisible group) then using the naturality of 0 in T we see that JA,E 
is an injective object in (d, 9) for all A .  If E is an  injective cogenerator in 9 
(for example Q/Z) then we have for T # 0, 

Therefore x JA,E is an injective cogenerator for (d, 9). In  this way we see 

independently of 111, 3.2, that (d, 9) has injectives. 
Returning to the case where d is not necessarily small, let A be a left 

R-object in d and let E E “9 where R is any ring. Then we have the functor 

A€& 
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Jfl,R,E : d+3 defined by JA,R,L:(B) = R [ [ B ,  A ] ,  E] for B EL&'. In  this case we 
obtain a natural equivalence 

In particular, take R = [ A ,  A ] .  Let u : R+E be an injective envelope for R 
in R3. Corresponding to u : H A ( A )  + E  we have the natural transformation 

andy E [B,  A ] .  

Lemma 3.2. 
Furthermori,, if h : T-t JA,R,E is another pointwise monomorphism and T # 0, then 

7 = O'(u)  : HA+J.4,R,L' where 1B(J1) (g )  = u ( H A ( g ) ( y ) )  = u(u) for y E L A ,  B1 

in the above A is cogenerator, then 7 is a pointwise monomorphism. 

Remark. In the case where d is small this will show that 7 is an  injective 
envelope for H A  in (,a?, 9). 

Proof. Suppose that 0 #y E H * ( B : I .  Since A is a cogenerator we can find 
g : I!+ A such that gy # 0; hence u:gy) # 0 since zi is a monomorphism. This 
shows that qB(y )  # 0 and so qB : H A ( B )  +R[[B, A ] ,  El is a monomorphism. 
In other words 9 is a pointwise monomorphism. 

Suppose now that T #  0,  so that T ( B )  # 0 for some B ~ d .  Let 
0 # x E T ( B ) .  Then 0 # h , ( ~ )  E R[[B, A ] ,  E ]  since A, is a monomorphism, 
and so h , ( x ) (g )  # 0 for some g : B - t A .  Using naturality of h we have 
A,( T(y) ( x ) )  ( l A )  = h,(x)  (g) # 0,  and so A,( r i g )  ( x ) )  # 0. Therefore 

0 # T(g) (4 E T ( A ) .  

Denote 2 = T(g)(x).  'Then hA(z) = i E R[[A, A ] ,  El,  and so if e = z ( lA) ,  then 
i ( r )  = re for all r E R. Furthermore, since i # 0 we must have e # 0. Since u is 
an essential extension of the left R-module R, there is some s E R such that 
O # s e = u ( t )  for some t E R .  NOW we have s i ~ ~ [ [ A ,  A ] ,  El defined by 
( s i ) ( r )  = i ( r s )  = ( rs )e  = ru ( t ) .  Then Yj.q(t)(r) = u ( r t )  = r u ( t ) ,  the last equality 
being true since 71 is a morphism ofR-modules. Therefore qA(t)  = si. But again 
by naturality ofh we have si = hA(  T ( s ) ( z ) ) .  Consequently, since t # 0 and qA 
is a monomorphism, we have 

0 f 7 A ( t )  = Ji E 7 A ( H A ( A ) )  n h A ( T ( 4 ) .  I 
Theorem 3.3. Let &?' be an abelian category with a cogenerator A and an object Usuch 
that [U,  B ]  # 0 for all nonzero objects B E d. Then there is an exact covariant im- 
bedding f r o m  L&' to 9. 

Proof. The product of U and A will be an object with the properties of both of 
them, hence we may assume U = A .  Letting R+ E be an  injective envelope in 
R9 as above, we have the functor J.4,R,E which is seen to be cokernel preserving 
from its definition. Since H A  is a monofunctor, it follows from 3.2 and 2.5 that 
JA,R,15 is a monofunctor, hence is exact. Also since it contains H A  it must 
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carry nonzero objects into nonzero objects. Therefore JA,R,E is an exact 
imbedding. I 

4. Characterization of Categories of Modules 

Let R be any ring. The category gR has a small projective generator, 
namely, R considered as a right R-module. Hence the same is true of any 
category which is equivalent to 9P. The following theorem shows that among 
other things the converse is true. That is, i f d  is a cocomplete abelian category 
possessing a small projective generator, then d is equivalent to gR for some 
ring R. 

Theorem 4.1. Let sd be a cocomplete abelian category with a projective generator U,  
and let R denote the ring o f  endomorphisms of U. Then the functor T : sd +gR dejined 
by T ( A )  = [U,  A] is an exact imbedding such that the function [A,  B]  -+[ T ( A ) ,  
T ( B ) ]  induced by T is an isomorphism whenever A isjnitely generated. Ifeither U is 
small or d is C,, then T is f u l l .  T is an equivalence ;f and only ;f U is small. 

Proof. Since U is a projective generator, T is an exact imbedding. Suppose that 
A E d is finitely generated. Then we must show that every R-module mor- 
phism @ : [U, A]+ [U, B] can be written as T(?) for some 'p E [A,  B ] .  In 
other words we must find 'p such that @(f) = 'pj for all f E [U, A] .  First con- 
sider the case where U = A .  Then @(f) = @( l u f )  = @ (  lU)J since @ is a 
morphism of R-modules. Therefore in this case we can take rp = @( 1 u) .  Now, 
in general, if A is finitely generated, we can write an exact sequence 

A n  

O+M-t'U-+A+O 

where I is finite. For i E I we denote by ui and pi respectively the ith injection 
and projection of the coproduct. Let us denote by Qi the composition 

T(ud T(n) Q 

Then Qi is a morphism of R-modules, and so by the case we have already 
treated we have for each i a morphism 'pi  : U+B such that Gi( f )  = 'pi f for 
all f E [ U, U ] .  The ' p i s  then define a morphism Q = x 'pipi : 'U+ B. If we 

denote the composition @T(n) by 6, then forfE [U, ' U ]  we have using I, 
18.1, 

[U, UI - [U, 'UI + [U, A1 - [V BI. 

i E I  

= @(d) = @ n 

= CI @i(Pif)  = Z Tipif  = q.6 

X U i P i  f = Z= @(nuiP i f )  [ ( i E I  ) ] i E I  

(1 )  
i E I  iEI 

We show that Qh = 0. If Qh # 0, then since U is a generator we can find 
a : U-t M such that $ha # 0. But we have 

+ha = $(ha) = @(nha) = @(O) = 0. 
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Therefore +A = 0, and so there is a morphism 'p : A + B  such that q = 'pn. 

Let f: U-t A .  Since U is projective we can write f = ng for some g : U+'U. 
Then 

@(f) = @(ng) = G(g) = qg = 'png = 'pf. 

In other words 'p is the required morphism. 
If U is small, then the above goes through even when A is not finitely 

generated, or in other words, when I is not necessarily finite. For if we have 
f E [ U, ' U ] ,  then since U is small we may write f = C uipi f in (1) where J is 

some finite subset of I (11, 16.1). The rest of the proof is the same. 
Suppose now that .d is Cs, but U is not necessarily small. Given any A E d' 

we can write A = limAi where { A i ,  n} is the system of finitely generated sub- 

objects of A (111, 1.4). Let @ : [U, A ]  + [ U ,  B]  be a morphism of R-modules, 
and define Qi as the composition 

iEJ 

+ 

By what we have already proved we have for each Qi a morphism 'pi : Ai+B 
such that Qi( f) = ' p i  f for all f E [ U,  Ail .  Furthermore, since T is an imbedding 
the 'pi's are unique. From this it follows that if i<j then 'pi = 'pjnij; in other 
words { ' p i }  is a cocompatible family. Consequently, we get an induced mor- 
phism from the direct limit, say 'p : A +  B.  Iff E [ U, A ] ,  then the image off is 
Ai for some i, and so we can write f = r i g  for some g : U&+ A i .  We then have 

@(f) = @(nig) == @i(g) = 'pig = 'prig = ~ f .  

This proves that T is full. 
Finally, if T is a n  equivalence, then it is a coproduct preserving functor; 

hence by 11, 16.1, U is small. Conversely, suppose that U is small, so that T 
preserves coproducts. Let A4 be any right R-module, and write an exact 
sequence of R-modules 

F 
'R + JR --f A4 + 0. 

Since T preserves coproducts we have T( 'U)  ='R and T(-'U) =JR. Also, 
since T is full we have F = T( f) for some f :  'U+JU. Then by exactness of T 
it follows that Itf is isomorphic to T ( C )  where C is the cokernel off. This 
proves that T is representative, and so T is an equivalence. I 

Theorem 4.1 will serve two important purposes in the sequel. In  Chapter VI 
we shall use it to prove that any small abelian category admits a full exact 
imbedding into a category ofmodules, and in Chapter IX we shall see how it 
leads to the computation of global dimension for certain rings of matrices. 
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5. Characterization of Functor Categories 

Lemma 5.1. Consider the following diagram in an exact additive category d: 

Suppose that P I  and Po are projective, the bottom row is exact, and the top row is of order 
two. Then there exist morphisms fo : Po + Ph and,f ,  : P I  -+Pi such that ( 1 ) is commuta- 
tive. Furthermore, let T : d' -+g be a covariant additive functor into an exact additive 
category, where d' is a f u l l  subcategory ofd containing Po, P I ,  PA, and Pi. Then the 
inducedmorphism Coker( T ( d )  +Coker( T ( d ' ) )  isindependentof thechoice offo a n d f l .  

Proof. Using projectivity of Po we can find f o  : Po+ Ph such that a6 = €yo. Now 
elfod = aEd = 0, and so the image of f o d  is a subobject of Ker(6') = Im(d'). 
Hence by projectivity of P, we can find f l  : P l - t P ;  such that f o d  = d l f i .  Let 
p : T ( P o )  +F and p' : T(PA)  +F' be the cokernels of T ( d )  and T ( d ' )  respec- 
tively. Suppose thatgo : Po+P;andgl : P ,  -+ Pi areanother pair ofmorphisms 
making ( 1 )  commutative. Let A, p : F - t F '  be the morphisms induced by 
fo, f l  and go,  g l ,  respectively. Now E'( f o  - g o )  = 0, and so again using pro- 
jectivity of Po and exactness of the bottom row we obtain a morphism 
h : Po+P; such that d'h = f o  -go .  Then 

- p ) P  = hP - PP = P ' T ( f 0 )  - P ' T ( g o )  = P'T(f0 -90) 

= P ' T ( d ' h )  = P ' T ( d ' )  T ( h )  = 0. 

Therefore sincep is an epimorphism, we must have h = p. I 
Theorem 5.2. Let 9' be a f u l l  subcategory of a cocomplete abelian category d, and 
suppose that the objects of 9 f o r m  a generating set of small projectives f o r  d. Let 
T :  P+B be an additive,functor into a cocomplete abelian category. Then T can be 
extended uniquely (up to natural equivalence) to a colimit preserving functor : d +g. 

Proof. We first extend T to the subcategory o f d  consisting of all free objects; 
that is, objects of the form @ Pi where Pi E 9 for all i E I .  We define 

iEI 

T ( P i ) .  For a morphism a : @ Pi+ @ Pj,  let ai be the com- 
i E I  j € J  

position with the ith injection into @ Pi. By 11, 16.1, since Pi is small we can 

write ai = C ujpicci where uj and pi are the j t h  injection and projection, respec- 
i E I  

j € J  
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tively, for the coproduct @ pi. We then define T ( a )  : @ T(Pi)-+ @ T(Pj) 

as the morphism which when composed with the ith injection into @ T ( P J  
j € J  i E I  jEJ 

i F I  . _. 

gives C ujT(pjai) ,  where 2:. denotes thejth injection for @ T(Pj) .  The additive 
j € J  &J 

functorial properties of T as so far constructed follow from the additive 
functorial properties of T. 

From now on the process resembles the construction of the zeroth (left) 
derived functor given in Chapters IV  and V of [6]. For A E at’ write an exact 
sequence 

d 

P, + Po+ A + 0 (2) 

where PI and Po are free. Define T(A) as Coker(T(d)). For a morphism 

a : A + A ’ ,  let Pi+ P&+A’+O be the sequence used to define T(A’).  Then 
by 5.1 we can find morphismsfl andf, making a commutative diagram 

d‘ 

Define T ( a )  as the morphism making the diagram 

T(P{) - T(P,!J - T(A’) - 0 

commutative. Then again by 5.1 we know that T( a) is independent of the 
choice offo and f,, and in this way Tis seen to be an additive functor from &‘ 
to .@. Setting A = A‘ and CL = 1, in the above discussion we see at  this point 
that up to isomorphism T(A) is independent of the choice ofthe sequence (2) 
used to define it, and furthermore that this isomorphism is natural with respect 
to morphisms to and from A .  

We now show that T is cokernel preserving. Let 

O + A ‘ + A - + A ” + O  (3) 

be an exact sequence in a?, and take free resolutions P;+Ph+A’+O and 
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Py+ Po"+ A"+O for A' and A". We construct the following commutative 
diagram : 

0 0 0 

I 
? I  
? I  ! 

0 0 

The middle column is a split exact sequence, and the morphism P;+A is 
defined by projectivity of P: and the epimorphism A+ A".  Taking the kernel 
of the morphism from the middle column to the right-hand column, we obtain 
a short exact sequence by the nine lemma (I, 16.1). If we repeat the above 
construction with the sequence of kernels replacing (3), and Pi and P;' 
replacing PA and Po", respectively, we obtain the commutative diagram (4) with 
exact rows and columns. Hence we can use the middle row to define T ( A ) .  
Applying T to (4), the left two columns will still be split exact sequences by 
additivity of i? We then see from 11, 12.2*, that T ( A ' ) + T ( A ) + T ( A " ) - + O  
is exact. In other words Tis cokernel preserving. 

I t  now follows from II,6.3*, that in order to show that Tis colimit preserving 
it suffices to show that Tpreserves coproducts. Given a family {Ai} iEI of objects 
in d,  choose a free resolution 

d' ( 4  

Pi+ Pa'+ Ai+ 0 

for each i E I .  Then using the fact that coproducts are cokernel preserving 
(11, 12.2*), we see that 

is a free resolution for @ Ai. From this it follows that T preserves coproducts. 
iEI  
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was forced at  each step by the require- Finally, since the construction of 
ment that it be colimit preserving, we have the uniqueness assertion. I 

Theorem 5.2 generalizes to functors of several variables (exercise 12). 
Let d be a small additive category. Consider the functor from d to 

(d, 9) which assigns to the object A E d the functor H A  E (d, 9), and to 
the morphism A +  B the induced transformation H E +  H A .  By 2.2 we see that 
this is a full, contravariant imbedding, and by 2.3 the image of& in (d, 9) 
is a generating set ofsmall projectives. Composing this functor with the duality 
functor on d gives us a full covariant imbedding from d* into (d, 9). 

Theorem 5.3 (Freyd). A category 93 is equivalent to a functor category o f  the f o r m  
(d, 9) f o r  some small additive category d if and onb $2B is cocomplete abelian with a 
generating set o f  small projectives. 

Proof. We have already seen that ("d, 9) is cocomplete abelian, and by 2.3 
the family {HA}AEd form a generating set of small projectives. Conversely, 
suppose that g is cocomplete abelian and that 9' is a full subcategory of 93, 
the objects of which form a generating set of small projectives. Then 9 and 
(9*, 99) are cocomplete abelian categories each with a full subcategory whose 
objects form a generating set of projectives, and furthermore these sub- 
categories areisomorphic. Theorem 5.2 then gives us functors T : 9?+ (B*, '3) 
and S : (P*, 9) +9Y extending this isomorphism, and moreover the unique- 
ness part of 5.2 shows that STand TS are naturally equivalent to the identity 
functorsong and (8*, g), respectively. Hence by I1,lO. 1, Tis an equivalence 
of categories. I 
Remark. If 33 has a small projective generator, then 5.3 gives another proof 
that g is equivalent to a category of modules (4.1). 

Theorem 5.4. Let d be a C, category with a f u l l  subcategory B whose objects f o r m  a 
generating set of projectives f o r  d. Let T, S : d +3? be additive, covariant functors 
where 9 is an exact additive category, and suppose that T is colimit preserving. Denote 
the restrictions of T and S to B by TI9 and SIB.  Then any natural transformation 
cp : T(P+S(9 can be extended uniquely to a natural transformation + : T+S. 

Proof. For a free object @ Pi in d we have the composition 
i E I  

T(@ pi) = @ T ( P i ) - t @  S(Pi )+S(@ Pi) .  

Here the equality is a result of the fact that T is coproduct preserving, the 
middle morphism is @ (pP{, and the last morphism is the one which when 
composed with the ith injection into @ S(P i )  gives S of the ith injection into 
@ Pi. Consider a morphism f : @ Pi-+ @ Pj where J i s  finite. Using the fact 

that a morphism from a coproduct to a product is determined by its coordinate 
morphisms, we obtain a commutative diagram 

i E I  jEJ 
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Now let A be any finitely generated object. This means we can find an exact 
sequence 

PI +Po+ A +  0 

where P I  is free and Po is a finite free (that is, a coproduct of the form @ P 

with J finite). Using (5) we have a commutative diagram 
j € J  

T(P,) + T(P0) -+ T(A) 

S(P,) --f $(Po) -+ $ ( A )  + 0 

0 

.1 .1 (6) 

where the top row is exact since T is colimit preserving, and the bottom row 
is of order two by the additive functorial property of S. Hence we can find a 
unique morphism +A : T ( A ) + S ( A )  making (6) commutative. 

Let A+ A' be any morphism where A and A' are finitely generated. Con- 
sider the diagram 

Po+ A + O  

Pi + A' -) 0 

where the top row was used to define $A and the bottom row was used to 
define +A,. Since Po is projective we can find Po+ Pi making (7)  commutative. 
Now + as so far constructed induces a morphism from the diagram 

4 (7) 

to the diagram 

I I 
S(P0) - S(A')  
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Furthermore, in the resulting cube we see that all faces are commutative save 
possibly the face 

T(A) - T(A') 
I I 

"I I" 
But since T(P,) + T(A)  is an epimorphism, it follows from 11, 1.1, that (8) is 
also commutative. Thus Q as so far constructed is natural. 

For a not necessarily finitely generated object A ,  we let {Ai}  be a represen- 
tative set of finitely generated subobjects. Since d is C, we know by 111, 1.4, 
that A is the direct limit of the corresponding direct system, and so since T is 
colimit preserving we see that T(A) is the direct limit of the corresponding 
system of T(Ai)'s. The cocompatible family { T(Ai) +S(A,)  + ( S A ) }  then 
defines a morphism ( P A :  T ( A ) + S ( A ) .  Given A+A' we must show com- 
mutativity of (8). For each finitely generated subobject Ai of A,  let Ai+A' be 
the image of the composition A i - t A - t A ' .  Then A:. is a finitely generated 
subobject of A' .  Hence, by what we have already shown, the diagram 

S ( A , )  - S(Ai. )  

is commutative for each i. Consider the morphism from the diagram (S i )  to 
the diagram (8) induced by the morphisms Ai+ A and A:+ A' .  Again we have 
a cube in which all faces are commutative save possibly (8). From this we see 
that for each i the composition T(Ai) + T(A) + T(A') +S (A' )  is the same as 
the composition T(Ai) + T(A) + S ( A )  + S ( A ' ) .  Since T(A) is the direct limit 
of the T(Ai)'s, this proves the commutativity of (8) and establishes naturality 

Uniqueness of 9 is clear since each step in the above construction was 
of Q. 

forced by the requirement that 9 be natural. I 

Corollary 5.5. Under the assumptions of 5.4, ;f further S is colimit preserving and 'p 

is a natural equivalence, then cj is a natural equivalence. I 

Theorem 5.4 and Corollary 5.5 can be generalized to functors of several 
variables (exercise 1 1) .  
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Exercises 

1. Use the fact that 9 has an injective cogenerator to find an exact, contra- 
variant imbedding from 9 to 9. Hence show that any abelian category with 
an injective cogenerator admits an exact covariant group valued imbedding. 
Show similarly that the conclusion of 3.3 is valid under dual hypothesis. 
2. Consider the diagram (1) of abelian groups in $1. Let X - t  A be the kernel 
of the composition A - + B - + B " .  Then we have a morphism X+B' such that 
X+ B'-+ B = X - t A  -+ B, and an epimorphism X-+ K" such that 

X - t  A +A" = X +  K"-tA".  

Show that the connecting morphism K"+F' is such that 

X + K " - t F '  = X + B ' - t F ' .  

Prove also that the connecting morphism is self-dual by showing that it satisfies 
the dual of the above relation. 
3. I f d  is a small, exact, additive category and T is a projective in (d, g), 
then Tis  a kernel preserving functor. (Use 2.3 and 11, 14.2.) 
4. Let d be a small additive category with kernels and finite biproducts, and 
let T : d-+ 9 be a small projective in the functor category (d, 9). Then T is 
naturally equivalent to H B  for some B E d. (Find a composition T + H A  -+ T 
which is the identity for some A E d, and then use I, 18.5, and the full, contra- 
variant, kernel preserving imbedding d + (d, 9) which assigns the functor 
H A  to the object A.) This exercise is due to Freyd. 
5. Let d and 9 be additive categories, and for A E d, B E &?, let 

H A  @ H B : d x 9 ? - + 9  

be the bifunctor whose value on the pair (A', B') is [A, A'] @ [B ,  B'].  (The 
tensor product of groups is defined in VI, exercise 3). Let T be an additive 
bifunctor from d x 9 to 9. Establish a natural equivalence 

[ H A  @ H B ,  TI x T ( A ,  B ) ,  

and hence show that in the case where d and &? are small the family 
{ H A  @ is a generating set of small projectives for the category 
(d, (a, 9)). Generalize this result to additive group valued functors of any 
number of variables. 
6. In exercise 5 let d be the category of finitely generated abelian groups g 
(11, exercise 17) and let &? be a ring R, or in other words an additive category 
with a single object B. In  this case denote the functor H A  @ H B  by H A  @ R. 
The functor category (&I, 9) here is the module category R9. Then by exercise 
5 the category (g,R9) has an injective cogenerator Q. In particular, let 
R = Z,, where in general Z, denotes the integers reduced modulo n. Consider 
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defined by f (1) = 1. Then f induces a the epimorphism f: Z4+-Z, in 
natural transformation 

7 : HZn @ Z2+ HZa @ Z,. 

By evaluating 71 at Z, E 

is a cogenerator the morphism 
show that 7 is not an  epimorphism. Hence, since Q 

[Hzl @ Z2, Q1 -+ [Hzl 8 Z2, Q1 
is not an epimorphism. But by exercise 5 this is just &(Z,)+Q(Z,). Hence an  
injective, module-valued functor need not be an  epifunctor. 

Show, however, that if the ring R is torsion free as an abelian group (so that 
tensoring with it over the integers is an exact functor) and at is any abelian 
category, then an injective in the functor category (@, 9) is a cokernel 
preserving functor. 
7. Let d be a small abelian category with projectives. Suppose that 
T : A?'+ 9 is an additive epifunctor and consider the transformation 

@ [Hp,TIHp-+ T 
P 

whose ath coordinate is u, where P runs through all projectives in at. Show 
that this transformation is an epimorphism in the category (dl 9). 
8. Let R be a commutative ring and take U = R @ R in 4.1. Under T the 
R-module R corresponds to the A-module [R @ R, RIR where 

A = [ R @ R , R @ R I R .  

Show that every nonzero element of [R @ R, R] has torsion, so that in 
particular [R @ R, R] cannot be free as a A-module. Hence the property of 
freedom of modules is not invariant under equivalences of categories. 
9. The center of a ring R is defined as {c E Rlcr = rc for all r E R}. If A is any 
object in a C, additive category d, then the center of [A, A] is ring isomorphic 
to the center of ['A, 'A] for any set I .  Hence i f a t  is a C, abelian category and 
U and V are both projective generators for d, then [U, U] and [ V, V] have 
isomorphic centers. (Write U @ M ='V and V @ N ='U for some infinite 
set I and show from this that 'U = 'V . )  Therefore if R9 is equivalent to s91 
then R and S have isomorphic centers. In particular, if R and S are com- 
mutative rings, then R9 is equivalent to '9 if and only if R is isomorphic to S 
(Freyd) . 
10. If the functor S of 5.4 is limit preserving, then it suffices to assume that at 
is C, abelian. I fS is coproduct preserving and 33 is C,, then it suffices to assume 
that A?' is cocomplete abelian. (In either case show that the diagram (5) of 5.4 
is commutative even when J i s  not a finite set. Hence there is no need to resort 
to direct limits in these cases.) 
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11. Using induction on n generalize 5.4 to the case of additive functors 

T , S : d ,  x.d, x ... ~ d , , + g  

where each d is a C, category possessing a generating set of projectives. 
12. Use induction on n to generalize 5.2 to functors of several variables where 
each of the variables comes from a cocomplete abelian category having a 
generating set of small projectives. (Theorem 5.3 insures that such categories 
are C,, hence exercise 11 applies.) 

13. A group object in a category d is an object A E d together with a group 
structure on [B, A ]  for each B ~ d ,  such that morphisms B- tB’  induce 
morphisms of groups [B’,  A ] + [ B ,  A ] .  Thus, if A is a group object, then 
[ , A ]  can be considered as a contravariant, (nonabelian) group valued 
functor. If& has a zero, then the unit element for the group [B,  A ]  is necessarily 
the zero morphism OBA. If, furthermore, d has finite products, then using 2.2* 
we can find unique morphisms m : A x A + A  and i : A - t A  inducing multi- 
plication and inversion on [B, A ]  for all B ~ d .  Then m and i satisfy the 
following rules : 

(i) The diagram 

5 A x A  m x  I A x A x A  

A ~ A ~ A  

is commutative. 
US m 

(ii) The composition A +  A x A+ A is l,, where u2 is the second injection 
into the product. 

m 

is zero. (iii) The composition A+ A x A - A  * 

Conversely, if a2 is a category with a zero and finite products, and 
m : A x A + A  and i : A - t A  are morphisms satisfying (i), (ii), and (iii), then 
the sets [B,  A ]  become groups in such a way as to make A a group object. It 
then follows from the corresponding facts about ordinary groups (which are 
the group objects in the category of sets) that the composition 

( i) 

(I!) m 
A + A  x A + A  

is zero, the composition 
U l  m 

A + A  x A + A  

is l,, and the “inverse” morphism i satisfying (iii) is unique. 
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A morphism of group objects A and A ,  is a morphism f : A ,  + A ,  in d such 
that the induced morphism [ ,f] is a natural transformation of group. valued 
functors. In  this way the class d, of group objects in d becomes a category. 
If d is Ccomplete, then so is d,. The corresponding statement for cocom- 
pleteness need not be true. I f d  has finite products and the “multiplications” 
on group objects A ,  and A ,  are m, and m2, respectively, then f: A I + A 2  is a 
morphism of group objects if and only if fm, = m2( f x f). 

If d is an additive category with finite products, then d, is isomorphic 
to d. 



This Page Intentionally Left Blank



T C H A P T E R  - V I  

Adjoint Functors 

Introduction 

In this chapter we develop a theory of adjoint functors as introduced by 
Kan [24]. Theorem 3.1 gives a necessary and sufficient condition for a functor 
T :  d-+g to have a coadjoint. If d is a complete, locally small category 
with a cogenerator then this condition is simply that T be limit preserving 
(3.2). 

If the inclusion functor d’ c d of a subcategory has a coadjoint R, then 
d’ is called a coreflective subcategory of d. In the case where d’ is a full, 
coreflective subcategory of an abelian category and R is kernel preserving, 
it turns out that d’ is abelian (5.3). 

Let A be a full subcategory of a complete, locally small abelian category 
d,  and suppose t h a t A  is closed with respect to limits and subobjects. Suppose 
further that for every M E A there is a monomorphism M+ Q in A with Q 
injective in d. Then A is called a monosubcategory of d. A theory of 
monosubcategories is developed in $6. A certain subcategory of will be 
shown to be abelian. 

The last section gives a theory of projective classes in an abelian category. 
Under certain conditions it is shown that if S : A?+& is a coadjoint for a 
faithful epifunctor T, then the projectives in d are precisely the objects of the 
form S ( P )  where P is projective in A?. 

The work in $3 and $6 is by Peter Freyd. Section 7 is due to Eilenberg and 
Moore (121. 

1. Generalities 
Recall that a covariant functor T : d+g is said to be an adjoint for the 

covariant functor S : g+d if there exists a natural equivalence of set-valued 
bifunctors (not necessarily unique) 

%,A : CS(B), 4 + [B, T(4I .  ( 1 )  

We say also that S is a coadjoint for Tin  this case. The adjoint situation given 
117 
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by the natural equivalence (1) will sometimes be described by the notation 

If T , ,  T2 : d+,%? are naturally equivalent functors, then it is immediate 
from definition that a functor S : a+d is a coadjoint for T ,  if and only if 
it is an adjoint for T2. Also it is clear that 1, : d+d is a coadjoint for itself, 
and that if S, : %'+a and S, :a+& are coadjoints for T, : a+%' and 
T ,  : respectively, then SlS2 : %'+d is a coadjoint for T2 T ,  : d-t %?. 

Given the natural equivalence ( l ) ,  for B E &?we denote by ~p~ the morphism 

(7; s, T;  d, a). 

~ B , s ( B ) ( ~ s ( B ) )  : B+ TS(B).  (2) 

& ) , A ( 1 T ( A ) )  : S T ( A )  + A *  (2*) 

[W), S ( 4 I  2 [B, T W ) I  

Dually, for A E d we denote by the morphism 

A morphism of the form a! : S(B)  + A  in d induces a commutative diagram 

[W), A1 'I "4 T ( 4 I  

which yields the equation 

Also a morphism y : A+ A' in d induces a commutative diagram 
?(a) = T ( a ) T B *  (3) 

[ST(A)> A'] 'I ' [W),  W')I 

Y $ A  = T W Y ) ) .  

v-l(P) = +AS(P) 

which gives us the equation 

The duals of Eqs. (3) and (4) read 

(PB8 = v(s (8) )  
relative to respective morphisms 6 : B+ T(A)  and 6 : B'+B in a. 

(4) 
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Proposition 1.1. Consider an adjoint situation (q ; S, T; d, a). Given @ : B+ T(A) 
in 93, the morphism a = q-' (/3) is the unique morphism S (B)  +A such that the diagram 

is commutative. In particular, T is univalent on [S ( B ) )  A]. Furthermore, cp is a natural 
transformation from 1, to TS;  that is, relative to a morphism 6 : B'+B in a, the 
diagram 

B' "' + TS(B') 

is commutative. 

Proof. The first statement follows from (3)) taking into account the fact that 
q is a 1-1 correspondence. To  prove the statement regarding naturality of cp, 
we wish to show that 

cpB6 = TS(6)cpW. (5) 

Using (3), the right side of (5) is q(S(6 ) ) .  Hence Eq. (5) is equivalent to 

Proposition 1.2. Given an adjoint situation (7; S, T; d,  a), the following state- 
ments are equivalent. 

(a) T is faithful. 
(b) T rejects epimorphisms. 
(c) If/3 : B-+ T(A) is an epimorphism, then cc = .I-'(@) is an epimorphism. 
( d )  $A : ST(A) -+A is an epimorphism for  all A ~ d .  

Eq. (4*). I 

Proof. (a) => ( b )  follows from 11, 7.1. 
(b) =- (c) I f p  is an epimorphism, then it follows from 1.1 that T(a) is 

an epimorphism. Since T reflects epimorphisms this means that cc is an 
epimorphism. 

(c) - (d) This follows by taking /3 = lT(A). 
(d) =- (a) Supposethatal, a2 : A-tA'and T ( a l )  = T(cc2).Thenusing 

naturality of t,h we have 

.I$A = t ,hA'ST(aI) = $,4'sT(cc2) = a2$AA. 

Since $A is an epimorphism this means al = ccq .  This shows that Tis faithful. I 
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Proposition 1.3. In an adjoint situation (q; S, T; d, a) we have 

(T*)(rpT) = 1,. (6) 

If either T or S is ful l ,  then T# is a natural equivalence with inverse rp T (and so by 
duality Srp is also a natural equivalence with inverse #S) . 
Proof. Equation (6) follows from replacing a by t,bA in Eq. (3). 

a : A-+ST(A). Using (6) we have 
Suppose now that T is full. Then r p T ( A )  can be written as T(a) for some 

T(l)rpT(A) = %(A) = rpT(A)T(*A) 'PT(A)  

= T ( 4  T(*A)rpT(A) = T(a*A)(PT(A). 

But then by 1.1 we must have a#A = 1. Hence ( P ~ ( ~ )  T(+J = T (  a#A) = 1. 

transformations of set valued functors of B, 
On the other hand, if S is full, we consider the composition of natural 

By 1.1*, S is univalent on [B, T(A)] ; hence since S is also full, the first trans- 
formation is an equivalence. Therefore the composition is an equivalence, and 
so by IV, 2.2, the morphism T(A)-+ TST(A) which induces the transforma- 
tion must be an isomorphism. But this morphism is just the image of 1,(,, 
under the transformation, and is thus seen to be none other than ( P ~ ( ~ ) .  I 

We know from 11, 12.1, that if T : has a coadjoint, then T must be 
a limit preserving monofunctor. In particular, i f d  and are categories with 
zero then Tmust be zero preserving. It then follows from Eq. (3) that q must 
be zero preserving. With regard to additivity we have the following proposition. 

Proposition 1.4. Consider an adjoint situation ( q ;  S, T; d,  a). Ifd and 9 are 
additive categories, then T is additive ifand only i f q  is additive (that is, i fand only if7 
is a natural equivalence of group valued bifunctors) . Thus T is additive if and only i f  S is 
additive. In particular this will always be the case if either d or 28 hasjnite products. 

Proof. If Tis  additive, then for al, a2 : S ( B ) - + A  we have, using (3), 

q(al + a2)  = T ( a l  + a2)'PB = ( T ( a l )  + T(a2))qB 

= T(al)rpB + T(a2)(pB = V(.I)  + q(a2). 

This shows that q is additive. A similar argument using Eq. (4) shows that if q 
is additive then so is T. It follows now by duality that S is additive if and only 
if 7 is additive. Therefore S is additive if and only if T is additive. 

Suppose now that d has finite products. By 11, 12.1, T must preserve finite 
products, and so by 11, 6.4, Tis additive. 
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Consider an arbitrary family of categories {B'i}iEI. The product category 
x gi has for objects the class of all I-tuples (Bi) where Bi E 93,. for all i E I. A 

morphism p : (Bi) + (B:) is a family of morphisms (pi) where pi : Bi+B:. 
A morphism /3 in the product category is a monomorphism if and only if piis 
a monomorphism for all i E I .  In  general, a limit for a diagram in the product 
category is obtained by projecting the diagram onto the ith categorygi, taking 
a limit for the projection for each i, and then using the resulting family of 
limits to define a compatible system in x ai. If each gi is abelian then so is 
x Bi. A family of functors ?I. : &+ai determines a functor T : d+ x 43,. 

defined by T ( A )  = ( q ( A ) )  and T ( a )  = (T,(a)).  Conversely, any functor into 
the product category is determined by such a family. 

A family of functors Ti : &-+ai will be called collectively faithful if for 
each pair ofdistinct morphisms a l ,  a2 : A+A' i n d  we have Ti (a I )  # q ( a 2 )  
for some i .  Thus {Ti} is collectively faithful if and only if the associated functor 
Tinto the product category is faithful. Observe that a family of objects { Ui} in 
d is a family ofgenerators if and only if the family of functors H"< : d-tY 
is collectively faithful. 

A family of functors Si : gi+d is called coproductive if for each family 
of objects (Bi)  with Bi E gi for each i ,  the coproduct @ Si(Bi) is defined in d. 

In this case we can define S : x gi+d by taking S ( ( B i ) )  = @ Si(Bi) and 

iEI 

iEI 

iEI 

iEI iEI  

' ( ( P i ) )  = 0 si(Pi)* 

Proposition 1.5. Let T. : &+ai be an adjoint.for Si : gi+d for each i E Z, and 
suppose that the f a m i b  {Si} is coproductive. Then the associated.functor T : d - t x  &!Ii is 
an adjoint for the associated functor S : x gi +d. Zf Ui is a generator for gi for each i 
and the f a m i b  { q) is collectively faithful, then {Si( Ui) }  is a farnib of generators f o r d .  
Zfd and the Bi's all have coproducts and Ui is a small object in gi for each i ,  and if 

further the T.'s are all coproduct preserving and I is Jinite, then @ Si( Ui) is a small 

object in d .  
i E I  

Proof. The assertion about adjointness follows from the sequence of natural 
equivalences 

If { T.} is collectively faithful and Ui is a generator in ~$3~  for each i ,  then it 
follows that the family of set valued functors [U,, ?I.( )] is collectively faithful. 
Consequently, by adjointness the family of set valued functors [Si(Q), ] is 
collectively faithful, or in other words {Si( Q)} is a family of generators f o r d .  
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Finally, suppose that Ui is small and Ti is coproduct preserving. Then 
smallness of Si( Vi) follows from the commutative diagram 

relative to a coproduct 0 A, in d and a subset J of K .  Thus if I is finite, then 
k e K  . -~ 

0 Si( Ui) ,  being a finite coproduct of small objects, is itself small. 1 
iEI  

2. Conjugate Transformations 

Proposition 2.1. Consider adjoint situations (7 I ; S,, T I  ; d, a) and ( q2 ; S,, T,  ; 
d, g) and a natural tratlsformation p : T I  + T2. Then there is a unique natural 
transformation h : S2 +SI such that for  all A E d and B E the diagram 

is commutative. 

Proof. For B E a we consider the diagram 

[S,(B) 3 s, P I 1  '2 [B,  T2SIW1. 
Let 1 denote the identity morphism for S , ( B ) .  Define 

- - 1  n - 712 ( P S ~ ( B ) ~ I ( ~ ) ) *  

This definition of hB is forced by the condition that ( ln ,S , (B))  be commutative, 
and so we already have the uniqueness assertion. Now let a E [S, ( B ) ,  A ] .  Place 
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the diagram ( lB,A) over the diagram (lB,s,(B)) and join corresponding vertices 
by the morphisms induced by a. We obtain a cubical diagram, and using 
naturality of q,, q2,  and p we see that all its faces are commutative save 
possibly ( lB,si(B)) and ( lB,J. But (lB,s,(B)) is commutative as far as 1 is con- 
cerned. Hence ( lB,,,) is Commutative as far as a is concerned. Since this can be 
done for every a E [S , (B) ,  A ] ,  this proves that ( lB,J is commutative. 

I t  remains to be shown that h is a natural transformation. Given B’+ B we 
must show that the diagram 

is commutative. To  this end place the diagram ( lB’,s,(BJ over the diagram 
( 1 o,s,(B.), joining corresponding vertices by the morphisms induced by 
B’+ B.  Again we have a cubical diagram, and using the part of the theorem 
we have already proved, we see that all the faces are commutative save 
possibly the face 

But since q 2  is a one to one correspondence it follows that (3) is commutative 
also. Chasing 1 around (3) in both directions gives us the commutativity 

of (2). I 
The transformations p and h of2.1 are called conjugate transformations 

with respect to q I  and q2. Given adjoint situations (qi; Si, Ti; d, A?) for 
i = 1, 2, 3, and transformations pl : TI+ T, and p 2  : T2-+ T, with con- 
jugates h l  : S2+Sl and h2 : S3+Sz, respectively, it follows from definition 
that h,h2 is the conjugate of p 2 p 1 .  Also in any situation (7; S, T ;  d ,  A?) it is 
clear that lsis the conjugate of 1 T .  Using these remarks and taking TI = T2 = T 
with p = 1 in 2.1 we obtain 
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Corollary 2.2. ZfS, and S, are coadjoints f o r  a functor T, then S, and S, are naturally 
equivalent. I 

We can generalize the notion of adjoints to functors of several variables as 
follows. Let 

T:  %, x V, x . . . x V, x 

s:L% x V, x Vg2 x ... x V n + d  
(4) 

( 5 )  

besuch that Tis covariant i n d ,  Sis covariant i n a ,  and for each i, 1 < i < n ,  T 
has the opposite variance of S in Vi. Then S is said to be the coadjoint of T if 
there is a natural equivalence 

of n + 2 variable set-valued functors. 

Proposition 2.3. The n +  1 variable functor (4) has a coadjoint S i f a n d  only ifeach 
single variable partial functor of the f o r m  T(C,, C2, ..., C,, ) : d+9? has a 
coadjoint. In this case f o r  each i, T is limit preserving in Vi  if and on& if S is colimit 
preserving in Wi. 

Proof. Using the discussion in the third paragraph of 11, $9, the first statement 
is an immediate consequence of 2.1. The other statement follows easily from 
11, 5.1, in view of the natural equivalence (6). I 

3. Existence of Adjoints 

Let T : d+L@ be any covariant functor. We call a set of objects {Si}iE, in 
d a solution set with respect to T for an object B E 9? if for any object 
A E d and any morphism B+ T(A) i n a  there are morphisms B+ T(S i )  and 
a : Si+A for some i such that the diagram 

is commutative. 

Theorem 3.1. Consider a covariant functor T : d+L% where d is complete and 
local& small. Then T has a coadjoint if and on& if it is a limit preserving functor which 
admits a solution set f o r  every object in g. 

Proof. Tf T has a coadjoint S, then by 11, 12.1, T must be limit preserving. 
Also we see from 1.1 that the single object S (Bl serves as a solution set for B 
in this case. 
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Conversely, let T :  d+3? be a limit preserving functor which admits 
solution sets for all objects in 28. Given B  EL^, let {Si}iE, be a solution set. 
Define 

‘4 I = x ,pJ.T(.Ti)l. 

i E I  

Then since T preserves limits we have 

Let B+ T ( A  ,) be the morphism which when composed with thefth projection 
from the product givesf. This morphism has the property that for any A E d‘ 
and any morphism B+ T ( A ) ,  there is a morphism a ,  : A l + A  such that the 
diagram 

is commutative. Define S ( B )  as the intersection of all subobjects A ’ + A  I such 
that B-t T ( A , )  factors through T(A’)+  T ( A , ) .  Then since T is limit 
preserving, B+ T ( A , )  factors through T ( S ( B ) ) +  T ( A , ) .  Now S ( B )  still has 
the above factorization property of A ,  ; namely, given f l  : B-t T ( A ) ,  there is a 
morphism a : S ( B ) + A  such that the diagram 

is commutative. Furthermore, in this case a is unique. For if a‘ is another such 
morphism, let E+S(B) be the equalizer of a and a’. Then since T is limit 
preserving, by 11, 6.2, T ( E ) +  T(S’ (B))  is the equalizer of T ( a )  and T ( a ’ ) .  
Therefore B+ T ( S ( B ) )  factors through T ( E ) +  T ( S ( B ) ) ,  and so E is one 
of the set of subobjects of A ,  of which S ( B )  is the intersection. Therefore 
E =  S ( B )  and so a= a’. 

For a morphism 6 : B‘ + B we define S (6) : S (B’ )  +S ( B )  as the unique 
morphism making the diagram 

B‘- T ( S ( B ’ ) )  
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commutative. It follows from the uniqueness of S(6) that S is a functor. By 
construction of S we have a 1-1 correspondence 

[ S ( B ) ,  A1 + [B, TWI. 

The naturality of this correspondence in A and in B follows easily using the 
diagrams (1) and (2), respectively. Thus S is a coadjoint for T. I 
Corollary 3.2. If d is a complete and locally small category with a cogenerator, then 
T : d+37 has a coadjoint if and only if it is limit preserving. 

Proof. Suppose that T is limit preserving, and let C be a cogenerator for d. 
By 3.1 it suffices to find a solution set for every B E 9. Given p : B-t T ( A ) ,  
consider the pullback diagram in d 

p , c[B. 7-(C)1 

where the composition of p with thefth projection from C[A,C] gives the 
(T(f )P) th  projection from CIBiT(C)I, and the composition of h with thefth 
projection from CIAicI givesf. By 11, 15.2*, h is a monomorphism, hence so is 7.  

Now in 37 the diagram 

Wy(7 T(C) [A,CJ 

is commutative. Since T preserves pullbacks, this means that f i  factors 
through T ( a )  , Therefore it suffices to take as a solution set for B the set of all 
subobjects of CIB,T(C)I. I 

4. Functor Categories 

Proposition 4.1. In an adjoint situation (7); S,  T ;  37, %), consider the diagram of 
categories and covariant functors 

S 
.??a=, v 
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Then there is a one to one correspondence 

i j  : [SG, F ]  + [C, T F ]  
which is natural in  F and G. 

127 

Proof. For a natural transformation p E [SG, F ] ,  define i j (p)  E [G, T F ]  by 

i j (P )A  = % ( A ) , F ( A ) ( P A )  

for all A €.a?'. To show that j ( p )  is a natural transformation we must show 
that given A +  B in d we have a commutative diagram 

G ( A )  *)A+ T ( F ( A ) )  

I I  
By naturality of p we know that the diagram 

S ( G ( A ) )  I'A F ( A )  

I 1 
S ( C ( B ) )  F(B)  

is commutative. Consider the diagram 
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which is commutative by naturality of 7. Commutativity of (2) says that on 
the left-hand side of (3) the elements pA and pB are taken into the same element 
in the middle row. Therefore the same is true of ?(p)A and i j ( ~ ) ~  on the right- 
hand side. In other words (1) is commutative. Naturality of? in F and G then 
follows trivially from naturality of 7. The inverse of i j  is constructed using 
7-l just as fj was constructed using 7. I 

Proposition 4.1 may be considered in the following way. If T : g-+ U is the 
adjoint of S : %+B and d is a small category, then the functor 

To : [A?, g1+ [d, UI 

defined by T o ( F )  = TF is the adjoint of the functor So : [d, U] -+ [d, a] 
defined by So(G) = SG. I f d ,  g, and U are additive categories, and T (and 
therefore S) is an additive functor, then the categories [d, a] and [A?, U] 
may be replaced by (d, g) and (d, U), respectively. 

5. Reflections 

Consider a category d, a subcategory&’, and an object A E d. Acoreflec- 
tion for A in d’ is an object R ( A )  E d’ together with a morphism 

such that for every object A’ ~ d ’  and every morphism A+ A’ there exists a 
unique morphism R ( A ) + A ’  in d’ making the diagram 

A --%- R ( A )  

\I 
A‘ 

commutative. Equivalently, denoting by I the inclusion functor from d’ to 
d, (1) defines a coreflection for A if the function 

[ R ( A ) ,  A’]&+ [ A ,  &4’)1.07 (2) 

induced by pA is a 1-1 correspondence for all A’ €A?’. From uniqueness of 
R ( A ) + A ’  it follows that any two coreflections for A are isomorphic in d’. 
If d‘ is a full subcategory of d,  then every object of d which is in d’ is its 
own coreflection via the identity morphism. 

Dually, R ( A )  + A  is called the reflection of A in d’ if R ( A )  E d’ and if for 
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any morphism A‘+A with A’ ~ d ’  there is a unique morphism A’- tR(A)  
in d‘ such that the diagram 

A’ 

is commutative. 
If every object in d has a coreflection (reflection) in d‘, then d’ is called 

a coreflective (reflective) subcategory of d. In  this case R becomes a 
functor from d to d’, called the coreflector (reflector) of d in d‘, 
by assigning to each morphism a : A - t B  in d the unique morphism 
R ( a )  : R(A)+R(B)  i n d ‘  such that the diagram 

A R ( A )  . .  

is commutative. I t  is then easy to check the naturality of (2) in both A and A’.  
In  other words, if R : d+d’ is a coreflector f o r d  in d‘, then H is a coadjoint 
for the inclusion functor I : d’+d. In  this case p is simply the transformation 
cp described in $1. On the other hand, if the inclusion I :  d‘+d has a 
coadjoint H, then by 1.2, R is the coreflector of& in d‘. 

Proposition 5.1. Let d’ be a full, coreJective subcalegory ofd. I f a  diagram D in d’ 
has a limit in d, then it has a limit in d’. 

Proof. Let {ai : L+Di} be a limit for D in d and let L’ = R(L).  Then by 
definition of coreflection we have morphisms a: : L’-+ Di such that a:pL = ai. 
Also, for an arrow m from i to j we have 

D(m)a;pL = D(m)ai = aj = aipL 

and consequently D(rn)a: = a;. The compatible family (a:} thus defines a 
morphism a : L‘+ L.  For each i we have aiapL = a:pL = ai, and consequently 
apL = 1,. We wish to show that pLa = 1,. Since d‘ is full we may assume that 
pc = l,, in which case we must have R(pL) = 1,. Then we have 

PLa  = R ( a ) f r  = R ( a P ( f L )  
= R(apL) = R(1,) = lL,. 

This proves that pL is an isomorphism, and consequently {a:.} is a limit for 
D in d’. I 
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Proposition 5.2. Let d' be a f u l l ,  corejlective subcategory of&. Z j  D is a diagram in 
d' and {Di+L} is a colimit for D in d, then a colimit for D in d' is given by the 

PL 
f a m i b  {Di+L+R(L) } .  

Proof. Since d' is full we may assume that the restriction of R to d' is the 
identity functor, and that pA, = 1,. for d' E A'. Now R, being a coadjoint, 
must preserve colimits. Consequently { R ( D i ) + R ( L ) }  is a colimit for RD in 
d'. But using the assumption on R and p we have RD = D and 

PI. 
R(Di) + R(L)  = Di+ L+ R(L)  

as required. 

Of special interest is the case where d' is a full coreflective subcategory of 
an abelian category d. By 5.1 and 5.2, d' has kernels, cokernels, and finite 
biproducts. A morphism in d' is a monomorphism in d' if and only if it is a 
monomorphism in d. By 11, 12.1*, the coreflector R is colimit preserving, 
and in particular cokernel preserving. If, on the other hand, R is kernel 
preserving, then the following has been observed by F. W. Lawvere. 

Proposition 5.3. Let d' be a f u l l ,  coreJective subcategory ofthe abelian category d, 
and suppose that the corejlector R : d +d' is kernel preserving. Then d' is an abelian 
category. Furthermore, ifd is C,, then so is d'. 

Proof. To p roved '  abelian it suffices to show that d' is normal and conormal 
(I, 20.1). By fullness we may assume as usual that the restriction of R to d' 
is the identity functor. Let A , + &  be a monomorphism in d', hence in d. 
Then A + A 2  is the kernel of some morphism A ,  + A 3  in d. By assumption on 
R this means that R ( A , ) + R ( A , )  is the kernel in d' of R(A,)+R(A,) .  But 
R ( A , )  + R(A,) is just A ,  + A z .  This shows that d' is normal. 
As for conormality, let A2-+A3 be an epimorphism in d'. Then its cokernel 

in d' is zero. By 5.2, this cokernel is the composition A3+A4+R(A4)  where 
A3+A4 is the cokernel in d. Hence R(A,) = 0. Consider the sequence 

A ,  + A ,  + I+ A3+ A ,  

where Z is the image of A ,  + A ,  in d and A ,  + A ,  is the kernel in either d or 
d'. Then R(Z) + R(A3) is the kernel of R(A3) + R(A4) by assumption on R. 
But since R(A4) = 0, this shows that R(Z)+R(A3) is an isomorphism. Since R 
is cokernel preserving, R(A,)  + R(Z) is the cokernel in d' of R ( A , )  -+ R(A, ) .  
Since R(Az)+R(Z)+R(A3)  = R ( A z ) + R ( A 3 )  = A,+A3 and 

R(Ad  + R ( A , )  = A ,  +A2, 

this establishes conormality f o r d ' .  
Now suppose that d is C,. To  prove that d' is C3, we must show that, given 

a monomorphism D+D' of direct systems in d', the induced morphism of 
the colimits in d' is a monomorphism. We know that the induced morphism 
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L'+L of the colimits in d is a monomorphism by C3 f o r d .  But the induced 
morphism of the colimits i n d '  is just R(L')  +R(L)  which is a monomorphism 
since R is kernel preserving. Hence d' is C3. I 
Remark. We have proved in 5.3 that d' is an abelian category, but it is not 
true in general that d' is an abelian subcategory ofd. That is, it is not true 
that the inclusion o f d '  in d is an exact functor. 

6. Monosubcategories 
Throughout, d will denote a complete, locally small, abelian category, and 

A will denote a full subcategory of& satisfying the following axioms. 
Al : A is a complete subcategory of&. 
A2 : If A +  B is a monomorphism in d and B E A, then A E A. 

Axiom A, says that A is a complete category, and the inclusion functor 
from A to d is limit preserving. Equivalently, the limit in d of every diagram 
in A is also in A. Thus, in speaking of limits of diagrams in A, it will not be 
necessary to specify whether the limit is to be considered in d or in A. 
Likewise, since monomorphisms are characterized by having zero kernel, a 
morphism in A is a monomorphism in A if and only if it is a monomorphism 
in d. 
Proposition 6.1. A is a coreflective subcategory o f  d, and for each A ~d the 
coreflection is an epimorphism. 

Proof. Given A E d, let {Mi}iEI be a representative set of quotient objects of A 
which are in A. Let M be the image of the obvious morphism A+ x Mi. By 

Al, x Mi is in A and so by A2, M is in A. Given A +  M '  with M '  EA, 

we wish to find a morphism M+M' such that the diagram 

iEI 

i E I  

A - M  

\I M' 

is commutative. By .A2 we may suppose that A +  M ' is an epimorphism, 
hence we may assume that M' is Mk for some k E 1. The required morphism 
M+ M'  is then just the inclusion of A4 into the product composed with the 
kth projection. Since A + M  is an epimorphism, the morphism M + M '  
making (1) commutative is unique. Hence A + M  is the coreflection of A 
i n A .  I 

Throughout the remainder of the section we assume that A satisfies the 
following additional axiom. 

.A3 : For each M E A there is a monomorphism M+ Q in A such that Q 
is injective considered as an object in &'. 
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We shall call A a monosubcategory of at' if it satisfies the axioms A,, 
A2, and A3. 

Lemma 6.2. Let 
O + M + A +  N+O 

be an exact sequence in at', and let M and N be in A. Then A E A!. 

Proof. Let M+ Q be as in A3, and form the pushout diagram (I, 20.3*) 

0 - M - A - N - 0  

0- Q - P - N - O  

Since Q is injective, the lower sequence splits; that is, P = Q @ N. Now Q and 
N are in A!, hence by A,, so is Q @ N.  Since M+ Q is a monomorphism, by 
I ,  20.2*, A+ P is also a monomorphism. Therefore by A2, A is in A. I 

We shall call an object T E at' a torsion object with respect to A if the 
coreflection of T in A! is 0. Equivalently, T is a torsion object if [ T, MI = 0 
for all M E A. 

Proposition 6.3. Given A ~ d ,  l e t  T + A  be the kernel of the coreJIection A + M .  
Then T is a torsion object. Furthermore, any morphism T ' + A  with T a torsion object 

factors uniquely through T + A .  

Proof. To show that T is torsion, we form the pushout diagram 

0 - T - A - M - 0  

I 1  I 
0 - N - P  - M  - 0 

where T+ N is any morphism with N E A!. By 6.2, P is in A, and so we have 
an induced morphism M - t  P such that A+ M+ P = A+ P .  Therefore 
T + N - t P =  T+A-+P= T + A + M + P = O ,  and so since N + P  is a 
monomorphism, T+ N is zero. This proves that T is torsion. Now if T' is 
torsion, then for any morphism T ' + A  we have T ' + A + M =  0; hence 
TI+ A factors uniquely through the kernel T+ A .  I 

Consider an exact sequence in at' 

O + L + M + N + O  

where L and M are in A, We shall call L+ M a pure monomorphism if 
N E A. We shall call L a pure object if every monomorphism from L to an 
object o f 4  is pure. If L E A! is injective in d, then L is necessarily pure. For 
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in this case the sequence (2) splits, so N is a subobject of M, and consequently 
N is in A by A*. 

Let us denote the full subcategory of& consisting of all pure objects by 14. 

Lemma 6.4. Let 
O-+L-+M+ N+O 

be an exact sequence in d. If N E A and M E 9, then L E 9. 

Proof. Let L+M' be a monomorphism with M' €A. Form the pushout 
diagram (I, 20.3*) 

0 0 

0 - L - M - N - 0  

I 1  
0 0 

Since M' and N are in A, by 6.2, so is P. But then since M is pure, N' E A. 
This proves that L is pure. I 
Lemma 6.5. Let 

O + M + R + T + O  

be an exact sequence in sd with M E A, R E 9, and T torsion. Then M - t R  is the 
corejection of M in 9. 

Proof. Let M + L  be any morphism with L E 3. Form the commutative 
diagram with exact rows in .d 

0 - M - R - T - 0  
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where the bottom row is defined by Ag and R - t  Q can be defined by injectivity 
of Q. Since L E 9 and Q E A we have F E A. But since T is torsion, T+F is 
zero. Therefore R+ Q + F  is zero and so R - t  Q factors through L+ Q. Since 
L+ Q is a monomorphism we must then have 

M + R - t L  = M + L .  (3) 

Now suppose that there were two morphisms R+ L satisfying (3), and let d 

be their difference. Then M+R+L is zero, and hence d factors through 
R+ T. But again since T is torsion and L E 4, the morphism T+ L must be 
zero. Hence d is zero. This proves that R+ L is unique, and so M-t  R is the 
coreflection of M in 9. I 
Lemma 6.6. 9 is a cordective subcategory of d. If M E A, then the corejlection 
M + R is a monomorphism. 

Proof. Since A is a coreflective subcategory of d (6.1), it suffices to prove 
that 9 is a coreflective subcategory o f A .  For M E A, take an exact sequence 
O+ M+ Q-. A+ 0 where Q E A is injective in d. Consider also the exact 
sequence 0-t T+ A +  N+O where A +  N is the coreflection of A in A, so 
that by 6.3, T is a torsion object. Forming the pullback of Q+ A and T+ A ,  
by I, 16.3, we get a commutative diagram with exact rows and columns 

d 

0 

I P  
0-M-R-T-0 

0-M-Q-A-0 

N =  N 

0 0 

Since Q €9 and N €4, by 6.4, R E 9. Therefore by 6.5, M + R  is the 
coreflection of M in 2’. I 
Lemma 6.7. If A’ + A  is a monomorphism in d, then so is the induced morphisrn 
R’ + R of the coreJections in 9. 
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Proof. Form the diagram 

A'------+ A 

where R'+ Q is a monomorphism with Q E A? injective i n d ,  A +  Q is defined 
so that A'+ A+ Q = A'+ R'+ Q, and R+ Q is defined so that 

A + Q  = A + R + Q  

(which is possible since Q E 9 and A+ R is the coreflection of A in 9). Then 
we have 

A ' + R ' + Q  = A ' + A + Q  

= A ' + A + R + Q  

= A ' + R ' + R + Q .  

But then since Q E 9 and A ' - +  R' is the coreflection of A' in 9, we must have 
R'+ Q = R'+ R+ Q.  Therefore since R'+ Q is a monomorphism, the same is 
true of R'+ R .  1 
Theorem 6 .8 .9  is a corejlective subcategory of d and the coreJector R : d +9 is an 
exact, colimit preserving functor. Hence 9 is a complete abelian category. Furthermore, 
9 has injectives. Zfd is cocomplete (C,), then so is 9. Zfd has a generator, then 9 
has a generator and an injective cogenerator. 

Proof. We begin by showing that 9 is normal. Let L'+ L be a monomorphism 
in 9. Let L+ M be its cokernel in d and let M+ R ( M )  be the coreflection 
of M in 9. Since L' E 9 we must have M €A, and so M + R ( M )  is a 
inonomorphism by 6.6. Therefore since L'+ L is the kernel of L+ M it is also 
the kernel of L - + M + R ( M ) .  This shows that 9 is normal. 

We can now show that R is kernel preserving. Consider an  exact sequence 
O+A'+A+A" in d, and let A+Z+A" be the factorization in d of 
A+A" through its image. Since R is cokernel preserving, R ( A ) + R ( Z )  is the 
cokernel of R ( A ' ) + R ( A )  in 9. But then, since by 6.7, R ( A ' ) + R ( A )  is a 
monomorphism and since 9 is normal, we see that R(A')  + R ( A )  is the kernel 
o f R ( A ) + R ( Z ) .  Now again by 6.7, R(Z)+R(A")  is a monomorphism. Hence 
R ( A ' ) + R ( A )  is the kernel of R ( A ) + R ( I ) + R ( A " )  = R ( A ) + R ( A " ) .  There- 
fore R is kernel preserving. 

It now follows from 5.1,5.2,  and 5.3 that 9 is a complete abelian category, 
cocomplete (C,) if& is cocomplete (C,). By and the fact that an injective 
in&' is necessarily injective in 2' we see that 9 has injective resolutions. From 
1.5 we see that if U is a generator for d, then R( U )  is a generator for 9. In  
this case it follows from 111, 3.3, that 5' also has an injective cogenerator. 1 
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7. Projective Classes 

Throughout this section all categories will be abelian. 
Consider a category d and a class 6 of epimorphisms in d. We will say that 

an object P E d is &-projective if [ P ,  a]is an epimorphism for every a E 8. 
The class of all 8-projectives will be denoted by B(8). On the other hand 
starting with a class @of objects in d we let 8(B) denote all epimorphisms 
a in .d such that [ P ,  a] is an epimorphism for all P E 8. If 8' c & then 
8(&') 3 8(&), and i f 8 '  c 8 then &(B') 3 &(8). Also we have &(B(&)) =I 8 
for any class of epimorphisms 8 and 8(&(8)) 3 9 for any class of objects 8. 
I t  then follows that 8(8(8(8))) = 8(&) and b(B(B(8))) = &(8). A class of 
the form B(8)  will be called a closed class of epimorphisms. 

Denoting by 0 the empty class, the class 8 ( 0 )  is the class of all objects in 
d, and r f 0  = 8(8(0)) is the class of all retractions. On the other hand, the 
class 8, = &(0) is the class of all epimorphisms in d and 8(8(0)) is the class 
of ordinary projectives. 

If P E 8(&) and P' is a retract of P ,  then it is easy to see that P' is also in 
B(&). Also if pa E 8(8), then we must have p E b(8). 

A class of epimorphisms 6 will be called a projective class if it is closed, 
and if for every object A E .d there is a morphism a : P - t  A such that a E & 
and P E 8(8). The class &,-, is clearly a projective class, whereas the class 8,  
is a projective class if and only i f d  has projectives. 

Lemma 7.1. If& is a projective class and a : A + B  is such that [ P ,  a] is an epi- 
morphism f o r  all P E 8(&), then a E 8. 

Proof. Since & is closed, it suffices to show that a is an epimorphism. Let 
f : P + B  be an epimorphism with P E 8(8). Since [P, a] is an epimorphism 
we can findg E [ P ,  A ]  such that ag =J This shows that a is an epimorphism. 

Theorem 7.2. Consider an adjoint situation (7; S, T ;  d, a) with T faithful, and 
let & be aprojective class in 9?. Let T-' (8) be the class ofall morphisms a in &such that 
T ( a )  E 8. Then T-'(8) is aprojective class in d, and the T-'(&)-projectives are the 
objects ofthe form S ( P )  and their retracts, where P is &-projective. 

Proof. Observe that since T is faithful, if T ( a )  E& then a must be an epi- 
morphism. Let P be &-projective. Then [ P ,  T ( a ) ]  is an epimorphism for all 
a E P I ( & ) .  Using r )  this means that [ S ( P ) ,  a] is an epimorphism for all 
a E PI(&). Hence S ( P )  is T-'(b)-projective. Now let a E a(@( T-'(&))).  
Then [ S ( P ) ,  a] is an epimorphism for all P E B(8). Therefore [ P ,  T ( a ) ]  is 
an epimorphism for all P E 8(&), and so by 7.1, T(a)  E 8. Therefore 
a E PI(&), and so T-*(&) is closed. 

: P-+ T(A)  be in 8 with P E B(8). Then letting 
a = r ) - ' (@)  : S ( P ) + A ,  we see from 1.1 that T ( a )  €8.  Hence a E T - ' ( & ) ,  
and so since S ( P )  is T-'(&)-projective, this shows that T-'(&) is a projective 

Given A ~ d ,  let 



7. PROJECTIVE CLASSES 137 

class. Also if A is T-'(&)-projective, then a must be a retraction, or in other 
words A is a retract ofS(P). Thus the T-'(8)-projectives are as stated. I 
Proposition 7.3. Under the hypothesis of 7.2 suppose further that there is a functor 
R : d +a with the following properties : 

1. There is a natural equivalence p : RS+ 1,. 
2. If u : S ( P )  +A is such that R(a) is an isomorphism and P and A are & and 

T-' (&)-projectim, respectively, then a is an isomorphism. 

Then any T-' (&)-projective is isomorphic to an object of the form S ( P )  where P is 
8-projecti ve . 
Proof. Let A be T-'(&')-projective. By 7.2 we can find a composition 
A+S(P)+A which is the identity, where P is &-projective. Applying R, 
we see that R(A) is a retract of RS(P) x P. Hence R(A) is &-projective, and 
so we need only show SR(A) % A .  NOW 4, = q-'( : S T ( A ) + A  is in 
T-'(&), hence we can find y : A + S T ( A )  such that #,y = 1,. Let a denote 
the composition 

WY) SlrT *A 

SR(A)+SRST(A)+ST(A)+A. 

Using naturality of p ,  we have the following commutative diagram: 

RSRS p R S  F RS 

Since p is a natural equivalence, it follows that pRS = RSp. Also we have the 
commutative diagram 

RSR(A) ( P R ) A  + R(A) 
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Consider a family of categories {gi}iEI, and for each i E Z let bi be a pro- 
jective class in gi. Then x bi is a projective class in x Bi, and 

iEI  iEI  

9 x g i  = X9(gi ) .  
( i E 1  ) iEI 

Using 1.5, we then have 

Corollary 7.4. For each i E Z, let Ti : d +gi be an adjoint f o r  Si : gi -td and let 
di be a projective class f o r  Bi. Suppose that { q} is collectively faithful  and that {Si} is 
coproductive. Then n Ti’ (gi) is aprojective class in d whose projectives are the objects 

of the fo rm @ Si(Pi) and their retracts, where Pi is &i-projective for all i E I. 1 

Corollary 7.5. Under the hypothesis o f  7.4, suppose further that there are functors 
Ri : d +ai with the following properties : 

i E I  

iEI  

1. RjSi = 0 f o r j  # i, RiSi is naturally equivalent to l,, f o r  each i E Z, and each R 
preserves coproducts ofthe f o r m  @ Si(Bi). 

iE1 

Then any n Til(&i)-projective is isomorphic to an object ofthe f o r m  @ Si(Pi) where 
iEI  i E I  

Pi is &,-projective for all i E I. 1 
We say that a family of functors Ri : d+gi collectively preserves 

nonzero objects if for each A # 0 in d we have Ri(A) # 0 in gi for some i. 

Corollary 7.6. Let : d +ai be a collectively faithful  system ofexact functors, and 
let Si : gi +d be a coproductive family  ofcoadjoints. If each Bi has projectives, then d 
hasprojectives, and the projectives in d are the objects of  the f o r m  @ Si(Pi) and their 

retracts, where Pi is projective in gi f o r  each i. 
v, furthermore, there is a family  of cokernel preserving functors Ri : d +Bi which 

collectively preserves nonzero objects and which satisjes condition 1 of 7.5, then the 
projectives i n d  areprecisely the objects ofthe f o r m  @ Si(Pi) .  

Proof. If each q is exact, then taking bi to be the family of all epimorphisms 
in gi for each i, we see that n T~l(&~i)  is the class of all epimorphisms in d. 

Consequently, the first statement follows from 7.4. 
To prove the second statement, it suffices to show that the family Ri satisfies 

condition 2 of 7.5. Consider the functor R : d-+ x gi associated with the 

family Ri. Then R preserves nonzero objects and is cokernel preserving. We 
show that if a : A + P is a morphism in d such that P is projective and R( a) is 

1EI 

i E I  

iEI 

i E I  
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an isomorphism, then a is an isomorphism. Since R is cokernel preserving, 
we have R(Coker a )  = Coker(R(a)) = 0 since R ( a )  is an isomorphism. Hence 
Coker(a) is 0, and so a is an epimorphism. But then since P is projective, the 
sequence 

a 

(2) 0 + Ker( a) --f A -+ P- t  0 

splits. Applying R to (2) we still have a split exact sequence, and so again 
using the fact that R(a)  is an isomorphism, we see that R(Ker(a)) = O .  
Consequently, Ker(a) = 0, and so a is an isomorphism. I 

Exercises 

1. Given functors T :  d+B and S : B+d and natural transformations 
i,h : ST+ 1, and 'p : l a+  TS satisfying the relations (Ti,h)(cpT) = 1, and 
($5') (S'p) = l,, show that there is an adjoint situation ( v ;  S, T ;  d, 9) such 
that 'p and $ are the transformations defined in $1 (cf. 1.3). 
2. Let T :  d+g and S : B-+d be such that S T z  1,. Then T reflects 
limits and colimits. In particular, this is true if T is the inclusion functor of a 
full, coreflective subcategory. 
3. Let d' be a full, coreflective subcategory of the abelian category d, and 
suppose that the coreflector R : d+d' is kernel preserving. Then an object 
Q E&" is injective in A?' if and only if it is injective in d. In  particular, if& 
is a monosubcategory o f d  and 9 is the subcategory of pure objects, then an  
object is injective in L? if and only if it is injective in d. 
4. I f A  is a monosubcategory of&' and if M-t  Q is an injective envelope with 
AM E A, then Q E A. Hence if hl E A has an injective envelope, then the 
coreflection k - t R  of M in L? is an essential extension. (Examine the con- 
struction of the coreflection for M given in 6.6.) 
5. Let 8 be a class of epimorphisms in an abelian category d, and let A(&) 
denote the class of all monomorphisms which are kernels of members of 8. 
Also let &(A(&)) denote all epimorphisms which are cokernels of members of 
A(&). Following Buchsbaum [4] we call d an h.f. class under the following 
conditions : 

(i) d' =&(A?(&)). 
(ii) All retractions are in 8 (and hence all coretractions are in A(&)). 

(iii) If a,  /? E 8, and j3a is defined, then pa E 6. 
(iv) If y,  6 E A(&), and 6y is defined, then 6y E A(&). 
(v) If cc is an epimorphism and p a  E 8, then 16 E 8. 

(vi) If 6 is a monomorphism and Sy E &(€), then y E .A(&). 

Any closed class in d is an h.f. class. (Use I, 16.2, in verifying axioms (iv) 
and (vi).) On the other hand, if& is an h.f. class i n d  such that for every object 
A E d there is an epimorphism a : P+ A with a E &and P E 9(&), then 8 is a 
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projective class. (If y : A'+A has the property that [P, y ]  is an epimorphism 
for all P E B(b), then form the pullback diagram 

P- A' 

and show that PI+ P is a retraction.) 



[CHAPTER VIJ 

Applications of Adjoint Functors 

Introduction 

I t  is first shown that under certain conditions, completeness in a category 
implies cocompleteness (1.1).  In $2 i t  is proved that any R-module valued 
functor which has a coadjoint is naturally equivalent to a morphism functor 
represented by some R-object. The converse problem of showing that mor- 
phism functors have coadjoints leads to the definition of the tensor product. 
We establish its existence under two different assumptions on the category 
(3.1 and 3.2). The tensor product then helps in showing that the existence ofa  
projective generator is still another property which a functor category (d, a) 
inherits from the codomain category g. This fact is due to Freyd. 

In  $5 we establish the existence of 0th derived and coderived functors for 
group-valued functors from small abelian categories. In $6 we show that the 
category of monofunctors A?(&, 3) is a monosubcategory of (d, 3).  The 
subcategory ofkernel preserving f u n c t o r s y ( d ,  3) coincides with the category 
of pure objects. In particular it follows that Z ( d ,  93’) is abelian. This paves 
the way to the full imbedding theorem 7.2. 

The chapter is concluded with a section on complexes, and an application 
of the projective class theory of V, $7 to the hyperhomology theory of Cartan- 
Eilenberg [6, Chapter XVII]. 

Sections 1 , 2 , 5  and 6, as well as Theorem 3.2 are due to Peter Freyd. The 
existence of coderived functors and the abelianness of Z ( d ,  93’) modulo 
certain set theoretic conditions on the categories .d and $28 were first shown by 
Gabriel [ 171. An alternative proof of 6.2 can be given using Gabriel’s work. 
The section on complexes is due to Eilenberg and Moore [ 121. 

1. Application to Limits 

Consider a diagram category [Z, $281 where 3Y is any category and .Z is any 
diagram scheme. For B ~ $ 2 8  let Z(B) be the diagram which has B at  every 

141 



142 VI. APPLICATIONS OF ADJOINT FUNCTORS 

vertex and 1, at  every arrow. Dualizing the discussion of 11, $12, we see that 
93 is Z-cocomplete if and only if the functor I : 93+ [Z, 931 has a coadjoint 
L : [Z, g] +93. Now I is clearly limit preserving. Consequently, we have as 
an immediate application of V, 3.2 : 

Theorem 1.1. Let 93 be a complete, locally small category with a cogenerator. Then 93 
is cocomplete. I 
Using 11, 15.1*, we have 

Corollary 1.2. Let 93 be a complete, exact category with a cogenerator. Then 93 is 
cocomplete. I 

2. Module-Valued Adjoints 

Lemma 2.1. Let R be a ring a n d d  an additive category. I f a  functor T :  d + g R  
has a coadjoint, then f o r  some C E Rd we have a natural equivalence T x HC. 

Proof. Consider an adjoint situation (7; S, T ;  d, gR). Then by V, 1.4, S is 
additive, and so C = S(R) can be regarded as a left R-object by means of left 
operations ofR on itself. Then for A E d we have 

Hc(A)  = [S(R),A] 2 [R, T ( A ) ]  x T ( A )  

where the middle isomorphism preserves addition by V, 1.4, and R-module 
structure by naturality of r ] ,  and the right-hand isomorphism is a natural 
equivalence of right R-modules (11, exercise 12). I 
Theorem 2.2. Let d be a complete, locally small, additive category with a cogenerator, 
and let R be a ring. Suppose that T : d+ gR is a covariant, limit preserving functor. 
Then for some C E Rd we have a natural equivalence T x H C .  

Proof. This follows immediately from 2.1 and V, 3.2. I 
Theorem 2.2*. Let d be a cocomplete, colocally small, additive category with a 
generator, and let R be a ring. Suppose that T : d + B R  is a contravariant, limit 
preserving functor. Then f o r  some C E @ we have a natural equivalence T x H,. I 

Theorems 2.2 and 2.2* generalize theorems of C. Watts [34]. 

3. The Tensor Product 

We now turn to the converse of 2.1. Under two sets of conditions on the 
category d we will prove that if C E Rd, then the functor HC : d+ gR has a 
coadjoint. In the first case we shall construct the coadjoint directly without 
applying any general existence theorem. The second case will be an application 
ofV, 3.1. 
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Theorem 3.1. Let d be a cocomplete abelian category and let R be any ring. Then we  
have an additive, colimit preserving, covariant bijiinctor gR x Rsy'+.d, whose value 
on the pair ( M ,  C) we denote by M QR C, and a natural equivalence of trijiunctors 

7) = q M , c , A  : [ M ,  [C, AI.dIR+ [ M  Gt C, A ] ,  ( 1 )  

where M E gR, C E 

Proof. By V, 2.3, it suffices to construct a coadjoint for the functor H C  : d+ 9R 
for each C E Now a left R-object C can be considered as a functor into d' 
from the full subcategory o fgR consisting of the single object R. In other words 
we are in a position to apply IV, 5.2. That theorem gives us a unique colimit 
preserving functor from gR to d, whose value on the right R-module M we 
denote by M QR C, such that R QR C = C as left R-objects. Explicitly we can 
define M @R Cas follows. We first take the exact sequence of right R-modules 

and A E d. 

A n 

KR + MR -+ M + o 
where the mth coordinate of T is the unique right R-module morphism 
(P,,, : R + M  such that cp,(l) = m, K is the set of elements in the kernel of r, 
and h is the right R-module morphism whose kth coordinate is yk : R+'R 
where rpk( 1)  = k. Then M mR C is the cokernel of the induced morphism 
KC+MC. If p : M - t M '  then we have the morphism MR+MR which is such 
that composition with the mth injection into MR yields the p(m)th injection 
into MR. The morphism p BR C is then the unique morphism making the 
diagram 

"6 - M' ORC 

commutative. 
We now define the transformation ( 1 ) .  A right R-module morphism 

f : A4+ [C, A ]  determines a morphism f ( f )  : MC+ A ,  and using the fact that 
f is additive and commutes with operations by R we see that the composition 
KC+MC+A is zero. Hence q ( f )  induces a morphism q ( f )  : M OR C - t A .  
On the other hand, giveng : M BR C+ A we can composeg with MC+ M@& 
to get a morphism 8 : yC-+ A .  Then 8 determines the function 

7'(s) : M-+ rc, A1 

such that q'(g) (m) is just the mth coordinate ofg. That q'(g) is a right R-module 
morphism comes from the fact that the composition KC+MC-+ A is zero. It is 
then easy to check that 7 and 7' are inverses of each other. 
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To show that 7 is natural in M, we must prove commutativity of the diagram 

[M', [C, AllR- [M'O,C,AI 

relative to a morphismp : M+M' of right R-modules. Commutativity of (2) 
amounts to showing that relative to an R-module morphismf: M'+[C, A] 
we have a commutative diagram 

Commutativity of (3) comes from the diagram 

in which the square and each triangle save possibly (3) is commutative. Since 
""C+ M & C is an epimorphism it follows that (3) is commutative also. 
This establishes naturality of q in M. Naturality in A is simpler and is left to 
the reader. I 

Theorem 3.2. Let d be a complete, locally small, colocally small, additive category 
with coproducts. Then the conclusions of 3.1 are valid. 

Proof. For fixed C E RJal the functor Hc : d+ gR is limit preserving. Hence 
by V, 3.1, to show that it has a coadjoint it suffices to find a solution set in d 
for each right R-module M. That is, we wish to find a set of objects {Ai}  in d 
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such that any morphismf : M+ [C, A ]  of right R-modules admits a factori- 
zation of the form 

for some morphism u : Ai+A in d and some morphism g of R-modules. 
Let { A i }  be the set of all quotient objects of MC. Consider the morphism 
MC+ A whose mth coordinate is f (m), and let 

MC-+ I +  A 

be the factorization through its image. Our hypothesis assures that the image 
exists and thatp is an epimorphism (I, 5 10). Thus I is one of the Ai. If we define 
g byg(m) =@urnwhere u,isthemth injectionintoMC, thenit followsimmediately 
from the fact that f is an R-module morphism and [C, a] is an  R-module 
monomorphism that g is an R-module morphism. This proves that {Ai}  is a 
solution set. I 

When d is a category satisfying conditions dual to 3.1 or 3.2, we can define 
the symbolic morphism functor from R93 x Rd to d whose value on the 
pair ( M ,  C) we denote by R{M, C}. For fixed C it is defined by means of the 
duality 

R{hf, c }  = (M &I c*)*. 

We thus have a natural equivalence 

YM, 1 4  C1,l 1 4  YM, C)l&?. (4) 

I t  follows that the symbolic morphism functor has the same limit preserving 
properties as the ordinary morphism functor. The natural equivalence 
R @R C k C of left R-objects dualizes to a natural equivalence R{R, C} z C. 
In the case where d is the category of abelian groups, R{M,  C} is the same as 
R [ M ,  C] (exercise 9). 

I fC is a right R-object and M is a left R-module, then we define 

C & M =  M8R.C.  

When R = Z we shall denote M QZ C = C M simply by M @ C. 

4. Functor Categories 

Let d be a small, additive category and let B be a cocomplete abelian 
category. Let us denote 

S,(B)(A')  = [ A ,  A']  @ B 

where A ,  A' E d and B E g. We consider S as a functor from d x to the 
functor category (d, g). Thus, for fixed A ,  S, : a+ (d, B) .  Recall also the 
functor E : (d, 99) x d + B  given by E (  T, A )  = T ( A ) .  Holding A fixed we 
obtain the evaluation functor EA : (d, B) +B (11, $1 1). 
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Theorem 4.1. Let d be a small, additive category and let A? be a cocomplete abelian 
category. Th tn  S : d x A?+ (d, a) is a coadjoint for E : (d, A?) x &‘+A?. r f  
UA is a generator in 93 f o r  each A E d, then @ SA( U,) is a generatorfor (d, a). 
If ,  on the other hand, UA is small for each A E d and d has only ajinite number of 
objects, then 0 SA( UA) is a small object in (d, A?). 

A € d  

A € d  
If& is a projective class in A? and S(d, 99) is the class of morphisms in (d, A?) 

whicharepointwise in&‘, then&(&‘, A?) isaprojective class in (d, A?). The&(&, a)- 
projectives are the functors of the f o r m  @ &‘,(PA) and their retracts, where PA is 

&’-projective j a r  each A E d, In particular, $A? has projectives, then so does (d, A?). 

Proof. In  V, 4.1, let V be the category 3, let T be HB, and let G be H A .  Then 
using IV, 2.1, we have natural equivalences 

A€& 

[SA(B),  F ]  = [HA @I B ,  F ]  x [ H A ,  H B F ]  x H B F ( A )  

= [ B ,  F ( A ) l  = [B ,  EA(F)I. (1) 

This shows the required adjointness. Since the evaluation functors are collec- 
tively faithful and coproduct preserving, the statements concerning generators 
and small objects follow from V, 1.5. The statements concerning projective 
classes follow from V, 7.4, and V, 7.6. I 

Applying IV, 4.1, we obtain : 

Corollary 4.2. Let d be an additive category with only ajinite number o f  objects, and 
Let R be a ring. For each A E d let n A  be an integer > 0. Then @ SA(R”A) is a small 

projective generator f o r  (d, gR). Consequently, (d, gR) is equivalent to the category 
of right modules over the ring of endomorphisms off0 S A ( R n l ) .  I 

A€& 

A € d  

IfB is complete abelian, then we can apply duality to sat and A? to obtain 
functors J A , B  : &+A?, defined by 

JA,B(A’) = [A’ ,  A ]  6 B* = { [A’ ,  A ] ,  B } .  

Dualizing ( l ) ,  we obtain a natural equivalence 

LF, JA,BI [ F ( A ) ,  B1 
where F E (d, 93). From 4.1 * it follows that if Q is an injective cogenerator for 
A?, then x JA,Q is an injective cogenerator for (d, A?). I n  the case where 93 

is the category of abelian groups, the functor J A , B  is the same as that defined 
in IV, $3. This follows from the fact that here the symbolic morphism functor 
coincides with the ordinary morphism functor (exercise 9). 

Let S and S’ be sets, and consider a function f : S+S‘. Letting B be an object 
in a category B with coproducts, we have the morphism fB : S B  d B  which is 
such that when composed with the sth injection in S B  yields the f (s) th injection 

A€& 
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into sB. On the other hand, a morphism f l  : B+B' yields the morphism 
sfl : SB-+SB'. In  this way, SB can be regarded as the value of a two variable 
functor from Y x 3? to @. Furthermore, we have a natural equivalence of 
trifunctors 

IS, [B, C1,IsP = LSB, CI,. 

For this reason we define the tensor product S B of a set S with an object 
B as SB. I f d  is any small category (not necessarily additive), we can define as 
before 

s A ( B ) ( A ' )  = [A, A'] @ y B *  

Thus, S, may be considered as a functor from B to the category of not neces- 
sarily additive functors [d, a]. 
Theorem 4.3. Let d be a small category, and let 33 be a category with coproducts. 
T h e n S : d x ~ B + [ d , & ? ]  isacoadjoint for E : [ d , 3 ? ] x d - t . 9 Z J " . I f U A i s a  
generator in L8 for each A E d, then @ SA(  UA)  is a generator for [d, a]. Zf, on the 

A€& 

other hand, U, is small for each A E d and d has only ajinite number of objects, then 
@ SA(  U,) is a small objecl in [d, a]. 

A€& 
Suppose further that 93 is abelian, and let & be aprojectiue class in 93'. If&[&, 93'1 is 

the class ofmorphisms in [d, g]  which arepointwise in 8, then &[at, A?] is aprojectiue 
class in [d, g] .  The &[d, i4?]-projectiues are the functors of the form 0 SA(PA) and 

their retracts, where PA is&-projective for all A E d. In particular, if3 hasprojectives, 
then so does [d, g]  . 
Proof. The proof is identical to that of 4.1, except that we must take $? to be 
Y instead of 9 in establishing adjointness. I 
Corollary 4.4. Let d be a category with only a jn i t e  number ofobjects, and let R be a 
ring. For each A E d let nA be an integer > 0. Then @ SA(R"n) is a small projective 

generator for  [ ~ d , 9 ~ ] .  Consequently, [d, gR] is equiualent to the category of right 

At?& 

A€& 

modules ouer the ring of endomorphisms of @ SA(R"A). I 
A€& 

5. Derived Functors 

Throughout this section d and will denote abelian categories, and all 
functors will be additive. 

Consider a covariant functor T : d +a. The 0th derived functor of T i s  a 
natural transformation LO T-t  T such that LO T : d + g  is a cokernel pre- 
serving functor, and such that any other natural transformation from a 
cokernel preserving functor to T factors uniquely through Lo T-t T. If T is 
contravariant, then Lo T+ Tis the 0th derived functor of Tif  (LOT) ,  -+ T* is 
the 0th derived functor of the covariant functor T,. 
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I f d  is a small category, then the 0th derived functor ofthe covariant functor 
T is simply the reflection of T in the full subcategory W(d, 9J) of (d, 9?) 
consisting of all cokernel preserving functors. Thus, to show the existence of 
0th derived functors for all covariant functors T : &+A? is equivalent to 
showing that W(d, 9) is a reflective subcategor). of (a', a). 

Dually we say that a natural transformation T+ Ro T is t h e m  coderived 
functor of T if the corresponding transformation (ROT): + TZ is the 0th 
derived functor of Tf . Thus T-t Ro T is the 0th coderived functor of T if and 
only if Ro T is kernel preserving, and every natural transformation from T to a 
kernel preserving functor factors uniquely through T+R'T. When d is 
small, the 0th coderived functor for the covariant functor Tis just thecoreflec- 
tion of T i n  the full subcategory 9(d, a) of (d, a) consisting of all kernel 
preserving functors. 

I f d  is a small category, we let Id) denote the cardinal number of the set of 
all morphisms in d. Also, if T : d + 9, we let 1 TI denote the cardinal number 
of the disjoint union of sets u T(A). 

Lemma 5.1. Let V be a class o f  exact sequences in a small category d, and let 
V ( d ,  9) denote the f u l l  subcategory of (d, 9) consisting of all  those functors which 
preserve exact sequences in V. Let To c F where F E U(d, 9), and let p be any intnite 
cardinal number such that pa m a x ( [ d ( ,  1 To] ) .  Then there is a subfunctor T c  F 
such that T E V ( d ,  9), To c T, and I TI < p. 

Proof. For each morphism Q : A + A l  i n d ,  chooseafunction f ,  : F ( A l )  -+F(A) 
such that 

A€, 

f , ( z )  = 0 for z 4 Im(F(a)) 

F(a)(f,(z)) = z for z E Im(F(a)).  

We define subfunctors T,, c F inductively as follows. Given T,, c F and A E d,  
let SA be the subset o fF  ( A )  defined by the following set theoretic union: 

SA = u ( u L(Tn(A1))). 

By taking Q = l,, we see in particular that SA 3 T,,(A). If we assume that 
I T.1 < p, then using the fact that p2 = p we see that the disjoint union of sets 
u S, has cardinal number < p. We define T,,,, as the subfunctor ofFgenerated 

by the family {S,},,, (see 11, exercise 6). Then T,,,, 2 T,, and it is not difficult 

A,€& aE[A,A,] 

A€& 

to see that I T,,+,l < p (IT, exercise 6). Now define T =  u T,,. Then I TI < p 
nSO 

since I T,, I < p for all n, and furthermore To c T. We show that T E V ( d ,  g). 

Consider an exact sequence A'+A-+A" in V. We wish to show that 
T(A') + T(A) --f T(A") is exact in 9. Suppose that z E T(A)  and T(@) ( z )  = 0. 
For some R we have z E T,,(A) c F ( A ) .  Now T ( p ) ( z )  = 0 impliesF(p)(z) = 0, 

a B  
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and so since F E %(d, g) we have L = F (a) ( y )  for some y E F ( A ’ ) .  We may 
assumey = f , (z) .  Then by construction of T,,, we havey E T,+,(A’) c T(A’) .  
Hence L = T ( a )  (9) as required. I 
Theorem 5.2. Let d be a small category, and let % be a class of exact sequences of the 
fo rm 

in d. Then %(d, 9) is a rejective subcategory o f  (d, 9). 

Proof. It follows from 11, 12.4*, that %(d, 9) is a cocomplete subcategory of 
(d, 9). In particular, this means that an epimorphism in V ( d ,  9) is a 
necessarily an epimorphism in (d, 59). Consequently, since (d, 59) is colocally 
small, the same is true of%(&, 9). Therefore by V, 3.2*, toshow that W ( d ,  9) 
is a reflective subcategory of (d, g), it suffices to show that %(d, 9) has a 
generator. Let p be any infinite cardinal number 2 IdI. Then it follows from 
5.1 that for F E %‘(XI, 9), A E d,  and x E F ( A ) ,  there is a subfunctor T c F 
such that x E T ( A ) ,  T E %(d, 9), and I TI 6 p. Now byidentifyingnaturally 
equivalent functors and using the fact that d is a set, it is not difficult to see 
that {TI I TI < p }  is a set. I t  then follows from the above that {TI T E %(d, 9) 
and I TI < p} is a set of generators for %(d, 9). I 

A’ + A  +A” + O  (1)  

Taking % to be the class of all sequences of the form ( I ) ,  we obtain : 

Corollary 5.3. Zfd is a small category, then twery functor T : d+9 has a 0th 
derived functor. I 
Theorem 5.4. Let d be a small category, and let % be a class of exact sequences ofthe 
form 

0 +A’  + A +A”  

in d. Then %(XI, 9) is a corejective subcategory o f  (d, 9). 

Proof. By 11, 12.4, %(XI, 9) is a complete subcategory of (d, 9), and in parti- 
cular is locally small. Therefore by V, 3.1, to show that %(d, 9) is a coreflec- 
tive subcategory of (d, 9), it suffices to find a solution set in V ( d ,  9) for 
each object S E (d, 58). Let p be any infinite cardinal number 2 max( Id[, 
IS]). Consider a morphism S+F where F E %(d, g), and let To be its image. 
Then I To[ < IS1 < p, and so by 5.1 we can find a subfunctor T c  F such that 
To c T and I TI < p. This shows that as a solution set for S we may take 
{TI T E %(d, 9) and I TI < p}.  I 
Corollary 5.5. Zfd is a small category, then every functor T : d+9 has a 0th 
coderived functor. I 

The results of this section generalize to group valued functors of several 
variables (exercise 12). Furthermore, a simple trick enables us to replace B by 
gR throughout (exercise 18). In the case where d has projectives (injectives), 
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we can construct derived (coderived) functors using the techniques of Cartan 
and Eilenberg [6] (exercise 15). 

6. The Category of Kernel Preserving Functors 

Lemma 6.1. Let 
O+T'+T+T"+O 

be an exact sequence of functors between two abelian categories. 

(i) If T' is kernel preserving and T is a monofunctor, then T" is a monofunctor. 
(ii) If T" i s  a monofunctor and T is kernel preserving, then T' is kernel preserving. 

Proof. The proof is a simple exercise in chasing the three by three diagram 
which arises from evaluating (1)  on an exact sequence O - t A  +B+C+O in 
the domain category. I 

Supposing that d is a small abelian category, let A(&, 9) be the full 
subcategory of (d, 9) consisting of all monofunctors. Then by 11, 12.4, 
A(&, 9) is a complete subcategory of (d, 8).  In  other words the a x i o m d l  
ofV, 36, is satisfied. Since a subfunctor of a monofunctor is necessarily a mono- 
functor, a x i o m d 2  is satisfied as well. Also by IV, 2.4, and IV, 2.5, the injec- 
tive envelope of a monofunctor is an  exact functor. Consequently, A3 is 
satisfied. Now by 6.1, (i), any kernel preserving functor is pure with respect to 
A(&, 8).  On the other hand, if T is a pure functor, consider the exact 
sequence 

O+T+Q+n/I-+O 

where T+Q is the injective envelope of T. Since T is a monofunctor? Q is 
exact, and since T is pure, A4 is a monofunctor. Therefore by 6.1, (ii), T is 
kernel preserving. In other words the category 9 consisting of all pure objects 
is precisely the category 9(d,  9) of all kernel preserving functors. Hence by 
V, 6.8, we have 

Theorem 6.2. Let d be a small abelian category. Then 9(d, 9) is  a coreJective 
subcategory of (d, 9). The coreJector Ro : (d, 9) +9(d, 9) is  an exact, colimit 
preserving functor. Y(d ,  3) is  a complete, C3 abelian category with a generator and an 
injective cogenerator. I 

Remark I .  By 5.5 we already know that 9(d, 9) is coreflective. By C3 for 9, 
the colimit of a direct system of kernel preserving functors is kernel preserving. 
Thus C3 for 9(d, 9) follows immediately from C3 for (d, 3). Also, since 
@ H A  is a generator for (d, 9) (IV, 2.3) and is also kernel preserving, it 

serves as a generator for 9(d, 8).  The strength of 6.2 lies in the fact that 
9(&, 9) is abelian. 

A€& 



7. THE FULL IMBEDDING THEOREM 151 

Remark 2. A projective functor in (&, 9), although necessarily kernel pre- 
serving (IV, exercise 3) ,  is not necessarily projective in y(&, 9). In  particular, 
@ H A  is not in general a projective in 2(&, 9). However, if& has injective 

resolutions, then we can show that Y(&, 9) has a projective generator 
(exercise 17). 

A€& 

7. The Full Imbedding Theorem 

Lemma 7.1. Let & be any small abelian category. Then the contravariant functor 
H : d+2’(d, 9) dejned by H ( A )  = H A  is a f u l l ,  exact imbedding. 

Proof. We have seen in IV, 2.2, that His a full imbedding. Let C be a cogenera- 
tor for 3(&, 9). Such exists by 6.2. Let O + A ’ + A + A ” + O  be an exact 
sequence in &. We wish to show that the sequence 

0 + H A ’  + H A  + H A ’  + O  

is exact in Y(&, 9). We know that H A ”  + H A  is the kernel of H A  + H A ’  in 
(d, 9), hence also in 9(&, 9). Consequently, it suffices to show that 
H A - + H A ‘  is an epimorphism in y(&, 9). Since C is a cogenerator for 
9(&, %) it suffices to show that [HA‘ ,  C] - + [ H A ,  C] is a monomorphism. But 
by IV, 2.1, this last is equivalent to C ( A ’ )  - + C ( A ) ,  which is a monomorphism 
since C is kernel preserving. 1 
Theorem 7.2. Every small abelian category & admits a f u l l ,  exact (covariant) im- 
bedding into a category gR ofmodules over an appropriate ring R. 

Proof. By 7.1 and 6.2 we know that d admits a full, exact, contravariant im- 
bedding into a complete abelian category possessing an injective cogenerator. 
Composing this imbedding with the duality functor on its codomain, we obtain 
a full, exact, covariant imbedding S from d to a cocomplete abelian category 
possessing a projective generator. Since& is small, by taking the coproduct of 
sufficiently many copies of the projective generator we can arrange that every 
object in the image of S is finitely (in fact, singly) generated. Then if we 
compose S with the functor T of IV, 4.1, we obtain the required imbedding. I 

As a consequence of 7.2 we have : 

Metatheorem 7.3. Let & be any abelian category. If a theorem is of the f o r m  
“ p  implies q” where p is a categorical statement about a diagram in & over a finite 
scheme Z and q states that afinite number o f  additional morphisms exist between objects 
over designated vertices in the diagram so as to make some categorical statement true of the 
extended diagram, and if the theorem is true when & = gR f o r  every ring R, then the 
theorem is true f o r  any abelian category&. I 

(Cf. IV, Metatheorem 2.8.) 
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8. Complexes 

Throughout this section d will denote an abelian category. A complex X 
in d is a sequence of morphisms in d 

dU+l dm . . . + X , , + , H X , , - - + X * , H .  . . ( - - o o c n < a o )  

such that d,,d,+, = 0 for all integers n. The class U ( d )  of all complexes in d 
becomes a category by defining a morphism f :  X+X’ of complexes as a 
family of morphisms f. : X,,+Xi such that dLf. = f,,d, for all n. (Actually 
V ( d )  can be viewed as the category of additive functors to d from an appro- 
priate additive category. See 11, exercise 16.) We have additive functors 
C,, Bn, Z,,, BL, Z;, : V ( d )  +d which are defined for each integer n as follows: 

G ( X )  = Xn 

= Im(dn+l) 
Z,(X)  = Ker(d,,) 

B i ( X )  = Coim(d,,) 

Z,l(X) = Coker(d,,+,). 

Observe that B,, = B,l+,. The distinction is made only to facilitate duality. 
The relation d,,d,,+, = 0 shows that B,, c Z,,, and so we can define further 

H,, : V ( d )  +d by H,,(X) = Z,(X)/B,(X). The first Noether isomorphism 
theorem (I, 16.2) then gives us an exact, commutative diagram offunctors and 
natural transformations for each n, 

0 0 

0 0 
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In the dual category d*, a complex Xin d becomes a complex X *  if we set 
(X*), ,  = (X-,,)*. We have Z,,(X*) = (ZL,,(X))* and ZL(X*) = (Z,(X))*,with 
similar relations holding for the B's. It follows from (1) that 

Hn(X*) = (H-n(X))** 

Consider the composition Z; -+BL x B,, -+Z,,-l. Since B,, +ZPl is a 
monomorphism it follows from (1 )  that the kernel of this composition is 
H,, -+Z,l. Similarly since Zi -+BL is an epimorphism we see that the cokernel is 
Z,, -+ H,,-,. That is, we have an exact sequence 

O-+H,,-+Z,'-+Z,,-l-+H,l - t o  (2) 

for each n. Now it follows from 11, 12.2, that Z, is limit preserving and Z,l is 
colimit preserving. Hence, given an exact sequence of complexes 

(3) 0 -+ X'  -+ X -+ X "  + 0, 

using (2) we obtain a commutative diagram 

0 0 0 

0 0 0 



154 VI. APPLICATIONS OF ADJOINT FUNCTORS 

where the columns and middle two rows are exact. There results a connecting 
morphism 8, : H,,(X”) +H,,- ,(X‘) which is such that the sequence 

is exact (IV, 3 1 ). Since the connecting morphism of a diagram of the form (4) 
is self-dual (IV, exercise 2) ,  it follows that the connecting morphism relative to 
the dual ofthe exact sequence (3) is simply 6 considered as a morphism in the 
dual category. Observe that if any two of the complexes in the sequence (3) is 
exact (so that H,, = 0 for all n), then by the exact sequence (5) the third com- 
plex must also be exact. Also the exactness of (5) shows in particular that the 
functors H, are half exact. 

= A  with 
d,, = l,, &(A) ,  = 0 for i #n, n- 1, and Sn(a),, = S,,(a),-, = a. Then there is an 
obvious one to one correspondence 

Consider the functor S,, : sit+%‘(&) defined by S,,(A),, = 

[Sfl(A), XIU(4 x [A ,  4l.d 
which is natural in A and X .  That is, S,, is a coadjoint for C,,. Since a family 
{S,,(A,,)}nEz involves only a finite number (two, at  most) of objects in each 
dimension n, it follows that the family {S,} is coproductive. Also the family 
{C,} is collectively faithful. Hence by V, 7.4, if&‘ is a projective class in &’ and 
&‘%‘(sit) is the class of morphisms in %(d) which are pointwise in &‘, then 
&%(sit) is a projective class in %‘(sit). We are going to show that the &??(sit)- 
projectives are precisely the objects of the form @ S,,(P,) where P,, is b-projec- 

tive. In  the first place it is clear that the functors B,,-, : %(sit) +sit satisfy 
condition (1) of V, 7.5. To show that condition (2) is also satisfied we remark 
first that any €‘%(&’)-projective X ,  being a retract of an object of the form 
0 S,(P,), must be an exact complex. That is, B,,(X) = Z, , (X) .  Now if 

a : X +  Y is a morphism of BV(d)-projectives such that B,,(a) is an isomor- 
phism for all n, an application of the five lemma to the exact commutative 
diagram 

nEZ 

nEZ 

0 - B,( Y )  - Y,, - Bn-l( Y )  - 0 

shows that a must be an isomorphism. Hence the desired result follows from 

Now consider the functor Si : &’+%‘(sit) defined by SL(A), = A, SL(A), = 0 
for i # n, and q(a) , ,  = a. Then it is easy to see that is a coadjoint for Z,,. Again, 
since a family {Sn(A,,)},,Ez u {SL(AL)},,ez involves at most three nonzero objects 

v, 7.5. 
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in each dimension, it follows that the family {S,,} U {SL} is coproductive. Thus 
by V, 7.4, if€ is a projective class in d and a%(&) ' is the class of morphisms u 

in %(d) such that C,,(a) and Z,,(o!) are in € for all n E Z, then &%(&)I is a 
projective class in %(&'). We are going to show that the &%(sit)'-projectives 
are precisely the objects of the form @ S,,(P,,) 0 s/,(Pi) where P,, and Pi are 

&-projective. 
nEZ 

Let X = @$,(A,) @ S;(AL). Then we have natural isomorphismr 

In particular, (8) and (10) show that the family {Bn-l} u {H,,} satisfies condition 
(1 )  of V, 7.5. Now if u : X+Y is a morphism in U(d) such that B,,(u) and 
H,,(a) are isomorphisms for all n (Xand Ydo not have to be&%(&')'-projective 
here), then applying the five lemma to the exact sequence 

0 + H,, + Z,l +B,, +O 

we see that Z,'(u) is an isomorphism. Hence another application of the five 
lemma to the sequence 

0 + B,, +C,, --f Z,l --f 0 

yields that o! is an isomorphism. Thus condition (2) of V, 7.5, is satisfied, and 
so the &%(d)'-projectives are as stated. 

Finally, we consider the case where d = dl, where we suppose that d has 
projective resolutions. Starting with a complex X in %(d) we can find an 
exact sequence 

O - + K 1 + X o - - f X - + O  

where X o  is €%(d) '-projective and X o  -+X is in a%(&) I .  Thus the sequences 

and 
0 +C,,(KI) +C,(XO) +C,(X) +o 

0 + Z,(K I )  + Z,,(XO) + Z, , (X)  +O 

( 1  1 )  

(12) 

are exact for all n. An application of the nine lemma (I, 16.1*) to the exact 
sequence 

then shows that 
O+Z,,-+C,,+B,,-, +O (13) 

O+B, , (K ' )  +B,,(Xo) + B , ( X )  +O (14) 

is exact for all n. Hence by the exact sequences 

and 
0 -+ B,, + Z,, + H,, +O 

0 + B,, + C,, -+ Zi + 0 
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we see that the sequences 

O-+Zi (K' )  + Z i ( X O )  + Z l ( X )  +O (17) 

O+H,(K' )  +H,(XO) +H,(X) - t o  (18) 
and 

are exact. We can then replace X by K and repeat the process. By such an 
iterative procedure we obtain an dV(d)'-projective resolution 

+. . . + X '  +xo+x+o. (19) --f xi+' --f xi + xi-1 ... 
Using Eqs. (6)-( 10) and exact sequences ( 14), ( 1 7), and ( 18), we see that if we 
apply the functors C,, B,, Z,, Z;, and H, to (19), we obtain projective resolu- 
tions in & for C , ( X ) ,  B,,(X),  Z , ( X ) ,  Z i ( X ) ,  and H,(X) respectively. Thus we 
have shown that every complex in d has a projective resolution in the sense of 
Cartan and Eilenberg [6, p. 3631. Conversely, suppose that we are given an 
order 2 sequence (19) which is such that when we apply H, and B,, we obtain 
projective resolutions for H , ( X )  and B , ( X ) ,  respectively, for all n. Using (13), 
(15), and (16), we see that if we apply Z,, C,, and Z,l to (19), we obtain exact 
sequences. From (15) we can write Z , ( X i )  = Bn(Xi )  @ H,(Xi )  since H,(Xi )  is 
projective. Then from (13) we can find a coretraction u : B,,-'(Xi) +C,(Xi )  
since Bn-'(Xi) is projective, and we can write 

x; = C,(Xi) = Z,(Xi) @ B,-, ( X i )  (20) 
= B,(X') @ H,(X') 0 B,-'(Xi). 

If we compose X;+X,,-' with either of the inclusions B,(Xi)  - t X ;  and 
H,(Xi )  +X;,  we obtain 0 since both are subobjects of Z , ( X i ) .  O n  the other 
hand, we have 

U U 

B,,(X') +X:-tX;-'  = &(Xi) +X;+B,- ' (Xi )  + X L '  
= B,,(X') +X;-'. 

Therefore it follows from (20) that 

xi = @ S,(B,'(Xi)) @ s",(H,(X')). 
nEZ 

Consequently, X i  is &%(&)'-projective for all i 3 0. 

Exercises 

1. Let R be an integral domain. An R-module A is called torsion free if 
ra = 0 for r E R and a E A implies that one of r or a is zero. Show that the 
injective envelope of a torsion free R-module is torsion free. Hence, show that 
the full subcategory A of RB consisting of all torsion free modules is a mono- 
subcategory of RB, and further that A is pure with respect to .A if and only if 
A is torsion free and divisible (use 11, exercise 18). Consequently, the category 
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d of torsion free and divisible R-modules is abelian, and in particular the 
category of torsion free, injective abelian groups is abelian. Show directly that 
d is isomorphic to the category ofvector spaces over the field ofquotients of R. 
2. Use the Tietze extension theorem [25, p. 2421 to show that the category 
V X Y  of compact Hausdorff spaces has an injective cogenerator. Also use the 
Tychonoff product theorem [25, p. 1431 and II,2.4, to show that V X Y  is a 
complete subcategory of the category XY of all Hausdorff spaces. Con- 
sequently, %XY is a coreflective subcategory of XY. 
3. Let A be a right R-module and B a left R-module. Let F be the free abelian 
group generated by pairs (a, b )  with a E A and b E B, and let G be the sub- 
group of F generated by elements of the form 

(a  + a‘, b )  - (a, b )  - (a‘, b )  
(a, b + b’) - ( a ,  b )  - (a,  b’) 

(or ,  b )  - (a, rb) 

Then define A QR B as the quotient group FIG, and for morphisms a : A + A  I 

and p : B + B ,  define a QR p in the obvious way so as to make QR into an 
additive covariant bifunctor from BR x R B  to 3. For A E BR, B E R9?s, and 
C E gS establish a natural equivalence of trifunctors 

( Y  E R). 

[ A ,  [B, W [ A  O R B ,  CIS 

thereby showing that the above definition of tensor product is a special case of 
the one given in the text. 
4. Establish a natural equivalence of trifunctors 

M @ S ( N @ R C )  ( M @ S N )  @ R C  

for M E Bs, N E SBR, and C E Rd, where R and S are any rings and a? is a 
cocomplete abelian category. 
5. Consider a covariant additive functor S : +d where d is cocomplete 
abelian. Then S(R) is a right R-object in d, and so we can consider the 
covariant colimit preserving functor T : R B + d  defined by 

T ( M )  = S(R) gR M .  

Apply IV, 5.4, to find a natural transformation T+S which is a natural 
equivalence in the case where S is colimit preserving. Hence the covariant 
colimit preserving functors from RB to a? are precisely those given by tensor- 
ing with a fixed left R-object i n d .  This generalizes results due independently 
to Watts [34] and Eilenberg [9]. 
6. L e t d  be a cocomplete abelian category and let S : R9 +d be any additive 
functor. If C is a right R-object in d,  use IV, 5.4, to establish a one-to-one 
correspondence 

Show that this is an isomorphism of groups and is natural in C and in S. 

[c @R, s] [c, s(R)]R. 
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7 .  Let T :  gR x R ' 3 - - + 9  be a covariant colimit preserving bifunctor. Use the 
generalization of IV, 5.4 (IV, exercise 1 l ) ,  to produce a natural equivalence 

T ( A ,  B,  A @R T(R, R, @R 

Hence Tis naturally equivalent as a bifunctor to the tensor product ifand only 
if T is colimit preserving and T(R,  R) is isomorphic to R as a left R, right 
R-bimodule. 
8. Let T :  9 x '3--+9 be a limit preserving bifunctor, contravariant in the 
first variable and covariant in the second variable. Then by 2.1, for fixed 
A E 9 we have a natural equivalence of the functors of B 

T(A, B)  = [ M ( A ) ,  BI (1) 
for some M ( A )  E '3. Using IV, 2.2, M can be considered as a functor in such 
a way that (1) becomes a natural equivalence of bifunctors, and M is colimit 
preserving. Suppose that T has the property that T ( Z ,  B )  is an exact functor 
of B. Then M ( Z )  is a projective group, hence free (see, for example, [6, I ,  
5.31). Hence, if T ( Z ,  Z )  x Z ,  then M ( Z )  x Z ,  and so M is naturally equi- 
valent to the identity functor on 8. In other words, T is naturally equivalent 
as a bifunctor to [ , ] if and only if T is limit preserving, T ( Z ,  Z )  z Z ,  and 
T(Z, ) is exact. (This exercise was suggested by Michael Shub.) 

9. For M ,  C E R9 and A E 9, establish a natural equivalence of trifunctors 

YM, [ A ,  Cll = [A ,  YM, Cll 
to show that in this case the symbolic morphism functor R{ M ,  C} is the same as 
the ordinary morphism functor R[M, C]. 
10. Let d be a small additive category and let 9? be a locally small abelian 
category which is complete and cocomplete. Then the existence of a coadjoint 
for EA : (d, 9) --+9 could be established using V, 3.1, as follows. For B €9 
take as a solution set the set of all additive functors T : d+9 such that for 
each A ,  ~ d t h e o b j e c t  T(A,)  isaquotientobjectof[AiAilB. Givenf: B + S ( A ) ,  
define I ( A  ,) as the image ofthe morphism [ApAJB +S ( A , )  whose ath coordinate 
is S ( a ) f .  Show that I is a subfunctor ofS (hence is additive) and thatffactors 
through I ( A )  --+ T(A)  (Freyd). 
11. The discussion in $6 applies if 9 is replaced by any complete abelian 
category g which has the following property: If T : d + g  is a monofunctor, 
then there is a monomorphism T +  Q with Q kernel preserving and injective in 
(d, 9). Hence if d has projectives, apply duality and IV, exercise 7, to 
show that the reflector Lo : (d, 9) +9(d, '3) is an exact, limit preserving 
functor and that 9(d, '3) is a complete and cocomplete abelian category with 
a cogenerator and a projective generator. 
12. Generalize the results of $5 to functors of several variables 

T : & ' ~ x ~ * x  ... ~d,,--+9 

where each di is a small abelian category. 
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13. Let F : d+9 be an additive covariant functor where d is a small 
abelian category. For A E&’ let T ( A )  be the set of x E F ( A )  such that 
F(a)(x)  = 0 for some monomorphism a. Use I, 20.2* to show first that T ( A )  is 
a subgroup ofF(A) and second that Tis a subfunctor ofF. Hence show that T 
is the maximal torsion subobject of F with respect to A(&’, 3). In the case 
where there exists a monomorphism A + Q  with Q injective, show that T ( A )  
is the kernel of F ( A )  -tF (Q) (Freyd). 
14. Let F : d+9 be covariant and additive where d is an abelian category. 
with projectives. For each A E d choose an epimorphism PA+A with P A  
projective. Then the reflection R o f F  in the category of epifunctors is given by 

R(A) = Im(F(PA) + F ( A ) ) .  

In  particular, if F = H E ,  then R ( A )  is the set of all a E [ B ,  A ]  such that a 
factors through a projective (Freyd) . 
15. Let d be an abelian category with projectives. Then V, 5.2, and V, 5.4, 
are valid if the category B is replaced by the full subcategory o f d  consisting 
of all projective objects and the expression “ colimit preserving” is replaced by 
“ cokernel preserving.” (The proofs are identical, except that here there is no 
need to deal with coproducts of members of 9’ since every object in d is 
already the quotient of a member of 9.) It  follows that if T : d+99 is an 
additive functor where 99 is abelian, then the unique cokernel preserving 
extension T : d +9 of TIB is the derived functor of T. Furthermore we have 
an equivalence of categories 9(d, 9) FZ (9, g), showing that B(d, 9) is an 
abelian category possessing the completeness and generation properties of 
9 (cf. exercise 1 1 ) . 

The above generalizes to functors of several variables by remarking that the 
above analogues of V, 5.2, and V, 5.4, also generalize to functors of several 
variables (cf. V, exercises 11 and 12). 
16. Let d and 9 be abelian categories and suppose that d has injectives. 
Show that an additive functor T : &‘+a is a torsion object with respect to 
A(&, 99) if and only if T( Q) = 0 for every injective Q E d. (Use exercise 
15*.) 
17. Let d be a small abelian category with injectives. Use exercise 16 and 
IV, 2.1, to show that if Q ~d is injective, then H Q  is projective in 9(d, 3). 
Hence show that @ H Q  is a projective generator for 9(d, 3), where Q runs 

through all injectives in d. 
18. Consider an additive functor T : d -tR9 w h e r e d  a n d g  are abelian, and 
let be the group valued functor obtained by composing T with the forgetful 
functor from R37 to 9. Let Ro be the 0th coderived functor of T. An element 
I E R induces a natural transformation from which in turn induces a 
natural transformation from Ro T to Ro T. Show that in this way Ro T can be 

4 

to 
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considered as a functor with values in RA?, and as such it is the 0th coderived 
functor of T. 
19. Let d be an abelian category. Given an epimorphism L --f L" in 9(d, 9) 
and a morphism HA+L", show that these can be put into a commutative 
diagram 

HE- H A  

L -  L" 

where A + B is a monomorphism in d and hence H B  + H A  is an epimorphism 
in 2(d, 9). (Use exercise 13 and IV, 2.1 .) Then, letting L" = H A  and taking 
HA+L" as the identity on HA,  show that if 

O+HC+L+HA+O 

is a short exact sequence in 9(d, Y), then L is representable. (Show that 
H E  @ HC+L is an epimorphism in 9(d, Y) and hence form a 3 x 3 exact 
commutative diagram in which all functors are representable functors save 
possibly L) (Freyd) . 
20. Given a ring R and an R-module M, let I M I denote the cardinal number 
of the underlying set of M. Let p be any infinite cardinal number > IRI. The 
full subcategory of 3" consisting of all modules M such that I M I < p is an 
abelian category with coproducts indexed over sets of cardinal number < p. 
Hence i f g  is an abelian category with coproducts indexed over sets ofcardinal 
number < p, then the tensor product M I&, C can be constructed as in 3.1 
for any R-object C and any R-module M such that I M I < p. Thus, if d is a 
small additive category such that [A, A'] < p for all pairs A, A' ~ d ,  then 
coadjoints SA for the evaluation functors EA : (d, a) +A? can be constructed. 

Ifpis any infinite cardinal a n d d  is any small category such that I [ A ,  A']  I < p 
for all A, A' E d, and ifA? is any category with coproducts indexed over sets of 
cardinal number < p, then coadjoints can be constructed for EA : [d, A?] +a. 
21. Let d be a C, category. Then the functors B,,, Z,,, B;, ZL, H,, : U ( d )  +d 
are all coproduct preserving. 
22. Given an exact sequence of complexes in an abelian category 

0 +X'  +X+X" +o, 
let 6 denote the composition Z,(X")  +H,,(X") -H,,-l(X'). Show that the 
sequence 

8 
O+Z,,(X') +Z,(X)  +Z,(X") +H,,(X') -tH,,(X) +H,,(X") 

is exact. 
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Extensions 

Introduction 

An extension (or 1-fold extension) of an object A by an object C in an 
abelian category is a short exact sequence O+A+B+C+O. Two such 
extensions are called equivalent if there is a morphism from one to the other 
with identity morphisms on A and Ca t  the ends. In 1934, Baer [2] defined an  
addition on the class Extl(C, A )  of equivalence classes of extensions of an 
abelian group A by an abelian group Cin such a way that Ext'(C, A )  became 
an abelian group. In  [6 ]  Cartan and Eilenberg gave a definition of a connected 
sequence of group valued bifunctors {Ext"(C, A)}n2,, which was valid in any 
abelian category having either projectives or injectives. Then Yoneda [35] 
showed that the groups Ext"(C, A )  could be defined in terms of equivalence 
classes of n-fold extensions of A by C: that is, exact sequences of the form 

O + A + B , - I + B n - - 2 + . . . + B 1  +Bo+C+O.  

This enabled one to define the connected sequence of group valued functors 
{Ext"} for arbitrary abelian categories. The trickiest thing was to prove the 
exactness of the connected sequence without the use of projectives or injectives. 
This was done by Steven Schanuel and is presented here in 4.1 and 5.2. A proof 
of this was sketched also by Buchsbaum in [4]. 

The presentation of the material in this chapter owes much to a course in 
homological algebra given by Saunders MacLane at the University of Chicago 
during the summer of 1959. An appendix relating the Baer-Yoneda definition 
of Ext to the Cartan-Eilenberg definition has been included a t  the end of the 
chapter. A generalization of the theory by Buchsbaum is outlined in exercise 5. 

All categories in this chapter will be abelian. 
We begin with a few notational remarks. We shall suppress subscripts on 
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identity morphisms whenever there is no ambiguity, writing 1 in place of 1,. 
As in I, $17, the morphism A : A + A  @ A is the one represented by the 

matrix (i)  and V : A @ A + A  by the matrix (1, 1). The morphism 

T : A @ A + A  @ A is given by the matrix ( y  i). If a : A + B  and 

a’ : A’+B’, then a @ a’ : A @ A’+B @ B’ is represented by the matrix 

(i :,) . Given two short exact sequences 

P A  
E : O + A + B + C + O  

E’  : O+A’+B’+C‘+O 
p ,  A’ 

the sequence 

will be denoted by E @ E’. Asimilar definition can be made for the coproduct 
of two exact sequences of any length. A morphism from the sequence E to 
the sequence E‘ is a commutative diagram 

0 - A - B - C - 0  

and is denoted by (a ,  8, y )  . 

E :  O+A+B+C+O. We shall say that E is equivalent to E‘: 
For fixed objects A and C, consider the class of all exact sequences of the form 

0 + A  +B’ +C+O 

if there is a morphism (1, 8, 1) : E + E’. By the five lemma we see that 8 must 
be an isomorphism, hence we have indeed an equivalence relation. However 
8 is not usually unique. If E is equivalent to E’ we shall abuse the notation by 
writing E = E’. 

Given a diagram of the form 
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with E exact, by I, 20.3,  we can imbed this in a commutative diagram 

8 : 0  - A  -B v C - 0  

1/ ij ly 
E:O - A -  B ---+ C - 0  

with Eexact. In  fact, it suffices to take the right-hand square as a pullback, and 
define A +B as the morphism induced by the given morphism A + B and the 
zero morphism from A to C'. 

Lemma 1.1. Given a morphism ( a ,  8, y )  : E'+E of short exact sequences, we can 
jind a commutative diagram 

E :O -+ A - B - C - 0 

where I? is exact and p/3' = /3. 
Proof. We form i? as in ( 1) .  Then 8' can be defined from the pullback property 
of (1)  so as to make the northeast corner of ( 2 )  commutative, and so that 
b/3' = 8. That the northwest corner is commutative follows from the fact that 
both compositions yield the same thing when composed with both B+C' and 
B+B. I 
Corollary 1.2. The sequence E satisfying ( 1 ) is unique. 

Proof. This follows immediately by replacing a by 1, in 1.1. I 
In view of 1.2 we shall denote the sequence l? of (1) by Ey. Dually, given a 

morphism a : A +A',  the sequence aE is defined by the commutative diagram 

i I I/ 
a E : O  -A' -  B ------+ C - O 

Thus a morphism (a ,  8, 1) : E +E' expresses the fact that E' = aE. I t  will not 
usually be necessary to give a name to the middle morphism (which is not 
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unique in any case). Therefore we shall write (a, , 1)  : E+aE and 
( 1 , y) : y E  -+ E. Lemma 1.1 then says that given a morphism (a, , y) : E'+E 
we can find a factorization 

Hence aE' = E = Ey.  

Lemma 1.3. The following are true whenever either side is defined 

(i) 1E = E (i*) E l  = E 

(ii) (a 'a)E = a ' (aE)  

(iii) ( a E ) y  = a ( E y ) .  

(ii*) E ( y y ' )  = (Ey)y ' .  

Proof. (i) and (ii) are obvious. To prove (iii) we consider the composition 

(1, ,Y) (a, , I )  
Ey+E--- - tuE.  

Applying 1.1, this can be rewritten as 

which shows that a(Ey)  = I? = ( a E ) y .  1 
Lemma 1.3 enables us to write a'aE, Eyy', and aEy without ambiguity. 
Let Ext$(C, A)  denote the class of equivalence classes of short exact 

sequences of the type 
O + A + B + C + O .  

When no confusion can arise we shall write Ext'(C, A).  A logical difficulty 
(apart from the commonplace one that the members of Ext'(C, A)  may not 
be sets) arises from the fact that Ext'(C, A) may not be a set, Of course i f d  is 
small, then Ext'(C, A) will be a set. Likewise it can be shown that Ext'(C, A) 
is a set if& has projectives or injectives (see the appendix to this chapter), or 
i f d  has a generator or a cogenerator (exercise 1 ) .  However, in order not to 
restrict ourselves to any particular class of abelian categories, we introduce at 
this point the notion of a big abelian group. This is defined in the same way 
as an ordinary abelian group, except that the underlying class need not be a set. 
We are prevented from talking about "the category of big abelian groups" 
because the class of morphisms between a given pair of big groups need not be 
a set. Nevertheless this will not keep us from talking about kernels, cokernels, 
images, exact sequences, etc., for big abelian groups. These are defined in the 
same set theoretic terms in which the corresponding notions for ordinary 
abelian groups can be described. Nor will we be very inhibited in speaking of a 
big group valued functor from a category, and a natural transformation of two 
such functors. In fact, it is precisely the aim of this section to show that Ext' 
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is a big group valued bifunctor, Henceforth in the chapter the term group will 
he understood to mean big group. 

We define an addition in Ext'(C, A )  by the rule 

E + E '  = V ( E  @E')d 

and proceed to show that + makes Ext'(C, A )  an abelian group. In the 
following lemma we make use of the easy relation 

aV = V ( a  @ a )  

a + a' = V ( a  @ a')d 
and the relation 

of I, 18.3. 

(3) 

(4) 

Lemma 1.4. The following are true whenever either side is dejined. 

(i) ( a  @ a ' ) ( E  @ E ' )  = aE @ a'E' 

(ii) ( a  + a' )E = aE + a'E 

(iii) a(E + E')  = aE + aE' 

(i*) ( E  0 E ' ) ( y  0 y ' )  = Ey 0 E'y' 
(ii*) E ( y  + y ' )  = E y  + Ey' 

(iii*) ( E  + E')y = E y  + E'y .  

Proof. The proof of (i) is trivial. To prove (ii) we observe the morphism 
(d, d, A )  : E + E  @ E which shows that dE = ( E  @ E ) d .  Then using (i) 
and Eq. (4) we have 

( a  + a')E = V ( a  @ a')dE = V ( a  @ a')(E @ E)d 
= V ( a E  @ a 'E)d  = aE + a'E. 

For (iii) we use (i) and Eq. (3) to obtain 

a ( E  + E ' )  = aV(E @ E ' ) d  = V ( a  @ a) (E  @ E')d 
= V ( a E  @ aE' )d  = aE +uE'. 

Theorem 1.5. The ofieration + gives Ext'(C, A )  the structure o f a n  abelian group. 

Proof. We first prove associativity. We have 

I 

E + (E'  + E")  = E + V(E' @ E")d  = V ( E  @ V(E'  @ E " ) d ) d  

= V((1  @ V ) ( E  @ (E' @ E " ) ) ( l  0 d))d 

= V ( l  @ V ) ( E  @ (E' @ E " ) ) ( l  @ d)d. (5) 

(6)  

Similarly, we have 

( E  + E ' )  + E n  = V(V @ l ) ( ( E  @ E ' )  @ E " ) ( d  @ 1)d. 

If we identify E @ (E' @ E " )  and ( E  @ E ' )  @ E" in the obvious way, it i- 
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easy to show that V ( l  @ V) = V(V @ 1) and (1 @ d)d = (d @ 1)d. Hence 
associativity follows from (5) and (6). 

Next we prove commutativity. The morphism 

shows that r ( E  @ E ’ )  = (E’ @ E ) T .  Also it is clear that V r  = V and T A  = A .  
Hence 

E + E’ = V ( E  @ E ’ ) d  = V T ( E  @ E ’ ) A  = V ( E ’  @ E ) T A  

= V ( E ‘ @ E ) A  = E + E .  ’ 

Now we show that the split exact sequence 

E,: O + A + A  @C-+C+O 

acts as a zero element for Ext’(C, A ) .  Consider an arbitrary sequence 

I r h  
E : O + A + B + C + O  

and form the diagram 

E:,@E:O A @ A  --+ ( A @ C ) @ B  - C @ C  --+ 0 

(7) 

The morphism a is defined by the matrix , 6 by means of the matrix (3 (A :), y by means of the matrix (: : y )  , and by means of the matrix 

. Then commutativity of the diagram comes from a few simple matrix 

multiplications, and the middle row, being the coproduct of E with the 
sequence 0 +O +C = C+O, is exact. This shows that E = E ,  + E as required. 

Finally we show the existence of an additive inverse for each sequenc e(7). 



2. THE EXACT SEQUENCE (SPECIAL CASE) 167 

First we prove that OE = Eo. This follows from the commutative diagram 

E:O - A ---+ B 4 C- 0 

where is represented by the matrix . Then we have, using 1.4, (ii), (3 
Eo = OE = ( 1  + ( -  1))E = 1E+ ( -  l ) E  = E +  ( -  l ) E .  

Therefore ( -  l ) E  acts as an additive inverse for E. I 
When there can be no danger of confusion we shall write 0 in place of E,. 
Given a morphism a : A +A',  we define a function 

& = Ext'(C, a) : Ext'(C, A )  +-Ext'(C, A') 

by the relation & ( E )  = aE. Similarly, if y : C' +-C we define 

9 = Extl(y, A )  : Ext'(C, A )  +Extl(C', A )  

by 9 ( E )  = Ey. Then by 1.3, 1.4, and 1.5 we see that Ext' is an additive group 
valued bifunctor, contravariant in the first variable and covariant in the 
second. 

2. The Exact Sequence (Special Case) 

Consider any exact sequence 

E : O + A + - B + C + O  

and any object X .  Then we have a function 

6' : [ X ,  C] +Ext'(X, A )  

defined by O(y) = Ey. It  follows from 1.4 that 6' is a group morphism. If Y +- X 
is any morphism, then by 1.3 we get a commutative diagram 
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In other words, 8 is a natural transformation from Hc to Extl( , A). Further- 
more, using 1.1, a commutative diagram 

0 - A - B - C - 0  

with exact rows induces a commutative diagram 

[ X ,  c] - Ext'(X, A )  

[ X ,  @I - Extl(X, A') 

The morphism 8 is called the covariant connecting morphism at  Xrelative 
to the short exact sequence E. Dually, one obtains a contravariant connecting 
morphism 

8 : [A ,  XI +Extl(C, X)  

defined by B(a) = aE. Diagrams dual to (1) and (3) relative to morphisms 
X - t Y  and commutative diagrams (2) are obtained in this case. 

The proof of the following lemma is left to the reader. 

Lemma 2.1. Given a diagram of the form 

X 

E:O - A - B  - C - 0 

with E exact, then y can be factored through B +C i fand onb i f E y  = 0. I 
Proposition 2.2. Relative to an exact sequence 

L b . 4  

O+A-+B+C+O 
the sequence 

- x 8 i k 
O + [ &  A ]  L [ X ,  B] + [ X ,  C] +Ext'(X, A )  +Extl(X, B )  +Extl(X;C) 

is exact. Here we have denoted [ X ,  p] and [ X ,  A] by and A, respectively. 
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Proof. The exactness at places involving only the morphism functors is 
already known. There are six things to show, namely, image t kernel and 
kernel c image at each of the three remaining places in the sequence. 

1. It  follows from 2.1 that Ox(p) = 0 for any 
2. An easy application of 2.1* shows that $O(y) = 0 for any y E [X, C]. 
3. Since hp = 0, we know $2 = 0 by a property of the additive functor 

4. Suppose that O(y) = 0. Then by 2.1, y = x(p) for some 
5. Suppose that $ ( E )  = 0. Consider the following commutative diagram: 

0-A ' + B - C - O ,  

E [ X ,  B ] .  

Ext'(X, ). 
E [ X ,  B ] .  

A 

E :  0 - A - B' __* X - 0 

O - B ~ B @ X - + X - O  
P 

Now pp : B'+B makes the northwest corner of the diagram commutative. 
Defining y : X +Gas the morphism making the northeast cornercommutative, 
we have E = O(y) .  

6. Suppose that $ ( E )  =O. Then we have the following commutative 
diagram? 

0 

E:O - B -  B ' -  X ___+ 0 

o - c ~ c @ x - - + x d o  

I P  0 

~ 

t The inelegant argument on page 170 can be avoided if one replaces the bottom row of the 
diagram by 0 + C=C -+ 0 + 0 and uses Lemma 2.1 * in conjunction with the 9 lemma. 



170 VII. EXTENSIONS 

where K -+ B' is defined as the kernel pp, the morphism A + K is defined since 
A + B  -+B' +C @ X+C = A 4 B +C = 0,  and K + Xis just K +B' + X .  We 
must show that E' is exact. In the first place A + K is a monomorphism since 
A + B and B -+ B' are monomorphisms. Also 

A + K + X  = A + K + B ' + X  = A + B + B ' + X  = 0. 

Suppose that Y + K + X = O .  Then Y + K + B ' + X = O  and so we obtain a 
morphism Y + B  such that Y 4 B + B '  = Y + K + B ' .  But then 

and so we have a morphism Y + A  such that Y + A + B  = Y-+B.  I t  then 
follows from the fact that K + B' is a monomorphism that Y -+ K = Y + A -+ K .  
Therefore A + K is the kernel of K + X .  It remains to be shown that K + X is 
an epimorphism. Observe first that 8, being opposite an epimorphism in a 
pushout diagram, is an epimorphism. Also sincepp is an epimorphism, it is ;he 
cokernel of K+B'. Now suppose that K + X + Z  = 0. Then 

Y + B + C =  Y + B - + B ' + C @ X + C =  Y + K + B ' + C @ X + C = O ,  

K + B ' - + C  @ X + X + Z  = 0, 

and so there is a morphism C 4 Z  such that 

B ' + C @ X + C + Z =  B ' + C @ X + X + Z .  

But since B' +C @ X is an epimorphism, we must have 

C @ X + X + Z =  C @ X + C + Z ,  

and so it follows that X + Z  = 0. Therefore E' is exact, and so we have 
E = @(El) .  I 

3. Extn 

Consider an exact sequence 

A 

E : 0 + A  +B,l+ Bn-2 -+ . . . + B l +  Bo +C+O. 

We call n the length of E, and we call A and C the left and right ends res- 
pectively of E. A morphism E -+E' of sequences of length n is a commutative 
diagram 

E:O + A + B,-I + Bn-2 --+ . . . + B ,  --+ Bo + C + 0 

"4 3. 4 4 3. 4y 
E':O -+ A'+ Bk- ,  + Bh-2 -+ . . . + B; -+ BA + C'+ 0 

If E and E' have the same left end and the same right end and if a and y are 
identity morphisms, then we shall say that the above morphism of sequences 
has fixed ends. Again we shall write E = E' if there is a morphism from E to E' 
with fixed endssuch that themorphisms Bi +B; are all isomorphisms. However, 
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it does not follow for n > 1 as it did for n = 1 that if u and y are identities, then 
all the other vertical morphisms are isomorphisms. 

Suppose that 

F : 0 ;C+Bk-, -+ Bk-2 +. . . + B; -+BL + D +O 

is an exact sequence of length m whose left end is the same as the right end of E 
above. Then we can “splice” the two exact sequences, obtaining an exact 
sequence 

ru\ 
EF : 0 + A  + Bn-, +. . . -+ Bl  + Bo -+ Bk-, +. . . + Bh -+ D -+O 

of length m + n. 
O n  the other hand, given E we can define 

Ki = Im(Bi+Bi-,) = Ker(B,, +Bi-2), i = 1, Z,.. ., n - 1, 

and obtain the following exact sequences of length 1 : 

En : 0 -+A -+ B,, -+Kn-, + 0 

E,, : O+K,l+Bn-2+Kn-2+0 

. ,  
E i :  O+Ki +B,, +Ki-, -tO 

E , : O + K ,  + B ,  +C +O, 

Then we have E = EnE,, ... E3E2El .  If u : A - t A ’  we define 

aE = (uE,)E,,. . .E,E,. 

Dually, if y : C’ +C we define 

Ey = EPn-1. * .EZ(ElY). 

Then, clearly, the relations 
1E = E = El  

(u‘u)E = u‘(uE) 

E(Y7‘) = ( W Y ’  

( m y  = 4 E y )  

are true whenever either side makes sense. 
Suppose that E and E‘ are exact sequences of length 1,  and that /? is a 

morphism such that (EB)E’ is defined. Then E (BE‘) is defined, but unless /3 
is an isomorphism this will not in general be the same as (EB)E’.  What we 
have is a morphism with fixed ends 

(EB)E‘+E(BE’) .  (3) 
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We shall say that two exact sequences E = E,,E,, . . . E2E1 and 

E' = ELgwl.. .E;E; 

are equivaleat if we can obtain one from the other by a finite number of 
switches of the type (3). In  this case we write E - E'. If E - E', then clearly 
EF - E'F and C E  - GE' for any F and C for which the splicing makes sense. 

Proposition 3.1. Suppose that we have a morphism of exact sequences withjxed ends 

E:O -+ A + B,,-1 +- Bn-2 + . . . + B,  + Bo + C -+ 0 

II J. .1 5. J. II 
E':O -+ A -+ Ri-1 -+ Bi-2 -+ . . . -+ B; + Bh 3 C + 0 

Then E - E'. Conversely, suppose that E - E'. Then there is a chain of exact sequences 

E = Eo,El,E2 ,..., Ek-l,Ek = E' 

such that f o r  each i, 0 < i < k - 1, we have either a morphism E, +Ei+l or a morphism 
E,, +Ei  withjxed ends. 

Proof. We decompose E and E' into exact sequences of length one as in (1) .  
Then the morphism E -+ E' induces the following commutative diagram for 
each i: 

E,:O - K ,  - Bi-1 Ki-1 - 0 

E::O - KI - B i - ,  K i - ,  - 0 

Therefore we have 
PiEi = qPi-l, i = 2, 3,. . ., n - 1 

En = XPn-1 
PIE1 = E;. 

Thus we can write 

E,,E,,-l.. = (GPn-1)En-144. .E2E1 - G(Pn-lE"-dEn-2. * .E2El 
= X(J%w,Pn-2)K-2. J2EI 

= EFn-lJ%-Z. .(E;Bl)El - EPLlJ%n-Z. * .E;(PlEl) 
= J%Sn-1gw2.. .E;E;. 

The converse is simpler. In the case where we make a single switch on 
sequences of length two, we have a morphism from one sequence to the other 
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as indicated by (3). If the length of the sequences is greater than two, we can 
use the morphism (3) on the parts of the sequences where the switch takes 
place, and extend to the other positions by using identity morphisms. A finite 
number of such switches will thus give rise to a finite chain of morphisms, the 
direction of each morphism being indicated by (3) .  I 

Define Pretext”(C, A )  ( n  2 2) as the class of all exact sequences of length n 
with left end A and right end C. Define Ext”(C, A )  as the class of equivalence 
classes of Pretext“(C, A )  modulo the equivalence relation -. We put an  
addition on Pretext“(C, A )  by the rule 

E + E’ = V(E @ E’)d. 

We proceed to show that + defines an abelian semigroup structure on 
Pretext”(C, A ) ,  and furthermore induces an abelian group structure on 
Ext“(C, A ) .  

Lemma 3.2. The following are true whenever the combinations make sense. 

(i) ( a  @ a’)(E @ E‘) = aE @ a’E’ 

(ii) (E @ E’)(F @ F‘) = EF @ E’F’ 

(iii) (E + E:)F - EF + E’F 

(i*) (E @ E’)(y @ y‘) = Ey @ E’y’ 

(iii*) E(F + F’) - EF + EF’ 

(iv) ( a  + a’)E - aE + a’E (iv*) E(y + y’)  - Ey + Ey’ 
(v) a(E + E’) = aE + aE’ 

(vi) Given a morphism E -+ E’ with fixed ends, there exists morphisms aE +- aE’ and 
Ey --f E’y withfixed endr. Hence, f E  - E’, then aE - aE’ and Ey - E’y. 

Proof. (i) and (ii) are trivial. 
(iii) Write E = En. .  .El 

E‘ = E“,. . .E; 

(v*) (E + E’)y = Ey + E’y. 

F = F,.. .Fl.  

Then using (ii) we have 

(E + E’)F = (V(E @ E’)d)F 

= V(E,, @ Ei) .  . . ( (El  @ E;)d)F, .  . .F1 

N V(E, @ g) .  . .(El @ E ; ) ( d F , ) .  -.FI 

= V(En BE:) ...( El @ E ; ) ( ( F ,  @ F , ) d )  ... FI 

= V(En BE,) .  . . (El  @ E;) (F ,  @ F,). . . (F l  @ F l ) d  
= V(EF @E’F)d 

= EF + E’F. 
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(iv) Using (iii) and 1.4 we have 

(a + a’)E = (a + a’)En.. .El 

= (.En + a’E,)E,,. . .E l  

N aE,. . .El + a’E,. . .El 

= aE + a‘E. 
(v) Using (i) we have 

a(E + E’) = aV(E @ E’)d 

= V(a  @ a)(E @ E’)d 
= V(aE @ aE’)d 

= aE+aE’. 

(vi) is an easy consequence of 1.1. I 
Theorem 3.3. The operation + makes Pretextn(C, A) an abelian semigroup. 
Furthermore + induces an addition on Extn(C, A)  yielding the structure of an abelian 
group. 

Proof. The proof of associativity of + is the same as in the case of Ext (C, A ) .  
T o  prove commutativity we have 

E + E’ = V(E @ E’)d 

= V d E ,  0 E‘,). . .(El 0 E;)d  

= V(E‘, 0 E,)(T(E,,-, 0 K-1)). . .(El 0 E;)) .  . .(El 0 E;)d 

= V(E‘, 0 E,)T). . .(El @ E;)d 

= V(E1 0 EJ(E1-1 0 En-l)* + .(E; 0 E I ) T ~  

= V(E’ @E)d 

= E ’ + E  

where we are justified in writing = in place of - a t  the switches since T is an 
isomorphism. 

It is straightforward to show that the sequence 

Eo:O+A = A + O + O  ...+ O+C = C+O 

behaves as a zero for + . 
To show that + induces an addition on Ext”(C, A) we must verify that 

E + F - E’ + F whenever E - E’. In  view of 3.1 it suffices to show that given 
a morphism E + E‘ with fixed ends, there exists a morphism E + F + E’ + F 
with fixed ends. Now clearly there is a morphism E @ F + E’ 0 F with fixed 
ends. Hence taking a and y to be V and d respectively in 3.2, (vi), we obtain 
the required morphism E + F + E‘ + F. 
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Finally we show that Ext"(C, A )  has additive inverses. We first form the 
commutative diagram 

0E:O + A --f A @ K , , - ,  + B,,-z -+ . . .  -+ B ,  -+ Bo -+ C + 0 

4 4 4 3. I1 
A - 0 -  . . . +  0 - + C = C + O  Eo:O + A -  

II 

which shows that OE - E,. Then we have, using 3.2, (iv), 

& W O E =  ( l + ( - l ) ) E ~  l E + ( - l ) E = E + ( - I ) E ,  

so that the class of ( - 1 )E is an additive inverse for the class ofE in Extn(C, A ) .  I 
Again we shall write 0 in place of E,. 
Given u : A + A ' ,  we can define a function 

& = Ext"(C, u) : Ext"(C, A )  -+Ext"(C, A')  

by the relation &.([El) = [aE]  where [El represents the class of E. By (vi) of 
3.2 we see that & is well defined, and by (v) of 3.2 we see that it is a morphism 
ofgroups. A dual discussion applies to the other variable. It then follows from 
the relations (2) that Ext" is a group valued bifunctor, contravariant in the 
first variable and covariant in the second, and furthermore by 3.2, (iv) and 
(iv*), it is additive. 

We define Exto(C, A )  = [C, A ] .  Then we have the pairing 

Ext"(B, A )  x Ext"(C, B) +Extm+"(C, A )  

defined for m, n 2 1 by splicing sequences, and defined for m or n = 0 by the 
functorial character of Ext. From 3.2, (iii), we see that this pairing is bilinear. 
In  particular, it follows from this that ifE - 0, then EF - 0 and GE - 0 for any 
F and G for which the splicing makes sense. 

4. The Relation - 
In  3.1 it was shown that E - E' if and only if there is a chain of exact 

sequences E = Eo, El ,  E2,. . ., Ek = E' such that for each i, 0 < i < k - 1, there 
is either a morphism Ei+Ei+,  with fixed ends or a morphism E,, +Ei with 
fixed ends. In this section we shall show that we may always take k < 3. We 
shall adopt the following notation. Given a short exact sequence 

E : 0 --f A -+ B +C+O, 

we denote the morphism A -+B by p E  and the morphism B -+C by A,. 
The following lemma is due to Steven Schanuel. 

Lemma 4.1. Let E and F' denote exact sequences of lengths r and s, respectively 
(r, s 3 1 ) , such that the splicing E' F' is defined. Then the following are equivalent. 
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(a) E'F'-O. 
(h) There is a sequence G' and a morphism 'p such that E' N G'cp and 'pF' - 0.  
(c) There is a sequence H' and a rnorphism $ such that F' - $H' and Er$ - 0. 
Furthermore, in case r = s = 1, 'p may be taken as pF and $ may be taken ar hE. 

Proof. It follows immediately from the last remark of 93 that (b)* (a) and 
(c)*(a). We first prove (b)* (c) in the case r = s = 1. Let E - G'p where 
'pF - 0. Observe that - means equality in this case since we are working with 
sequences of length one. By 2.1 * we can write 'p = ppp for some morphism p, 
and then we have E = Gcp = GppF. Since pFF =0, this shows that we may 
assume 'p = pF. The pullback diagram (I, 16.3) 

F H 

0 0 
. I  . .  

C C 

0 0 

then shows that F = X E H  as required. This proves (b) * (c), and by duality, 

Next we show that (a)- (b) and (c), still in the case r = s = 1. We do it by 
induction on the minimum number of switches necessary to change EF into 0. 
If no switches are necessary (that is, if EF = 0) then this is trivial. Otherwise 
we may have E = E'r] where the number of switches to change E'(r]F) into 
zero is one less than that required for EF, or we may have F = r]F' where the 
number of switches necessary to change (Er])F' into zero is one less than that 
required for EF. In the former case we have by induction E' = Gv' where 
cp'(7F) = 0. Hence E = E'r] = Gq'r], and 'p'r]F = 0, so that we may take 
'p = cp'r] to see that (b) holds. In the latter case we see by duality that (c) holds. 

(4 => (b) - 
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Since in any case (b) and (c) are equivalent, this shows that (a) implies (b) 
and (c). 

We proceed now by induction on T + s. We assume (a), (b), (c) equivalent 
when r + s  < n ( n >  2 ) ,  and take T + s = n. We first show that (b)* (c). We 
have E' - Gcp where cpF' N 0. Ifs > 1 ,  write F' = FF'-l. Then cpFF'-' - 0, so by 
induction we can write 

F'-' - qH'-', cpFq - 0. 
Hence E'Fr) N C'cpFq - 0, so again by induction we can find a morphism # 
such that Fq = #H, E'# - 0. Then we have 

F' = m'-' N F q HI-1 = # m I - l  

and therefore we can take H' = HH'-'. If s = 1, then I>  1, so we can write 
Gcp = G-lGcp. From the case r = s = 1 we then have a morphism # such that 
F = #H and Ccp# = 0. Then E'# = G-'Gcp# - 0. This shows ( b ) s  (c) and 
dually (c) =- (b). Yoneda [37] proved that there is a sequence El together 
with morphisms E + E l  t E' with fixed ends. 

(b) and (c). We do it by induction on 
the number ofswitches required to change E'F' into 0. Again this is trivial if the 
number is zero. Also it is trivial if the switch made to reduce EF' so as to meet 
the inductive hypothesis can be made at  a position within E' or F'. Therefore 
assume that E = E"q where the number of switches required to change 
Er'(qF1) into 0 is one less than for E'F'. Then by induction we can write 
El' - G'cp' where cp'qF' - 0. Then E' = E"r) - G'cp'q, so that we may take 
cp = 9'1. Similarly, if we assume that F' = IF'' where the number of switches 
required for (E'q"'' is one less, then we can find #. Hence in any case one of 
(b) or (c) is true, and so both of them are true. I 
Theorem 4.2. Zf E N 0, then there is a sequence F and morphisms 0 --t F t E  with  

jived en&, and a sequence G and morphisms 0 c G  --f E withhxed en&. IfE - E', then 
there is a chain of morphisms 

E +El c E2 +E' 
with jixed en&. 

Proof. Suppose E - 0. Write E = E,E,,. . . E l ,  and E' = EiEi-,. . .E l .  By 4.1 we 
can write En = E',cp,, cp,E"-l - 0, where we have equality in the former relation 
since the sequences involved have length one. Then we can write 

We now have only to show that (a) 

vnEn-1 = E",IcP~-I 

where cpn-,EF2 N 0. Continuing this process we obtain finally cpsE2 = E;rg2 
where cp2E1 = 0. Denoting cp2E1 = E;, we let F = GE",,. . .E;E;. The mor- 
phisms 'pi then define a morphism E+F with fixed ends. Since E; is a split 
sequence, it is easy to define a morphism 0 -+ F. The sequence C and morphisms 
O t  G-tE are obtained by duality. 
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Now if E N E', we have E + ( - l)E' N 0. Hence by the above we can find 

OC G+E + ( - l)E' 
and similarly 

O+Ft(- l)E'+E' 

with fixed ends. We can then write 

O @ E ' + G @ E ' + ( E + ( - l ) E ' )  @E' (1) 

E @O+E @ F + E  @ (( - I)E'+E'). (2) 

Using 3.2, (vi), we can apply V on the left and d on the right throughout (1) 
and (2) to obtain 

O + E ' + G + E ' + ( E + (  - 1)E') +E' (3) 

E + 0 +E + F t  E + (( - l)E' + E'). (4) 

By 3.3 we have 0 + E' = E', E + 0 = E, and 

(E+ ( -  1)E') +E' = E +  ( ( -  l)E'+E'). 

Hence the theorem follows from (3) and (4) by taking E, = E + F and 
E , = G + E ' . (  

5. The Exact Sequence 

Given an exact sequence 

P C  

E : O + A + B + C + O  

and an object X, we can define a function 

O = O(n,  E, X) : Ext"(X, C) +Ext"+'(X, A) (n 3 1) 

by the relation O([E]) = [EE]. It follows from (iii*) of 3.2 that 0 is a group 
morphism, called the covariant connecting morphism of degree n at X with 
respect to the sequence E. A morphism X+ Y induces a commutative diagram 

Ext"( Y, C) += Ext"+'( y ,  A )  

Ext"('(X, C) + Ext"+'(X, A )  
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and the diagram (2) of $2 induces a commutative diagram 
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Ext"(X, C) + Ext"+l(X, A )  

Ext"(X, C') -+ Ext"+'(X, A') 

Dually, we have the contravariant connecting morphism 

6 : Ext"(A, X) -+Ext"+'(C, X )  

defined by e([E]) = [EE]. 

Theorem 5.1 (Schanuel). Relative to the exact sequence ( 1), the sequence of groups 

8 e 
Ext"'(X, C) +Ext"(X, A )  :Ext"(X, B )  LExt"(X, C) +Ext"+'(X, A )  

is exact for all n 2 1. 

Proof. Using the relations pE = 0, EP = 0, and EE = 0, one sees without diffi- 
culty that the sequence is of order two. Therefore to show exactness we must 
prove three things (n 2 1) : 

I": pE" - 0 5 En - EF"' for some F"' E Pretext"'(X, C) 

11": EE" - 0 * E" - pF" for some F" E Pretext"(X, A )  
111": EE" N 0 E" - EF" for some F" E Pretext" ( X ,  B ) .  

First we prove 111" (n 2 1). I f E E "  - 0, then by 4.1 we have E" - $F" where 
E$ = 0. But then by 2.1 we can write 4 = qh', and so we have E" - E$'F". This 
proves 111. 

Observe that I' and 11' have already been proved in 2.2. To prove I"(n > 1) 
suppose that pE" - 0 and write E" = FE"'. Then pFE*' - 0, so by 111"' 
applied to the sequence pF we have En-' - hpFF"'. Hence we have 
En - FApFFn-I. Applying I' to the relation pFApF = 0 we can write FA, = Ey 
for some cp. Therefore E" - EcpF"-' and so this proves I". 

Finally, to prove I I " ( n >  1 )  suppose that rE"-O, and again write 
En = FE"-'. Then EFE"' - 0, and so by 111"' we have E"' - XCFFn-'. There- 
fore En N FA,,F"'. Applying 11' to the relation EFA,F= 0,  we can write 
FA,, = pi3 for some short exact sequence G. Hence E" - pGF"', and so this 
proves 11". I 

6. Global Dimension 
Following Cartan and Eilenberg [6] we define the homological dimen- 

sion of a nonzero object A (therein called the projective dimension of A )  
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as the least integer n such that the one variable functor Extn(A, ) is not zero 
(notation h.d. A). If no such integer exists we define h.d. A = m. If A = 0 we 
define h.d. A = - 1. Dually the cohomological dimension of A is the least 
n such that Extn(, A) is not zero. The duality Extn(C, A) = Extn(A*, C*) 
shows that the cohomological dimension of A* is the same as the homological 
dimension of A. 

The global dimension of a category d (gl. dim. d) is the least integer n 
(or infinity) such that the two variable functor Ext" is not zero. Thus we have 

gl. dim. d = sup (h.d. A) = sup(h.d. A*) 

Clearly gl. dim. d = g l .  dim. d*. The left global dimension of a ring R 
(1. gl. dim. R) is defined as gl. dim. R'3. Similarly r. gl. dim. R = gl. dim. p. 

Proposition 6.1. Consider an exact sequence 

A € d  A€& 

O+A+B+C+O. 

1. Ifh.d. B=h.d. A, then h.d. C g  1 +h.d. A .  
2. Ifh.d. B<h.d. A, then h.d. C =  1 +had. A. 

Proof. The proof follows by examining the exact sequence of 5.1 *. If either 
of the above claims were not true, then we would have a nonzero term flanked 
by two zero terms in an exact sequence which is impossible. I 
Lemma 6.2. ZfP is a nonzero projectiue object, then h.d. P = 0. 

Proof. By 11, 14.2, every short exact sequence with right end P splits. Con- 
sequently, every long exact sequence with right end P is equivalent to 0 or, 
in other words, Ex$S(P, ) = 0 for k > 0. I 
Lemma 6.3. Given an exact sequence 

0 +Pn +Pel +. . . +Pi +Po + A  -PO (1) 

Extp (P", X) Ext*(A, X) (2) 

(3) 

with n > 0 and Pk projective for 0 < k < n - 1, we have f o r  all X 

f o r  p > 0, and an exact sequence 

[Pel, XI + [P,, XI +Ext"(A, X) +O. 

Furthermore, the morphistns of ( 2 )  and ( 3 )  are natural in X .  

Proof. Let Ki = Ker(Pi_, +Pi-2) for i = 1, 2, .  . ., n - 1. Then using 6.2, a part 
of the exact sequence of Ext relative to the short exact sequence 

O+P,+P,I j K - 1  +O (4) 
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yields ExtP(P,, X )  z ExtP+l(K,-I, X ) .  The same argument relative to the 
exact sequence 

gives Extp+'(K,,, X )  z Extpf2(Kn-,, X ) .  Continuing in this way we get a 
chain ofisomorphisms whose composition gives us (2) .  Naturality in Xfollows 
from n applications ofthe diagram ( 2 * )  of55. Now using (4) and 2.2* we have 
an exact sequence 

0 -+ K,, + Pn4 + Kn-2 + 0 

[Pn-l, X I  -+[Pn, X I  -+Extl(K,-I, X )  +O. (5) 
Applying ( 2 )  with n, P,, andp replaced by n - 1, Kn-l, and 1, respectively, we 
obtain Ext'(K,-l, X )  z Extn(A, X ) .  Hence the exact sequence (5) gives us the 
desired sequence (3).  Naturality of (3) follows from the naturality of (2) and 
the commutative diagram ( 1 *) of $2. I 
Proposition 6.4 [6, p. 1 lo]. The following statements are equivalent in a category 
withprojectives (0 < n < a) : 

(a) h.d. A < n. 
(b) Extnt1(A, ) = 0. 
(c) EXL"( A ,  ) is cokernel preserving. 

(d) Given an exact sequence (1 )  with Pk projective for 0 < k Q  n - 1, the object P,, 

(e) There exists an exact sequence ( 1) with Pk projective for 0 < k < n. 

Proof. (a) * (b) is trivial. 
(b) a (c) follows immediately from 5.1. 
(c) 2 (d) is trivial if n = 0. Ifn > 0, consider an epimorphism X + X " .  

Using 6.3. we obtain an exact, commutative diagram 

is projective. 

[Pn-I, X ]  -+ [ P , ,  X] - Ext" ( A ,  X )  A 0 

[P , z - r ,  Xn]  4 [P,, X"]  + Ext"(A, X") A 0 

Since P,-, is projective and Ext"(A, ) is cokernel preserving we see that the 
vertical morphisms on the left and right are epimorphisms. Hence by the 
5-lemma, [P, XI +[P,, X " ]  is also an epimorphism. This shows that P,, is 
projective. 

(d) * (e) is trivial. 
(e) * (a) By 6.2 and 6.3 we have 

forp > 0. 'This shows that h.d. A < n. I 
EXt"+P(A, X )  z Extp(P,, X )  = 0 
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We shall return to questions of global dimension in Chapter IX, where we 
shall prove in particular a generalization of the Hilbert syzygy theorem for 
abelian categories. 

7. Appendix: Alternative Description of Ext 
Throughout this appendix, we shall be dealing with an abelian category 

with projectives. 
As in [6 ,  Chapters V, VI], we can define the functor Ext"(C, A )  as the nth 

right derived functor of the functor HA. Explicitly, we take a projective reso- 
lution X of C 

Then =t"(C, A )  is defined as the nth homology group of the complex [X, A ]  ; 
in other words 

Ext"(C, A )  = Ker[d,,+,, A]/Im[d,,, A]. 

Equivalently, if we let K,, + X,, be the kernel of dn-l (or the image of d,,), then 
we have 

- 

~xt"(~, A )  = [Kn ,  AI/ I~ (cx~- I ,  AI +[Kn, 

Thus E ( C ,  A )  is the group of morphisms K,, + A  reduced modulo the sub- 
group consisting of all those morphisms which can be extended to X,,. A 
morphism A +A' induces a morphism of complexes [X, A] + [X, A'], and 
hence gives rise to a morphism of the homology groups 

Extn(C, A) + E>(C, A') .  

On the other hand, suppose that we have a morphism 'p : C' +C, and let X 
and X be projective resolutions for C' and C, respectively. Using projectivity 
of X '  and exactness of X, we can construct a morphism @ : X'+X over c p ;  
that is, a commutative diagram 

- 

.. .  -xn+x;-1-+. . .-x;- x;-+x;,-+c'.--to 

. . .-X" +X"_, -. . .- X, - X ,  X o  + c - 0 b" k.-, J@* /@, .1,. 1. 
This gives rise to a morphism [X, A] + [ X I ,  A ]  of complexes, and hence a 
morphism of the homology groups 

EG[C, A ]  + Ext"[C', A] 

which can be shown to be independent of the choice of @. This independence 
incidentally serves to show the independence of Ext"[C, A ]  from the choice of 
the resolution X. In this way Kt" becomes a bifunctor into 9, contravariant 
in the first variable and covariant in the second. 
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Furthermore, we can define connecting morphisms as follows. Given an 
exact sequence 

0 +A' + A  +A" +01 

then using the fact that Xis projective we get an exact sequence of complexes 

0 -+ [X, A'] -+ [ X ,  A ]  -+ [ X ,  A"] +O. 

Hence we have the usual connecting morphism between the homology groups 

8 : Et"(C,  A") -+Ext"+'(C, A') .  

Explicitly, iff: K ,  +A'' represents an element of Ext"[C, A"] ,  then using pro- 
jectivity of X,, we may find a morphism X ,  + A  such that the diagram 

- 

0 - K,+I+ X n -  Kn- 0 

0 - A f - A  - A 1 ' -  0 

is commutative. Then we may find a morphism g : K,+, + A f  such that (1) 
remains commutative, and by definition g represents the image under 8 of the 
equivalence class off. 

The connecting morphism with respect to the first variable is more compli- 
cated. Given an exact sequence 

U A  
o+c'+c+c"-+o 

and projective resolutions X' and X" of C' and C", respectively, we consider 
the exact commutative diagram with split columns 

I 1  I l l  

0 0 0 
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which is constructed by iterating the procedure given in IV, 5.2 (diagram (4)). 
In order to have commutativity and order two in the middle row we see that 

c must be defined by a matrix (pc', u) and d,, by a matrix (2 2) where 

S,, : Xi + Xi-,and u : & +C satisfy the relations 

Using the fact that the vertical sequences split, we get an exact sequence of 
complexes 

0 --f [X", A ]  + [X' @ X", A]  + [X', A]  -to, 
and consequently we have a connecting morphism 

8 : Ext"(C', A) + r n + l ( C # ,  A ) .  

Explicitly, iff: Xi+A represents an element of Ext"(C, A), then 

fen+, : Xi+l + A  

represents the image under 8 of the equivalence class ofJ 
Our purpose now is to show a natural equivalence of the bifunctors Ext" 

and Ext", and furthermore to show that this equivalence is compatible (up to a 
sign) with the connecting morphisms. 

Let X be a projective resolution for C, and let E denote the exact sequence 

0 -+ K,, + X,l+ Xwz +. . +Xi + Xo + C -+ 0. 

For n 2 1 we define a morphism ;i : [K,, A] +Ext"(C, A) by the relation 
;i( f )  =fE. By (iv) of 3.2 we see that +j is a group morphism. Furthermore, if 
f: K,+A can be extended to Xe1, then.fE N 0. Hence +j induces a group 
morphism 

r )  : Ext"(C, A)  -+ Extn(C, A). 

On the other hand, given a sequence F E Pretext"(C, A ) ,  using exactness of F 
and projectivity ofE we can define a morphism @ : E + F with fixed right end. 
The morphism @,, : K,+A of left ends represents an element of Ext"(C, A )  
which can be shown to be independent of the choice of @. Hence we have 
defined a function 7' : Pretext"(C, A )  +Ext"(C, A). Furthermore if F' is 
another member of Pretextn(C, A )  and F +F' is a morphism with fixed ends, 
then clearly ;i'(F) = +'(F'). Hence +j' induces a function 

r)' : Ext"(C, A) + Ext"(C, A), 

and it is easy to show that q'r) and 77' are identities. Therefore r) is a group 
isomorphism. 

- 
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We now show naturality of 7. Let f :  K , + A  represent an element of 
Ext"(C, A )  and consider a morphism a : A + A ' .  Then commutativity of the 
square 

7. APPENDIX : ALTERNATIVE DESCRIPTION OF EXT 

Ktn(C, A) ? Extn(C, A) 

follows from the relation a(jE) = ( a f ) E .  On the other hand, if we have a 
morphism y : C' +C, we construct a commutative diagram 

E:O + K ,  * X n -  I + . . . XI+ X,----+ C 0 

where E and E' are exact, and the X's are all projectives. Again letf: K,+A 
represent an element of=t"(C, A ) .  Then a chase of the class off around the 
diagram 

- 
Ext"(C, A) 4 Extn(C, A) 

&tn(C', A) - Ext"(C', A) 

yields the class of (fE)y clockwise, and the class of (fj)E' counterclockwise. 
But from the morphism (4) of sequences we know that BE' =Ey, and so 

f Ey = fjE'. This proves commutativity of (5). 
We now examine the behavior of 7 with respect to the connecting mor- 

phisms. Given an exact sequence 

E : O - t A ' - t A + A " + O ,  
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we consider the commutative diagram 

0 0 

where the morphismf represents any element of Ext"(C, A). We denote the 
short sequence 

O+K,+l -+X,+K,+O 

by F, and the long sequence 

0 + K ,  +x,-, +x, +. . . +xo +c +o 
by E. Chasing the class off around the diagram 

' Extn(C, A") I - 
Ext"(C, A") 

yields the class of E ( f E )  clockwise and the class of g(FE)  counterclockwise. 
Since Ef = gF, these classes are the same, and so (6) is commutative. 

Finally, consider an exact sequence 

E:O+C'+C+C"-+O. 

We refer to the diagram (2). Denote by E' and E", respectively, the exact 
sequences 

0 -+KL + XL1 + X L 2  --f . . . +x; --f xi +C' - t o  
0 + Ki+ l  + X i + X L l  +Xi-* +. . . + x; +XI; +C" -+ 0. 

Let OL : Kl+, -tKL be the morphism induced by an+, : Xi+l + X i .  Letf: Ki +A 
represent an element of Ext"(C', A),  and let us chase the class offaround the 
diagram 
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Ext" (C', A) ' + Ex; (C', A) 

- 
Ext"'l(C", A) 4 Ext"+l(C", A) 

Clockwise we obtain the class of ( fE ' )E .  Counterclockwise we obtain the class 
of ( (  - l)"+'f.)E". But using (3) we have a commutative diagram 

E'EzO K:, __f X~+l+.*.*Xi~ Xb C _L, C" 0 

Tw.+I= T(-i)*e,, re2 T-q To 11 
E":O--,K",l--tXt:~...jX~---*X;--,~;,~~"--,O 

This shows that ( -  l)"tlctE" - E'E, and so we have proved commutativity 
of (7). 

If, instead of having projective resolutions, the category has injective reso- 
lutions, then the above dualizes to show that Extn(C, A )  can be regarded as 
the nth homology group of the complex [C, Y ]  where Y represents an injective 
resolution for A. In this case the discrepancy in the sign of the connecting 
morphism comes in the second variable. 

Finally, it should be remarked that the natural equivalence q was defined 
only for values of n greater than zero. However, if n = 0, we still have a natural 
equivalence 

- 
Exto(C, A )  x Exto(C, A )  = [C, A] 

and naturality and commutativity with the connecting morphisms can still 
be established (exercise 3). 

Exercises 

1. If& has a generator, then Extl(C, A )  is a set for all A, C E&. 
2. Demonstrate how badly we are abusing the foundations by showing that 
in a nontrivial cocomplete abelian category each equivalence class in 
Ext"(C, A )  is not a set (n > 1).  

3. If X is a projective resolution for C, then the 0th homology group of the 
complex [ X ,  C ]  is 

G o ( C ,  A )  = Ker([Xo, A]  +[XI, A]) z [C, A ] .  
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Show that this isomorphism is natural in C and A, that it commutes with the 
covariant connecting morphisms, and that it anticommutes with the contra- 
variant connecting morphisms. 
4. Let at' be an abelian category and R a commutative ring. Considering 
extensions in the category Rat', the group Ext"(C, A) becomes an R-module 
either through operation of R on C or on A. Show that these two R-module 
structures are the same. 
5. Use 6.3 to show that if E and E' are equivalent sequences of length n from 
A to C in a category at' with projectives, then there is an exact sequence 

F : 0 + A  += B + P n 4  +. . . + P ,  + P i  +Po +C+O 

with Pk projective for 0 < k < n - 2, together with morphisms 

E ' t F + E  

with fixed ends. Dually, if d has injectives, then there is a sequence C and 
morphisms 

E ' + C t E  

with fixed ends (cf. 4.2). 
6. Let & be an h.f. class of epimorphisms in an abelian category (see V, 
exercise 5) and let '% be the class of all short exact sequences E such that A, E d 
(hence p, EA(&)). If E, E' E V, then E @ E' E V. If E E '% and Ey is 
defined, then Ey E '%. (Consider the pullback diagram 

E r : O + A - B - - - - - + C ' -  0 

E z 0 - A - B - C  -0 

and show that the composition A+B + B  x C' is in A(&)). Dually, if aE is 
defined, then aE E V. Hence if E, E' E Extl(C, A) n V, then E + E' E V. 
Thus, defining&-Ext'(C, A) as the subgroup Ext'(C, A )  n V  ofExt'(C, A) we 
obtained a group valued bifunctor. Furthermore, relative to an exact sequence 
0 +A + B +C+O in '% we have connecting morphisms 

[A', C] +€-Ext'(X, A) 

[A, X] +€-Ext'(C, X) 

and the proof of 2.2 is valid. 
More generally, define E = E,,E,,. . .E2El to be &-exact if Ei E V for 

1 6 a' < n. Then define €-Extn(C, A) as the class of &-exact sequences from A 
to C of length n, modulo the following equivalence relation. Write E N E' if 
there is a chain of&-exact sequences 

E = Eo, El,. . ., Ek = E' 
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such that for each i we have either a morphism Ei+Ei+, with fixed ends or a 
morphismE,+, +Ei with fixed ends. Then again B-Ext"(C, A )  is a group valued 
bifunctor, and we have connecting morphisms for short exact sequences in % 
relative to which 5.1 is valid. I f 8  is a projective class, then &-Ext"(C, A )  can be 
defined alternatively as the nth homology group of the complex [ X ,  A ]  where 
X represents an &-projective resolution for C. 

7. Consider an exact commutative diagram 

This generalization is due to D. Buchsbaum [4]. 

E E" . .  
0 0 

. .  
0 

0 0 0 

Show that the twofold sequences FE"and ( - 1)E'Gare equivalent. (Construct 
an exact sequence 

E:O+A'+A @B'-+B+C"+O 

together with a morphism E +FE" with fixed ends and a murphism E +E'G 
with - 1 at the left end and fixed right end.) 
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Satellites 

Introduction 

Satellites were first defined in Cartan-Eilenberg [6] (therein called left 
satellites) for functors between categories of modules. The definition applied 
to any additive functor T : d +93' where d and 9? are abelian categories and 
d has projectives. A definition was also given in terms of universal mapping 
properties [6, p. 5 1, exercise 11. 

In [5] Buchsbaum constructed satellites for a functor T : d - 4  in the case 
where d is small and 93' is cocomplete. He also proved that when 93' is a 
category of modules the connected sequence of cosatellite functors of a half- 
exact functor Tis exact. Most of the material of [5] is reproduced in $2 and $3 
of this chapter. We have proved the exactness of the cosatellite sequence for a 
half-exact functor T : d +a under the assumption that93' is C3. In particular, 
this applies to group valued functors. However, the proof does not dualize to 
the case of the satellite sequence of a half-exact group valued functor. Exact- 
ness of the sequence in this case is an open question. 

In $4 we show that the nth satellite evaluated a t  A of a functor T : d +&I is 
given by the group of natural transformations from the functor Extn(A, ) to 
T . This generalizes the natural equivalence of Yoneda 

[Extk(A, ), @R 1 Toc(B,  A )  

where A E "'9 and B E gR. Section 5 contains a further application of the 
projective class theory of V, $7. In the last section (36) we extend the theory of 
satellites to functors of several variables. 

1. Connected Sequences of Functors 
All categories in this chapter will be abelian, and all functors will be additive. 
A connected sequence of covariant functors from d to 93' is a family 

T" : d+93', where n runs through all the integers, together with connecting 
morphisms 

tig : T"(A") --+ T"t'(A') 
191 
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defined for each short exact sequence in d' 

E :  O + A ' + A + A " + O  

and each integer n. Furthermore, the following conditions must hold : 
1. The sequence of morphisms 

. . . -+ T"'(A") + T"(A') -+ T"(A) + T"(A")  + T"+'(A') +. . . (2) 
is of order two. 

2. Relative to a morphism of short exact sequences 

E:O A'-  A - A " -  0 

.I I ly 
the diagram 

is commutative. 
A sequence of contravariant functors T" is called a connected sequence if 

the sequence of covariant functors T$ is a connected sequence. 
It will be convenient to denote T-" by T,. We then say that the connected 

sequence T" is a positive connected sequence if T" = 0 for n < 0, and a 
negative connected sequence if Tn = 0 for all n < 0. Clearly the theory of 
negative connected sequences can be obtained from the theory of positive 
connected sequences by applying duality to both domain and codomain. 

A connected sequence of functors T" will be called exact if, relative to any 
short exact sequence E in the domain, the sequence (2) is exact. 

Let {T"} and {U"} be connected sequences of functors with the same 
domain and codomain. A morphism { T"} + { U"} is a family 'p" : T" + Un 
of natural transformations which commute with the connecting morphisms; 
that is, for each exact sequence (1)  and each integer n, the diagram 

T"(A") - T"+'(A') 

U"(A") - U "+ I (  A') 
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is commutative. If each 'p" is a natural equivalence, then {cp"} is called an 
isomorphism. 

Let {T"} be a connected sequence of functors from d to 9, and let 
E = Ep. .  .E3E2E1 be an exact sequence of length p from A to C in &.Then we 
can define the iterated connecting morphism 

& : T"(C)  + T"+P(A) 

as the composition &~~'...6g~2&~'6~,. If E+E' is a morphism of exact 
sequences, then i t  follows fromp applications of the commutative diagram (3) 
that the diagram 

T"(C) - T"IP(A) 
I I 

T"(C') - T" 'P(A') 

is commutative. Likewise, if {'p"} : { T"}+{U"} is a morphism of connected 
sequences of functors, then p applications of (4) shows that 

T"(C) - T"+P(A) 

W ( C )  - Un+p(A) 

is commutative. Observe from (5) that equivalent exact sequences induce the 
same iterated connecting morphism. 

Consider a pair of covariant functors T, T 1  : d+9? and morphisms 
6, : T ( A " )  + TI ( A  ') defined for all exact sequences E : 0 +A' +A+ A" +O 
in d. We call ( T, T i )  a connected pair of functors if the associated sequence 
T, TI,  0, 0,. . . is a positive connected sequence. Likewise, we shall say that a 
pair of natural transformations ('p, c p l )  is a morphism of connected pairs 
( T, TI )  and ( U ,  U I )  if the family 'p, 'pl ,  0, 0,. . , is a morphism of the associated 
positive connected sequences. We then say that cp' extends 'p. If ( T ,  T ' )  has 
the property that for every connected pair ( U ,  U I )  and every natural trans- 
formation cp : T - + U  there is a unique extension cpl of 'p, then we call T'  the 
first cosatellite of T, and we denote it by S I T. We define the nth cosatellite 
of Tinductively as S" T = S (Sn-I T )  . IfS" Tis defined for all n > 0, then setting 
So T = T we obtain a positive connected sequence of functors { S " T }  with the 
property that given any positive connected sequence { 11") and any natural 
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transformation 'po : T-t Uo,  there is a unique morphism (9") from {PT} to 
{ U"} which extends TO. 

If T is contravariant, then we say that T" is the nth cosatellite of T if T; is 
the nth cosatellite of the covariant functor T,.  

Dually, we say that a negative connected sequence . . . T2, T,, To = T is the 
sequence of satellites of To if T t  = Tog, T I $ ,  T2f ... is the sequence of 
cosatellites of TS. In this case we denote T, by S, T ( n  > 0). 

If cp = yo : T+ U is any natural transformation, then by definition of 
cosatellite, 'p admits a unique extension (9") : (PT}+{PU}. The natural 
transformation y" is then denoted by S"( 9).  Clearly, we have 

S"(Icl(P) = S"($)S"((P) 

S"($ + 9)  = SY$) + m y )  

S"(1,) = I,, 

whenever the combinations make sense. A dual definition applies to S,(cp). 

cosatellite that S" T = 0 for all n > 0. 
If T is a covariant epifunctor, then it follows easily from the definition of 

2. Existence of Satellites 

Lemma 2.1. Let T : sd +a be a covariant functor, and let 

h 
E:O + A  2 B -C-O 

be a morphism of short exact sequences. Then the morphism ha induced by the commutative 
diagram with exact rows 

PE ' T(B') '(') T(C') - FE,- 0 

is independent o f f  and g .  

Proof. Letf' and g' be another pair which, together with a, define a morphism 
E - t E ' .  Then ( f - f ' ) p  = 0, and so we have a morphism /3 : C+B' such that 
/3X = f -f'. Then we have 

A'gX = h'(f -y) = ( g  - g')X, 
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and so Alp= g - g’ since h is an epimorphism. Hence 

(he - hk)@E = PE‘( T ( g )  - T ( g ‘ ) )  = PE’T(g - g ’ )  
= eET(h’P) = PET(h’) T(p)  = 0. 
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Therefore, since p E  is an epimorphism we have h, = hi .  I 
For an object A in a category d let VA denote the class of all exact sequences 

of the form 

E : O + A + B + C + O .  

If E, E‘ E VA,  define E < E‘ if there is a morphism (lA, , ) from E to E’. 
Then under this ordering V A  becomes a directed class, for if E l  and E, are any 
two members of VA,  then V ( E l  @ E2) follows both of them. If E < E‘ and 
T : d +9? is any functor, then 2.1 provides us with a unique morphism 

4’ FE + FE, 

and in this way we obtain a direct system in 9 over the directed class V,. Now 
we can define direct limits over directed classes in precisely the same way that 
we define direct limits over directed sets. However, cocompleteness o f a  will 
be no guarantee that such direct limits exist, since cocompleteness applies only 
to diagrams over sets. 

Theorem 2.2. Consider a covariant functor T : d+9?, and suppose that for each 
A E d the direct system { F E ,  T } ~ ~ ~ ~  over the directed class V A  has a direct limit in B.  
Then thejrst cosatellite of T isgiven by the direct limit {rE : FE+S1 T ( A ) } E E Y A .  

Proof. First we show that S1 T is a functor. Relative to a morphism a : A + A I  
in &’ and a sequence E E V,, we let E l  be any sequence in gA, such that there 
is a morphism ( a ,  , ) from E to E l .  Such exists, since we can always take 
E l  = aE. Then we have a morphism aE : F E + S I T ( A l ) .  Using 2.1 and the 
fact that VA,  is directed, it is easy to see that aE is independent of the choice of 
E l ,  and furthermore that {aE}EEyA is a cocompatible system. There results a 
morphism 

5”T(a) : S ’ T ( A )  + S ’ T ( A I ) .  

It is then a straightforward matter to check the additive functorial properties 

S ’ T ( 1 , )  = lSIT(A), S ’ T @ ) S ’ T ( a )  = S I T ( P a ) ,  

S l T ( a + P )  = S l T ( a )  + S I T @ ) .  

Given an exact sequence 

E : O + A ‘ + A + A ” - + O  (1) 

in d,  we have a connecting morphism SE : T ( A ” )  + S I T ( A ’ )  given by the 
composition T ( A ” )  +FE+S1 T ( A ’ ) .  For a diagram 
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it follows by definition of S ' T ( A ' )  +S1 T ( B ' )  that the diagram 

T(A") - S'T(A') 

I i 
T(B") - S 'T(B ' )  

is commutative. 
Relative to the sequence ( l ) ,  we show that the sequence in @ 

T ( A ' )  -+ T ( A )  3 T(A")  + S I T ( A ' )  + S I T ( A )  - + S I T ( A " )  
I I1 I11 IV 

is oforder two. At positions I and IV this is just a property ofadditive functors. 
At position I1 this is trivial by definition of the connecting morphism. At 
position I11 we construct the commutative diagram 

E':O * A  + A @ A " + A " -  0 

The composition inquestion is just T(A")+FE+FE'+S1 T ( A ) ,  which is zero 
since E' splits and so FE' = 0. 

Let (UO, U ' )  be a connected pair of functors and let 'po : T+U0 be any 
natural transformation. For A E &' and an exact sequence 

E:O+A+B-+C+O (2) 

we have a unique morphism 9; : FE -+ U I ( A )  yielding a commutative diagram 

T(B)  - T(C) - FE 0 

Uo(B)  + UO(C) A U'(A)  
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Using uniqueness of rph we see that {yy} is a cocompatible family, and so we 
get a direct limit morphism 

y; : S l T ( A )  + U l ( A ) .  

Given CI : A + A I  and (a,, ) : E + E I  we obtain a morphism from (3E)  to 
( 3 E , ) .  Using $1, (3) ,  we see that every face of the resulting cube is commutative 
save possibly the face 

By 11, 1.1, we then see that (4) is commutative. Commutativity of the square 

S'T(A) - S'T(A,) 

I I 
then follows since it is commutative when composed with rE for every E E qA. 
Therefore rp' is a natural transformation, and by construction rp' and rpo 
commute with the connecting morphisms. To  show uniqueness of rp,, suppose 
that t,b : S '  T+ U I is another natural transformation which together with rpo 
commutes with the connecting morphisms. Relative to an exact sequence (2) 
we have the diagram 

T ( C )  - F-- S ' T ( A )  

UO(C) - U ' ( A )  

where the square on the left is commutative and the outer border of the 
diagram is commutative. It then follows from the fact that T ( C )  +FE is an  
epimorphism that the triangle on the right is commutative. Since this is true 
for all E E %A, this shows that 9; = 1 

We now list a number of cases to which 2.2 applies. 
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Case I. d is a small category and 33 is cocomplete. In  this case W, is a set for 
all A, and so cocompleteness o f g  insures the existence of the direct limits. 

Case 2. d has injectives. In this case any sequence E : 0 --f A + Q --f M +O with 
Q injective follows every member of %A, and so it is clear that the direct limit 
SIT(A)  isjustF,. 

Case 3. Let ( T, TI)  be a connected pair of functors from d to 9, and suppose 
that for each A E there is a cofinal subclass of V, consisting of sequences 
O+A +B+C+O for which T(B) -+ T(C)  + T 1 ( A )  +O is exact. Then since 
F E  = T 1 ( A )  on a cofinal subclass, the direct limit S I T ( A )  is just T 1 ( A ) .  

Case 4. Let ( T, TI) be a connected pair of functors from d to A? where A? is 
locally small and C,. Suppose that for each exact sequence in d 

&E 
E : O + A - - f B + C - t O  

the sequence 
T(B)  + T ( C )  -+ TI(-.') + T 1 ( B )  ( 5 E )  

is exact, and that for each A E d we have 

T 1 ( A )  = u Ker T1(pE) 
E E V ~  

where the right side of (6) is defined since a is locally small. From ( 5 E )  we see 
that FE = Ker T ( p E ) .  If E < E' in VA,  then by definition of connected pair we 
have a morphism from (5E)  to (5E').  It follows that the induced morphism n$' 

is just the inclusion Ker T'(/LE) c Ker T1(pE,) .  Then by Eq. (6) and C3 we 
have 

SIT(A)  = limFE = T 1 ( A ) .  
--f 

Corollary 2.3. The  positive connected sequence of one variable covariant functors 

HC, Extl(C, ), Ext2(C, ),. .. 
is the cosatellite sequence of HC. 

Proof. The sequence is exact by VII, 5.1. Since for each 

E = E"E-1.. .E2E1 E Extn(C, A )  

we have Ext"(C, pEm)(E) = 0, our result follows from case 4 above. 1 

Corollary 2.3*. The positive connected sequence of one variable contravariant functors 

HA, Extl( ,  A ) ,  Ext2(, A) ... 
is the cosatellite sequence of HA. 1 
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3. The Exact Sequence 

Given a morphism a : A +A' and exact sequences 

E : O + A + Q + M + O  

E ' :  O-tA'+Q'+M'+O 

such that there is a morphism (a, , ) : E + E ' ,  let h , , , .  : FE+Fr denote the 
induced morphism of 2.1. Denoting the natural morphism FE-tS' T ( A )  by 
rE, we have 

Lemma 3.1. If T : d +9? is a covariant functor where 5@ is a C3 category and d is 
small, then 

Proof. First we have S ' T ( A )  = u ZE where ZE is the image of rE (11, 2.8). 

Denote K = Ker(S T (a)). Then by C3 we have 
EEYA 

By I, 13.2, the kernel of the composition F E + S * T ( A )  - t S ' T ( A ' )  is nil(K). 
It therefore follows from 111, 1.8, that 

u Ker(hu,E,r) = ril(K). 
(a,, ):E+E' 

Using the relation ZE n K = nE(n;'(K)) (I, 16.4) and the distributivityrule for 
images (I, 1 1.2), we can then write 

K = U ( I ~  n K )  = U nE(ni'(K)) 
EEYA E H A  

Recall that a functor T : d +5@ is called half-exact if for any short exact 
sequence 

0 + A' + A  +A" +O (1) 

in XI, the sequence T(A')  + T ( A )  + T(A")  is exact in g. 
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Theorem 3.2. Let T : d +L&7 be a half-exact functor where d is small and 9 is C3. 
Then relative to the exact sequence ( 1 ) , the sequence 

I I1 I11 IV 

T(A') -+ T(A) + T(A") +S 'T(A' )  - + S ' T ( A )  - + S I T ( A " )  - t S 2 T ( A ' )  +. . . 
is exact. 

Proof. We have exactness at  position I in the sequence by assumption on T. 
To show exactness at positions 11, 111, and IV  it suffices to show that 
kernel c image since the reverse inclusions were proved in 2.2. In  particular, 
this will prove that S' Tis half-exact, and so exactness of the rest of the sequence 
will follow by induction. 

We first show that kernel c image at position IV. Taking into account 3.1, 
it suffices to show the following: given a morphism of sequences 

I' i I 
there are morphisms (p, , ) : E' -+El and ( A ,  , ) : E l  +E" such that 
Ker(hA,E,,E.) =Im(hp,E.,El) and El 2 E in 9,. Given (2), construct the 
diagram 

0 0 0 

I l i  
.I I i 

(3) 

0 0 0 
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where the coordinates of A + Q @ Q" are a and a"/\, the middle column is a 
split exact sequence, and the rest of the diagram is defined so as to have 
exactness of the rows and columns (I ,  16.1*). Then E l  2 E. If we apply T to 
( 3 ) ,  the middle column is still a split exact sequence, and the sequence 
T ( M ' )  + T ( N )  -+ T ( M " )  is exact by half-exactness of T. An easy diagram 
chase then shows that FE'+FE, +FEq is exact as required. 

Next we show kernel c image at position 111. Again, in view of 3.1 it suffices 
to show the following: given a morphism ofsequences 

there are morphisms ofsequences (lA,, , ) : ,!+El and (p ,  , ) : E l  +E, where 
l? denotes the given exact sequence ( I ) ,  such that Ker(hp,E,,E) = Im(h,,E,E,) 
and E l  > E' in WAC. Given (4), form the commutative diagram 

0 

I 
0 

where N is the cokernel of ap. By chasing the diagram one sees that the right 
column is exact. Furthermore, E l  2 E' in Wk.  Applying T t o  (5) and using the 
fact that T(A") -+ T ( N )  + T(M) is exact, anoth- diagram chase shows that 
required exactness of the sequence FE +FE, + P E .  
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Finally we show kernel = image at position 11. Because of C,  it suffices to 
show that in any situation of the form 

the sequence 

is exact, wherepE : T ( M )  +FEis the cokernel of T ( T ) .  We form the pushout 
diagram 

0 0 

1 1  

M= M 

0 0 

where a, y and 8, 6 are injections and projections, respectively, for the 
coproduct, and Sp = 7. Recalling that US + y p  = 1 (I, 18.1) we have 

uyh = uypp = u( 1 - aS)p 

= -aasp = - u q  = -71 = - € A .  

Since h is an epimorphism, this shows that uy = - E .  Therefore, exactness of 
(6) amounts to showing that Im( T ( h ) )  = Ker(pET(cr) T ( y ) ) .  Since T is 
half-exact, the sequence 

T ( A )  -+ T ( Q  0 A") + T ( M )  

is exact. Our result then follows from the following general lemma. 
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Lemma 3.3. Consider a commutative diagram in an abelian category 
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A 
A -  A” 

1 lo 
M -  M 

F 

0 

and suppose that all rows and columns are exact. If y is a splitting morphism f o r  /I ( i e .  
/Iy = lA-), then Im(h) = Ker(puy). 

Proof. Let 6 : R -+ Q be the projection from R,  considered as the coproduct of 
Q and A”,  so that in particular a6 + y p  = 1. Then it is easily checked that 
puyA = 0. It remains to be shown that Ker(puy) c Im(A). We apply Meta- 
theorem IV, 2.8; that is, we consider (7)  as a diagram of abelian groups. 
Suppose that x E A”,  and Fur(.) = 0. Then u y ( x )  = ~ ( y )  for somey E &, and 
using commutativity of ( 7 )  we then have o y ( x )  = oa(y). Rewriting this, we 
have u ( y ( x )  - a ( y ) )  = 0, and so y ( x )  - a(y )  =p(r )  for some 2 E A .  Applying 
/3 to this last equation we have x = P p ( z )  = A(z). This proves that 
Ker(pay) c Im(h) as required. I 

Remark. If d is a category with injectives and is any category, then the 
proof of 3.2 goes through without resort to direct limits (see case 2 
following 2.2). If d also has projectives, then the dual remark applies, so that 
in this case the connected sequence of functors 

... S,T,S,T,  T , S 1 T , S 2 T  ,... 

is exact. Observe, however, that in general 3.1 * applies to satellites ofcovariant 
functors where the range is a C; category. In particular, 3.1* does not apply 
to group valued functors in the case where projectives do not exist in the 
domain. 
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4. Satellites of Group Valued Functors 

Let d be a small category, and let T : d - + g  be a covariant group valued 
functor. For A E d and n 2 0 define 

T,(A) = [Ext"(A,), TI. 

0 -+ A' + A -+ A" +O 
An exact sequence 

induces an order two sequence 

. . .T,(A') + T,(A) -+ T,,(A") -+ T,,-,(A') +. . . 

and so { T,,} is a negative connected sequence of functors. Furthermore, we 
have 

To(A) = [Exto(A,), TI = [ H A ,  TI x T(A)  

using IV, 2.1. Identifying T with To in this way we have : 

Theorem 4.1. The connected sequence { T,,} above is the sequence of satellites of the 
group valued functor T. 

Proof. First observe that for E E Ext"(A, C) and 7 E [Ext"(A, ), TI, the iterated 
connecting morphism 

[Ext"(A, ), TI + [Exto(C, ), TI = T(C)  

relative to E takes 7 into the element vc(E). Now, given a negative connected 
sequence {U,} and a natural transformation yo : U,, --+ T,  in order to have 
commutativity with the connecting morphisms we must define 

cp,A(x)c(E) = '90C8E(4 (1) 

where x E U,(A),  E E Ext"(A, C), and 6, is the iterated connecting morphism 
relative to the sequence of U's. Hence if {cp,} defined by (1) actually gives a 
morphism of connected sequences of functors extending cpi, then it is the only 
such extension. The following points must be verified. 

(i) ( P , , ~ ( X ) ~  is additive. 
(ii) cpnA(x) is a natural transformation. 

(iii) cpnA is additive. 
(iv) cpn is a natural transformation. 
(v) ('9,) commutes with the connecting morphisms. 

We prove the assertions for n = 1. The general case is similar and is left to the 
reader. 
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(i) Consider the construction 
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E @ E ' : O  - C @ C  --+ B @ B' -+ A @ A  __* 0 

giving the sum of two elements E, E' E Ext'(A, C). From (2) we obtain a 
diagram of connecting morphisms 

Using the relation aEOE, = 6, 0 6,. (exercise l ) ,  the equality 

' P I A ( X ) C ( E  + E ' )  = (P lA(X)C(E)  + 'PIA(X)C(E')  

follows easily. 
(ii) Given a morphism C+CI, we must show commutativity of the diagram 

Ext'(A, C) - T ( C )  

Ext'(A, C,)  ---+ T ( C , )  
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But this follows from commutativity of the diagram 

U'(A) - UO(C) - ' T(C) 

I 
U1(A) - Uo(C,) - T(C,) 

which results from the commutative diagram 

0-C-B-A-0 

(iv) Given A + A l  we must show commutativity of the diagram 

[Extl(A, ), TI + [Ext'(Al, ), TI 

But this follows from commutativity of the diagram 

UI(A) - Vo(C) - T(C) 

which results from the commutative diagram 

II 1 I 
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(v) Commutativity of cp, and cpo with the connecting morphisms is clear 
from the definition of vl. I 
Corollary 4.2. If T is an injective in the category (d, 9), then the sequence of 
satellites of T is exact. I 

5. Projective Sequences 

Let d be a small category and let Seq (d ,  97) denote the class of all connec- 
ted sequences of covariant functors from d to 97. Using morphisms of con- 
nected sequences as defined in $1 it is trivially verified that S e q ( d ,  97) is an 
abelian category possessing all of the properties Ci and CT that 97 has. The same 

statement is true of the class of all positive connected sequences Seq(d ,  a), 
and the class of all negative connected sequences Seq(d ,  97) = Seq(d* ,  B*). 

+ 
+ - 

Consider the functors 
+ 

Fi : S e q ( d ,  L&') --f (d, 97) 

defined for i 2 0 by Fi( T"}) = Ti.  Then the Fi's constitute a collectively faithful 
set ofexact functors. I f g  is cocomplete, then a coadjoint for Fi is given by 

+ 
Gi : (d, 97) --f Seq(d ,  37) 

Gi(T)" = S-'T for n 2 i 

= o  for n < i. 

where 

If 9? has a generator, then so does (d, 97) by VI, 4.1. Choosing a generator 
Ui E (d, 97) for each i ,  we then see by V, 1.5, that @ Gi( Ui) is a generator for 

i 2 0  

Se+q(d, 97). 
Consider now the functors 

+ 
Ri : S e q ( d ,  A?) + (d, g) 

R i ( { T " } ) ( A )  = T i ( A ) / U  Irn(6;') 

where 8'' : Ti-'(C) --f T i ( A )  is the connecting morphism of the connected 
sequence { T"} relative to the short exact sequence E : O+A+B+C+O. 
Then the relations 

Ri4  = 0 for i # j ,  RiSi = 1 

follow easily using the construction of satellites given in 2.2. Consequently 
condition 1 ofV, 7.5, is satisfied. Now clearly the Ri's collectively take nonzero 
objects into nonzero objects. Also an exact sequence of connected sequences 

defined by 

EEWA 

{ T"'} -+ { T"} +{ T""} +O 
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induces a commutative diagram 

T"(A) - Ti(A) T"'(A) - 0 

for each A E d. The bottom row is exact by assumption and the top row is 
exact since coproducts preserve cokernels. Therefore the sequence of cokernels 
of the vertical morphisms is exact. In  other words Ri is cokernel preserving. 
Therefore, using V, 7.6, and VI, 4.1, we have : 

Theorem 5.1. Ifd is a small category andB is a cocomplete category withprojectives, 

then Seq(d ,  a) has projectives. The projectiues in S e q ( d ,  B)  are the objects of the 
f o r m  @ Ci(Pi) where Pi is projective in (d, a) f o r  all i. 1 

+ + 

ia0 

6. Several Variables 

A sequence of functors ofseveral variables 

T n : d l  x d 2  x ... xdk+B ( n E Z )  

is called a multiply connected sequence if each sequence of single variable 
functorsobtained by keepingk - 1 ofthevariables fixed is a connected sequence 
and if, furthermore, a morphism of the fixed variables induces a morphism of 
connected sequences. The latter condition is equivalent to the condition that 
the connecting morphism for each variable be a natural transformation of 
functors of the remaining variables. A morphism { T"} + { v"} of multiply 
connected sequences is a family of natural transformations of several variable 
functors 'p" : T" + U" which when restricted to the partial functors of one 
variable yield morphisms of connected sequences. A multiply connected 
sequence is called positive, negative, or exact if each of the partial one 
variable sequences has the corresponding property. Multiply connected pairs 
are defined just as in the one variable case. If ( T ,  TI) has the property that 
for every multiply connected pair (U,  VI) and every natural transformation 
'p : T-+ U there is a unique extension cpl : U 1  + TI of cp, then T' = S I T  is 
called the first cosatellite of T. In  general the partial one variable functors 
associated with S1 Twill not be the first cosatellites of the partial one variable 
functors associated with T.  The nth cosatellite of T is defined inductively as 
before. 
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From VII, $5, we see that the sequence oftwo variable functors {Ext”},20 is a 
positive, exact, multiply connected sequence. 

To  simplify the notation we shall deal only with functors of two variables 
where both variables are covariant. However, our results will generalize to 
functors of any number of variables and arbitrary variance. 

Given T : d x %?+A? and C E %, consider Tc : a?+&@ defined by 
Tc(A) = T ( A ,  C). A morphism C+C‘ induces a natural transformation 
TC+ Tc, and hencea natural transformation S1 Tc+S1 Tc. Therefore,ifS’ T, 
is defined for all C E %) we have a two variable functor St,, T defined by 
Sil) T (A, C) = S’ Tc(A), and for an  exact sequence 0 +A’ -+A +A”  - to  in 
we have a connecting morphism 

: T(A”,  C) -+Sil, T(A’, C) (1 )  

which is natural with respect to the variable C. If (U,  U l )  is a multiply con- 
nected pair and ‘p : T-+ U is a natural transformation of two variable functors, 
then by fixing the second variable we obtain a transformation ‘p(,) : St,) T-t U‘ 
which is natural with respect to the first variable. 

Lemma 6.1. ‘p(I) is a natural transformation of two variable functors. 

Proof. Given an exact sequence 0 +A’ -+A +A”  +O, consider the commuta- 
tive diagram 

U p “ ,  C) + Ul(A’, C), 

A morphism C-tC’ gives rise to morphisms from the vertices of (2,) to the 
vertices of (2c), and from the resulting cube we see that the compositions 
Sfl,T( ,C) -+U1(  ,C)-+U1(  )C’) and Sfl,T( ,C)+Sf , ,T (  ,C’)+Ul( ,C’) 
extend the same transformation T ( , C) + U ( , C’). Hence these compositions 
are the same, or in other words is natural in the second variable. 1 

Similarly, by considering partial functors with respect to the second variable 
we can define a two variable functor Si2) T and connecting morphisms 8(z). 
The above transformation ‘p then induces a natural transformation 
‘p(2) : Sf,,T-+UIoftwovariablefunctors. IfSf,,St,,Tisdefined, wecan define 

S(21) : Si2) T(A”, C) +ql)S& T(A‘, C) 

simply by replacing Tby A’:,, T in  (1). On theother hand, ifS\, ,S~,)  Tisdefined 
we have 

q Z ) @ ( l ) )  : S’,*,T(A”, C) -+qz )q l )T(4  C) 
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which is natural with respect to C, and which can be considered for fixed C as 
the connectingmorphism ofapair ( S f 2 ) T (  , C),S[ , ,S f , )T(  , C ) ) .  In thefollow- 
ing we shall suppress the superscript 1. 

Proposition 6.2. If S(2)S(1) T and S(I)S(2) T are dejined, then we have a natural 
equivalence o f  two variable functors 

0 : S(I)S(2) T+S(2&1) T 
and a commutative diagram 

T(A' ,  C") 

for exact sequences O+A'-+A-+A"+O and O+C'+C+C"+O in a? and V ,  
respectively. 

Proof. Replacing T by S,) T and 'p by the identity in 6.1 we obtain a natural 
transformation 8 of two variable functors making the lower left-hand corner 
of (3) commutative. Interchanging the roles of thevariables we obtain a natural 
transformation 

8' S(2)S(1)T-+S(I)S(Z)T 

8'88(21)8(2) = e1S(2)(8(1))8(2) = e'8(12)8(1) 

making the lower right-hand corner of (3) commutative. Now we have 

= 4 1 )  @ ( Z ) )  b). 
But also 8(21)8(z) = S(1)(8(2))8(1), and so 8'86(21) and 8(21) both extend 
Hence 8'88(,,, = 8(21),orinotherwords B'Bextends theidentityonS(2)T( ,C'). 
Hence 8'8 is the identity on S(1)S(2) T. Interchanging variables we see that 88' 
is the identity on S(2)S(I) T. Thus 8 is a natural equivalence as required. I 
Proposition 6.3. Ifst,) T and Si2) T a r e  defined, then thejirst cosatellite o f  the two- 
variable functor T is given by 

S I T  = St1)T @ S f 2 , T .  

The connecting morphism relative to a sequence 0 4 A' + A + A" +O is given by the 
combosition 

&I1 

T ( A " ,  C)+Sfl)T(A', C ) + S \ , ) T ( A ' ,  C) @ SfqT(A', C), 

with a similar dejinition for the connecting morphism of the second variable. 
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Proof. Consider a connected pair (U,  U l )  and a natural transformation of two 
variable functors 'p : T+ U. Then clearly 

'p' = ( ' p ( I ) ,  'p(2)) : q , ) T  0 SfS)T+U' 

extends 'p. On the other hand, using uniqueness of transformations induced on 
one variable cosatellites, it is easily seen that 'pl is the only transformation 
extending 'p. This proves the assertion. I 

For an object A and an integer n > 0, let us define n A  ="A. Then using 6.2 
and 6.3, we have the following corollary. 

Corollary 6.4 (The Bifunctorial Theorem). Let&', 3, and59 be categories which 
admit cosatellites for all one variable functors &+3 and V+3. Then the nth 
cosatellite of a two variable functor T : x %'+A? is given by 

Exercises 

1. Relative to an h.f. class 8 (V, exercise 5, and VII, exercise 6) develop a 
theory of satellites and prove generalizations for each of the numbers in this 
chapter with the exception of 3.2. Generalize 3.2 under the assumption that d 
has the following property: If in the exact commutative diagram 

0 0 0 

I l l  
I l l  

0 0 0 

all epimorphisms save possibly /3 are in 8, then B is also in 8. Show, in parti- 
cular, that any closed class of epimorphisms has this property. 
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2. If { T"} is a connected sequence of functors from d to L4? with connecting 
morphisms 8, and if E and F are p-fold exact sequences in d, then 

8;kBF = sp 0;. 
If d is a C, category and the T"'s are all coproduct preserving, then for any 
class ofp-fold exact sequences {Ei}  we have 

P,,, = 0 sg,. 
3. Consider a connected sequence of covariant functors { T"} and the exact, 
3 by 3 commutative diagram of exercise 1. Show that for any integer ti the 
diagram of connecting morphisms 

T"(C") - T"+l(C') 

is anticommutative: that is, the composition in one direction is the negative of 
the composition in the other direction. (Use VII, exercise 7.) 
4. Consider exact, commutative diagrams (i = 1, 2) 

0 

I 

I 
I 
0 
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A morphism D, + D 2  induces a commutative diagram 
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K'; - F; 

where the horizontal arrows are the connecting morphisms defined in IV, $1 .  
Hence the homology functors H" = H-, : %(d) +d, together with the 
connecting morphisms defined in VI, $8, comprise a connected sequence of 
functors. 

5. Let .r9 be a small category and let .9? and %? be cocomplete. Consider 
covariant functors U : d +,!# and T : .@ +V with T cokernel preserving. 
Then S"( T U )  = T(S"U)  for all n 2 0. 

6. For T : .d +% let T be the functor with values in .9? obtained by compo- 
sing T with the forgetful functor R%'-t.98. Then the elements r of R induce 
natural transformations i : T+ T. Hence if S 1  T is defined, we have natural 
transformations S l ( i )  : S '  T+S' T. In this way SIT may be regarded as 
having values in R%', and as such it is the first cosatellite of T. 
7. In the category %(d) of complexes in d, every object X '  admits a mono- 
morphism into a complex X such that H " ( X )  = 0 for all n. (Consider the 
projective class go%?(&') of VI, $8, and apply duality.) Hence use exercise 4, 
case 3 following 2.2, exercise 22 of Chapter VI, and duality to show the 
following: 

SlHn = Hn+l S,Hn = Hn-l 

S,Z'" = Hn-1 

SIBn = 0. 

slzn = p + I  

S'Z'" = 0 
SIB" = 0 

S I P  = 0 

8. For any small category d, S e q ( d ,  3) has an injective cogenerator and 

S e q ( d ,  3) has a projective generator. Furthermore S e q ( d ,  '2?) has an in- 

jective cogenerator. Every member of S e q ( d ,  '3') is the quotient of an  exact, 

positive connected sequence and every member of S e q ( d ,  '3') admits a 
monomorphism into an exact, negative connected sequence. 
9. Let JA,E be as defined in IV, $3. Establish a natural equivalence 

+ + 

+ 
- 

[Ext"(C, ) >  JA,EI [Ext"(C, A ) >  

to show that the right-hand side is the nth satellite of JA,E evaluated a t  C. 
Prove the latter fact directly, and then using the fact that satellites preserve 
products give another proof of 5.2. 
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Global Dimension 

Introduction 

f 

In 1957, Eilenberg, Rosenberg, and Zelinsky [13] showed that for any 
ring R, the (right or left) global dimension of the polynomial ring R[X, ,. . ., X,] 
is k + gl. dim. R. Hochschild [23] generalized this result by showing that the 
free ring over Ron  any set of letters has global dimension 1 + gl. dim. R. In  $1 
we put this last result in the setting ofa fairly general abelian category. For the 
most part our approach follows that ofHochschild. The proofof 1.4 is modelled 
after a proof of Kaplansky. 

In 84-56 we generalize the notion of graded module over a graded ring in the 
cases of free rings, polynomial rings, and exterior rings. This gives rise to more 
applications of the projective class theory of V, 57. The main results here 
generalize theorem 6.1 of [S ,  Chapter VIII], concerning freeness of gradable 
projectives, in the cases of the three rings cited above. In particular, this 
enables us to draw Hilbert’s theorem on chains of syzygies in its original 
form [21]. 

In $7 we study the functor category [ I ,  4 where I is a finite ordered set. 
Specializing to the case where d = gR, in 98 we see that the category [I, gR] 
is equivalent to the category of modules over a certain ring of matrices over R. 
This enables us to obtain results on global dimension for such a ring. One 
would like to prove that associated with each finite ordered set I, there is a 
number m such that 

gl. dim.[Z, gR] = m + gl. dim. R 

for all rings R.  However, we have been able to show this only for some special 
sets I. 

1. Free Categories 

Throughout this chapter d will denote a nontrivial abelian category and 
R will denote a nontrivial ring. 

global dimension in this chapter can be obtained without the use of projectives. 
t A paper of the author to appear in the Journal Ofdlgebra will show how the results on 

215 



216 IX. GLOBAL DIMENSION 

Given a category d and a set Z, we define the free category on Z letters 
overd as the categoryFd( ofdiagrams in& over the scheme consisting 
of one vertex and I arrows. Thus an object D in Fd( {x i } )  is an object A together 
with a family ofzendomorphisms xi : A + A .  A morphism D + D' is a morphism 
A --f A' such that for each i E Z the diagram 

A -  A' 

is commutative. If we define T(D)  = A ,  then T is an exact, faithful functor 
fromF,({xi}) to d. 

Let p denote the maximum of the cardinal number of Z and the cardinal 
number of the integers. I f d  has coproducts indexed over p, then a coadjoint 
for T is given as follows. For A E d', let S ( A )  be such that 

''(A) = 0 Ai ,...it 
&...it) 

where the coproduct is over all finite sequences ( i , , ,  . ., i t )  in Z (0  < t c m) and 
Ai I. . .  ir = A .  Denoting the injection of Ai ,... i, into the coproduct by u ~ , . . . ~ , ,  we 
define xj : TS ( A )  + TS ( A )  by 

Xjui,. . .it = uji,. . .il, j E I* 

A morphism S ( A )  - + D  in Fd({xi})  is completely determined by a morphism 
A --+ T ( D ) .  From this follows an adjoint relation 

[ S ( A ) , D I  [ A ,  W ) 1 .  
Therefore by V, 7.2, i f d  has projectives then so does Fd({xi}) ,  and the pro- 
jectives in the latter are the objects of the form S (P) and their retracts, where P 
is projective in d. 

Lemma 1.1. vd hasprojectives and exact coproducts over p, then for any A E & we 
have 

h.d. S ( A )  < h.d. A .  

Proof. From the hypothesis on a2 it follows that S is exact, and so S preserves 
projective resolutions. The conclusion then follows from VII, 6.4. I 
Lemma 1.2. Let d be a category with coproducts over p. If I isfinite, then for any 
object D in Fsl({xi}), we have 

h.d. D < 1 + h.d. S T ( D ) .  (1) 

@d hasprojectives and exact coproducts over p ,  then ( 1) is valid for any I .  
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Proof. Let T(D) = A, and consider the sequence in at 
B 

y (&...it) (1 

0 Ai l...i, * A - t o  

defined as follows. Denote the injections for the middle and left-hand co- 
products by u~,...~, and u ; ~ . , . ~ , ~  respectively. (In particular, thisdefines u.) Then 
we define 

gu = 1, (3) 

pui,...i' = xi,xi,. ..#if : A + A  ( t>  0) (4) 
I 

auil...itj = ui ,... itj - 4, ... itxj 

yu = 0 

( t>  0). 

The morphisms a and /3 give us a sequence 

0 +%(A)  + S ( A )  -tD +o (8) 
in Fd({x i } ) .  We wish to show that (8) is exact. Since Tis  faithful, it suffices to 
show that (2) is exact in d. We shall actually show that u,  a, and p, y are the 
injections and projections for a coproduct. Using (5), (6), and (7), it is 
straightforward to verify the relation yaut!l...ilj = ul!,...itj, and so it follows that 
ya  = 1. Similarly, we have a y  + u p  = 1. Using Eq. (3), our assertion then 
follows from the remark after I, 18.1. Now if Z is finite, then we see from the 
fact that Ext preserves finite coproducts that 

h.d. ' S ( A )  = h.d. S ( A ) .  (9) 

On the other hand, if d has projectives and exact coproducts over p, then 
Fd( {x i } )  has exact coproducts over 1, and we can use the coproduct of Z copies 
of a projective resolution for S ( A )  as a projective resolution for ' S ( A ) .  Con- 
sequently, using VII, 6.4, we again have Eq. (9). Then applying VII,  6.1, 1 to 
the exact sequence (8), we obtain the inequality (1 ) .  I 
Lemma 1.3. r f D  is projective in Fd({x i } ) ,  and T ( D )  = A ,  then xi : A+A is a 
monomorphism for  all i E I .  

Proof. IfD is projective, then it is a retract ofS ( A ) .  Since xi is a monomorphism 
for S ( A ) ,  the same must be true of D. 1 

Consider the case where Zconsists of only one element, and let L : Fd(x)+&' 
be defined by L ( B )  = T ( D ) / x T ( D ) ,  where xT(D)  denotes the image of the 
morphism x : T(D) -+ T(D). If &' has countable coproducts (so that S is 
defined), then we have L S ( A )  = A.  From this it follows that if&' has projec- 
tives, then L preserves projectives. We shall also consider the functor 
M :  &'-+F,(x) defined by TM(A) = A  and 0 = x : A - A .  
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Lemma 1.4. Let d be a category withprojectives and countable coproducts. I f A  is a 
nonzero object in d and h.d. A = m, then h.d. M ( A )  = m + 1. 

Proof. I I P  is projective in d, then T ( S ( P ) ) ,  being a coproduct of copies of P, 
is also projective in d. From this it follows that T preserves projectives, and 
since T is also exact it preserves projective resolutions. Therefore for any D in 
Fsg(x) we have h.d. D 2 h.d. T(D). In  particular this gives us the desired 
result if m = co. 

If m = 0 then A is projective. Therefore by 1.2, h.d. M ( A )  < 1. But if 
h.d. M ( A )  were zero, then M ( A )  would be projective, and this is impossible 
by 1.3 since A # O ,  Hence h.d. M ( A )  = 1. 

For m 2 1 form an exact sequence in FJx)  

O + K + F + M ( A ) + O  (10) 

with F projective. Since xA = 0 we have x T ( F )  c T ( K ) .  Hence using the 
first Noether isomorphism theorem (I, 16.2) we have an exact sequence 

o +  T ( K ) / x T ( F )  -+ T ( F ) / x T ( F )  + A  - t o  

h.d. T ( K ) / x T ( F )  = m - 1. 

(11) 

(12) 

in d. Now since F is projective, L(F)  is projective. From (1 1) we then have 

Assuming the lemma is true for m = 1, we can now prove the general case by 
induction. For we have h.d. M (  T ( K ) / x T ( F ) )  = m and 

h.d. M (  T ( F ) / x T ( F ) )  = 1. 

Applying M to (1 1) and using VII, 6.1, 2, we see that h.d. M ( A )  = m + 1. 
Hence we have only to prove the case m = 1. Consider the commutative 
diagram 

xT(K) + xT(F)  

Since x is a monomorphism on T ( F )  (1.3), it follows that the vertical arrows 
are isomorphisms. Hence A = T ( F ) / T ( K )  = x T ( F ) / x T ( K ) .  Using the first 
Noether isomorphism theorem we can then form an exact sequence 

O - t A +  T ( K ) / x T ( K )  --t T ( K ) / x T ( F )  -to. (13) 

Since h.d. A = 1 and h.d. T ( K ) / x T ( F )  = 0 by (12), we see from (13) that 
h.d. L ( K )  = h.d. T ( K ) / x T ( K )  = 1. Now applying M to (1 1) and using the 
result already proved for m = 0 we see by VII, 6.1, 1 that h.d. M ( A )  is 1 or 2. 
But if it were 1, then (10) shows that K would be projective, hence 
h.d. L ( K )  = 0. This contradiction completes the proof. 
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L e t j  E I, and consider the forgetful functor U : F d ( { x i } )  +Fd(x j )  where d 
has projectives and coproducts over p. Denoting the coadjoint &+&(xi) by 
S', we have US(A)  = J S ' ( A )  where J i s  the set ofall finite sequencesin Iwhich 
do not begin with j. From this it follows that U preserves projectives. 

Lemma 1.5. Let d have projectives and exact coproducts over p. r f D  E Fd( {x i } )  is 
such that xjA = 0 f o r s o m e j  E I where T ( D )  = A,  then h.d. D = 1 + h.d. A .  

Proof. From 1.1 and 1.2 it follows that h.d. D < 1 + h.d. A .  If 

h.d. D < 1 + h.d. A, 

then since U preserves projective resolutions, we have h.d. U ( D )  < 1 + h.d. A .  
But thiscontradicts 1.4since U ( D )  = M ( A ) .  

Lemma 1.5 implies in particular that if we start with A ~d and define 
D E yJ({xi}) such that T ( D )  = A with xi = 0 for all i E I, then 

h.d. D = 1 +had.  A .  

Combining this with 1.1 and 1.2 we obtain : 

Theorem 1.6. Ij'd is a category with projectives and exact coproducts over p, then 

gl. dim. Fd({xi})  = 1 + gl. dim. d. I 
In the case where d is the category gR, we see from V, 1.5 that S(R) is a 

small projective generator for F d ( { x i } ) .  Hence the latter is equivalent to the 
category of right modules over the endomorphism ring of S(R). Using the fact 
that an endomorphism of S(R) is completely determined by a morphism 
R -+ TS( R)  ofright R-modules which, in turn, is completely determined by the 
image of the identity element of R,  it is not difficult to show that this endo- 
morphism ring is isomorphic to the free ring over R on I letters FR( {X i } ) .  The 
latter is defined as the free R-module having as base the elements 1 and 
Xil&., ... Xi,, where the subscripts run through all finite sequences in I, and 
where multiplication is defined by the rule 

( r  Xi l .  . .Xi,) ( r24 . ,  . . . Xjl) = r r2 Xi,. . .Xi,&. . .A$ 

This gives us : 

Corollary 1.7. For any ring R we have 

r. gl. dim. FR({Xi} )  = 1 + r. gl. dim. R. 1 
The opposite ring of FR({&i}) is easily shown to be ring isomorphic to 

&.({Xi}). From this it follows that 1.7 is also valid for left global dimension. 

2. Polynomial Categories 

The polynomial category on k letters over d is the full subcategory 
d [ x , , .  . ., xk] of F d ( x l , .  . ., xk)  consisting of all diagrams D satisfying the com- 
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mutativity relations xixj = x,..q. If T ( D )  = A,  then the morphism x, : A + A  may 
be considered as an endomorphism of the object o f d [ x l , .  . ., x,-J consisting of 
the k - 1 endomorphisms x , ,  ..., : A -+A. In  this way we obtain an 
isomorphism of categories 

d [ x l , '  " 9  'k1 @ d [ x l , *  "J x k - l l [ x k l *  

Using this, together with the fact that d [ x , ]  =FCl (x , ) ,  we have inductively 
from 1.6 : 

Theorem 2.1. Ifd is a category withprojectives and exact countable coproducts, then 

gl. dim. d [ x I , .  . ., x,] = k + gl. dim. d. 1 
I f d  has countable coproducts, then a coadjoint S for the evaluation functor 

T : &[XI,. . ., x,] +d is given by 

' S ( A ) =  0 Aili I...il 
i ,  < i 2  S. .. < id 

where the coproduct is over all finite nondecreasing sequences i, < iz.. . < i, of 
the integers 1,  2 ,..., k (0 < t < a), and where Ail...it = A .  The morphisms 
xj : T S ( A )  --f T S ( A )  are defined by 

xjui l...il = U l j i ,  .. .it1 ( 1 < j  < k), 
where in general l j ,  j,. . .j,l denotes the sequence obtained by putting the s 
numbersjl, j2 , .  . . , j s  in their natural order. If & has projectives, then so does 
d [ x I , .  . ., x k ] ,  and the projectives are the objects of the form S ( P )  and their 
retracts, where Pis projective in d. I f d  is gR, then S(R) is a small projective 
generator f o r  &[xi,. . ., x, ] .  Thus d [ x l , .  . ., x,] is equivalent to the category of 
right modules over the endomorphism ring ofS (R), which is easily shown to be 
isomorphic to the polynomial ring over R on k letters RIX1,. . ., X,].  Thus we 
have : 

Corollary 2.2. For any ring R we have 

r. gl. dim. R[X,,.. ., X,] = k + r. gl. dim. R. I 
The opposite ring of RIXI,. . ., X,] is clearly isomorphic to R*[X1,. . ., X,] .  

Hence 2.2 can be stated as well for left global dimension. 

3. Grassmann Categories 

The Grassmann category on k letters over d is the full subcategory 
Ed(x l , .  . ., x,) of F J x , , .  . ., x,) consisting of diagrams satisfying the relations 
xixj +xixi = 0 and xixi = 0. The coadjoint S for T : Es,(xl,. , ,, x,) +d is given 

by 
T S ( A ) =  0 Ailis ... it 

i ,<iI<. . .<i# 
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where the coproduct is over all finite increasing sequences il < i, < . . . < i, of 
the integers 1,  2,. . ., k (0 < t < k). The morphisms xj : TS(A) --+ T S ( A )  are 
defined by 

xjuil...il = 0 if j E {il, i2 , .  . ., it} 

= ~ ( j ,  i ~ , * * * >  4 ) U l j i  l...ili otherwise. 

Here u ( j ,  i l , .  . ., i t )  denotes ( - l)", where n is the number of transpositions 
required to reduce ( j ,  i l , .  . ., it) to the natural order. If d has projectives, then 
so does E,d(x l , .  . ., x k ) ,  and the projectives are the objects of the form S ( P )  and 
their retracts, where P is projective in d. If d is YR, then S(R) is a small 
projective generator for E d ( x l , .  . ., xk). Consequently, the latter is equivalent 
to the category of right modules over the endomorphism ring of S(R), 
which is isomorphic to the Grassmann (or exterior) ring over R on k letters 
&( ,. . .,xk) * 

Lemma 3.1. For A ~d consider the rnorjbhisrn d : S ( A )  + S ( A )  deJined by 

Then the sequence 
d d 

S ( A )  - + S ( A )  - + S ( A )  
is exact. 

Proof. It is trivial to verify that d commutes with the xi's; that is, that dis an  
endomorphism of S ( A ) .  I t  also follows easily from the relations xixj + xjxi=O, 
XJ, = 0 that dd = 0. In order to prove that (1) is exact we need only prove that 
T S ( A )  -+ TS(A) -+ TS(A) isexactsince Tisfaithful. Weconstructamorphism 
s : T S  ( A )  + TS ( A )  as follows : 

for il # 1 

= ( -  l)'-luis..,il for il = 1. 

sui I . . . i t  = 0 

By examining separately the cases i l  = 1 and i, # 1, one can verify the relation 

(sd + ds)Ui, ... it = ui l...it* 

In  other words sd + ds = 1. The required exactness now follows from I,  19.4. 1 

4. Graded Free Categories 

We define the graded free category on k letters over d as the category 
G F d ( x I , .  . ., xk) ofdiagrams in&' over the schemewhosevertices aretheintegers 
2 0, and which has k arrows from vertex n to vertex n + 1 for each n 3 0. If D 
is such a diagram we shall denote the k morphisms D,+D,+, by x , , . .  ., x, 



222 IX. GLOBAL DIMENSION 

regardless ofthe vertex n. Coadjoints S,, for the evaluation functors T, are given 

T,S,(A) = 0 €or m < n 
by 

where = A ,  and where the coproduct is indexed over all ( m  - n)  term 
sequences of the integers 1, 2,. + ., k. The morphisms xi : TmS,,(A) -+ T,+,S,,(A) 
are defined as before by 

- 
XjUi,...itn-n - uji ,... i,,,-" ( m  3 n)* 

Theorem 4.1. Let &' be aprojective class i n d .  Then the class&GFd(xl,. . ., xk) of all 
morphisms in GFd(xl,. . ., xk) which are pointwise in &' is a projective class whose pro- 

jectives are of the form @ s,( p,), where p,, is &-projective for each n. 
n,O 

Proof. Since a coproduct ofthe form 0 &(A,) involves only a finite number of 
n 2 O  

nonzero objects at each vertex YZ, it follows that the family {S,,} is coproductive. 
Thus the first statement is a consequence ofV, 7.4. To show that the projectives 
are as stated we define functors R! : GFd(xl,. . ., x,,) +d by 

R!(D) = D, /i:+, XiD,-, (. 3 1, 0 < q < k). 

Thus RI = T,,. If we define R, = R: for n > 0 and Ro = To, then it is readily 
verified that the family {Rn}n20 satisfies condition 1 of V, 7.5. 

To show that condition 2 is also satisfied, consider a : D' +D2 where D'  and 
D2 are bCF,(xl,. . ., xk)-projective, and suppose that R,,(a) is an isomorphism 
for all n 2 0. We wish to show that T,,(a) is an isomorphism for all n 2 0. We 
know that T o ( a )  is an isomorphism. Assume that R!-'(a) is an isomorphism 
and that RL1(a)  is an isomorphism for 0 < p  < k. We show that R!(a) is a n  
isomorphism. Consider the sequence of natural transformations 

O-+T,,+R,Q+R~LO (1 )  
where the transformation on the right is the obvious epimorphism and the one 
on the left is induced by xq : D,, +D,. The sequence (1)  is exact when evalu- 
ated at an object of the form @ S,,(A,) where A, is any object in d. Thus it 

follows from V, 7.4, that ( 1 )  is exact when evaluated at  any &'GFd(xl,. , ,, xn)- 
projective. Therefore, applying a to ( 1) and using the inductive hypothesis and 
the 5-lemma, we see that R!( a )  is an  isomorphism as required. 

n 3 0  

Taking &' to be the class go of all retractions in d, we obtain : 

Corollary 4.2. Any retract o f a n  object qfthe form 0 .$,(A,,) in G&(xl,. . ., xk) is of 
the samc form. 1 

n 2 O  

Since the T,'s are exact functors we have : 
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Corollary 4.3. rfd hasprojectives, then so does G F d ( x l , .  . ., xk). Theprojectives in 
the latter are precisely the objects ofthe form @ S,(P,) where P, isprojective i n d  f o r  all 

n30.1 
n 2 O  

If& has countable coproducts, then we can define a functor 

by TL(D)  = @ D, and xivn = v,+'xi, where v, denotes the nth injection for the 
n > O  .-  . 

coproduct. For any integer n we have LS, = S : d + F d ( x I , .  . ., xk) .  Also L 
preserves coproducts, so that in particular we have 

L@jOsn(An)) = n20 o '(An) 
for any family A,  of objects in d.  If the countable coproducts in d are exact, 
then L is an exact functor. An object inFd(xl,. . ., xk) which is isomorphic to an  
object of the form L ( D )  is called a gradable object. 

Proposition 4.4. If& hascountablecoproductsandL(D)isprojectiveinFd(x,,. . .,%k), 
then D is projective in G F d ( x l , .  . ., xk). 

Proof. Consider an epimorphism f: D' + D 2  and a morphism g : D+D2 in 
GFJx,, ..., xk). Since L ( D )  is projective, this gives rise to a commutative 
diagram in F d ( x l , .  . .xk)  

@ Dn 
/ n > O  

n > o  n i  0 

wheref= Of,, S = @ g,, and h commutes with the xi's. Denote the injections 
n 3 O  n S O  

and projections for @ D!, by u, andp,, and for @ D: by v, and 4,. Also denote 
n > O  n 2 O  .- . . .  

the injections for @ D, by w,. Define h, = p,hw,. Then we have 
n L O  

f ,hn =f ,PJwn = qnfhwn = q m P n  = gn 
and 

xih, = x;p,,hw,, = p,+lxihw, = p,+'hxiw, 

= Pn+lhwn+lXi = hn+,xi* 

Therefore the h,'s define a morphism h in G F d ( x l ,  ..., X k )  andfh =g. This 
proves that D is projective. 1 

The converse of 4.4 is also true (see exercise 3).  
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From 4.4 we see that any gradable projective inFd(x,,. . ., x,) must be of the 
form @ S(P,,) where P,, is projective in d for all n. In particular, let a2 be gn, 

where R is a ring with the property that every projective right R-module is free 
(i.e., isomorphic to a coproduct of copies of R). Then each P,, is free, and so 
since S preserves coproducts it follows that every gradable, projective right 
module over the free ring FR(X1,. . ., X,) is a free module. A consideration of 
opposite rings shows that we can replace “right” by “left” in the above 
discussion. 

naO 

5. Graded Polynomial Categories 

The full subcategory C&”xl,. . ., x,,] of CFd(xl, .  . ., x,,) consisting of all 
diagrams D satisfying the relations xixj = xjxi is called the graded polynomial 
category on k letters over d. In this case the functors S,, are given by 

T,,,S,,(A) = 0 for m < n, 
= 0 Ai l...im-n for m 2 n, 

i, < . . . < i,,,- I 

54, ...i,,,-. - ~ljil...i,,,-ml* 
- 

Theorem 5.1. Let d be a projective class in d. Then the class d G d ( x , ,  ..., x,) o f  
all morphisms in G d ( x l , .  . ., xk) which are pointwise in d is a projective class whose 
Projectives are ofthe form 0 S,,(P,,), where P,, is &-projective for each n. 

Proof. The proofis identical to that of4.1, except that thesequence (1) must be 
replaced here by 

n 2 O  

o - + ~ l + ~ + R p + . o .  1 
Corollary 5.2. Any retract ofan object oftheform @ $,,(A,,) in G d [ x , , .  . ., x,,] is o f  

naO 
the same form. 

Corollary5.3. Ifd hasprojectives, then so does G d [ x , , .  . ., xk]. Theprojectives in the 
lntter are precisely the objects ofthe form 0 S,,( P,,) where P,, is projective in a2 f o r  all 

n 2 0 . 1  
n 2 O  

If d has countable coproducts, then we have the functor 

L : G d [ x ,  ,..., x,] + d [ X l , .  . ., x,] 
just as before, and the proof of 4.4 applies to the following. 

Proposidon5.4. ud hascountable coproductsandl(D) isprojectiveind[x,, ..., xk], 
then D isprojective in G d [ x l , .  . ., x,]. 1 

Again it follows from 5.4 that i fR is a’ring over which any projective module 
is free (such as a field), then any gradable projective over the polynomial ring 
R[X,, . , ., X,] is free. Theorem 2.1 combined with this fact contains Hilbert’s 
theorem on chains of syzygies [2 13 .  
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6. Graded Grassmann Categories 

We define the graded Grassmann category on k letters over d as the 
category GE,(x,,. . ., xk) of diagrams in ai' over the scheme whose vertices are 
the integers (positive and negative) and which has k arrows xI, ..., xk from 
vertex n to vertex n + 1 for each n E Z, subject to the conditions xixj + xjxi = 0 
and xixi = 0. Thus GE(xl) is just the category %'(d) of complexes in d. 
Coadjoints S, for the evaluation functors are given by 

T,S,(A) = 0 for m < n, 

= 0 Ai,...i,,,-, for m > n, 
i, < . . . < in- 

. .  - xjuil...in-n - 2 1 , .  * t - n ) U l j i  ,... i,,,-nl' 

Theorem 6.1. L e t 8  be aprojective class in&. Then theclass&'GEd(xl,. . ., xk) ofall 
morphisms in GE,(x,,. . ., xk) which are pointwise in 8 is a projective class whose 
projectives are ofthe form @ S,(P,) where P, is 8-projective f o r  each n. 

Proof. A coproduct @ $,(A,) involves only a finite number of nonzero objects 

at  each vertex n, and so the family {S,} is coproductive. Hence, again, the first 
statement follows from V, 7.4. To prove the second statement we define Ri as in 
4.1. In  this case we have the sequence 

n€Z 

nEZ 

XV 

O-tR~:~- tR~+R~- l+O 

which is exact when evaluated at any &'GE,(x,,. . ., x,)-projective. Therefore 
we can apply induction on q alone to show that if R,(a) = e ( a )  is an iso- 
morphism for all n, then T,(cr) = Ri(a) is an isomorphism. 1 
Corollary 6.2. Any retract Dfan object ofthe form @ S,(A,) in GEd(xl,. . ., xk) is of 

nEZ 

the same form. I 
Corollary 6.3. If ai' has projectives, then so does GE,(x,,. . ., xk) . The projectives in 
the latter are precisely the objects o f  the form @ S,( P,) where P, is projective in d f o r  

all n. I 
nEZ 

Let CE,d(xl,. . ., xk) be the full subcategoryofGE,(x,,. . ., xk) consistingofall 
bounded objects; that is, objects D for which there exist integers p and q such 
that D, = 0 for n > q and n < p. Then we have the functor 

L : CEd(X,,. u ., xk) +Ed(Xl,. . ., xk) 

defined by TL(D)  = OD,. If& has coproducts, then L can be defined on all 

of GEd(xl,. . ., xk) as before. 
nEZ 
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Proposition 6.4. ZfD is bounded and L ( D )  isprojective in Ed(x l , .  . ., xk) ,  then D is 
projective in GEd(xl , .  . .) x k ) .  If JZ? has countable coproducts, then the same 
statement is true for any D in GEd(xl , .  . ., xk). 

Proof. I f d  has countable coproducts and L ( D )  is projective, then the proof of 
4.4 applies to show that D is projective. Thus, suppose that D is bounded and 
L ( D )  is projective, but d does not necessarily have countable coproducts. 
Assume that D, = 0 for n cp and n> q.  Associated with an object D 1  in 
GEd(xl, .  . .) x k )  we have the truncated object D1 defined by 0; = 0 for n < p 
and n > q + land D!, = Di forp < n < q + 1. Given an epimorphismf : D +D2 
and a morphism g : D + D2 we consider the diagram 

Q+ 1 q+1  
wheref= Of, and 1 = @ g,. Thenfand 1 can be considered as morphisms 

n=# n =p 
fromL(0') to L(D2) and L(D) to L(D2) ,  respectively. Therefore, since L ( D )  is 
projective we obtain h such thatfh '1, and h : D -+ D' can be defined from h 
just as in 4.4 to show that D is projective. I 
Theorem 6.5. Zf d is any abelian category with projectives, then 

gl. dim. Ed(xI, .  . ., %k) = a. 

Proof. Let A be any nonzero projective in d, and consider the morphism 
d :  S ( A )  + S ( A )  of 3.1. Clearly d is of the form L(6)  where 6 : Sl(A) +&(A). 
The kernel K of 6 is such that K,,, # 0, hence K # 0. On the other hand we 
have xlx2 . .  .xk6 = 0, and so the image I of 8 has the property 

Xlx2.a .xkI = 0. (1) 

Now since L is exact we have L(Z) = L ( K )  by 3.1. If we can show that L( I )  is 
not projective, then 3.1 will furnish us with an infinite projective resolution of 
L(Z) for which the kernel is never projective. By VII, 6.4, this will show that 
L(Z) has infinite homological dimension. 

Suppose that L(Z) is projective. Then by 6.4, Zis projective. Thus Zis of the 
form @ S,(P,). Using (1) it follows that P,= 0 for all n. Thus Z = 0, and so 

L ( K )  = L(Z) = 0. Consequently K = 0, a contradiction. I 
nEZ 
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Corollary 6.6. For any ring R we have 

r. gl. dim. &(XI,. . ., X,) = to. 

Since the opposite ring of ER(X X,) is isomorphic to &.(XI, ..., X,), 
Corollary 6.6 can also be stated for left global dimension. 

7. Finite Commutative Diagrams 

Let Z be a diagram scheme and let - be the largest commutativity relation 
on Z. Thus [Z/ - , d] is the category of commutative diagrams in d over Z, 
and Z/ - , viewed as a category, is simply an ordered set. Since any ordered set 
is equivalent as a category to an ordered set with the property that any two 
members which precede each other are equal, we shall assume this to be true of 
all ordered sets in the sequel. Furthermore, unless otherwise specified, all 
ordered sets will be finite. 

If i < j  in an ordered set Z, then we shall say that i immediately precedes j 
or tha t j  immediately follows i if there is no k such that i < k < j. The order 
of an element i is the length n of the longest chain of the form 

. .  
20 < 2 ,  < . . . < 2,-1 < 2, = 2 .  

If i < j ,  then clearly the order of i is less than the order ofj. We say that i and j 
are compatible if one precedes the other. If i and j have the same order, then 
they cannot be compatible. 

If B E [ I ,  d] and i <jJ then the morphism from Di to Dj will be denoted by 
D,. The morphisms D, can be considered collectively as a natural transforma- 
tion from Ti to (where T(D)  = Di). A coadjoint Si for Ti is given by 

q S i ( A )  = A for i < j  

Si(A)jk = 1, for i < j  < k 

qSi(a)  = a for i < j  
= 0 otherwise. 

= 0 otherwise; 

= 0 otherwise; 

When there is more than one ordered set in question we shall denote Si by Si. 
Observe that the finiteness condition on I is not needed in defining Si. 

We also define functors Ri = Rj : [Z, d] +d by 

Ri(D) = D i / u  Im(Dji). 

If I’ is a subcategory of Z, we let F : [Z, d] + [Z’, d] be the restriction functor. 

Theorem 7.1. Let I be ajni te  ordered set and let & be aprojective class in d, Then the 
class&[I, d] ofmorphisms in [I ,  d] which arepointwise in & is aprojective class whose 

j<  i 
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projectives are the objects ofthe form @ Si(Pi) where Pi is &-projective f o r  all i E I. If 
D and E are &[I, d]-projective and a : D -+ E is such that Ri( a )  is an isomorphism f o r  
all i E I ,  then a is an isomorjhism. 

iEI  

Proof. By V, 7.5, it suffices to show that the last assertion is true. We wish to 
show that if Ri(a) is an isomorphism for all i, then ai : Di + Ei is an isomorphism 
for all i. We proceed by induction on the number ti of objects plus morphisms 
in I .  If I has only identity morphisms (in particular, if n = 2) then Ri = Ti for 
all i, and so the condition is trivially satisfied. Otherwise we can find members 
p ,  q oflsuch that q is maximal in Zandp immediately precedes q. First we take 
I’ to be the full subcategory of I consisting of all objects i such that i < q. Then 
for i E I‘ we have FSf = Sr, and so it follows from V, 7.4, that F takes & [ I ,  d]- 
projectives into &“Z‘, d]-projectives. Also we have RfF = Rffor all i E 1’, and 
so our induction allows us to assert that ai is an isomorphism for all i < q. 

Now let J be the set of all elements j E I such t h a t j  < p but j precedes no 
other element which immediately precedes q. Let I’ be the subcategory of I 
obtained by omitting the morphism from j to q for all j E J .  If i $ J then 
FS; = Sr, whereas if i E J ,  then FSf = S:‘ @ SF. In  any case it follows again that 
F takes &[I, d]-projectives into &[Z’, d]-projectives. For i # q we have 
RfF = R:, and so R,”F ( a )  is an isomorphism. Furthermore, we have a sequence 
of natural transformations 

@q+ T,+R~F+R,’+o (1) zf 
which is easily seen to be exact when evaluated at  any object of the form S;(A) 
for any i. Consequently, ( 1 )  is exact when evaluated at  any b[I,d]-projective. 
Now applying a to (1) and using 5-lemma and what we have already proved, 
we see that RFF(a) is also an isomorphism. Hence by induction, ai is an 
isomorphism for all i E I .  I 

Corollary 7.2. Any retract o fan  object ofthe form @ &(Ai)  in [I ,  d] is isomorphic 
iEI  

to an object of the same form. I 

Corollary 7.3. I f  d has projectives, then so does [ I ,  d]. An object in the latter is 
projective if and only if it is isomorphic to an object of the form @ Si(Pi) where Pi is 

projective in d for  all i. I 

Corollary 7.4. Let D be an object ofthe form @ Si(Ai)  in [ I ,  d], andfor each i E I 

let A: c Di be such that 

iEI 

i E I  

Di = A,: @ u I m  Dii . 
( j < i  1 
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(In particular this means that A; is isomorphic to Ai, but not necessarily as a subobject of 
Di.) Then f o r  each i we have 

u Im(DF) = u DJA;) 
j<i j<i 

and the union on the right side is a coproduct. 

Proof. It suffices to prove that the morphism 

a : @ &(A:) + D  

induced by the inclusions A: c Di is an isomorphism. But this follows from 7.1 
since for each i ,  the morphism &(a) is just the identity morphism on A:. I 

If d has projectives, then a projective resolution for D in [ I ,  d]  can be 
constructed as follows. For each Bi choose an epimorphism Pi + Di in& with Pi 
projective. This induces morphisms $,(Pi) +D which are the coordinates of an  
epimorphism 

iEI 

Do = 0 Si(Pi) +D 
iEI 

in [I, d].  Letting K I denote the kernel, we repeat the process using K I instead 
of D. This iterative procedure then gives a projective resolution for D .  

8. Homological Tic Tac Toe 

We consider here the case where d is the category gR. Since I is finite, we 
see from V, 1.5, that S(R) =@ Si(R) is a small projective generator for 

[I, gR], and consequently [Z, gR] is equivalent to the category ofright modules 
over the endomorphism ring of S(R). Consider the right module U = @ Ri 
where & = R for all i E I. Then we can regard S (R) as a network of submodules 
of U. Explicitly, we have S(R)j =@ R.C U, and for j < k the morphism 

S (R)jk can be considered simply as the inclusion 

iEI 

iEI 

i 6 j  

O R + @ & .  
i 6 j  i < k  

In this light, an endomorphism ofS (R) is simply an endomorphism of the free 
module U which takes every submodule in the network into itself. Such an  
endomorphism can be identified with an Zx I matrix over R of the form ( Y ~ )  
where iij = 0 if i >j. This identification being clearly an isomorphism of rings, 
we have : 

Theorem 8.1. The category [ I ,  gR] is equivalent to the category 9" where (1 is the 
ring of I x Z matrices over R of the form (rij) such that rij= 0 f o r  i > j .  I 
For left R-modules we have 

[I, Rs] = [I, P O ] .  
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By 8.1 the right side is equivalent to the category gr' where r* is the ring of 
matrices over R* of the form ( Y ~ )  such that yii = 0 for i+ j .  Now the opposite 
ring rof  r* is given by the transpose operation on matrices. Hence we have: 

Theorem 8.1*. The category [ I ,  V] is equivalent to the category r'3 where r is the 
ring of I x I matrices over R of the form (rij)  such that rij = 0 f o r  j > i. I 

We now consider some examples. 

1. The discrete set of n elements is the category I with n objects and whose 
only morphisms are identities. In this case the endomorphism ring of S(R) is 
just the ring of n x n diagonal matrices, which is ring isomorphic to the product 
of n copies of R. However it is clear that [ I ,  @'I is simply the product (of 
categories) of n copies of gR. Hence the category of right modules over R" is 
equivalent to the product of n copies of 9. 
2. IfI, is the ordered set defined schematically by 1 -+2, then S(R) is given 

by the diagram 

Here S(R) 12(r) = (r, 0) for Y E R. The category [ I I ,  '3'7 is equivalent to the 
category of right modules over the ring of matrices over R of the form 

R, + R I B  Rp 

(a :) 
where we have put an x in any position where we are free to enter arbitrary 
elements of R. More generally, if I is the linearly ordered set of n elements 

1 -+2+3+.. . + n  - 1 +n, 

then [ I ,  gR] is equivalent to the category of right modules over the ring of 
n x n matrices which have 0's at every position below the main diagonal; that 
is, the ring of n x n triangular matrices. 

3. For the square 

I , x I 1 :  1 - 2 
3-4 

S(R) takes the form 

R I  - R,@ R, 

R,@ R3+ R, @ R, @ R 3  0 R, 



8. HOMOLOGICAL TIC TAC TOE 23 1 

The category [II x I,, gR] is equivalent to the category of right modules over 
the ring of matrices over R of the form 

(i i g i) 
This last fact could also be obtained from example 2 using the isomorphism of 
categories 

[I1 X I , ,  gR1 = [Il, [II, YR11. 

We return now to the general case. If, instead of using S(R) = @ Si(R) as a 

small projective generator, we take @ S,(R"') where t+ > 0 for all i (V, 1.5), 
iEI 

iEI  

then we find that the corresponding endomorphism ring is isomorphic to a 
certain ring of n x n matrices over R where n = C ni. Thus in example 3 above, 

if we take nl = 2, n2 = 1, n3 = 3, and n4 = 2, then the matrix pattern becomes 
i E I  

X 

x 

0 

0 
0 
0 

0 
0 

x 
x 

x 

0 
0 
0 

0 
0 

x 
x 

0 

x 
x 
x 

0 
0 

x 
x 

0 

x 
x 
x 

0 
0 

x 
x 

0 

x 
x 
x 

0 
0 

x 
x 

x 

x 
x 
x 

X 

x 

In  the case where Z consists of a single element, taking R" as a projective 
generator we have the following result. 

Proposition 8.2. For any integer n > 0, the category gR is equivalent to the category 
SMn(R) where MJR) b the full ring of. x n matrices over R. 

Let A be any subring of M,,(R) defined by requiring that 0's appear in 
certain positions in the matrix and arbitrary elements of R elsewhere. We call 
the corresponding array of x's and 0's a pattern, and we say that A is defined 
by an n x n pattern over R. Since (1 must contain the identity element of 
M,(R), a pattern must have x's at every position along the main diagonal. 
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(Thus, x always wins.. . .) Furthermore, patterns cannot be too random since A 
must be closed under multiplication. Explicitly, if x appears in both positions 
( i ,  j )  and (j, k) then x must also appear in position ( i ,  k). A permutation of the 
integers 1 to n induces an isomorphism from A onto another ring defined by a 
pattern. Consequently, we can alter a pattern by interchanging rows and the 
corresponding columns without changing any property of A.  We now prove 
the converse of 8.1. 

Theorem 8.3. Let A be a ring dejned by an n x n pattern over R. Then g A  is 
equivalent to the category [I, gR] for  somefinite ordered set I .  

Proof. By an interchange of columns (taking care to interchange the corre- 
sponding rows) we may assume that the first column is the one with the least 
number, say n l  of x’s. Now the main diagonal must have x at every position, 
and so in particular we must have x in the northwest corner of the pattern. 
Making interchanges among rows 2 to n (and the corresponding columns) we 
may assume that x appears at each of the first nl  positions of the first column, 
and consequently that 0 appears in the last n - n l  positions. Then, using the 
fact that matrix multiplication must preserve the pattern, we find that 0 must 
appear in the last n - n l  positions of each of the first nl  columns. But since the 
first column had the least number ofx’s, this means that x must appear at each 
position ofthe n l  x nl  block in the northwest corner. This will be referred to as 
the block in position (1, 1). 

Of the remaining n - n l  columns we interchange so that column nl  + 1 has 
the least number of x’s. Note that such an interchange will not affect the 
pattern already established in the first n l  columns. We then make interchanges 
among the last n - n l  rows so as to have x appear a t  every position from nl  + 1 
to n l  + n2, say, in column nl  + 1, and so as to have 0 appear below position 
n l  + n2 .  Again, by closure of multiplication we see that we must have 0 below 
position n ,  + n2 in each of the columns n l  + 1 to nl  + n2.  For the same reason 
it follows that there must be either all x’s or all 0’s in positions 1 to n l  in column 
n ,  + 1. I n  the case where there are all O’s, one again uses closure of multipli- 
cation to show that there are 0’s in every position of the n l  x n2 block formed by 
the intersection of the first nl  rows with columns nl  + 1 to n l  + n2 (called the 
block in the position (1,2)). Then since column n l  + 1 had the least number of 
x’s, it follows that there must be an x in every position of the n2 x n2 block 
touching the block in position (1,l) at its southeast corner (the block in position 
(2, 2)). The same reason shows that in the case where there are x’s at each of 
positions 1 to nl  in column n1 + 1 there must be x’s throughout the blocks in 
positions (1, 2) and (2, 2). 

Continuing in this way we get a string of say k square blocks along the main 
diagonal (the blocks in position (i, i) for i = 1, 2,. . ., k) consisting entirely of 

x’s. Suppose that the length of the block in position ( i ,  i )  is ni, so that C ni = n. 
k 

i- 1 
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Then for i < j the ni x nj block in position (i, j) formed by intersecting the ni 
rows passing through the ith diagonal block with the nj columns passing 
through thejth diagonal block will consist either entirely of x’s or entirely of 
0’s. All blocks below the diagonal consist entirely of 0’s. Furthermore, 
another consequence of closure of multiplication is that if the blocks in 
positions (i, j )  and ( j ,  k )  consist entirely of x’s, then the same is true of 
the block in position (i, k ) .  Let Z be the ordered set consisting of the integers 
1, 2,. . ., k with i < j if and only if the block in position ( i , j )  consists entirely 
of x’s. Then @ Si(R”‘) is a small projective generator for [ I ,  gR] whose endo-’ 

morphism ring is isomorphic to A.  1 
Corollary 8.4. Let A be a ring defined by an n x n pattern over R. Then for some 
k < n, g A  is equivalent to where A ,  is defined by a k x kpattern over R and is a 
subring of the k x k triangular matrices. 1 

i€I 

Left A-modules are right A*-modules, and A* is isomorphic to the ring of 
transposes ofmembers ofA. It follows that i f l is  the ordered set obtained in 8.3 
for right A-modules, then ”l’3 is equivalent to [ I * ,  R’3j. 

9. Normal Subsets 

Given I ’  c I,  we define the following two subsets of Z - I’ : 

X(Z, I‘)  = {ili follows no member of Z’) 
Y(Z, Z’) = {ili E Z- I ’  and j < i for some j E I ’ } .  

We say that io is a minimal element of I’ following i if io E 1’, i < i,, and for 
no member j of I’  do we have i < j  < io. Considering I ’  as an ordered subset 
(that is, a full subcategory) of I,  we say that I ’  is a normal subset of I if the 
following condition holds: For each i E Y(Z, 1’) and each pair io, i ,  of minimal 
elements of I’ following i there exists no member k of I’ such that i, < k and 
i, < k.  As before, we shall denote the restriction functor [I,  d] -+ [Z’, d] by F.  

Lemma 9.1. If &‘ has projectives and D E [I,  4 is such that Dj = 0 f o r  all 
j E X ( I ,  I ‘ ) ,  then there exists a projective resolution for D every term of which also hm 
this property. 

Proof. If Dj = 0, then we can take Pj = 0 in the discussion at the end of87. Now 
for j E X ( I ,  Z’) there is no element i < j  for which Di # 0. Consequently, 

Ti @ Si(Pi) = 0 fo r j  E X(Z ,  Z’), and so Ki = 0 for a l l j  E X(Z ,  Z’), The result 
( i E I  1 

now follows by iteration. 1 
Lemma 9.2. Let I’ be a normal subset of I and suppose that d hasprojectives. I f D  is 
projective in [Z, d]  and is such that Dj = 0 for all j E X ( I ,  Z’), then F ( D )  isprojective 
in [Z’, d]. 
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Proof. By 7.3 it suffices to consider D of the form Si(P)  where Pis  projective in 
d and where i is in I' or Y ( I ,  I'). In the first case we have FSi(P) = S f ( P ) .  In  
the second case we have 

FSi(P) = 0 S / (P)  

where J is the set of minimal elements of I' following i .  Hence, in either case, 
FS!(P) is projective. ( 

Lemma 9.3. Let I' be any ordered subset of I .  Then there is a functor 

j€J  

E : [Z', --f [ I ,  d] 
such that T E  = 0 f o r  a l l j  E X ( I ,  Z') andsuch that FE is the identity functor on [Z', -021. 

Proof. For i E Z, let Y ( i )  be the ordered subset of Z consisting of all membersj of 
I' such that i <j.  Given D' E [Z', d] we define E(D')i  = 0 for i E X(Z,  1'), 
and otherwise we take E(D')i  as the limit of the restriction of D' to Y ( i ) .  The 
limit exists by 11, 2.7, since Z is finite. For i < j  and i I$ X(Z, Z') we have a 
compatible family {E(D') i -+Dl}kEy(j l  which gives rise to a limit morphism 
E(D')v  : E(D')i -+E(D') j .  Likewise for i q? X(Z, Z'), the morphism E ( c z ) ~  rela- 
tive to a morphism cz in [1', d] can be defined as the limit morphism of the 
family { c t j } j c y ~ i ~ .  In  this way Ebecomes a functor with the required properties.( 

Proposition 9.4. I f  I' is a normal subset of I a n d d  hmprojectives, then 

gl. dim. [Z', d] < gl. dim.[l, d]. (1) 

Proof. Given D' E [Z', d], by 9.1 and 9.3 we can construct a projective reso- 
lution for E (D') every term ofwhich is zero overj for a l l j  E X (I, Z'). Applying 
F to this resolution and using 9.2 we obtain a projective resolution for 
FE (D')  = D'. Hence we have h.d. D' < h.d. E (D' ) ,  and so (1) follows, ( 

10. Dimension for Finite Ordered Sets 

Throughout this section d will denote an abelian category with projectives. 

Lemma 10.1. Consider D E [ I ,  d] andsuppose that h.d. Di< n < 03 f o r  some i E I .  
If 

0 -+ K"+'+I -+ Dn+r -+ Dn+'-I. . . -+ D' +Do -+ D -+0 

is an exact sequence with Dk projective f o r  0 < k < n + r and r 2 0, then ,;+'+I is a 
coretraction for  all j > i .  

Proof. Since h.d. Di < n we see that Im(d/+') = Ker(d/+'-') is projective in d, 
hence d"+'+' is a coretraction. Since Dn+r is projective we know also by 7.1 that 
Qy is a coretraction. Hence since 

d' d' 

(1) 

d;+T+lK;+l+l = D?ffrd"T+l 
IJ * 

it follows that K$+'+l is a coretraction. ( 
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Lemma 10.2. I f 0  E [I,  d] and h.d. Di < n < w f o r  all i E I ,  then there is an exact 
sequence ( 1 )  with ok projective f o r  0 < k ,< n + r and such that K;+'+l = 0 f o r  all 
elements i oforder < r in I ( r  3 0). 0; furthermore, r 2  1 and io is an  element of order 
r + 1 which is preceded by only one element of order r,  then we can take KY+r+l = 0 as well. 

Proof. Construct an exact sequence in [I ,  d] 

0 + K" + D"' -+ -+. . . -+ D' --f Do +D +O 

with Dk projective for 0 6 k < n - 1. Then since h.d. Di < n we see that K7 is 
projective for all i .  Consequently, D" = @ S i ( Q  is projective, and we have the 

obvious epimorphism D" -+ K". Letting K"+' be its kernel, we see again that 
K:+l is projective for all i ,  and furthermore ICYf1 = 0 for all elements i of order 
0. We define inductively 

D n + r  = @ Si( Kf+'). 

Then we have an epimorphism Dn+' + K"+' whose kernel K"+'+' is such that 
K:+'+l = 0 for all elements i of order < r. If r 2 1 and i, is an element of order 
r + 1 which is preceded by only one elementj of order r, then we apply 10.1 to 
write 

Kr+r = Im(K$r) OK:?. 

i E I  

i E I  

Then we can define Dn+' by 

and the kernel Knfrfl of the obvious epimorphism Dn+' +K"+' will have the 
desired property. 

Corollary 10.3. Zf h.d. Di ,< n < co f o r  all i E I and the maximal order of a vertex 
in I is m, then h.d. D < m + n. Consequently 

gl. dim.[l, d] < m + gl. dim. d. 

Consider the linearly ordered set I ,  of two elements. We define functors 
M, : d ' - + [ Z , ,  d'] and G : [Z,, d'] +d by M , ( A )  = ( A - t O )  and G(D) = D 2 /  
Im D I P ,  respectively. Then from 7.1 we see that G preserves projectives. 

Furthermore, an exact complex in [II,&'] consistingof terms Dsuch that D,, is a 
monomorphism is taken by G into an exact complex in d'. This is simply the 
statement that the quotient of an exact complex by an exact subcomplex is 
again exact (VI, $8). 

Lemma 10.4. Ifh.d. A = n 2 0, h e n  h.d. M , ( A )  = n + 1. 

Proof. By 10.1 we have h.d. M , ( A )  < n + 1. Suppose that h.d. M , ( A )  < n + 1. 
Ifn = 0, then this means that M , ( A )  is projective, and it follows that A +O is a 
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monomorphism. Consequently, A = 0, a contradiction. If ti > 0, consider an 
exact sequence in [II, d]  

0 - K - P - A - 0  

0-P- P - 0 - 0  

with P projective i n d .  Denoting K + P  by K' we have h.d. K' < n. But if we 
apply G to a projective resolution for K 1  of length < n, then we obtain a 
projective resolution for G ( K ' )  = A of length < n. Hence h.d. A < n, and so 
again we have a contradiction. Therefore, h.d. M I  ( A )  = n + 1. I 
Corollary 10.5. The m-cube I? is such that 

gl. dim.[Zy, 4 = m + gl. dim. d 
for all d. 

Proof. For m = 1 this follows from 10.4 and 10.3. We then have inductively 

gl. dim. [Zy, d]  = gl. dim.[Zy-' x I ] ,  .d] 
= gl. dim.[ly-', [ I I ,  at]] 
= ( m  - 1) + gl. dim.[I,, d] 

= ( m  - 1 )  + ( 1  + gl. dim. d)  
= m + gl. dim. a', I 

Corollary 10.6. ZJZ is nondiscrete, then 

gl. dim.[I, d]  3 1 + gl. dim. d. 

Proof. If Z is nondiscrete, then Z contains ZI as a (necessarily normal) subset. 
Hence the result follows from 10.5 and 9.4. I 
Corollary 10.7. Let A be a ring of matrices ouer R defined by a pattern with zeros 
below the main diagonal and at least one x above the main diagonal. Then 

r. gl. dim. A 2 1 + r. gl. dim. R. 

The same statement is true for  left global dimension. I 
We say that a member i of Z is a decision point for i if there are members 

j ,  p, 9 of I such that i < p <j and i < 9 < j apd p and 9 are incompatible. I is 
called decision free if it has no decision points. 

Lemma 10.8. Consider D E [I, d]  and suppose that h.d. Di < n in d for  all i E I. 
IfZ is decision free, then h.d. D < n + 1. 

Proof. We proceed by induction on the number m of elements in I. If m = 1, 
then h.d. D < n. Otherwise let i, be maximal in 1, and let J be the set of 



10. DIMENSION FOR FINITE ORDERED SETS 237 

elements which immediately precede it. Then no two members of J are 
compatible. Consider an exact sequence in [ I ,  4 

dn+l dn 

O N  Dn+l + D"---+ D"' . . .Do- D+ 0 (2) 

with Dk projective for 0 < k < n. We wish to show that D"+' is projective. Write 

where Pi is projective for each i E I. We regard Dn+l and D" as networks of 
subobjects of@ Pi. Since h.d. Di < n we know that Im(d7) is projective for all i. 

Hence din+' is a coretraction for all i. Since Zis decision free we see that no two 
members of J c a n  be preceded by a common element, and so it follows from (3) 
that the union u D; is a coproduct. But then since D;+' is a retract of it 

follows that u Din+' is a coproduct and is further a retract of u DY. Since the 

latter is a retract ofD70, we see that u q + I  is a retract ofDro, hence of@:'. Now 

let I' be the ordered subset oflobtained by removing i,. Applying the restric- 
tion functor F to (2) it follows by induction that F(D"+') is projective. This 
combined with what we have proved above then shows that Dn+' is projective. I 
Theorem 10.9. Let I be nondiscrete and decision f ree .  Thenfor any d we have 

i E I  

j € J  

j € J  j @ J  

j d  

gl. dim.[I, d]  = 1 + gl. dim. d. (4) 

Conversely, ifgl. dim. d isjnite and (4) holds, then I is nondiscrete and decision free. 

Proof. The first statement is immediate from 10.6 and 10.8. Conversely, sup- 
pose that gl. dim. Lc4 is finite and that (4) holds. Then I cannot be discrete 
since otherwise we would have gl. dim.[Z, d]  = gl. dim. d. On the other 
hand, suppose that I is not decision free and let i be a decision point in I of 
maximal order. Let I' be an ordered subset oflconsisting of4 elements i , j , p ,  q 
where i < p <j ,  i < q < j ,  and p and q are incompatible. Then I' must be a 
normal subset of I ,  since otherwise there would be a decision point in I oforder 
greater than that of i. Hence, by 9.4 we have 

gl. dim.[Z', d]  < gl. dim.[Z, 4. 
But I' is just I : ,  and by 10.5 we have 

(5) 

gl. dim.[I', d]  = 2 + gl. dim. d. (6) 
Combining (5) and (6) we obtain a contradiction to (4). Hence Zis decision 
free. I 
Corollary 10.10. Let A be the ring of m x m triangular matrices over R ( m  > 1). Then 

r. gl. dim. (1 = 1 + r. gl. dim. R. 

The same is true for  l g t  global dimension. I 
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Corollary 10.10 was obtained by Eilenberg, Rosenberg, and Zelinsky [ 131 

For m > 1, let I,,, denote the ordered set given schematically by 

m - 1  m - 2  m - 3  3 2 1 

using a spectral sequence. 

m 

m' m -  1' m - 2 '  4' 3' 2' 

We have the functor M ,  : &-+[Im, d]  defined by 

LW,(A)~ = 0 for i # m 
= A for i = m. 

Also for m 2 2 we define L : [I,,,, d]  -+[Z,,,-l, d]  by 

L ( D)i  = Di/Im ( for i # m -  1 

= D,-,/Im(Dm,m-l) for i = m - 1. 

Then we have LS? = 0 = LS? and LS? = Sp-1 for i # m, m'. Hence L pre- 
serves projectives. Also L preserves exact sequences consisting of terms D such 
that Dij is a monomorphism for all i <j .  

Lemma 10.11. Ifh.d. A = n 3 0, then h.d. M,(A) = m + n. 

Proof. By 10.3 we have h.d. M,(A) < m + n. The reverse inequality will be 
proved by induction on m. The case m = 1 has been handled in 10.4, Thus 
suppose m > 1, and take an exact sequence 0 + K -+ P -+ A +O in d with P 
projective. This gives rise to an exact sequence 

O - + K 1 - + S ~ ( P ) + M m ( A ) - + O  (8) 

in [Zm, 4, and we have L ( K ' )  = Mm-l(A). If h.d. Mm(A) c m + n, then from 
(8) we have h.d. K1 < m + n - 1. Applying L to a projective resolution for K' 
of length < m + n - 1 we obtain a projective resolution for Mm-l (A) of length 
< m + n - 1. This contradicts the inductive hypothesis, I 

Combining 10.11 and 10.3 we have the following theorem, which was 
conjectured by F. Linton. 

Theorem 10.12. For all d we have 

gl. dim.[Z,, d]  = m + gl. dim. d. I 
For i E I we define Z ( i )  as the ordered subset of Z consisting of all elements 

j such that j  < i. 



10. DIMENSION FOR FINITE ORDERED SETS 

Lemma 10.13. Let i l , .  . ., ip be the maximal elements ofl. Then 

gl. dim.[Z, d] = sup gl. dim.[Z(ik),d 1. 
1 e k e p  
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Proof. Let D be an object in [I, d] with the property that its restriction to 
each of the sets Z($ is projective in [Z(i,), d]. Then for each iEZ we can 
choose a subobject A , ! c  Di such that 

Di = A,! @ ( u Im Dji). 
j < i  

It then follows from 7.4 that we have for each i 

and consequently D is projective. On the other hand, if D is projective in 
[I, d] then clearly the restriction of D to any set of the form Z(i) is projective 
in [ Z ( i ) ,  d].  The lemma is an easy consequence of these two facts. I 
Lemma 10.14. Let i be a maximal element in I and suppose that i is immediately 
preceded by onb one elementj. IfI' = I - { i }  is nondiscrete, then 

gl. dim.[I, d]  = gl. dim.[Z', 4. 
Proof. Clearly I' is a normal subset of I, and so by 9.4 we have only to show 

gl. dim.[I, d]  < gl. dim.[I', d] .  

If the right side is infinite there is nothing to prove. Thus suppose that we have 

gl. dim.[I', d]  = n + Y + 1 (9) 

where gl. dim. d = n.  Since I' is nondiscrete we know by 10.6 that r 2 0. 
Given D E [Z, d], construct the exact sequence (1) of 10.1 with @ projective 
for 0 6 k 6 n + r.  Let F be the restriction functor from [I ,  d ]  to [1', d].  
Then applying F to (1) and using (9) we see that F(K"+'+') is projective. Also 
by 10.1 we know that K$+'+' is a coretraction. I t  follows thatK'+*+I is projective, 
and so h.d. D < n + r + 1 as required. I 
Lemma 10.15. Let i be a maximal element in Iandlet I' = I - {i}. If gl. dim. d = n 
and gl. dim.[Z, d]  = m + n ,  then gl. dim.[Z', dj 3 m + n - 1. 

Proof. If m < 2, then this is trivial. Thus, suppose that gl. dim.[I', d] < m + n - 1 
where m 2 .  Given D E [I, d] ,  construct an exact sequence in [I, d]  

0 -+ K"'+"-' + D"'+"" +. . . + D' --f Do+ D + O  

where ok is projective for 0 < k < m + n - 3. Applying the restriction functor 
F, we see that F (Km+n--2) is projective. Thus, by 7.1 we may write 

F(K"+"2) = @ s p y .  
j€I' 
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But also KY+n-2 is projective, and we have an epimorphism 

whose kernel is zero overj for j E I' and is projective over i. Thus we obtain a 
projective resolution of length < m + n - 1 for D. Consequently, 

gl. dim.[I, d]  < m + JZ, 
a contradiction. Hence gl. dim.[I', d]  2 m + n - 1. I 
Theorem 10.16. Suppose that gl. dim. d = n < a,, and that 

gl. dim.[Z, d]  = m + n .  

Then I has 2 2m elements, with equality holding i f  and only i f  I = I,,,. 

Proof. The proof is by induction on m. If m = 1, then I cannot be discrete, 
hence I has at least 2 elements. If I has precisely 2 elements, then it is clear that 
I = I,. Supposing the theorem true for m - 1, let gl. dim.[Z, d]  = m + n. We 
shall use the notation of diagram (7). By 10.13 we may assume that I has a 
unique maximal element, say 1 '. If I has < 2m elements, then I' = I - { 1') has 
< 2m - 2 elements, and by 10.15 we have gl. dim.[I', d] 2 ( m  - 1)  + n. 
Hence, by induction, I' = I,-,. It follows that 1 ' is immediately preceded by at 
most one element, and so by 10.14 we have gl. dim. [I, d ]  = ( m  - 1) + n. This 
contradiction shows that I has at least 2m elements. 

Now suppose that I has precisely 2m elements. Let 1 ' and I' be as above. If I' 
has only one maximal element, then by 10.14, 

gl. dim.[I', d]  = gl. dim.[I, d] = m + n. 

On the other hand, I' has 2m - 1 elements, contradicting what we have 
already proved. Therefore I' has at least two maximal elements. Among them 
let 2' be such that gl. dim.[I', d]  = gl. dim.[Z(2'), d]  (10.13). Then our 
induction shows that Z(2') = I,,,-,, and consequently I - Z(2')  consists of 1' 
and one other element 1 immediately preceding 1 '. It remains to be shown that 
1 follows both 2 and 3' (see diagram (7)). If 1 follows neither 2 nor 3', then 1 
has order < m - 1 in I. If 1 follows just one of 2 or 3', then 1 has order m - 1 in 
I, but is immediately preceded by only one element in I. In either case one 
uses 10.2 to construct projective resolutions for all objects D in [I,&] of 
length < m + n - 1. This contradiction shows that 1 follows both 2 and 3', 
and so I = I,,,. 1 
Corollary 10.17. Let A be dejined ty an m x m pattern over R, and suppose that 
r. gl. dim. R < 00. Then 

r. gl. dim. A < m/2 + r. gl. dim. R, 

with equality holding i f  and o n b  if the pattern is isomorphic to one with 0's everywhere 
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below the main diagonal and x's everywhere above the mclin diagonal except in positions 
(2, 31, (4, 5), (6, 7),. * .9 ( m  - 2, m - 1). I 

Let us define the dimension of a finite ordered set I to be m if 

gl. dim.[I, d]  = m + gl. dim. d 

for all categories d with both projectives and injectives. Clearly, discrete sets 
have dimension 0, and by 10.6 we see that these are the only such sets. By 10.9 
we see that I has dimension 1 if and only if it is nondiscrete and decision free.,' 
If I has dimension m and J has dimension n, then it follows from the isomor- 
phism of categories 

[I x JY d l  = [I, [JY d l 1  
that I x J has dimension m + n. Thus from 10.12 we see that I," has dimension 
inn(m, n 2 1 ) . Furthermore, if I has dimension m ,  then we have 

gl. dim.[I*, d] = gl. dim.[I*, &**I 
= gl. dim.[I, d*]* 
= gl. dim.[ly d*] 
= m + gl. dim. d* 
= m + gl. dim. d, 

and consequently I* also has dimension m.  
It is not known if this dimension is defined for all finite ordered sets. 

Exercises 

1. Show that when d = YR, then the categoryFd({xi}) is actually isomorphic 
to the category of right modules over the free ring FR({Xi} ) .  Do likewise for 
d [ x I  ,..., xk. and E,(xl ,..., x k ) .  

2. Consider an adjoint situation (y ; S, T ;  d,  97) where Tis exact a n d d  and 
g are abelian categories (not necessarily with projectives). If P is projective 
in g, then S ( P )  is projective in d.  

For any abelian category&, the evaluation functor Tn : GFd(xly .  . ., xk) -tat 
has an exact adjoint for all n 2 0. Hence, if D is projective in GF,(xl,. . ., 
then 0, is projective for all n. Use 4.2 to show that for any abelian categoryd 
(not necessarily with projectives), the projectives in GF,(x,,. , ., xk)  are 
precisely the objects of the form @ S,,(P,,) where P,, is projective in d for all 

n >  0 (cf. 4.3). 
Obtain similar results for G d [ x , , .  . ., 4, CE,(x,,. . ., x k ) ,  and [I, dl where 

I is any finite ordered set. 
3. Suppose that d has countable coproducts. Use exercise 2 to prove the 
converse of 4.4; namely, if D is projective in GF,(xI, ..., xk) ,  then L(D)  is 

n>O 
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projectivein F d ( x I , .  . ., xk) .  Hence show that if d has projectives and exact, 
countable coproducts, then 

gl. dim. GFd(xl , .  . ., xk)  = 1 + gl. dim. d. 

Show similarly that in this case we have 

and 
gl. dim. G d [ x l , .  . ., xk] = k + gl. dim. d 

gl. dim. CEd(xl, .  . ., xk)  = CC. 

4. Show that if I is an infinite set, then for any category with projectives and 
exact coproducts indexed over 111, the polynomial category d [ { x i } i E r ]  has 
infinite global dimension. 
5. Use V, 7.6, to obtain 4.3 independently of4.1. Do likewise for 5.3,6.3, and 
7.3. 
6. Consider the functor S : d + E d ( x l )  off$. In the case w h e r e d  is gR, show 
that the ring of endomorphisms of S (R) is isomorphic to the ring of matrices 
over R of the form 

(; :) 
More generally, show that the exterior ring on any number generators 
ER(xI, .  . ., xk) is isomorphic to a certain ring of triangular matrices. 
7. Consider the diagram scheme consisting of two vertices i and j and two 
arrows m and d from i t o j  and fromj to j respectively. The category of diagrams 
D of right R-modules satisfying the relations 

D(d)D(m)  = 0 D(d)D(d)  = 0 

has as a small projective generator the diagram G defined as follows : 

Gi = R Cj = R @ R @ R 

G ( m ) ( r )  = (0, r,  0) G ( d ) ( r ,  s, 0 = (0, 0, r ) .  

Hence this category is equivalent to the category of right modules over the 
ring of matrices of the form 

(a P 3 
8. A component of an ordered set I is an equivalence class of elements of I 
under the equivalence relation generated by the compatibility relation. Let A 
be defined by a pattern over R. Then the center of A is isomorphic to the pro- 
duct of m copies of the center of R, where m is the number of components in the 
ordered set associated with A. 
9. A full subcategory of an ordered set I can have dimension strictly greater 
than that of I. (Let I be defined by putting an object a t  the intersection of the 
two intersecting arrows of Z3 (see diagram (7) of $lo).) 
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10; In an ordered set Z, suppose that i, is immediately preceded by only one 
element io and immediately followed by only one element i,, and that i, is 
immediately preceded by only i, and is immediately followed by only one 
element i,. If I' is the ordered subset of Zobtained by omitting i,, then for any 
category d with projectives we have 

gl. dim.[Z, -c4] = gl. dim.[Z', 4. 
Hence iflis the union of two linearly ordered subsets which have at  least three 
elements each and which have only their initial elements and terminal 
elements in common, then 

gl. dim.[Z, d] = 2 + gl. dim. d. 
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C C H A P T E R  XI 

Sheaues 

Introduction 

Sheaves with values in sets, rings, and modules were defined by Godement 
in [ 181 in such a way as to open the road to a theory of sheaves with values in 
more general categories. This generalization has been carried out indepen- 
dently by J. Gray [ 191 and R. Deheuvels [7]. The treatment given here is a 
modification of the work of Gray. The proofs of 3.1 and 5.1 have been taken 
from [ 191. 

After some preliminaries, the notion of an 9-category is introduced. The 
axioms for an F-category are precisely the conditions needed to prove the 
important lemma 2.1. For abelian categories these axioms coincide with 
Grothendieck’s axiom A.B.6 [20]. Using the techniques of adjoint functors, the 
notions of associated sheaves and direct and inverse images of sheaves as 
defined in [ 181 are generalized to sheaves with values in an 9-category d. If, 
further, x2 is abelian, then the category ofsheaves i n d  over a fixed topological 
space is a complete C3 category (6.3). In this case the standard theorems con- 
cerning sheaves induced on locally closed subspaces can be proved ($8). 

1. Preliminaries 

Throughout the chapter, d will denote a complete, locally small category 
with direct limits. In particular, d has intersections, inverse images, and a null 
object (which we denote by 0). Alsodhas  images (I, $10) and henceunionsof 
naturally directed systems ofsubobjects (11, 2.8). 

Let X be a topological space, and let 9, denote the family of open sets in X .  
We consider %x as an ordered set by defining U < V if and only if V C  U. 
The functor category [ @,, d] is called the category of presheaves in d 
over X ,  and is denoted by 9’( X ,  d )  . Thus a presheaf P assigns to each open set 
U in X an object P( U )  in d, and to each inclusion V c U of open sets a mor- 
phism P, : P( U j + P( V )  such that if W c V c U, then PvwPuv = Puw, and 
such that P, = 1 for all open U in X .  A morphism a : P -+P ofpresheaves is a 

245 
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family of morphisms au : P( U )  +P'( U )  such that for each inclusion of open 
sets V c U we have a commutative diagram 

P ( U )  =" P ' ( U )  

p"j 
P ( V )  2 p ' ( V )  

Let {Ui}iEI be an open cover for an open set U (i.e., each Ui is open and 
n U,, and for a presheaf P let pi denote the ith u ui = u). Let q k =  

i E I  

projection from the product x P(Ui ) .  Then we have the morphism 
iEI  

u :  P ( U )  +x P ( Q )  (1) 
iEI  

such that piu = P,. Also we have morphisms 

f , g : X P ( U J - +  x P ( q k ) .  
iEI  ( j A E I X I  

The ( j ,  k) th coordinate off is Pu,wdj  and the ( j ,  k) th coordinate ofg is Puku,&. 
Clearly fu = gu. If P has the property that for every open set U and every open 
cover of U the morphism u is the equalizer of the two morphisms f and g ,  then 
P is called a sheaf in d over X .  The full subcategory of P ( X ,  d) consisting 
of all sheaves in d over X will be denoted by F ( X ,  at). 

Let P be the presheaf such that P( U )  = 0 for all open sets U. Recalling that 
the product of any number of null objects is again a null object, we see that P 
is a sheaf. We call P the null sheaf, and we denote it also by 0. 

A presheaf P will be called a monopresheaf if it satisfies the weaker condi- 
tion that (1) be always a monomorphism. The full subcategory of P ( X ,  d)  
consisting of all monopresheaves is denoted by A( X, d)  . If P is a monopre- 
sheaf, then by considering the empty covering of the empty set 0, we see from 
( 1 )  that P ( 0 )  is a subobject of a null object, and hence is itself a null object. 

Since the category d is complete, we know that limits in the functor 
category P ( X ,  d)  are computed pointwise (11, $1 1).  Using the characteri- 
zation ofequalizers as limits (I, 17.4), it follows from 11, 12.2, that the limit in 
P ( X ,  d) ofa diagram ofsheaves is again a sheaf. In other words, S ( X ,  d)  is a 
complete subcategory of P ( X ,  d). Likewise d ( X ,  d )  is a complete sub- 
category ofP(X, &). 

For each x E X ,  the open sets in X which contain x form a directed subset of 
@x,  and thus a presheaf P over X determines a direct system in d. We denote 

P, = lim P ( U )  
+ 
X E  u 
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and we call P, the stalk of P over x. The morphism from P( U )  to the direct 
limit is denoted by P,. If a : P + P' is a morphism of presheaves, then we have 
an induced morphism of stalks a, : P, +Pi  in d, and in this way the process of 
taking stalks becomes functorial. We let Sx : 9 ( X ,  d) +d be defined by 
S,(P) = P, and &(a)  = a,. By 11, 12.2*, it follows that if& is cocomplete, then 
S, is a colimit preserving functor for all x E X .  

Given a family of objects {Ax}xEX,  we form a presheaf RxA as follows. For 
an open set U we define 

R x A ( U )  = X A,, 

and for V c Uwe have the morphism x Ax +x A, which when composed with 

the xth projection from the codomain gives the xth projection from the 
domain. The rules for a presheaf are trivially satisfied. 

Lemma 1.1. RxA is a sheuf. 

XEU 

XEU XEV 

Proof. Relative to an open cover U = u Ui, consider the diagram 
iEI 

B 

l v  
x A , A X  x A ,  f's > 

X E  u i E I  0 x E U t  

where u,J and g are defined by ( 1) and (2), and v is such that fv = gv. We wish 
to find a morphism h : B +x A, such that uh = u. Fory E U, let i, be any index 

such thaty E Ui,. Let h, : B+A,  be the composition 
XEU 

It follows from the equality fv = gv that h, is independent of the choice of i,, 
and from this it is easy to verify that the morphism h induced by the family {h,} 
is such that uh = u. It is also easy to see that u is a monomorphism. Hence u is 
the equalizer off and g, and so RxA is a sheaf. I 

In particular, if P is a presheaf, then the family of stalks P, give rise to a 
sheaf R,P. If a : P+P' is a morphism of presheaves, then define 

Rx(a) : RxP+RxP' 
by the rule 

R X ( a ) ,  = X a,. 
XEU 

In this way R ,  : P ( X ,  d) + 9 ( X ,  d)  becomes a covariant functor. 
Let (pp)u : P (  U )  +x P, be the morphism whose xth coordinate is P,,. 

XEU 
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Then for V c U the diagram 

is obviously commutative, and so ppis a morphism ofpresheaves. Furthermore 
given a morphism a : P- tP '  of presheaves, for each open set U we have a 
commutative diagram 

P'(U) - x P: 
* a l l  

In other words p is a natural transformation from the identity functor on 
P( X, d)  to the functor R,. 

A cosheaf in a category d over a topological space Xis a contravariant 
functor Qx+d such that the associated covariant functor Q,-td* is a 
sheaf. For the theory of cosheaves, the underlying hypothesis on the category 
d is that it be cocomplete with inverse limits. 

2. 9-Categories 

A category satisfying the blanket hypothesis of the chapter will be called an 

9, : Let Z = u Zh be a disjoint union of sets, and for each h let {A?}iEIA be a 
9-category if it satisfies the following additional conditions : 

AEA 

naturally directed system of subobjects of some fixed object A .  Then 

(1) 

where the union on the right side is over all functions T : A-tZ such that 
.(A) E Zh for all h E A. 

Let {Ai, n} be a direct system in d, and let {ni : Ai + A }  be the direct 
limit. For some index k let f, g : B+Ak be such that ?rk f = nkg, and denote 
A = nkf ,  gi = rrkig. Then we have 

S2 : 

B = U Equ(A9 gi). 
i 2 k  
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In the case where /1 is a set oftwo elements and one ofthe two direct systems 
is the trivial one consisting of a single subobject B, then (1) becomes 

B n U = U ( B  n A ~ ) .  
i E l  iEI 

Therefore a cocomplete abelian category satisfying9, is a C3 category. In  this 
case it follows from 111, 1.8, that 9, is also satisfied. We shall call a cocomplete 
abelian category satisfying axiom 9, a Cpcategory. 

Lemma 2.1. Let &' be an 9-category and let P be a monofiresheaf in &' ouer X .  Then 
p p  : P+RxP is a pointwise monomorphism (that is, ( p p ) u  is a monomorphism in d 
f o r  each open U ) .  

Proof. Suppose that we have two morphismsf, g : A + P( U )  such that 

f 
A + P ( U )  +x P, = A L P (  U )  +x P,. 

8EU XEU 

Then for each x E U we have 

f 8 
A + P ( U )  + P ,  = A + P ( U )  +P,. 

Therefore by 9, we can write 

where fv = Pwf ,  gv = Puvg. Hence by 9, we have 

where the union on the right side is over all functions T : U+ %x such that 
T ( X )  contains x and is contained in U. Hence to show that f = g, it suffices to 
show that for each T the restrictions off and g to n Equ( fTCx,, gT(x)) are the 

same (I, 9.1). Now for each T ,  { T ( x ) } ~ ~ ~  is an open cover for U, and the 
composition 

XEU 

is the same whether A + P( U )  is  f or g. Therefore the conclusion follows since 
P is a monopresheaf. I 

Corollary 2.2. Let d' be an 9-category and let P be a monopresheaf in d ouer Xsuch 
that P, = 0 f o r  all x E X .  Then P = 0. 

Proof. Px = 0 for all x implies RxP = 0. But then P, being a subsheaf of 0, is 
also 0. 1 
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3. Associated Sheaves 

It follows from the fact that limits in P ( X ,  d) are computed pointwise that 
inverse images and intersections of pointwise monomorphisms are again 
pointwise monomorphisms, and that all equalizers in P ( X ,  d) are pointwise 
monomorphisms. Also, since sd is locally small, each object of 9 ( X ,  d) has 
only a set of (equivalence classes of) pointwise subobjects. We use these 
remarks in the following theorem. 

Theorem 3.1. ud is  an F-category,  then F ( X ,  A?) is a corejlective subcategory of 
9 ( X ,  d), and f o r  each P E P ( X ,  d) the corejlection RxP is pointwise a subobject of 
RxP. ud is cocomplete then so is F( X ,  d) . If&‘ i s  cocomplete with a generator, then 
F ( X ,  d) has a generator. 

Proof. Consider a presheaf morphism a : P+F where F is a sheaf. Form the 
diagram 

where the inner square is a pullback diagram and the outer square is com- 
mutative since p is a natural transformation. By the definition of pullback, we 
obtain a morphism P - t E  keeping the diagram commutative. Now E, being 
the pullback of a diagram of sheaves, is also a sheaf. Since pF is a monomor- 
phism (2. l ) ,  so is E - t R x P  (I, 7.1). Let RxP be the intersection ofall pointwise 
subsheaves of RxP through which p p  factors. Then RxP is again a pointwise 
subsheaf of RxP, and a factors through P+RXP.  Furthermore, if there were 
two distinct such factorizations, then the equalizer of the two factorizations 
would provide us with a proper pointwise subsheaf of RxP through which p p  
factors, contradicting the definition of RxP. Hence, the factorization is unique, 
and so P +RxP is the coreflection of P in 9( X ,  d) . 

From V, 5.2, it now follows that i f d i s  cocomplete then so i s F ( X ,  d). I f d  
has a generator as well, then by VI, 4.3, 9 ( X ,  d) has a generator. Conse- 
quently, by V, 1.5, F ( X ,  d) has a generator. 1 

The coreflection RxP of a presheaf P in the category of sheaves F ( X ,  d) is 
called the associated sheaf of P. If X is an ihdiscrete space (i.e, X has two 
open sets, X and 0) then it is easily seen that a presheafF is a sheaf if and only 
if F (0) = 0. From this it follows that the associated sheaf RxP of a presheaf P 
is such that R x P ( X )  = P ( X )  and RXP(o)  = 0. 
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4. Direct Images of Sheaves 

Let f : X +  Y be a continuous map of topological spaces (i.e., if Vis open in 
Y, then f-I( V) is open in X ) .  If V' c V, then f - ' (  V') c f-I( V), so thatf-I can 
be regarded as a functor from gY to gX. Given a presheaf P in d over X ,  we 
obtain a presheaf, f, P in d over Y (called the direct image of P with respect 
to f) by taking the composition Pf-' : gY+d. Thus 

A morphism CL : P-tP' of presheaves induces an  obvious morphism f,(a) 
f,P+f*P', and this makes f* : P(X, d) + P ( Y ,  d) into a covariant functor. 
Since limits in P ( X ,  d) and P( Y ,  d) are computed pointwise, it follows that 
f, preserves limits. If d is cocomplete then f* also preserves colimits. 

Let { F} be an open cover for V in Y .  Then {f-I( F)} is an open cover for 
f-I( V) in X. From this it is trivial to verify that if F is a sheaf in d over X ,  
then f * F  is a sheaf in d over Y .  Observe that 

preserves limits, but does not in general preserve colimits. 
If g : Y + Z  is another continuous map, then it follows from the relation 

( d ) - I ( W )  = f-I(g-l(W)) that (d)* =g,f,.Alsoiff: X + X i s  theidentity 
map, then f* : P ( X ,  d) + 9 ( X ,  d) is the identity functor. 

Theorem 4.1. Let d be any category and let f : X +  Y be ary continuous map of 
tokological spaces. Then the functor f *  : P ( X ,  d)  +P( Y,  d)  has a coadjoint f O. If 

is a C3 category then f is exact. 

Proof. Let Q E 9( Y, d). For U an  open set in X define 

f o Q ( U )  = lim Q ( V ) .  

f S V  

(Thus, iff ( U )  happens to be a single pointy in Y,  then foQ( U )  = Qy.) If 
U' c U, then f ( U ' )  c f ( U ) ,  and so the open sets in Y containing f ( U )  form a 
subfamily of the open sets in Y containing f ( U ' ) .  There results an  obvious 
morphism 

f o Q ( U )  -+foQ(Y 

and this makes f O Q  a presheaf over X .  Likewise, a morphism /3 : Q + Q' of 
presheaves gives rise to a morphism 
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and f OPis clearly a morphism ofpresheaves. In  this way f becomes a covariant 
functor from P(Y, d) to P ( X ,  d) .  We wish to show thatJ'O is the coadjoint 

off*. 
Given P E P ( X ,  d) and Q E Y( Y, d) we define a function 

Q,P : [f OQ, PI --t [Q,f*Pl 

as follows. For CL : f OQ + P, define 

? I Q , P ( Q ) v :  Q(V) +f*P(V) = P(f-'(V) 
as the composition 

Q( v) +f0Q (.f-'( v) 1 + W-'( V )  1. 
The first morphism arises from the fact that f (f'( V )  c Vand so Q( V )  is one of 
the objects in the direct system defining f OQ(f-' ( V )  ). The second morphism 
is just C L ~ - , ( ~ ) .  It is then straightforward to show that ?/Q,p(a) is a morphism of 
presheaves. 

Now we define a function 

?I& [Q, f*Pl + [f OQ, PI. 

Given /? : Q+f,P, an open set U C  X, and an open set V C  Y containing 
f( U ) ,  we have the composition 

Q ( V )  Ef*P(V) = P(f-'(V)) - t P ( U ) .  

It follows from the fact that Pis a morphism of presheaves that { (1 v ) } f  (v)c is 
a cocompatible family, and thus we get an induced morphism 

?Ib,P(P)LI : f O Q ( U )  +P(U) .  

Again it is straightforward to show that qb,,(P) is a morphism of presheaves. 
are inverses of each 

other, and finally that 7 is natural in Q and P. This establishes that f O is the 
coadjoint off*. 

Now suppose that d' is C,. Then corresponding to an  exact sequence of 
presheaves in P( Y ,  d) 

One then checks without difficulty that Q~ and 

O+Q' - tQ  +Q" +O 

and an open set U in X, we have an exact direct limit sequence 

O-t lim +Q'(V) + lim Q ( V )  + lim Q"(V) +O 

f E Z i V  f S V  Z Z i V  

by 111, 1.9. HencefO is an exact functor. 1 
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5. Inverse Images of Sheaves 

Theorem 5.1. Let d be an 9-category. Then for  any continuous map.f:  X+Y the 
functorf, :F(X ,d )  + S ( Y , d )  hasacoadjointf* = Rxfo:@'(Y,d) - & ( X , d ) .  
Furthermore, f * has the following properties : 

(i) f * 19( Y,  d) is the coadjoint off* : 9 ( X ,  d) +9( Y,  d).  
(ii) f * R Y  = f *. 

(iii) I f g  : Y-+Z is another continuous map, then (sf)* =f*g*. 
(iv) For any presheaf Q E .9'( Y ,  d) and x E X we have ( f * Q ) X  x Qf(,, and this 

(v) For all x E X and all presheaves P E P ( X ,  d)  the corej7ection cp : P+R,P 

(vi) R,P = 0 ifand only if P, = 0 for  all x .  

isomorphism is natural with respect to morphisms in S( Y ,  d). 

induces an isomorphism cpx : P, -+ ( R,P),. 

Proof. The functor f, : F ( X ,  d)  +Y( Y ,  d )  can be regarded as the compo- 
sition of the inclusion o f S ( X ,  d) into Y ( X ,  d)  with the functor 

f* : S ( X ,  d)  + S ( Y ,  d). 

By 3.1 the former has a coadjoint R,, and by 4.1 the latter has a coadjointfO. 
Hencef* = R,  f is the required adjoint (V, $1). 

(i) I t  follows trivially from the definition ofadjoint functor and the fact that 
.F( Y ,  d)  is a full subcategory o f 9 (  Y ,  d) that f * IF( Y,  d) is the coadjoint of 
f* : F ( X ,  d) +9( Y ,  d). 

(ii) Regardingf, : 9 ( X ,  d) + S ( Y ,  d) as the composition of 

f *  : F ( X ,  4 -+F'(Y, 4 
with the inclusion of 9( Y ,  d) into S( Y ,  d)  and using (i), we see thatf*Ry 
is a coadjoint for f *  : 9 ( X ,  d)  +S( Y ,  d). Hence, by uniqueness of coad- 
joints (V, 2.2) we have f * = f * R y  as required. 

(iii) By definition, (gf)* is the coadjoint of 

(sf), = g* f*  : 9 ( X ,  d) +S(& d) .  

Considering this last as the composition off* : 9 ( X ,  d)  +.F( Y, d)  and 
g, : 9( Y ,  d) +Y(Z, d), and again using part (i), we see that (gf)* = f *g* 

(iv) Consider a point x E X ,  and let g, : { p }  + X be the map from a one point 
topological space to X such that g,(p) = x .  If P is a presheaf over X ,  then it 
follows from the description ofg? as the composition ofg: with the coreflection 
R{pl that (g,*P)p = Px (see the remark at  the end of $3 concerning the coreflec- 
tion of a sheaf over an indiscrete space). Now for f : X -+ Y,  we havefg, = gf(,.., 
and so for a presheaf Q over Y we have, using (iii), 
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Since each of the,above identifications is natural, the proof of (iv) is complete. 
(v) Consider the following commutative diagram which the morphism 

' p p  : P + R,P induces on coreflections : 

Since every sheaf is its own associated sheaf via the identity morphism, we see 
that yRxP = 1. Hence we have R X y p  = 1. Using the natural equivalence 
established in (iv), consider the commutative diagram 

Since ( R f l P ) *  = 1, it follows that ( 'pP), is an isomorphism as required. 
(vi) If P, = 0 for all x, then RxP = 0. Hence, by 3.1, RxP = 0. Conversely, 

suppose that RxP = 0. Then (RxP),  = 0 for all x ,  and so by (v), P, = 0 for 
all x. I 

Corollary 5.2. L e t d  be a cocompleteT-category and let X be a topological space. Then 
for  each x E X the restriction ofS, to T ( X ,  d )  is a colimitpreserving functor. 

Proof. We have seen in $1 that S, is colimit preserving on P ( X ,  d) .  Now the 
colimit i nT(X,  d)  ofa diagram i n S ( X ,  d)  is obtained by taking the colimit 
in 9 ( X ,  d)  and coreflecting in F ( X ,  d )  (V, 5.2). Hence, the conclusion 
follows from 5.1, (v) which says that coreflections induce isomorphisms on 
stalks. I 

6. Sheaves in Abelian Categories 

Lemma 6.1. Let O-tP'+P-+P"+O be an exact sequence of presheaves in an 
abelian category. 

(i) If P' is a sheaf and P is a monopresheaf, then P" is a monopresheaf. 
(ii) If P" is a monopresheaf and P is a sheaf, then P' is a sheaf (cf. VI, 6.1). 
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Proof. Let U = u  U, be an open covering, and consider the commutative 

diagram 
i E I  

0 0 0 

I I 
' P ' ( q k )  Y-g' 

(j&)fl X I  
0 - P ( U )  

P ( q k )  /-s , 
(j,k)rl xI  

0 - P ( U )  5 P ( U , )  

P"(Gk).  f's" , 
( j , k )  f : X I  

0 - P"( U )  5 P ( U i )  

I 
0 

The left column is exact by assumption and the other two columns are exact 
since products preserve kernels. Statements (i) and (ii) then follow by ele- 
mentary diagram chasing. I 
Lemma 6.2. Let& be a C, category. Suppose that a : F + P is a morphism in 9( X , d )  
where F is a sheaf and P is a monopresheaf. Then a is an isomorphism if and only i f a x  
is an isomorphism for all x E X .  

Proof. If a is an isomorphism then a, is an isomorphism by the functorial 
property of S,. Conversely, suppose that a, is an  isomorphism for all x E X. 
Consider the exact sequence in B ( X ,  d) 

a 

O-tKer a+F+P+Coker  a+O. (1) 

For any x E X we have by C, an exact sequence in d 

az 

O+ (Ker a),-tF,+P,+Coker( a),+O. 

But since a, is an isomorphism, this means that (Ker a),  and (Coker a),  are 0 
for all x E X .  Consider the exact sequence 

O-tKer a + F + I m  Cr - tO .  
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Since Im a is a subpresheaf of the monopresheaf P, it follows that Im a is also a 
monopresheaf. Hence, by 6.1, (ii), Ker a is a sheaf. But then since (Ker a), = 0 
for all x, by 2.2, Ker a = 0. Using the exactsequence (1) and 6.1,(i), we then 
see that Coker a is a monopresheaf, and so since (Coker a), = 0 for all x we 
have Coker a =O. Therefore a is an isomorphism. a 
Theorem 6.3. Let d be a C4 category and let X be any topological space. Then the 
category of sheaves S ( X ,  d )  is a complete C3 category and the coreJector 

Rx : 9 ( X ,  d )  + S ( X ,  d )  
is an exact functor. 

Proof. By V, 5.3, it suffices toshow that Rxpreserveskernels. Let 0 +P‘+P+P” 
be an exact sequence in 9( X, d)  . Then by C3 for at the sequence 

0 +Pi + P, + P: 

0 + (RXP‘), + (RXP), + (RXP”), 

is exact in d for all x .  Therefore by 5.1 , (v) the sequence 

(2) 

is exact. Let K+RxP be the kernel in 9 ( X , d )  of RxP+RxPa. By 6.1, 
(ii), we know that K is a sheaf. Consider the diagram 

R,P __t RxP - R,P” 
K / (3) 

Since Rx is an additive functor, the composition in the top row is zero. There 
results a morphism a : RxP‘+K making (3) commutative. Passing to stalks, 
using C, for the category d, and using the exactness of (2), we see that a, is an 
isomorphism for all x .  Hence, by 6.2, a is an isomorphism. Thus RxP’ +RxP is 
the kernel of RxP +RxP”, and so Rx preserves kernels. 

Proposition 6.4. Let d be a C4 catego@. Then a sequence 

F’-+F+F” (4) 

is exact in 9 ( X ,  d )  if and only i f the  induced sequence 

F: +F, +F,“ 
is exact in d for all x .  

Proof. By 5.2, S, is a cokernel preserving functor o n F ( X ,  d), and by C3 f o r d  
it is also kernel preserving. Consequently, it is an exact functor. This proves 
the proposition in one direction. Now let 

S ( F )  = OF, 
X E X  
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for a sheafF over X. Then by what has already been proved and by C ,  f o r d ,  S 
is an exact functor. Also by 2.2, S preserves nonzero objects, and so it follows 
from 11, 7.2, that S is faithful. The proof of the proposition in the other 
direction now follows from 11, 7.1. 

Corollary 6.5. Ifd is a C4 category, then a morphism a : F -+ G in 9( X ,  d)  is the 
zero morphism if and only if a, : F, -+ G, is the zero morphism in d f o r  all x E X.  

Proposition 6.6. Let d be a C4 category and let f : X +  Y be a continuous map of 
topological spaces. Then the sheaf valued functor f * is exact on both P (Y,  d)  -a& 
9 ( Y ,  d) .  

Proof. On g( Y, d)  we can write f * = Rx f O. Since f is exact (4.1) and Rx is 
exact (6.3), we see thatf* is exact. 

Now o n F (  Y, d ) , f *  is a coadjoint (5.1, (i)) and consequently it is cokernel 
preserving. Since the kernel of a morphism in F ( Y ,  d)  is the same as the 
kernel i n g (  Y, d), and since f * is kernel preserving o n 8 (  Y, d),  it follows that 
f * is also kernel preserving on F (Y, d)  . 1 

7. Injective Sheaves 

If the C4 category d has a generator, then by 3.1, F ( X ,  d) also has a 
generator. But then 9 ( X ,  d)  being a C9 category with a generator, has an 
injective cogenerator (111, 3.4) and so, in particular, 9 ( X ,  d)  has injectives. 
We are going to show more generally that if d has injectives, then so does 
F ( X ,  d). The procedure generalizes a method of Godement [ 18, p. 26UJ. 

Lemma 7.1. For each x E X let I, be an object in a category d. Let Q be the sheaf 
dejned by Q ( U )  =x I, (i.e,, Q is R x I i n  the notation Of41). Then f o r  anypresheafP 

we have a one to one correspondence 
X E U  

fl : [P,  Qlsyx,&rg) +X [Px, 41d 
*EX 

which is natural in P.  

Proof. For xo E U c X we have the projection 

Q ( U )  = x4+40 
XEU 

giving rise to a direct limit morphism@xo : Q,, +Ixo. If Q : P+Q is a morphism 
of presheaves, then the family of morphisms jxoaxo defines an element 8( a) in 
x [P,, I,]&. It is clear that 0 is natural in P. On the other hand, a family 

{a, : Pxj.I,},,x defines a morphism of presheaves RxP+Q which, when 
composed with p p  : P -+ RxP, gives us a morphism 8'( a) E [P,  Q ] .  We leave it 
to the reader to show that 8 and 8' are inverses of each other. I 

XEX 
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Corollary 7.2. Ifd is a C3 category and I, is injective in d f o r  all x E X, then Q is 
injective in 9'( X, d). 

Proof. If P'+P is a monomorphism in 9 ( X ,  d), then we must show that 
[P,  Q] +[ P', Q] is an epimorphism of groups. By C3 for d, P: +P, is a 
monomorphism for all x ,  hence since I, is injective in d, [P,, I,] +[Pi, I,] is 
an epimorphism. Therefore by 7.1 and C: for $9, [P,  Q ]  +[P' ,  Q] is an epi- 
morphism. I 
Theorem 7.3. If d is a C, category with injectives, then 9 ( X ,  d) has injectives. 

Proof. Given F E 9 ( X ,  d), for each x E X let F, + I, be a monomorphism into 
an injective. This gives rise to a monomorphism of presheaves RxF+Q where 
Q is as in 7.1. Composing this with pF : F-+RxF,  by 2.1 we obtain a mono- 
morphism from F into &. Now Q is a sheaf (1.1) and it is injective in g ( X ,  d)  
(7.2). Also it follows easily from the fact that a monomorphism i n S ( X ,  &)is 
necessarily a monomorphism in 9 ( X ,  d) that Q is also injective in S ( X ,  d). 
This shows that P ( X ,  d) has injectives. I 

8. Induced Sheaves 

We shall call a mapf : X+ Y of topological spaces a relative map if the 
open sets in X are precisely the sets of the form f - I (  V )  where Vis open in Y. 

Lemma 8.1. I j f  : X-t Y is relative, then f o r  ally category d the functor 

.f* : 9 ( X ,  4 + q y ,  J4 
is full.  Furthermore, if a : P l  + P2 is a morphism in 9( X, d) such that f* (u) is an 
isomorphism, then a is an isomorphism. 

Proof. Let B : f , P l  +f*P2 be a morphism of presheaves over Y,  and let U be 
an open set in X. Then U is of the form f-I ( V )  where V is open in Y. Further- 
more, if V' is also such that f - I (  V ' )  = U, thenf-'( V n V')  = U, and we have 

B v  = Bvny' = Py ' :  Pl(W +PZ(U) .  

We define aU = Bv where V is any open set such that f - ' (  V )  = U. Then a is a 
morphism of presheaves, and we havef,(a) = 8. This shows thatf, is full. 
The assertion about isomorphisms is a trivial consequence of the fact that 
every open set in Xis of the formf-' ( V )  for some open V in Y. I 

Letdbeang-category,so thatby5.1 thefunctorf, : P ( X , d )  + F ( Y ,  d) 
has a coadjoint f * : 9 ( Y ,  d) + S ( X ,  d). By V, $1, we have natural trans- 
formations 'p : 1 +j*f* and t,h :f*f* -+ 1. 

Proposition 8.2. Let d be an 9-category, and suppose that f : X - t  Y is relative. If 
F is a sheaf over X, then there is a sheaf G over Y such that f *G w F. 
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Proof. Consider the morphism 

$F : f *f,F+F, 

By 8.1, f *  is full. Consequently, by V, 1 .3,f*(t,bF) is an isomorphism. Hence, 
again by 8.1, t,hF is an isomorphism, and so we may take G = f,F. I 
Lemma 8.3. Let d be a C, category and let f : X+ Y be relative. IfF is a sheaf over 
Y a n d  i f K  and M are the kernel andcokernel, respectively, i n P (  Y ,  d) f o r  the morphism 
yF : F+f, f *F, then K f ( x ,  and Mf (x) are zero for all x E X .  

Proof. Since f ,  is full, by V, 1.3* we see that f * ( y F )  is an isomorphism. Con- 
sequently, since f * is exact (6.6) we see thatf *Kandf*Mare 0. The result then 
follows from 5.1, (iv). I 
Lemma 8.4. Let d be a C, category, and let f : X-t Y be relative. If F and G are 
sheavesindoverYsuchthatF,=G, =O.foral ly& f ( X ) , a n d i f B :  f * F + f * G i s a n  
isomorphism, then for some isomorphism r : F+G we have f * ( r )  = 8. 

Proof. Consider the following exact sequences i n s (  Y,  d') 

5 M -  0 PF 
0 - K - F  (pF ' f *  f * F  

O - L - G L f * f * G  PC 

21 J,ce, (1) 

, N  -0 

Using 8.3 and the hypothesis on F and G we see that K, = L, = 0 for ally E Y. 
Therefore, by 2.2, K = L = 0. Now since N, = 0 for y E f ( X )  and F, = 0 for 
y 4 f (X), it follows from 6.5 that the compositionpcf*(8)yFis zero. Hence, we 
have an induced morphism T : F+G making ( 1 )  commutative. Likewise, 
there is a morphism 7' : G+F and 7 and T' are necessarily inverses of each 
other. Consider the commutative diagram 

P ' p p  

f * F  - f*f*f*F 
Using the fact that the inverse off *'p is $f*(V, 1.3*), we see that ifwe replace 

f * ( ~ )  by 8 in (2) we still have commutativity. This shows that f *(T) = 8, as 
required. I 

Iff is the inclusion map ofa subspace A into a space Xand F is a sheafover X, 
then we call f *F the sheaf induced by F over A, and we denote it by F ( A .  
I f A c  B c  X, thenitisclearfrom5.1, (iii), that (FIB)IA=FIA.Also, by5.1, 
(iv)and2.2,weseethatFlA=OifandonlyifFx=Oforallx E A .  Wecal lAc X 
a locally closed subspace if A is the intersection of an open subset and a 



260 X. SHEAVES 

closed subset of X .  Equivalently, A is locally closed if there is a closed subspace 
B containing A such that A is open in B. 

Theorem 8.5. Let d be a C4 category, and let A be a locally closed subspace o fX .  IfF 
is any sheaf over X ,  then there is a unique sheaf FA over X such that F A  I A x FI A and such 
that F A  IX - A = 0. I f A  is closed, then we have an exact sequence 

O+Fx-A+F+FA + O  
in 9 ( X ,  d),  

Proof. Uniqueness ofFA has been established in 8.4. 

we have 
If A is closed, define F A  = f* f * F  where f : A + X is the inclusion map. Then 

qF:F-tf*f*F = F A  

and by V, 1.3*,f*(pF) is an isomorphism. In other words, FAlA x FIA. We 
show that F A  induces 0 over X - A. For x E X - A we have 

(FA), = (f*f*F), = l imf*F(Un A) 
--t 
XEU 

where U runs through all open sets in X containing x.  But since A is closed, one 
such U is X - A, and so sincef"F(0) = 0, we have ( F A ) x  = 0. This proves the 
assertion in the case where A is closed. 

Still in the case where A is closed, let M denote the cokernel of pF in 
9 ( X ,  d).  For a E Awehave M, = Oby8.3, andforx E X - Awehave M, = 0 
by what we have already proved. Consequently, M = 0 and so pF is an epi- 
morphism. Let FX-A be defined by the exact sequence 

If we applyf * to (3), we obtain an exact sequence by 6.6. Since f * (pF) is an 
isomorphism, this shows that 0 = f *FX-A = FX-A I A. On the other hand, 
letting g : X- A+X be the inclusion and applying g* to (3), we obtain an 
isomorphism g*Fx-A x g*F since g*FA = F A  IX - A = 0. Thus we have proved 
the theorem in the case of an open subspace. 

Now suppose that A c B c X where B is closed in X and A is open in B. By 
8.2 we can find a sheaf G over X such that GIB = (FIB)A. Then we may take 
F A  = G B .  I 

Combining 8.2 and 8.5, we have: 

Corollary 8.6. Let d be a C4 category, and let A c X be a locally closed subspace. 
If G is any sheaf in d over A, then there is a unique sheaf Gx over X which induces G 
on A and 0 on X - A. I 
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Exercises 

1. Relative to a presheaf P and a point x E X ,  define a morphismj, : (R,P),+P, 
such thatjx(pp)x = 1,. Hence, show that if a : P+P' is such that R,(a) is an 
isomorphism, then a, is an isomorphism for all x E X. 
2. If d has a zero object, then we have product injections u, : P, + RxP( U )  
for each x E U and each presheaf P in over X. Passing to the direct limit we 
obtain a morphism c,: P,+(RxP),. In general iix#(pp),. (Let X be an  
indiscrete space, and let P ( X )  = Z. Then zi, is the xth injection Z -+Zx whereas 
(pP), is the diagonal morphism d : Z+Zx.) 
3. The categories 9, Y, and dz of sets, topological spaces, and rings, res- 
pectively, are 9-categories. (For a discussion of the category of rings, see 11, 
exercise 2 1 .) 

4. Define an object U to be very small iffor each direct system {Ai}  with direct 
limit A ,  the induced morphism from the direct limit ofthe direct system ofsets 
[U, A;] to the set [U, A ]  is a monomorphism. Define U to be quite small if 
every morphism from U to the union of a naturally directed system of sub- 
objects factors through one ofthe subobjects. In  a cocomplete abelian category 
d,averysmall object isquitesmall. (UseIII, 1.5.) IfdisC3,thenaquitesmall 
object is very small. In a category with coproducts, an object which is quite 
small is small, and a small projective is quite small. 

In 2.1, the assumption that d be an 9-category may be replaced by the 
condition that d have a generating class of very small objects. Hence all the 
numbers in the chapter involving 9-categories are valid for categories which 
have a generating class of very small objects (J. Gray [ 193). 

If &' is a cocomplete abelian category with a generating class of very small 
objects, then d is C,. 
5. We sketch here an alternative treatment ofsheaves, due to Freyd [ 151, in the 
case where d is the category of abelian groups 93. For an open set U in X let 
Pu be the presheaf defined as follows : 

For any ring R, the category gR is a C4 category. 

P'(V) = Z if V C  U 

= 0 otherwise 

P& = 1 if W C  V C V  

= 0 otherwise. 

If u, c U, we have an obvious morphism Pul+PUr. For any presheaf P we 
have the one to one correspondence 

which assigns to the presheaf morphism a : Pu+ P the element au( 1) E P( V ) .  
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Also (1) is natural in U. If U = u Ui is an open cover, then we have the exact 

sequence 
iEI 

where the first morphism is the difference between the two obvious ones. Let P 
be any presheaf, and apply the contravariant functor [ , PI to the exact 
sequence (2). Using the identification (1) we obtain the sequence 

P( U )  + x P(  Q) + x P( Ui,) (3) 
i E I  ( j , k ) E l x l  

where the morphisms are just those defined in $1. If P is injective in @ ( X J  $3) , 
then [ , PI is an exact functor and hence (3) is exact. Now @ ( X ,  ’3) has a 
generator, and hence injective envelopes. Also from the exact sequence (3) 
one sees that the injective envelope of a monopresheaf is a sheaf. (Show that 
an essential extension of a monopresheaf is a monopresheaf.) From this one 
verifies that d ( X ,  9) is a monosubcategory of@(X, $3) (V, $6) and that an 
object in @ ( X ,  9) is pure if and only if it is a sheaf. Consequently, the con- 
clusions of 6.3 follow from V, 6.8. 

The remaining exercises serve to relate the classical theory of sheaves as given in [ 181 
to the present theory. 

6. A presheaf P in the category of sets 9 is a monopresheaf if and only if it 
satisfies the following condition : - 

Let U = u Ui be an open cover, and let s and t be two elements of P( U ) .  
iE1 

If PuUt(s) = Puu,(t) for each i E Z, then s = t .  

condition : 
A monopresheaf P is a sheaf if and only if it satisfies the following additional 

Let U = u Ui be an open cover, and for each i E Z let si be an element of 

P(Uj) .  If for each pair i , j  E Iwe have PU,,,,(si) = PUtUt, (si) , then there exists 
s E P( U )  such that PW,(s) = si for all i E I. 
7. A sheaf space (of sets) over a topological space Xis a topological space E 
together with a local homeomorphismp : E + X .  (That is, every point e E E 
has an open neighborhood which is mapped homeomorphically onto an open 
neighborhood ofp(e)  in X .  We do not require that p be onto.) If U is an open 
subset of X ,  then a function s : U + E  satisfying p ( s ( x ) )  = x for all x E U is 
continuous if and only if its image is open in E. In  this case s is called a section 
in E over U. The class of images of sections in E forms a basis for the topology 
on E. If two sections agree at a point x E X ,  then they must agree in some 
neighborhood of x. If p’ : E‘ + X is another sheaf space over X ,  then for a 
function f: E -+E satisfyingp‘f =p, the conditions that f becontinuous, open, 
and a local homeomorphism are all equivalent. Taking such functions as 
morphisms, the class F(XJ 9) of sheaf spaces over X becomes a category. 

iEI  
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8. Let LE ( U )  denote the family of sections of the sheaf space E over the open 
set U. If V C  U, then a function LE ( U )  +LE( V )  is defined by the operation 
of restriction, and it is easily verified that LE is a sheafin Yover  X (exercise 6). 
Furthermore, a morphism f :  E+E' of sheaf spaces induces a morphism 
Lf: LE+LE defined by Lf,(s) = fs, and in this way L becomes a covariant 
functor from F ( X ,  9') to 9 ( X ,  9). From exercise 7 it follows that the stalk 
(LB), = lim LE( U )  is in one to one correspondence with the subset 

-+ 
XEU 

I& =P-'(x) c E. 
On the other hand, given a presheaf P in Y over X ,  we let MP be the disjoint 

union ofsets u Px together with the mapp : MP-tXwhichsends each element 

of Px into x .  Associated with an element s E P(U)  we have the function 
s : U + MP which assigns to x the image of s under the morphism P( U )  + P,. 
Thusp(f(x)) = x for all x E U. The family {f( U )  1s E P( U ) ,  Uopen in X }  forms 
a basis for a topology on MP, and with respect to this topologyp is a local 
homeomorphism. In this way Mbecomes a functor from the category B ( X ,  9') 
to the category F(X, 9'). Using exercise 7 we obtain an isomorphism 
MLE z E, and this defines a natural equivalence from ML to the identity 
functor on F(X, 9). On the other hand, starting with a presheaf P we have 
the function 

I,/+( U )  : P( U )  -+ LMP( U )  

which assigns the section f to the elements E P( U )  as described above, and t,b 
is a natural transformation from the identity functor on S ( X ,  9) to LM. If 
P is a sheaf, then I/+ is an isomorphism. (Use exercise 6.) Hence the categories 
9 ( X ,  9) a n d F ( X ,  9') are equivalent. 
9. For presheaves P and sheaves F in Yover X ,  establish a natural equivalence 
of bifunctors 

XEX 

[ P 3 F 1  [LMpJF13 

thereby showing that LM = Rx : P ( X ,  9) +F(X,  9). 
10. Consider a continuous map of topological spaces f: X+ Y and a sheaf 
G E F( Y ,  9 ) .  Let NG be the disjoint union of sets u Gfcx, ,  and consider the 

obvious map p : NG -+ X .  A basic section over an open set Uin Xis defined as 
a function s : U-+ NG such that p(s(x)) = x for all x E U, and such that there 
is a section t : V-+MG withf( U )  c V and s ( x )  = t C f ( x ) )  for all x E X. The 
class of images of basic sections forms a basis for a topology on NG, and with 
respect to this topology NG is a sheaf space over X .  In  this way 

XEX 

N : F( Y, 9) + F ( X ,  9) 

becomes a covariant functor. 
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Establish a natural equivalence of bifunctors 

for sheaves F and G over X and Y respectively, thereby showing that 

LN = f * : S ( Y ,  9') + S ( X ,  9'). 

11. A sheaf space of abelian groups over X is a sheaf space p : E + X  
together with an abelian group structure for each of the sets Ex = p-l ( x ) ,  x E X, 
such that addition is a continuous function from a subset of E x E to E. (In 
particular, p must be onto, since each of the setsp-I ( x )  must consist of at least 
one element.) A morphism of sheaf spaces of abelian groups is a morphism 
f : E+E' of sheaf spaces of sets such that the induced map E , + K  is a mor- 
phism of abelian groups for each x E X. The category of sheaf spaces of abelian 
groups over X is denoted by p( X, 8). 

If E E F ( X ,  8) and s and t are two sections over the open set U, then the 
function s + t : U+E defined by (s + t )  ( x )  = s ( x )  + t ( x )  is a section over U. 
The function X- tE  which assigns to each x E X the zero element of the corre- 
sponding stalk is a section over X. If s is a section over U, then the function 
- s : U + E  defined by ( - s) ( x )  = - s ( x )  is a section over U. Thus the set of 
sections LE ( U )  has the structure of an abelian group, and L can be considered 
as a functor f romT(X, $3) to S(X, 8). 

On the other hand, if P is a presheaf in 9( X, 8),  then the additive structure 
of the stalks P, is continuous with respect to the topology on MP defined in 
exercise 8,and thus McanbeconsideredasafunctorfromB(X, 8) t o F ( X ,  8). 
The natural transformations of exercise 8 are valid within the categories 
9 ( X ,  8) a n d F ( X ,  $9), and it follows again that the categories S ( X ,  $9) and 
F ( X ,  $3) are equivalent. The natural equivalence of exercise 9 still holds, 
showing that LM = R, : 9 ( X ,  8) + S ( X ,  8). The functor N of exercise 10 
can be considered as a functor from S ( Y ,  8) to p ( X ,  8), and the natural 
equivalence of that exercise is valid. Thus LN = f * : S( Y, 8) +.F(X, 8). 

If@ : E +X is a sheaf space and if each of the sets Ex has a ring structure in 
such a way that both addition and multiplication are continuous, and iffurther 
the collection of unit elements forms a section over X, then E is called a sheaf 
space of rings. The results of the exercise are then valid if the category of 
abelian groups is replaced everywhere by the category of rings. 

12. Iff: E + E  is a morphism in g ( X ,  g), then the kernel off is that sub- 
space of E consisting ofall elements which are taken into the zero element of the 
corresponding stalk of E' .  The cokernel off is stalkwise over x the cokernel of 
the morphism E,+C induced by$ The topology on Coker(f) is defined by 
taking as a basis the class of images of sections in E under the obvious map 
E' +Coker(f). The image off is given by the setwise image. 
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If {Eh}hen is any family of objects in F(X, 9), then the coproduct is given 
stalkwise by the formula 

The topology is obtained by taking as a basic family ofsections the functions of 
the form sh : U+@ Eh, where sh E LEh(U) is zero except for a finite 

number of A. The product of the above family is given stalkwise over x by the 
set of all A-tuples (q), where sh is a section in Eh defined over a common open 
set U containing x for all h E (1, modulo the equivalence relation which identi- 
fies two tuples (sh) and ( t h )  if and only if there is an open set Vcontaining x such 
that J ~ I  V =  thl Vfor all h E A. 

The intersection of a family of subobjects in F(X, G) is given by the 
interior of the setwise intersection. 
13. Let w denote the set of positive integers. For n E w let F" be thesheaf space 
of abelian groups defined over the closed interval [0, I], such that F: = Z for 
x E [0, l / n )  and F: = 0 for x E [ l/n, 11, where the only sections in F" are the 
constant maps. Let F"' be the subsheaf space of F" such that Ff  =F", for 
x E (1 /2n, 1 In) and F$ = 0 otherwise. Then the product of epimorphisms 

x F" -+ x F"/F'" 

is not an epimorphism, and consequently the category9([0, I], 9) is not Cr .  

(Show that x F" =wZ, whereas x F"/F"' = Z'".) Hence deduce from 

111, exercise 2 that this category does not have projectives. 
14. Let X be a locally compact Hausdorff space (so that every point has a 
basic family of compact neighborhoods). Then F(X, g) is a C., category, and 
consequently 9 ( X ,  9) is a C4 category. 
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Kernel, 14 
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group, 114 
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R-object, 60 
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functor, 52 
Restriction, 6 
Retract, 4 
Retraction, 5 
Ring, 29 

division, 29 
free, 219 
Grassmann, 22 1 
opposite, 29 
polynomial, 220 

S 
Satellite, 194 
Section, 262 
Semiadditive category, 28 
Semigroup, 3 
Sheaf, 246 

associated, 250 
direct image of a, 251 
induced, 259 
inverse image of a, 253 
null, 246 
space of abelian groups, 264 
space of rings, 264 
space of sets, 262 

Short exact sequence, 19 
Small, category, 2 
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