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Preface

A number of sophisticated people tend to disparage category theory as
consistently as others disparage certain kinds of classical music. When obliged
to speak of a category they do so in an apologetic tone, similar to the way some
say, ‘It was a gift—I’ve never even played it” when a record of Chopin
Nocturnes is discovered in their possession. For this reason I add to the usual
prerequisite that the reader have a fair amount of mathematical sophistication,
the further prerequisite that he have no other kind.

Functors, categories, natural transformations, and duality were introduced
in the early 1940’s by Eilenberg and MacLane[10, 11]. Originally, the purpose
of these notions was to provide a technique for clarifying certain coficepts,
such as that of natural isomorphism. Category theory as a field in itself lay
relatively dormant during the following ten years. Nevertheless some work was
done by MacLane {28, 29], who introduced the important idea of defining
kernels, cokernels, direct sums, etc., in terms of universal mapping properties
rather than in terms of the elements of the objects involved. MacLane also
gave some insight into the nature of the duality principle, illustrating it with
the dual nature of the frees and the divisibles in the category of abelian groups
(the projectives and injectives, respectively, in that category). Then with the
writing of the book ‘“Homological Algebra’’ by Cartan and Eilenberg [6], it
became apparent that most propositions concerning finite diagrams of
modules could be proved in a more general type of category and, moreover,
that the number of such propositions could be halved through the use of
duality. This led to a full-fledged investigation of abelian categories by
Buchsbaum [3] (therein called exact categories). Grothendieck’s paper [20]
soon followed, and in it were introduced the important notions of A.B.5
category and generators for a category. (The latter idea had been touched on
by MacLane [29].) Since then the theory has flourished considerably, not only
in the direction of generalizing and simplifying much of the already known
theorems in homological algebra, but also in its own right, notably through
the imbedding theorems and their metatheoretic consequences.

In Chapters I-IIT and V, I have attempted to lay a unified groundwork
for the subject. The other chapters deal with matters of more specific interest.
Each chapter has an introduction which gives a summary of the material to
follow. I shall therefore be brief in giving a description of the contents.

In Chapter I, certain notions leading to the definition of abelian category
are introduced. Chapter II deals with general matters involving diagrams,
limits, and functors. In the closing sections there is a discussion of generators,

vii



viii PREFACE

projectives, and small objects. Chapter III contains a number of equivalent
formulations of the Grothendieck axiom A.B.5 (herein called C3) and some of
its consequences. In particular the Eckmann and Schopf results on injective
envelopes [8] are obtained. Peter Freyd’s proof of the group valued imbedding
theorem is given in Chapter IV. The resulting metatheorem enables one to
prove certain statements about finite diagrams in general abelian categories
by chasing diagrams of abelian groups. A theory of adjoint functors which
includes a criterion for their existence is developed in Chapter V. Also
included here is a theory of projective classes which is due to Eilenberg and
Moore [12]. The following chapter is devoted to applications of adjoints.
Principal among these are the tensor product, derived and coderived functors
for group-valued functors, and the fullimbedding theorem. The full imbedding
theorem asserts that any small abelian category admits a full, exact imbedding
into the category of R-modules for some ring R. The metatheory of Chapter IV
can thus be extended to theorems involving the existence of morphisms in
diagrams. Following Yoneda [36], in Chapter VII we develop the theory of
Ext in terms of long exact sequences. The exactness of the connected sequence
is proved without the use of projectives or injectives. The proof is by Steven
Schanuel. Chapter VIII contains Buchsbaum’s construction for satellites of
additive functors when the domain does not necessarily have projectives [5].
The exactness of the connected sequence for cosatellites of half exact functors
is proved in the case where the codomain is a C category. In Chapter IX we
obtain results for global dimension in certain categories of diagrams. These
include the Hilbert syzygy theorem and some new results on global dimension
of matrix rings. Here we find the main application of the projective class
theory of Chapter V. Finally, in Chapter X we give a theory of sheaves with
values in a category. This is a reorganization of some work done by Gray [19],
and gives a further application of the theory of adjoint functors.

We shall be using the language of the Gédel-Bernays set theory as presented
in the appendix to Kelley’s book “ General Topology** [25]. Thus we shall be
distinguishing between sets and classes, where by definition a setis a class which
is a member of some other class. A detailed knowledge of the theory is not
essential. The words family and collection will be used synonymously with the
word set.

With regard to terminology, what has previously been called a direct
product is herein called a product. In the category of sets, the product of a
family is the cartesian product. Generally speaking, if a notion which com-
mutes with products has been called a gadget, then the dual notion has been
called a cogadget. In particular what has been known as a direct sum here goes
under the name of coproduct. The exceptions to the rule are monomorphism-
epimorphism, injective-projective, and pullback-pushout. In these cases
euphony has prevailed. In any event the words left and right have been
eliminated from the language.
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The system of internal references is as follows. Theorem 4.3 of Chapter V is
referred to as V, 4.3 if the reference is made outside of Chapter V, and as
4.3 otherwise. The end of each proofis indicated by |

I wish to express gratitude to David Buchsbaum who has given me much
assistance over the years, and under whose supervision I have worked out a
number of proofs in this book. I have received encouragement from MacLane
on a number of occasions, and the material on Ext is roughly as presented
in one of his courses during 1959. The value of conversations with Peter
Freyd cannot be overestimated, and I have made extensive use of his very
elegant work. Conversations with Eilenberg, who has read parts of the
manuscript, have helped sharpen up some of the results, and have led to the
system of terminology which I have adopted. In particular he has suggested
a proof of IX, 7.2 along the lines given here. This has replaced a clumsier
proof of an earlier draft, and has led me to make fairly wide use of the pro-
jective class theory.

This book has been partially supported by a National Science Foundation
Grant at Columbia University.

I particularly wish to thank Miss Linda Schmidt, whose patience and
accuracy have minimized the difficulties in the typing of the manuscript.

B. MITCHELL
Columbia University, New York

May, 1964
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CCHAPTER 1|

Preliminaries

Introduction

In this chapter the basic notions and lemmas involving finite diagrams are
given. These notions are equalizers, pullbacks, intersections, unions, images,
inverse images, kernels, normality, products, and the duals of these. In
general, the material is organized in such a way as to lead up to a very eco-
nomical characterization of abelian categories (20.1) although some of the
propositions will not be needed until much later. In the last section we give a
discussion of the category of abelian groups, and the technique of diagram
chasing is illustrated with the 5 lemma.

1. Definition

A category is a class &/, together with a class .# which is a disjoint union

of the form
M = U [4,B],.
(AB)Est x A

To avoid logical difficulties we postulate that each [4, B] is a set (possibly
void. When there is danger of no confusion we shall write [4, B] in place of
[4, Bl,;.) Furthermore, for each triple (4, B, C) of members of &/ we are to
have a function from [B, C] x [4, B] to [4, C]. The image of the pair (8, «)
under this function will be called the composition of 8 by «, and will be
denoted by Ba. The composition functions are subject to two axioms,

(i) Associativity : Whenever the compositions make sense we have
(¥B)e = y(Ba).

(i1) Existence of identities: For each 4 € o we have an element 1, € [4, 4]
such that 1 jo = o and Bl 4 = B whenever the compositions make sense.

The members of &/ are called objects and the members of A are called
morphisms. If « €[4, B] we shall call 4 the domain of « and B the
1



2 I. PRELIMINARIES
codomain, and we shall say “ « is a morphism from 4 to B.” This last state-

ment is represented symbolically by “a: 4—B,” or sometimes “A—a>B.”
When there is no need to name the morphism in question, we shall simply
write A —B.

Observe that 1, can be the only identity for 4, for if ¢ is another we must
have ¢ =¢l,=1,. We sometimes write 1,: 4 =4 in the case of identity
morphisms.

If o/ is a set, then the category will be called small. In thiscase .#, being a
union of sets indexed over a set, is also a set.

We shall commit a common notational inconsistency in denoting the above
category by the underlying class 7.

2. The Nonobjective Approach

Reluctant as we are to introduce any abstraction into the theory, we must
remark that there is an alternative definition for category which dispenses
with the notion of objects. A category can be defined as a class .4, together
with a binary operation on .#, called compesition, which is not always
defined (that is, a function from a subclass of A x 4 to #). The image of
the pair (8, «) under this operation is denoted by Bo (if defined). An element
¢ € M is called an identity if e« = o and B¢ = B whenever the compositions
are defined. We assume the following axioms:

(1) Ifeither (yB)a or ¢(B) is defined, then the other is defined, and they are
equal.

(2) IfyBand Ba are defined and B is an identity, then ya is defined.

(3) Given a € #, there are identities ¢; and ¢ in A such that ¢;« and aeg are
defined (and hence equal a).

(4) For any pair of identities ¢; and ep, the class {« € .#|(¢ a)eg is defined}isa
set.

Clearly our first definition of category gives us a category of the second type.
Conversely, given a class A satisfying the postulates (1) to (4), we proceed to
show how this can be associated with a category of the first type. We index
the class of identities in .# by a class &/, denoting the identity corresponding
to A e o/ by 1, Nowif « € 4, then there can be only one identity such that
al, is defined. For if 1, is another, then we have ol 4 = («l )14, and so by
(1) the composition 141, is defined. Since both are identities we must then
have 1, = 1 ;. The unique 4 € .97 such that a1 4 is defined is called the domain
of «. Similarly, the unique B € &/ such that lge is defined is called the
codomain of . We denote by [4, B] the class of members of .# with domain
A and codomain B. Then [4, B] is a set by (4), and by (3} .# is the disjoint
union U [4, B].

Next we show that Ba« is defined if and only if the codomain of « is the
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domain of B. Suppose that B« is defined, and let B be the codomain of «.
Then B(1z) is defined, and so 81y is defined by (1). In other words, B is the
domain of 8. Conversely, if the codomain of « is the same as the domain of 8,
then Bu is defined by (2).

Therefore composition can be regarded as a union of functions of the type
[B,C] x [4, B] >.#.We must show, finally, that the image of such a function
is in [4, C]. That is, we must show that if B« is defined, then the domain of
Ba is the domain of «, and the codomain of B« is the codomain of 8. But this
follows easily from (1).

3. Examples

1. The category % whose class of objects is the class of all sets, where
[4, By is the class of all functions from 4 to B, is called the category of sets.
It is not small.

2. Asimilar definition applies to the category 7~ of all topological spaces,
where the morphisms from space 4 to space B are the continuous functions
from A4 to B.

3. The category &, of sets with base point is the category whose objects
are ordered pairs (4, a) where A4 is a set and a € 4. A morphism from (4, a)
to (B, b) is a function f from 4 to B such that f(a) = b.

4. Replacing sets by topological spaces and functions by continuous func-
tions in example 3 we obtain the category .7 of topological spaces with
base point.

5. If .# has only one identity (so that composition is always defined), we
call the category a semigroup and we replace the word “ composition” by
“multiplication.” Hence an alternative word for ‘“category” would be
“semigroupoid ’—a semigroup where multiplication is not always defined.
If Ba = af for every pair of morphisms in a semigroup, then the semigroup is
called abelian. In this case composition is usually called addition, and « + B
is written in place of «f. Furthermore, the identity is called zero and is
denoted by 0.

6. Weshall say that a category &/’ is a subcategory of a category & under
the following conditions:

(i) ' =
(ii) [4, Bl <[4, Bl forall (4, By e’ x A,
(iii) The composition of any two morphisms in &7’ is the same as their
composition in 7.
(iv) 1,is thesamein &/’ asin o/ forall 4 € &',

If furthermore [4, B] - = [4, B, for all (4, B) € &' x &/’ we say that &/’

is a full subcategory of <.
7. An ordered class is a category &/ with at most one morphism from
an object to any other object. If A4 and B are objects in an ordered class and
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if there is a morphism from A4 to B we write A € B and we say that 4 precedes
B or that B follows 4. Hence 4 < A for all objects 4, and if A < Band B £ C,
then 4 < C. If 4 < B and 4 # B, then we write A < B. Conversely any class
possessing a relation which satisfies these two properties may be considered as
an ordered class. If for any pair of objects in & there is an object C which
follows both of them, then we call & a directed class. & is a linearly
ordered class if A < B and B < 4 implies A = B, and if for every pair 4, B
it is true either that 4 < B or B £ 4. An ordered subclass of the ordered
class & is a full subcategory of &/. We call &/ inductive if every linearly
ordered subclass & of & has an upper bound in & (that is, a member X € .o/
such that L < X for each L € .#). A maximal member M of an ordered
class & is one such that for each 4 € & the relation M < 4 implies 4 < M.
If o7 is a small category, then the word class is replaced by the word set in
each of the above definitions. We shall be using the following form of Zorn’s
lemma: '

If 7 is an inductive ordered set, then .2/ has a maximal member.

8. Let &/ be a category, and for each (4, B) € o x & suppose that
[4, B] is divided into equivalence classes. Denoting the equivalence class
of « by [a], suppose further that whenever [«] = [a"] we have [ fa]= [ fa'] and
[og] =[«'g] when the compositions make sense. Then we can form a new
category &/" called the quotient category of &/ with respect to the given
equivalence relation. The objects of &/” are the same as the objects of &/, and
the set of morphisms [A, B] - is defined as the set of equivalence classes of
[4, B) . Composition is defined by the rule [8][«] = [Ba].

4. Duality

The dual category of a category .27, denoted by 2/*, has the same class of
objects as &7, and is such that

[A) Bl = [B, 4]y

The composition Ba in &7* is defined as the composition «f in &7. It will be
convenient notationally to represent an object 4 €.%/ by 4* when it is
considered as an object of the dual category. Clearly (&/*)* =.o/, and con-
sequently every theorem about categories actually embodies two theorems.
If statement p is true for category &, then there is a dual statement p* which
will be true for &/*. If the assumptions on . used to prove p hold also in &7*,
then p* is true for (&/*)* =.o/. We have not bothered to write out the dual
statements for most of the theorems.

5. Special Morphisms

A morphism 6: 4->B is called a coretraction if there is a morphism
@’ : B—A such that §’0 = 1 .. We shall say that 4 is a retract of B in this
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case. If 0: A—B and 7 : B—>C are coretractions, then 78 is a coretraction.
On the other hand, if 78 is a coretraction, then 6 is a coretraction, but not
necessarily 7. Dually we say that 8 is a retraction if there is a morphism
6" : B— A such that 80" = 1. If § is both a retraction and a coretraction, then
we call it an isomorphism. In this case we have

0 = 01, = 6'(66") = (6'0)6" = 1,6" = 6".

We call 8’ = §” the inverse of § and we denote it by §-!. Then by definition
we have (§-!)~! = 6. A semigroup in which every morphism is an isomorphism
is called a group. In the case of abelian groups we use the additive notation
for inverses, writing — 6 in place of -!.

If 6 € [4, B],, is a retraction and %" is a quotient category of &7, then [0] is
aretraction in &/". However, if &/' is a subcategory of o/ and 8 € [4, B] . isa
retraction in &7, it does not necessarily follow that § is a retraction in &/’ unless
&' is a full subcategory of &

We shall say ““A4 is isomorphic to B if there is an isomorphism from 4 to B.
It must be kept in mind, however, that there may be many isomorphisms from
4 to B, and that the above statement will usually be used with reference to a
specific isomorphism 6 : 4 — B. The notation 8 : 4 ~ B will often be used to
express the fact that 8 is an isomorphism. If § and 7 are isomorphisms and 76
is defined, then 76 is an isomorphism with inverse §—'#—1. Also every object is
isomorphic to itself by means of its identity morphism. Hence the relation
““is isomorphic to’’ is an equivalence relation.

A morphism whose codomain is the same as its domain is called an endo-
morphism. The set [4, 4] of endomorphisms on 4 is a semigroup, and is
sometimes denoted by End(4), or End,(4) when there is more than one
category in question. An endomorphism which is an isomorphism is called an
automorphism. The set of automorphisms of 4 is a group and is denoted by
Aut(4), or Auty,(4).

A morphism « € [4, B] is called a monomeorphism if af = ag implies that
f= g forall pairs of morphisms f, g with codomain 4. If « isa monomorphism in
&/, then it will be a monomorphism in any subcategory. However, a morphism
may be a monomorphism in a subcategory without being a monomorphism
in o7. Moreover it is not necessarily true that if « is a monomorphism in &7,
then [«] is a monomorphism in a quotient category of &. If « and B are
monomorphisms and if B« is defined, then Sa is a monomorphism. On the
other hand, if B« is 2 monomorphism, then « is a monomorphism, but not
necessarily B.

A morphism « is called an epimorphism if fo = go implies that f = g. The
notion of epimorphism is dual to that of monomorphism in the sense that « is
an epimorphism in & if and only if it is a monomorphism in &/*. Thus if «
and B are epimorphisms and «f is defined, then «f is an epimorphism, and
if «B is an epimorphism, then « is an epimorphism but not necessarily 8.
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A coretraction is necessarily a monomorphism and a retraction is an epi-
morphism. Thus an isomorphism is both a monomorphism and an epi-
morphism. Nevertheless a morphism can be at once a monomorphism and an
epimorphism but fail to be an isomorphism (exercise 1). We shall call a
category balanced if every morphism which is both a monomorphism and an
epimorphism is also an isomorphism.

Proposition 5.1. If «: A—B is a coretraction and is also an epimorphism, then
it is an isomorphism.

Proof. Letting Boc = 14 we have

(ef)a = a(fa) = al 4 = a = 1za
and consequently af8 = lp since « is an epimorphism. This shows that « is an
isomorphism. |

The dual proposition reads as follows.

Proposition 5.1*. If o : B— A4 is a retraction and is also a monomorphism, then it is
an isomorphism. ||

If « : A’ — Ais a monomorphism, we shall call A’ a subobject of 4, and we
shall refer to « as the inclusion of A’ in 4. Sometimes weshall write ez : 4’ < A,
or simply A’ © A when we want to indicate that 4’ is a subobject of 4, and we
shall say that 4’ is contained in A, or that A contains A4’. However, it is
important to remember that in general there is more than one monomorphism
from A’ to 4, and that whenever we speak of A’ as a subobject of 4 we shall be
referring to a specific monomorphism «. In this loose language, the statement
that the composition of two monomorphisms is a monomorphism becomes:
If 4 is a subobject of B and B is a subobject of C, then 4 is a subobject of C.
If the monomorphism « : 4’4 is not an isomorphism, we shall call 4’ a
proper subobject of 4. The composition of a monomorphism « : 4" -4 with
a morphism f: 4 — B is often denoted by f|4’ and is called the restriction of
Sftod'.

Ifa,: A, —A4 and «y : Ay — A are monomorphisms, we shall write «; < a5
if there is a morphism p : 4, — 4, such that ayy = «;. If  exists, then it is
unique, and is also a monomorphism. Ifalso «y < «, so that thereis a morphism
8 : A;— A, such that a; = «,8, then we have

agyd = 018 = ay = aply,.

Hence since «, is a monomorphism we have y3 = 1. Similarly, 8y = 1, and
so v is an isomorphism with inverse 8. We shall then say that 4, and 4, are
isomorphic subobjects of 4. However, 4, and 4, may be isomorphic
objects without being isomorphic subobjects of 4. More precisely, there may
be an isomorphism y : 4; & A,, without it being true that «,y is the same as «,.
If a3 : A3—>A is another monomorphism, and &, € «; € a3, then «; < a;.
Hence the class of subobjects of 4 (or, rather, monomorphisms into A4) is an
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ordered class with the property that two subobjects precede each other if and
only if they are isomorphic subobjects.

A class % of subobjects of 4 will be called a representative class of sub-
objects for A if every subobject of 4 isisomorphic as a subobject tosome member
of €. More generally, if every member of € has a certain property p, then € is
called a representative class for p if every subobject of A which has property
p is isomorphic as a subobject to some member of €. If every 4 € & has a
representative class of subobjects which is a set, then &7 is called a locally
small category.

Dually, if « : A — A’ is an epimorphism, we call 4’ a quotient object of A.
Ifo; : A—>A; and a, : 44, are epimorphisms we write «; < «, if thereisa
morphism y : A4, — A such that yay, = «;. That is, ) < ap in &7 if and only if
@, < a, as monomorphisms in &7*. We shall say that o/ is colocally small if
SZ* is locally small.

If o is locally small, it does not necessarily follow that a subcategory 27’
is locally small. The reason is twofold. In the first place there may be mono-
morphisms in &7’ which are not monomorphisms in &7, and in the second place
two monomorphisms may be isomorphic in & but not in &7’.

6. Equalizers

We call a diagram of the form

B
7N

commutative if B« =y, and we shall say in this case that the morphism y
factors through B. Likewise a diagram of the form

l J m

B—t-p
is commutative if Ba = 8y. In II, §l we shall give a general definition of
diagram and commutativity, but the above two types and various simple
combinations thereof will be all that we need for the present.
If (1) is commutative and B is a coretraction, say 8’8 = 1, then

aJ B'S

B
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is commutative. Furthermore if 8 and y are both isomorphisms, then

A <
< ¢

B ¢ D
is commutative.
Given two morphisms «, 8 : 4 - B, wesay thatu : K — 4 is an equalizer for
o and Bif au = Bu, and if whenever #’' : K’ — 4 is such that au’ = Bu’ there is a
unique morphism y : K’ — K making the diagram

A

K ——— 4
commutative.

Proposition 6.1. If u is an equalizer for o and B, then u is a monomorphism. Any two
equalizers for o and B are isomorphic subobjects of A.

Proof. Suppose that y,, y; : K’ — K are such that uy, = uy,. Then y, and y,
are factorizations through K of the morphism uy, = wy; : K’ — 4. Furthermore
we have a(uy,) = (au)y, = (Bu)y, = B(uy,). But then by definition of equal-
izer, the factorization of uy, through K must be unique; that is, y, = y,. This
proves that u is a monomorphism.

Now suppose that 4’ : K’ —A4in (2) is also an equalizer for a and 8. Then we
have a morphism 9 : K— K’ such that 'y’ = u. Hence uyy’ =u'y’ = u = ul.
Since u is a monomorphism, it follows that yy' = 1. Similarly ¢’y = 1., and
$0 v is an isomorphism with inverse y'. ||

Thus in some sense we can talk about ‘“the” equalizer of two morphisms.
The equalizer of « and 8 will sometimes be denoted Equ(e, B), and an un-
named morphism Equ(e, 8) — 4 will refer to the morphism « above. We shall
not be inconvenienced too much by the fact that Equ(«, B) can stand for any
one of a class of isomorphic subobjects of 4. If Equ({a, B) exists for all pairs of
morphisms in .2/ with the same domain and the same codomain, then we shall
simply say that .27 has equalizers. Observe that o = 8 if and only if 1, is the
equalizer of « and 8.

Dually we say that B—Coequ(a, 8) is the coequalizer of « and g if it is
the equalizer of these two morphisms in the dual category. Hence if &/* has
equalizers, then &7 has coequalizers. The statement of 6.1* is left to the
reader.
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7. Pullbacks, Pushouts

Given two morphisms «,: 4,4 and «, : 4,4 with a common co-
domain, a commutative diagram

P B2 4,

ﬂll Jaz (1)

44

is called a pullback for «; and «, if for every pair of morphisms 8 : P'—A4,
and B;: P'—>A, such that «a;B; = ayB,, there exists a unique morphism
y : P'—Psuch that 8] = 8,y and B, = B,y. If P’ is also a pullback, then there
must exist a morphism y’ : P— P’ such that 8, = B{y’ and 8, = B;y’. Then we
have Byyy’ =By’ =B, =B.lp and similarly B,yy’ = B,lp. Therefore, by
uniqueness of factorizations through the pullback we have yy'= 1, and
Yy =lp.

Proposition 7.1, Relative to the pullback diagram (1), if a, is a monomorphism,
then so is B,.

Proof. Suppose that 8, f = B,g. Then a8, f = otsfs f = sfog = ¢, 8,¢, and so
since «; is a monomorphism we must have 8, f = 8,g. Therefore by uniqueness
of factorizations through the pullback we have f = g. This shows that 8, is a
monomorphism. |}

It is not true in general that if «; is an epimorphism then so is 8,. However
this will be a true statement in abelian categories (20.2).

Proposiﬁén 7.2. If each square in the diagram

P Q > B
]
A 1 B

is a pullback and B’ — B is a monomorphism, then the outer rectangle is a pullback.

Proof. Given morphisms X —A4 and X — B’ such that
X—>A—-I1->B=X->B —>B,

we must find a unique morphism X — P such that X >P—->4=X—>4 and
X—>P-—>Q—B = X—B'. Now since the right-hand square is a pullback we
have a morphism X — @ such that X @ —-/=X—-A—TIand

X—>Q—>B =X->B.
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Then since the left-hand square is a pullback we have a morphism X — P such
that X >P >4 =X—>A4and X—»>P->Q = X— Q. The morphism X— P then
satisfies the required conditions. By two applications of 7.1 we see that P-4
is a monomorphism, and from this follows the uniqueness of the morphism
X—P. ]

The dual of a pullback is called a pushout. Thus a pushout diagram is
obtained by reversing the direction of all arrows in the diagram (1). Propo-
sitions 7.1* and 7.2* are left to the formulation of the reader.

8. Intersections

Let {y; : 4;— A};c; be a family (set) of subobjects of A. We shall call a mor-
phism u : A’ — 4 the intersection of the family if for each i € I we can write
u = u; for some morphism y; : A’ —4; (necessarily unique) and furthermore
if every morphism B-—>4 which factors through each u factors uniquely
through u. From the uniqueness condition one shows easily that « is a mono-
morphism, and that any two intersections for the same family are isomorphic
subobjects of 4. We shall denote 4’ by n[A,-, or simply by M 4; when there is

i€

no doubt as to the index set. Consider a union of sets /= U I,. If N 4, is

A4 i€l
defined for each A € 4 and if N ( n A,-) is defined, then N 4; is defined and
rea\iel, iel
we have
n(n A,.)=n4.. (1
aea \iel iel

n
For a finite family 4,, 4,,..., 4, of subobjects we often write N 4; or
i=1

Ay NA;NA30... N4, for the intersection. Observe that the intersection of
the empty class of subobjects of 4 is 4 itself. If the intersection of the family 4;
exists, then it is the largest subobject of 4 which precedes each of the 4;. How-
ever, a subobject may have this maximal property without the intersection
existing. If the intersection exists for every set of subobjects of every object in
&, we shall say that o/ has intersections. If intersections exist only for
finite sets of subobjects then we shall say that &/ has finite intersections.

Proposition 8.1. If A, — A, and A, — A are monomorphisms in a category o, then
the diagram

P——> 4,

|

A — 4
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is a pullback diagram if and only if P> A, — A = P—> A, — A is the infersection of A,
and Ay. Hence if &/ has pullbacks then of has finite intersections.

Proof. That the diagram is a pullback if and only if it is an intersection follows
immediately from the definitions of pullback and intersection. If & has pull-
backs, then using (1) the intersection of n subobjects may be obtained induc-
tively by the formula

n—

A4 = ( lA)nAn. [
i=1

i=1
We reserve no special notation for the dual notion of the cointersection
of a family of quotient objects.

9. Unions
Consider a diagram
AI BI
| 0
4 LB

where fis any morphism and the vertical morphisms are monomorphisms.
Then we say that the subobject 4’ is carried into the subobject B’ by fif
there exists a morphism 4’ — B’ (necessarily unique) making (1) commutative.
The union of a family {4,},; of subobjects of an object 4 is defined as a
subobject 4’ of A which is preceded by each of the 4;, and which has the
following property: If f: A — B and each 4; is carried into some subobject B’
by £, then 4’ is also carried into B’ by f. By taking f= 1, we see that if each
A; precedes some subobject 4, of 4, then A’ must also precede 4,. In particular
any other subobject of 4 which behaves as a union for the above family must
be isomorphic as a subobject to 4’. The object A’ will be denoted by U 4.
iel
Remark that the union is in no sense dual to the intersection, although in
exact categories a relationship exists between the union and the cointersection
(15.2). An associativity formula analogous to (1) of the previous section applies
to unions, as well as the notational remarks made there. Observe again that
while the union of a family of subobjects is necessarily the smallest subobject
which contains every member of the family, nevertheless an object may exist
having this minimal property without being the union. If the union exists for
every set of subobjects of any object in &/, we shall say that o7 has unions.

Proposition 9.1. Suppose that «, B : A— B in a category which has equalizers, and
suppose that for each member A; of a family of subobjects of A we have o|A; = B|4;.
Then if the union exists we have a|U 4; = B|U 4.
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Proof. Letting K be the equalizer of the two morphisms «|U 4; and 8|U 4;,
we see that each 4; is a subobject of K. Hence U 4; is a subobject of K, and so

10. Images

The image of a morphism f: 4 — B is defined as the smallest subobject of
B which ffactors through. That is, a monomorphism u : /— B is the image of
Siff=uf" for some f' : A—1I, and if u precedes any other monomorphism into
B with the same property. The object I will sometimes be denoted by Im(f).
If every morphism in a category has an image, then we shall say that the
category has images. If, moreover, the morphism f” is always an epimor-
phism, we say that &/ has epimorphic images. If & has intersections and
is locally small, then &/ has images. In fact, given a morphism f, we can find
a representative set for the class of subobjects of the codomain which ffactors
through. The intersection of such a set of subobjects clearly serves as an image
for f. If fis a monomorphism, then fis its own image.

P
Proposition 10.1. Let f: A— B in a category with equalizers and let A—1— B be
the factorization of f through its image. Then f' is an epimorphism.

Proof. Suppose that «f =f8f'. Then f’' (and hence f) factors through
Equ(a, 8), and the latter is a subobject of I. But by the definition of image we
must then have I = Equ(a, B). Therefore « = 8, and so f” is an epimorphism. ||

Proposition 10.2. Let f: A— B in a balanced category, and suppose that f has an

I u
image. If f can be factored as A — I — B with f' an epimorphism and u a monomorphism,
then u is the image of f.

Proof. By definition of Im( f) we know that f” factors through Im( f). But then
since f is an epimorphism, the inclusion of Im(f) in [ is an epimorphism.
Therefore since the category is balanced this inclusion must be an iso-
morphism. ]

Iff: A—B and A’ -4 is a monomorphism, we shall denote the image of

!
the composition 4’ —+4 — B by f(4"). Then using the fact that the composition

of two epimorphisms is an epimorphism, we have the following corollary of
10.2.

Corollary 10.3. Let of be a balanced category with epimorphic images. If f : A—B,
g: B—C, and A’ is a subobject of A, then g(f(A4")) =gf(4"). ]

We call an epimorphism 4 —1I the coimage of a morphism fif it is the
image of fin the dual category. In this case we denote the object I by Coim(f).
In exact categories it will turn out that Coim(f) and Im(f) are isomorphic,
but in general there is no relation between these two objects.
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11. Inverse Images

If f: A—B and B’ is a subobject of B, then the inverse image of B’ by f
is the pullback diagram

P — B

T .

4 —L-p
The object P is usually denoted by f~!(B’). Then by 7.1, f~!(B’) is a subobject
of A. It is the largest subobject of 4 which is carried into B’ by f. However, the
existence of such a maximal subobject does not guarantee the existence of the
inverse image. :

Suppose that in the diagram (1) the morphism P—>B’ factors through a
subobject B, of B’. Then it is easy to see that P is also the inverse image of B,.
In particular if I is a subobject of B which f factors through (such as Im(f))
and the intersection ] N B’ is defined, then f~!( N B’) is defined and equals
fHB).

Proposition 11.1. Let f: A— B, and consider inclusions A\ < Ay, < A and
By < By < B. Then the following relations hold whenever both sides are defined :

(i) f(4 )Cf(Az)

(il) f~1(B)) </7(By)
(iii) 4, Cf‘ (f(41)
(iv) B, Df(f (B1))

(v) f(4) (f"(f(An)))

(vi) f“(Bn) = BY))-

Proof. Statements (i) to (iv) are trivial consequences of the definitions of
image and inverse image. To prove (v), apply (i) to statement (iii) to obtain
f(4) <f(f1(f(41))), and then apply (iv) to the object f(4;) to obtain
S(A4) 2 f(f~1(f(4,))). Statement (vi) follows similarly. {

Proposition 11.2, Let f: A— B in a category with images and inverse images, and
let {A;} be a family of subobjects of A _forwhich U A,is defined. ThenU f(A,) is defined
and equals f(U 4,).

Proof. Consider a morphism g : B —(C and suppose that each f(4;) is carried by
£ into some subobject ¢’ of C. Then each 4; is carried by gfinto C’, and so by
definition of union, U 4;is carried by gfinto C’. Hence U 4;is carried by finto

£7Y(C"), and so f(U 4,) is a subobject of g=!(C"’). But this means that f(U 4,)
is carried by g into C'. Since by 11.1, f(U 4,) contains each of the f(4;), this
shows that f(U 4,) is the union of the family { f(4,)}. |

The proof of the following analogous proposition is left to the reader.
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Proposition 11.3. Let f: A— B in a category with inverse images, and let {B;} be a
Samily of subobjects of B _for which the intersection M B; is defined. Then N f~1(B;) is
defined and is equal to f~'(N B;). ||

Iff: A—Bis a monomorphism and if A’ is a subobject of A4, then it is trivial
to see that f~!(f(A4’)) = A’. However, if f is an epimorphism and B’ is a
subobject of B we will have to put some hypothesis on the category before we
can prove f{f~'(B’)) = B’ (see 16.4). In the case where f'is an isomorphism,
the inverse image of B’ is the same as the image of B’ under the morphism -1,
hence there is no ambiguity in notation.

12. Zero Objects

An object 0 is called a null object for &7 if [4, 0] has precisely one element
for each 4 € &. If 0’ is another null object, then [0, 0'] and [0’, 0] each have
one morphism, say 8 and #’, respectively. Then 68 is the unique morphism
in [0, 0], hence must be 1,. Likewise 88’ = 1. Thus any two null objects are
isomorphic. In the dual category 0 becomes a conull object. We say that 0
is a zero object for o7 if it is at once a null object and a conull object. In this
case we will call a morphism 4 — B a zero morphism if it factors through 0.
Each set [ 4, B] has precisely one zero morphism, which we denote sometimes
by 045, but more often simply by 0. The composition of a zero morphism with
any other morphism is a zero morphism. On the other hand, suppose that &/
is a category (with or without a zero object) such that each set [4, B] has a
distinguished element e,z with the property that the composition of a dis-
tinguished morphism with any other morphism is again a distinguished mor-
phism. Then oneshows that there can be at most one such class of distinguished
morphisms, and that a zero object can be adjoined to & so that the distin-
guished morphisms become zero morphisms and so that &/ remains essentially
unchanged (exercise 6).

13. Kernels

Let &7 be a category with a zero object, and let « : 4 —B. We will call a
morphism u : K—4 the kernel of « if au =0, and if for every morphism
4" : K’ > A such that au’ = 0 we have a unique morphism y : X’ — K such that
uy = u'. Equivaiently, the kernel of « is given by the puilback diagram

K —

] J

A ——
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In other words K = «~!(0), so that in particular « must be a monomorphism,
and any two kernels must be isomorphic subobjects of 4. The object K is
frequently denoted by Ker(a). If o is 2 monomorphism then Ker(a) = 0, but
the converse is not true in general (cf. exercise 9%). If Ker(8«) and Ker(«) are
defined, then Ker(a) < Ker(B«). If B is a monomorphism, then

Ker(a) = Ker(B«)

in the sense that if either side is defined then so is the other and they are equal.
Alsoifeither of Equ(e, 0) and Ker(«) are defined then so is the other and they
are equal, so that in particular if &/ has equalizers then .7 has kernels. Fre-
quently we will want to know if a morphism « is the kernel of some morphism «,
knowing in advance that au = 0 and that u is a monomorphism. In such a
case it suffices to test for the existence of the morphism y. Uniqueness will be
automatic since « is a monomorphism.

A morphism B — Coker(«) is called the cokernel of « if it is the kernel of &
in the dual category. When speaking of kernels and cokernels we will always
be implying tacitly that the category in question has a zero, for otherwise the
terms make no sense.

Proposition 13.1. Consider a commutative diagram

Y B2
K P — 4,

-

K—24— 42> 4

where the right-hand square is a pullback, u is the kernel of ay, and y is the morphism into
the pullback induced by the two morphisms u: K—A, and 0 : K—A,. Then v is the

kernel of B,.

Proof. First observe that since 8,y = u and u is a monomorphism, v must be a
monomorphism. Also, 85y = 0 by construction of y. Now let v : X — P such
that Byv = 0. Then 0 = ayB;v = o, 87, and so since u is the kernel of a; we
must have a morphism w : X — K such that ww = 8,0. We then see that yw = v
since each of these morphisms gives the same thing when coraposed with
both B, and B,. This proves that y is the kernel of 8. I

Proposition 13.2, Consider a diagram

A — 4

l (1)

B — B
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where B' — B is the kernel of some morphism B — B". Then the diagram can be extended
to a pullback if and only if A’ — A is the kernel of the composition A—> B —B".

Proof. Suppose that A’ — A4 is the kernel 4 B —>B". Then A’ >4 —>B—>B"is
0, and so since B’ —B is the kernel of B—>B" we get a unique morphism
A’ — B’ making (1) commutative. Suppose that X-—>4—>B=X->B"—B.
Then X —A —B—B" is zero, hence there is a unique morphism X — 4’ such
that X >4’ —>A4 = X—+A. Then also

X—>A->B >B=X—+>4"->4—-+B=X->B B,

and so since B’ — B is a monomorphism it follows that X >4’ —+B' = X - B'.
This proves that (1) is a pullback. The converse is left to the reader. ||

Proposition 13.3. Let u : K— A be the kernel of « - A—>Band let p : A —C be the
cokernel of u. Then u is the kernel of p.

Proof. Consider the diagram

K ——> 4 —— B

SN

where v is any morphism such that po = 0 and ¢ is defined by virtue of the fact
that au = 0 and p is the cokernel of u. Then «v = gpv = 0, and so since u is the
kernel of « there is a morphism y : X — K such that uy = v. Since « is a mono-
morphism and pu = 0 it follows that u is the kernel of p. |}

14. Normality

If A’ — A is the kernel of some morphism then we call 4’ a nermal subobject
of A. If every monomorphism in a category is normal then we say that the
category is normal.

The following is an immediate consequence of 13.2.

Proposition 14.1. A normal category with kernels has inverse images, and in parti-
cular, finite intersections. |

Dually, if A—>A4" is the cokernel of some morphism, then we call 4" a
conormal quotient object of 4, and if every epimorphism in a category is
conormal then we say that the categoryis a conormal category.

Proposition 14.2. Let o/ be a normal category with cokernels. Then there is a uni-
valent function_from the class of equivalence classes of subobjects of an object A to the class
of equivalence classes of quotient objects of A. In particular, if of is colocally small, then
it is locally small. If 57 is normal and conormal and has kernels and cokernels, then the
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above function is a one to one correspondence between the (equivalence classes of) sub-
objects of A and the (equivalence classes of ) quotient objects of A.

Proof. The function in question is the one which assigns to every monomor-
phism u its cokernel. Proposition 13.3 assures that if we take the kernel of the
cokernel we get back to u, hence the assignment is univalent. The inverse
function in the case where &7 is conormal and has kernels is the one which
assigns to each epimorphism its kernel. |

Proposition 14.3. Let o : A— B be a monomorphism with cokernel 0 in a normas
category. Then a is an isomorphism. Hence a normal category is balanced.

Proof. By normality « is the kernel of its cokernel (13.3). Butsince the cokernel
is B—0, a kernel for it is 1. From this it follows that « must be an iso-
morphism. ||

Lemma 14.4, Let o be any category with zero. Let « @ A— B be any morphism, and
suppose that p : B—C is its cokernel. Finally suppose that v : I — B is the kernel of p.
Then there ts a unique morphism q : A— I such that vq = . If S has cokernels and is
normal, then v is the image of . If, further, s has equalizers, then q is the coimage of .

Proof. The existence and uniqueness of ¢ follow since po. = 0 and 7is the kernel
of p. Suppose that &7 has cokernels and is normal and let B’ — B be a subobject
of B through which « factors. Consider the following commutative diagram

BII

where B—B" is the cokernel of B’ —B (and hence B’ — B is the kernel of
B—B"), and € — B" is defined since the composition 4 —B — B" is zero. Then
I-B—>B"=]-+B—->C—B"=0 and so v can be factored through B’ —B.
This shows that v is the image of a.

If o/ has equalizers, then by 10.1, ¢ is an epimorphism. Consider any

factorization A—»I' > B of « with ¢" an epimorphism. Then po’ =0, and so
there is an induced morphism I'—1. Using the fact that » is a monomorphism
it follows that 7 precedes I’ as a quotient object of A. This shows that ¢ is the
coimage of a. |
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15. Exact Categories

Let &/ be a normal and conormal category with kernels and cokernels.
We shall call & an exact category if every morphism « : 4 — B can be written

q v
as a composition 4 — I— B where ¢ is an epimorphism and z is a monomor-

phism. Let KL 4 be the kernel of g and B—';C be the cokernel of . Then u is
also the kernel of « and p is the cokernel of «. Furthermore, by normality and
conormality it follows that v is the kernel of p and ¢ is the cokernel of u. Then
by 14.4, v is the image of «, and dually ¢ is the coimage of a. Furthermore, 14.4
tells us that a normal and conormal category with cokernels and equalizers
is an exact category. Observe the self-dual nature of the axioms for an exact
category; &/ is exact if and only if &/* is exact.
A sequence of morphisms

aj—1 ay %+1
"'_>AI'—1 ;Ai >Al.+l \Ai+2' .a

in an exact category is called an exact sequence if Ker(a; ;) =Im(a;) as
subobjects of 4;,, for every i. If, for every 7, the weaker condition o, o; = 0 is
satisfied (or equivalently, Im(a;) < Ker(e;y,)), then the sequence is said to be
of order two.

Proposition 15.1. The following statements are true in an exact category </

—

o B -5 B
A—>B—>Cis exact in S if and only if A* <-B* < C* is exact in oA *.

o
0->A4 — B is exact if and only if o is a monomorphism.
A—B—0is exact if and only if a is an epimorphism.

L S

-3
0—A— B —01isexact if and only if o is an isomorphism.
Proof. 1. Consider
a5158575¢

where v is the image of o and w is the image of 8. Then r is the coimage of 8. If
A—B—C is exact, then v is the kernel of 8 and hence also the kernel of r.
Therefore r is the cokernel of » and hence also the cokernel of «. In the dual
category r then becomes the kernel of « as well as the image of B, and so

A* <~ B* < C¥* is exact.
2. If « is a monomorphism then its kernel is 0, and so clearly 0 >4 —B is

q v
exact. Conversely, if 0 >4 — Bis exact, then a has kernel 0. Let A ~/—>Bbea
factorization of « as an epimorphism followed by a monomorphism. Then g is
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the cokernel of the kernel of «. Since the latter is 0, 4 must be anisomorphism.
But then o = »¢ must be a monomorphism.

3. Follows from | and 2.

4. Since a normal category is balanced, 4 follows from 2 and 3. |

It follows from 15.1 that, in an exact category, a sequence

a B
0>A4A—->B—->C—0 (1

is exact if and only if & is 2 monomorphism, 8 is an epimorphism, and « is the
kernel of 8 (or equivalently, B is the cokernel of «). An exact sequence of the
type (1) will be called a short exact sequence. We shall frequently denote C
by B/A. An undesignated morphism B — B4 will be understood to be 8. Given
a diagram of the form

0 A B B/A 0

0 ——> A4 ——> B B/A’ 0

then there is a morphism A4 — A’ making the diagram commutative if and
only if there is a morphism B/4 — B'|A’ making the diagram commutative. In
particular, taking B = B’ with lp for B—B’, we see that 4 precedes 4’ as a
subobject of B if and only if B/4’ precedes B/A4 as a quotient object of B.

Proposition 15.2. Let {A;} be aset of subobjects of A in an exact category, and suppose
AJA’ is the cointersection of the family of quotient objects A|A;. Then A’ is the union of
the family {4;}.

Proof. Consider a morphism f: 4 — B and a subobject B’ of B such that each
A;is carried into B’ by f. Then for each i we have a morphism 4/4; — B/B’ such
that A—>B—>B/B’=A-»A]|4;,—~B|B’. Consequently, since 4/4’ is the co-
intersection we have a morphism A/4"—B/B’ such that

A-—>AJA'>B|B' = A—~B->B|B.

But this implies that 4’ is carried into B’ by f. Now since each A4/4; is preceded
by A/A’, it follows that each A4; precedes A’. Therefore A’ is the union of the
family {4;}. §

Corollary 15.3. An exact category has finite unions.

Proof. By 14.1* an exact category has finite cointersections. Therefore the
result follows from 15.2. ||
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16. The 9 Lemma

Proposition 16.1 (The 9 Lemma). Given a commutative diagram

0 0 0
4’ y:| A"
Y
0 — B’ — B B’ 0
0 — (' c c” 0
v I
0 0 0

in an exact category where all the rows and columns are exact, then there are morphisms
A" —~>A and A— A" keeping the diagram commutative. Furthermore, the sequence
0—+>4"—>A—>A"—01is exact.

Proof. We have seen the existence of the morphisms 4’ —~4 and 4 - 4" in the
preceding section. Now since 4’ — B’ — B is a monomorphism it follows that
A’ -4 must also be a monomorphism. To prove the exactness assertion we
first show that

0>4'">4—-B">C"—>0
is exact, where 4 —B”" is the composition 4 —B — B". Now
A—->A—-B"=A4—->B—->B->B" =0

Suppose that X->4 is such that X—+4—+B—B"=0. Then we have a
morphism X — B’ such that X—+B'->B = X—+A—B. Also

X—>B -C—->C=X->B—+B->C=X—-4->B—->C=0.

Since C’ —C'is a monomorphism we then have X — B’ —C’ = 0. Therefore we
have a morphism X — 4’ such that X—+A'—>B = X—B8’. Then

X>A'+>A>B=X—->A"—->B">B=X—-B —->B=X—->A—->B.
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Since A — B is a monomorphism this means that X +4’—4 = X— 4. Con-
sequently we have shown that A’ — 4 is the kernel of 4 — B, or, in other words,
that 0 >4’ —>A —B" is exact. By duality it follows that A >B" —»C" -0 is
exact. Now since 4" — B" is the kernel of B” —C" we see that the factorization
of A— B" through its image is just A >A4" — B". Exactness of

0>A4'">A->A"—>0
now follows. |

Corollary 16.2 (First Noether Isomorphism Theorem). Let B< A, © A, inan
exact category. Then we have a commutative diagram with exact rows

0 — A, i A]/Az > 0
0 "'—>A2/B‘_—'—" A]/B 7‘A|/A2 0

(In other words Ay|B is a subobject of A\|B, and (A,[B)|(A4|B) = A4,[4,).
Proof. The proof follows immediately from 16.1* applied to the diagram
0 0 0

2

4
4,/B 4,/B Ay /A4,
0

0 0 i
Corollary 16.3. Consider a pullback diagram in an exact category

BI Cl

|

B——C
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where B—C is an epimorphism and C'—C is a monomorphism. Then this can be
extended to a commutative diagram

0 0
N
0 A B c' >0
Y
0 A B C 0
CII _ CII
0 0

with exact rows and columns.

Proof. Let C—C” be the cokernel of C’—C and A — B the kernel of B—C.
Then by 13.2, B’— B is the kernel of B—C —C", and since the latter is an

epimorphism we have exactness of the columns. Exactness of the top row then
follows from 16.1. ||

Corollary 16.4. Lzt f: A— B in an exact category, and let I be the image of f. If B’
is a subobject of B we have an epimorphism

fFUBY >IN
and an exact sequence
0—>fYB)>A—>IINB —0.
Proof. By 7.2 we have a pullback diagram

fNB) ——> InB'
(1

A — 1

Both our results then follow by applying 16.3 to (1). ||
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Proposition 16.5. In an exact category consider the diagram

0 0 0
0 —— A — > 4 A" —> 0
17 I
v ¥ N
0 > B B B" > 0 (2)
I 1V
0 c' C c >0
v Y
0 0 0

where the middle row and middle column are exact. Then the diagram is commutative
with exact rows and columns if and only if Iis a pullback, IV is a pushout, and I and 11T
are factorizations of A— B~ B" and B’ — B —C through their respective images.

Proof. Suppose that (2) is commutative with exact rows and columns. Then
A— A" being an epimorphism and 4" — B" being a monomorphism we must
have I as described. Likewise I1I is as described. Now 4’ — B’ is the kernel of
B'—~(C’, and so since C'—C is a monomorphism it is also the kernel of
B’ (" —C = B'—>B—C. Therefore by 13.2, I1 is a pullback. Dually IV isa
pushout.

Conversely, given the middle row and column exact, construct II as the
pullback, IV as the pushout, and I and III as factorizations through images.
We show that the top row is exact. The left column will be exact by symmetry,
and the bottom row and right column will be exact by duality. By 13.2 we
know that A’ — 4 is the kernel of A—>B—-+B"=A-—->A"—>B", and so since
A" —B" is a monomorphism it is also the kernel of 4—>A4". Therefore since
A—>A" is an epimorphism the top row is exact. ||

The pullback of two subobjects 4, 4, < 4 is 4, N A,. Also by 15.2 the
pushout of two quotient objects A/A, and A/A4,is A{A; U 4,. Hence:

Corollary 16.6. If A, and A, are subobjects of A in an exact category, then we have a
commutative diagram with exact rows and columns
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0 0 0

|

0 —— AlﬁA2—> Ag—— Az/Alf\ A2‘>0

0 —— 4, —— 4 ——> A4 ——0 (3)

|

0 ——— Al/Alm A2—>‘A/A2—-> A/AIUAQ >0

|

0 0 0 |

Corollary 16.7 (Second Noether Isomorphism Theorem). If A, and A, are
subobjects of A in an exact category, then we have a commutative diagram with exact rows

0 —sAnd; —> Ag—>4,/4in4;—>0

|

0 A, > Ajud, —>A1ud2/di—> 0
Proof. This follows by replacing A by 4, U 4, in (3). |

Corollary 16.8. In an exact category consider exact sequences 0 —>A —B —C —0 and
0—B' —B-—>B"—0. Tlen B’ — B —C is an epimorphism if and only if A— B — B"
ts an eprmorphism. Dually, the same is true of monomorphisms. Consequently B' — B —C
is an isomorphism if and only if A — B —B" is an isomorphism.

Proof. Form the diagram (2) according to 16.5. If B’ —B —( is an epimor-
phism, then ¢’ —C'is an epimorphism and so C” = 0. But then this means that
A" —B" is an epimorphism, and hence .{ —B — B" is an epimorphism. |}

17. Products

Let {4;};c; be a set of objects in an arbitrary category &7. A product for the
family is a family of morphisms {; : 4 — 4;};c; with the property that for any
family {«, : A’ > 4;};c; there is a unique morphism « : A’ — A4 such that p,a = «,
for all 7 € I. Hence for all A’ € .o/ the set of morphisms [A4’, 4] is in one to one

correspondence with the cartesian product of sets X [A4’, 4;]. If the family {o,}
iel
above is also a product, then one shows as usual that « is an isomorphism.
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The object 4 will be denoted by X A,, or simply X 4;. For a finite famlly of

objects 4,, 4,,..., A, the product will sometimes be denoted XA or
i=1

Ay x Ay x ... x A,. An object is a null object for .o/ if and only if it serves as a
product for the empty family. Also a product of null objects is again a null
object.

The morphisms g; are called the projection morphisms from the product.
Ifiis a fixed index in /, and if there is a morphism f; : 4;— 4; for all j € I such
that j # 7, then we can take f; = 1 4, to obtain a morphism f: 4;—4 such that
pif = 14, This shows that p; is a retraction. In particular, this will always
be true when &/ has a zero object. In this case we can define morphisms

: 4,4, called the injection morphisms into the product, such that
pju —>8 where 8; =0fori#jand §; =1,,.

is
Proposition 17.1. Consider a product A\ x Ay with injections u, uy and projections
b1s Do in a category with zero. Then u, is the kernel of p,.

Proof. Let «:A'—A; x 4, be such that p,a =0. Define «,: 4’ >4, by
o) = p,o. Then ujo; = «, since both morphisms give the same thing when
composed with the projection morphisms. Since «; is a monomorphism and
pou; = 0, this shows that u, is the kernel of p,. |J

It is not true in general that p, is the cokernel of u,, although of course this
is true in a conormal category.

Let {4;};c; be any family, and let 7= U I, be a disjoint union of sets.
A

Suppose that the product 4y =X 4; is defined with projections {t:}ies, for all
i‘EI,\
), and suppose further that X 4, is defined with projections {#)} c4. Then the
Aea
family of morphisms {p,p)]i € I, A € A} gives X A, the structure of a product
aeq

for {4}ie;-

Let {4,};c; be any set of objects and suppose that J is a subset of I. Then if
X 4; and X 4; are both defined, we have a morphism
ies iel

p]l: X A'- — X A‘
iel ied
which is such that if we compose with the jth projection from X 4; we obtain
ieJ
the jth projection from X 4;. If.o/ has a zero object then p, is an epimorphism.
iel

Infactp;, can be interpreted as one of the projection morphisms p, relative to a
suitable decomposition of the set I as in the preceding paragraph.

Consider a family of morphisms {f;: 4;—>B;};c;- Then these define a
morphism

Xf: X4—>XB,

i€l el i€l
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This is the unique morphism such that for each i € 7 the diagram

XA,' -——>XB,'

|,

A;——f’—>Bi

is commutative. Observe the relations

xgiXﬂ = X (&f)s X Iy, =1
icl i€l i€l i€l

which are valid whenever the products involved are defined and the compo-

sitions make sense.

The coproduct of the family {4}, is defined dually to the product. Thus
the coproduct is a family of morphisms {y; : 4;— 4} called injections, such
that for each family of morphisms {«; : 4, > 4'};c; we have a unique morphism
a: A—>A" with ay; = o; for all i € I. The object 4 will be denoted by P 4,.

i€l

For a finite family alternative notations willbe @ 4,and 4; @ 4, @ ... ® 4,.
i=1

If &7 has a zero object then we can define projections p; : 4 — 4; such that
b = 9.

Proposition 17.2. If &/ has images, inverse images, and coproducts, then S has
unions. In fact if {A;} is a family of subobjects of A, then their union is given by the image
of the morphism f: @ A;—> A such that for each i, fu; is the inclusion of A; in A.

Proof. Considering the 4, as subobjects of () 4; by means of the injections, it
is trivial to verify that their union is @ 4;. Consequently our result follows
from 11.2. ]

Suppose that for all i € 7 we have 4; = A. In this case we denote the product
of the family by 47 and the coproduct by /4. We have the diagonal morphism
4:A4—A4" defined by p4 =1, for all i €I, and dually the codiagonal
morphism V ;: 74 — A4 defined by Vi; = 1, for all i € 1. Then 4 is necessarily a
monomorphism and V is necessarily an epimorphism.

In a general category &/, a morphism f from a coproduct 3 4; to a product
i€J )
X Bi is completely determined by its coordinate morphisms f; = p,/fu,
el
where u;is the jth injection into the coproduct and ; is the ith projection from

the product. Hence |@ 4;, X B;|is in one to one correspondence with the set
jeJ iel

of all I x J matrices of the form (f;) where f; € [4;, B;]. Weshall frequently

denote such a morphism by its corresponding matrix. In particular when ./
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has a zero object, we have the morphism 8 = (8;) : ® 4;— X4, If § is an
i€l iel
isomorphism then we call @ 4, a biproduct.
iel
Proposition 17.3. The following statements are equivalent in a category A .

(a) & has finite intersections and finite products.
(b) & has equalizers and finite products.

The above statements imply
(c) & has pullbacks and a null object.

Proof. To prove the proposition we first prove three lemmas which give us
more detailed information.

Lemma 17.4. Consider two morphisms «, 8 : A— B in an arbitrary category. Then
the diagram

.__—> A

J J (1)
4 ———> AxB

is an intersection if and only if u is the equalizer of o and B.

Proof. We have used the word intersection rather than pullback since the

morphisms (IA) and (]A) are necessarily monomorphisms. Now in order that
o

(1) be commutative we must have au = 8u. From this the lemma easily
follows. |

The proofs of the following two lemmas are straightforward and are left to
the reader.

Lemma 17.5. Given two morphisms o) : A —A and oy : Ay— A, consider the
diagram

P A

AI"Az

A y. |

where p) and p, are projections from the product and B; = p,8 for i =1, 2. Then the
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square 15 a pullback diagram if and only if B is the equalizer of the two morphisms
apy and aypy. |l

Lemma 17.6. Let 0 be a null object for a category and let Ay and A, be any objects.
Then the diagram

P'—z)AZ

||

4, ——0
is a pullback if and only if P is the product of A, and A, with projections p, and p,. |

Returning now to the proofof 17.3, we have (a) = (b) by 17.4,and (b) = (c)
by 17.5 and the fact that a null object is the product of the empty family.
(c) = (a) follows from 17.6. |

18. Additive Categories

A semiadditive category is a category &/ together with an abelian semi-
group structure on each of its morphism sets, subject to the following
conditions:

(i) The composition functions [B, C] x [4, B] —[A4 C] are bilinear. That
is, if @, B €[4, B] and y € [B, C], then y({a + B) = ya + yB, and if
y €[4, B] and «, B € [B, C] then (a + B)y = ay + By.

(i1} The zero elements of the semigroups behave as zero morphisms.

That is «0 = 0 and O« = 0 whenever the compositions make sense. (Observe
that the 0 on the right-hand side of the equations is not in general the same as
the 0 on the left-hand side).

Condition (ii) together with exercise 6 tells us that we can always assume
that a semiadditive category has a zero object.

If, further, each set [4, B] is an abelian group, then we call & an additive
category. In this case condition (ii) follows from condition (i), for we have
o0 = (0 + 0) = a0 + «0, and so subtracting «0 from both sides we obtain
0 = «0. Also

a(—B) +af = a((— ) +5) = a0 = 0
so that a(— B) = — (af). Similarly (— «)f = —(af) and (— a)(—8) = «B.

The kernel of a difference « — B is the same as the equalizer of the two mor-
phisms « and 8. Hence an additive category has kernels if and only if it has
equalizers. A morphism is a monomorphism in an additive category if and
only ifits kernel is 0.
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A ring is an additive category R which has only one object. The dual
category R* is called the opposite ring. If R = R*, then R is called 2 com-
mutative ring. A commutative ring in which every nonzero morphism is a
monomorphism (and hence also an epimorphism) is called an integral
domain. A ring in which every nonzero morphism is an isomorphism is
called a division ring, and a commutative division ring is called a field,

Proposition 18.1. Let A, Ay, ..., 4, be a finite collection of objects in a semi-
additive category. Then a family of morphisms {u;: A;— A} is a coproduct for the family
zf and only if there is a family of morphisms {p; : A~ A;} such that pu; = ; and

Z upy =1y
k=1

Proof. Suppose first that 4 is the coproduct. Then we know that the mor-
phisms p; exist satisfying the relations pu; = 8;. Now we have for each i

(Z ukl’k) U = 3 (yp) = 3 udy = u = 1.
K1 k=1 k=1

Hence, by definition of coproduct, we must have Z wh =
k=1

Conversely, suppose that we are given morphisms p; satlsfying the given

conditions, and let f; : 4;—>A4" for 1 €7 < n. Define f= 3 f, ;. Then we have
k=1

Ju; = élfkﬁk“i =/

Furthermore, iff” is another morphism satisfying the conditions f” % = f; for all
1, then we have

f=rla=f i“kl’k = i:f’ulubk = éﬁ:l’k =/
k=1 k=1 k=1

Hence fis unique, and so 4 is the coproduct. ||

Remark. In the case n=2, the conditions pyu; =0 and p,u, =0 follow from
the conditions pyu; =1, pu, =0, and u,p; +uypo=14.

Corollary 18,2, In a semiadditive category every finite product (coproduct) is a
biproduct. |}

Let
(‘D A/:—>®B

jeJ
and

(&) : @B»@C

i€l

in a semiadditive category where I, J, and K are finite sets, and we have
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written @ in place of X in the codomains by virtue of 18.2. Let 4 = gf. Then
we have

hy = pCafuf = pls (zJ ufpf) Sut

= T (Feul) (7 fuf) = X g
jeJ jeJ

That is, the matrix corresponding to the composition gf is the product of
matrices (g;)(f;). In particular, for a finite set /, [4, '4] is isomorphic to the
ring of I x I matrices over the ring [4, 4].

Lemma 18.3. In a semiadditive category the sum o+ B of two morphisms o, B : A—B
is given by any of the three compositions

4 («,8)
A—>APA——>B (1)
G v
A——>BPHB——>B (2)
o 0
4 08 v
A—>APA——>BPHB—>B. (3)

1
Proof. Writing 4 = (IA) and V = (1,, 1) the results follow from a few trivial
4
matrix multiplications. |

Observe that the middle morphism of (3) is the same as the morphism
o @ B defined in §17. .

The following proposition was first observed in part by MacLane [29]. The
proof given here was devised by Eckmann, Hilton, and Eilenberg.

Proposition 18.4. Suppose that o/ is a category with biproducts of the form A D A
Jor all A € 4. Then o has a unique semiadditive structure. If, further, & is exact,
then it is additive.

Proof. For «, B : A— B define a + B as the composition (1). This definition is
forced on us by 18.3; hence we already have our uniqueness assertion. Also
define « x B as the composition (2). Letting p, be the first projection from
A @ A we have («, 0) = ap;, and from this we see that « + 0 = . Similarly
O+a=a,andduallya x0=aand 0 x « = a.

Next let y : B—B’, Then we have y(«, B} = (ya, y8) and from this follows
the equation

y(a+B) = (ya) + (vB)- (4)
Dually, if p : A’ —> A we have

(ax B)p = (ap) x (Bp). (5)
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Finally, let x, y, z, w be any four morphisms from 4 to B. Then we have
X 2 X X
= V = =
(x+2) x(y+w) ((y w)A) (V(y w))A (* xy) + (z x w).

Setting z and y zero we get x + w = x x w, hence + = x. Setting x and w
zero we then have z +y =y + 2. Setting y zero we have

(x+2)+w=x+(2+w).

Therefore + makes [4, B] an abelian semigroup, and bilinearity of compo-

sition follows from (4) and (5).
Now suppose that & is exact, and consider the morphism

0:ADA->ADA

given by the matrix ((l) ;) If a: A @ A — B is such that af=40, then

expressing « as a matrix it is a simple matter to verify that «=0.
Hence 6 is an epimorphism. Dually 8 is a monomorphism and so, since & is

balanced, 6 is an isomorphism. Writing 6! =(Z 3

016 = ((l) (l)) yields 1 4+ b = 0. Then for any morphism x : 4 —B we have

), the relation

x+xb=xl+xb=x(1+0) =x0=0
and so xb is an additive inverse for x. |

An endomorphism 8 : 4 4 is called idempotent if 80 = 6. If 6 is idem-
potent in an additive category, then 1, — 8 is also idempotent.

Proposition 18.5. Consider a coretraction u, : A; — A in an additive category, and
suppose that pyuy =1, . Then 0 = u, p, is idempotent, and u, is the kernel of 1, — 6.
On the other hand, if 8 : A— A is idempotent and u, : A; — A and uy ;: Ay —> A are the
kernels of 1 . — 0 and 8, respectively, then A is the coproduct of u, and u,.

Proof. If p,u, = 1, then we have
00 = uypyurpy = uly py = upy = 0.
Also if (1,— 8)a =0, then we have u|(p,a) = fa = &, and so since u, is a

monomorphism and (1, — §)u, = u; — u; p,u; = 0, we see that u, is the kernel
of1,—6.

Now suppose that 6 is idempotent and u, and u, are the kernelsof 1 , — § and
6. Since (1, — 6)8 =0, there is a morphism p, : A—4, such that 4, p, = 6.
Then wehaveu; pyu; = 0u; = u),and sop u; = 14 since % isa monomorphism.
Likewise we have p, : A— 4, such that u,p, =1, — 0, and pyu; = 1,,. Then
since u)p, + uypy = 0 + (1, — 6) = 1,4, we see from the remark following 18.1
that 4 is the coproduct of u; and u,. }
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19. Exact Additive Categories

In an exact category &/ we shall say that a short exact sequence

a 8
0——4 B C >0 (n

splits if B is a retraction.

Proposition 19.1. If in an exact additive category the exact sequence (1) splits, say
By =1¢, then B is the coproduct of o and . Furthermore p : B—>A can be chosen
such that B and p are the projections from the coproduct.

Proof. This follows immediately from 18.5. |
Corollary 19.2, In an exact additive category, if

o 8
A—->B->C
Y
A<B<«C

are exact sequences such that pa =1, and By = 1, then B is the coproduct of 4 and C
with injections « and y and projections B and p.

Proof. Since B is a retraction, it is an epimorphism. Similarly « is a mono-
morphism, and so the sequence 0—+A4—B—C—0 is exact. Consequently by
19.1, & and y are the injections of a coproduct and § is one of the projections.
The relations pa =1, and pr =0 show that p is the other projection. |

Proposition 19.3, Let u, : A, — A and uy : A, — A be monomorphisms in an exact
category of . If Ais the coproduct of A, and A, withinjections u) and uy, then Ay N\ Ay =0
and AU Ay=A. On the other hand assuming further that &/ is additive, if
AN Ay =0and A\\J Ay = A, then A is the coproduct of A\ and A,.

Proof. We refer to the diagram (3) of 16.6. If 4 is the coproduct, then by
17.1* we can take A/4, = 4|, so that 4, >A4—>A/A4, becomes the identity
morphism on 4. From this it follows that 4, N4, =0and 4, U4, = 4.

Now suppose that &7 is exact and additive, and that 4, "4, =0 and
A, U4, =A4.Thenby 16.6 A, -4 -> A/ A4, is an isomorphism. Consequently it
follows from 19.1 that 4 is the coproduct of 4, and the kernel of 4 — A4]4,; that
is, A is the coproduct of 4y and 4,. ||

Proposition 19.4. Consider an order two sequence

dy dy
Al —)Az -*)As (2)

in an exact additive category, and suppose that there are morphisms s, : Ag— A, and
591 Ay — Ay such that d\s| + sydy = 14 Then (2) is exact.
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p u
Proof. Let A; —>1— A, be the factorization of d; through its image. We have
0 = dyd, = dyup, and so dyu = Osince p is an epimorphism. Now if dya = 0, then

o = (d151 +§2d2)d = upJ]a.

This shows that u is the kernel of dy and so (2) is exact. ||

20. Abelian Categories

An abelian category is an exact additive category with finite products.
The following theorem is due to Peter Freyd.

Theorem 20.1. The following statements are equivalent :

(a) < is an abelian category.

(b) & has kernels, cokernels, finite products, finite coproducts, and is normal and
conormal.

(¢} & has pushouts and pullbacks and is normal and conormal.

Proof. {a) = (b) This is immediate from the definition of exact category and
the fact that finite products and coproducts coincide in an additive category.

(b) = (¢) By 14.1, & has finite intersections, and so by 17.3 .2/ has pullbacks.
Dually &/ has pushouts.

(c) = (a) By 17.3 and 17.3*%, &/ has finite products, finite coproducts,
equalizers, and coequalizers. Hence, by 14.4, o7 is exact. To show that & is
additive, by 18.4 it suffices to show that the morphism 6 : 4 & B—4 x B is
an isomorphism for any pair of objects 4, B € /. Let K and K’ be defined by
the exact sequence

6
0>K—-A®@B->4AxB—-K —>0.

Then K4 PB—+4A=K—>A4A ®B—>AxB—>A=0, and so K is a sub-
object of B in 4 @ B. Similarly X is a subobject of 4, and so K =0 by 19.3.
By duality K’ = 0. Consequently, by 15.1, § is an isomorphism. |

Consider a pullback diagram

By

P 4,

B.J( Jaz (1)

4,—> 4

In 7.1 we saw that if «, is a monomorphism then 8, is a monoi..orphism. In
16.3 it was proved among other things that, in an exact category, if « is an
epimorphism and «, is a monomorphism then 8, is an epimorphism. The
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following important proposition tells us that in an abelian category the latter
statement is true without the assumnption that o, be a monomorphism.

Proposition 20.2. If (1) is a pullback diagram in an abelian category and if o, is an
epimorphism, then B, is an epimorphism.

Proof. Consider the diagram

0 P Ax dy————> A

«proypy

where u, is the first injection into the product, p, is the second projection from
the product, and exactness of the row defines the pullback P by 17.5. Then the
triangles are commutative, and so since «; is an epimorphism the same must
be true of a; p; — oy py. Therefore by 16.8, we see that 8, is an epimorphism. ||

Combining 20.2 and 13.1 we have

Corollary 20.3. In an abelian category, an exact sequence 0 —+A —>B—~C—>0and a
morphism y : C' —C can be put into a commutative diagram

0 A B C 0
0 A B C 0

where the top row is exact and the right square is a pullback. |}

21. The Category of Abelian Groups ¢

This is the category whose class of objects is the class of all abelian groups.
The morphisms from group A4 to group B are the additive functions from 4 to
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Bj; that is, functions f : 4 — B such that f(a + b) = f(a) + f(b) for all ¢, b € A.
The set {4, B] becomes an abelian group if we define f+ g by the rule
(f+g)(a) =f(a) + g(a) for all a € A. An identity for 4 is the morphism 1,
defined by 1,(a) = a for all a € A. Then composition given by the usual com-
position of functions is bilinear, and ¥ is an additive category.

Let f: A—B be any morphism of groups, and let X = {a € 4|f(a) = 0}.
Then K is closed under subtraction in 4, hence has an induced abelian group
structure such that the inclusion function u : K —A4 defined by u(k) =k is a
group morphism. It is easy to verify that u is a kernel for f. Now we can put an
equivalence relation on B by defining 4 ~ &' if and only if  — b’ = f(a) for
some a € A. Denoting the resulting set of equivalence classes by K’ and the
equivalence class of & by [4], we define a group structure on K’ by the rule
[61] + [b2] = [b, + b;]. Then the function p : B— K’ given by p(b) =[b] is a
morphism of groups. Again it is easy to check that p is a cokernel for f.

A group morphism is a monomorphism if and only if it is univalent, an
epimorphism if and only if it is onto, and an isomorphism if and only if it is a
one to one correspondence. If fis a monomorphism, then it is easy to see that f
is a kernel for p. Similarly, if f'is an epimorphism then it is a cokernel for «.
In other words ¥ is normal and conormal and so by 14.4 & is exact. Explicitly,
the decomposition of f into an epimorphism followed by a monomorphism is

g v

given by 47— B where I ={f(a)|a € A}, ¢ is defined by ¢(a) =f(a), and v
is defined by v(b) = b.

If {4;};c;1s any set of abelian groups, then a product is given by the cartesian
product X 4; with addition defined by the rule (4,) + (§;) = (4, + 4;). The

iel
projection gy : X A;— A is given by p,((4;)) = a;. In particular this shows that
iel
% is an abelian category. A coproduct for the above family is obtained by taking
the subgroup of X 4; consisting of all those elements (4;) such that 4, = 0 for all
iel

but a finite number of £ € 1. The injection #, from 4, to the coproduct is given
by u.(a) = (a;) where a;, =0for ¢ # k and ¢, = a.

The simple characterizations of monomorphisms and epimorphisms in ¥
enable us to handle diagrams in this category with comparative ease. Let us

prove, for example, the “5 lemma.”

Proposition 21.1. Suppose that the following diagram is commutative and has exact

rowsin¥:
A —2> 4, — 4, s 4y —— 4
N N P
B—2 g ,p_ P, B, B,
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() If v, is an epimorphism and y, and y, are monomorphisms, then y; is a
monomorphism.
(ii) If ys is a monomorphism and vy, and vy, are epimorphisms, then y is an
epimorphism.
(iii) Ify, is an epimorphism, 5 is a monomorphism, and y, and v, are isomorphisms,
then 4 is an isomorphism.

Proof. (i) To show that y4 is a monomorphism we must prove that if a € 44
and y3(a) =0, then a = 0. Now if y3(a) =0, then 0 = B4(y3(a)) = y4(as(a)).
Since y, is a monomorphism this means that «3(a) = 0. By exactness of the
top row we then have a = ay(a’) for some a’ € A,. Then

Ba(ya(a')) = ys(aa(a’)) = ys(a) = 0.

Hence, by exactness of the bottom row we can find 4 € B, such that
ya(a’) = B,(b). Since y, is an epimorphism we can write b = y,(a"} for some
a" € A,. Then yy(a,(a")) = Bi(y((a")) = B1(b) = y,(a’), and so since y, is a
monomorphism we have «;(a") = a’. Hence a = ay(a’) = ay(x;(a")) =0 by
exactness (order two) of the top row.

(i) This is the dual of statement (i}. However we cannot say that (ii)
follows from (i) by duality, since we have proved (i) only for the category %.
If we apply duality we are no longer in the category of abelian groups. State-
ment (i1) is proved by the same type of *“diagram chasing’ used to prove (i).

(ii1) This follows by combining (i) and (ii). ]

We could have assumed a weaker hypothesis in 21.1 than that the rows be
exact. In some instances we used kernel < image and in other instances we
used image < kernel. Likewise it is informative to prove the 9 lemma (16.1)
for @ by diagram chasing and to list precisely the exactness conditions needed.

Of course the 5 lemma is true in any abelian category (in fact, in any exact
category, see exercise 14). Usually, however, it is not as easy to prove a state-
ment in a general abelian category as it is to prove it in the category & where
we can always chase diagrams. In Chapter IV we shall prove a theorem which
tells us that any general enough statement about a finite diagram which is
true in the category of abelian groups is also true in any abelian category.

Exercises

1. In the categories &, , &, T ( (examples 1-4, §3) a morphism is a mono-
morphism if and only if it is a univalent function, and an epimorphism if and
only if it is onto. All four categories are locally small, colocally small, have
equalizers, coequalizers, intersections, cointersections, unions, counions,
images, coimages, pushouts, pullbacks, products (cartesian products), and
coproducts (disjoint unions, with base points identified in the cases of &y and
T o). & and &, are balanced, but not 7 and 7. In & and ™ any set with
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precisely one element is a null object, and the empty set @ is a conull object.
& and J  are categories with zero, and have kernels and cokernels. & is
normal, but.J ;is neither normal nor conormal. However, the full subcategory
of J  consisting of all compact Hausdorff spaces is normal, and moreover is
balanced.
2. In the category of all Hausdorff'spaces a morphism can be an epimorphism
without being onto as a function. In fact, in order that a continuous function
S+ X—Y be an epimorphism it suffices that f(X) be a dense subspace of Y.
3. Let 7 denote the closed unit interval of real numbers. Define two mor-
phisms o, 8: 4 —>B in J to be equivalent if there is a continuous function
h: A x I—B such that f(a, 0) = a(a) and A(a, 1) = B(a) for all a € A. Then
this is an equivalence relation which behaves in the right way with respect to
composition so as to define a quotient category of I .
4. Consider /: A— B in any category, and let {4;} be a set of subobjects of 4.
IfU 4,and U f(4,) are defined, thensois f (U 4,) andwe have U f(4,) = f(U4,).
Likewise if {B;} is a set of subobjects of Band if N B;and N f~!(B;) are defined,
then so is f~!(N B,) and we have N f~'(B) =f~(N B,). (Cf. 11.2 and 11.3).
5. In 11.1itsuffices to assume that f~'( f(4,)) existsin (v) and that f(f~1(B)))
exists in (vi).
6. If o/ has a set of distinguished morphisms in the sense of §12, then a zero
object can be adjoined without changing any of the pullbacks, products,
unions, etc., that already exist.
7. Proposition 7.2 is true if the assumption that B’ — B be a monomorphism
1s removed.
8. If A, —> A is the kernel of A —A4,” for each i, then 4’ — 4 is the intersection
of the 4,sif and only if it is the kernel of the morphism 4 — X 4,". Hence a
normal category with products and kernels has intersections.
9. In a normal category with equalizers, a morphism is an epimorphism if
and only if its cokernel is 0.
10. Iff: A— B is an epimorphism and B’ — B is a subobject in a normal and
conormal category with kernels and cokernels, then f(f~!(B’)) = B’ (use 13.2
and 14.4).
il. For any category . define a category Add(.%) as follows. The objects of
dd(&/) are the same as the objects of &7. The set of morphisms from 4 to B
in Add(&) is the free abelian group generated by the elements of [4, B],;
that is, the set of all finite formal linear combinations of the form ¥} n,a; where

n; is an integer and «; € [4, B],,. Composition in Add(%) is defined by the
rule

(£ne) (2 78) = 3 um) i

(84)
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Then Add(&/) is an additive category which contains ¢ as a subcategory. If
& is a category with zero, then denoting the zero morphism from 4 to B by
045 we can factor [4, B],qq() by the subgroup generated by 045, and in this

way we obtain a quotient category Add(%/) of Add(&/) which is additive,
contains & as a subcategory, and has the same set of zero morphisms as &/.

a
12. In any category & with zero we can define a sequence 4 —B LC to be
coexact if the cokernel of « is the same as the coimage of 8. If o/ is a normal
category with kernels and coequalizers and if the above sequence is coexact,
then it is exact (use 10.1* and 14.4).

13. Let 5# be the category of not necessarily abelian groups. A morphism
¢ : M —Gofgroupsis a function from M to G such that ¢(m m,) = @(m,)p(m,)
for all m,, my € M. Then g is a monomorphism if and only ifit is a univalent
function, but in such a case it is the kernel of some morphism ifand only if 4 isa
normal subgroup of B. 5 has kernels, images, equalizers, unions, intersections,
pullbacks, and products.

Less trivially ¢ is an epimorphism if and only if it is onto as a function.
(Suppose that ¢ is not onto, and let H= ¢(M). If G/H has just two cosets, then
H must be a normal subgroup of G, and so it is clear in this case that ¢ is not
an epimorphism. Otherwise there is a permutation y of G/H whose only fixed
point is H. Let 7 : G—G/H be the obvious function and choose § : G/H -G
such that #6 =1. Let 7 : G— H be such that x = 7(x)8x{x) for all x € G and
define A : G—G by A(x) = 7(x)8ym(x). Then Ais a permutation of G. Let P be
the group of permutations of G, and let «, 8 : G— P be defined by «(g)(x) = gx
for g, x € Gand B(g) = A~'a(g)A. Then « and 8 are morphisms of groups, and
a{g) = B(g) ifand only if g € H. Hence ap= Bg. This proof'is due to Eilenberg
and Moore.) 5 is conormal and has cokernels, coimages, coequalizers, co-
unions, cointersections, pushouts, and coproducts (free products). By exercise
12* a sequence in ¥ is coexact if it is exact.

Discuss also the category of finite groups.

14. Prove the 5 lemma (21.1) as follows in an exact category. In proving part
(i) replace A by Im(a,) and B; by Im(B,) and show that the induced mor-
phism Im(«,) >Im(B;) is an isomorphism. Then by 16.2 the induced mor-
phism Im(ay) >Im(B;) is a monomorphism. Hence we may assume that
ay, By, and y, are all monomorphisms. From the fact that y, is a monomor-
phism it then follows that y; is a monomorphism. Part (ii) now follows by
duality.

15. In an exact additive category, if 4, B;, and B, are subobjects of C and
AUB,, AUB, are coproducts, and if (AUB)N(4UB,) =4, then
A UB, VB, is a coproduct.

16. Prove the following proposition in an exact additive category. Consider a
commutative diagram
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B

SN
b
AP
N

4

4,
#\Az
et

where puA = 0 and the diagonals are exact. Then u;p, + ugp, = 1,; that is, 4
is the coproduct of 4; and 4,. Furthermore yo + 87 =0.

A

C

17. Inanabelian category if one of two morphisms «; : 4, >Aand ay : 4, >4
is an epimorphism, then the corresponding pullback diagram is also a pushout
diagram (use 20.2).

18. Let ./ be any abelian category. Let & be the class of short exact sequences
in /. A morphism «: E—F of short exact sequences is a commutative
diagram

E:0 4, Ay —2— 4, 0
J"‘r J"‘z J%
F: 0 Bl — Br_; 33 0

Then & is an additive category. The kernel of « is the sequence
K:0>K,—K;>AK,y) -0

where K| = Ker(a,) and K; = Ker{a,). The cokernel K’ is given by the dual
construction. Hence « is a monomorphism (epimorphism) ifand only if ay is a
monomorphism (epimorphism), and so « is a monomorphism and an epi-
morphism if and only if «, is an isomorphism. Let I’ be the cokernel of K — E
and I the kernel of F - K'. Then the induced morphism I’ — I is a monomor-
phism and an epimorphism. If .o/ has (infinite) products or coproducts, then

so has &.
19. Let {4, < A},c, be a family of subobjects in &. Show that U 4; is the set of
iel

elements in 4 of the form Y a; where g; € 4; for alli € I, and ¢, = O for all but a
iel

finite number of :.

20. Prove the following proposition in the category %. Consider the com-

mutative diagram with exact rows
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A—1 A 2 g 0
Jd' jd ld'
0 B, 191 B ﬂ! > B”

Then the induced sequences

Ker(d') - Ker(d) — Ker(d")
and
Coker(d’) — Coker(d) — Coker(d")

are exact. Define a function 8 : Ker(d"”) —Coker(d") as follows. For x € Ker(d")
let ay(y) =x. Then B,d(y) =0, so d(y) =B,(z) for some z € B'. Define
8(x) = [z] € Coker(d’). Then & is well defined morphism of groups, and the
sequence

8
Ker(d) - Ker(d") — Coker(d') — Coker(d)

is exact.

21. Consider the exact sequence

a B
0+>4—->B—->C—>0

in an exact category. Then B is a retraction if and only if « is a coretraction.
(Use 16.8).

. SR AN
22. Let 6: A @ B—>A @D B be an idempotent of the form (O g) in an
additive category with kernels and finite products. Then f and g are idem-
potents, and so we can find factorizations of f and g of the form

fr fi
A—+A -4
& &
B'—>Bz —B
such that f| f, = | and g,g, = 1. Find morphisms u: 4 ® B—4, @ B) and
A:A; @ B;—~>A @ B such that Ap =60 and puA =1. Hence show that if

[4, B] = 0 in such a category, then any retract of A @ B is isomorphic to an
object of the form 4, @ B, where 4, is a retract of 4 and B, is a retract of B,
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Diagrams and Functors

Introduction

We begin by giving a formal definition of the terms diagram scheme and
diagram (due to Grothendieck [20]). It is pointed out that the diagrams in a
category over a given scheme themselves form a category, but a detailed
examination of diagram categories is postponed until §12 where the notions
of functor and functor category are studied. At that time it will be shown that
a diagram can be regarded simply as a functor from an appropriate category.

In §2 we introduce the notion of limit for a diagram. This generalizes the
older notion of inverse limit for an inverse system, and embraces inverse
limits, products, pullbacks, and intersections as special cases. Necessary and
sufficient conditions for the existence of limits in a category are given.

Sections 3 and 4 are devoted mainly to examples and the classification of
certain types of functors according to the notions they preserve. In §5 we show
how the set valued morphism functors (group-valued in the case of additive
categories) can be used to characterize limits in a category. This is followed by
an analysis of limit preserving functors. Then in §7 we examine faithful
functors. Itisseen that the main feature of faithful functors is that they preserve
unpleasant situations.

After some exposition on functors of several variables and natural equi-
valences and a section on equivalences of categories, in §§11 and 12 we turn
to the study of functor categories. In general it is shown that the category of
functors from a category &7 to a category & inherits the properties of #. The
main result here is that the functor from a diagram category [ 2, %] to % which
assigns to each diagram its limit is a limit preserving monofunctor. In §13 we
study categories of additive functors, and in particular R-modules. The last
three sections are devoted to the special types of objects which will be needed
in the sequel; namely, generators, projectives, and small objects. Each of
these can be defined in terms of the preservation properties of the morphism

functors associated with them.
41
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1. Diagrams

A diagram scheme 2'is a triple (7, M, d) where [ is a set whose elements
are called vertices, M is a set whose elements are called arrows, and dis a
function from M to Ix I. If m € M and d(m) = (i, j), then we call ; the origin
of m and j the extremity. A diagram in a category .o/ over the scheme Z'is a
function D which assigns to each vertex i € I an object D; € &, and to each
arrow m with origin 7 and extremity j a morphism D(m) € [D;, D;]. If Iand M
are finite sets then we call 2'a finite scheme and D a finite diagram.

Let [Z, &/] denote the class of all diagrams in &7 over 2. We make this into
a category by defining a morphism f from diagram D to diagram D’ as a
family of morphisms {f;: D;— D, };c; in & such that for each m € M with
d(m) = (i, j) we have f,D(m) = D’(m)f;. Composition defined by (gf); = gf; is
clearly associative, and 1}, is given by the relation (1), = 1.

A composite arrow in 2 is a finite sequence ¢ = mym, ,...mym, of arrows
such that the origin of m, ,, is the extremity of m, for 1 < £ < p—1. The length
of the composite arrow ¢ is p. The origin of m, is called the origin of ¢, and the
extremity of m, is called the extremity of ¢. If b=mm,_,...mym, and
a =mym,_,...mgom, |, weshall writec = ab. If D is a diagram over 2'we define
D(c) = D(m,)D(m,,_,)...D(mg)D(m,).

Let 2, be the diagram scheme with the same vertices as X, and whose
arrows are those of X together with one new arrow from i to i, called the
identity arrow at i and denoted by 1;, for all vertices i. Let ~ be an equi-
valence relation on the set of all composite arrows of 2. We call ~ a com-
mutativity relation if the following conditions hold:

(i) Equivalent composite arrows have the same origin and the same
extremity. (The common origin and extremity of the members of an
equivalence class are called the origin and the extremity of the class.)

(i) If ¢~ ¢’ and ca is defined, then ca ~ ¢’a. Likewise if bc is defined then
be ~ be'.

(iii) ¢l;~ ¢ and L ~ ¢ whenever the left-hand expression make sense.

Corresponding to a commutativity relation ~ and a category &/ we let
[Z]~, o] be the full subcategory of [ 2, /] whose objects are diagrams D in
& over Z such that D(c) = D(¢’) for ¢ ~ ¢/, where D(1,) is defined as 1.

The smallest commutativity relation for X is that which identifies two
composite arrows in X if and only if they become the same after removing
all identity arrows from their decompositions. In this case we have
[Z, ] =[Z]~, ). The largest commutativity relation for X'is that which
identifies any two composite arrows in Xy which have the same origin and
the same extremity. In this case the objects of [Z/~, o] are called com-
mutative diagrams in o7 over 2. Note that if D is a commutative diagram
in &/ over Z, and m is an arrow such that d(m) = (3, i), then D(m) = 1p,.
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LetZ = (I, M,d)and 2’ = (I', M’, d’) be two diagram schemes. We define
the product scheme X x 2’ as the scheme whose vertex setis I x I and whose
arrow set is (M x I') U (I x M"). An arrow of the form (m, i) has origin
(i, i) and extremity (J, i') where d(m) = (7, j). Similarly an arrow of the form
(1, m') has origin (1, i) and extremity (i, ') where d'(m’) = (¢, j). If 2, 2",
and 2" are any three schemes, then we have an isomorphism between
(Zx2) x 2" and X x (X' x Z");that is, a one to one correspondence
between their vertices and arrows which preserves origins and extremities.

For example, if X is the scheme represented by 1—2 (that is, 2’ has two
vertices and one arrow) then 2 x 2 is represented by the square

(1,2) —— (2,2)

Similarly, if we draw (Z' x Z) x 2 we obtain a cubical configuration. We define
inductively 2" = 27! x 2, and we call 2" the n-cube scheme.

The following proposition concerning commutativity of diagrams over the
3-cube is fundamental in the study of categories.

Proposition 1.1. Consider a diagram over the 3-cube :

4

N

A, As

L]

\1/

If A, — Ay is an epimorphism and all faces of the cube are commutative save possibly the
face involving As, Ag, Ay, Ag, then this face is also commutative.
Proof. Denote the morphism from 4; to 4; by f;. Then we have

f7ef57f15 =f7a.f37f13
= fisSas /13
= fasSasS12
= fesS26./12
= feaS36./15-

Therefore since f} 5 is an epimorphism we have f;3 f57 = fog /56 as required. J
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2. Limits

If D is a diagram in &7 over X' = (I, M, d) we call a family of morphisins
{X— D;};c; a compatible family for D if for every arrow m € M the diagram

is commutative. The family is called a limit for D if it is compatible, and if for
every compatible family {¥Y— D}, there is a unique morphism Y- X such
that for each i € / we have Y—>X—D; = Y— D,. If {Y— D.};,; is also a limit
for D, then Y— X is an isomorphism.

We have the following trivialities.

Proposition 2.1. If {X—D,} is a limit for D and if 8 : Y — X is an isomorphism,
0

then {Y —X—D;} is a limit for D. ||

Proposition 2.2, Let 6 : D — D' be an isomorphism in [ X, ] (that is, for each i,

8
8; : D;— D/is anisomorphismin ). If {X — D;} is a limit for D, then {X —D;—~ D}
is a limit for D', |

We say that a category .« is Z-complete if every diagram in &/ over 2 has
a limit. If &7 is X-complete for all diagram schemes 2, then &/ is called
complete. If o/ is Z-complete for all finite diagram schemes 2, then &7 is
called finitely complete.

Proposition 2.3. If o is finitely complete, then o has pullbacks. If o is complete,
then & has intersections and products.

Proof. The limit of the diagram
4,

4——-4

is the pullback. The intersection of a family {4;};; of subobjects of 4 is given
by the limit of the following diagram D. The scheme of D has vertex set
IU{p} where p is some element not in /, and has an arrow from i to p for each
i€l Then D;= A, D, = A4, and if m is the arrow from i to p we take D(m) as
the inclusion of 4; in 4. Finally, the product of a family of objects {4,},c;is the
limit of the diagram D over the scheme whose vertex set is I and whose arrow
set is empty, defined by D; = 4;forallie L ||
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Let D be a diagram in & over X' = (I, M, d). In looking for a limit for.D
we may always assume that 2 has the property that if / is any vertex, then there
is an arrow whose extremity is not 7. For if thisis not the case, we can construct
a new scheme X’ which has this property. The vertices of 2" are the vertices
of 2 together with one new vertex ». The arrows of 2’ are the arrows of &'
together with an arrow « from ¢ to v and an arrow 8 from v to {. We extend D
to a diagram D’ over 2" by defining D, = D;, D(«) = 1, = D(B). Clearly the
restriction to D of a limit for D’ will be a limit for D.

Now define P = X D;, and let p; : P— D, denote the ith projection. Also for

iel
m € Mlet g, : PM— P denote the mth projection. Let u : P— PM be defined as
follows. If me M and d(m) = (j, k), then for ik let pg,pu=4p; and let

DiGnpr = D(m)p;. Then we have the following theorem, due to Freyd.

Theorem 2.4. Let D be a diagram over a scheme X which is such that no vertex is the
extremity of all arrows, and let u : P—PM be as defined above. Then p is a monomor-
phism. Furthermore, letting 4 : P— PM be the diagonal morphism, if the diagram

L—L>P

zl J 0

is a pullback (intersection), then a limit for D is given by the family {p;A};c;. Thus if &
has products and finite intersections then S is complete.

Conversely, if {v; : L— D} is a limit for D and if y : L — P is the morphism induced
by this family, then replacing each of A and i by  in (1) we obtain a pullback diagram.

Proof. We first prove that u is a monomorphism. Suppose that pa = uf. For
i € I choose an arrow m which does not have extremity i. Then we have

b = piqml“'a = ptqrmu’ﬁ = plB
and since this can be done for each i € / we must have « = 8. Therefore pis a
monomorphism.

Next we show that 4 =. Again given i € I let m be an arrow which does
not have extremity :. Then

p,-éf = p,'qmll-A = P.'QmA/l = plﬁ

and so 4 =.
Now we show that {$;4};,c; is a compatible family. Consider an arrow
m € M with d(m) = (J, k). Then

D(mpd = pgupd = b4, 45 = s = pd

as required.



46 II. DIAGRAMS AND FUNCTORS

Finally, we show that {;4},c; is the limit. Let {f; : X— D,};c; be a com-
patible family. Then we have an induced morphism f: X—P. For me M
with d(m) = (j, k) we have for i # k

pl'qu“’f = pz.f = p:quf’
and for : =k, using the fact that the family is compatible,

bgepf = D(mipyf = D(m)f; = fy = pgndf.
Therefore Af = uf, and so there is a unique morphism f’ : X—L such that
Af' =1, or in other words, such that p,Af’ = f; for all i € I. This shows that
{:4};c; s the limit for D.

Conversely assume that {y; : L—D;} is the limit and replace 4 and j by
the induced morphism y:L— P in (1). Then as we showed for f above we
have dy=py. Now if f: X—P and g: X— P are such that uf=4g, then
replacing 4 and & by f and g respectively in the above, we see that f=g
and that {p;f},c; is a compatible family. Consequently it follows from the
definition of limit that there is a unique morphism f’: X—L such that
yf' =Jf. This shows that the diagram is a pullback. ||

Corollary 2.5. Suppose that o is either additive or normal. Then 5 is complete if and
only if it has kernels and products.

Proof. If o is complete, then since kernels and products are special cases of
limits, &/ must have kernels and products. Conversely, suppose that & is
additive and has kernels and products. Then &/ has equalizers and so by I,
17.3, o/ has finite intersections. Likewise, if &/ is normal then by I, 14.1, o has
finite intersections. Hence in either case it follows from 2.4 that .o/ is complete. ||

If D is a finite diagram in 2.4 then P and P™ will be finite products. Hence
we have

Corollary 2.6. A category is finitely complete if and only if it has finite intersections and
Sinite products. |

The dual notions of cocompatible family, colimit, Z-cocomplete
category, finitely cocomplete category, and cocomplete category are
left to the reader. Combining 2.6 and 2.6* with I, 20.1, we then have:

Corollary 2.7. A category is abelian if and only if it is finitely complete and finitely
cocomplete and is normal and conormal. |}

We see now that an abelian category is complete (cocomplete) if and only
if it has products (coproducts). In particular the category of abelian groups %
is complete and cocomplete.

Proposition 2.8, Let of be a category with images and inverse images, and let {D;— L}
be the colimit for a diagram D in sl . If {f; : D;— A} is a cocompatible system for D and
if f+ L— A is the induced morphism, then U Im(f;) is defined and is the same as Im(f).
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Proof. Let g : A— B, and let B’ be a subobject of B such that Im( f)) is carried
into B’ by g for each i. Then the compositions D;—Im(f)— B’ form a co-
compatible system for D, and we get an induced morphism L— B’. Further-
more, due to the uniqueness of morphisms induced on limits we must have

e
L—B'— B = L—>A— B. Hence f factors through g~'(B’), and consequently
Im(f) = g~}(B’). But then since g~!(B’) is carried into B’ by g, the same must
be true of Im( f). Since it is clear that Im(f;) © Im(f) for each ¢, it follows that

Im(f) = U Im(f). I

Proposition 2.9. Let o/ be a category with products and finite intersections and let D be
a diagram in s over a scheme (I, M, d). Then a limit for D is given by the family of
compositions

N Equ(p, D(m)p,) < h{___({DhLD.- )

meM

where d(m) = (J, k), and p; represents the ith projection from the product.

Proof. It follows easily from the definitions of equalizer and intersection that

the family (2) is compatible. Now let { f; : A— D,};c; be any other compatible

family. Then there is a unique morphism f: A—X D, such that p,f = f; for

each 7, and the condition that the family {f;} be compatible is precisely the

condition that ffactor through the subobject N Equ(g,, D(m) ;). This proves
meM

that (2) is the limit. ]

In an additive category the subobject Equ(g;, D(m)p;) is the same as
Ker(p,—D(m)p;). Therefore if we apply duality to 2.9 and use I, 15.2, we
obtain

Corollary 2.10. Let &7 be a cocomplete abelian category, and let D be a diagram in </
over (I, M, d). Then a colimit for D is given by the family of compositions

Di———>@® Dy—— @ D/ U Im(y,—uD(m))

hel kel meM
where d(m) = (k, J) and u; is the ith injection into the coproduct. |

Let I be a directed set, and consider the diagram scheme whose set of vertices
is 7 and which has precisely one arrow from i to j if i <j and no arrows from
i to j otherwise. A commutative diagram D in . over this scheme is called a
direct system in .&/over I. Commutativity of the diagram requires thatif i < j
then there is only one morphism from D; to D; in the diagram, and so thereis no
ambiguity in denoting it by m;. Then we must have mym; = m, for i <j <&,
and m; = 1p, for all i € I. The colimit {D;,— L},; for D is called the direct

limit for D, and the object L is denoted by lim D,. The above direct system

—
i€l
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D will be denoted by {D;, 7};;, and the limit morphism D;— L will be denoted
by m. If D; = A4 for all i € I and 7; =1, whenever i <, then it is trivial to
verify that {1, : A— D,};¢, is the direct limit of D.

Recall that a subset J of a directed set [ is called a cofinal subset of I if for
every element i € [ there is an element j € J such that i <j. If the ordered
subset J is cofinal then J is itself a directed set. Thus if D is a direct system
in o over I, then the restriction of D to J is a direct system in &/ over J. The
set of all elements which follow a given element is an example of such a set J.
We then have the following proposition, whose proof'is left to the reader.

Proposition 2.11. Let D be a direct system in.of over I and let J be a cofinal subset of I.
If {m;: D;— L};c is a direct limit for D, then {m; : D;—> L};c; is a direct limit for the
restriction of D to J. ||

In other words, the direct limit of a system is determined by the values of
the system on any cofinal subset. In particular, if .o/ has a zero object and if

D; =0for all i in a cofinal subset of , then lim D, = 0.

Wl
1
We consider two examples of direct limits,

1. Let {4)})ca be any set of objects in a category, and suppose that for any
finite subset F < A the coproduct (P 4, is defined. Let I be the set of all finite

AEF

subsets of 4, and for F, G € I define F < Gifand only if F< G. Then for F < G

we have the obvious morphism g : @ 4y — @ 4) whose dual is described in
AEF €6

I, §17, and in this way we obtain a direct system in &7 over I, The direct limit

exists if and only if @ 4, exists, in which case they are equal. Hence if a
Yy}

category has direct limits and finite coproducts, then it has coproducts. In
particular an abelian category is cocomplete if and only if it has direct limits.

2. Let {y;: A;— A};c; be a set of subobjects. Define i <j if and only if
4 < ;. We will say that the family is a direct family of subobjects if /
becomes a directed set under this ordering. Then taking for 7, the inclusion
morphism 4;— 4; we obtain a direct system over /. Supposing that the direct

limit exists, we have the morphism u : lim 4;— 4 induced by the compatible
—
ief
family {#;}. In general  is not a monomorphism. That is, the direct limit of a
direct family of subobjects is not necessarily a subobject. The most that can be

said is that if & has images and inverse images, then Im(x) =U4; (2.8). In
iel

the following chapter we shall find conditions on a cocomplete abelian cate-
gory which are necessary and sufficient in order that u be always a mono-
morphism.

Aninverse system in ./ over /is a system of objects and morphisms which
is a direct system in .2/*. Hence an inverse system is a family of objects {D;};¢;
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and a family of morphisms {m; : D;— D;};; such that for : <j <k we have
mymy = my, and m; = | for all 7 € 1. In this case the limit is called the inverse
limit of D and is denoted by lim D,

@

el
3. Functors

Let o/ and & be categories. A covariant functor T : .o/ > is an assign-
ment of an object T(4) e# to each object 4 €./ and a morphism
T(a) : T(A4)— T(A') to each morphism o : 4— A" in &7, subject to the follow-

ing conditions:
(1) Preservation of composition. If o'« is defined in .7, then
T(a'e) = T(a') T(ax).
(2) Preservation of identities. For each 4 € o/ we have T(1,) = ).

It follows easily from (1) and (2) thatif 8 is a retraction in .27, then T(#) is
a retraction in 4. We shall call o7 the domain of 7 and # the codomain,
and we shall say that T has values in Z.

An additive functor is one whose domain and codomain are additive cate-
gories, and which satisfies the condition T(a + ) = T(x) + T(B) whenever
a + B is defined in the domain. Hence T : .o/ —>% is additive if and only if
the functions

(4, Bly—>[T(4), T(B))q
induced by T are morphisms of abelian groups. If T'is additive, then 7(0) =0
for any zero morphism.

Replacing the conditions « : A—A'= T(a) : T(4)—> T(4’) and T(o'a) =
T(a') T(e) by the conditions « : A—>A4"'=> T(a) : T(4")—> T(4) and T(«'at) =
T(a) T(a') in the above, we obtain the definition of a contravariant functor
from &7 to #. The unqualified term ““functor’ will usually mean covariant
functor.

We consider some examples of functors.

1. The covariant functor 1, : &/ —.2 such that 1,(4) =4 for all 4 € &/
and 1 ,(o) = « for all morphisms « in .27 is called the identity functor on &7.

2. The contravariant functor D : &7 —>o/* such that D (4)= A* for all
A € o and D(a) = « for all morphisms « in .27 is called the duality functor
on /.

3. If &/ is a subcategory of &7, then the covariant functor I : &/’ — .2 such
that /(4) = A for all 4 € &/’ and /(o) = « for all morphisms « in &7’ is called
the inclusion functor of &7’ in .27

4. If.e/” is a quotient category of &, then the covariant functor P : .o/ -5/
such that P(4) = A for all 4 € & and P(a) = [«] for all morphisms « in A4 is
called the projection functor of .o/ onto 7",
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5. The forgetful functor F : ¥— % from the category of abelian groups
to the category of sets is the functor which forgets the abelian group structure
onthe objects of @. Thatis, if Gisan abelian group, then F (G) is the underlying
set G of G, and if « is a group morphism, then F(a) = «. Likewise we have a
forgetful functor Fy: %%, which assigns to the abelian group G the
object (G, 0) where 0 is the zero element of G.

6. Let T:/—>% and §: %€ be two functors. We define the com-
position 5T: o&/—% by the rules ST(4) =S5(T(4)) and ST (a) = §(T(e)).
If T and § are both covariant or contravariant, then § T'is covariant, whereas
if one is covariant and the other is contravariant, then S 7 is contravariant.
If Sand T are additive functors, then §7Tis also additive.

7. If T': &/ -2 is a covariant (contravariant) functor, then we obtain a
contravariant (covariant )functor T, : &/*—% by composing T with the
duality functor on &/. Likewise we obtain a contravariant (covariant) functor
T*:of —>%* by composing T with the duality functor on #. We write
T¥ = (T%),= (TW)*.

8. Let &/ be any category and let 4 € &/. We have a covariant functor
H4: o/ - & called the covariant morphism functor with respect to 4.
Explicitly, if B € & then H4(B) = [4, B], and if o : B—C then

H4(a) : [4, B] >[4, C]

is given by the rule H4(a)(x) = ax. If & is a category with zero, then H4 can
be regarded as a functor with values in &, by defining H4(B) = ([4, B], 0,5).
If o is an additive category, then H4(B) is an abelian group, and H4(a) is a
group morphism. Furthermore, in this case we have

HA4(a + B) = H4(a) + HA(B).

Hence H4 may be considered as an additive functor with values in %, or an
additive group valued functor as we shall say. Composing this group valued
functor with the forgetful functor F : ¥ — & gives us the set valued morphism
functor defined originally.

Likewise we have the contravariant morphism functor H,: &/ —» &%
defined by H 4(B) =[B, A] and Hy(a)(x) = x« for o : B—~C and x € [C, 4].
The remarks made for H4 in the case where & has a zero or is additive apply
to H,. Notice that (H4), = H ..

9. If ¢ : R—> S8 is a covariant functor and R and 8 are semigroups (that is,
categories with one object each) then we call ¢ a semigroup morphism,
and if R and S are rings and ¢ is additive, then we call ¢ a ring morphism.

4. Preservation Properties of Functors

Let T: &/ > % be a covariant functor. We shall call 7 a monofunctor if
T(«) is a monomorphism in & whenever a is 2 monomorphism in &/. Dually
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we call T an epifunctor if T(«) is an epimorphism whenever « is an epi-
morphism. Hence T is an epifunctor if and only if T§ is a2 monofunctor. If
&/ and # are categories with zero objects, then T'is called a zero preserving
functor if T(0) is a zero object in & for 0 a zero object in &Z. In this case T
necessarily takes zero morphisms into zero morphisms. Conversely, if T takes
zero morphisms into zero morphisms, then using the fact that a zero object
is characterized by its identity morphism being zero we see that 7 must be
zero preserving. In particular an additive functor is zero preserving.

We call T kernel preserving if T(u) is the kernel of T(a) when u : K— 4
is the kernel of « : A— B. Taking K = 4 = B =0, we see that a kernel preserv-
ing functor is necessarily zero preserving. If &/ is normal and T is kernel
preserving then T is a monofunctor.

If & and # are exact categories, then we say that T is an exact functor if
T(A)—> T(B)—> T(C)is exact for every exact sequence 4—>B—C.

Proposition 4.1. Let o/ and B be exact categories, and let T : of % be any
covariant functor, Then

1. T is kernel preserving if and only of for every short exact sequence
0>4—-B->C—>0 (D

in S, the sequence 0—> T (A) > T (B) =T (C) is exact in &.

2. T is cokernel preserving if and only if for every short exact sequence (1), the sequence
T(A)—>T(B)— T(C)—0 is exact.

3. T is exact if and only if for every short exact sequence (1), the sequence

0->TA)>TB)>T(C)->0
is exact.

Proof. 1. If T is kernel preserving, then clearly 0— T(A4)— T(B)— T(C) is
exact. Conversely, suppose that T satisfies the given condition and Iet
a : A,—~ A, beany morphismin.&/. Then we can find two short exact sequences

0>K—>4,->1->0
0>I>A4,->K—>0

where K— A4 is the kernel of a, 45— K’ is the cokernel of «, and 4,—>1—> A4,
is «. The condition on T then says that 0— T(K)— T(4,)— T(I) and
0— T(I)— T(4;)— T(K') are exact. Hence T(K)— T(4,) is the kernel of
T(4))—~T(), and T({I)—T(4;) is a monomorphism. Consequently
T(K)— T(4,) is the kernel of T(A4,)— T(I)— T(A,). But since T preserves
compositions, the last composition is just T{a).

Part 2 follows from part 1 by duality, and part 3 is proved similarly to
part 1. |

The functor T is called a faithful functor if for every pair of objects

A, B € of the function
(4, B]—[T(4), T(B)] (2)
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induced by T is univalent. That is, 7T is faithful if it preserves distinctness of
morphisms. If T is additive, then T is faithful if and only if it takes nonzero
morphisms into nonzero morphisms. A faithful functor which takes distinct
objects into distinct objects is called an imbedding.

If instead of being univalent, the functions (2) are all onto, then T is
called full. We shall say that T is representative if for every B € # there is
an object 4 € & such that T(4) and B are isomorphic. A full representative,
faithful functor is called an equivalence. An equivalence which actually
produces a one to one correspondence between the objects of &/ and & is
called an isomorphism. However, isomorphisms of categories are rare.
As we shall see presently the thing to look for when we wish to show that two
categories are essentially the same is an equivalence (§10).

Let D be a diagram in & over ascheme X' = (I, M, d). We define a diagram
TDin % over X'by taking TD; = T(D;) and TD(m) = T(D(m)). If{a; : X—D;}
is a compatible system for D in @/, then {T(«;,) : T(X)— T(D,)} is a com-
patible system for TD in #. However if {a;} is the limit of D, it does not
necessarily follow that { T(«;)} is the limit of TD. In fact we shall call T a
limit preserving functor if {7(e;)} is the limit of T'D whenever {a;} is the
limitof D. If T'is limit preserving, then T must preserve pullbacks and products.
Since a zero object is the product of the empty class of objects it follows that a
limit preserving functor is zero preserving. Using the description of the kernel
of a morphism fas f~!(0) we see then that a limit preserving functor is kernel
preserving. However, a limit preserving functor need not be a monofunctor
unless the domain is normal.

Dually T'is called a colimit preserving functor if T is limit preserving.
The forgetful functor F : ¥ — & is mono, epi, and limit preserving. It is also
faithful and representative, but it is neither full nor colimit preserving. The
same remarks apply to F, : ¥— &,

Let o/ be a category and &/’ a subcategory. Then the inclusion functor
I: of'—4f is an imbedding, but it need not be mono, epi, limit preserving,
or colimit preserving. If &7’ is complete and [ is limit preserving then we shall
say that &/’ is a complete subcategory of &/. Equivalently, &/’ is a complete
subcategory if every diagram in &/’ has a limit in ./ and this limit is in &7’.
This says more than simply that &/’ is a cocomplete category which is a
subcategory of &7. If &/’ and &7 are exact categories and [ is an exact functor
then we call &/’ an exact subcategory of .7, and if I is additive we call
&' an additive subcategory. If I is an equivalence then &/’ is called an
equivalent subcategory of &. Thus &7’ is an equivalent subcategory if and
only if it is a full subcategory such that every object in &/ has an isomorphic
object in &',

The properties of functors defined in this section are called preservation
properties of functors. If T: &/ > and §: %€ are covariant functors
both having a certain preservation property, then ST also has that property.
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We shall say that a contravariant functor T :/—% has a preservation
property if and only if the covariant functor T, : &/*—2 has that property.

5. Morphism Functors

Proposition 5.1. 4 morphism B —C is a monomorphism in a category S if and only
if the induced morphism HA(B) —HA4(C) is a monomorphism in & for all A € A .
Similarly a family of morphisms F = {f; : L—D;} is a limit for a diagram D in o if
and only if the family HA(F ) = {HA(f;) : H4(L) - HA(D,)} is a limit for HAD in &
Jorall Ae .

If o has a zero object (resp., is additive) then the category & may be replaced by the
category Fo(resp. G) in the above.

Proof. By definition a morphism B—( is a monomorphism if and only if for
each A € &/ the induced morphism [4, B]—[4, C] is univalent. But a mor-
phism in the category of sets is univalent if and only if it is 2 monomorphism,
hence we have the first statement.

Now suppose that & is the limit of D, and consider a compatible family
{o; : X— HA(D,)} for HAD in &. Then for each x € X we have a compatible
family {«;(x) : A— D;}for Din&/, and so we get unique morphisms «(x) : A—>L
into the limit such that fix(x) = &;(x) for all i. It follows that « : X— H4(L)
is the unique morphism in & such that H4(f)a = o; for all i. Therefore
HA(F) is the limit of H4D.

Conversely, suppose that # is not a limit for D, There are three possibilities.

1. Z is not a compatible family. Then for some arrow m the diagram

/ D;
e
D;
is not commutative. By examining what happens to 1, € HL(L) we see that
the diagram
/, H*(D;)
\ HL( D_,')

is not commutative. Hence HX(F) is not a limit for HXD.
2. There exists a compatible family {y, : X— D,} corresponding to which
there are two distinct factorizations y, ¥’ : X— L. Then

HX(y)(1x) =y # ¥ = H¥(y")(1x),

HY(L)
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and consequently H*(y) and H*(y') are distinct factorizations for the family
{HX(y,)}. Therefore H*(F) is not the limit of H¥D.

3. For some compatible family {X— D;} there is no factorization X— L.
Then there is no factorization p : H¥(X)— H*(L) corresponding to the family
{H*(X)— H*(D,)}. For if there were such a p, then (1) : X— L would yield
a factorization for {X— D;}. Hence H¥(#) is not the limit of H*D.

If & is replaced by &, the only difference in the proof comes at the point
where we show that H4(&) is a limit for H4D. Here it must be checked that
the morphism « defined is actually a morphism of sets with base point. But
this follows since the morphisms «; are all necessarily morphisms of sets with
base point. A similar remark applies to the case where % is replaced by 4. ||

Using the relation (H,), = H4* we have:

Proposition 5.1*, A morphism C — B is an epimorphism in a category & if and only if
the induced morphism H 4 (B) —H4(C) is a monomorphism in & for all A e .
Similarly a family of morphisms {D;— L} is a colimit for a diagram D in 2 if and only if
the corresponding family {H 4(L) —H 4(D,)} is a limit for HyD in & forall Ac 4. |}

6. Limit Preserving Functors

We shall say that T: o/ —% is finite intersection preserving if when-
ever T preserves two monomorphisms for which the intersection is defined,
then T preserves this intersection. Notice that this definition does not say that
T is a monofunctor nor does it require that T take every pullback diagram
describing an intersection into a pullback diagram.

Proposition 6.1. [f &7 has products and B is arbitrary, then T : of —%B is limit
preserving if and only if it preserves products and finite intersections.

Proof. If T'is limit preserving, then since products and intersections are special
cases of limits it follows that T preserves products and finite intersections.

Conversely suppose that T preserves products and finite intersections. Let
{L— D;} be the limit of a diagram D in .2 and form the diagram

L —X P

l l 0

p—t  pum

of 2.4. As usual there is no loss in generality by assuming that in D*no vertex
is the extremity of all arrows, so that by 2.4, (1) is an intersection diagram.

Now T(4) : T(P)— T(PM) = T(P)Mis again a diagonal morphism. Similarly
the morphism T(p) bears the same relation to the diagram TD that u bears



6. LIMIT PRESERVING FUNCTORS 55

to D. In particular, this means that 7(4) and 7'(n) are monomorphisms, and
consequently if we apply T to the diagram (1), by assumption on T we get an
intersection diagram. A final application of 2.4 then shows that { T(L) —>T(D,)}
is the limit for TD. |

Corollary 6.2. Let of be a category with products and let B be any category. Then the
functor T : of —9B is limit preserving if and only if it preserves products and equalizers.

Proof. It follows from 1, 17.4, that if T preserves limits, then T preserves
equalizers. Conversely if T preserves products and equalizers, then by I,
17.5, we see that T preserves pullbacks, and in particular finite intersections.
Therefore, by 6.1, T is limit preserving. |

Corollary 6.3. If of is a normal category with products, then T : &f -2 is limit
preserving if and only if it preserves products and kernels.

Proof. We have already seen that if T is limit preserving, then T preserves
products and kernels. Conversely it follows from I, 13.2, that if T preserves
kernels then T is finite intersection preserving. Hence if T also preserves
products, then by 6.1 T is limit preserving. |

Proposition 6.4. Let o7 be an additive category with finite products, and let B be an
additive category. Then T : of —8 preserves finite products if and only if it is additive.

Proof. If T preserves finite products then it follows from I, 18.3, that T is
additive. Conversely if T is additive, then T preserves finite products by I,
18.1. 1

Corollary 6.5. Let o be an additive category with finite products, and let & be an
additive category. Then T : o -9 preserves limits of finite diagrams if and only if
T is kernel preserving and additive.

Proof. If Tisadditive and kernel preserving, then T must preserve equalizers.
Hence the conclusion follows from 6.4 and from 6.2 restricted to finite
diagrams. |

Let ./ and & be exact categories, We shall call a functor T: &/ >% a
half-exact functor if relative to every short exact sequence

0>4—>B—>C—>0
in &7, the sequence T(4)— T(B)— T(C) is exact in 4.

Proposition 6.6. Consider a half exact functor T : of — 98 where o is abelian and B
is exact and additive. Then T is additive.

Proof. From I, 19.2, it follows that T preserves finite products, and so by 6.4,
T is additive. ||

Combining 6.5 and 6.6 we have
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Corollary 6.7. If o is abelian and 4 is exact and additive, then a functor T : oA &
preserves limits of finite diagrams if and only if it is kernel preserving. ||

From 6.7 and 6.7* we see now that if & and & are abelian categories, then
afunctor T : &/ — % is exact if and only if it preserves limits and colimits of all
finite diagrams. If T is the inclusion of one abelian category into a larger
abelian category and if T is exact, then we shall call & an abelian sub-
category of #. Again this is to be distinguished from a subcategory of %
which is an abelian category.

7. Faithful Functors

We say that a functor T : &/ -> % reflects a property of a diagram D in &/
if the condition that TD has the property implies that D has the property.
Thus for example T reflects limits if {&; : L—D;} is a limit for the diagram
D whenever {T(«,) : T(L)— TD;} is a limit for T'D for all diagrams D in &/.

Theorem 7.1 (Freyd). Let T : o —%& be a faithful functor where & and B are
arbitrary categories. Then T reflects monomorphisms, epimorphisms, and commutative
diagrams. If o/ and BB are categories with zero, then T reflects zero objects. If s/ and B
are exact categories and T is zero preserving, then T reflects exact sequences. If <4 is an
abelian category, & is an additive category, and T is additive, then T reflects limits and
colimits of finite diagrams. Finally, if T is full, then without any conditions on of and &,
T reflects limils and colimits.

Proof. Consider a morphism « in &/, and suppose that af = ag. Then
T(a)T(f) = T(e) T(g), and so if T(«) is a monomorphism we must have
T(f) = T(g). Since T is faithful this implies f=g. In other words « is a
monomorphism. Thus T reflects monomorphisms and by duality T reflects
epimorphisms.

A noncommutative diagram is one in which two compositions with common
origin and common extremity are not the same. Since T preserves composi-
tions it is clear then that T carries noncommutative diagrams into non-
commutative diagrams, or in other words that 7T reflects commutative
diagrams.

Since a zero object is characterized by its identity morphism being equal
to its zero endomorphism we see that T reflects zero objects.

Suppose that &/ and & are exact categories. There are two ways in which a

sequence A'—>Ai>A” in & can fail to be exact. First we may have Ba # 0.
Then T(Ba) = T(B)T(x) cannot be zero since T is faithful, and so
T(A")— T(A)—> T(A") is not exact. Second, Ker(8) may nct be a subobject
of Im(a). Lettingu : K— A4 and p :A—F be the kernel of 8 and the cokernel
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of «, respectively, we then see that the composition pu is not zero. Applying
T we have a commutative diagram

T(K)
\
T(u)
T(4) O T(4) —z> T(A")
\k\*ﬂﬂ
|
T(F)

Consequently T(u) factors through Ker T(8) and T(p) factors through
Coker T'(a). If the horizontal sequence were exact then the composition
Ker T(B)— T(4)— Coker T(a) would be zero. Thus T(pu) = T(p) T(u)
would be zero, contradicting the faithfulness of 7',

Finally, without making any assumptions on ./ and %, there are three ways
in which a family # = {L— D,} can fail to be a limit for D in &/ First, # is not
compatible. Second, there exists a compatible family which factors through %
but not uniquely. Third, # is compatible, and for every other compatible
family there is at most one factorization through &, but for some compatible
family &' = {L'— D;} there is no factorization. In the first two cases it is
immediate from the faithfulness of T that T(%#) is not a limit for TD. If,
further, T'is full then itis clear in the third case that T(#") cannot be factored
through T(%), and so again T(&) is not a limit for TD. If T is not full, then
assume that o is abelian, & and T are additive, and D is finite. Consider the
finite product X D; and the morphisms L— X D; and L'— X D; induced by

& and F', respectively. The uniqueness of factorizations tells us that the
first of these morphisms is a monomorphism. Consequently, if we let X D,—>F
be its cokernel, then the nonexistence of a factorization for & shows that the
composition L'~ X D;—>F is not zero. Now T, being additive, preserves
finite products. Hence if T(#") could be factored through T(&#) then we
would have

T(L')—> T(X D;) > T(F) = T(L')— T(L)— T(X D;) - T(F) = 0.

Since T'is faithful this is a contradiction. Therefore again T(# ) cannot be the
limit of TD. That T reflects colimits now follows by duality. ||

Proposition 7.2, Let s/ be an abelian category and & an exact additive category. If
T: of - is an exact functor which reflects zero objects then T is faithful.

Proof. By 6.6, T'is additive and so it suffices to show thatif « # O then T(«) # 0.
Now if « # 0 then Im(a) # 0, and so T(Im(a)) # 0 by hypothesis. But by
exactness of T'we have T(Im(a)) = Im(7(«)), and consequently T(a) 3 0. ||
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8. Functors of Several Variables

Consider n+1 categories &, & y,..., &,, B, and let ' UJ be a partition
of the integers between 1 and n. A functor of r variables

T:d ) xAygx...x Ay—>B

covariant in the ith variable for i € ] and contravariant in the jth variable for
j €J is defined as follows. To each n-tuple of objects (4,, 4y, ..., 4,) with
d;esl; for 1 << n there is assigned an object T(4,, 4y,..., 4,) in &.
Furthermore, to each n-tuple of morphisms («;,a,,.. ., «,) where o, : 4;— A} is
in o/, for i € I and «; : A;— 4, is in & for j € J, there is assigned a morphism

T(ocl, 0gye ooy ocn) . T(Al,. .y An) - T(A;,. .oy A;)
in#. If y; = Bio; for i € I and y; = «,B; for j € J, then we require that
T(yiseeosyn) = T(Brse- s Ba) T(agse s ),

and if o; = 1, for 1 <7 < n, then we require that 7(«,,..., «,) be the identity
morphism on T(4,,..., 4,). If n =2 we call T a bifunctor, and if n =3 we
call T a trifunctor.

Let £ be an integer between 1 and n, and let 4; € &, for i # k. Then we have
the single variable functor

T(Al, Az,..., Ak—l’ ’Ak+l""’ An) :Mkﬁg

which gives the object 4 € &/, the value T(4,, 4,,..., 4_y, 4, 444, 4,)
and the morphism « in &7, the value T(4,,..., 4., «, 4¢y1,.. ., 4,), where we
have written 4; in place of 1, for i # k. Such a functor is called a partial
functor of one variable for T. Likewise we could define various partial
functors of several variables for 7" by fixing corresponding subsets of the
variables. We will say that T is mono, kernel preserving, limit preserving, etc.,
if all of its partial functors of one variable have the corresponding property.
Likewise, ifall n 4 1 categories are additive, we call T additive if all its partial
one variable functors are additive.

Let &/, and &, be any two categories. We form the product category
& | x A, as follows. The class of objects in o/ x &7, is the class of ordered
pairs (4,, 4,) with 4, € &/ and 4, € ;. The set of morphisms from (4,, 4,)
to (B, B,) is the product of sets [4,, B,],, x [4,, By],s,. Composition is
defined by therule (8, B;) (ay, ag) = (B1a1, Baxy). Then a covariant bifunctor
T:of, x o y—>P can be regarded as a functor of a single variable from the
product category to #. If T'is contravariant in the first variable, then T can be
considered as a covariant functor of a single variable from the product category
A¥ x o ,. Similarly, we can define the product category for any number of
categories, and then a functor of any number of variables and any variance
can be regarded as a functor of one variable from a suitable product category.
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However, it must be observed that the preservation properties of T as a
functor of several variables in general differ from the preservation properties
of T as a functor of a single variable. Always in speaking of a preservation
property of T we shall be referring to the preservation property of T as a
functor of several variables.

If o/ is any category, then the definition of category gives us a bifunctor

[,]1:  xA—>F

whose value on the pair (4,, 4,) is [4,, 45]. For a pair of morphisms
a;: Aj—~>A4, and a, : 4;— A; we have

(o1, @p] : [y, 4]~ [4], 45]

defined by [a), ] (%) = apxer;. Then it is immediately verified that [, ]
satisfies the rules for a bifunctor, contravariant in the first variable and co-
variant in the second. If &/ has a zero (resp. is additive) then [, ] can be
regarded as a bifunctor into &, (resp. %). The partial one variable functors
of [, ] are the functors H4 and H, described in §3. From 5.1 and 5.1* it
follows that [, ] is a limit preserving monofunctor.

9. Natural Transformations

Let S, T: o/ —>% be covariant functors. Suppose that for every object
A€ sl we have a morphism 7, :S5(4)— T(4) in # such that for every
morphism « : 4—> A’ in & the diagram

S(4) —— T(4)

S(a)l l’r(a)

S(A"Y —4— T(4")

is commutative. Then we call  a natural transformation from S to T and
we write 5 : $— T If 54 is an isomorphism for each 4 € %/ then 7 is called a
natural equivalence. In this case we have a natural equivalence =! : T—>$
defined by (" Ny=a " If n: 8T and p: T— U then we have a
composition py : $— U defined by (p7n) 4 = pgm4. For any functor T we have
the identity transformation 1 7: 7— T'such that (17), =1y, forall 4 e .
Ifp:S— Twhere S, T: &/ >% and U : #— ¥ is any functor, then we have
a natural transformation Uy : US—UT defined by (Ugy),= U(y,) for all
A es/. Similarly if V: 29— then yV: SV— TVis given by (nV)p =y,
forall D e 2.

More generally, if § and T are functors of several variables which have the
same variables, the same variance for each of the variables, and the same
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codomain, then a natural transformation from § to 7 is simply a natural
transformation of the single variable functors from the product category
which were associated with § and T in §8.

Let T:of | x &y X ... X ,—>% be an n-variable functor, where in order
to simplify the notation we assume that all variables are covariant. For fixed
objects A; € ;, 1 <1<k < n, denote the corresponding partial functor of T
by Ty 4,...4, Then morphisms o, : 4;— A4}, 1 <1<k, induce a natural trans-
formation

Nt * Ly dy = Tayay...ax (1)
and if'y; = B,«; then we have

. Mysysvre — NBBa. frTlosas.. one (2)
Conversely, suppose that to each k-tuple of objects (4, 4,,..., 4,) with 4; € &,
for 1 <7 < k we have a covariant functor

Tyt oty XA o X ... x A, >R

and to each k-tuple of morphisms (&, ay,..., o) with a; : 4,— 4} we have a
natural transformation (1) such that (2) is satisfied. Then defining

T(Ah AZ:' [ET) An) = TAIA,...A;‘(AI:+1: Ak+2’- vy An)
and
T(al’ %250y 0(") = Nayay.. .k TA,A....Ak(ak+l’ Xf4230 + +» ak)

= TA{A.’...A;,'(“I:-H’ O +25 « »5 Otn)”)a‘a,...ak

we obtain an n-variable functor 7.

Consider a natural transformation 7 : §— T, and suppose that for each
4 € &/ the morphism 754 : 5(4)— T(A4) is a monomorphism. Then we call
7 a pointwise monomorphism. A dual definition applies to pointwise
epimorphisms. If 5 is a pointwise monomorphism and if T is an additive
functor, then it is easy to see that § is also additive. Dually if » is a pointwise
epimorphism and S is additive, then T is additive.

Let S, T : & —% be covariant, and let 8 : S—> T be a natural equivalence.
If Dis a diagram in &/, then SD and T'D are isomorphic diagrams in B. Now
suppose that § is limit preserving, and let {L—D,} be a limit for D. Then
{S(L)—S8(D;)} is a limit for SD. Hence by 2.2 {S(L)—>S(D,)—T(D,)} is a
limit for TD. Therefore, letting T(L)—S(L) be 67! we see by 2.1 that
{T(L)—>8(L)y—8(D;)— T(D,)} is a limit for TD. But by naturality of 8 this
last family is just { T(L)— T°(D,)}. In other words, if T is naturally equivalent
to §'and S is limit preserving, then T'is also limit preserving. In a similar way
we can show that T has any of the preservation properties which S has. Since
the preservation properties functors of several variables are defined in terms
of the preservation properties of the partial one variable functors, it is clear
that these remarks apply to functors of any number of variables and any
variance.
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10. Equivalence of Categories

Let.s/ and % be any two categories. Write o/ ~ 4 if there is an equivalence
T: o/ —-%B. Then ~ is clearly a reflexive, transitive relation. The following
proposition tells us that ~ is also a symmetric relation.

Proposition 10.1. 4 functor T : o/ - is an equivalence if and only if there is a
Sunctor 8 : B —5f together with natural equivalences

g:lg = TS, Y 8T = 1.
If such is the case, then we can always choose s such that T = (¢ T')~' and S = (HS) 1.

Proof. Suppose first that we are given ¢ and . Then the relation B & T(S(B))
for all B € % shows that T is representative. Relative to a morphism 4— 4’
we have a commutative diagram

¥,
ST(4) ~ 4
J J (1)
sty W g

from which it follows that T is faithful. Then by symmetry § is also faithful.
A morphism B: T(4)— T(A’) induces a morphism «: A— A’ via (1), and
we have S(B) =S(T(«)). Since § is faithful it follows that 8 = T(e). This
shows that T is full, and consequently 7T is an equivalence.

Conversely, suppose that T is an equivalence. Then for B € # we can find
an object S(B) €&/ and an isomorphism ¢z:B=x TS(B). A morphism
B : B— B’ in # induces the morphism

opBog! : TS(B)—~> TS(B').

Since T is full and faithful there is a unique morphism S(8) : §(B)—>S(B’)
such that gz Bez' = T(S(B)), or in other words such that the diagram

Py
B & TS(B)
B Jrsos) 2)
Py
B’ & TS(B')

is commutative. Using the uniqueness of §'(8) and the functorial properties of
Titis easily checked that.Sis a functor. From (2) we then see that ¢ is a natural
equivalence. Now for 4 € &/ we have an isomorphism

Pry: T(A)—~ TST(A)
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and so again since T is full and faithful, there is a unique isomorphism
Yy 0 ST(A4)—>A such that

T($s) = 9Tay (3)

To show that ¢ is a natural equivalence we must show that relative to a
morphism 4->A’ the diagram (1) is commutative. Applying T to (1) and
using (3) we obtain a commutative diagram by naturality of ¢. Since T is
faithful it follows that (1) is commutative.

Finally, observe that the relation Ty = (¢ 7)~! is just (3). It remains to be
shown that S(ch </1§B) for all B e #. Since T is faithful it suffices to show
that TS(¢g) = T(Yils)). Using (3) we have T({i(s) = @15z The result
then follows by replacing B by @gin (2). ||

Proposition 10.2. Let T : o/ % be an equivalence. Then T is mono, epi, limit
preserving, and colimit preserving. Furthermore, s is complete, cocomplete, normal,
conormal, or exact if and only if & has the corresponding property. If either category is
additive then there is a unique additive structure on the other making T additive.

Proof. Let §: Z#—4f be the equivalence of 10.1. To show that T is limit
preserving, let {L— D;}be the limit of a diagram D in &/ If{T(L)— T(D,)}is
not a limit for 7D, then by 7.1 {§T(L) - ST(D;)} is not a limit for S7D. But
then as we saw at the end of the previous section {L— D} is not a limit for D
in view of the natural equivalence . This contradiction shows that T is
limit preserving. The other preservation properties of T follow similarly.
Suppose that # is complete. Then if D is a diagram in &/, we can find a
limit {X— T(D,)} for TD in 2. Since S is limit preserving this means that

{$(X)—>ST(D;)} is a limit for STD. Therefore by 2.2 {§ (X)—>ST(D,-)—lf>D,~}
is a limit for D. This shows that .o/ is complete. The proofs of the other asser-
tions are similar and are left to the reader. |
If we define the image of a functor 7': &/ % (or Im(T)) as the class
A)|4 € &} of objects together with the class { 7(«) |« is a morphism in &7}
of morphlsms it is not necessarily true that Im(7) is a subcategory of . The
difficulty arises from the fact that 7" may not be univalent on objects. If
ot Ay—>Aand oy : A'— Ay where T(A4) = T(A") but 4 # A’, then T(«,) and
T(ay) are in Im(T), but T(ay) T(«;) need not be in Im(7T). However, if T
is univalent with respect to objects, then Im(T) is a subcategory of %. The
following proposition says that in a sense we lose no generality by assuming
always that T is univalent on objects.

Proposition 10.3. Let T': o/ — % be any functor. Then there is a category B’ which
contains & as an equivalent subcategory, and a functor T’ : 5 —%B' such that T’ 1s
univalent on objects and is naturally equivalent to IT where I : B — B’ is the inclusion
Sfunctor.
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Proof. Define a category 4, as follows. The class of objects of #, is &/ x &.
Amorphismin %, from (4, B)to (4’, B) isatriple (4, 4, B), where 8: B— B’
is a morphism in #Z. Composition is defined by the rule

(AI: 4", /3’) (A: A’ B) = (A, A7, IB’B)

Fix an object 4, €.%7 and define I, : #—%, by I,(B) = (4,, B) for objects
and /,(B) = (4y, 4y, B) for morphisms. Then 7, is a full imbedding. Further-
more, /| is an equivalence since for any (4, B) € #, we have an isomorphism
(4, 4y, 1) : (4, B)— (Ay, B) = 1,(B). We define a functor T : &/ B, by
T\(A) = (A4, T(A)) for objects A and T(«) = (A4, 4", T(e)) for a morphism
a: A—>A". Thenforeach 4 € & wehaveanisomorphism 8, : T(A4)—>1,T(4)
in#,, given by 8, = (4, 4y, 114). The naturality of 8 is readily verified. Since
I is univalent on objects and morphisms we obtain a category #’ from %, by
replacing Im(/;) by #. Then composing 7'} with the “replacement” functor
#B— R we obtain T as required. |

The following proposition shows that if we replace # by & in 10.2, then we
can always take #' = . The reason is essentially that % has an “inexhaust-
able” supply of objects which are isomorphic to any given one.

Proposition 10.4. If T: o/ -9 is any group valued functor, then T is naturally
equivalent to a_functor T": of —% which is univalent with respect to objects.

Proof. For 4 € .9/, define T'(4) to be the group whose elements are ordered
pairs (4, x), where x runs through all elements of the group T'(4). Addition
in T7(A4) is defined by (4, x) + (4, y) = (4, x+ »). For a morphism o : 4— 4’
in &/ we define T"(«)(4, x) = (4', T(a)(x)). The natural equivalence
f: T— T, given by 8,(x) = (4, x), then gives us the result. J

11. Functor Categories

For any two categories .« and # let [/, #] denote the class of all covariant
functors from &7 to #. For S, T € [/, #] let [S, T] denote the class of natural
transformations from § to 7. With the law of composition of natural trans-
formations of functors given in §9, [.o7, #] comes very close to being a category.
The only requirement that is missing is that [$, 7] may not be a set. However
if we assume that .o is small, then the natural transformations from Sto T
may be regarded as a subclass of the cartesian product X [S(4), T(4)], and

dest

sincethe latterisaset so is [S, T']. In speaking of the functor category [/, #]
we shall always assume that .27 is small.

Corresponding to 7" € [.«7, #] we have the covariant functor T§ € [o/*, B*],
and corresponding to a natural transformation 7y :$— 7 we get a natural
transformation 7} : T'%¥—S¥, defined by the rule ¥4 =7, where 7, is
regarded as a morphism in #*. Clearly this gives us a contravariant isomor-
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phism from [&7, #] to [&/*, #*]. In other words [.o/*, #*] is isomorphic to
the dual category of [/, #].

In general, [.%7, #] inherits the properties of %, and a morphism  : §— T
in [%/, %) has the properties which are common to all the morphisms
N4 : S(4)—> T(4) in A. Thus 7 is an isomorphism if and only if it is pointwise
an isomorphism; in other words, if and only if 8, is an isomorphism in #
for every 4 € &Z. If 7 is a pointwise monomorphism, then 5 is a monomorphism
in [, #]. For otherwise we would have 5o = n for some ¢ # . Now
@# ¢ means that for some 4 € &, ¢4+ 4. But then since n 0, =144
this contradicts the fact that 7, is a monomorphism in #. The converse
need not be true, although it will be true if # is an exact category.
That is, if  is a monomorphism in [.%7, %], it need not be a pointwise mono-
morphism.

If & has a zero object 0, then the functor T : .o/ —% such that T(4) =0
forall 4 € o/ isazero object for [, #]. In this case T also will be denoted by 0.
If # is additive and ¢, ¢ : S— T are two natural transformations, then we can
define @ +¢ : S—>T by the relation (¢ + ), =64+, and in this way
[/, %) becomes an additive category.

Suppose that D is a diagram in [/, %] over a scheme X' = (I, M, d). Let
D(4) be the diagram in & over X defined for each 4 € &/ as follows. We take
D(A);=D,(A4) for iel and D(A4)(m)=D(m), for me M. Suppose that
{L(A)—D;(A)}icr is a limit for D(A) for every 4 € &/. We make L into a
functor, that is, an object in [&, %], as follows. If x : A—> A" and m € M is
such that d(m) = (i, j), then we have

L(4) - D,(A) - D(A') - D(4'y = L(A)— Dy(4) — D;(4) - D;(4")
= L(A4)— Dy(4) - D;(4").

The first equality comes from the fact that D(m) is a natural transformation,
and the second from the fact that {L(4) —D,(4)},c; is a compatible family.
Hence {L(4)— D;(A)—~>D,(A")} is a compatible family for D(A4’), and so
since L(A') isthelimitof D(4") we have a unique morphism L(«) : L(4) - L(4’)
such that

L(4)—>L(A"Y—>D,(A"y = L(4)—> D;(A)—~> D,(4') (1)

for all i € I. The functorial properties of L now follow from the uniqueness of
the morphism L(a), and Eq. (1) shows that for each vertex i the family
{L(A)— D;(4)} 4 isanatural transformation from L to D;. Then {L— D, },,
is a compatible family for D since it is so pointwise. One can then check using
arguments similar to the above that {L— D,},.; is actually the limit of D in
the category [, #].

It follows that if Z is 2-complete then the same is true of [/, #]. In parti-
cular, if # has products, then the product X T of a family in [, %] is such
that (X T}) (4) = X T; (4), and the kth projection (natural transformation)
X T,— T, is given pointwise by the projection X T;(4)— T;(4) from the
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productin &. If a : A—> A4’ then (X T;)(«) = X Ty(«). If Z has kernels, then
the kernel K—§ of a transformation S— T is such that K(4)—S(4) is the
kernel of §(4)— T(4) forall 4 € o7.

Suppose now that # is an exact category. Let ¢ : 7'-—> T be a monomor-
phism in [/, #]. Then ¢ has kernel 0. Hence ¢4 has kernel 0 in & for every
A € o, and so since # is exact this implies that ¢, is a monomorphism. Let
T— T" be the cokernel of ¢ in [&7, %], so that by the above T(4)— T"(A) is
the cokernel of ¢, for all A. Then by normality for 4, ¢, is the kernel of
T(4)— T"(A), and so ¢ is the kernel of 7— T, Therefore [/, %] is normal
and by duality it is conormal. If §— T is any natural transformation, we let
I—T be the kernel of its cokernel. Then I(4)— T(A4) is the image of
S$(4)— T(A4), and so we get an epimorphism $(4)—1(4) for all 4 e /.
That this gives us a natural transformation S— 1 is easily verified from the
fact that /— T is a pointwise monomorphism. Therefore we have shown that
every morphism in [/, #] can be written as an epimorphism followed by a
monomorphism, and so [%7, #] is an exact category. Hence by the preceding
paragraph we see that if # is abelian then so is [«Z, #].

Suppose that & is exact and locally small. Given an object T € [/, #],
for each 4 € &/ let €, be a representative set of subobjects of T(A4). Then a
representative set of subobjects for T can be found as a subset of the cartesian

product X € ,. Consequently we see that [.2/, #] is also locally small.
Aest
Let ./ and 4 be any categories with .o/ small. We have a bifunctor

E: [, B x oA > defined by E(T, A) = T(4) and
E(n, ) = ng8(a) = T(x)n4

for y:S§—T and «: A—A'. For fixed T the partial one variable functor
associated with Eis just T For fixed 4 the partial one variable functor is called
the evaluation functor at 4 and isdenoted by £ .. Hence E,(T') = T(A4),and
E (n) = 4 If # is an exact category, then E is an exact functor. If # is an
additive category, then we have

Efo+¢) = (9 +)a = 9a+¢u = E (o) + E4(4h)

and so E, is an additive functor. Finally, if # is 2-complete (cocomplete) then
E, preserves limits (colimits) of diagrams over X. Hence if & is complete
(cocomplete) then E is limit (colimit) preserving.

12. Diagrams as Functors

In §l it was pointed out that the diagrams over a scheme 2'in a category
o/ themselves form a category. More generally, if 2, is the scheme obtained
from 2 by adding identity arrows at each vertex and ~ is a commutativity
relation, then the diagrams in ./ over & which are compatible with ~ form a
category [X]~, o/]. We define a category 2/~ as follows. The objects in
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2|~ are the vertices of 2. The morphisms from 7 to j are the equivalence
classes modulo ~ of composite arrows in X from ¢ toj. If  and ¢ are composite
arrows such that the origin of ¢ is the extremity of b, then we define the com-
position of the two morphisms [] and [¢] by [¢]{#] = [¢b]. Then rule (ii) for
commutativity relations insures that composition is independent of representa-
tives, and rule (iii) shows that [1;] behaves as an identity for the object 1. It is
then clear that the functors from X/~ to a category &/ are in one to one
correspondence with the diagrams in &/ over 2 satisfying ~, and the natural
transformations between two functors from X/~ to .2/ are in one to one corre-
spondence between the morphisms of the corresponding diagrams. In other
words the category of diagrams [/~ , &/] is isomorphic to the category of
covariant functors from 2/~ to o/.

Conversely, if o7 is any small category, then & is isomorphic to a category
of the type 2~ for some diagram scheme 2 and some commutativity relation
~ (exercise 13). Hence the study of functor categories is entirely equivalent
to the study of categories of diagrams.

If ~ is the largest commutativity relation for 2, then X/~ has the property
that from any object to any other object there is at most one morphism. In
other words a commutative diagram can be interpreted as a functor from an
ordered set.

It follows from §11 that if & is A-complete for some scheme /, then
[Z/~, %] is A-complete. The limit of a diagram in [Z/~, %] over A is
obtained by taking pointwise the limits in & for each vertex in X, and then
using induced morphisms to turn this into a diagram over 2. Since this process
has nothing to do with ~, we see that if ~ is a subrelation of a commutativity
relation ==, then [X/ ==, %] is a A-complete subcategory of [Z[~, %]. In
terms of functor categories this principle is as follows: If /" is a quotient
category of & and if & is A-complete, then [/", #] is a A-complete sub-
category of [&/, #].

Suppose that # is Z-complete. If D is a diagram in & over Z, denote the
limit of D by L(D). Then a morphism f : D— D’ of diagrams induces a unique
morphism L(f) : L(D)— L(D’) of the limits, and in this way L becomes a
functor from the category [X, #] to the category #. We define a functor
I: #B— X2, #] by taking I(B) as the diagram which has B at every vertex with
identity morphisms throughout. If 8: B— B’ then I(B) is taken to be 8 at
every vertex. It is clear from the definition of limit that we have a one to
one correspondence

Mg,0 * [1(B); D)5, [B, L(D)]g (1)

for every B € # and D € [2, #]. Furthermore, it is easy to check that 7 is
natural in B and D. More generally suppose that we have covariant functors
T:o/ % and S : #— o/ where .o and # are arbitrary categories, and

N4+ [S(B), A]—>[B, T(4)] (2)
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is a natural equivalence of set-valued bifunctors. Then we say that 7T is an
adjoint for S, or that $is a coadjoint for 7.

Proposition 12.1. If T: .o/ »% has a coadjoint S : B —<L, then T is a limit
preserving mongfunctor.

Proof. Let & = {X— D;} be a limit for a diagram D in /. Then by 5.1,
HSB)(F) is a limit for HS®)D in ¥ for all B € #. In view of the natural equi-
valence (2) this says that for each B € & the family H5(T(F)) is a limit for
the diagram HBTD in &. Hence, again by 5.1 this shows that T(Z#) is a limit
for TD in %, and so T is limit preserving. In the same way it can be shown
that 7 is a monofunctor. |

Corollary 12.2, If # is Z-complete and L : [ 2, B — P is the functor which assigns
to a diagram its limit then L is a limit preserving mongfunctor. ||

Corollary 12.3. If {u;} is a family of monomorphisms in a category with products, then
X u; is a monomorphism. If u; is the kernel of f; for each i, then X u; is the kernel of
i i

X1

Corollary 12.4, Let .o/ be a small category and let B be a complete category. For some
class @ of diagrams in o and some class M of monomorphisms in S, let £ denote the
JSull subcategory of [oZ, A whose objects are those functors T which preserve limits of
diagrams in @ and which preserve monomorphisms in M. Then L is a complete

subcategory of [, #]. |

13. Categories of Additive Functors; Modules

If o and & are additive categories with &/ small we let (%7, %) denote the
full subcategory of [, #] consisting of all additive functors from &7 to &.
If# is Z-complete (Z-cocomplete) then it is easily seen that the limit (colimit)
of a diagram D in [/, #] over X'is also in (&, #). That is, (&7, &) is a Z-
complete (Z-cocomplete) subcategory of [/, #]. Furthermore if & is exact,
then (&7, #) is an exact subcategory of [/, #]. The discussion of the preserva-
tion properties of the evaluation functors £, given in §11 applies also to the
restriction of E, to (&7, #) (which we denote also by E,).

Let o7 be any small category and let T:#—% be a covariant functor,
Then we have an induced functor Ty :([of, #]— [, €] defined by
To(S) = TS for S € [, #] and Ty(n) = Ty for a morphism 7 in [Z, #]. If
# and ¥ are additive and T is an additive functor, then T} is additive. If]
furthermore, .7 is additive and § is additive, then 74(S) is additive. In other
words the restriction of T, to (&, #) gives us a functor from (&, %) to
(&7, ¥) (also denoted by Ty). A contravariant functor T : #— % induces a
covariant functor T : [, #]—>[A*, €] defined by T,(S) = TS,.

On the other hand a covariant functor T :.&/ —.2/' of small categories
induces a covariant functor T°: [, #|— [, #] for any category &,
defined by T9(S) = ST and T%y) =7 T. If # is additive then T?is additive,



68 II. DIAGRAMS AND FUNCTORS

and if furthermore &/ and ¢/’ are additive and 7 is an additive functor, then
79 induces a functor from (7', &) to (f, B).

Let R be a ring; that is, an additive category with a single object X. If #
is any additive category, we shall call (R, &) the category of left R-objects
in 7. A left R-object in & is therefore an object B € # together with a mor-
phism of rings p : R—[B, B]. Formally this is the functor § : R— % such that
S(X) =Band S(r) = p(r) for r a morphism in R. Informally we shall say that
B has a left R-object structure, or simply that B is a left R-object, but in doing
so we will always have a particular ring morphism p in mind. The category
(R*, #) is called the category of right R-objects in #. We shall frequently
denote the categories (R, #) and (R*, #) by ®% and #R, respectively. A
morphism of left R-objects (B, p)— (B’, p’) is a morphism B8: B—~B' in %
such that for every r € R the diagram

B — 5

p(r)l JP'(?)

B —— B

is commutative. The group of left R-object morphisms from B to B’ will be
denoted by R[B, B’]. If B and B’ are right R-objects then the right R-object
morphisms from B to B’ are denoted by [B, B'|R.

If Z is the ring of integers, then 24 is isomorphic to #Z. This is a result of the
fact that for B € 4 there is one and only one morphism of rings Z— B, B].

An additive covariant functor T: #—% induces the additive functor
T, : R# —>®¢ discussed above. Hence if B is an R-object in B, then T(B)
becomes an R-object in €. If T'is contravariant, then Ty : RZ — @R, Similarly
a morphism of rings ¢:R—>8 induces the “change of rings” functor
@ : SH>RAB.

Let R and 8 be rings, and let # be any additive category. The category
S(RZ) is called the category of left S, left R-biobjects in 4. From the iso-
morphism of categories (8, (R, #)) ~ (R, (8, #)) (exercise 4) we see that a
left S, left R-biobject may be regarded also as a left R, left S-biobject. A right
S, left R-biobject is an object in the category (RZ)S aR(#5), with a similar
definition of right 8, right R-biobjects. The reader may formulate a more
general definition for multiobjects over any number of rings.

If T:.o/ x #—% is an additive covariant bifunctor and (4, p) is a left
R-object in o7, then T(4, B) takes on a left R-object structure for any B € 4.
Furthermore, if «: 4— A’ is morphism of R-objects and 8 : B— B’ is any
morphism in Z, then for 7 € R we have

T(p'(r), B) T(a, B) =

(I
53
R O
© I
R
TR
2w
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In other words T'(«, §) is a morphism of R-objects and consequently 7 induces
a covariant functor from R/ x & to R€. Likewise il 4 is a left R-object
and B is a left S-object, then 7(4, B) is a left R, left S-biobject, and so T
induces a bifunctor from ReZ x 5% to RS€. If T is contravariant in &/ and
covariant in 4, then the induced bifunctor goes from R/ x 5% to S¢®. Again
these are just a few examples of a general principle.

The category R% (resp. ¥®) is called the category of left (resp. right)
R-modules. Hence a left R-module is an ordered pair (G, p) where G is an
abelian group and p:R—|[G, G] is a morphism of rings. If we write
p(r)(x) = rxfor r € R and x € G, then we see that a left R-module satisfies the
following rules:

(1) Ix=x forall xeG.

(2) r{x; 4+ x9) =12y +1%5.

(8) (r) +r9)x =rx+r9x.

(4) 11(rex) = (ni7g)x.
Conversely, given an abelian group G and an operation R x G— G satisfying
the rules (1) to (4), then this defines a left R-module. For a right R-module
the first three rules are the same, but the fourth rule must be replaced by
r1(rgx) = (ror|)x. For this reason we write xr instead of rx for right R-modules,
in which case rule (4) becomes (xr,)r; = x(r,r,). Notice that a morphism of left
R-modules is a morphism a : 4— B of abelian groups such that a(rx) = ra(x)
for all r € R and x € A. If 8 is another ring, then the objects of the category
SR are called left S, left R-bimodules. An abelian group 4 is a bimodule
if it is at once an R-module and an $-module, and if the operations of R
and S on 4 commute; that is, if r(sx) = s(rx) forallr e R,s € 8, and x € G.

Since 9 is a complete and cocomplete abelian category, the same is true
of the functor category R%. Furthermore, from general properties of functor
categories we know that a sequence in R% is exact, or that a family of mor-
phisms is a limit for a diagram in®#, ifand only if the corresponding statement
is true after we apply the evaluation functor (forgetful functor) fromR% to .

14. Projectives, Injectives

An object P in a category & is projective if the functor H?: &/ — & is
an epifunctor. Equivalently, P is projective if and only if for every diagram

P

A — 4"

with 4— A" an epimorphism there is a morphism P— 4 making the diagram
commutative. If &7 is an exact additive category we know by 5.1 that the
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group valued functor H? is kernel preserving for every object P. Hence in this
case P is projective if and only if H? is an exact functor.

Proposition 14.1, If P is a retract of P’ and P’ is projective, then P is projective

Proof. Let P—>P'— P = 1. If 4— A" is an epimorphism and P— A" is any
morphism, then using projectivity of P’ we have

P>4"=P>P—+>P>A"=P->P —>A4-54"
for some morphism P’'— A. This establishes projectivity of P. |

We say that a category &/ has projectives if for each 4 € &/ there is an
epimorphism P— 4 with P projective.

Proposition. 14.2. If Pis projective in &, then every epimorphism A — P is a retrac-
tion. Conversely if P has the property that every epimorphism A — P is a retraction, and if
& either has projectives or is abelian, then P is projective.

Proof. If P is projective, then given an epimorphism 4 — P there is a morphism
P— A4 such that P-> A—> P is lp. In other words P— 4 is a retraction.

Conversely, suppose that every epimorphism 4— P is a retraction. If .o/ has
projectives then we may take A4 projective and then it follows from 14.1 that P
is projective. On the other hand, if & is abelian, then, given an epimorphism
S+ A— A" and a morphism u : P— A", we can form the pullback diagram

X_g_,P

| )

A —— 4"

where we know by I, 20.2, that g is an epimorphism. Then by assumption we
can find A : P— X such that gh = 1,. Then we have

Joh = ugh = u.
This proves that P is projective. |}
Proposition 14.3. If P= @ P, and if each F; is projective, then P is projective.
Conversely, in a category with ze;o, if P is projective then each P is projective.

Proof. Suppose that P;is projective for each s and let A — A" be an epimorphism.
A morphism P— A" is determined by a family of morphisms P,—> 4" for each
of which we can write P;— 4" = P;—> A— A”". Then the morphisms P,— A give
us a morphism P— A4 with the right property.

The converse follows from 14.1 since in a category with zero, injections into
coproducts are coretractions. ||
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An object 15 called injective if it is projective in the dual category. Hence
@ is injective if and only if for every diagram

A —— 4

Q

with A4’ — 4 a monomorphism there is a morphism 4— @ making the diagram
commutative. If every object A € .27 admits a monomorphism 4—> Q then we
say that o/ has injectives. Retracts and products of injectives are injective,
and if a product is injective in a category with zero, then each component is
injective.
In an exact category & we say that an infinite sequence
> PP —»...>P —>P;—>A4->0 (1)

is a projective resolution for 4 if it is exact and if P is projective for each
i20.

Proposition 14.4. The exact category o has projective resolutions for each of its
objects if and only if it has projectives.

Proof. If A € &7 has a projective resolution (1), then in particular Py— 4 must
be an epimorphism. Hence if &/ has projective resolutions, then .&/ has
projectives.

Conversely, suppose that .o/ has projectives. Given 4 we can find an epi-
morphism Py—A with P, projective. Let K,— P, be the kernel. Define
inductively P;— K, as an epimorphism with P; projective, and K;,;— P; as its
kernel. Then letting P;—P;_, be the composition P,—K;— P,_; we get an
exact sequence (1). ||

The sequence (1) becomes an injective resolution for A* in the dual
category. An exact category has injective resolutions if and only if it has
injectives.

15. Generators

A family of objects {U}},c; Is called a family of generators for a category
& if for every pair of distinct morphisms «, 8 : A— B there is a morphism
u : U;— 4 for some i such that au # Su. In an additive category the above is a
family of generators if and only if for each nonzero morphism « in .o there is a
morphism u : U;— 4 such that au s 0.

Proposition 15.1. A balanced category with finite intersections and a family of
generators is locally small.
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Proof. We show that a subobject of 4 is completely characterized by the
morphisms U;— 4 which factor through it. That is, if 4, and 4, are non-
isomorphic subobjects of 4 then there is a morphism U;— 4 for some i which
factors through one of 4, or 4, but not the other. Our result will then follow
from the fact that [U], 4] is a set for all i.

Suppose that 4; and 4, are nonisomorphic subobjects of 4. Now 4, N 4,
is a subobject of both of them. If 4, N 4,— A4, is an epimorphism, then since
& is balanced, 4, N 4, and 4, are isomorphicsubobjects. Hence 4, N 4, 4,
cannot also be an epimorphism, and so there are distinct morphisms
a, B+ A;—> Bsuch that

a 8
Alf'\ Az—)Al—>B = A,f\ A2—>A1—>B.
Let u: U;— A, be such that au # Bu. Then u cannot be factored through
AN A,, and so U;— 4, — 4 cannot be factored through 4,. ||

An object Uin &7 is called a generator for & if {U} is a family of generators
for &/. Equivalently U is a generator for & if and only if the set valued functor
HY is an imbedding functor. If U =@ U, and if [U;, 4] is not empty for all

i€l
t € Iand A € &, then Uis a generator for & if and only if {U},¢is a family of
generators for &/. An object C is called a cogenerator for & if and only if

it is a generator for &/*.

Proposition 15.2. If & has coproducts, then U is a generator for &f if and only if
Sor each A € o there is an epimorphism y : TU — A for some set 1. Furthermore, in this
case we can take I =[U, A] with y the morphism whose uth coordinate is u for all
u € [U, 4].

Proof. Suppose that U is a generator. Taking I = [U, 4] and y as described
above, it is immediate that y is an epimorphism. Conversely, suppose that
1U— 4 is an epimorphism and let «, 8 : A— B be distinct morphisms. Then
for some injection into the coproduct we must have

a [}
U>U»A—->B +# U->U->A4A—>B.
This shows that U is a generator. ||

We shall call an object finitely generated with respect to a family of
generators {U};e, if it is a quotient object of a finite coproduct of the form

n@ U,, where i € I'for 1 < k < n. We shall call an object free with respect to
i=1

the above family if it is of the form @ Uj, where i, € I for all £ € K (K not
keK

necessarily finite).

Of particular interest are generators which are also projective. If in a cate-
gory with projectives we can find a generator, then we can also find a projective
generator. For if P — U is an epimorphism and U is a generator, then clearly
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Pis also a generator. On the other hand if &/ is a category with coproducts and
a projective generator, then we see from 14.3 and 15.2 that o has projectives.

Proposition 15.3. If &/ is an abelian category and U is a projective object such that
[U, A] #0 for all A € o with A #0, then U is a generator for .

Proof. Since U is projective, HY is an exact, group-valued functor. By hypo-
thesis HY preserves nonzero objects, hence by 7.2 HY is an imbedding.
Therefore U is a generator. ||

Let R be any ring. Using ring multiplication, R can be considered as a left
R-module over itself. (Actually R is a left R, right R-bimodule.) If 4 is a left
R-module, then the left R-module morphisms from R to 4 are in one to one
correspondence with the elements of 4. Corresponding to @ € 4 we have the
morphism ¢, : R—>A4 defined by ¢,(r) =ra for r e R (exercise 11). Hence,
given a diagram of R-module morphisms

R

K

A a 3 AII
where o is an epimorphism, let a € 4 be such that a(a) = . Then ¢, : R— A4
is such that ag, = ¢,. This shows that R is a projective object in ®%. Further-
more, if 4 is a nonzero R-module, say 0+# a € 4, then 03# ¢, € R[R, 4].
Therefore by 15.3, R is a projective generator for *%. In particular *R% has
projective resolutions.

It is a more difficult job to show that *# has an injective cogenerator. We
begin by showing that & has an injective cogenerator (that is, that the state-
ment is true when R =Z). An abelian group D is called divisible if for any
d € D and any nonzero integer n there is an element x € D such that nx = d.

Lemma 15.4. A divisible abelian group is an injective object in G.

Proof. Let D be a divisible group and consider a diagram of abelian groups

4 —2 5 4

fl

D
where u is a monomorphism. We may assume that « is the inclusion of a subset
of 4. We wish to extend f to 4. Consider the set of pairs (B, g) such that Bisa

subgroup of 4, A’ < B, and g : B— D extends f. Define (B, g,) < (By, gq) if
B, © B, and g, extends g;. Then this set is clearly inductive, hence by Zorn’s
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Lemma it has a maximal element (B, g,). Suppose By # 4, and let a €
4 — Bg. Then the subgroup
B = {b+nalbeBy,nel}

properly contains By. If na ¢ By for all nonzero integers 7, then g, can be
extended to g’ : B’— D by defining g'(b + na) = go(b). Otherwise let m be the
least positive integer such that ma € By, and let d = gy(ma). Define g’ : B'—D
by the rule g'(b + na) = go(b) + nx where x € D is such that mx =d. Then
again g’ extends g,. Hence in any case the maximality of (B, g,) is contra-
dicted, and so By = A. This shows that D is injective. |]

The converse of 15.4 is also true {exercise 17).

The additive group Q of rational numbers is clearly divisible, and since any
quotient group of a divisible group is again divisible, it follows that Q/Z is
divisible, hence injective. Also for any nonzero group 4 we have[4, Q/Z],+# 0.
To see this, let a be a nonzero element in 4, and let 4’ = {na|n € Z}. We show
that we can find a nonzero morphism f: A'—Q /Z. This is trivial if a is not a
torsion element (that is, if na # 0 for all n € Z). Otherwise we let m be the first
positive integer such that ma =0 and we define f(na) as the class of n/m in
Q/Z. Then we can extend f to 4 by injectivity of Q /Z. Hence by 15.3%, Q/Z
is an injective cogenerator for .

It is now easy to show that ®% has an injective cogenerator for any ring R.
One establishes first the natural equivalence of group valued functors of the
left R-module 4,

04+ M4, [R, Glg]>[F(4), Glg. (1)

Here G is any fixed abelian group, Fis the forgetful functor from left R-modules
to groups, and [R, G]g is considered as a left R-module by means of the opera-
tion of R on the right of itself. Explicitly we define ¢ 4(e)(a) = «(a) (1) where
o : A—[R, G]y is a left R-module morphism and e € A. The inverse i of o is
given by ,4(B)(a)(r) = B(ra) where B: F(A)—~G, a € 4, and r € R. In parti-
cular, if we take G = Q/Z, then the right-hand side of (1) is an exact functor
of A which takes nonzero objects into nonzero objects. Therefore the same is
true of the left-hand side. This shows that [R, Q /Z] is an injective cogenerator
for RZ. Similarly, if we regard [R, Q/Z], as a right R-module by means of
left operations of R on itself, we obtain an injective cogenerator for @R, In the
following chapter we shall extend this result to certain classes of cocomplete
abelian categories which have a generator. A proof that *% has injectives was
first given by Baer [1].

16. Small Objects

We shall call an object 4 € &7 a small object if whenever we have a mor-
phism 4—@ 4, from 4 into a coproduct, there is a factorization
i€l

A— DA D 4,

ieJ iel
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for some finite set J < I. In the category ¥® the right R-module R is easily
seen to be small.

Lemma 16.1. In an additive category a morphism a : A— P A; factors through a
i€l
finite coproduct of the form @ A——>@DA; if and only if o« = 3, w,picx, where u; and
i€l i€l ieJ
p; are the ith injection and projection, respectively, for the coproduct @ A;.
i€l
Proof. Denote by i; and p;, respectively, the ith injection and projection for the
finite coproduct @ 4;. Then the morphism u;; is ¥ %f;. Now if a factors
ieJ iel
through the finite coproduct we have
a = X upd. (1)
ieJ
Composing both sides of (1) with g, for any £ € J we see pyoc =f,6. Hence (1)
can be rewritten « = Y y;p,x. Conversely if this last equation holds, then we
i€l
can define & = 3} #,p,« and we have
iet
up s = X tyhy 2 dipo = D uipo = e |
keJ ieJ i€J
Proposition 16.2. Let o be an additive category with coproducts. Then an object
A € o is small if and only if the group valued functor H# is coproduct preserving.
Proof. Consider a coproduct ) 4; in & with injections % and projections ;.
i€l

The family of morphisms {H4(x;)},c; gives rise to a morphism of groups

D HA(4) —~ HY(D 4). (2)

el iel
To say that H# is coproduct preserving is equivalent to saying that (2) is an
isomorphism for every coproduct in &/. Now a member of the left side of (2)
can be considered as a family «; : A— 4; such that «; =0 for all but a finite
number of 7 € /. Under (2) the element o is carried into Y} weq;. If « # 0, then

el

o # 0 for some £, and so we have
b ey = o # 0.
iel
Therefore 3 wo; # 0, and so this shows that under any circumstances (2) is a
i€l
monomorphism. Now suppose that (2) is an epimorphism, and consider a
morphism «: 4->@ 4;. Then we can write & = ¥ y;; for some family o,
icl iel
and composing both sides with p, we have p,oa = &, for all £ € l. Hence
o= 3 upe and so by 16.1, « factors through a finite coproduct. Hence A4 is
iel
small. Conversely, suppose that 4 is small and consider a morphism « in the
right side of (2). Then writing o; = p;«, we have « = ¥ y;o; by 16.1. This shows
i€l
that (2) is an epimorphism, hence an isomorphism. |
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Exercises

1. Examine the preservation properties of the various forgetful functors that
exist among the categories &, 7, &4, J , and show that they are all repre-
sentative.

2. The forgetful (evaluation) functor from ®% to ¥ is representative if and
only if there exists a morphism of rings ¢ : R—Z.,

3. If T': #— % is an equivalence, then for any small category & the functor
Ty: [, B[ —F]is also an equivalence. Likewise if T : &/’ is an
cquivalence of small categories, then for any category # the functor
T°: (', B[, #] is an equivalence.

4. If o and & are small categories and € is arbitrary, then we have isomor-
phisms of categories

(A, [#,€]] = [ x B, €] ~ (%, [, €]].

If o/, #, and € are additive, then (&, (%, ¥)) and (&, (&, €)) are iso-
morphic to the category of covariant additive bifunctors from &/ x % to €.
5. Let &/’ be a full subcategory of & and suppose that 0 € .9/’ where O is a
zero object for &7. Let « : A— B be a morphism in &/’ and let u : K— 4 be the
kernel of « in 7. If K € &7’ then u is also the kernel of « in &/’. Hence, if &/
is an exact category and if &/’ contains representatives for kernels and co-
kernels in & of all its morphisms, then &/’ is an exact subcategory of &7. If,
further, &/ is an abelian category and .2/’ contains representatives for all
finite products in &7 of its objects, then &7’ is an abelian subcategory of &7

6. Consider T:/->%, and for each 4 €/ let S, be a subset (possibly
empty) of T(A4). The subfunctor of T generated by S is defined as the
smallest subfunctor M of T such that §, © M (4) for all 4 € &/ (that is, the
intersection of all such subfunctors). Show that M (4) is the subgroup of
T(A) consisting of all finite sums of the form ¥, T(«;)(x;) where o;: 4; >4

and x; € S,,.
If Tis an additive functor, then the subfunctor of T generated by a single
element xy € T(4,) is given by

M(A4) = {T(a)(xq) ] : Ag— A}.

If S is a subset of a left R-module 4, then (§) is defined as the smallest
submodule of 4 containing each member of S. Show that (§) is the set of all
finite sums of the form ] r;5; where r; € R, 5; € 8. Interpret this as a special case

i

of the above.
Show that 1, € H4(4) generates all of H4.

7. Let T: 9/ x #—% be a limit preserving bifunctor, covariant in both
variables. Let D be a diagram in ./ over a scheme 2’ with limit {a;: L—D;};c;
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and let E be a diagram in & over a scheme A with limit {§;: M— E}.c ;.
Show that

{T(%lgj) : T(L, M)~ T(DbEi)}(i,j)eIx]
is the limit of the diagram T(D, E) over X x /. In particular, if X 4;is a

iel
product in .o with projections p; and X B; is a product in & with projections
jed
9 then 77( XA,-, X B)isa product in € with projections T(p;, qj).
el jed
Generalize this result to n-variable functors of arbitrary variance.

8. Ifo/ is an additive category with products and & is any category with zero,
then T: ./ -4 is limit preserving if and only if it preserves kernels and
products, (Cf. 6.3. Normality for &/ was assumed in 6.3 to assure that
4 : P—PM is the kernel of some morphism. However, if & is additive, then
one can construct a morphism PM— PM whose kernel is 4.)
9, If T is an additive functor between exact additive categories such that T
reflects either limits or exact sequences, then T is faithful.
10. Let T: ./ x % —% be an additive covariant bifunctor where &7, Z, and
% are abelian categories. Then T'is kernel preserving as a bifunctor if and only
if for every pair of exact sequences

Y Ry BT

B, Bs
0—>B B B,

the sequence
0—> T(4', B) > T(A, B)—> T(4", B) x T(4, B")

is exact, where the first morphism is 7T(«;, 8;) and the second morphism has
coordinates T(ay, B) and T(4, B,).

11. Poincaré duality for discrete and compact abelian groups says that the
dual of @ is equivalent to the category of compact (Hausdorff) abelian groups
with continuous group morphisms as morphisms. Show that the dual of ®% is
equivalent to the category of compact abelian groups on which R acts con-
tinuously on the right, with continuous right R-module morphisms as
morphisms.

12. Let R be any ring. Then the ring of endomorphisms of the right (left)
R-module R is ring isomorphic to R (R*).

If Ais any left R-module, then considering R as a left R, right R-bimodule,
the group R[R, 4] has a left R-module structure. Show that ¢, : A—>R[R, 4]
defined by ¢4(a)(r) = ra gives us a natural equivalence of functors of the left
R-module 4.

13. Let .o/ be an additive category and let 4 be a fixed object in 7. Suppose
that for each B € &/ the group [4, B] has a left R-object structure, and that
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for each morphism B— B’ in & the induced morphism [4, B]—[4, B'] is a
morphism of R-modules. Show that there is a unique right R-object structure
on A which induces the given left R-object structure on [4, B] for all B € &/

14. If</ is any small category, find a diagram scheme X'and a commutativity
relation ~ for 2 such that & is isomorphic to X/~ .

15. Lets be any category and let Add(&/) be as in I, exercise 11. If # is any
additive category establish an isomorphism of categories

[, B] ~ (Add(s), B).

16. Generalize the notion of commutativity for diagrams in an additive
category as follows. Let X be a diagram scheme, and let § be a set of formal
linear combinations of the form Y n¢; where I is finite, the ns are integers,
iel
and the ¢’s are composite arrows in 2 with the same origin and the same
extremity for all i € I, Let & be an additive category and let (Z/S, %) be the
full subcategory of [ X, #] consisting of all diagrams D satisfying ¥n.D(c;) = 0
iel
for I ne; € S, where D(1;) is understood to be 1. Define an additive category
iel
/S so that the above diagram category (X/S, %)) is actually the category of
additive functors from Z/S to & (use exercise 15).
What are the objects and morphisms in 2/$ corresponding to the category
of anticommutative diagrams in #; that is, diagrams of the form

A B
j lp
c —28

such that Bo + 6y =0?

—_— D
If &7 is any small additive category, interpret (&, %) as a category of
diagrams satisfying a generalized commutativity relation.

a

—_—

17. If R is a left Noetherian ring, then the full subcategory of R¥ consisting
of all finitely generated R-modules is an abelian subcategory of R&. In parti-
cular thisis true if R = Z. Hence if we let @ be a full subcategory of 4 consisting
of one group from every class of isomorphic finitely generated groups, then @
is a small abelian subcategory of @. Furthermore, 4 has projective resolutions
(but not injective resolutions).

18. Let R be an integral domain. An R-module 4 is called divisible if for
every nonzero element r € R and every a € 4 there is an element x € 4 such
that rx = a. Then an injective R-module is divisible. Hence an abelian group
is injective if and only if it is divisible, and consequently a quotient of an
injective group is injective.
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19. If Uis a small generator in an exact category and if 4 is finitely generated,
then 4 is small. In particular, any finitely generated R-module is small.

If P is a small projective in a category with a generator, then P is finitely
generated. Hence a projective R-module is small if and only if it is finitely
generated.

20. In the category of sets, &, every set is projective and every nonempty set
is injective. Any one element set is a generator and any two-element set is a
cogenerator. A set is small ifand only if it has only a finite number of elements.

In the category of topological spaces 7 a space is projective if and only if
it has the discrete topology and is injective if and only if it isnonempty and has
the indiscrete topology. Any one-point space is a generator and any two-point
space with the indiscrete topology is a cogenerator. A space is small if and only
if it is finite.

Examine also the categories with base point & and 7 .
21. Let R be a commutative ring, and let /g be the category of algebras
over R (so that in particular .o/ is the category of rings). The polynomial
algebra in one variable R[X] is a generator for &/g. A morphism in &g is a
monomorphism ifand only if it is univalent as a function. &g has products and
coproducts. (For the coproduct of a family of algebras 4;, consider an appro-
priate quotient algebra of the polynomial algebra over R with variables the

disjoint union of sets U A; where the variables do not commute). Also .27y has
i

pullbacks and pushouts, and hence is complete and cocomplete. The trivial
algebra consisting of one element is a null object for &/, whereas R considered
as an algebra over itself is a conull object. Hence &/ does not have a zero
object. Furthermore, a morphism in /g may be an epimorphism without
being onto as a function. (Let R = Z, and consider the inclusion Z < Q where
Q is the rationals.)
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CCHAPTER III]

Complete Categories

Introduction

We now study categories satisfying the Grothendieck axiom A. B. 5 [20]
(herein called a C5 category). In §1 we establish a few equivalent formulations
of this axiom. A number of the results here were first stated in [20]. In §2 we
generalize the Eckmann-Schopf theory of injective envelopes [8] to abelian
categories satisfying the axiom C;. Section 3 is devoted to showing the existence
of injective resolutions for C; categories having a generator. This was first
proved in [20] using a transfinite induction method. The proof given here
utilizes the fact that the result is already known for R-modules (11, §15).

1. C, Categories

A category & with coproducts is called a C, category if for every family of
monomorphisms {y; : 4B} the morphism @ u: D 4> DB; is a
monomorphism. &/ is called a C, category if it has products, coproducts, and
a zero, and if the morphism § : @ 4;— X 4; is a monomorphism for any
family of objects {4;} in &.

Proposition 1.1. 4 C, category is C,.
Proof. Relative to a family of monomorphisms {;: A; —> B;} we have a com-
mutative diagram

@4 —> @ B;

|

X4; —— XB;

where the top morphism is (P #; and the bottom morphism is X «,. Now §is a
monomorphism by assumption, and X y is 2 monomorphism by II, 12.3.
Hence it follows that (P y is a monomorphism. |

81
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Observe that a C, category has the following property : If () 4;is a coproduct
iel
with projections p; and if f, g : A—> @ 4, are such that p;f = p,g for all i € ],

i€l
then f=g.
The familiar distributivity relation for sets
(U4)nB =U (4,nB) (1)

does not hold in general in the category %. However, if we assume that {4;}isa
direct family of subgroups of an abelian group 4 and B is another subgroup
of 4, then it can be seen that (1) holds (exercise 1). We shall call a category .o/
a C; category if &7 is a cocomplete abelian category such that (1) holds for
any direct family {4,} and any subobject B.

Proposition 1.2. Let of be a cocomplete abelian category. Then o is Cs if and only
if the direct limit of every direct family of subobjects {A;} of an object A is U A,.

Proof. Suppose that &7 is C; and let {4;} be a direct family of subobjects of 4.
Let {m; : A;,— L} be the direct limit. Then we have the induced morphism
u : L—> A whose image is U 4; by II, 2.8. We wish to show that « is a mono-
morphism. Let X be the kernel of «, and let 4] be the image of ;. Then again
by II, 2.8, we know L = U 4/, and by C; we have K = U(4;N K). IfK # 0,
then 4] N K # 0 for some 7, and so by I, 16.4, we have #71(K) # 0. It follows
that A,— 4 has a nonzero kernel, contradicting the fact that 4; is a subobject
of A. Therefore K = 0 and so u is a monomorphism.

Conversely, suppose that direct limits of direct families of subobjects are
subobjects. Let {4,} be a family of subobjects of 4 and let B be another sub-
object. By assumption the direct limit of the family {4;U B} is

U4uB) = (U4,)uB.
By II, 12.2*, the family of exact sequences
B—>AVUB— (4, UB)[B—>0
gives rise to an exact direct limit sequence
B— (U 4)UB—1lim(4,UB)/B—0
—
which shows that the direct limit of the family {4,UB/B} is (U 4,) UB/B.
Then the family of exact sequences
0—-4NB—>A4~>AUB/B—>0
(see I, 16.7) gives an exact direct limit sequence
0—->U (4,n B)—>U 4,— (U 4,) UB/B—0. (2)

But by I, 13.2, (2) is just another way of expressing (1). |
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Corollary 1.3. 4 complete Cy category & is C,.
Proof. Given a family of objects {4;};c; , the objects of the form @ 4; for F a

i€F
finite subset of /, form a direct family of subobjects of the product X 4;. The
iel
direct limit is @ 4;, and by 1.2 the limit morphism & : @ 4; — X 4;is a
iel i€l iel

monomorphism. Therefore o7 is C,. |

Corollary 1.4, Let A be an object in a Cy calegory &/ with a family of generators.
Then the finitely generated subobjects of A form a direct family of subobjects whose direct
limit is A.

Proof. By 11, 15.1, &7 is locally small, and so the class of all finitely generated
subobjects of 4 form a set (or better, have a representative subclass which is a
set). Furthermore, from I, 17.2, we see that the union of two finitely generated
subobjects is also finitely generated, so that we have a direct system. By 1.2 the
direct limit L s a subobject of 4. If L is not equal to 4, then there is a morphism
from one of the generators to 4 which does not factor through L. But the image
of such a morphism is finitely generated, hence is contained in L. This contra-
diction proves that L = A. ||

Lemma 1.5. Let {A,};c; be a direct family of subobjects of A in a cocomplete abelian
category. Then the direct limit of the corresponding family of quotient objects {A[A;} is
AU 4.

Proof. The family of exact sequences
0—>4,-4—4/4,—-0

gives us an exact limit sequence
. u .
lim 4~ A—1limA4/4;—~0
— —>

by II, 12.2%, But by II, 2.8, the image of u is U 4;. In other words
limA/4; = A/U 4;. }
—>

Proposition 1.6. Let o be a cocomplete abelian category. Then .o/ is Cy if and only if
for every direct family of subobjects {A;} of an object A and every morphism f: B — A we
have

U 4y = Ui, (3)

Proof. If.o7 satisfies condition (3), then taking for f the inclusion of a subobject
B < A we obtain Eq. (1). Conversely, suppose that & is C; and let I be the
image of f. Then by I, 16.4, we have the exact sequence

0—fY4) >B—>1/A4,N 0.
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Passing to direct limits and using 1.2 and 1.5 we obtain an exact sequence
0->Uf1(4)—>B~>1/U (4,n I)—0. (4)

But by C; we have U (4;n I) = (U 4;) N I, so that by I, 16.4, we see that (4)
is simply another way of expressing (3). |

Proposition 1.7. Let {A;, 7} be a direct system in a Cs category. Denote by K, the
kernel of m, for k < p, and let Ky be the kernel of m. Then

Kk = U Kkp‘
k<p

Proof. First it is clear that U K,, < K, so that we need only prove the reverse
k<p

inclusion. Let R be the subset of 7 x I consisting of all ordered pairs (i, §) such
thati <j. Let 4 = @ 4, with injections u;. If §is any subset of R, let
i€l
(i.p)es

Then by II, 2.10, we have im4; = A/4z. Now Ap = U A, where F runs
F

—_—
iel
through all finite subsets of R. Hence by 1.6 we have

Ky = 4! (4g) = lFJ u; (Ag),
and so it suffices to show that for each finite subset F of R we have u;!(45) < K;
forsomep > k. Given F, let p be any index which follows £ and all indices which

appear either in the first position or the second position in a member of F.
Now u;!(A4p) is the kernel of the composition

Ap—s A A|Ap.

Define a morphism f': 4— 4, by taking fu; = m,, fori < p, and fu; = O otherwise.
Then for (i, j) € F we have

f(u" - u]'TT‘J) = 7T"p - 7TJP7TU = 7T"p - 77," = O.
Consequently, f factors through A— 4/ A4g, and so using I, 10.3, we have
0 = flu((4p))) = my(ui (4p)).
This shows that 4;!(4z) < K,, as required. ||

Corollary 1.8. Consider a direct system {A;, w}icpin a Cs category, and let f : B— A,
for some k € 1. Then

Ker(m.f) =p9/¢ Ker(my,f).

Proof. We form a new directed set I, by adding one new vertex iy to I and
defining iy < 7ifand only if£ < i. A direct system over I, is obtained by taking
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the original direct system, adding B at the vertex ¢;, and using the morphisms
m,f for p > k. Now [ is a cofinal subset of /;. Consequently the conclusion
follows from 1.5 and 11, 2.11. |}

Theorem 1.9, A cocomplete abelian category A is Cy if and only if, relative to every
directed set I, the functor which assigns to each direct system over I its direct limit is an
exact _functor.

Proof. Direct limit functors are cokernel preserving by II, 12.2*. Hence it
suffices to show that & is C; if and only if the morphism induced on the direct
limits by a family of monomorphisms is again a monomorphism. Suppose that
& has the latter property, and let { 4;} be a direct family of subobjects of 4. Then
the limit morphism of the family 4,— A4, which can be regarded as a morphism
from the direct system {4,} to the constant direct system which has 4 at every
vertex, is a monomorphism. Therefore, by 1.2, &7 is Cs.

Conversely, suppose that .7 is C3 and let {u; : 4;,— B;};.,; be a family of
monomorphisms defining a morphism from the direct system (4;, n},; to the
direct system {B;, u};c;. Consider the commutative diagram

4, —— B;
J"’,‘ ll‘i
0 K 4 . B
where K is the kernel of u. Let 4% = Im(;),s0 that by I1, 2.8, we have A = U 4.
iel
By C; we can then write K =U (47N K), and so if K # 0, then 4,N K#0

iel
for some £ € /. Denoting M = 7' (4; N K) wesee from 1, 16.4, that m, (M) # 0.
On the other hand using I, 10.3, we have

wi(u(M)) = u(m(M) = u(m(m (4N K)))
< u(A4;N K)ycu(K)=0.
Therefore by 1.7, u,(M) is a subobject of U L,, where L,, = Ker(y,,). Again

k<p
using C5 we then have

w(M) = U Ly, O w (M),
k<p
Hence

M = u ' (w(M)) = ! (kUkapﬂ uk(M)) =kU uk_'(Lkp('\ w(M)), (5)
< <p

the first equality being true because u;, is a monomorphism, and the third

equality being true by 1.6. It follows from the fact that %, is a monomorphism

that m, (ug (L, N u(M))) =0 for p > k, and so m(ug! (L, N (M) )) = 0 for
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all p > k. But then using (5) and I, 11.2, we see 7, (M) = 0. This contradiction
proves that K = 0, and so « is a monomorphism. |

We shall say that o/ is a C* category (i = 1, 2, or 3) if &/* is a C; category.
It follows from pointwise considerations that a functor category [&, #] or
(7, #) has any of the properties C; or C* that & has. In particular, since % has
properties C3 and C¥, the same is true for R for any ring R.

Proposition 1.10. A complete C; category S/, which is also C¥, consists only of zero
objects.

Proof. By 1.3, 57 is Cy, and so since it is also Cf we have () 4; = X 4; for every
set {4;};c;of objects in &7 In particular, given 4 € 27, le'te II be thées]et of positive
integers and take 4;,=A for all i€ I. Let 4" = 6':)1 4; for n a positive integer

and let A° = @ 4;. Then we have the diagonal morphism 4 : 4-—> A®
i=1

which is such that p,4 = 1, for all projections g, from the coproduct. Also it is

clear that A* = U 4" and so from 1.6 we have 4 = U 4-!(4"). We show that
n=1 n=1
4
4-'(4*) =0 for all n. Let A be the composition 4— A% —>A®[A". Then the
exact sequence

a
0—> 4=} (A") > A— A 4"

defines 4-1(4"). Alsop,,|4" = 0,so that we have a morphismp,, | : 4/4">4,,
which when composed with 4% — 4®[4" gives us p,,,. Then the composition

4 ﬁn+l
A-—-—)Am/A"_>A,‘+]
is 1, and so A must be a monomorphism. Therefore

4-1(4" = Ker(d) = 0. |

2. Injective Envelopes

Throughout this section all categories will be abelian.

We define an essential extension of an object 4’ to be a monomorphism
u: A'— 4 such that for any nonzero subobject 4, of 4 we have 4A’'N A4, # 0.
Equivalently, by I, 19.3, A"— 4 is an essential extension if and only if 4’ is a
retract of no other subobject of 4. We call « a proper extension if  is not an
isomorphism. An inclusion 4’ < 4 is an essential extension in *% ifand only if
for each a € A with a # O thereis anr € Rsuch thatra € A" and ra # 0.

Lemma 2.1. A monomorphism u : A" — A is an essential extension if and only if every
morphism [+ A— B such that fu is a monomorphism s itself a monomorphism.
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Proof. If fis not a monomorphism, the K=Ker (f} is not zero, hence

KN 4" # 0. But KN A’ is the kernel of fu, so that fu is not a monomorphism.
If u is not an essential extension, then there is a subobject 4,0 such that

A; N A" =0. Then the composition 4"—>A—A/A, is a monomorphism, but

A— A4, is not a monomorphism. |

Lemma 2.2, Let Q be an object in a locally small Cy category. Then Q is injective if
and only if Q admits no proper essential extensions.

Proof. Let @ be injective and suppose that u : @ — 4 is an essential extension.
By II, 14.2*, we know u is a coretraction and so by I, 19.1, we can write
A=Q @ Q' for some subobject @'. But then @ N\ @' =0and so ¢’ = Osince u
is essential. Hence u is an isomorphism.

Conversely, suppose that @ admits no proper essential extensions. To show
that @ is injective it suffices to show that @ is a retract of every containing
object (I, 14.2%). Suppose that @ is a subobject of 4 but not a retract. Let €
be the set of subobjects of 4 which intersect @ trivially. Under the natural
ordering of subobjects, if {4;} is a linearly ordered subset of € then by C3

Uda)n@=Uu4nQ =o.

Hence € isinductive, and so by Zorn’s lemma we can find a maximal member
A, for €. Since @ N 4, = 0 the composition @ — A4 — A/A,is a monomorphism.
Furthermore, it cannot be an epimorphism for then it would be an isomor-
phism, and so @ would be a retract of 4. Therefore, by assumption we can find
anonzero subobject B of A] Ay such that @ N B = 0. Consider the commutative
diagram

Qn B B B
Q 4 4/4,

where each of the squares is a pullback. Then by I, 7.2, the rectangle is a
pullback; that is, @ N B=Q N B =0. Now by I, 16.3, the morphism B—B
is an epimorphism, and so it follows that B—A4-> A/, is not zero. Conse-
quently B properly contains 4y as a subobject of A, contradicting maxi-
mality of 4y. Therefore @ is a retract of 4. ||

Lemma 2.3. In a C4 category suppose that each member of a direct family of sub-
objects {A;} of an object A is an essential extension of another subobject A’ of A. Then U 4;
is also an essential extension of A'.
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Proof. Let 4 be a nonzero subobject of U 4;. Then by C; we can write
A= U (4;n 4), and so for some i we have 4, 4 # 0. Therefore since 4, is
an essential extension of 4’ we have

0# 4NA)Nnd <cdn 4.
This shows that U4, is an essential extension of 4°. ||
The proof of the following lemma is left to the reader.

Lemma 2.4. Ifu: A—B and v : B—C are monomorphisms, then vu is an essential
extension if and only if both u and v are essential extensions. ||

An injective envelope for an object 4 is an essential ‘extension 4— @
with @ injective.

Proposition 2.5, Let u: A—Q and u' : A— Q" be injective envelopes for A. Then
there is an isomorphism 0 : Q ~ Q' (not necessarily unique) such that Qu = u'.

Proof. Let 8 : @ > @' be such that &’ = fu (injectivity of Q'). Then 0 is a
monomorphism (essentiality of &) and so by 2.4 8 is an essential extension
(essentiality of «”). Therefore 8 is an isomorphism (injectivity of @). |

Proposition 2.6. Let A be an object in a locally small Cy category, and suppose that A
is a subobject of an injective object Q. Then A has an injective envelope.

Proof. Let % be the set of all subobjects of @ which contain 4 and which are
essential extensions of 4. Then 4 € € so that € is not empty, and by 2.3 we see
that € is inductive. Hence let @, be a maximal element. We show that Q,
is injective. If @, is not injective, then by 2.2 there is a proper essential exten-
sion u : @, — B. Since @ is injective there is a morphism v : B— @ such that
vu is the inclusion of @, in @. Since u is essential it follows from 2.1 that vis a
monomorphism. But then by 2.4, B is an essential extension of 4 in @, con-
tradicting the maximality of @,. Therefore @, is injective, and so A— @, is an
injective envelope. ||

3. Existence of Injectives

Let U be any object in an additive category 27, and let R denote the ring
of endomorphisms of U. Then we have a functor 7 : &/ —>%® defined by
T(4) = [U, Al,4, where [U, 4] is considered as a right R-module by defining
the product of a ring element r € [U, U] and a group element f € [U, 4] as
the composition fr € [U, A]. Then T is kernel preserving, and if U is a genera-
tor then T'is an imbedding.

Lemma 3.1. Let U be a generator in an abelian caiegory of and let T be as above.
If u: A— B is an essential extension, then T (u) is an essential extension.
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Proof. Since T is kernel preserving, 7(u) is a monomorphism. Suppose that
felU, Bl = T(B) and f# 0. We must find r e R =[U, U] such that 0 # fr
and fr € [U, A] (or, more correctly, Im(fr) < Im(x)). Consider the diagram

V —5—> Anl —% > 4

I

v — I : B
where the bottom row is the factorization of f through its image and each
square is a pullback. Since f# 0 we know I s 0, and so since u is essential we
have AN I# 0. Since ¢ is an epimorphism, so is g, and consequently g # 0.
Therefore there is a morphism £ : U-> V such that gk # 0, and so since u and
w are monomorphisms, uwgk # 0. Therefore vghk = fhk # 0 and we can take
r=rhk. ||

Theorem 3.2. 4 C; category & with a generator U has injective envelopes for each of
its obyects.

Proof. By 2.6 it would suffice to show that .27 has injectives. However we shall
construct the injective envelope directly, without use of 2.6.

Let R and T be as above, and let 4 be any object in &/. Then by II, §15,
we can find a monomorphism T(4) — M in the category @® with M injective.
Let € be the class of all triples (B, u, f) such that u: A— B is an essential
extension and f: T(B)— M is a morphism of right R-modules making the
diagram

T(4) —4— T(B)
/
M

commutative. By 3.1, T(u) is an essential extension, and so f must be a mono-
morphism. We write (B, u, f) < (B', «', f') if there is a morphism v : B—> B’
such that the diagrams

4 T(B) — s 1(8)

2 SN
B —— B M
are commutative. This defines an ordering on %. Notice that » must be a
monomorphism since # is an essential extension. Also v is unique, for if »,

were another morphism having the properties of v, then /' T(v) = f'T(v,) and
so T(v) = T(v)) since f" is a monomorphism. Therefore v = v; since T is an
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imbedding. It follows that if also (B, ', f') < (B, u,f), then 2 is an iso-
morphism. In this case we say that (B, u, f) and (B’, &, f') are equivalent.
Now since f: T(B)—>M is a monomorphism, the cardinal number of
T(B) = [U, B] is less than or equal to the cardinal number of M. Hence by 11,
15.2 B is a quotient object of MU. But & is locally small by II, 15.1, and so
there are no more than a set of such quotient objects. Consequently the class
%, of equivalence classes in € is a set. Let {(B;, ,f;)} represent a linearly
ordered subset of . Again making use of the uniqueness of v we see that 4,
together with the B/’s, form a direct system in which all the morphisms are
monomorphisms. Let B be the direct limit, and let @ be the limit morphism
from Ato B. From 1.7t follows that # and all the other limit morphisms B;— B
are monomorphisms. Then by 2.3 we see that 7 is an essential extension of 4.
Now T°(4), together with the T(B,)’s, form a direct system of submodules of
T(B). Let L be the direct limit (or union, since @R is C3). The morphisms
fi: T(B)) - M define a morphism f: L— M which can be extended to a
morphism f: T(B)—> M by injectivity of M. Therefore (B, i, f) follows every
(B;, u;, f;). Thus € is inductive, and so let (), w, &) be a maximal element.
If @ is not injective, then there is a proper essential extension @ — @, by 2.2,
and so A—Q—> @, is an essential extension of 4 by 2.4. Also by injectivity of
M the morphism 4 can be extended to a morphism 4, : T(@,})— M. But this
contradicts the maximality of (@, w, £). Therefore @ is injective, and so
A— @ is an injective envelope for 4. |

Proposition 3.3. A complete (cocomplete) abelian category o4 with a generator U and
injectives has an injective cogenerator.

Proof. Let C be the product {coproduct) of all quotient objects U/V where V
runs through the set (II, 15.1) of subobjects of U. By assumption there is an
injective @ containing C. We show that @ is a cogenerator. By II, 15.3% it
suffices to show that for each nonzero 4 € .2/ there is a nonzero morphism
A— Q. We know there is a nonzero morphism U/— 4 since U is a generator.
The image of such a morphism is isomorphic to U/ V for some subobject ¥ # U.
The injection U/V—>C composed with C— @ is not zero since each of the
morphisms is a monomorphism. Then, by injectivity of @, this composition
can be extended to a morphism 4— @ as required. ||
Combining 3.2 and 3.3 we have

Corollary 3.4. 4 C; category with a generator has an injective cogenerator. |

Exercises
1. Find three subgroups 4,,4,, and B of Z @ Z such that
(A, Ud)NB # (4, NB) U (4, N B).

Show that ¢ is C; and C¥.
2. A category with projectives and products is CF.
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3. If <7 is a category with products, coproducts, and a zero, and if # is a C,
category, then for any functor T : o/ % and any coproduct P 4;in & the

morphism
@ T) > T(@ 4)

is a monomorphism.

4. An abelian group 4 is called a torsion group if for each a € 4 there is a
nonzero integer n such that na = 0. Let % be the full subcategory of & consist-
ing of all torsion groups. Then %, is an abelian subcategory of %, and co-
products in % are the same asin 4. However the productin %, of a family {G}
of torsion groups is given by the subgroup of the product in & consisting of
all elements of the form (x;) such that the x; € G; have uniform order; that is,
there is a nonzero integer n such that nx; =0 for all i. For each positive
integer m, let f,, : Z,,,— Z, be the morphism which takes the coset of r modulo

2" into the coset of r modulo 2. Then each £, is an epimorphism, but X £, is
m>0

not an epimorphism. Thus a complete and cocomplete abelian category need
not be C.
5. Let P be a small projective in a cocomplete abelian category. Then P has
the following property: If {P;} is a direct family of proper subobjects of
P, then U P; is a proper subobject of P.

Conversely, if 4 is any object in a C; category and if A has the above
property with respect to subobjects, then A4 is small.
6. Generalize 1.7 to the case where /is an ordered set with the property that
ifi <jand i < k then thereis a vertex psuch thatj < pand £ < p. (Ifiandjare
vertices of a scheme, write i ~ jif there is a composite arrow from i to j or from
jtoi. Then ~ is an equivalence relation, and in this way the scheme can be
broken up into components. The colimit of a diagram over the scheme is the
coproduct of the colimits of the components. Show that for an ordered set /
with the given property, the components are all directed sets.)
7. The additive group Q of rational numbers is an injective envelope for Z.

Let p be any positive integer. The group Z, can be regarded as the collection
of cosets of rational numbers of the form n/p in Q/Z. Let Z,x be the set of
cosets in Q /Z represented by rational numbers whose denominator is a power
of p. Show that Z,« is divisible, and therefore injective. Hence show that Zw
is the injective envelope of Z,. (To prove Z,» divisible, we must show that
given x = 1/p” and n an integer > 0, there is a number y of the form s/p™**
such that ny — x is an integer. Equivalently, we must find positive integers
5, k, and tsuch thatns = p*(1 + #p™). Letn, be the product of all prime factors of
n which divide p, and take & large enough so that n; divides ¢*. Then use the
fact that nfn| and p™ are relatively prime to find sand ¢.)
8. Prove the converse of 3.1; namely, if T(u) is an essential extension, then
S0 is u.
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CCHAPTER 1V

Group Valued Functors

Introduction

The central result in this chapter is the group valued imbedding theorem:
Every small abelian category admits an exact imbedding into the category of
abelian groups (2.6). Proofs of this theorem have been given by Heron,
Lubkin [27], and Freyd [14]. The one given here is by Freyd. The meta-
theoretic consequences of such a theorem are also examined. In general, any
statement involving exactness, commutativity, and limits for a finite diagram
which is true in the category of abelian groups is true in any abelian category.
Furthermore, certain statements involving the existence of morphisms which
are true in ¥ are also true in the general abelian category. The connecting
morphism provides a well-known example. In Chapter VI we shall prove that
every small abelian category admits a full exact imbedding into a category of
modules. This will enable us to improve on the metatheory developed in this
chapter. In §3 it is proved that certain classes of abelian categories (not neces-
sarily small) also admit exact, group valued imbeddings.

Let U be a projective generator in an abelian category .27, and let R be the
ring of endomorphisms of /. Then the functor T : &/ —>%® defined by
T(A) = [U, 4] is an exact imbedding. A more careful analysis of this functor
enables us to draw a characterization of module categories in 4.1. The result
is generalized in §5 to functor categories.

The material in §1-§3 has been taken almost exclusively from the work of
Peter Freyd.

1. Metatheorems

Let U be an object in an abelian category 2/. We know that the functor
HY : of — % is kernel preserving. If Uis projective then HY is exact, and if U
is a generator then HVis an imbedding. Hence if & has a projective generator,
then .o/ admits an exact, covariant, group valued imbedding. The same is
true if &/ has an injective cogenerator (exercise 1). We are going to examine

93
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the implications of an abelian category .o/ admitting an exact group valued
imbedding T: &/ - 9.

In the first place 7, as do all functors, preserves commutative diagrams.
By II, 6.7, T preserves limits and colimits for finite diagrams. Furthermore,
by II, 7.1, T reflects commutative diagrams, limits and colimits for finite
diagrams, and exact sequences. Let us say that a statement about a diagram in
an abelian category is categorical if it states that certain parts of the diagram
are or are not commutative, that certain sequences in the diagram are or are
not exact, and that certain parts of the diagram are or are not limits or colimits
for certain other finite parts of the diagram. Then in view of the above remarks
we have the following metatheorem.

Metatheorem 1.1. If a theorem is of the form “‘ p implies q”° where p and q are
categorical statements about a diagram in an abelian category o/ admitting an exact
group valued imbedding, and if the theorem is true in the category of abelian groups, then
the theorem is true in 4. |}

Let us see how 1.1 works in a particular case. Consider the 5 lemma which
was proved for & in I, 21.1. Suppose that the diagram of that lemma is a
diagramin an abelian category &/ admitting an exact group valued imbedding
T. Let us prove part (i) of the lemma. Suppose that under the given conditions

0 0 0

KI —_— K - s KII

F—— F —— F
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y3 is not a monomorphism. Applying 7 to the diagram we obtain a diagram in
% satistying the same conditions. But since 4 is not a monomorphism, 77(y;)
is not a monomorphism, contradicting the fact that the lemma is true in .
Metatheorem 1.1 does not handle a case where we are required to show the
existence of morphism having certain properties with regard to a diagram.
We consider a familiar example. Suppose that we have the commutative
diagram (1) in an abelian category .2, where the middle two rows and all
columns are exact. If.o7 is &, then we can show without much difficulty that
there is a morphism K”—F"’ (called the connecting morphism for the dia-
gram) such that the sequence
K—>K->K —->F >F->F" (2)

is exact (I, exercise 20). The morphism K”—F" is defined as a composition of
relations; namely, the function K"— 4", followed by the inverse of A— A"
(whichis nota function, in general), followed by 4 — B, followed by the inverse
of B'— B, followed by B’—F". One checks that this composition of relations
is actually a function whose domain is all of K”, that this function is a morphism
of groups, and finally that the sequence (2) is exact. Now if we were to try
to prove the assertion in an abelian category &7 admitting an exact group
valued imbedding 7, we would apply T to (1), and we would obtain a
morphism 4 : T(K")— T(F') as above. The difficulty now lies in the fact
that we do not know if 4 is of the form T(8) for some 8 : K"—F’, since in
general T will not be full. However, we can prove in this particular case that
there is such a morphism 8.

First of all there is no loss in generality in supposing that &7 is an abelian
subcategory of @. Let us define an antimorphism to be a relation which is the
inverse of a morphism of abelian groups. If & is any subcategory of ¢, then
we define an .o/-relation from group 4 to group B as a composition a,. ..op0 |,
where for each i, | €17 < n, o;is a morphism in &/ from 4; to 4;,, (that is, an
&/-morphism) or the inverse of a morphism in & from 4, to 4;,, (that is,
an .&7-antimorphism), and 4, = 4, 4,,, = B. An &/-relation from 4 to B
which is a function with domain 4 is called an %/-function from 4 to B.

Proposition 1.2. If .o/ is an abelian subcategory of G, then all of-functions are
&L -morphisms.

Proof. First we define a simple .&/-relation as an .&7-relation which can be
written as the composition of an./-antimorphism followed by an.Z-morphism.

Then we have:
Lemma 1.3. All o/ -relations are simple of -relations.

Proof. It is clear that all &/-relations are compositions of simple .£7-relations.
Hence we nced only prove that the composition of two simple &7-relations is
simple. We have the following situation:
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C —— A

|

E ——D 3

|

B

that is, a simple .&/-relation from 4 to D followed by a simple .27-relation from
D to B. Consider the pullback diagram in &/ (and hence in %)

P—— C

|

E—— D
Then the simple &7-relation given by
P > C A4

B

is the same as that given by (3). Indeed it is readily verified that the two
relations from C to D given by

P——>C C
E E——D

are the same. One uses the expression P = {(x, y) € C x E|a(x) = B(y)} for the
pullback of abelian groups (I, 17.5). |}
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Lemma 1.4, If a simple of -relation is an S -function, then it is an S -morphism.

Proof. Let an &/-function be given by the diagram

C —— 4

l (4)

B

Its being defined on all of 4 is equivalent to C— 4 being an epimorphism.
Let K— C be the kernel of C— A in &/ and hence in 4. Then the relation being
well defined is equivalent to the composition K—C— B being zero. Since
C— Aisthe cokernel of K —C, this means that there is a morphism 4-> B in o/
such that C— 4 B = C— B. Then A— B is the given &/-function. |

Proposition 1.2 now follows from 1.3 and 1.4. |I

If we define construction by diagram chasing as the process of defining
a morphism in 4 by composing morphisms and antimorphisms in a diagram,
we can now state the following improvement on 1.1,

Metatheorem 1.5. Let &f be an abelian category admitting an exact group valued
imbedding. If a theorem is of the form * p implies ¢, where p is a categorical statement
concerning a diagram in S, and q states that additional morphisms exist between certain
objects in the diagram and that some categorical statement is true of the extended diagram,
and if the theorem can be proved in G by constructing the additional morphisms through
diagram chasing, then the theorem is true in <. ||

We remark that a morphism 4— B constructed by diagram chasing in an
abelian category ./ must be such as to make a diagram (4) in &/ commutative.
Since (4) is independent of any particular imbedding &/ — % and since C— 4
is an epimorphism, it follows that any morphism in & constructed by diagram
chasing is independent of the particular imbedding used to define it. In parti-
cular, the connecting morphism of the diagram (1) is well defined.

2. The Group Valued Imbedding Theorem

We shall show in this section that every small abelian category admits an
exact (covariant) group valued imbedding. Our approach is to study the
functor category (&, ). The required imbedding will fall out as a special
object in this category.

The following lemma, due to Yoneda, is crucial.

Lemma 2.1, Let &7 be any category, and consider a covariant set valued functor
T: A —F. Then for any object A € &4 we have a one to one correspondence

6 = 6,r: [H4, T]—> T(4)
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where [HA, TY is the class of natural transformations from the set valued functor H4 to
the set valued functor T Furthermore, 0 is natural in both T and A.

If of is additive and T : € — G is an additive functor, then the same conclusion is
valid relative to the group valued functor HA. In this case 0 is an isomorphism of groups.

Proof. For n € [H*, T] we define 8(n) = n,4(1,). Also we define a function
6’ : T(A4)—~[H4, T] by the rule

0 (x)s(f) = T(f)(x) (1)

where x € T(4) and fe H4(B) = [4, B]. That ¢'(x) is a natural transfor-
mation is an easy consequence of the functorial property T(gf) = T(g) T(f).
We show that 8’6 is the identity function on [H4, T']. For y € [H4, T]we must
prove that 8'(8(n)) =7%; that is, for each B e/ we must show that
0’ (8(n))s(f) = mp(f) where f € [4, B]. By naturality of n the diagram

[4, 4] —“— T(4)

l[u] lm) (2)

[4, B] —2—> T(B)

is commutative. Chasing the element 1 4 clockwise gives us

T(f)(6(n)) = 0"(8(n))(Sf)-

Chasing the same element counterclockwise gives us 7p(f) as required. To
show that 88’ is the identity, we have for x € T(4),

B(8'(x) = 0'(x)a(10) = T(L)(x) = x.

Finally, we show that § is natural, For a morphisin f: A— B we must prove
that the diagram

[H4, T] 22— T(4)

]

(HE, T) —— T(B)

is commutative. Starting with % in [H4, T] and going clockwise we obtain
T(f)(na(14)). Going counterclockwise we obtain 7(f). Hence the result
follows from the commutativity of the diagram (2). On the other hand, given
a natural transformation p : T—>S§ we must prove that the diagram



2. THE GROUP VALUED IMBEDDING THEOREM 99

(HA T) 247 T4

b

[H4 8] —42 5 §(4)

is commutative. Starting with 5 € [H4, T] we obtain clockwise p4(7,(1,))
and counterclockwise (pn),(1,). That these are equal follows from the
definition of the composition of natural transformations.

In the case where &/ and T are additive, it is seen immediately from the
definition of 8 that it is additive. The only further detail that must be checked
in this case is that §'(x) is actually a morphism of groups. But this we see
from (1) using the fact that T is additive. |

Corollary 2.2, The function 8 : [H4, H¢] —[C, A) defined by 0(n) =n,(1,) isa
one 1o one correspondence, natural in both A and C. The inverse §' of 0 is given by
0'(x)g(f) = fx where x € [C, A] and f € H4(B) = [A, B). In the case of an additive
category 8 is an isomorphism of groups. ||

Afunctor T': o - (T : o/ - ¥ in the case where &7 is additive) is called
a representable functor if it is naturally equivalent to a morphism functor
H4 for some A € . It follows from 2.2 that if T'is representable, then the
object 4 € .o which represents it is unique up to isomorphism.

Proposition 2.3, If &/ is a small additive category and A € o, then HA is a small

projective in (o, ). Furthermore, the functor G =@ H4 is an imbedding, and is
desy

a projective generator for (A, F).

Proof. We first show that H4 is projective. Since a coproduct of projectives is
projective, it will follow that G is projective. Let T— T be an epimorphism
in (&7, 4). Then from 2.1 (using naturality of # with respect to T) we see that
[H4, T]—[H4, T"]is an epimorphism. Therefore H is projective.

To prove H4 small, we must show that {H4, ] is a coproduct preserving
functor (I1, 16.2). But this follows again from 2.1 since we have

[HA4 D T = (D T)(4) = D Ti4) = @ [H4, T}).
Since G is projective we will know it is a generator if [G, T] # O for any
nonzero functor 7" (I1, 15.3). We have

[G, T] = [D HA, T] = X[H4, T] = X T(4)
Aess Aes/ Aed

where the middle equality comes from II, 5.1.* But X T(4) = 0 if and only
Aesd

if T(A} =0 forall A € &7 ; thatis, if and only if T'= 0. Hence G is a generator.
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It is trivial that G is an imbedding, for if B— B’ is a nonzero morphism in
&/’ ,then H3(B) — H®(B')is notzero,and consequently (P H4(B)~ @ H4(B’)
AEwt ACH

cannot be zero. |

Proposition 2.4. Suppose that o is a small, exact, additive category. If T is an
injective object in (S, ), then T is a cokernel preserving functor.

Proof. Suppose that 4’—A— 4" —0is exact in &. Then 0— H4" — H4— H4
is exactin (&7, 9). Since T is injective, this means that the sequence

[H#4, T]—[H4, T]—[H*, T]->0
is exact in %, or applying 2.1 and using naturality of fin A,
T(A)Y—> T(4)—> T(4")—0
is exact. In other words T is cokernel preserving. |}

Remarks. (1) A cokernel preserving functor is not necessarily injective.
Furthermore, an injective functor need not have injective values, nor is it
true that an injective valued functor is an injective.

(2) It is true that a projective group valued functor is kernel preserving,
although it does not follow from 2.4 by duality (exercise 3).

(3) Proposition 2.4 need not be true if ¥ is replaced by a general abelian
category (exercise 6).

Lemma 2.5. Consider a pointwise monomorphism M — Q whereM, Q : o/ —F are
additive functors and & is any abelian category. If M is a monofunctor, and if
for any other pointwise monomorphism N —@Q with N #0 there is an object A such
that 0 £ M (A) N\ N(A) < Q(A), then Q is a monofunctor.

Remark. If &7 is a small abelian category, then 2.5 states simply that an
essential extension in (&, &) of a monofunctor is again a monofunctor.

Proof. Suppose that @ is not a monofunctor. Then there is a monomorphism
o : A'— A in.of such that Q(«) is not 2 monomorphism. Let x € @(A’) be such
that Q(«)(x) = 0, x # 0. Define @ as the subfunctor of @ generated by x; that
is, @(B) ={Q(B)(x)|B e [4’, B]} (II, exercise 6). Then § # 0, and so by
assumption we can find B € & such that @(B) N M (B) # 0. In other words
there is a morphism B : 4’— B such that Q(B)(x) # 0 and Q(B)(x) € M(B).
Consider the pushout diagram

A

P

A'._"'_)

™

B —
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where & is a monomorphism by I, 20.2*. Applying @ we obtain
0=QB)Qx)(x) = Q@QB)(x) = M()Q(B)(x).

But this gives a contradiction since @(B)(x) £ 0 and M (&) is a monomorphism.
Therefore @ is a monofunctor. [

Theorem 2.6 (The Group Valued Imbedding Theorem). Any small abelian
category of admits an exact covariant imbedding into the category of abelian groups.

Proof. The category (&7, ¥) isa(C; category possessing a generator G = () H4
=

(2.3). Therefore by III, 3.2, (&7, %) has injective envelopes for each of its
objects. In particular, let G— @ be an injective envelope for G. Then @ is
cokernel preserving by 2.4. Also since G is a monofunctor the same must be
true of @ by 2.5. Therefore @ is an exact functor. Since G preserves nonzero
objects the same is true of @, and so by II, 7.2, @ is faithful. The conclusion
now follows from II, 10.3. |

We see now that Metatheorem 1.5 applies to any small abelian category.
We would like to show that the smallness condition can be removed. We
accomplish this by proving the following lemma.

Lemma 2.7, Let .o/ § be a small subcategory of an abelian category s . Then there is a
small, full, abelian subcategory ' of o such that A is a subcategory of .

Proof. We define inductively a sequence {7}, ., of subcategories of &/ as
follows. The subcategory &7, is the full subcategory of & consisting of the
objects in o7, together with single representatives for kernels and cokernels
in & of every morphism in .27, and single representatives for all finite products
in .o/ of objects in &7,. If &7, is small, then so is &7, . It follows that since &7,
is small, so is .&, for all #n > 0. Consequently, &/’ = U o7, is small, and it
n=0
is easily shown that .o/’ is a full abelian subcategory of & (11, exercise 5). ||

Combining 1.5, 2.6, and 2.7 we now have:

Metatheorem 2.8. Le! &/ be any abelian category. If a theorem is of the form *p
implies q,” where p is a calegorical statement concerning a diagram in 2, and q states
that additional morphisms exist between certain objects in the diagram and that some
categorical statement is true of the extended diagram, and if the theorem can be proved in
G by constructing the additional morphisms through diagram chasing, then the theorem is

true in 4. |
3. An Imbedding for Big Categories

Given an object 4 in an additive category &/ and an abelian group E, we
define a covariant additive functor J . : &/ — % by the relation

JA,E(B) = [[B, A]m E].rf-
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Lemma 3.1. Let T: o/ G be any covariant additive functor. Then we have an
isomorphism of groups
0:[T,J 5]~ [T(4), E].
Furthermore, 0 is natural in T, A, and E.

Proof. For n € [T, J, ¢] and x € T(4) we define 8(n)(x) = 14(x)(14). Then it
is clear that 8 is 2 morphism of groups. To show that it is an isomorphism we
define 8" : [T(4), E]—>[T; J4z] by the rule 0"(f)5(y)(g) =f(T(2)(y)) where
Sfe[T(4), E],y e T(B), and g € [B, 4]. Additivity of T is used in showing
that 8'(f)z(y) is a morphism of groups. Now for f € [T(4), E] and x € T(4)
we have

0(0'(N)) (%) = 0(Na®)(1g) =S(T((x) = f(#).
Thus 86’ is the identity. On the other hand we have

0(8(n))s(»)(8) = 0 (T()(»)) = 74(T(&) () (1) = na(y)(g).

The last equality comes from the diagram

which is commutative by naturality of 5. Hence 88 is the identity, and so 8
is an isomorphism.
The proof of the naturality of § in all three variables is left to the reader. ||

Lemmas 2.1 and 3.1 suggest that J, ; plays some sort of dual role to H4.
In Chapter VI both of these functors will be generalized, and at that time we
shall see more clearly the duality that exists between them.

Suppose for the moment that &7 is small. If E is an injective object in ¥
(that is, a divisible group) then using the naturality of # in T we see that J, 5
is an injective object in (&7, &) for all 4. If E is an injective cogenerator in &
(for example QZ) then we have for T # 0,

[T, XJA,E] = X [T, J4z] = X [T(4), E] # 0.
Aess Aesd Aesd

Therefore X J,, i is an injective cogenerator for (&7, %). In this way we see
Aesy

independently of I1I, 3.2, that (&, &) has injectives.
Returning to the case where . is not necessarily small, let 4 be a left
R-object in .o/ and let E € *% where R is any ring. Then we have the functor
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Jir i A~ defined by J, g o(B) =R[[B, 4], E] for B € &/. In this case we

obtain a natural equivalence
0:17T,Jyp;]——R[T(4), E].

In particular, take R = [4, 4]. Let u : R— E be an injective envelope for R
in B, Corresponding to u : H4(A)— E we have the natural transformation
n="0"(u): H*—>J g, where ng(y)(g) = u(t*(g)(y)) = u(gy) for y € (4, B]
andyg € [B, 4].

Lemma 3.2, If in the above A is cogeneralor, then v is a pointwise monomorphism.
Furthermore, if X : T'—J 4 g 1 s another pointwise monomorphism and T 0, then

0 # mu(HA(A)) N A4 (T(A)) =Ty p 5(A4).

Remark. In the case where ./ is small this will show that % is an injective
envelope for H in (7, ¥).

Proof. Suppose that 0 y € H4(B). Since 4 is a cogenerator we can find
g+ B— A such that gy # 0; hence u/gy) # 0 since u is a monomorphism. This
shows that ng(y) # 0 and so nz: H4(B)—>R([[B, 4], E] is 2 monomorphism.
In other words 7 is a pointwise monomorphism.

Suppose now that T#0, so that T(B)#0 for some Bes/. Let
0# x € T(B). Then 0 Ag(x) € R[[B, A], E] since Ay is a monomorphism,
and so Ag(x)(g) # 0 for some g: B->A. Using naturality of A we have
Xa(T() () (1) = Ag(x)(¢) # 0, and s0 A4( T{g) (x)) # 0. Therefore

0 # T(g)(x) € T(A).

Denote z = T(gj(x). Then A, (z) = z eR[[4, 4], E], and so if e = 2(1,), then
£(r) = re for all r € R. Furthermore, since Z # 0 we must have ¢ 3 0. Since u is
an essential extension of the left R-module R, there is some s € R such that
0# se=u(t) for some t€R. Now we have szeR[[4, 4], E] defined by
(s2)(r) = Z(rs) = (rs)e =ru(t). Then n,4(t)(r) = u(rt) = ru(t), the last equality
being true since u is a morphism of R-modules. Therefore 7 4(t) = s2. But again
by naturality of A we have 52 = A4( T(s)(2)). Consequently, since ¢ % 0 and 74
is 2 monomorphism, we have

0 # na(t) = szen,(HY(4)) NAL(T(4)). 1}

Theorem 3.3. Let o7 be an abelian category with a cogenerator A and an object U such
that [U, B} #0 for all nonzero objects B € of . Then there is an exact covariant im-

bedding from of 10 F.

Proof. The product of U and 4 will be an object with the properties of both of
them, hence we may assume U = A. Letting R— E be an injective envelope in
R& as above, we have the functor J 4 g » which is seen to be cokernel preserving
from its definition. Since H4 is a monofunctor, it follows from 3.2 and 2.5 that
Jar: is a monofunctor, hence is exact. Also since it contains A4 it must
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carry nonzero objects into nonzero objects. Therefore J g is an exact
imbedding. |

4. Characterization of Categories of Modules

Let R be any ring. The category @™ has a small projective generator,
namely, R considered as a right R-module. Hence the same is true of any
category which is equivalent to @®. The following theorem shows that among
other things the converse is true. That is, if &7 is a cocomplete abelian category
possessing a small projective generator, then &/ is equivalent to &R for some
ring R.

Theorem 4.1. Let o/ be a cocomplete abelian category with a projective generator U,
and let R denote the ring of endomorphisms of U. Then the functor T : of —G® defined
by T(A) =[U, 4] is an exact imbedding such that the function [A, B] —[T(4),
T(B)] induced by T is an isomorphism whenever A is finitely generated. If either U is
small or S is Cs, then T is full. T is an equivalence if and only if U is small.

Proof. Since U is a projective generator, T isan exact imbedding. Suppose that
A € &/ is finitely generated. Then we must show that every R-module mor-
phism @ : [U, A]—[U, B] can be written as T(¢) for some ¢ € [4, B]. In
other words we must find ¢ such that @(f) = ¢f for all f € [U, 4]. First con-
sider the case where U =A. Then @(f) = O(1,f) = ®(1,)f, since D is a
morphism of R-modules. Therefore in this case we can take ¢ = ®(1,). Now,
in general, if 4 is finitely generated, we can write an exact sequence

A T
0>M->U>A4-0

where I is finite. For i € I we denote by u; and p, respectively the 7th injection
and projection of the coproduct. Let us denote by ®; the composition

T'(w) T(m) ®

Then @, is a morphism of R-modules, and so by the case we have already

treated we have for each ¢ a morphism ¢, : U— B such that @,(f) = o, f for

all fe [U, U]. The ¢s then define a morphism ¢ = 3 ¢;p;: 'lU—B. If we
i€l

denote the composition @ T(r) by &, then for f e [U, {U] we have using I,
18.1,

B(f) = O(nf) = ‘D[”(E, p)f] = 3 D(mupf)
= EI Di(pf) = ;g o:0.f = of. (1)

We show that A =0. If A # O, then since U is a generator we can find
a : U—M such that $Aa # 0. But we have

Ao = P(Aa) = P(wda) = D(0) = 0.
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Therefore §A =0, and so there is a morphism ¢ : A— B such that § = ¢mn.
Let f: U— A. Since U is projective we can write f = g for some g : U—=TU.
Then

D(f) = D(ng) = Blg) = ¢¢g = omg = @f.

In other words ¢ is the required morphism.

If U is small, then the above goes through even when 4 is not finitely
generated, or in other words, when 7 is not necessarily finite. For if we have
f€[U, U], then since U is small we may write f = 3, w;p,fin (1) where J is

ieJ
some finite subset of / (I1, 16.1). The rest of the proofis the same.

Suppose now that &7 is Cy, but U is not necessarily small. Given any 4 € &/

we can write A = lim4; where {4;, 7} is the system of finitely generated sub-
—

objects of 4 (I11, 1.4). Let @ : [U, A]—[U, B] be a morphism of R-modules,
and define @, as the composition

(U, 41— (U, 41> (U, B).

By what we have already proved we have for each @, a morphism ¢, : 4,—~ B
such that @,(f) = g, ffor all f € [U, 4;]. Furthermore, since T'is an imbedding
the ¢,’s are unique. From this it follows that if i < j then ¢; = @;; in other
words {¢;} is a cocompatible family. Consequently, we get an induced mor-
phism from the direct limit, say ¢ : A— B. If f € [U, A], then the image of fis
4, for some i, and so we can write f = 7,¢ for some g : U— 4;. We then have

D(f) = P(mg) = Di(g) = 98 = ¢mg = @f.

This proves that 7 is full.

Finally, if T'is an equivalence, then it is a coproduct preserving functor;
hence by II, 16.1, U/ is small. Conversely, suppose that U is small, so that T
preserves coproducts. Let A be any right R-module, and write an exact
sequence of R-modules

F
R >R+ M-—0.

Since T preserves coproducts we have T('U) =R and T(JU) =J/R. Also,
since T is full we have F = T(f) for some f: {U—JU. Then by exactness of T’
it follows that M is isomorphic to T(C) where C is the cokernel of f. This
proves that T is representative, and so 7 is an equivalence. [

Theorem 4.1 will serve two important purposes in the sequel. In Chapter VI
we shall use it to prove that any small abelian category admits a full exact
imbedding into a category of modules, and in Chapter IX we shall see how it
leads to the computation of global dimension for certain rings of matrices.
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5. Characterization of Functor Categories

Lemma 5.1. Consider the following diagram in an exact additive category < :

Pp —“ Py — s g5

Suppose that P\ and Py are projective, the bottom row is exact, and the top row is of order
two. Then there exist morphisms fy : Po—Pyand f : Py — P} such that (1) is commuta-
tive. Furthermore, let T . of ' B be a covariant additive functor into an exact additive
category, where S7' is a full subcategory of S containing Py, Py, Py, and P|. Then the
induced morphism Coker( T(d) — Coker( T(d")) is independent of the choice of fy and f .

Proof. Using projectivity of Py we can find f : Py— Pgsuch that ae = ¢'f;. Now
€'fod = xed = 0, and so the image of fyd is a subobject of Ker(e') = Im(d’).
Hence by projectivity of P; we can find f : P,— P{ such that fyd = d’f;. Let
p: T(Py)—>Fandp’': T(Pj)—F’ be the cokernels of 7T'(d) and T(d’) respec-
tively. Suppose that g, : Po— Pgand g, : P;—> P are another pair of morphisms
making (1) commutative. Let A, p: F—F' be the morphisms induced by
Jo,f1 and gq, g;, respectively. Now €'(fy — g¢) =0, and so again using pro-
jectivity of Py and exactness of the bottom row we obtain a morphism
h: Py— P{ such that d’h = f — go. Then

A=wp =M —pp =p'T(fo) —p'T(g0) = p'T(fo— &)
=p'T(d'h) = p'T(d")T(h) = 0.

Therefore since p is an epimorphism, we must have A = p. |

Theorem 5.2, Let P be a full subcategory of a cocomplete abelian category sZ, and
suppose that the objects of P form a generating set of small projectives for of. Let
T : P >3 be an additive functor into a cocomplete abelian category. Then T can be
extended uniquely (up to natural equivalence) to a colimit preserving functor T : oF — .

Proof. We first extend 7 to the subcategory of &7 consisting of all free objects;
that is, objects of the form P P; where P;e # for all iel We define

ier "
T(@ P,-) = @ T(P). For a morphism o : @) P;—> @ P, let o, be the com-
i€l i€l i€l i€
position with the ith injection into @ P,. By II, 16.1, since P; is small we can
i€l
write o; = 3 u;p;0; where u; and p; are the jth injection and projection, respec-
jeJ
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tively, for the coproduct () P;. We then define T(«) : () T(P;)—> @ T(P)
jes i€l =Y

as the morphism which when composed with the ith injection into @ T(P,)
i€l

gives 3 4, T(p;;), where z; denotes the jth injection for ) T(P;). The additive

jeJ _ jeJ
functorial properties of T as so far constructed follow from the additive
functorial properties of T.
From now on the process resembles the construction of the zeroth (left)

derived functor given in Chapters IV and V of [6]. For 4 € & write an exact
sequence

d

Pi—>P—>A-0 (2)

where P, and Py are free. Define T(A) as Coker(7(d)). For a morphism
-

a:A—> A", let P{— Pj— A'—0 be the sequence used to define T(4’). Then
by 5.1 we can find morphisms f| and f; making a commutative diagram

P, P, 4 0
P Py A 0

Define T(«) as the morphism making the diagram

TP) —> T(P) —— T(4) ——> 0

T(f,) T(fy) T(«)

ey —— T(R) —— T4)—— 0

commutative. Then again by 5.1 we know that T(«) is independent of the
choice of f; and f}, and in this way T is seen to be an additive functor from &7
to #. Setting A = A" and « = 1 4 in the above discussion we see at this point
that up to isomorphism 7T(4) is independent of the choice of the sequence (2)
used to define it, and furthermore that this isomorphism is natural with respect
to morphisms to and from 4.

We now show that T'is cokernel preserving. Let

0>A4">A—>4"—->0 (3)

be an exact sequence in ./, and take free resolutions P{— P{—A’'—0 and
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P{—P;—>A"—0 for A’ and A”. We construct the following commutative
diagram:

PO P—P® P, A— o0 @)
! L
1)1" S P(!; AII 0
0 0 0

The middle column is a split exact sequence, and the morphism Pg— 4 is
defined by projectivity of P; and the epimorphism A~» 4”. Taking the kernel
of the morphism from the middle column to the right-hand column, we obtain
a short exact sequence by the nine lemma (I, 16.1). If we repeat the above
construction with the sequence of kernels replacing (3), and P| and P|
replacing Py and Py, respectively, we obtain the commutative diagram (4) with
exact rows and columns. Hence we can use the middle row to define T(4).
Applying T to (4), the left two columns will still be split exact sequences by
additivity of T. We then see from II, 12.2*%, that T(4')—>T(4)—T(4")—0
is exact. In other words T'is cokernel preserving.

It now follows from I1, 6.3*, that in order to show that 7'is colimit preserving
it suffices to show that T preserves coproducts. Given a family {4;},, of objects
in &7, choose a free resolution

4 P
PiS PS5 4,50

for each i € I. Then using the fact that coproducts are cokernel preserving
(11, 12.2*), we see that

NCE . ©d
@D Pl—> P P{——> D 4——>0

el iel i€l

is a free resolution for (P 4;. From this it follows that T preserves coproducts.
i€l
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Finally, since the construction of T was forced at each step by the require-
ment that it be colimit preserving, we have the uniqueness assertion. |

Theorem 5.2 generalizes to functors of several variables (exercise 12).

Let &/ be a small additive category. Consider the functor from &/ to
(&7, 9) which assigns to the object 4 € &/ the functor H4 € (&, ), and to
the morphism 4— B the induced transformation H?— H4, By 2.2 we see that
this is a full, contravariant imbedding, and by 2.3 the image of &/ in (&, ¥)
is a generating set of small projectives. Composing this functor with the duality
functor on &7 gives us a full covariant imbedding from .&/* into (&7, %).

Theorem 5.3 (Freyd). 4 category & is equivalent to a functor category of the form
(o, G) for some small additive category 27 if and only if B is cocomplete abelian with a
generating set of small projectives.

Proof. We have already seen that (.o, %) is cocomplete abelian, and by 2.3
the family {H4},.,, form a generating set of small projectives. Conversely,
suppose that # is cocomplete abelian and that & is a full subcategory of 4,
the objects of which form a generating set of small projectives. Then % and
(P*, G) are cocomplete abelian categories each with a full subcategory whose
objects form a generating set of projectives, and furthermore these sub-
categories are isomorphic. Theorem 5.2 then gives us functors T : Z— (#*, %)
and S': (P*, ) > A extending this isomorphism, and moreover the unique-
ness part of 5.2 shows that §7 and 7S are naturally equivalent to the identity
functorson #Z and (P#*, %), respectively. Hence by I, 10.1, T'isan equivalence
of categories. |

Remark. If Z has a small projective generator, then 5.3 gives another proof
that & is equivalent to a category of modules (4.1).

Theorem 5.4. Let & be a C; category with a full subcategory P whose objects form a
generating set of projectives for L. Let T, S : o —>B be additive, covariant functors
where B is an exact additive category, and suppose that T is colimii preserving. Denote
the restrictions of T and S to P by T|P and S|P. Then any natural transformation
@ : T|P S|P can be extended uniquely to a natural transformation  : T—S.

Proof. For a free object (P P, in &7 we have the composition
iel

T(® P) = @ T(R)—> D S(P)—>S(D P).

Here the equality is a result of the fact that T is coproduct preserving, the
middle morphism is @) ¢p,, and the last morphism is the one which when
composed with the ith injection into (P S(P;) gives S of the ith injection into
@ P;. Consider a morphism /: (® P,— @ P; where J is finite. Using the fact

i€l i€l
that a morphism from a coproduct to a product is determined by its coordinate
morphisms, we obtain a commutative diagram
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@ 1P - T(EB P) - T(@ P,~)

iel

T

(8 7) = (@ 2) - 5
Now let 4 be any finitely generated object. This means we can find an exact

sequence
P—>Py—>A—->0
where P, is free and Py is a finite free (that is, a coproduct of the form @ P
ied
with J finite). Using (5) we have a commutative diagram

T(P) > T(R) — T(4) » 0

| ! (6)

S(P)) = S(B) —~ S(4) =0

where the top row is exact since 7 is colimit preserving, and the bottom row
is of order two by the additive functorial property of §. Hence we can find a
unique morphism ¢, : T(4) -8 (4) making (6) commutative.
Let A— A’ be any morphism where 4 and 4’ are finitely generated. Con-
sider the diagram
F—- A -0
(7)
Pp—>A4—>0
where the top row was used to define §4 and the bottom row was used to
define § 4. Since Py is projective we can find Py— Pymaking (7) commutative.
Now ¢ as so far constructed induces 2 morphism from the diagram

T(F,) —> T(A)

|

T(F) —— T(4')
to the diagram

S(Fy) —> S(4)

L

S(Pg) ——> §(4')
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Furthermore, in the resulting cube we see that all faces are commutative save
possibly the face

§(4) —— $(4")

But since T(P)—> T(A) is an epimorpnism, it follows from 11, 1.1, that (8} is
also commutative. Thus ¢ as so far constructed is natural.

For a not necessarily finitely generated object 4, we let {4;} be a represen-
tative set of finitely generated subobjects. Since & is C3 we know by II1, 1.4,
that A is the direct limit of the corresponding direct system, and so since T is
colimit preserving we see that T(4) is the direct limit of the corresponding
system of 7°(4,)’s. The cocompatible family {7(4;)—>8(4;)—(SA)} then
defines a morphism ¢, : 7(4)—S$(4). Given A— A" we must show com-
mutativity of (8). For each finitely generated subobject 4; of 4, let A;— A’ be
the image of the composition 4;—~A4—A’. Then 4 is a finitely generated
subobject of 4'. Hence, by what we have already shown, the diagram

l l 9)

is commutative for each i. Consider the morphism from the diagram (9;) to
the diagram (8) induced by the morphisms 4,— 4 and 47— A4'. Again we have
a cube in which all faces are commutative save possibly (8). From this we see
that for each 7 the composition T(4,)— T(4)— T(A')—S(A’) is the same as
the composition T(4;)—> T(4)—S(4)—S(4"). Since T(4) is the direct limit
of the T(4,;)’s, this proves the commutativity of (8) and establishes naturality
of ¢.

Uniqueness of ¢ is clear since each step in the above construction was
forced by the requirement that § be natural. ||

Corollary 5.5. Under the assumptions of 5.4, if further S is colimit preserving and ¢
is a natural equivalence, then § is a natural equivalence. ||

Theorem 5.4 and Corollary 5.5 can be generalized to functors of several
variables (exercise 11).
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Exercises

1. Use the fact that & has an injective cogenerator to find an exact, contra-
variant imbedding from 4 to ¥. Hence show that any abelian category with
an injective cogenerator admits an exact covariant group valued imbedding.
Show similarly that the conclusion of 3.3 is valid under dual hypothesis.

2. Consider the diagram (1) of abelian groups in §1. Let X— A4 be the kernel
of the composition 4 — B -—>B". Then we have a morphism X— B’ such that
X—B'—>B = X-A—>B, and an epimorphism X— K" such that

X>A->A"=X—>K">A4".
Show that the connecting morphism K”—F" is such that
X>K'—-»>F' =X->B->F.

Prove also that the connecting morphism is self-dual by showing that it satisfies
the dual of the above relation.

3. If &/ is a small, exact, additive category and T is a projective in (&, %),
then T is a kernel preserving functor. (Use 2.3 and 11, 14.2.)

4, Let s/ be a small additive category with kernels and finite biproducts, and
let T': o/ — % be a small projective in the functor category (&, ). Then T'is
naturally equivalent to H? for some B € &. (Find a composition T->H4 > T
which is the identity for some 4 € &, and then use I, 18.5, and the full, contra-
variant, kernel preserving imbedding & — (&7, ) which assigns the functor
H4 to the object A.) This exercise is due to Freyd.

5. Let o7 and # be additive categories, and for 4 € &7, B € %, let
HAQ HE : oA xB—~>Y

be the bifunctor whose value on the pair (4’, B’) is [4, A"] ® [B, B’]. (The
tensor product of groups is defined in VI, exercise 3). Let T be an additive
bifunctor from &/ x # to ¥. Establish a natural equivalence

[H*® H®, T)~ T(4, B),

and hence show that in the case where & and # are small the family
{H4 @ HB}, .4 is a generating set of small projectives for the category
(A, (B, 9)). Generalize this result to additive group valued functors of any
number of variables.

6. In exercise 5 let & be the category of finitely generated abelian groups Z
(11, exercise 17) and let #Z be a ring R, or in other words an additive category
with a single object B. In this case denote the functor H4 ® H2 by H4 @ R.
The functor category (#, %) here is the module category *%. Then by exercise
5 the category (Z,R%) has an injective cogenerator . In particular, let
R = Z,, where in general Z, denotes the integers reduced modulo z. Consider
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the epimorphism f:Z,—>Z, in ¢ defined by f(1) = 1. Then f induces a
natural transformation

n: Hz' ® Z2—)Hz‘ ® zZ.

By evaluating 7 at Z, € & show that 7 is not an epimorphism. Hence, since Q
is a cogenerator the morphism

[H% ® Zy, Q1> [H* ® Z,, Q]

is not an epimorphism. But by exercise 5 this is just @(Z,)— Q(Z,). Hence an
injective, module-valued functor need not be an epifunctor.

Show, however, that if the ring R is torsion free as an abelian group (so that
tensoring with it over the integers is an exact functor) and & is any abelian
category, then an injective in the functor category (&R, %) is a cokernel
preserving functor.

7. Let &/ be a small abelian category with projectives. Suppose that
T : o/ — % is an additive epifunctor and consider the transformation

@ WATIHP L, T
P

whose ath coordinate is «, where P runs through all projectives in &7. Show
that this transformation is an epimorphism in the category (&7, %).

8. Let R be a commutative ring and take U=R @ R in 4.1. Under T the
R-module R corresponds to the 4-module [R @ R, R]® where

A=[R®R,ROR® .

Show that every nonzero element of [R @ R, R] has torsion, so that in
particular [R @ R, R] cannot be free as a /-module. Hence the property of
freedom of modules is not invariant under equivalences of categories.

9. The center of a ring R is defined as {¢ € R|¢er =rc for allr € R}. If A is any
object in a C additive category &7, then the center of [4, A] is ring isomorphic
to the center of [74, /4] for any set I. Hence if & is a C, abelian category and
U and V are both projective generators for &, then [U, U] and [V, V] have
isomorphic centers. (Write U @ M ='V and V @ N ='U for some infinite
set I and show from this that ‘U =V.) Therefore if R% is equivalent to 5%,
then R and 8§ have isomorphic centers. In particular, if R and S are com-
mutative rings, then ®¥ is equivalent to 8% if and only if R is isomorphic to §
(Freyd).

10. If the functor § of 5.4 is limit preserving, then it suffices to assume that &/
is (5 abelian. If S is coproduct preserving and & is Cy, then it suffices to assume
that & is cocomplete abelian. (In either case show that the diagram (5) of 5.4
is commutative even when J is not a finite set. Hence there is no need to resort
to direct limits in these cases.)
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11. Using induction on n generalize 5.4 to the case of additive functors
T,8S: ol xAyx...x A, &

where each &7 is a (3 category possessing a generating set of projectives.

12. Use induction on 7 to generalize 5.2 to functors of several variables where
each of the variables comes from a cocomplete abelian category having a
generating set of small projectives. (Theorem 5.3 insures that such categories
are (3, hence exercise 11 applies.)

13. A group objectin a category & is an object 4 € & together with a group
structure on [B, A] for each B e/, such that morphisms B— B’ induce
morphisms of groups [B’, 4]—[B, A]. Thus, if 4 is a group object, then
[, A] can be considered as a contravariant, (nonabelian) group valued
functor. If &/ has a zero, then the unit element for the group [ B, 4] is necessarily
the zero morphism 0. If, furthermore, %7 has finite products, then using 2.2*
we can find unique morphisms m : 4 x 4—4 and ¢ : 4— 4 inducing multi-
plication and inversion on [B, 4] for all B € /. Then m and ¢ satisfy the
following rules:

(i) The diagram

Axd—"——> 4
is commutative.

(ii) The composition A>Ax A>Ais] 4> where u, is the second injection
into the product.
(i) n

(iii) The composition 4 ——> 4 x A—> A is zero.

Conversely, if &7 is a category with a zero and finite products, and
m:Ax A—4 and i : A— A are morphisms satisfying (i), (ii), and (iii), then
the sets [ B, 4] become groups in such a way as to make 4 a group object. It
then follows from the corresponding facts about ordinary groups (which are
the group objects in the category of sets) that the composition

@) n

4 >A x A A

is zero, the composition
Uy m
A——s>AxA——>4

is 14, and the “inverse” morphism ¢ satisfying (iii} is unique.
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A morphism of group objects 4, and A4, is a morphism f: 4, — 4, in.& such
that the induced morphism [ , f] is a natural transformation of group valued
functors. In this way the class &7 of group objects in &7 becomes a category.
If o7 is Z-complete, then so is /. The corresponding statement for cocom-
pleteness need not be true. If o/ has finite products and the “ multiplications”’
on group objects 4, and 4, are m, and m,, respectively, then f: 4,—> A4, is a
morphism of group objects if and only if fm, = my( f x f).

If o7 is an additive category with finite products, then & is isomorphic
to /.
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[CHAPTER V]

Adjoint Functors

Introduction

In this chapter we develop a theory of adjoint functors as introduced by
Kan [24]. Theorem 3.1 gives a necessary and sufficient condition for a functor
T: o/ —% to have a coadjoint. If &/ is a complete, locally small category
with a cogenerator then this condition is simply that 7 be limit preserving
(3.2).

If the inclusion functor &7’ < .o of a subcategory has a coadjoint R, then
&' is called a coreflective subcategory of 7. In the case where &7’ is a full,
coreflective subcategory of an abelian category and R is kernel preserving,
it turns out that &’ is abelian (5.3).

Let # be a full subcategory of a complete, locally small abelian category
&, and suppose that .# is closed with respect to limits and subobjects. Suppose
further that for every M € .# there is a monomorphism M—Q in .4 with @
injective in /. Then .# is called a monosubcategory of /. A theory of
monosubcategories is developed in §6. A certain subcategory of .4 will be
shown to be abelian.

The last section gives a theory of projective classes in an abelian category.
Under certain conditions it is shown that if § : Z#—.4/ is a coadjoint for a
faithful epifunctor T, then the projectives in & are precisely the objects of the
form S (P) where P is projective in 4.

The work in §3 and §6 is by Peter Freyd. Section 7 is due to Eilenberg and
Moore [12].

1. Generalities

Recall that a covariant functor T : o/ — 4 is said to be an adjoint for the
covariant functor S : #— & if there exists a natural equivalence of set-valued
bifunctors (not necessarily unique)

8,4 * [S(B), 4] > [B, T(4)]. (1)

We say also that S is a coadjoint for T in this case. The adjoint situation given
117
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by the natural equivalence (1) will sometimes be described by the notation
(n;8, T; A, B).

If Ty, Ty : &7 —% are naturally equivalent functors, then it is immediate
from definition that a functor S : #—&f is a coadjoint for T, if and only if
it is an adjoint for T,. Also it is clear that 1, : &/ —. is a coadjoint for itself,
and that if §,: ¥—>% and S, : #—& are coadjoints for T, : #—% and
T, : of — &, respectively, then §,S, : € >« isa coadjoint for T, T, : & —>F.

Given the natural equivalence (1), for B € # we denote by ¢, the morphism

ne.s®)(lss) : B—> TS(B). (2)
Dually, for 4 € o we denote by i}, the morphism
T4l ) : ST (4) > 4. (2%)

A morphism of the form « : §(B)— 4 in & induces a commutative diagram

[S(B), S(B)] —— [B, TS(B)]

Y 2

[S(B), 4] ——— [B, T(4)]

which yields the equation
(@) = T(«)pp. (3)
Also a morphism y : 4— 4’ in &/ induces a commutative diagram

[ST(4), 4] —— [T(4), T(4)]

Y

($T(4), 41 —— [T(4), T(4")]

which gives us the equation

v = (T (y))- 4)

The duals of Egs. (3) and (4) read v
771 (B) = 4.8 (B) (3*)
¢pd = 7(S(8)) (4*)

relative to respective morphisms 8: B— T(4) and § : B'—~Bin 4.
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Proposition 1.1. Consider an adjoint situation (n; S, T'; 4, ). Given B : B—~T(A)
in B, the morphism o = m~"(B) is the unique morphism 8 (B) — A such that the diagram

B— TS(B)

JT(")

T(A)
is commutative. In particular, T is univalent on [S (B), A). Furthermore, ¢ is a natural

transformation from lg to TS; that is, relative to a morphism 8 : B'—B in B, the
diagram

B —% 5 T§(B)

lcﬁ lrs(a\
?

B—=— TS(B)
s commutative,

Proof. The first statement follows from (3), taking into account the fact that
7 is a 1-1 correspondence. To prove the statement regarding naturality of ¢,
we wish to show that

¢5d = TS(8)¢p- ()

Using (3), the right side of (5) is 7(S(8)). Hence Eq. (3) is equivalent to
Eq. (4*).1
Proposition 1.2. Given an adjoint situation (q; S, T'; o, &), the following state-
ments are equivalent.

(a) T is faithful.

(b) T reflects epimorphisms.

(c) If B: B— T(A) is an epimorphism, then o = v~ (B) is an epimorphism.

(d) 4, : ST(A) —>A is an epimorphism for all A € A .
Proof. (a) = (b) follows from II, 7.1.

(b) = (c) If 8 is an epimorphism, then it follows from 1.1 that T'(«) is
an epimorphism. Since T reflects epimorphisms this means that « is an
epimorphism.

(c) = (d) This follows by taking 8 = 1.

(d) = (a) Suppose that «;, ay : A—>A"and T («;) = T(«y). Then using
naturality of ¢ we have

aypg = ST () = YipST (@) = gy

Since 1, is an epimorphism this means «; = ay. This shows that T'is faithful. ||
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Proposition 1.3. In an adjoint situation (n; S, T'; &, #) we have

(T§)(eT) = 11 (6)

If either T or S is full, then Ty is a natural equivalence with inverse ¢ T (and so by
duality S is also a natural equivalence with inverse iS).

Proof. Equation (6) follows from replacing « by 41, in Eq. (3).
Suppose now that T is full. Then ¢4 can be written as T («) for some
o : A—>ST(4). Using (6) we have

T(U‘PT(A) = Pry = cPT(A)T(‘/‘A)‘PT(A)
T(“)T(‘PA)(PT(A) = T(“‘/’A)CPT(A)-
But then by 1.1 we must have ay, = 1. Hence @7 T () = T(ath,) = 1.

On the other hand, if § is full, we consider the composition of natural
transformations of set valued functors of B,

[B, T(A)]—S>[S(B),ST(A)]~——H—>[B, TST(4)].

By 1.1*, S'is univalent on [B, T'(4)]; hence since § is also full, the first trans-
formation is an equivalence. Therefore the composition is an equivalence, and
so by 1V, 2.2, the morphism T'(4)— TST(A) which induces the transforma-
tion must be an isomorphism. But this morphism is just the image of 1,
under the transformation, and is thus seen to be none other than gr,. I

We know from II, 12.1, that if 7": o/ — % has a coadjoint, then 7 must be
a limit preserving monofunctor. In particular, if & and & are categories with
zero then T must be zero preserving. It then follows from Eq. (3) that 5 must
be zero preserving. With regard to additivity we have the following proposition.

Proposition 1.4. Consider an adjoint situation (v; S, T; o, RB). If o and B are
additive categories, then T is additive if and only if v is additive (that is, if and only if
is a natural equivalence of group valued bifunctors). Thus T is additive if and only if S is
additive. In particular this will always be the case if either of or BB has finite products.

Proof. If T is additive, then for a,, oy : §(B)— A we have, using (3),

Ny +ag) = T(a; +ag)ep = (T(e)) + T(ay))pp
= T(a)pp+ T(x2)pp = n{ey) + n(ez)-

This shows that 7 is additive. A similar argument using Eq. (4) shows thatif 5
is additive then so is T.. It follows now by duality that §'is additive if and only
if n is additive. Therefore S is additive if and only if Tis additive.

Suppose now that .o/ has finite products. By II, 12.1, T must preserve finite
products, and so by II, 6.4, T'is additive. ||
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Consider an arbitrary family of categories {#,};c;. The product category
X 2, has for objects the class of all I-tuples (B,) where B; e &, for alli e I. A
'r‘rillorphism B: (B;)—~(B)) is a family of morphisms (8;) where B;: B,—~ B..
A morphism 8 in the product category is a monomorphism if and only if §;is
a monomorphism for all { € /. In general, a limit for a diagram in the product
category is obtained by projecting the diagram onto the ith category %, taking
a limit for the projection for each i, and then using the resulting family of
limits to define a compatible system in X &,;. If each &, is abelian then so is

X &;. A family of functors 7T} : & -3, determines a functor 7: .o/ > X &;

iel
defined by T'(4) = (T,{4)) and T (&) = (T;(«)). Conversely, any functor into
the product category is determined by such a family.

A family of functors T;: & —Z; will be called collectively faithful if for
each pair of distinct morphisms a,, a; : A— A" in & we have Tj{«,) # Ty(ay)
for some i. Thus {T}} is collectively faithful if and only if the associated functor
T into the product category is faithful. Observe that a family of objects {U;} in
& is a family of generators if and only if the family of functors HY¢ ;: o/ %
is collectively faithful.

A family of functors §; : #;— .o/ is called coproductive if for each family
of objects (B;) with B; € &, for each i, the coproduct (P S;(B;) is defined in .

iel

In this case we can define S: X #,—./ by taking S((B;)) = @ S,(B;) and
ief i€l
((B) = D Si(B).

Proposition L.5. Let T; : o/ —B; be an adjoint for S; : B;~>f for each i € I, and

suppose that the family {S;} is coproductive. Then the associated functor T : of —X 2B, is

an adjoint for the associated functor S : X B,—. If U, is a generator for B, for each i

and the family { T;} is collectively faithful, then {S;(U;)} is a_family of generators for oA .

If of and the B;'s all have coproducts and U, is a small object in B; for each i, and if

Sfurther the Ts are all coproduct preserving and 1 is finite, then @ S;(U,) is a small
i€l

object in A .

Proof. The assertion about adjointness follows from the sequence of natural
equivalences

i€l iel

[S(B), 4] = [69 S/(B), A] ~ X [5(8), 4] = X [B, Ty(4)]
= [B, T(4)].

If {T}} is collectively faithful and U; is a generator in &; for each i, then it
follows that the family of set valued functors [U;, T;( )] is collectively faithful.
Consequently, by adjointness the family of set valued functors [S{(U)), ] is
collectively faithful, or in other words {S;(U;)} is a family of generators for .27.
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Finally, suppose that Uj is small and T; is coproduct preserving. Then
smallness of S;(U;) follows from the commutative diagram

[swn. B 4] ~ [un T(@ 4] - [P Tiao)]

[sv0. @] » [, T Q] - [ BT

relative to a coproduct @ 4; in & and a subset J of K. Thus if / is finite, then
kek

@ S;(U;), being a finite coproduct of small objects, is itself small. ||

i€l

2. Conjugate Transformations

Proposition 2.1. Consider adjoint situations (q,; Sy, T\; A, B) and (ny; Sy, Ty;
A, B) and a natural transformation p: T)— T,. Then there is a unique natural
transformation X : Sy — S, such that for all A € o and B € & the diagram

[$,(B), 4] —— [B, T;(4)]

[S,(B), 4] —™ > [B, T;(4)]
is commutative.

Proof. For B € # we consider the diagram

[8,(B), $i(B)] —— [B, T, 5,(B)]

1
[S,(B), $,(B)] —— [B, T,5,(B)].
Let 1 denote the identity morphism for §,(B). Define

A = n2' (s mymi(1))-

This definition of Ay is forced by the condition that (155 (5,) be commutative,
and so we already have the uniqueness assertion. Now let « € [$,(B), 4]. Place
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the diagram (1 4) over the diagram (15 (5)) and join corresponding vertices
by the morphisms induced by «. We obtain a cubical diagram, and using
naturality of 7, n,, and u we see that all its faces are commutative save
possibly (1 g and (lg,). But (1 p)) is commutative as far as 1 is con-
cerned, Hence (1, ,) is commutative as far as « is concerned. Since this can be
done for every « € [S$(B), 4], this proves that (15 4) is commutative.

It remains to be shown that A is a natural transformation. Given B’'— B we
must show that the diagram

$y(B) ——— 8x(B)
Y 8 2)

§)(B) —— Si(B)

is commutative. To this end place the diagram (lp g () over the diagram
(1p5,p))» joining corresponding vertices by the morphisms induced by
B’— B. Again we have a cubical diagram, and using the part of the theorem
we have already proved, we see that all the faces are commutative save
possibly the face

[$)(B), §,(B)] —— [$i(8"), 51(B)]

[S2(B), §,(B)] ——— [$y(B'), $1(B)]

But since 7), is a one to one correspondence it follows that (3) is commutative
also. Chasing 1 around (3) in both directions gives us the commutativity

of (2). §

The transformations p and A of 2.1 are called conjugate transformations
with respect to 7, and 7,. Given adjoint situations (n; S;, T}; &7, &) for
i=1, 2, 3, and transformations u,: Ty— T, and p,: T,~> T3 with con-
jugates A; : 8,— 8| and A, : §3— 8, respectively, it follows from definition
that A;A, is the conjugate of pou,. Also in any situation (4; S, T'; &, &) it is
clear that | ;is the conjugate of 1 . Using these remarks and taking 7', = T, =T
with o = 17in 2.1 we obtain
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Corollary 2.2, If S| and S, are coadjoints for a functor T, then S| and S, are naturally
equivalent. |

We can generalize the notion of adjoints to functors of several variables as
follows. Let
T € xCox...xEC, xA>H 4)

S:BxC, xCyx...xE,~>A (5)

besuch that T'is covariantin ./, Siscovariantin %, and foreachi, 1 <ign, T
has the opposite variance of §'in ;. Then § is said to be the coadjoint of 7 if
there is a natural equivalence

[$(B, €y, Cyy..., C), A = [B, T(C}, Cypy...,C, 4)] (6)
of n + 2 variable set-valued functors.

Proposition 2.3. The n+ 1 variable functor (4) has a coadjoint S if and only if each
single variable partial functor of the form T(C),Cy,...,C,, ): A >% has a
coadjoint. In this case for each i, T is limit preserving in €, if and only if S is colimit
preserving in 6.

Proof. Using the discussion in the third paragraph of I1, §9, the first statement
is an immediate consequence of 2.1. The other statement follows easily from
II, 5.1, in view of the natural equivalence (6). |

3. Existence of Adjoints

Let T': o/ — 2% be any covariant functor. We call a set of objects {S};¢; in
&/ a solution set with respect to 7T for an object B € & if for any object
A € & and any morphism B— T'(4) in % there are morphisms B— T(S;) and
a : 5;— A for some i such that the diagram

B——T(S)

is commutative.

Theorem 3.1. Consider a covariant functor T : & I8 where o is complete and
locally small. Then T has a coadjoint if and only if it is a limit preserving functor which
admits a solution set for every object in %.

Proof. If T has a coadjoint S, then by 1I, 12.1, T must be limit preserving.
Also we see from 1.1 that the single object S (B) serves as a solution set for B
in this case.
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Conversely, let T:.2/—% be a limit preserving functor which admits
solution sets for all objects in Z. Given B € 4, let {§,};c; be a solution set.

Define
4, = X sBT6,
il

Then since T preserves limits we have
T(d)) = X T(5)(760,

i€l
Let B— T(A,) be the morphism which when composed with the fth projection
from the product gives f. This morphism has the property that for any 4 € &/
and any morphism B— T(4), there is a morphism a, : 4;— A such that the
diagram

B—— T(4)

J T(al)

T(4)
is commutative. Define §(B) as the intersection of all subobjects 4"— 4, such
that B— T(A,) factors through 7T (4')— T(A,). Then since T is limit
preserving, B— T (4,) factors through T'(§(B))— T(4,). Now $(B) still has
the above factorization property of 4;; namely, given 8 : B— T'(4), thereisa
morphism « : §(B)— 4 such that the diagram

B ——> T(8(B))

8 jr(a) (N

T(4)

is commutative. Furthermore, in this case « is unique. For if «’ is another such
morphism, let E—.$(B) be the equalizer of « and «'. Then since 7 is limit
preserving, by 11, 6.2, T(E)— T'(§(B)) is the equalizer of T'(a) and T(«').
Therefore B— T (S (B)) factors through T(E)— T(S§(B)), and so E is one
of the set of subobjects of 4, of which §(B) is the intersection. Therefore
E=§(B)andso a=a'.

For a morphism 8 : B’ —B we define §(8) : S(B')—>S§(B) as the unique
morphism making the diagram

B — T(8(8'))

ls lr(s(a)) (2)
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commutative. It follows from the uniqueness of §(8) that §'is a functor. By
construction of § we have a 1-1 correspondence

[$(B), 4]1—[B, T(4)].

The naturality of this correspondence in 4 and in B follows easily using the
diagrams (1) and (2), respectively. Thus S is a coadjoint for 7. ]

Corollary 3.2, If o is a complete and locally small category with a cogenerator, then
T : of & has a coadjoint if and only if it is limit preserving.

Proof. Suppose that T is limit preserving, and let C be a cogenerator for .&7.
By 3.1 it suffices to find a solution set for every B € #. Given §: B— T'(4),
consider the pullback diagram in &/

P T C[B' T(C)]

4 —2 5 clacl

where the composition of u with the fth projection from CC€ gives the
(T(f)B)th projection from CBT)] and the composition of A with the fth
projection from C4CI gives f. By II, 15.2*, A is a monomorphism, hence so is 7.
Now in & the diagram

B ——> T(C)[B’ T(C))

l [m)

T(d)—5y> TCAC

is commutative. Since T preserves pullbacks, this means that 8 factors
through 7T'(«). Therefore it suffices to take as a solution set for B the set of all
subobjects of CIBTE_ ]

4. Functor Categories

Proposition 4.1. In an adjoint situation (n; S, T; B, €), consider the diagram of
categories and covariant functors

N

BE—S %
T
o
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Then there is a one to one correspondence
7: [8G, F]—[G, TF]
whick is natural in F and G.
Proof. For a natural transformation u € [SG, F], define 4j(u) € [G, TF] by

()4 = Noa,ea)(ta)
for all A4 € o. To show that 7j(u) is a natural transformation we must show
that given 4— B in &/ we have a commutative diagram

G(d) — T(E(4))

|

G(B) 2 T(F(B))
By naturality of u we know that the diagram

ity

S(G(4)) —— F(4)

S(G(B)) —~— F(B)
is commutative. Consider the diagram

[S(G(4)), F(4)) ——> [G(4), T(F(4))]

(S(G(B)), F(B)] —— [G(B), T(F(B))]
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which is commutative by naturality of 7. Commutativity of (2) says that on
the left-hand side of (3) the elements u 4 and pg are taken into the same element
in the middle row. Therefore the same is true of 4(u) 4 and () 5 on the right-
hand side. In other words (1) is commutative. Naturality of 7] in F and G then
follows trivially from naturality of 7. The inverse of 4 is constructed using
7~} just as 7 was constructed using 7. ||

Proposition 4.1 may be considered in the following way. If T': % — € is the
adjoint of §: ¥ % and & is a small category, then the functor

Toi[ﬂ,g]*[ﬂ, g]

defined by T4(F) = TF is the adjoint of the functor S, : [, €] > [, %]
defined by Sy(G) = SG. If &/, #, and € are additive categories, and T {and
therefore §) is an additive functor, then the categories (&7, #] and (&, €]
may be replaced by (&, #) and (&, €), respectively.

5. Reflections

Consider a category &7, a subcategory /', and an object 4 € &7. A coreflec-
tion for 4 in &/’ is an object R(A) € &' together with a morphism

pa: A—>R(4) (1)

such that for every object 4’ € &/’ and every morphism 4— A’ there exists a
unique morphism R(4)— A’ in &/’ making the diagram

p

A —— R(A)

|

Al

commutative. Equivalently, denoting by 7 the inclusion functor from &' to
&/, (1) defines a coreflection for A4 if the function

[R(4), A')opr—[4, [(A")] et (2)

induced by p, is a 1-1 correspondence for all A’ € &’. From uniqueness of
R(A)— A4’ it follows that any two coreflections for 4 are isomorphic in &7"'.
If o/’ is a full subcategory of &, then every object of & which is in &/ is its
own coreflection via the identity morphism.

Dually, R(A4) — 4 is called the reflection of 4 in &/’ if R(4) € &/’ and if for
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any morphism A'—4 with 4’ € &/’ there is a unique morphism 4’ — R(4)
in &7’ such that the diagram

Al

|

R(A)—— 4

is commutative.

If every object in &7 has a coreflection (reflection) in &', then .7’ is called
a coreflective (reflective) subcategory of .&7. In this case R becomes a
functor from &/ to &', called the coreflector (reflector) of &/ in &7’,
by assigning to each morphism «:A-—>B in & the unique morphism
R(a) : R(A)— R(B) in &' such that the diagram

A —" R(4)
Ja JR(&)
B —2 5 R(B)

is commutative. It is then easy to check the naturality of (2) in both A and 4.
In other words, if R : o7 — /" is a coreflector for &7 in .o/, then R is a coadjoint
for the inclusion functor / : &' — 2. In this case p is simply the transformation
@ described in §1. On the other hand, if the inclusion /: &/'—.4/ has a
coadjoint R, then by 1.2, R is the coreflector of & in &'

Proposition 5.1, Let o' be a full, coreflective subcategory of 7 . If a diagram D in o’
has a limit in 4, then it has a limit in ',

Proof. Let {«;: L—D,} be a limit for D in & and let L' = R(L). Then by
definition of coreflection we have morphisms «; : L'— D, such that «jp; = ;.
Also, for an arrow m from i toj we have

D(m)aip, = D(m)a; = a; = aipy

and consequently D(m)o; = o} The compatible family {a;} thus defines a
morphism « : L' L. For each 7 we have o ap; = ajp; = «;, and consequently
ap; = 1;. We wish to show that p;a = 1,.. Since &’ is full we may assume that
pr = 1., in which case we must have R(p;) = 1;.. Then we have

prax = R(a)pr = R(a)R(py)
= R(apy) = R(1y) = 1.

This proves that p, is an isomorphism, and consequently {«}} is a limit for

Din'. |
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Proposition 5.2. Let 7' be a full, coreflective subcategory of . If D is a diagram in
&' and {D;— L} is a colimit for D in &, then a colimit for D in /' is given by the

family {D,~L"5 R(L)}.

Proof. Since &/’ is full we may assume that the restriction of R to &/’ is the
identity functor, and that p, =1, for &/’ € A". Now R, being a coadjoint,
must preserve colimits. Consequently {R(D;)—R(L)} is a colimit for RD in
&7'. But using the assumption on R and p we have RD = D and

P

R(D)——>R(L) = D;——>L——>R(L)
as required.

Of special interest is the case where &7 is a full coreflective subcategory of
an abelian category 7. By 5.1 and 5.2, &' has kernels, cokernels, and finite
biproducts. A morphism in ./’ is a monomorphism in ./’ if and only ifitis a
monomorphism in .&7. By II, 12.1*, the coreflector R is colimit preserving,
and in particular cokernel preserving. If, on the other hand, R is kernel
preserving, then the following has been observed by F. W. Lawvere.

Proposition 5.3. Let ' be a full, coreflective subcategory of the abelian category o/,
and suppose that the coreflecior R : of —f" is kernel preserving. Then 4’ is an abelian
category. Furthermore, if & is Cs, then so is .

Proof. To prove &7’ abelian it suffices to show that .2/’ is normal and conormal
(I, 20.1). By fullness we may assume as usual that the restriction of R to 27"
is the identity functor. Let 4,— A, be a monomorphism in .&/’, hence in &/.
Then 4, — A, is the kernel of some morphism 4, — 43 in &7. By assumption on
R this means that R(A4,)— R(A,) is the kernel in &7’ of R(A4,)— R(A;). But
R(A4,)—> R(4,) is just A; — A,. This shows that .2/’ is normal.

As for conormality, let 4,— 45 be an epimorphism in &7’. Then its cokernel
in &7’ is zero. By 5.2, this cokernel is the composition 43— A,—> R(A4,) where
Ag— A, is the cokernel in 7. Hence R(A,) = 0. Consider the sequence

A, > Ay—>I—>A;— A,

where [ is the image of 4,— A4;in .9/ and 4,— 4, is the kernel in either &/ or
&/'. Then R(I)— R(Aj) is the kernel of R(4;)— R(4,) by assumption on R.
But since R(4,) = 0, this shows that R(I) - R(A4,) is an isomorphism. Since R
is cokernel preserving, R(4,)— R(I) is the cokernel in &7’ of R(A,)—> R(4,).
Since R(4,)— R(I)—> R(A3) = R(4,) > R(43) = A;—> A4 and
R(4)) > R(4;) = 4, — 4,,

this establishes conormality for .o7".

Now suppose that .o/ is C5. To prove that &/” is (3, we must show that, given

a monomorphism D— D’ of direct systems in &¢’, the induced morphism of
the colimits in &7’ is 2 monomorphism. We know that the induced morphism
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L'— L of the colimits in %7 is a monomorphism by Cj for &/. But the induced
morphism of the colimits in &7" is just R(L') — R(L) which is a monomorphism
since R is kernel preserving. Hence &" is C3. |

Remark. We have proved in 5.3 that &/’ is an abelian category, but it is not
true in general that &/’ is an abelian subcategory of /. That is, it is not true
that the inclusion of &’ in & is an exact functor.

6. Monosubcategories

Throughout, &/ will denote a complete, locally small, abelian category, and
A will denote a full subcategory of & satisfying the following axioms.

M . M is a complete subcategory of &7.
M y: If A~ B is a monomorphism in &/ and B e .#,then 4 € .#.

Axiom 4| says that .4 is a complete category, and the inclusion functor
from .# to & is limit preserving. Equivalently, the limitin &7 of every diagram
in .4 is also in . Thus, in speaking of limits of diagrams in ., it will not be
necessary to specify whether the limit is to be considered in &/ or in ..
Likewise, since monomorphisms are characterized by having zero kernel, a
morphism in .# is a monomorphism in . if and only if it is a monomorphism
in &/,

Proposition 6.1. .# is a coreflective subcategory of S, and for each A € s the
coreflection is an epimorphism.

Proof. Given 4 € &7, let {M;},; be a representative set of quotient objects of 4
which are in 4. Let M be the image of the obvious morphism 4—> X M,. By

iel
M, X M;is in M and so by M ,, M isin #. Given A—>M' with M’ € A,
i€l
we wish to find a morphism M— M such that the diagram

A—M
(N

M
is commutative. By .4, we may suppose that 4—M " is an epimorphism,
hence we may assume that M’ is M, for some £ € I. The required morphism
M — M’ is then just the inclusion of M into the product composed with the
kth projection. Since 4— M is an epimorphism, the morphism M— M’
making (1) commutative is unique. Hence A— M is the corefiection of 4
inA. |

Throughout the remainder of the section we assume that .# satisfies the
following additional axiom.
M ,: For each M € .4 there is a monomorphism M — @ in .4 such that Q

is injective considered as an object in .27.
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We shall call .# a monosubcategory of & if it satisfies the axioms .4,
vlz, and jg.

Lemma 6.2. Let
0O->M—->A4A—-N->0

be an exact sequence in o, and let M and N be in M. Then A € M.
Proof. Let M—> @ be as in .# 3, and form the pushout diagram (I, 20.3*)

0 > M > 4 - N >0
0 > Q > P — N > 0

Since Q is injective, the lower sequence splits; thatis, P = @ @ N. Now @ and
Narein .#, hence by 4 ,s0is @ @ N. Since M— Q is a monomorphism, by
I, 20.2*, A— P is also a monomorphism. Therefore by .#,, Aisin 4. ||

We shall call an object T € &7 a torsion object with respect to 4 if the
coreflection of T in . is 0. Equivalently, T is a torsion objectif [T, M] =0
forall M e #.

Proposition 6.3, Given A € &, let T— A be the kernel of the coreflection A— M.
Then T ts a torsion object. Furthermore, any morphism T' — A with T a torsion object
Sactors uniquely through T — A.

Proof. To show that T'is torsion, we form the pushout diagram

0 — T > A > M —> 0
0 >N > P > M > 0

where T'— N is any morphism with N € .#. By 6.2, Pis in .#, and so we have
an induced morphism M—P such that 4—->M—-P =A—>P. Therefore
T—+N—>P=T—>A»>P=T—>A—->M—->P=0, and so since N>P is a
monomorphism, 7— N is zero. This proves that T is torsion. Now if T is
torsion, then for any morphism 7°—4 we have T'—>A4—>M =0; hence
T'— A factors uniquely through the kernel 7— 4. ||

Consider an exact sequence in &/
0>L—>M—->N->0 (2)

where L and M are in 4. We shall call L+ M a pure monomorphism if
N € 4. We shall call L a pure object if every monomorphism from L to an
object of A is pure. If L € .# is injective in &7, then L is necessarily pure. For
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in this case the sequence (2) splits, so N is a subobject of M, and consequently
Nisin . # by A ,.
Let us denote the full subcategory of A consisting of all pure objects by £.

Lemma 6.4. Let
0>L>M—->N->0

be an exact sequenceinf . If Ne M and M € ¥, thenL € L.

Proof. Let L—- M’ be a monomorphism with M’ € .#. Form the pushout
diagram (I, 20.3%)

0 0

0 — L > M >N——> 0
4 A 4

00— M P > N > 0
v
NI NI
v 4
0 0

Since M’ and N are in #, by 6.2, so is P. But then since M is pure, N’ € .#.
This proves that L is pure. |

Lemma 6.5, Let
O>M—->R->T—->0

be an exact sequence in & with M € M, R e L, and T torsion. Then M — R is the
coreflection of M in .

Proof. Let M—L be any morphism with L € #. Form the commutative
diagram with exact rows in &/

0 — M

Ll

0 —— L > F —> 0
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where the bottom row is defined by 5 and R—> @ can be defined by injectivity
of Q. Since L € & and Q € A we have F € 4. But since T is torsion, T—>F'is
zero. Therefore R— Q —F is zero and so R-—> @ factors through L— Q. Since
L— @ is a monomorphism we must then have

M—>R—>L=M-L. (3)
Now suppose that there were two morphisms R— L satisfying (3), and let d

be their difference. Then M ——>R—d>L is zero, and hence d factors through
R—> T. But again since T is torsion and L € .#, the morphism T— L must be
zero. Hence d is zero. This proves that R— L is unique, and so M— R is the
coreflection of M in Z. |

Lemma 6.6. & is a coreflective subcategory of SZ. If M € M, then the coreflection
M — R is a monomorphism.

Proof. Since 4 is a coreflective subcategory of .o/ (6.1), it suffices to prove
that % is a coreflective subcategory of #. For M € #, take an exact sequence
0— M- Q—>A—0 where Q € .# is injective in &/. Consider also the exact
sequence 0— T—A-> N—0 where 4— N is the coreflection of 4 in .#, so
that by 6.3, T is a torsion object. Forming the pullback of @+ 4 and T— 4,
by I, 16.3, we get a commutative diagram with exact rows and columns

0 0
0 > M — R > T > 0
0 M Q > A 0
v
N=N
0 0

Since Q €. and N e.#, by 6.4, Re ¥L. Therefore by 6.5, M—R is the
coreflection of M in 2. |

Lemma 6.7. If A'— A is a monomorphism in 2, then so is the induced morphism
R’ — R of the coreflections in Z.
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Proof. Form the diagram

A —— 4

l/QQ
—— R

where R — @ is a monomorphism with @ € .# injective in &/, A— @ is defined
sothat A’ >A—>@Q = A'—R' -, and R— Q is defined so that

A>Q=A4A>R>Q

(which is possible since @ € £ and A— R is the coreflection of 4 in #). Then
we have

A—>R—->Q=4—>4->¢
=A >A>R—>Q
=A"->R —-R—>Q.

But then since @ € &% and A’ — R’ is the coreflection of 4’ in £, we must have
R'— @ = R’— R— Q. Therefore since R’ — @ is a monomorphism, the same is
true of R’ —>R. |

Theorem 6.8. .7 is a coreflective subcategory of & and the coreflector R : o —F isan
exact, colimit preserving functor. Hence £ is a complete abelian category. Furthermore,
P has injectives. If S is cocomplete (Cs), then so is L. If o4 has a generator, then L
has a generator and an injective cogenerator.

Proof. We begin by showing that % is normal. Let L' — L be a monomorphism
in #. Let L— M be its cokernel in &/ and let M— R(M) be the coreflection
of M in #. Since L' € ¥ we must have M € #, and so M—-R(M) is a
monomorphism by 6.6. Therefore since L' — L is the kernel of L M it is also
the kernel of L—>M—> R(M). This shows that % is normal.

We can now show that R is kernel preserving. Consider an exact sequence
0>A4">A—>A" in &, and let A—I— A" be the factorization in .o/ of
A— A" through its image. Since R is cokernel preserving, R(A4)— R(I) is the
cokernel of R(4')—R(A4) in &. But then, since by 6.7, R(4A')—>R(4) is a
monomorphism and since % is normal, we see that R(4") — R(A) is the kernel
of R(A)— R(I). Now again by 6.7, R(I)— R(A") is a monomorphism. Hence
R(A’)— R(A) is the kernel of R(4)—R(I)—> R(A") = R(A)— R(A"). There-
fore R is kernel preserving.

It now follows from 5.1, 5.2, and 5.3 that .# is a complete abelian category,
cocomplete (C3) if & is cocomplete (C5). By 4 ; and the fact that an injective
in & is necessarily injective in £ we see that % has injective resolutions. From
1.5 we see that if U is a generator for &, then R(U) is a generator for &. In
this case it follows from III, 3.3, that % also has an injective cogenerator. ||
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7. Projective Classes

Throughout this section all categories will be abelian.

Consider a category & and a class £ of epimorphisms in .o7. We will say that
an object P € & is £-projective if [P, «]is an epimorphism for every « € §.
The class of all &-projectives will be denoted by £(£). On the other hand
starting with a class Zof objects in & we let () denote all epimorphisms
a in & such that [P, «] is an epimorphism for all Pe 2. If & <& then
P&)> P(€),and if P’ = P then &(P’) > (P). Also we have &(P(8))> &
for any class of epimorphisms & and (6(#)) > £ for any class of objects 2.
It then follows that P(&(P(£))) = P(£) and &(P(6(P))) = E(P). A class of
the form &(2) will be called a closed class of epimorphisms.

Denoting by o the empty class, the class #(o) is the class of all objects in
&, and &y = &(P(o)) is the class of all retractions. On the other hand, the
class &, = &(o) is the class of all epimorphisms in & and P(&(e)) is the class
of ordinary projectives.

If Pe P(&) and P’ is a retract of P, then it is easy to see that P’ is also in
P(&). Also if B € £(P), then we must have 8 € &(P).

A class of epimorphisms & will be called a projective class if it is closed,
and if for every object 4 € & there is a morphism o : P— 4 such that x € £
and P € P(€). The class &, is clearly a projective class, whereas the class €,
is a projective class if and only if & has projectives.

Lemma 7.1. If & is a projective class and o : A— B is such that [P, «] is an epi-
morphism for all P € P(E), then a € 6.

Proof. Since & is closed, it suffices to show that « is an epimorphism. Let
f: P—B be an epimorphism with P € #(£). Since [P, «] is an epimorphism
we can find g € [P, 4] such that ag = f. This shows that « is an epimorphism. ||

Theorem 7.2. Consider an adjoint situation (v; S, T'; &, B) with T faithful, and
let & be a projective class in B. Let T~ (&) be the class of all morphisms o in S such that
T(x) € &. Then T~V(&) is a projective class in &, and the T~ (&)-projectives are the
objects of the form S (P) and their retracts, where P is &-projective.

Proof. Observe that since T is faithful, if T(«) € £ then « must be an epi-
morphism. Let P be &-projective. Then [P, T'(«)] is an epimorphism for all
a € T-!(£). Using 7 this means that [S(P), «] is an epimorphism for all
a € T-1(£). Hence S(P) is T-!(&)-projective. Now let « € £(P(T-1(£))).
Then [$(P), «] is an epimorphism for all P € #(&). Therefore [P, T(a)] is
an epimorphism for all P e #(£), and so by 7.1, T(a) €. Therefore
a € T-1(£), and so T-}(&) is closed.

Given Ae &, let B: P> T(A) be in & with Pe P(€). Then letting
a=n"'(B): S(P)—> A4, we see from 1.1 that T(«) €&. Hence « € T-!(&),
and so since S (P) is T-!(&)-projective, this shows that T-!(&) is a projective
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class. Also if 4 is T—!(&)-projective, then o must be a retraction, or in other
words 4 is a retract of S (P). Thus the T—1(&)-projectives are as stated. ||

Proposition 7.3. Under the hypothesis of 7.2 suppose further that there is a functor
R : A —RB with the following properties :

L. There is a natural equivalence p : RS — 1 4.
2. If a: S(P)—A is such that R(«) is an isomorphism and P and A are & and
T-Y(&)-projective, respectively, then o is an isomorphism.

Then any T—'(&)-projective is isomorphic to an object of the form S(P) where P s
&-projective.

Proof. Let 4 be T-!(&)-projective. By 7.2 we can find a composition
A—S(P)—A which is the identity, where P is &-projective. Applying R,
we see that R(4) is a retract of RS (P) ~ P. Hencc R(A) is &-projective, and
so we need only show SR(4) & A. Now ¢y =9 (17y) : ST(4)—>4 is in
T-'(&), hence we can find y : A—>ST(4) such that Y4y = 1,4 Let « denote

the composition

SR(y) SuT [
SR(A) —> SRST(4) — ST (4) — A. (1)

Using naturality of u, we have the following commutative diagram:

RSRS 25 Rs

RSu B

RS——#-——>13

Since p is a natural equivalence, it follows that wRS = RSu. Also we have the
commutative diagram

RSR(4) 2R R(4)

RSR(y) R(7)

RSRST(4) “®57% RsT(4)

Applying R to (1), we obtain
R(x) = R(4) (RSkT) RSR(y)
= R pRSTnRSR( )
= R(Ypa)R(y)(pR) 4 = R(hay) (nR) 4

This shows that R(«) is an 1somorphxsm, and so « is an isomorphism by
condition 2. |



138 V. ADJOINT FUNCTORS

Consider a family of categories {#,},c;, and for each i € I let &, be a pro-

jective class in #;. Then X &, is a projective class in X &;, and
i€l .

iel iel

.@(X (g*,.) =X P&).

Using 1.5, we then have

Corollary 7.4. For each i € 1, let T, : o/ —9B; be an adjoint for S; : B,— and let
&; be a projective class for B;. Suppose that {T}} is collectively faithful and that {S}} is

coproductive. Then NT (&) is a projective class in s/ whose projectives are the objects
el

of the form @ S;(P;) and their retracts, where P, is & ~projective for all i € I, ||

Corollary 7.5. Under the hypothesis of 7.4, suppose further that there are functors
R, : oA >R, with the following properties :

RS; =0 for j #1, R;S; is naturally equivalent to g for each i € I, and each R
preserves coproducts of the form @ S:(B;).

2. If @ S;(P;)—>Ais Juch that R,(a) ts an isomorphism for all i € I and P, and

Aare&; and n T (&;)-projective respectively, then o is an isomorphism.

Then any n T71(&;)-projective is isomorphic to an object of the form CP) S;(P;) where
iel i€l

P, is &-projective for all i € I. ||

We say that a family of functors R;: .o/ %, collectively preserves
nonzero objects if for each 4 # 0in o7 we have R,(4) # 0 in &, for some i.

Corollary 7.6. Let T;: of —B,; be a collectively faithful system of exact functors, and

letS;: B;—~f be a coproductive family of coadjoints. If each B; has projectives, then o

has projectives, and the projectives in S are the objects of the form @ S;(P;) and their
el

retracts, where P, is projective in B, for each i.

If, furthermore, there is a family of cokernel preserving functors R; : of —B; which
collectively preserves nonzero objects and which satisfies condition 1 of 7.5, then the
projectives in & are precisely the objects of the form P S;(P;)

i€t

Proof. If each T;is exact, then taking &, to be the family of all epimorphisms

in 4, for each i, we see that 1 T77(&;) is the class of all epimorphisms in .27.
iel

Consequently, the first statement follows from 7.4.

To prove the second statement, it suffices to show that the family R; satisfies
condition 2 of 7.5. Consider the functor R : ./ — X &; associated with the

iel

family R;. Then R preserves nonzero objects and is cokernel preserving. We
show thatif & : 4— P is a morphism in & such that P is projective and R(«) is
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an isomorphism, then « is an isomorphism. Since R is cokernel preserving,
we have R(Coker o) = Coker(R(«)) = 0 since R(«) is an isomorphism. Hence
Coker(«) is 0, and so « is an epimorphism. But then since P is projective, the
sequence :

0— Ker(a) > 4—> P—0 2)

splits. Applying R to (2) we still have a split exact sequence, and so again
using the fact that R{«) is an isomorphism, we see that R(Ker(a)) =0.
Consequently, Ker(a) =0, and so « is an isomorphism. '

Exercises

1. Given functors T : &/ ->% and §:#—>./ and natural transformations
$:8T—1, and ¢ : lg— TS satisfying the relations (T¢)(¢T) =14 and
(S8 (Se) = 1g, show that there is an adjoint situation (7; S, T'; &, &) such
that ¢ and i are the transformations defined in §1 (cf. 1.3).

2, Let T: o/ —>%# and §: B —/ be such that ST~ 1, Then T reflects
limits and colimits. In particular, this is true if 7 is the inclusion functor of a
full, corefiective subcategory.

3. Let &’ be a full, coreflective subcategory of the abelian category &7, and
suppose that the coreflector R : &/ —.2/" is kernel preserving. Then an object

4. If # is a monosubcategory of o/ and if M — @ is an injective envelope with
M e M, then Q € 4. Hence if M € # has an injective envelope, then the
coreflection M—> R of M in # is an essential extension. (Examine the con-
struction of the coreflection for M given in 6.6.)

5. Let & be a class of epimorphisms in an abelian category .27, and let A4 (&)
denote the class of all monomorphisms which are kernels of members of &.
Also let & (.# (&)) denote all epimorphisms which are cokernels of members of
M (&). Following Buchshaum [4] we call & an h.f. class under the following

conditions:

(i) & =&(M(E)).
(ii) All retractions are in & (and hence all coretractions are in # (&£)).
(iii) If &, B € &, and Ba is defined, then Bu € &.
(iv) Ify, 8 € #(&), and Sy is defined, then 8y € A (£).
(v) If eeis an epimorphism and Bx € £, then 8 € &.
(vi) If 8 is a monomorphism and 8y € A (&), then y € H(&£).

Any closed class in & is an h.f. class. (Use I, 16.2, in verifying axioms (iv)
and (vi).) On the other hand, if & is an h.f. class in .27 such that for every object
A € o there is an epimorphism « : P> A witha € £ and P € (&), thenSisa
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projective class. (If y : A"— A4 has the property that [P, y] is an epimorphism
for all P € Z(&), then form the pullback diagram

P— 4
P_d__>A

and show that P’— P is a retraction.)
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Applications of Adjoint Functors

Introduction

It is first shown that under certain conditions, completeness in a category
implies cocompleteness (1.1). In §2 it is proved that any R-module valued
functor which has a coadjoint is naturally equivalent to a morphism functor
represented by some R-object. The converse problem of showing that mor-
phism functors have coadjoints leads to the definition of the tensor product.
We establish its existence under two different assumptions on the category
(3.1 and 3.2). The tensor product then helps in showing that the existence of a
projective generator is still another property which a functor category (7, %)
inherits from the codomain category #. This fact is due to Freyd.

In §5 we establish the existence of Oth derived and coderived functors for
group-valued functors from small abelian categories. In §6 we show that the
category of monofunctors (7, %) is a monosubcategory of (&, ). The
subcategory of kernel preserving functors £ (&7, %) coincides with the category
of pure objects. In particular it follows that £ (o7, #) is abelian. This paves
the way to the full imbedding theorem 7.2,

The chapter is concluded with a section on complexes, and an application
of the projective class theory of V, §7 to the hyperhomology theory of Cartan-
Eilenberg [6, Chapter XVII].

Sections 1, 2, 5 and 6, as well as Theorem 3.2 are due to Peter Freyd. The
existence of coderived functors and the abelianness of £ (&7, #) modulo
certain set theoretic conditions on the categories. .o/ and & were first shown by
Gabriel [17]. An alternative proof of 6.2 can be given using Gabriel’s work.
The section on complexes is due to Eilenberg and Moore [12].

1. Application to Limits

Consider a diagram category [ X, #] where & is any category and X' is any
diagram scheme. For B € # let I(B) be the diagram which has B at every
141
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vertex and 1 at every arrow. Dualizing the discussion of 11, §12, we see that
% is Z-cocomplete if and only if the functor 7: #—[2X, #] has a coadjoint
L:[Z, %)—%. Now Iis clearly limit preserving. Consequently, we have as
an immediate application of V, 3.2:

Theorem 1.1. Let B be a complete, locally small category with a cogenerator. Then B
is cocomplete. |

Using II, 15.1*, we have

Corollary 1.2, Let B be a complete, exact category with a cogenerator, Then & is
cocomplete. ||

2. Module-Valued Adjoints

Lemma 2.1, Let R be a ring and 5 an additive category. If a functor T : sof —G®
has a coadjoint, then for some C € R/ we have a natural equivalence T ~ HE.

Proof. Consider an adjoint situation (; S, T; &, 9®). Then by V, 1.4, S is
additive, and so C = §(R) can be regarded as a left R-object by means of left
operations of R on itself. Then for 4 € &/ we have

HE(4) = [S(R), 4] = [R, T(4)] = T(4)

where the middle isomorphism preserves addition by V, 1.4, and R-module
structure by naturality of %, and the right-hand isomorphism is a natural
equivalence of right R-modules (11, exercise 12). |

Theorem 2.2, Let o/ be a complete, locally small, additive category with a cogenerator,
and let R be a ring. Suppose that T : of —G® is a covariant, limit preserving functor.
Then for some C € Rl we have a natural equivalence T ~ HE.

Proof. This follows immediately from 2.1 and V, 3.2, ]

Theorem 2.2*. Let o/ be a cocomplete, colocally small, additive category with a
generator, and let R be a ring. Suppose that T : of —%® is a contravariant, limit
preserving functor. Then for some C € S/® we have a natural equivalence T~ H,. |

Theorems 2.2 and 2.2* generalize theorems of C. Watts [34].

3. The Tensor Product

We now turn to the converse of 2.1. Under two sets of conditions on the
category <7 we will prove that if C € Ro/, then the functor HS : &/ —>%® has a
coadjoint. In the first case we shall construct the coadjoint directly without
applying any general existence theorem. The second case will be an application
of V, 3.1.
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Theorem 3.1, Let .o/ be a cocomplete abelian category and let R be any ring. Then we
have an additive, colimit preserving, covariant bifunctor R x Ref —>.of | whose value
on the pair (M, C) we denote by M ®g C, and a natural equivalence of trifunctors

N = mpmca’ (M, [C, Al IR > [M Qg C, Al (1
where Me GR, CeRo/, and A € .

Proof. By V, 2.3, it suffices to construct a coadjoint for the functor H¢ : o/ —> ¥R
for each C € ®Ro/. Now a left R-object C can be considered as a functor into .o/
from the full subcategory of @R consisting of the single object R. In other words
we are in a position to apply IV, 5.2. That theorem gives us a unique colimit
preserving functor from @® to &7, whose value on the right R-module M we
denote by M ®g C, such that R @5 C = C as left R-objects. Explicitly we can
define M ®g C as follows. We first take the exact sequence of right R-modules

A ]
KR -MR->M—0

where the mth coordinate of = is the unique right R-module morphism
¢, : R—> M such that ¢,(1) =m, K is the set of clements in the kernel of =,
and A is the right R-module morphism whose Ath coordinate is ¢, : R—>™R
where @, (1) =k. Then M ®g C is the cokernel of the induced morphism
KC»MC, 1If u : M— M’ then we have the morphism YR—*R which is such
that composition with the mth injection into R vyields the p(m)th injection
into ®R. The morphism pu ®g C is then the unique morphism making the

diagram

Mo—— M ®,C

MC—s M ®C

commutative.

We now define the transformation (1). A right R-module morphism
f: M—[C, A] determines 2 morphism 7{ f) : MC— 4, and using the fact that
fis additive and commutes with operations by R we see that the composition

KC>MC— A is zero. Hence 7( f) induces a morphism 5( f) : M ®g C— A.
On the other hand, given g : M ®g C— A we can compose g with MC— M ®gC
to get a morphism g : ¥C— A. Then g determines the function

n'(g) : M—[C, 4]

such that y’(g) (m) is just the mth coordinate of 8. That 5’ (g) is a right R-module
morphism comes from the fact that the composition *C—>C— 4 is zero. It is
then easy to check that ¢ and %’ are inverses of each other.



144 VI. APPLICATIONS OF ADJOINT FUNCTORS

Toshow that 7 is natural in M, we must prove commutativity of the diagram

[, [C, A]]*— [M'®,C, 4]

(M, (G, AF —— [M®G, 4]

relative to a morphism u : M— M’ of right R-modules. Commutativity of (2)
amounts to showing that relative to an R-module morphism f: M'—{C, 4]
we have a commutative diagram

M ®.C

n(fu)

A/ imc
W~

M

3

®Rc

Commutativity of (3) comes from the diagram

M@C

e /T
AN

C——>M’® C

in which the square and each triangle save possibly (3) is commutative. Since
MC—>M ®g C is an epimorphism it follows that (3) is commutative also.
This establishes naturality of % in M. Naturality in 4 is simpler and is left to
the reader. |

Theorem 3.2, Let o/ be a complete, locally small, colocally small, additive category
with coproducts. Then the conclusions of 3.1 are valid.

Proof. For fixed C € Ro7 the functor HC : &/ — @R is limit preserving. Hence
by V, 3.1, to show that it has a coadjoint it suffices to find a solution set in &/
for each right R-module M. That is, we wish to find a set of objects {4;} in &/
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such that any morphism f: M—[C, 4] of right R-modules admits a factori-
zation of the form

g [Cia]
M— [C: Ax] — [C’ A]

for some morphism « : 4;—4 in &/ and some morphism g of R-modules.
Let {4;} be the set of all quotient objects of C. Consider the morphism
MC—> 4 whose mth coordinate is f (m), and let

mcli 1’ 4

be the factorizaticn through its image. Our hypothesis assures that the image
exists and that p is an epimorphism (I, §10). Thus /is one of the 4;. If we define
g by g(m) = pu,, where u,, isthemth injectionintoC, thenit followsimmediately
from the fact that f is an R-module morphism and [C, «] is an R-module
monomorphism that g is an R-module morphism. This proves that {4;} is a
solution set. ||

When &7 is a category satisfying conditions dual to 3.1 or 3.2, we can define
the symbolic morphism functor from R x R.o7 to &/ whose value on the
pair (M, C) we denote by ®{M, C}. For fixed C it is defined by means of the

duality
MM, C} = (M @ps C*)*.

We thus have a natural equivalence
R[Ma [A’ C]Ju'] & [A, R{M5 C}]M' (4)

It follows that the symbolic morphism functor has the same limit preserving
properties as the ordinary morphism functor. The natural equivalence
R ®pg C = C of left R-objects dualizes to a natural equivalence ®{R, C} ~ C.
In the case where & is the category of abelian groups, ®{M, C} is the same as
R[M, C] (exercise 9).

If C is a right R-object and M is a left R-module, then we define

C ®R M = M ®R‘ C.
When R = Z we shall denote M ®, C =C ®z M simply by M &® C.

4. Functor Categories

Let &/ be a small, additive category and let Z be a cocomplete abelian
category. Let us denote

Sa(B)(4') = [4, 4] ® B

where A, A’ € &/ and B € #. We consider $ as a functor from &/ x % to the
functor category (&, #). Thus, for fixed 4, S, : #— (&, #). Recall also the
functor E : (&, #) x o —% given by E(T, A) = T(A). Holding 4 fixed we
obtain the evaluation functor E, : (&7, #)—>%# (11, §11).
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Theorem 4.1. Let o7 be a small, additive category and let B be a cocomplete abelian

category. Then S : o x B— (A, B) is a coadjoint for E : (A, B) x A —>B. If

U, is a generator in B for each A € A, then @ S,(U,) is a generator for (o, B).
A€W

If, on the other hand, U, is small for each A € o and s/ has only a finite number of
objects, then @ S,(U,) is a small object in (4, B).
r

If & is a projective class in B and E(F, B) is the class of morphisms in (o, HB)
which are pointwise in &, then & (A , B) is a projective class in (F, B). The & (A, B)-
projectives are the functors of the form P S,(P,) and their retracts, where P, is

P

&-projective for each A € . In particular, if B has projectives, then so does (o, H).

Proof. In V, 4.1, let € be the category ¥, let T be H?, and let G be H4. Then
using IV, 2.1, we have natural equivalences

[S(B), F] = [HA ® B,F] ~ [HA, HF] ~ HPF(4)
= [B,F(4)] = [B, E,(F)]. (1)

This shows the required adjointness. Since the evaluation functors are collec-
tively faithful and coproduct preserving, the statements concerning generators
and small objects follow from V, 1.5. The statements concerning projective
classes follow from V, 7.4, and V, 7.6. ||

Applying IV, 4.1, we obtain:

Corollary 4.2. Let o/ be an additive category with only a finite number of objects, and
let R be a ring. For each A € s/ let ny be an integer > 0. Then ) S4(R"4) is a small
Acw

projective generator for (of, GR). Consequently, (2, GR) is equivalent to the category
of right modules over the ring of endomorphisms of ) S, (R"4). |}
A

If # is complete abelian, then we can apply duality to .27 and & to obtain
functors J,  : & -3, defined by

Jup(4') = [4, 4] ® B* = {[4, 4], B}.
Dualizing (1), we obtain a natural equivalence
[F; J 48] = [F(4), B]

where F € (&, #). From 4.1* it follows that if @ is an injective cogenerator for

2B, then X J, 4 is an injective cogenerator for (&, ). In the case where #
Aesdt
is the category of abelian groups, the functor J,, ; is the same as that defined

in IV, §3. This follows from the fact that here the symbolic morphism functor
coincides with the ordinary merphism functor (exercise 9).

Let Sand §” be sets, and consider a function f : § —§". Letting B be an object
in a category & with coproducts, we have the morphism /B : SB —% B which is
such that when composed with the sth injection in *B yields the f(s)th injection
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into ¥B. On the other hand, a morphism 8: B—B’ yields the morphism
5B : SB—SB'. In this way, B can be regarded as the value of a two variable
functor from & x # to #. Furthermore, we have a natural equivalence of

trifunctors
[S, [B, Clgly = [°B, Clg.

For this reason we define the tensor product § ®, B of a set § with an object
B as SB. If & is any small category (not necessarily additive), we can define as

before
S4(B)(4') = [4,4'] Ry B.

Thus, §, may be considered as a functor from B to the category of not neces-
sarily additive functors [, #].

Theorem 4.3. Let o be a small category, and let B be a category with coproducts.

Then S A x B— A, B is a coadjoint for E: [F, B x A —~B. If Ujis a

generator in B for each A € A, then B S4(U,) is a generator for [, B). If, on the
Aew

other hand, U , is small for each A € o/ and 4 has only a finite number of objects, then
@ S4(Uy) is a small object in [, B].
AER

Suppose further that B is abelian, and let & be a projective class in B. If 8| A , B] is
the class of morphisms in [of , B which are pointwise in &, then &[S , ) is a projective
class in [sf, B). The E[A , B]-projectives are the functors of the form &) S, (P,) and

Aot

their retracts, where P, is &-projective for all A € o7 In particular, if B has projectives,
then so does [, B).

Proof. The proof is identical to that of 4.1, except that we must take € to be
& instead of ¢ in establishing adjointness. |

Corollary 4.4, Let o/ be a category with only a finite number of objects, and let R be a

ring. For each A € o let ny be an integer > 0. ThenAC—I%SA(R"A) 15 a small projective
=

generator for [ ,GR). Consequently, [, GR] is equivalent to the category of right
modules over the ring of endomorphisms of & S,(R™). |
Aed

5. Derived Functors

Throughout this section &/ and # will denote abelian categories, and all
functors will be additive.

Consider a covariant functor T : &/ —4%. The Oth derived functor of Tisa
natural transformation Ly T— T such that Ly T : &/ -2 is a cokernel pre-
serving functor, and such that any other natural transformation from a
cokernel preserving functor to T factors uniquely through Ly T— T. If T is
contravariant, then Ly T'— T is the Oth derived functor of T'if (L, T),— T, is
the Oth derived functor of the covariant functor T,.
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If o/ is a small category, then the Oth derived functor of the covariant functor
T is simply the reflection of T in the full subcategory Z(&, #) of (&, &)
consisting of all cokernel preserving functors. Thus, to show the existence of
Oth derived functors for all covariant functors 7': &/ -4 is equ1valcnt to
showing that (&7, &) is a reflective subcategory of (&, #).

Dually we say that a natural transformation 7— R°7T is the Oth coderived
functor of T if the corresponding transformation (R°T)% — T} is the Oth
derived functor of T'%. Thus T— R°T is the Oth coderived functor of 7' if and
only if R®T is kernel preserving, and every natural transformation from 7'to a
kernel preserving functor factors uniquely through 7—>R%T. When &7 is
small, the Oth coderived functor for the covariant functor 7 is just the coreflec-
tion of T in the full subcategory £ (o, #) of (&, &) consisting of all kernel
preserving functors.

If o is a small category, we let |&7| denote the cardinal number of the set of
all morphisms in.&Z. Also, if T': &/ —%, we let | T'| denote the cardinal number
of the disjoint union of sets U 7°(4).

Aest
Lemma 5.1. Let € be a class of exact sequences in a small category 2, and let
€ (A, ) denote the full subcategory of (', G) consisting of all those functors which
preserve exact sequences in €. Let Ty < F where F € € (2, 9), and let p be any infinite
cardinal number such that p> max (||, | To|). Then there is a subfunctor T< F
such that Te €(A, 9), To< T, and |T| < p.

Proof. For each morphism a : 4 —> 4, in.&Z, choose a functionf, : F(A4,) >F(A)
such that

fld) =0 for z¢Im(F(a))
F@(fd) =2 for zeIm(F(a)).

We define subfunctors T, < Finductively as follows. Given T, « Fand 4 € &,
let S, be the subset of F(4) defined by the following set theoretic union:

s,=U ( U fam(Al))).

Aesf \a€[A4,4,]

By taking a« =1,, we see in particular that §, > T,(4). If we assume that
| T.| < p, then using the fact that p? = p we see that the disjoint union of sets

U §, has cardinal number < p. We define T, as the subfunctor of F generated
Aest

by the family {S,} 4 s (see I1, exercise 6). Then T,,, © T,, and itis not difficult
to see that | 7,,,,| < p (II, exercise 6). Now define T = U T, Then |T| <p

nz0

since | T, | < p for all n, and furthermore To< T. Weshow that T € € (7, &).

Consider an exact sequence A’ 54 -->A" in €. We wish to show that
T(A')— T(A) - T(A4") isexactin %. Suppose that z € T'(4) and T(B)(z) =0.
For some n we have z € T,(4) < F(4). Now T(B)(z) = 0implies F(B)(z) =
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and so since F € €(/, #) we have z = F(a)(y) for some y € F(4’). We may
assume y = f,(z). Then by construction of T, wehavey e T, (4") < T(4').
Hence z = T'(a)(y) as required. |

Theorem 5.2. Let & be a small category, and let € be a class of exact sequences of the

Sorm
A —-4—-4"->0 (1)

inl. Then € (F, F) is a reflective subcategory of (A, F).

Proof. It follows from II, 12.4*, that € (7, %) is a cocomplete subcategory of
(&, 9). In particular, this means that an epimorphism in €(%/, %) is a
necessarily an epimorphismin (&, %). Consequently, since (&7, %) is colocally
small, the same is true of € (&7, ¥). Therefore by V, 3.2*, to show that € (., %)
is a reflective subcategory of (&, %), it suffices to show that €(&/, %) has a
generator. Let p be any infinite cardinal number > [#|. Then it follows from
5.1 that for Fe €(, ¥), A € &, and x € F(4), there is a subfunctor T< F
such that x € T(4), T € €(, 9),and | T| < p. Now by identifying naturally
equivalent functors and using the fact that & is a set, it is not difficult to see
that {T'| | T| < p} is a set. It then follows from the above that {T'| T € € (<, ¥)
and | T| < p} is a set of generators for €(, 9). |}

Taking % to be the class of all sequences of the form (1), we obtain:

Corollary 5.3, If & is a small category, then every functor T : of —% has a Oth
derived functor. |

Theorem 5.4, Let of be a small category, and let € be a class of exact sequences of the

Sform
0>4">A—>A"

inst. Then € (L, Y) is a coreflective subcategory of (4, F).

Proof. By 11, 12.4, €(/, %) is a complete subcategory of (&, %), and in parti-
cular is locally small. Therefore by V, 3.1, to show that € (&, %) is a coreflec-
tive subcategory of (&7, %), it suffices to find a solution set in € (7, %) for
each object S € (&, #). Let p be any infinite cardinal number > max(]./|,
|S]). Consider a morphism § —F where F € €(/, %), and let T be its image.
Then | Ty| < |S| < p, and so by 5.1 we can find a subfunctor T'< F such that
To< T and |T| € p. This shows that as a solution set for § we may take
{T|Te€¢(A,%)and |T| < p}. I

Corollary 5.5. If & is a small category, then every functor T : o —% has a Oth
coderived functor. |

The results of this section generalize to group valued functors of several
variables (exercise 12). Furthermore, a simple trick enables us to replace 4 by
%R throughout (exercise 18). In the case where ./ has projectives (injectives),
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we can construct derived (coderived) functors using the techniques of Cartan
and Eilenberg [6] (exercise 15).

6. The Category of Kernel Preserving Functors

Lemma 6.1, Let
O0->T' ->-T—>T"->0 (1)

be an exact sequence of functors between two abelian categories.

(i) If T’ is kernel preserving and T is a monofunctor, then T is a monofunctor.
(ii) If T" is a monofunctor and T is kernel preserving, then T’ is kernel preserving.

Proof. The proof is a simple exercise in chasing the three by three diagram
which arises from evaluating (1) on an exact sequence 0 >4 —->B—>(C—0in
the domain category. ||

Supposing that &/ is a small abelian category, let (27, %) be the full
subcategory of (&7, %) consisting of all monofunctors. Then by II, 12.4,
M (A, G) is a complete subcategory of (&, ). In other words the axiom A/,
of V, §6, is satisfied. Since a subfunctor of a monofunctor is necessarily a mono-
functor, axiom .#, is satisfied as well. Also by IV, 2.4, and IV, 2.5, the injec-
tive envelope of a monofunctor is an exact functor. Consequently, .#5 is
satisfied. Now by 6.1, (i}, any kernel preserving functor is pure with respect to
M (Z,9). On the other hand, if T is a pure functor, consider the exact
sequence

0>T—>Q—>M-—0

where T— @ is the injective envelope of T. Since T is a monofunctor, @ is
exact, and since T is pure, M is a monofunctor. Therefore by 6.1, (ii), T is
kernel preserving. In other words the category % consisting of all pure objects
is precisely the category # (&, %) of all kernel preserving functors. Hence by
V, 6.8, we have

Theorem 6.2. Let 5/ be a small abelian category. Then L (of, G) is a coreflective
subcategory of (sf, 4). The coreflector RO : (A, G) —>FL (A, G) is an exact, colimit
preserving functor. L (o, F) is a complete, Cy abelian category with a generator and an
injective cogenerator. |

Remark |. By 5.5 we already know that £ (&, ¥) is coreflective. By C; for %,
the colimit of a direct system of kernel preserving functors is kernel preserving.
Thus C; for Z(, %) follows immediately from C; for (&7, 9). Also, since

@ H* is a generator for (&7, %) (IV, 2.3) and is also kernel preserving, it
AER
serves as a generator for & (&, 9). The strength of 6.2 lies in the fact that

LA, 9) is abelian.
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Remark 2. A projective functor in (&7, %), although necessarily kernel pre-
serving (IV, exercise 3), is not necessarily projective in £ (o7, 4). In particular,

(P H4is not in general a projective in £ (.o, 4). However, if & has injective
A€
resolutions, then we can show that (&, %) has a projective generator

(exercise 17).

7. The Full Imbedding Theorem

Lemma 7.1, Let o/ be any small abelian category. Then the contravariant functor
H: oA >L(A,Y) defined by H(A) = H* is a full, exact imbedding.

Proof. We haveseen in IV, 2.2, that H is a full imbedding. Let C be a cogenera-
tor for £ (&, 9). Such exists by 6.2. Let 0 >4’ >4 —>A4"—>0 be an exact
sequence in .&/. We wish to show that the sequence

0—>HY -HA>HY 50

is exact in (&, ¥). We know that H4"—H4 is the kernel of H*—H4 in
(&, 9), hence also in P (o, ¥). Consequently, it suffices to show that
HA—H% is an epimorphism in £ (&, ¥). Since C is a cogenerator for
P (A, Z) it suffices to show that [H#, C]—[ H4, C] is a monomorphism. But
by IV, 2.1, this last is equivalent to C(4") —C(A), which is a monomorphism
since C is kernel preserving. ||

Theorem 7.2. Every small abelian category o admils a full, exact (covariant) im-
bedding into a category G® of modules over an appropriate ring R.

Proof. By 7.1 and 6.2 we know that &/ admits a full, exact, contravariant im-
bedding into a complete abelian category possessing an injective cogenerator.
Composing this imbedding with the duality functor on its codomain, we obtain
a full, exact, covariant imbedding § from .7 to a cocomplete abelian category
possessing a projective generator. Since & is small, by taking the coproduct of
sufficiently many copies of the projective generator we can arrange that every
object in the image of § is finitely (in fact, singly) generated. Then if we
compose S with the functor Tof IV, 4.1, we obtain the required imbedding. ||

As a consequence of 7.2 we have:

Metatheorem 7.3. Let of be any abelian category. If a theorem is of the form
“p implies q”° where p is a categorical statement about a diagram in 2 over a finite
scheme X and q states that a finite number of additional morphisms exist between objects
over designated vertices in the diagram so as to make some categorical statement true of the
extended diagram, and if the theorem is true when S = G® for every ring R, then the
theorem is true for any abelian category 7. |

(Cf. IV, Metatheorem 2.8.)
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8. Complexes

Throughout this section &7 will denote an abelian category. A complex X
in &/ is a sequence of morphisms in &/

d,

> .. (—® <n<®)

dﬂ+1
7 Latl >Xn 7 Sp—1

such that d,d,,, = 0 for all integers n. The class € (&) of all complexes in &/
becomes a category by defining a morphism f: X— X' of complexes as a
family of morphisms f, : X,— X, such that d, f, =f, 4, for all n. (Actually
% (/) can be viewed as the category of additive functors to &7 from an appro-
priate additive category. See II, exercise 16.) We have additive functors
C, B, Z, B,, Z,,: (o) > which are defined for each integer n as follows:
(X) = X,

(X) = Im(d,y,)

Z,(X) = Ker(d)

B,(X) = Coim(d,)

Z,(X) = Coker(d,,,).

Ca
B’l

Observe that B, = B, ;. The distinction is made only to facilitate duality.

The relation d,d,,; =0 shows that B, < Z , and so we can define further
H,:¢() > by H(X)=Z,X)[B,(X). The first Noether isomorphism
theorem (I, 16.2) then gives us an exact, commutative diagram of functors and
natural transformations for each n,

0 0
! l
0 > B, > Z, > H, >0
A 4 A 4
0 —> B, > Cn > Z,—— 0 (1M
v A 4
B, n
l ’
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In the dual category &*, a complex X in & becomes a complex X* if we set
(X*), = (X_,)*. Wehave Z,(X*) = (Z' (X))*and Z,(X*) = (Z_,(X))*, with
similar relations holding for the B’s. It follows from (1) that

H,(X*) = (H_,(X))*.

Consider the composition Z,—>B,~ B, ,—~Z,_,. Since B, | —~2Z,_, is a
monomorphism it follows from (1) that the kernel of this composition is
H,—Z;. Similarly since Z, — B, is an epimorphism we see that the cokernel is

Z,_,—H,_ . Thatis, we have an exact sequence

0—>Hn—>Z;—>Z"_1~—>Hn_1—->O (2)

for each n. Now it follows from II, 12.2, that Z_ is limit preserving and Z, is
colimit preserving. Hence, given an exact sequence of complexes

0->X'>X—->X"-0, (3)

using (2) we obtain a commutative diagram

(4)
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where the columns and middle two rows are exact. There results a connecting
morphism 8, : H,(X") - H,_(X’) which is such that the sequence

H(X") > H(X) > H,(X") —B>H.._1(X') —H,_(X) > H,_(X") (5)

is exact (IV, §1). Since the connecting morphism of a diagram of the form (4)
is self-dual (IV, exercise 2), it follows that the connecting morphism relative to
the dual of the exact sequence (3} is simply 8 considered as a morphism in the
dual category. Observe that if any two of the complexes in the sequence (3) is
exact (so that H, = 0 for all n}, then by the exact sequence (5) the third com-
plex must also be exact. Also the exactness of (5) shows in particular that the
functors H, are half exact.

Consider the functor S, : & —% (&) defined by §,(4), = §,(4),_; = 4 with
d, =1, 5,(4);=0fori#n, n—1, and S,(«), = S,(«),_, = «. Then there is an
obvious one to one correspondence

[Sn(A): X]%’(d) X [A: Xn]d

which is natural in 4 and X. That is, S, is a coadjoint for C,. Since a family
{8,(4,) },ez involves only a finite number (two, at most) of objects in each
dimension n, it follows that the family {S,} is coproductive. Also the family
{C,} is collectively faithful. Hence by V, 7.4, if & is a projective class in &/ and
&€ () is the class of morphisms in %(/) which are pointwise in &, then
&€ () is a projective class in € (o). We are going to show that the £ ()-
projectives are precisely the objects of the form (P S,(P,) where P, is &-projec-

neZ
tive. In the first place it is clear that the functors B,_; : € (%) > satisfy

condition (1) of V, 7.5. To show that condition (2) is also satisfied we remark
first that any &% (&f)-projective X, being a retract of an object of the form

@® S,(P,), must be an exact complex. That is, B,(X) = Z,(X). Now if
neZ
o : X—Y is a morphism of §% («)-projectives such that B,(«) is an isomor-

phism for all n, an application of the five lemma to the exact commutative
diagram

0 ——> B,(X) —> X, ——> B,_i(X) —> 0

0 ————> B,(¥) Y, > Bai(Y) —> 0

shows that « must be an isomorphism. Hence the desired result follows from
V, 7.5.

Now consider the functor S, : & —% (/) defined by S.(4), = 4, S.(4); =0
fori #n,and S,(«), = a. Thenitis easy tosee that S, is a coadjoint for Z,. Again,
since a family {S,(4,) }oez Y {Sn(4,) }sez involves at most three nonzero objects
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in each dimension, it follows that the family {S,} U {S,} is coproductive. Thus

by V, 7.4,if & is a projective class in &7 and £€ (/) is the class of morphisms «

in (%) such that C,(«) and Z («) are in & for all n € Z, then £F ()’ is a

projective class in ¥(.7). We are going to show that the % (/) -projectives

are precisely the objects of the form @ S,(P,) @ S.(P.) where P, and P, are
n€EZ

&-projective.
Let X = PS,(4,) @ S,(4;). Then we have natural isomorphisms

i CalX) ~ Ay ® 4, ® 4, (6)
Z,(X) % dpy, ® 4, %
B,(X) & Ay, ®)
ZL(X) % 4, ® 4, (©)

H,(X) ~ 4, (10)

In particular, (8) and (10) show that the family {B,_,} U {H,} satisfies condition
(1) of V, 7.5. Now if & : X— Y is a morphism in €(&/) such that B,(«) and
H,(«) are isomorphisms for all n (X and ¥ do not have to be &% (/) -projective
here), then applying the five lemma to the exact sequence

0->H —~2Z —->B,_;—>0

we see that Z/(«) is an isomorphism. Hence another application of the five
lemma to the sequence
0—>B,—-C,—~Z —0

yields that « is an isomorphism. Thus condition (2) of V, 7.5, is satisfied, and
so the &€ () -projectives are as stated.

Finally, we consider the case where & = &', where we suppose that .27 has
projective resolutions. Starting with a complex X in €(%/) we can find an
exact sequence

0Kl X°>X—>0
where X0is &% (/)'-projective and X?— X is in £€(&)". Thus the sequences

0—>C(K")—>C, (X% —>C,(X) >0 (11)
and

0>Z(K")—>Z,(X%—>2Z,(X)—>0 (12)
are exact for all n. An application of the nine lemma (I, 16.1*) to the exact
sequence

02 —~C,—>B,_,—>0 (13)

then shows that

0—B,(K')—>B,(X% —>B,(X)—>0 (14)
is exact for all n. Hence by the exact sequences

0->B,—> Z,~>H,—0 (15)
and
0—-B,-C,—~Z -0 (16)
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we see that the sequences

0>Z(KY)—>Z(X% —>Z,(X)—>0 17)
and
0—>H(K") > H,(X% > H,(X)—>0 (18)

are exact. We can then replace X by K! and repeat the process. By such an
iterative procedure we obtain an §%(&/)’-projective resolution

L X L XL X T s S X X0 X 0. (19)

Using Eqgs. (6)—(10) and exact sequences (14), (17),and (18), we see that if we
apply the functors C, B,, Z,, Z,, and H, to (19), we obtain projective resolu-
tions in & for C,(X), B,(X), Z,(X), Z;(X), and H,(X) respectively. Thus we
have shown that every complex in & has a projective resolution in the sense of
Cartan and Eilenberg [6, p. 363]. Conversely, suppose that we are given an
order 2 sequence (19) which is such that when we apply H, and B,, we obtain
projective resolutions for H,(X) and B,(X), respectively, for all n. Using (13),
(15), and (16), we see that if we apply Z,, C,, and Z; to (19), we obtain exact
sequences. From (15) we can write Z,(X’) = B,(X*) @ H,(X") since H,(X") is
projective. Then from (13) we can find a coretraction u : B,_,(X*) —>C,(X?)
since B,_,(X") is projective, and we can write

X, = C(X') = Z,(X') @ B,_,(X") (20)
= B,(X') ® H,(X') ® B,,(X').
If we compose X:— X, with either of the inclusions B,(X’) —-X’ and

H,(X") - X!, we obtain 0 since both are subobjects of Z (X?). On the other
hand, we have

B y(X) > Xi—> Xiy = By y(X) > Xi—> B, (X)) > X,
= B, ,(X') > X_,.
Therefore it follows from (20) that

X = n@ Su(Bot (X7)) @ S,(H(XY)).

Consequently, X* is £€(f)’-projective for all i > 0.

Exercises

1. Let R be an integral domain. An R-module 4 is called torsion free if
ra=0 for r e R and a € 4 implies that one of 7 or a is zero. Show that the
injective envelope of a torsion free R-module is torsion free. Hence, show that
the full subcategory 4 of R consisting of all torsion free modules is a mono-
subcategory of R%, and further that 4 is pure with respect to 4 if and only if
A is torsion free and divisible (use 11, exercise 18). Consequently, the category
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& of torsion free and divisible R-modules is abelian, and in particular the
category of torsion free, injective abelian groups is abelian. Show directly that
& is isomorphic to the category of vector spaces over the field of quotients of R,
2. Use the Tietze extension theorem [25, p. 242] to show that the category
€H'T of compact Hausdorff spaces has an injective cogenerator. Also use the
Tychonoff product theorem [25, p. 143] and 11, 2.4, to show that ##7 is a
complete subcategory of the category #.7 of all Hausdorff spaces. Con-
sequently, €#.7 is a coreflective subcategory of #.J .

3. Let A be aright R-module and B a left R-module. Let F be the free abelian
group generated by pairs (a, b) with a € 4 and b € B, and let G be the sub-
group of F generated by elements of the form

(a+a', b) — (a, b) — (a', b)
(a, b+ 8") — (a, 6) — (a, b')
(ar, b) — (a, rb) (reR).
Then define 4 ®g B as the quotient group F/G, and for morphisms « : 4~ 4,
and B: B->B, define « ®g B in the obvious way so as to make ®pg into an
additive covariant bifunctor from @R xR% to 4. For 4 € ¥R, B e R%S, and
C € @8 establish a natural equivalence of trifunctors
[4, [B,CI51R ~ [4 ®g B, C]

thereby showing that the above definition of tensor product is a special case of
the one given in the text.
4. Establish a natural equivalence of trifunctors

M Qs (N ®rC) = (M Qs N) ®C

for M € 48, N € %R, and C € RoZ, where R and S are any rings and & is a
cocomplete abelian category.
5. Consider a covariant additive functor § : R% — .o/ where & is cocomplete
abelian. Then S(R) is a right R-object in &/, and so we can consider the
covariant colimit preserving functor T : R% — o/ defined by

T(M) = SR) Qg M.
Apply IV, 5.4, to find a natural transformation 7—§ which is a natural
equivalence in the case where § is colimit preserving. Hence the covariant
colimit preserving functors from ®% to .o/ are precisely those given by tensor-
ing with a fixed left R-object in &7. This generalizes results due independently
to Watts [34] and Eilenberg [9].
6. Leto/ bea cocomplete abelian category and let S : R — .o/ be any additive
functor. If C is a right R-object in &7, use IV, 5.4, to establish a one-to-one
correspondence

[C ®r, ST & [C, SR)I®.

Show that this is an isomorphism of groups and is natural in C and in S.



158 VI. APPLICATIONS OF ADJOINT FUNCTORS

7. Let T: @R xRY % be a covariant colimit preserving bifunctor. Use the
generalization of IV, 5.4 (IV, exercise 11), to produce a natural equivalence

T(4,B) ~ A Qg T(R,R) ®g B.

Hence T'is naturally equivalent as a bifunctor to the tensor product ifand only
if T is colimit preserving and T'(R, R) is isomorphic to R as a left R, right
R-bimodule.

8. Let T:% x 9—>% be a limit preserving bifunctor, contravariant in the
first variable and covariant in the second variable. Then by 2.1, for fixed
A € ¥ we have a natural equivalence of the functors of B

T(4, B) ~ [M(4), B] (1)

for some M (A4) € 4. Using IV, 2.2, M can be considered as a functor in such
a way that (1) becomes a natural equivalence of bifunctors, and M is colimit
preserving. Suppose that T has the property that T(Z, B) is an exact functor
of B. Then M(Z) is a projective group, hence free (see, for example, [6, I,
5.3]). Hence, if T(Z,Z) ~ Z, then M (Z) ~ Z, and so M is naturally equi-
valent to the identity functor on %. In other words, T is naturally equivalent
as a bifunctor to [, ] if and only if T is limit preserving, T'(Z, Z) ~ Z, and
T(Z, ) is exact. (This exercise was suggested by Michael Shub.)

9, For M, C e®% and 4 € ¥, establish a natural equivalence of trifunctors
R[M, [4,C]] ~ [4,R[M, C]]

to show that in this case the symbolic morphism functor R{M, C} is the same as
the ordinary morphism functor ®[M, C].

10, Let .o/ be a small additive category and let & be a locally small abelian
category which is complete and cocomplete. Then the existence of a coadjoint
for E, : (&, #) —% could be established using V, 3.1, as follows. For B € 4
take as a solution set the set of all additive functors T : &/ —Z such that for
each 4, € o/ the object T(4,) isa quotient object of (4411 B. Givenf: B—S(4),
define /(4,) as the image of the morphism [44:1B —§(4,) whose ath coordinate
is 8 () f- Show that [/ is a subfunctor of § (hence is additive) and that f factors
through 1(4) — T (A4) (Freyd).

11. The discussion in §6 applies if & is replaced by any complete abelian
category % which has the following property: If T : &/ -4 is a monofunctor,
then there is a monomorphism 7" — ¢ with @ kernel preserving and injective in
(£, ). Hence if o/ has projectives, apply duality and IV, exercise 7, to
show that the reflector Ly : (&, ¥) >R (&, F) is an exact, limit preserving
functor and that Z(./, %) is a complete and cocomplete abelian category with
a cogenerator and a projective generator.

12. Generalize the results of §5 to functors of several variables
T A\ xAyx...xH,—~>F

where each &, is a small abelian category.
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13. Let F: o/ —>% be an additive covariant functor where &/ is a small

abelian category. For 4 €./ let T(4) be the set of x € F(A) such that

F{a)(x) =0 for some monomorphism «. Use I, 20.2* to show first that T'(A) is

a subgroup of F(A4) and second that T'is a subfunctor of F. Hence show that T’
is the maximal torsion subobject of F with respect to # (%7, %). In the case

where there exists a monomorphism 4 — @ with @ injective, show that 7T (4)

is the kernel of F(A4) —F (Q) (Freyd).

14. Let F: o/ —% be covariant and additive where &7 is an abelian category.
with projectives. For each 4 € &/ choose an epimorphism P,—4 with P,

projective. Then the reflection R of F in the category of epifunctors is given by

R(A) = Im(F(P,) > F(4)).

In particular, if F = H%, then R(A4) is the set of all « € {B, 4] such that «
factors through a projective (Freyd).

15. Let &/ be an abelian category with projectives. Then V, 5.2, and V, 5.4,
are valid if the category £ is replaced by the full subcategory of &7 consisting
of all projective objects and the expression *‘ colimit preserving” is replaced by
‘“cokernel preserving.” (The proofs are identical, except that here there is no
need to deal with coproducts of members of & since every object in & is
already the quotient of a member of 2.) It follows that if T: &/ > is an
additive functor where 4 is abelian, then the unique cokernel preserving
extension T : & - of T|? is the derived functor of T. Furthermore we have
an equivalence of categories Z(&, #) =~ (#, &), showing that # (o, #) is an
abelian category possessing the completeness and generation properties of
A (cf. exercise 11).

The above generalizes to functors of several variables by remarking that the
above analogues of V, 5.2, and V, 5.4, also generalize to functors of several
variables (cf. V, exercises 11 and 12).

16. Let &/ and # be abelian categories and suppose that &/ has injectives.
Show that an additive functor 7 : &/ -4 is a torsion object with respect to
M (A, AB) if and only if T(Q) =0 for every injective @ € .&Z. (Use exercise
15*.)

17. Let &7 be a small abelian category with injectives. Use exercise 16 and
IV, 2.1, to show that if Q € & is injective, then H9 is projective in ¥ (<, %).
Hence show that @ H? is a projective generator for £ (<7, %), where Q runs

Q

through all injectives in &7.

18. Consider an additive functor 7 : &/ —-R% where o and & are abelian, and
let 7 be the group valued functor obtained by composing T with the forgetful
functor from R4 to 4. Let R° T be the Oth coderived functor of 7. An element
r € R induces a natural transformation from T to T which in turn induces a
natural transformation from R°T to ROT. Show that in this way R°T can be
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considered as a functor with values in R#, and as such it is the Oth coderived
functor of T.

19. Let.s/ be an abelian category. Given an epimorphism L - L" in £ (7, )
and a morphism H4—L", show that these can be put into a commutative
diagram

HEA— HA

|

L—— L’

where 4 — B is a monomorphism in & and hence H## —» H4 is an epimorphism
in (A, ¥). (Use exercise 13 and IV, 2.1.) Then, letting L” = H4 and taking
HA—L" as the identity on H4, show that if

0>HCSL>HA0

is a short exact sequence in (7, &), then L is representable. (Show that
H® @ H¢— L is an epimorphism in £ (&, %) and hence form a 3 x 3 exact
commutative diagram in which all functors are representable functors save
possibly L) (Freyd).
20. Given a ring R and an R-module M, let | M| denote the cardinal number
of the underlying set of M. Let p be any infinite cardinal number > |R|. The
full subcategory of ¥® consisting of all modules M such that |[M| < p is an
abelian category with coproducts indexed over sets of cardinal number < p.
Hence if # is an abelian category with coproducts indexed over sets of cardinal
number < p, then the tensor product M ®g C can be constructed as in 3.1
for any R-object C and any R-module M such that |M| < p. Thus, if &/ is a
small additive category such that [4, 4'] < p for all pairs 4, A’ € &, then
coadjoints S, for the evaluation functors E, : (&, &) —% can be constructed.
If pisany infinite cardinal and &/ isany small category such that |[4, 4']| <p
forall 4, A’ € &, and if # is any category with coproducts indexed over sets of
cardinal number < p, then coadjoints can be constructed for E,, : [/, #] >,
21. Let &/ be a C, category. Then the functors B, Z,, B,, Z,, H, : (&) >
are all coproduct preserving.
22. Given an exact sequence of complexes in an abelian category

0->X'>X—>X"->0,
let & denote the composition Z,(X")—H, (X")—H, (X'). Show that the
sequence
8
0—>2Z,(X") > Z(X)>Z(X")>H, (X') >H,(X) > H,_(X")

1s exact.
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Extensions

Introduction

An extension (or l-fold extension) of an object 4 by an object C in an
abelian category is a short exact sequence 0 >4 —+B—-C—0. Two such
extensions are called equivalent if there is a morphism from one to the other
with identity morphisms on 4 and C at the ends. In 1934, Baer [2] defined an
addition on the class Ext!(C, 4) of equivalence classes of extensions of an
abelian group 4 by an abelian group C in such a way that Ext!(C, 4) became
an abelian group. In [6] Cartan and Eilenberg gave a definition of a connected
sequence of group valued bifunctors {Ext*(C, 4)},,, which was valid in any
abelian category having either projectives or injectives. Then Yoneda [35]
showed that the groups Ext*(C, 4) could be defined in terms of equivalence
classes of n-fold extensions of 4 by C: that is, exact sequences of the form

0+>A4—-B, ,>B,_,—~...>B,—-By—>C—>0.

This enabled one to define the connected sequence of group valued functors
{Ext"} for arbitrary abelian categories. The trickiest thing was to prove the
exactness of the connected sequence without the use of projectives or injectives.
This was done by Steven Schanuel and is presented herein 4.1 and 5.2. A proof
of this was sketched also by Buchsbaum in [4].

The presentation of the material in this chapter owes much to a course in
homological algebra given by Saunders MacLane at the University of Chicago
during the summer of 1959. An appendix relating the Baer-Yoneda definition
of Ext to the Cartan-Eilenberg definition has been included at the end of the
chapter. A generalization of the theory by Buchsbaum is outlined in exercise 5.

1. Ext!

All categories in this chapter will be abelian.
We begin with a few notational remarks. We shall suppress subscripts on
161
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identity morphisms whenever there is no ambiguity, writing 1 in place of 1,
As in I, §17, the morphism 4 : 4—A4 @ A is the one represented by the

1
matrix (1) and V:4 @ A—->A4 by the matrix (1,1). The morphism

. {0
T APA—-A DA is given by the matrix (l (l)) If «: A—B and
ot A"—>B, then « o' : 4P A —B P B’ is represented by the matrix

a O )
0 o) Given two short exact sequences
o

A
E:0=Ad—B-5C—0

b
E':0>4 5B >C—0
the sequence

ADA’

o
0——d @ A—sB @B —C @ C'—0

will be denoted by E @ E’. A similar definition can be made for the coproduct
of two exact sequences of any length. A morphism from the sequence E to
the sequence E’ is a commutative diagram

0 A B C > 0
0 > 4’ B c' > 0

and is denoted by (a, B, y).
For fixed objects 4 and C, consider the class of all exact sequences of the form
E:0—>A4—-B—>C—0. We shall say that E is equivalent to E’:

0>A—->B —>C—>0

if there is a morphism (1, g, 1) : E— E’. By the five lemma we see that 8 must
be an isomorphism, hence we have indeed an equivalence relation. However
B is not usually unique. If E is equivalent to E’ we shall abuse the notation by
writing £ = E’,

Given a diagram of the form

E:0 A > B
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with E exact, by I, 20.3, we can imbed this in a commutative diagram

E:0 A B — ' 0
j_ 17 (1)
E:0 > A > B > C > 0

with E exact. In fact, it suffices to take the right-hand square as a pullback, and
define A — B as the morphism induced by the given morphism 4 — B and the
zero morphism from 4 to C’.

Lemma 1.1, Given a morphism (a, B, y) : E' —E of short exact sequences, we can
find a commutative diagram

E:0 > A > B’ > C' > 0
« B
Y \:
E:0 >4 B > C' > 0 (2)
B y
4
E:0 A B > C > 0

where E is exact and BB’ = B.

Proof. We form E asin (1). Then 8’ can be defined from the pullback property
of (1) so as to make the northeast corner of (2) commutative, and so that
BB’ = B. That the northwest corner is commutative follows from the fact that
both compositions yield the same thing when composed with both B—C" and

BB
Corollary 1.2. The sequence E satisfying (1) is unique.
Proof. This follows immediately by replacing a by 1 4in 1.1. ||

In view of 1.2 we shall denote the sequence E of (1) by Ey. Dually, given a
morphism « : 4— A4’, the sequence « £ is defined by the commutative diagram

E:0 A B c >0
aE:0 A B Cc -> 0

Thus a morphism (a, B, 1) : £— E’ expresses the fact that E’ = «E. It will not
usually be necessary to give a name to the middle morphism (which is not
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unique in any case). Therefore we shall write («, ,1): F—-af and
(1, ,y): yE—E.Lemma l.] then says that given a morphism (e, , y) : E'—E
we can find a factorization

(a,,1) (1,
E'— kK —

Hence «E' = E = Ey.
Lemma 1.3, The following are true whenever either side is defined.
(i) IE=E (i*) El = E
(ii) (d)E = o«'(aE)  (ii*) E(yy’) = (Ey)y".
(iii) («E)y = a(Ey).
Proof. (i) and (ii) are obvious. To prove (iii) we consider the composition

(1,,7) (a, ,1)
Ey— s E——>aF.

Applying 1.1, this can be rewritten as

(ay,1) 1, )
Ey——E—>oF

which shows that a(Ey) = E = («E)y. ||

Lemma 1. 3 enables us to write ' E, Eyy’, and «Ey without ambiguity.
Let Extl(C, A) denote the class of equivalence classes of short exact
sequences of the type
0>4->B->C—0.

When no confusion can arise we shall write Ext!(C, 4). A logical difficulty
(apart from the commonplace one that the members of Ext!(C, 4) may not
be sets) arises from the fact that Ext!(C, 4) may not be a set. Of course if & is
small, then Ext!(C, 4) will be a set. Likewise it can be shown that Ext!(C, 4)
is a set if &7 has projectives or injectives (see the appendix to this chapter), or
if o/ has a generator or a cogenerator (exercise 1). However, in order not to
restrict ourselves to any particular class of abelian categories, we introduce at
this point the notion of a big abelian group. This is defined in the same way
asan ordinary abelian group, except that the underlying class need not be a set.
We are prevented from talking about ““the category of big abelian groups”
because the class of morphisms between a given pair of big groups need not be
a set. Nevertheless this will not keep us from talking about kernels, cokernels,
images, exact sequences, etc., for big abelian groups. These are defined in the
same set theoretic terms in which the corresponding notions for ordinary
abelian groups can be described. Nor will we be very inhibited in speaking of a
big group valued functor from a category, and a natural transformation of two
such functors. In fact, it is precisely the aim of this section to show that Ext!
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is a big group valued bifunctor. Henceforth in the chapter the term group will
be understood to mean big group.
We define an addition in Ext!(C, 4) by the rule

E+E =V(E®E"4

and proceed to show that + makes Ext!(C, 4) an abelian group. In the
following lemma we make use of the easy relation

aV =V(a®«a) (3)
and the relation

a+a =Vie@a)d (4)
of I, 18.3.

Lemma 1.4. The following are true whenever either side is defined.
) (« DN EDE') = aE D o'E’
(ii) (a + «')E = aE + &'E
(iii) «(E+ E') = aE+ «F’
(i*) (EQENyDy)=EyDEY
(ii*) E(y +y) = Ey + Ey
(ili*) (E+ E')y = Ey+E'y.
Proof. The proof of (i) is trivial. To prove (ii) we observe the morphism
(4, 4, 4) : E>E @ E which shows that 4E = (E @ E)4. Then using (i)
and Eq. (4) we have
(a+a)E=V(a®aVAE = V(e D) EDE)A
V(eE @ «'E)A = oE + o'E.

For (iii) we use (i) and Eq. (3) to obtain
W(E+E)=aVEDENYA =V(a@Pa)(EDENM
= V(eE @ aE)A = «E + «E". |

Theorem 1.5. The operation + gives Ext!(C, A) the structure of an abelian group.
Proof. We first prove associativity. We have
E+(E+E" =E+V(E QENA =VEDV(E @E"NA)A
=V ®@VIEDE @E)(1@4)4
=V0@V)E®(E @E")(l @ 4)4. (5)

Similarly, we have
(E+EY+E"=VVOLH(EDE)Y QE"A D)4 (6)
If we identify E ® (E’' @ E”) and (E @ E’) @ E” in the obvious wayj, it is
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easy toshow that V(1 @ V) =V(V @ 1) and (1 @ 4)4 = (4 @ 1)4. Hence
associativity follows from (5) and (6).
Next we prove commutativity. The morphism

(rm7)

EQE——>E ®F

shows that 7(E @ E’) = (E’ @ E)r. Alsoit s clear that Vr =V and 74 = 4.
Hence

E+E =VE®E)4 =Vr(E@E)4 = V(E @ E)rd
= V(E' ®E)d = E'+E.

Now we show that the split exact sequence
E,: 045483 C—-C—0

acts as a zero element for Ext!(C, 4). Consider an arbitrary sequence

A
E:0>Ad>B5>C—0 (7)

and form the diagram

E,@QE0 —> A®A — (AQC)®B — CHC —> 0

v Y
4
0 A L s C®B 2 sC®C—0
B 4
E:0 A ‘ B 2 C——0

0
The morphism « is defined by the matrix ( ), 8 by means of the matrix
n

0

1
(1 O) , v by means of the matrix (3 0 1) , and B by means of the matrix

0 A
()1‘) Then commutativity of the diagram comes from a few simple matrix

multiplications, and the middle row, being the coproduct of E with the
sequence 0 >0-+C = C—0, is exact. Thisshows that £ = E;, + Easrequired.
Finally we show the existence of an additive inverse for each sequenc e(7).
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First we prove that OE = E;. This follows from the commutative diagram

E:0 A B —* ¢ 0
Ey:0 A ADC C 0

. (0 . "
where 8 is represented by the matrix ( )\). Then we have, using 1.4, (ii),

Eg=0E=(14+(-1))E=1E+(—-1)E=E+(-1)E
Therefore (— 1) E acts as an additive inverse for E. |

When there can be no danger of confusion we shall write 0 in place of E,,.
Given a morphism « : 4 —A4’, we define a function

a = Ext!(C, «) : Ext!(C, 4) - Ext!(C, 4")
by the relation &(E) = aF. Similarly, if y : C’ —C we define
$ = Extl(y, 4) : Ext!(C, 4) - Ext!(C’, 4)
by #(E) = Ey. Then by 1.3, 1.4, and 1.5 we see that Ext! is an additive group
valued bifunctor, contravariant in the first variable and covariant in the
second.

2. The Exact Sequence (Special Case)
Consider any exact sequence

E:0>A->B->C—>0
and any object X. Then we have a function

6:[X, C] —Ext!(X, 4)
defined by 8(y) = Ey. It follows from 1.4 that § is a group morphism. If Y - X
is any morphism, then by 1.3 we get a commutative diagram

[X,C] —%— Ext'(X, 4)
M

[¥Y,C] —&— Ext!(7, 4)
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In other words, 8 is a natural transformation from H to Ext!(, 4). Further-
more, using 1.1, a commutative diagram

0 > A — B - C 0
0 ——> A — B > C' 0

with exact rows induces a commutative diagram

(X,C] — Ext!(X, 4)

[X,C'] —> Ext{(X, 4')

The morphism 8 is called the covariant connecting morphism at Xrelative
to the short exact sequence E. Dually, one obtains a contravariant connecting
morphism

0:[4, X] >Ext!(C, X)

defined by 6(«) = aE. Diagrams dual to (1) and (3) relative to morphisms
X —>Y and commutative diagrams (2) are obtained in this case.
The proof of the following lemma is left to the reader.

Lemma 2.1. Given a diagram of the form
X
ly

E:0 > 4 > B — C > 0

with E exact, then y can be factored through B —C if and only if Ey = 0. |

Proposition 2.2. Relative to an exact sequence

A
0->4-5B>C—0
the sequence

i i ] i A
0—[X, 4] = [X, B] —[X, C] —Ext!(X, 4) - Ext!(X, B) —>Ext!(X;C)
is exact. Here we have denoted [ X, ] and [ X, A] by fi and }, respectively.
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Proof. The exactness at places involving only the morphism functors is
already known. There are six things to show, namely, image < kernel and
" kernel < image at each of the three remaining places in the sequence.

1. It follows from 2.1 that 8A(8) = 0 for any B € [X, B].

2. An easy application of 2.1* shows that 26(y) = 0 for any y € (X, C].

3. Since Au =0, we know ﬁﬁ =0 by a property of the additive functor
Ext!(X, ).

4. Suppose that 8(y) = 0. Then by 2.1, y = A(B) for some B € [X, B].

5. Suppose that fi(E) = 0. Consider the following commutative diagram:

0 >A—+ sp—2 ¢ > 0.

E:Q —— 4 — B > X > 0

® ﬁl
v

0————>B<.__7_'>B(-BX——>X———>0

Now pB : B’ — B makes the northwest corner of the diagram commutative.
Defining y : X —C as the morphism making the northeast corner commutative,
we have E = 8(y).

6. Suppose that A(E)=0. Then we have the following commutative
diagramt

0
\4
E’O 4‘14 'K 7X 4}0
m
A A
E:Q —— B B > X —— 0
A B
4

0 — S C=—=—=Ch®X —>X —— 0

|

0

t Th:inelegant argument on page 170 can be avoided if one replaces the bottom row of the
diagram by 0 — C=C — 0 — 0 and uses Lemma 2.1* in conjunction with the 9 lemma.
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where K — B’ is defined as the kernel g8, the morphism 4 — K is defined since
A—>B—>B >CPX>C=A4A->B—>C=0,and K—>Xisjust K>B —-X. We
must show that E’ is exact. In the first place 4 — K is a monomorphism since
A—B and B—>B’ are monomorphisms. Also

A>K—-+>X=A>K->B >X=4A->B->B >X=0.

Suppose that ¥ K —->X =0. Then Y »K—B'-—>X =0 and so we obtain a
morphism Y — B such that Y —+B—+B' =Y —K—B'. But then
Y>B>C=Y—>B->B CPX>C=Y>K->B->CPX->C =0,
and so we have a morphism ¥ —4 such that Y—>4—+B =Y -—B. It then
follows from the fact that X — B’ isa monomorphismthat Y > K =Y >4 K.
Therefore A— K is the kernel of K — X. It remains to be shown that K — X is
an epimorphism. Observe first that B, being opposite an epimorphism in a
pushout diagram, is an epimorphism. Also since pf is an epimorphism, it is the
cokernel of K—B’. Now suppose that K —>X—Z =0. Then

K—->B »C®X—>X->2Z =0,
and so there is a morphism C > Z such that
B>CX>C>Z=B->CPX>X->Z
But since B'—-C @ X is an epimorphism, we must have
CRX>X-»Z=CPX->C->2Z
and so it follows that X— Z = 0. Therefore £’ is exact, and so we have

E=R(E). 1

3. Ext"

Consider an exact sequence

P
E:0>4—-8B,,—->B,_,—>...»B >B;—>(C—0.

We call n the length of E, and we call 4 and C the left and right ends res-
pectively of E. A morphism E —E’ of sequences of length 7 is a commutative

diagram

EO->A4-—>8B,, >B,.,>... > B —>By—~>(C—>0
4 Y yoob v
E:0 >A—>B,,>B, ,—>...> B —>B,—~> C—>0

If E and E’ have the same left end and the same right end and if « and y are
identity morphisms, then we shall say that the above morphism of sequences
has fixed ends. Again we shall write E = E’ if there isa morphism from E to E’
withfixed endssuch that the morphisms B; — Bj;are all isomorphisms. However,
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it does not follow for n> 1 as it did for n = | that if « and y are identities, then
all the other vertical morphisms are isomorphisms.
Suppose that

F:05C—>B, ,—~By—>...—>B,—>By—>D—>0

is an exact sequence of length m whose left end is the same as the right end of E
above. Then we can “splice” the two exact sequences, obtaining an exact
sequence

A
EF:0-4—+B, |—»...~»B —>By—>B, | —...—~>By—~>D—>0

of length m + n.
On the other hand, given E we can define

K; = Im(B;—~B,_,) = Ker(B_, > B,_,), t=1,2,.,n—1,
and obtain the following exact sequences of length 1:
E:0-4 —»B_,—-K,_ -0

E _ :0->K,_,—»B, ,—»K, ,—~»0
5 (1)
E:0->K, —-B_,—->K_ -0
E :0-K, -B, =-C —0.
Then we have E=EE,_|...E3EE. If o« : A—> A’ we define
oE = (GE")E"_I...EzEl.
Dually, if y : C' —C we define
Ey = EE, ,...Ey(Eyy).

Then, clearly, the relations
IE = E = El
(¢’ )E = o'(aE) (2)
E(yy) = (Ey)y’
(«B)y = a(Ey)
are true whenever either side makes sense.
Suppose that £ and E’ are exact sequences of length I, and that B is a
morphism such that (ES)E’ is defined. Then E (BE’) is defined, but unless 8

is an isomorphism this will not in general be the same as (E8)E’. What we
have is a morphism with fixed ends

(EB)E’ —E(BE"). 3
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We shall say that two exact sequences E=E,E,_|...E,E| and
E' = E; n—]e .E;El’

are equivalent if we can obtain one from the other by a finite number of
switches of the type (3). In this case we write E ~ E’. If E ~ E’, then clearly
EF ~ E'F and GE ~ GE'’ for any F and G for which the splicing makes sense.

Proposition 3.1. Suppose that we have a morphism of exact sequences with fixed ends

E0—>4—>B,.,—>8,9—>...>B =>B, »>C—>20
- v Vool
E:0>A—>B,, >By,y—>...>B —-B;—~>C—>0

Then E ~ E'. Conversely, suppose that E ~ E’. Then there is a chain of exact sequences
E = Eo, El’ E2,. oy Ek—l’ Ek = E’

such that for each i, 0 <t < k — 1, we have either a morphism E;—E,,, or a morphism
E. ., = E; with fixed ends.

Proof. We decompose E and E’ into exact sequences of length one as in (1).
Then the morphism E —E’ induces the following commutative diagram for
each i:

E,-:O K,' > B,‘_] —_— K,'_] — 0
IE'J j ﬂi-J’
E:0 K > B, ——> K,_, —> 0

Therefore we have
ﬁiEl' = E:'Bi—l, i = 2: 3)’ ey — 1

En = E:x:Bn—l
B\E, = E|.
Thus we can write
E"E'l‘-l' . ‘E2E1 = (E":ﬁn—l)En—lEn—Z' . 'E2E1

~ E,(BprEpy) Epg. - -EoEy
= E;(E’n—l:B't—Z)En—Z' . 'E2El

= E;Eln—lE’n—-T . (E;ﬁl)El
~ EE, \E, ,...Ey(B:E)
= E,E, \E,_,...E}E].
The converse is simpler. In the case where we make a single switch on
sequences of length two, we have a morphism from one sequence to the other
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as indicated by (3). If the length of the sequences is greater than two, we can
use the morphism (3) on the parts of the sequences where the switch takes
place, and extend to the other positions by using identity morphisms. A finite
number of such switches will thus give rise to a finite chain of morphisms, the
direction of each morphism being indicated by (3). ||

Define Pretext"(C, 4) (n > 2) as the class of all exact sequences of length n
with left end 4 and right end C. Define Ext*(C, 4) as the class of equivalence
classes of Pretext"(C, 4) modulo the equivalence relation ~. We put an
addition on Pretext"(C, 4) by the rule

E+E = VE QE)4

We proceed to show that + defines an abelian semigroup structure on
Pretext"(C, A), and furthermore induces an abelian group structure on
Ext*(C, 4).

Lemma 3.2. The following are true whenever the combinations make sense.

() (¢ @ «)(EDE) = sE @ «E (i*) (EDE)(y ®y) = By OEY’
(ii) (E @ E)(F ®F) = EF QEF
(iii) (E + E/)F ~EF + E'F (iii*) E(F + F') ~ EF + EF’
(iv) (¢ + «')E~ aE + o«'E (iv*) E(y + ) ~Ey + Ey’
(v) «(E+E') = aE + oF’ (v*) (E+E)y = Ey+E’y.

(vi) Given a morphism E —E' with fixed ends, there exists morphisms ol — oE’ and
Ey —E'y with fixed ends. Hence, if E ~ E', then oE ~ «E’ and Ey ~ E'y.
Proof. (i) and (ii) are trivial.
(iii) Write E = E .. .E,
E = E,. ..E]

F=F,.F,.

Then using (ii) we have

(E+E)F = (V(E @E’)A)
= V(E, ®E)...(E, ® E{)4)F,...F,
~ V(E, @E’) (E, @ E))(4F,)...F,

V(E, @ E,)...(E (-DEI)((F". @ F)d)...F,

= V(E, DE,)...(E, @ E)(F, ®F,)...(F, ®F))4
= V(EF ® EF)4
= EF +EF.
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(iv) Using (iii) and 1.4 we have

(¢+ a)E = (« +a)E,.. .E,
= (aE,+ «'E)E,_,...E,
~ aF,. . .E,+d'E,..E
= oE + &'E.

(v) Using (i) we have

«(E+E) = «V(E ®E)4
= V(@ )(EPEI
= V(«E @ «E")d4
= oE + oE',

(vi) is an easy consequence of 1.1. ||

Theorem 3.3. The operation + makes Pretext"(C, A) an abelian semigroup.
Furthermore + induces an addition on Ext*(C, A) yielding the structure of an abelian

group.
Proof. The proof of associativity of + is the same as in the case of Ext!(C, 4).
To prove commutativity we have
E+E = VEQDPE)4
= Vi(E, ® E,).. (E, @ E)4
— V(E, @ E)7)...(E, @ Epd
= V(E, ® E,)(7(E,-y ®E,)))...(E\ ®EY)...(E, DENA

=V(E, @E,)(E,_ ®E,,).. (E{ ®E)r4
=VE @E)4
=E+E

where we are justified in writing = in place of ~ at the switches since ris an
isomorphism,
It is straightforward to show that the sequence

Ej:0-4=4-50-0...-0>C=C—>0

behaves as a zero for +.

To show that + induces an addition on Ext"(C, 4) we must verify that
E + F ~ E’ + F whenever E ~ E'. In view of 3.1 it suffices to show that given
a morphism E — E’ with fixed ends, there exists 2 morphism E + F-E’ + F
with fixed ends. Now clearly there is a morphism E @ F —E’ @ F with fixed
ends. Hence taking « and y to be V and 4 respectively in 3.2, (vi), we obtain
the required morphism E + F—E’ + F.
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Finally we show that Ext"(C, 4) has additive inverses. We first form the
commutative diagram

OE:0 >4 > APK,, > B, ,—>...> B =B, —>C—>0

[ } o4
Ey:0 > 4 A -0 e. > 0 > C=—C—>0

which shows that OE ~ E;. Then we have, using 3.2, (iv),
Ey~0E=(1+(-1D))E~I1E+(—1E=E+ (- 1)E,
so that the class of (— 1)Eis an additive inverse for the class of E in Ext"(C, A4). ||

Again we shall write 0 in place of E,.
Given « : A—A’, we can define a function

& = Ext"(C, «) : Ext"(C, 4) — Ext"(C, 4")

by the relation &([E]) = [«E] where [E] represents the class of E. By (vi) of
3.2 we see that a is well defined, and by (v) of 3.2 we see that it is a morphism
of groups. A dual discussion applies to the other variable. It then follows from
the relations (2) that Ext" is a group valued bifunctor, contravariant in the
first variable and covariant in the second, and furthermore by 3.2, (iv) and
(iv*), it is additive.
We define Ext%(C, 4) = [C, A]. Then we have the pairing
Ext™(B, A) x Ext*(C, B) —Ext™"(C, A)

defined for m, n > 1 by splicing sequences, and defined for m or n = 0 by the
functorial character of Ext. From 3.2, (iii), we see that this pairing is bilinear.
In particular, it follows from this that if E ~ 0, then EF ~ 0and GE ~ 0 for any
F and G for which the splicing makes sense.

4. The Relation ~

In 3.1 it was shown that E ~ E’ if and only if there is a chain of exact
sequences E = Ey, E|, E,,..., E, = E’ such that for each {, 0 <7 < k — L, there
is either a morphism E; - E,, | with fixed ends or a morphism E; | —E; with
fixed ends. In this section we shall show that we may always take £ < 3. We
shall adopt the following notation. Given a short exact sequence

E:0—>A4A—->B—~>C—0,

we denote the morphism 4 — B by ug and the morphism B—C by A.
The following lemma is due to Steven Schanuel.

Lemma 4.1, Lot E and F* denote exact sequences of lengths r and s, respectively
(r, s = 1), such that the splicing £’ ¥° is defined. Then the following are equivalent.
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(a) EF ~0.

(b) There is a sequence G’ and a morphism ¢ such that E' ~ G’ and ¢F* ~ 0.
(c) Thereis a sequence H* and a morphism s such that ¥* ~ yH and E's ~ 0.
Furthermore, in case r = s = 1, @ may be taken as pg and s may be taken as Ag.

Proof. It follows immediately from the last remark of §3 that (b)= (a) and
(c)=(a). We first prove (b)=(c) in the case r =s=1. Let £ ~ Go where
@F ~ 0. Observe that ~ means equality in this case since we are working with
sequences of length one. By 2.1* we can write ¢ = pu, for some morphism p,
and then we have E = Gp = Gpug. Since ppF =0, this shows that we may
assume ¢ = ug. The pullback diagram (I, 16.3)

H F
0 0
l v
Ag
E:0 4 B > K, 0
BF
G:0 > A > M By > 0
4
Cc C
0 0

then shows that F = AgH as required. This proves (b)= (c), and by duality,
(c)= (b).

Next we show that (a)= (b) and (c), still in the case r = s = 1. We do it by
induction on the minimum number of switches necessary to change EF into 0.
If no switches are necessary (that is, if EF = 0) then this is trivial. Otherwise
we may have E = E’'y where the number of switches to change E’'(»F) into
zero is one less than that required for EF, or we may have F = 9F" where the
number of switches necessary to change (En)F’ into zero is one less than that
required for EF. In the former case we have by induction E’ = G’ where
¢'(pF) =0. Hence E=E'n=Ge'y, and ¢'nF =0, so that we may take
¢ = ¢'n tosee that (b) holds. In the latter case we see by duality that (c) holds.
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Since in any case (b) and (c) are equivalent, this shows that (a) implies (b)
and (c).

We proceed now by induction on 7 + 5. We assume (a), (b), (c) equivalent
when 745 <n (n> 2), and take r + s = n. We first show that (b)= (c). We
have E" ~ G'¢ where ¢F* ~ 0. If s> |, write F* = FF*~!. Then pFF~! ~ 0,50 by
induction we can write

F! ~ gH™',  oFp ~ 0.

Hence E'Fy ~ G'¢Fn ~ 0, so again by induction we can find a morphism i
such that F = yH, E'y ~ 0. Then we have

F = FF:—I ~ F,']Hs—l _ I,bHH"_I

and therefore we can take H = HH*~!. If s = 1, then r> 1, so we can write
G’ = G 'Gg. From the case r = s = 1 we then have a morphism ¢ such that
F =y¢H and Gy =0. Then E'Y = G""'Goyy ~ 0. This shows (b)= (c) and
dually (c) = (b). Yoneda [37] proved that there is a sequence E, together
with morphisms £ — E, < E’ with fixed ends.

We now have only to show that (a)=> (b) and (c). We do it by induction on
the number of switches required to change E'F' into 0. Again this s trivial if the
number is zero. Also it is trivial if the switch made to reduce E'F* so as to meet
the inductive hypothesis can be made at a position within E’ or F*. Therefore
assume that E" = E"7 where the number of switches required to change
E”(nF*) into 0 is one less than for E'F*. Then by induction we can write
E’' ~G'¢’ where ¢'nF° ~0. Then E' = E'y ~ G'p'n, so that we may take
@ = ¢'7. Similarly, if we assume that F* = 7F*" where the number of switches
required for (E')F" is one less, then we can find . Hence in any case one of
(b) or (c) is true, and so both of them are true. |

Theorem 4.2, IfE ~ 0, then there is a sequence F and morphisms 0 —F «E with
fixed ends, and a sequence G and morphisms 0 <G — E with fixed ends. IfE ~ E', then
there is a chain of morphisms

E—>E <« E)—»FE
with fixed ends.

Proof. Suppose E ~ 0. Write E = E,E, ,...E|,and E‘ = EF,_,...E;. By 4.1we
can write E, = E,9,, 9,E™! ~ 0, where we have equality in the former relation
since the sequences involved have length one. Then we can write

QnEn—l = E’n—lvn—l

where ¢, ,E*2 ~ 0. Continuing this process we obtain finally @3, = Ejp,
where @,E, = 0. Denoting ¢,E, = E{, we let F = EE,_,...E}E|. The mor-
phisms ¢; then define a morphism E —F with fixed ends. Since Ef is a split
sequence, it is easy to define a morphism 0 — F. The sequence G and morphisms
0« G —E are obtained by duality.
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Now if E ~ E’, we have E + ( — 1)E’ ~ 0. Hence by the above we can find

0<G->E+(-1E
and similarly
0>Fe« (-1NE +FE

with fixed ends. We can then write
0PE«~GQOE>E+(-1NE)QDE (1)
EPO->EDPF«~ED((-1E +E). (2)

Using 3.2, (vi), we can apply V on the left and 4 on the right throughout (1)
and (2) to obtain

0+E«~G+E—->(E+(-1E)+FE (3)
E+0->E+F<«E+ ((-1E +E'). (4)
By 3.3 wehave 0+ E'=E’,E + 0 =E, and
E+(-1DEY+E =E+ ((—-1E +E').

Hence the theorem follows from (3) and (4) by taking E, =E + F and
E,=G+E'.|

5. The Exact Sequence
Given an exact sequence
p €
E:0>4-—-B—>(C—>0 )
and an object X, we can define a function
6 = 8(n, E, X) : Ext"(X, C) — Ext"t!(X, A) (nzl)

by the relation §([E]) = [EE]. It follows from (iii*) of 3.2 that 8 is a group
morphism, called the covariant connecting morphism of degree » at X with
respect to the sequence E. A morphism X — Y induces a commutative diagram

Ext(Y,C) - Ext"*'(Y, 4)

(2)

Ext'(X,C) - Ext"*!(X, A)
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and the diagram (2) of §2 induces a commutative diagram

Ext"(X, C) — Ext"*!(X, A)

3)

Ext"(X, C') — Ext"*1(X, 4')

Dually, we have the contravariant connecting morphism
6 : Ext"(4, X) —Ext"(C, X)
defined by ([E]) = [EE].
Theorem 5.1 (Schanuel). Relative to the exact sequence (1), the sequence of groups

o » € 8
Ext" (X, C) > Ext"(X, A) - Ext"(X, B) - Ext"(X, C) - Ext""!(X, A)
is exact for all n > 1.

Proof. Using the relations pE =0, ep = 0, and Fe = 0, one sees without diffi-
culty that the sequence is of order two. Therefore to show exactness we must
prove three things (n > 1):

I": pE" ~ 0 = E" ~ EF*! for some F*~! € Pretext™ (X, C)
II*: eE" ~ 0 = E" ~ pF" for some F* € Pretext"(X, A4)
IIT": EE* ~ 0 = E" ~ ¢F" for some F” € Pretext” (X, B).

First we prove 111" (n > 1). If EE" ~ 0, then by 4.1 we have E" ~ yF" where
Ey = 0. But then by 2.1 we can write ¢ = e)’, and so we have E* ~ ey’F”. This
proves III.

Observe that I' and IT! have already been proved in 2.2. To prove I*(n > 1)
suppose that pE" ~ 0 and write E* = FE*. Then pFE™! ~ 0, so by I1I""!
applied to the sequence pF we have E™! ~ AsF"!. Hence we have
E" ~ FA,;F~'. Applying I' to the relation pFA,z = 0 we can write FA s = E¢
for some ¢. Therefore E* ~ EQF™! and so this proves I".

Finally, to prove II"(n> 1) suppose that €E"~ 0, and again write
E" = FE'. Then eFE™! ~ 0,and so by III""! we have E*~! ~ A_;F"~!. There-
fore E” ~ FA_F™!. Applying II' to the relation eFA, =0, we can write
F) ;. = pG for some short exact sequence G. Hence E" ~ pGF™!, and so this
proves 11" |

6. Global Dimension

Following Cartan and Eilenberg [6] we define the homological dimen-
sion of a nonzero object A (therein called the projective dimension of 4)
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as the least integer n such that the one variable functor Ext*(4, ) is not zero
(notation h.d. 4). If no such integer exists we define h.d. A =0. If 4 =0 we
define h.d. 4 = — 1. Dually the cohomological dimension of 4 is the least
n such that Ext*(, A) is not zero. The duality Ext*(C, 4) = Ext"(4*, C*)
shows that the cohomological dimension of 4* is the same as the homological
dimension of 4.

The global dimension of a category & (gl. dim. &) is the least integer n
(or infinity) such that the two variable functor Ext" is not zero. Thus we have

gl. dim. & = sup (h.d. 4) = sup(h.d. 4%)
Ae Acyy

Clearly gl. dim. &/ =gl. dim. &/*. The left global dimension of a ring R
(1. gl. dim. R) is defined as gl. dim. ®*%. Similarlyr. gl. dim. R = gl. dim. ¥®.

Proposition 6.1. Consider an exact sequence
0>A4A—-B—>C—0.

1. Ifh.d. B=h.d. 4, thenh.d. C<1+h.d. 4.
2. Ifh.d. B<hdd. 4, thenh.d. C=1+h.d. 4.

Proof. The proof follows by examining the exact sequence of 5.1*. If either
of the above claims were not true, then we would have a nonzero term flanked
by two zero terms in an exact sequence which is impossible. ||

Lemma 6.2, If P is a nonzero projective object, then h.d. P =0.

Proof. By II, 14.2, every short exact sequence with right end P splits. Con-
sequently, every long exact sequence with right end P is equivalent to 0 or,
in other words, Ext*(P, ) =0 for &£ > 0. ||

Lemma 6.3. Given an exact sequence
0-»P,—»P _,—>...>P>P,—>A4->0 (N
with n>0 and P, projective for 0 <k <n—1, we have for all X
Ext? (P, X) ~ Ext™?(4, X) (2)
Jor p > 0, and an exact sequence
[P,_i, X]—[P,, X] ~Ext*(4, X) —0. (3)
Furthermore, the morphisms of (2) and (3) are natural in X.

Proof. Let K; = Ker(P;_; >P, ) fori=1,2,...,n — 1. Then using 6.2, a part
of the exact sequence of Ext relative to the short exact sequence

0—-P —»P,_,—>K, -0 4)
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yields Ext?(P,, X) ~ Ext*™!(K,_,, X). The same argument relative to the
exact sequence
0—>K,,—>P,_,—>K,_,—0
gives Ext**(K,_,, X) ~ Ext**}(K,_,, X). Continuing in this way we get a
chain of isomorphisms whose composition gives us (2). Naturality in X follows
from n applications of the diagram (2*) of §5. Now using (4) and 2.2* we have
an exact sequence
[P,_, X]—>[P,, X] >Ext' (K, ;, X)—>0. (5)
Applying (2) with n, P,, and p replaced by n — 1, K,_,, and 1, respectively, we
obtain Ext!(K,_,, X) ~ Ext"(4, X). Hence the exact sequence (5) gives us the
desired sequence (3). Naturality of (3) follows from the naturality of (2) and
the commutative diagram (1*) of §2. |
Proposition 6.4 [6, p. 110]. The following statements are equivalent in a category
with projectives (0 < n < )
(a) hd. A< n.
(b) Ext™!(4,) = 0.
(c) Ext*(A,) is cokernel preserving.
(d) Given an exact sequence (1) with Py projective for 0 < k< n — 1, the object P,
is projective.
(e) There exists an exact sequence (1) with P, projective for 0 < k < n.
Proof. (a) = (b) is trivial.
(b) = (c) follows immediately from 5.1.
(¢) = (d)is trivial if n = 0. If n > 0, consider an epimorphism X -» X",

Using 6.3. we obtain an exact, commutative diagram

(P._), X] —> [P, X] —> Ext" (4, X) ———>0

(Poety X' — [P, X'] —> Ext"(4, X")———— 0

Since P,_; is projective and Ext"(4, ) is cokernel preserving we see that the
vertical morphisms on the left and right are epimorphisms. Hence by the
5-lemma, [P, X]—[P,, X"] is also an epimorphism. This shows that P, is
projective.

(d) = (e) is trivial.

(e) = (a) By 6.2 and 6.3 we have

Ext"*(A4, X) ~ Ext*(P,, X) =0

for p > 0. This shows thath.d. 4 < n. ||
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We shall return to questions of global dimension in Chapter IX, where we
shall prove in particular a generalization of the Hilbert syzygy theorem for
abelian categories.

7. Appendix: Alternative Description of Ext

Throughout this appendix, we shall be dealing with an abelian category
with projectives.

As in [6, Chapters V, VI], we can define the functor E_xt_"(C, A) as the nth
right derived functor of the functor H,. Explicitly, we take a projective reso-
lution X of C

d dy dy €

dn+1 n

X1 X, X >oes X, X, >Xo

©

0.

Then Ext*(C, A) is defined as the nth homology group of the complex [X, 4];
in other words

Ext"(C, 4) = Ker[d,,,, A]/Im[d,, 4].

Equivalently, if we let K, — X,_, be the kernel of 4,_, (or the image of 4,), then
we have

Ext'(C, 4) = [K,, A]/Im([X,_;, 4] > [K,, 4]).

Thus Ext"(C, A) is the group of morphisms K, — 4 reduced modulo the sub-
group consisting of all those morphisms which can be extended to X,_;. A
morphism 4-—+A4’ induces a morphism of complexes [X, 4] >[X, 4], and
hence gives rise to a morphism of the homology groups

Ext"(C, 4) — Ext*(C, A').

On the other hand, suppose that we have a morphism ¢ : €' —C, and let X’
and X be projective resolutions for C' and C, respectively. Using projectivity
of X’ and exactness of X, we can construct a morphism @ : X' — X over ¢;
that is, a commutative diagram

e X X, —>. . —> X} X, —> Xp—>C'—>0
\L " l¢n—l l¢2 l¢l l¢o l‘?
...HX"—)X"_] v e X2 X] 71Y0 'C 0

This gives rise to a morphism [X, 4] -[X’, A] of complexes, and hence a
morphism of the homology groups

Ext"[C, A] - Ext"[C’, 4]
which can be shown to be independent of the choice of @. This independence
incidentally serves to show the independence of Ext"[C, 4] from the choice of

the resolution X. In this way Ext" becomes a bifunctor into %, contravariant
in the first variable and covariant in the second.
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Furthermore, we can define connecting morphisms as follows. Given an

exact sequence
0>4"-A—>A"—>0,

then using the fact that X is projective we get an exact sequence of complexes
0->[X, 47— [X, 4] > [X, A"] >0.
Hence we have the usual connecting morphism between the homology groups
f: Ext(C, A") > Ext"t1(C, 4').

Explicitly, if f: K, — A" represents an element of Ext"[C, 4”], then using pro-
jectivity of X, we may find a morphism X, — A4 such that the diagram

0 Kn+l X" K" > 0
1 lf (1)
0 ﬁ) A, A AII 0

is commutative. Then we may find a morphism g: X,,, >4’ such that (1)
remains commutative, and by definition g represents the image under  of the
equivalence class of f.

The connecting morphism with respect to the first variable is more compli-
cated. Given an exact sequence

m A
0->C' ->C—>C"—>0
and projective resolutions X’ and X" of C* and C”, respectively, we consider
the exact commutative diagram with split columns

0 0 0 0 0

Xn > Xy - ...>X] > X, c > 0

dn ’ €
X®X, 3 X, @Xs - .. > X DX > X® Xp>C —> 0 (2

R

Xo— X0 — ... > X} Xo > C" >0

v v Y J’

0 0 0 0 0
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which is constructed by iterating the procedure givenin IV, 5.2 (diagram (4)).
In order to have commutativity and order two in the middle row we see that

4

d, 6
€ must be defined by a matrix (ue’, ¢) and d, by a matrix ( O" a,,,") where

8, : X,—~X,_,and o : X;—C satisfy the relations

€ = Ao
pe'®, +adf =0 (3)
d»:—l@n + @n—ldy: = 0.

Using the fact that the vertical sequences split, we get an exact sequence of
complexes

0->[X" A] >[X' @ X", A] = [X', 4] >0,
and consequently we have a connecting morphism
: Ext"(C’", 4) > Extt!(C”, A).
Explicitly, if f: X, — A represents an element of Ext*(C, 4), then
f@n+l : X::’-f-l -4

represents the image under § of the equivalence class of f.

Our purpose now is to show a natural equivalence of the bifunctors Ext®
and Ext”, and furthermore to show that this equivalence is compatible (up toa
sign) with the connecting morphisms,

Let X be a projective resolution for C, and let E denote the exact sequence

0K, ->X,_ =X, ,—>...0X, > X, >C—0.

For n2> ] we define a morphism 4 : [K,, 4] > Ext"(C, A) by the relation
7(f) =fE. By (iv) of 3.2 we see that 4 is a group morphism. Furthermore, if
S K,—4 can be extended to X,_,, then fE ~ 0. Hence 7 induces a group
morphism
7 : Ext*(C, 4) - Ext"(C, 4).

On the other hand, given a sequence F € Pretext*(C, 4), using exactness of F
and projectivity of E we can define a morphism @ : E — F with fixed right end.
The morphism @, : K, —4 of left ends represents an element of Ext*(C, A)
which can be shown to be independent of the choice of @. Hence we have
defined a function 7 : Pretext’(C, A) —Ext"(C, A). Furthermore if F’ is
another member of Pretext*(C, 4) and F —F’ is a morphism with fixed ends,
then clearly %' (F) = #'(F’). Hence %’ induces a function

7’ : Ext"(C, A) > Ext"(C, 4),

and it is easy to show that %'y and %7’ are identities. Therefore 7 is a group
isomorphism.



.7. APPENDIX: ALTERNATIVE DESCRIPTION OF EXT 185

We now show naturality of 7. Let f: K,—A represent an element of
Ext"(C, A) and consider a morphism a« : 4 —4’. Then commutativity of the
square

Ext"(C, 4) ———> Ext"(C, 4)

A4

Ext"(C, ') ——> Ext"(C, 4')
follows from the relation «(fE) = («f)E. On the other hand, if we have a

morphism y : €' —C, we construct a commutative diagram

E:0— Ky — X, ... > X|— > X;——>C—>0

R R IR

E:O_—)K"_-—_>Xn—l'+...‘_>X1__—)X0_—'>C_>O

where E and E’ are exact, and the X’s are all projectives. Again let f: K,— A4
represent an element of Ext"(C, A). Then a chase of the class of f around the
diagram

Ext"(C, ) —> Ext"(C, 4)
(5)

Ext"(C", 4) —> Ext(C’, 4)

yields the class of (fE)y clockwise, and the class of (fB)E’ counterclockwise.
But from the morphism (4) of sequences we know that SE’ =Ey, and so
SfEy =fBE’. This proves commutativity of (5).

We now examine the behavior of % with respect to the connecting mor-

phisms. Given an exact sequence

E: 04 —>A-4"—>(Q,
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we consider the commutative diagram

0 0

NS
K,
N\

0—>Kn+1—)Xn Xn_l_)Xn_1_>...—‘>Xo'—>C—>'0

RN
0—A'——o>4— A"—0

where the morphism f represents any element of Ext"(C, 4). We denote the
short sequence

0—-K,,,>X —-K,—-0
by F, and the long sequence
0->K,—+X,_,>X _,—>...>X;-C—>0

by E. Chasing the class of f around the diagram

Ext"(C, 4") ——> Ext"(C, 4")

©y
-

(6)

Ext™(C, 4) —— Ext"*'(C, 4')

yields the class of E{fE) clockwise and the class of g(FE) counterclockwise.
Since Ef = gF, these classes are the same, and so (6) is commutative.
Finally, consider an exact sequence

E:0->C' ->C—-C"—>0.

We refer to the diagram (2). Denote by E’ and E’, respectively, the exact
sequences
0K X, | —>X 3—>...>X] > X;—>C'—>0
0K, >X =X, X, ,—>...> X >X;—>C"—0.
Leta : K,,; — K; be the morphism induced by 8, , : X,,; > X,. Letf: K, >4

represent an element of Ext"(C’, 4), and let us chase the class of f around the
diagram
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Ext"(C’, 4) —2—> Ext' (C', A)

(-1)"*1g 0 (7

v v
Ext"*'(C", 4) — Ext"*!(C", 4)

Clockwise we obtain the class of ( fE’) E. Counterclockwise we obtain the class
of ((— 1)*fa)E”. But using (3) we have a commutative diagram

E'E:0 — Ky — X3 2 X1 —> X)) > C > C" 0

o o o o |

E"0 — K;,,— X >>X}—> X} —> Xi——C" —0

This shows that (— 1)""!'«E" ~ E’E, and so we have proved commutativity
of (7).

If, instead of having projective resolutions, the category has injective reso-
lutions, then the above dualizes to show that Ext*(C, 4) can be regarded as
the nth homology group of the complex [C, Y] where Y represents an injective
resolution for 4. In this case the discrepancy in the sign of the connecting
morphism comes in the second variable.

Finally, it should be remarked that the natural equivalence % was defined
only for values of n greater than zero. However, if n = 0, we still have a natural
equivalence

Ext%(C, 4) ~ Ext®(C, 4) = [C, 4]

and naturality and commutativity with the connecting morphisms can still
be established (exercise 3).

Exercises

1. If o7 has a generator, then Ext!(C, 4) isasetforall 4, C e &/.

2. Demonstrate how badly we are abusing the foundations by showing that
in a nontrivial cocomplete abelian category each equivalence class in
Ext*(C, 4) isnotaset (n> 1).

3. If X is a projective resolution for C, then the Oth homology group of the
complex [ X, C] is

Ext0(C, 4) = Ker([X,, 4] ~[X,, 4]) % [C, 4].
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Show that this isomorphism is natural in C and 4, that it commutes with the
covariant connecting morphisms, and that it anticommutes with the contra-
variant connecting morphisms.

4. Let &/ be an abelian category and R a commutative ring. Considering
extensions in the category ReZ, the group Ext"(C, 4) becomes an R-module
either through operation of R on C or on 4. Show that these two R-module
structures are the same.

5. Use 6.3 to show that if E and E’ are equivalent sequences of length n from
A to Cin a category & with projectives, then there is an exact sequence

F:0-4->B—>P _;,—»>...>P;>P >Py—>C—0
with P, projective for 0 < k£ < n — 2, together with morphisms
E'«F->E

with fixed ends. Dually, if &/ has injectives, then there is a sequence G and
morphisms
E'->-G<«E

with fixed ends (cf. 4.2).

6. Let & be an h.f. class of epimorphisms in an abelian category (see V,
exercise 5) and let % be the class of all short exact sequences E such that Ap € &
(hence ppe M(F)). f E,E' €€, then E@QE' €¥%. If E€¥ and Ey is
defined, then Ey € €. (Consider the pullback diagram

Ev.0— 4 > B — C' > 0
E0—>4A > B >C 0

and show that the composition 4 B —B x C' is in A (&)). Dually, if aF is
defined, then «E € €. Hence if E, E' € Ext!(C, A) N €, then E+ E' € ¥.
Thus, defining &-Ext!(C, A4) as the subgroup Ext!(C, 4) "€ of Ext!(C, 4) we
obtained a group valued bifunctor. Furthermore, relative to an exact sequence
0—A4->B—>C—0in € we have connecting morphisms

[X, C] >&-Ext! (X, 4)
[4, X] —>&-Ext!(C, X)
and the proof of 2.2 is valid.
More generally, define E=EE, |...E,E, to be &-exact if E;€ € for
1 < i< n. Then define &-Ext"(C, A) as the class of §-exact sequences from 4

to C of length n, modulo the following equivalence relation. Write E ~ E’ if
there is a chain of £-exact sequences

E = EO:EIP", E,‘ = E’
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such that for each i we have either a morphism E; — E, | with fixed ends or a
morphism E,, | — E; with fixed ends. Then again &-Ext"(C, 4) is a group valued
bifunctor, and we have connecting morphisms for short exact sequences in €
relative to which 5.1is valid. If & is a projective class, then &-Ext"(C, 4) can be
defined alternatively as the nth homology group of the complex [ X, 4] where
X represents an &-projective resolution for C.

This generalization is due to D. Buchsbaum [4].

7. Consider an exact commutative diagram

E E"
0 0 0
4 N 4
F:0 > A’ > A > A" 0
N 4 4
0 > B’ > B > B” > 0
j v v
G:0 c > C ¢ 0
l v
0 0 0

Show that the twofold sequences FE” and ( — 1) E'G are equivalent. (Construct
an exact sequence

E:0-4">4 DB —-B->C"-0

together with a morphism E —FE"” with fixed ends and a morphism E — E’G
with — 1 at the left end and fixed right end.)
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Satellites

Introduction

Satellites were first defined in Cartan-Eilenberg [6] (therein called left
satellites) for functors between categories of modules. The definition applied
to any additive functor T': &/ —% where & and & are abelian categories and
&/ has projectives. A definition was also given in terms of universal mapping
properties [6, p. 51, exercise 1].

In [5] Buchsbaum constructed satellites for a functor 7" : & —>Z in the case
where &7 is small and # is cocomplete. He also proved that when & is a
category of modules the connected sequence of cosatellite functors of a half-
exact functor T is exact. Most of the material of [5] is reproduced in §2 and §3
of this chapter. We have proved the exactness of the cosatellite sequence for a
half-exact functor T : &/ —Z% under the assumption that % is C5. In particular,
this applies to group valued functors. However, the proof does not dualize to
the case of the satellite sequence of a half-exact group valued functor. Exact-
ness of the sequence in this case is an open question.

In §4 we show that the nth satellite evaluated at 4 of a functor T': &/ % is
given by the group of natural transformations from the functor Ext"(4, ) to
T . This generalizes the natural equivalence of Yoneda

[EXt’I'l(A’ )’ B ®R] ~ TOI‘,‘:(B, A)

where 4 €R% and B € @®. Section 5 contains a further application of the
projective class theory of V, §7. In the last section (§6) we extend the theory of
satellites to functors of several variables.

1. Connected Sequences of Functors

All categoriesin this chapter will be abelian, and all functors will be additive.
A connected sequence of covariant functors from &7 to & is a family
T : o -2, where n runs through all the integers, together with connecting
morphisms
8% Tn(A") > T4
191



192 VIIl. SATELLITES

defined for each short exact sequence in &7
E:0>4'">4—->4"-0 (N
and each integer n. Furthermore, the following conditions must hold:
1. The sequence of morphisms
e > THAN > TYA) > THA) > TA") > TH(A)—>... (2
is of order two.
2. Relative to a morphism of short exact sequences

E:0— 4 > A A" 0
F:0 > B’ > B B" s 0

the diagram

T"(An) 85" 3 T’l+1(Al)

(7 ") 3

TII(BII) L_) Tn+|(Bl)
is commutative.

A sequence of contravariant functors 7™ is called a connected sequence if
the sequence of covariant functors T is a connected sequence.

It will be convenient to denote 77" by T,. We then say that the connected
sequence 7" is a positive connected sequence if 7" =0 for n <0, and a
negative connected sequence if 7, =0 for all n < 0. Clearly the theory of
negative connected sequences can be obtained from the theory of positive
connected sequences by applying duality to both domain and codomain.

A connected sequence of functors 7" will be called exact if, relative to any
short exact sequence £ in the domain, the sequence (2) is exact.

Let {T"} and {U"} be connected sequences of functors with the same
domain and codomain. A morphism {7} —{U"} is a family ¢": T"— U"
of natural transformations which commute with the connecting morphisms;
that is, for each exact sequence (1) and each integer 7, the diagram

T"(A") 5 Tn+I(AI)
o o5! (4)

U(dr) ——> U4
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is commutative. If each ¢" is a natural equivalence, then {¢"} is called an
isomorphism.

Let {T"} be a connected sequence of functors from &/ to #, and let
E = E,...E,E,E, be an exact sequence of length p from 4 to Cin .o/ . Then we
can define the iterated connecting morphism

8% : T"(C) — T (A)

as the composition 83*~!.. 8328318 . If E—E’ is a morphism of exact
sequences, then it follows from p applications of the commutative diagram (3)
that the diagram

T*C) ——> T"'*(4)

T"(C’) 3 anp(A/)

is commutative. Likewise, if {¢"} : {T"} —{U"} is a morphism of connected
sequences of functors, then p applications of (4) shows that

THC) ——> T"*P(A)
°¢ /i (6)

UnC) —— U™P(4)

is commutative. Observe from (5) that equivalent exact sequences induce the
same iterated connecting morphism.

Consider a pair of covariant functors T, T': 9/ —-% and morphisms
8p: T(A"Y—T'(A’") defined for all exact sequences £:0—>A'—>A-—>A"—0
in.eZ. Wecall (T, T') a connected pair of functors if the associated sequence
T, T',0,0,...is a positive connected sequence. Likewise, we shall say that a
pair of natural transformations (¢, ¢') is a morphism of connected pairs
(T, TYand (U, U')ifthe family @, ¢', 0, 0,... isa morphism of the associated
positive connected sequences. We then say that ¢' extends ¢. If (7, T'!) has
the property that for every connected pair (U, U') and every natural trans-
formation @ : T U there is a unique extension ¢' of ¢, then we call 7! the
first cosatellite of 7, and we denote it by §' 7. We define the nth cosatellite
of Tinductivelyas$"T = S§'($"! 7). If $" Tis defined for allz > 0, then setting
§0T = T we obtain a positive connected sequence of functors {$"7"} with the
property that given any positive connected sequence {{"} and any natural
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transformation ¢°: T— U?, there is a unique morphism {¢"} from {$"T} to
{U"} which extends ¢°.

If T is contravariant, then we say that T™ is the nth cosatellite of T'if T} is
the nth cosatellite of the covariant functor T,

Dually, we say that a negative connected sequence ... T, T}, Ty = T'is the
sequence of satellites of T, if T4 = To¥, T\%, Tof... is the sequence of
cosatellites of T§. In this case we denote T, by S, T (n > 0).

If ¢ =¢%: T—U is any natural transformation, then by definition of
cosatellite, ¢ admits a unique extension {¢"} : (§"T} —{S"U}. The natural
transformation ¢" is then denoted by $"(¢). Clearly, we have

§'(pe) = S"(¥)S"(e)
S+ @) = S"() +5"(e)
S"(1r) = lgar
whenever the combinations make sense. A dual definition applies to S,(¢).

If T is a covariant epifunctor, then it follows easily from the definition of
cosatellite that S"7'=0 for all n > 0.

2. Existence of Satellites
Lemma 2.1, Let T': o/ —2% be a covariant functor, and let

EQ —> 4 —* s B2 5 > 0
E':0 4t s p X, 0

be a morphism of short exact sequences. Then the morphism hy, induced by the commutative
diagram with exact rows

T(B) "% T(C) 2£— F, 0

T(f) T(g) Xha

7(8) > T(C) —*

is independent of f and g.

Proof. Let f* and g’ be another pair which, together with «, define a morphism
E—E'. Then (f—f')u = 0, and so we have a morphism 8 : C— B’ such that
BA =f—f'. Then we have

XBA = X(f=Sf) = (g—2&)
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and so A’8= g — g’ since A is an epimorphism. Hence

(hy — bt = (T () = T(g) = peT(g—g")
=ppT(ANB) = peTX)T(B) = 0.

Therefore, since p is an epimorphism we have £, = /.. ||

For an object 4in a category & let € ; denote the class of all exact sequences
of the form

E:0>4—-B—>C—>0.

If £, E' € 6,4, define E < E’ if there is a morphism (1,,,) from E to E’.
Then under this ordering €, becomes a directed class, for if £, and E, are any
two members of €4, then V(E, @ E,) follows both of them. If E < E’ and
T : &/ -9 is any functor, then 2.1 provides us with a unique morphism

WE’:FEQFE’,

and in this way we obtain a direct system in & over the directed class € ;. Now
we can define direct limits over directed classes in precisely the same way that
we define direct limits over directed sets. However, cocompleteness of # will
be no guarantee that such direct limits exist, since cocompleteness applies only
to diagrams over sets.

Theorem 2.2, Consider a covariant functor T : &/ —98, and suppose that for each
A € o the direct system {Fr, w}geq, over the directed class € 4 has a direct limit in &.
Then the first cosatellite of T is given by the direct limit {mp, : Fg—S8'T (4)}gee,.

Proof. First we show that §! T is a functor. Relative to a morphism a« : 4—>4,
in o/ and a sequence E € €4, we let E, be any sequence in € 4 such that there
is a morphism (a,, ) from E to E,. Such exists, since we can always take
E, = oE. Then we have a morphism ay: Fz—>S8!T(4,). Using 2.1 and the
fact that €, is directed, it is easy to see that ay is independent of the choice of
E,|, and furthermore that {«z}gey, is a cocompatible system. There results a
morphism
ST () : S1T(4) >S'T(4,).

It is then a straightforward matter to check the additive functorial properties

S'T(Ly) = lgru,  S'T(B)S'T(a) = $'T(Ba),
SIT(a+B) = S'T(a) +S'T(B).
Given an exact sequence
E:0>A—>A—->A"->0 ’ ()

in &/, we have a connecting morphism 85: T(4") >S'T(4’) given by the
composition T'(4") >Fy—S8!T(4’). For a diagram
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0 > 4 - 4 - A" > 0
0 > B’ ~+B —> B —— 0

it follows by definition of S'7'(4") »S'T'(B’) that the diagram

T(4") ——> SIT(4')

T(B") — S'T(B")
is commutative.
Relative to the sequence (1), we show that the sequence in #
TA)—>T(A)>TA") »>S'T(A)>S'T(4) -S'T(4")
I I I v
is of order two. At positions I and I'V this is just a property of additive functors.

At position IT this is trivial by definition of the connecting morphism. At
position IIT we construct the commutative diagram

EQ—— A —— 4 > 4" — 0
E':Q—d4d —> AQA"— A" > 0

The composition in question is just T(4")—>Fgz—>Fg —S! T (A), which is zero
since E’ splits and so Fy, = 0.

Let (U° U!') be a connected pair of functors and let ¢°: T—>U?® be any
natural transformation. For 4 € & and an exact sequence

E:0-A—-B->C—0 (2)

we have a unique morphism ¢} : Fz— U'(4) yielding a commutative diagram

T(B) T(C) Fg 0

s " (3

UYB) —> UYC) —> UY(4)
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Using uniqueness of ¢} we see that {¢} is a cocompatible family, and so we
get a direct limit morphism

@i:S'T(4) > UM A).

Given a: 4—4, and («,, ) : E—E, we obtain a morphism from (3g) to
(3g,)- Using §1, (3), we see that every face of the resulting cube is commutative
save possibly the face

FE : FE:

N

U4y — U'(4,)
By II, 1.1, we then see that (4) is commutative. Commutativity of the square

S'T(4) —> S'T(4))

U4y — U'4,)

then follows since it is commutative when composed with 7z for every E € € ,.
Therefore ¢! is a natural transformation, and by construction ¢! and ¢°
commute with the connecting morphisms. To show uniqueness of ¢!, suppose
that ¢ : S'T— U! is another natural transformation which together with ¢°
commutes with the connecting morphisms. Relative to an exact sequence (2)
we have the diagram

T(C) E, > SIT(4)

P ¥y

UYC) —— UY(4)

where the square on the left is commutative and the outer border of the
-diagram is commutative. It then follows from the fact that 7(C) >Fy is an
epimorphism that the triangle on the right is commutative. Since this is true
for all E € €4, this shows that ¢} = y,. ||

We now list a number of cases to which 2.2 applies.
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Case |. o is a small category and & is cocomplete. In this case €, is a set for
all 4, and so cocompleteness of # insures the existence of the direct limits.

Case 2./ hasinjectives. In this case any sequence £ : 0—~4 — @ — M -0 with
Q injective follows every member of € 4, and so it is clear that the direct limit
S1T(A) is just Fg.

Case 3. Let (T, T!) be a connected pair of functors from & to &, and suppose
that for each 4 € & there is a cofinal subclass of €, consisting of sequences
0—4—>B—>C—0 for which T'(B) - T(C) - T'(A) —0 is exact. Then since
Fg = T'(4) on a cofinal subclass, the direct limit §! 7°(4) is just T'(4).

Case 4. Let (T, T'!) be a connected pair of functors from & to # where # is
locally small and Cs. Suppose that for each exact sequence in &/

E:0>A3B>C—0
the sequence
T(B)—»T(C)—~>T'(.)>TYB) (3g)

is exact, and that for each 4 € &/ we have

T1(4) = U Ker T (ug) (6)

Ee¥,

where the right side of (6) is defined since & is locally small. From (5z) we see
that Fg = Ker T'(uz). IfE € E’in € 4, then by definition of connected pair we
have a morphism from (5g) to (5z.). It follows that the induced morphism 7§’
is just the inclusion Ker 7! (pug) = Ker T'(pg). Then by Eq. (6) and C3 we
have

SIT(A) = lim Fy = T'(4).
—

Corollary 2.3, The positive connected sequence of one variable covariant functors

HC Ext!(C,), Ext%*(C,),...
is the cosatellite sequence of HC.
Proof. The sequence is exact by VII, 5.1. Since for each

E=EE,_,...E;E, € Ext"(C, 4)

we have Ext"(C, ug }(E) = 0, our result follows from case 4 above. |
Corollary 2.3*, The positive connected sequence of one variable contravariant functors

H,, Ext!(,4), Ext?(,4)...
is the cosatellite sequence of H 4. ||
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3. The Exact Sequence

Given a morphism « : 4 -4’ and exact sequences

E:054-Q—->M-—>0
E':0-A4"->Q >M -0

such that there is a morphism («, , ) : E—E’, let h, pp : Fr—Fg denote the
induced morphism of 2.1. Denoting the natural morphism Fz—S!7T(4) by
g, we have

Lemma 3.1, If T : of % is a covariant functor where B is a Cy category and o is
small, then

Ker($'T() = )l.JE_'E,wE(Kcr(ha,w))-

Proof. First we have S!T(4) = U I; where I is the image of =z (I, 2.8).

Ec¥,

Denote K = Ker(S! T'(a)). Then by Cy we have

K =U (N K).

Ee€ 4

By 1, 13.2, the kernel of the composition Fg—S8!T(A4) -8'T(4’) is ng!'(K).
It therefore follows from III, 1.8, that

U Ker(hze) = mz'(K).

(a,, )i E—E’

Using the relation Iy N K = wg(wg' (K)) (I, 16.4) and the distributivity rule for
images (I, 11.2), we can then write

K=U{I;nK) = U ag(z5"(K))
Ee€4 E€€a

=Um( U Ker(hyge))

Ee€ 4 (a,, ): E>E’
= U =« e(Ker(hy g ). |
(a,, ) : E—~>E"

Recall that a functor T : & -4 is called half-exact if for any short exact
sequence

0-A4">4—->A4"->0 (1)

in o7, the sequence T(4') »> T(4) — T(A") is exact in 4.
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Theorem 3.2. Let T : of B be ahalf-exact functor where o is small and & is C;.
Then relative to the exact sequence (1), the sequence

I 11 111 v
T(A") - T(4) = T(A") »S'T(A") > S'T(4) > S'T(A") > S*T(4") - ...

is exact.

Proof. We have exactness at position I in the sequence by assumption on 7.
To show exactness at positions II, III, and IV it suffices to show that
kernel < image since the reverse inclusions were proved in 2.2. In particular,
this will prove that §' Tis half-exact, and so exactness of the rest of the sequence
will follow by induction.

We first show that kernel < image at position IV. Taking into account 3.1,
it suffices to show the following: given a morphism of sequences

E:0 A —Q > M - 0
E” :0 > A” a” > Qn M" 0

there are morphisms (u,,):E —E, and (A,,):E;—>E" such that
Ker(hy g g) =Im(h, g g) and E, 2 E in €, Given (2), construct the
diagram

0 0 0
E':0 A’ Q M — 0
I‘ 1
’ |
Ei0 —> A——> Q@ Q—> N — 0 3
A
4 4
E":0 A Q" M'——> 0
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where the coordinates of 4 > Q @ Q" are « and «"A, the middle column is a
split exact sequence, and the rest of the diagram is defined so as to have
exactness of the rows and columns (I, 16.1*). Then E, > E. If we apply T to
(3), the middle column is still a split exact sequence, and the sequence
T(M")—T(N)—T(M") is exact by half-exactness of 7. An easy diagram
chase then shows that Fp.—Fy — Fg. is exact as required.

Next we show kernel < image at position ITI. Again, in view of 3.1 it suffices
to show the following: given a morphism of sequences

E: 0 —— A Q M 0
ol
E:0 A = Q M > 0

there are morphisms of sequences (1, , ) : E—>E, and (u, , ) : E; —E, where
E denotes the given exact sequence (1), such that Ker(k, 5 g) = Im(h, g )
and £, > E'in € 4. Given (4), form the commutative diagram

0
E:0 > A —* >4 2 g 0
4 l
E,:0 4 —t>Q N > 0 (5)
“
y
E0 ——> 4 > Q M > 0
v
0

where N is the cokernel of ap. By chasing the diagram one sees that the right
column is exact. Furthermore, E| > E'in € 4. Applying T to (5) and using the
fact that T(4") - T(N) > T (M) is exact, anoth=+ -liagram chase shows that
required exactness of the sequence Fg—Fg —>FE.
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Finally we show kernel = image at position I1. Because of Cj it suffices to
show that in any situation of the form

E:O——)A’——"——)A—-—iﬁA”———>0

e

EO — >4 —> Q ——> M ——>0

the sequence
TW pET(€)
T(A)——> T(4")——>Fg (6)
is exact, where pg : T (M) —>Fgis the cokernel of T°(+). We form the pushout
diagram

0 0
A
0— 4 £ >4 A, 4 — 0
x P
« g B8
0 %Qe_a_‘Q@A”(:‘/’_A”——)O
-
M_=M
0 0

where «, y and B, 8 are injections and projections, respectively, for the
coproduct, and 8p = 7. Recalling that a8 + y8 =1 (I, 18.1) we have
oyX = oyfp = o(l — ad)p
= —cadp = —gan = — T = —e€A

Since A is an epimorphism, this shows that oy = — €. Therefore, exactness of
(6) amounts to showing that Im(T(A)) = Ker(pzT (¢) T(y)). Since T is
half-exact, the sequence

TA)->TQ DAY >T(M)

is exact. Our result then follows from the following general lemma.
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Lemma 3.3. Consider a commutative diagram in an abelian category

A—A—>A”

0 Q—>R—L 54—
Y
’
F
0

and suppose that all rows and columns are exact. If vy is a splitting morphism for B (i.e.
By = 14), then Im(A) = Ker(poy).

Proof. Let & : R— @ be the projection from R, considered as the coproduct of
@ and A, so that in particular ad + y8 = 1. Then it is easily checked that
poyA = 0. It remains to be shown that Ker(poy) < Im(A). We apply Meta-
theorem IV, 2.8; that is, we consider (7) as a diagram of abelian groups.
Suppose that x € 4", and pay(x) = 0. Then oy(x) = 7(y) for some y € @, and
using commutativity of (7) we then have oy(x) = oa(y). Rewriting this, we
have o(y(x) — «(y)) =0, and so y(x) — «(y) =p(z) forsome z € A. Applying
B to this last equation we have x=Bp(z) =A(z). This proves that
Ker(pay) < Im(A) as required. i

Remark. If o is a category with injectives and & is any category, then the
proof of 3.2 goes through without resort to direct limits (see case 2
following 2.2). If o7 also has projectives, then the dual remark applies, so that
in this case the connected sequence of functors

..8,T,8,T, T,S'T,S2T,...

is exact. Observe, however, thatin general 3.1* applies to satellites of covariant
functors where the range is a C¥ category. In particular, 3.1* does not apply
to group valued functors in the case where projectives do not exist in the
domain,
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4. Satellites of Group Valued Functors

Let o be a small category, and let T": &/ —% be a covariant group valued
functor. For 4 € & and n >0 define

T,(4) = [Ext'(4,), T].
An exact sequence
0-+4"+4—-4"->0

induces an order two sequence
DT A > T,(A) > T,(A) > T, ,(4) —>...

and so {T,} is a negative connected sequence of functors. Furthermore, we
have

To(4) = [EXtO(A: ) T] = [HA, T] ~ T(4)
using IV, 2.1. Identifying T with T} in this way we have:

Theorem 4.1. The connected sequence {T,} above is the sequence of satelliles of the
group valued functor T.

Proof. First observe that for E € Ext"(4, C) and n € [Ext*(4, ), T}, theiterated
connecting morphism

(Ext"(4, ), T]—[Ext’(C, ), T] = T(C)

relative to E takes 7 into the element 7.(E). Now, given a negative connected
sequence {U,} and a natural transformation ¢, : Uy— 7, in order to have
commutativity with the connecting morphisms we must define

anA(x)C(E)l = PocOg(¥) (1)

where x € U,(4), E € Ext"(4, C), and &g is the iterated connecting morphism
relative to the sequence of U’s. Hence if {¢,} defined by (1) actually gives a
morphism of connected sequences of functors extending ¢, then it is the only
such extension. The following points must be verified.

(1) @na(x)cis additive.

(ii) ¢,4(*) is a natural transformation.
(iil) ¢,  is additive.
(iv) ¢, is a natural transformation.

(v) {9,} commutes with the connecting morphisms.

We prove the assertions for n = 1. The general case is similar and is left to the
reader.
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(1) Consider the construction

E+E:0 > C > B” > A > 0
A h
v
0—s>CPC—> B" ——>4 ——— 0 2)
| )
\ 7

ERDE0—CPC>BOB >4DP4—> 0

giving the sum of two elements E, E’ € Ext!(4, C). From (2) we obtain a
diagram of connecting morphisms

8p v 1 Ui(4) —— Uy(C)

<

Uy(4) ——> Up(C) @ Uy(C)

Spaor U (A) @ U(d) = Uy(C) D UyC)

Using the relation 84, = 8 @ 8 (exercise 1), the equality

Pra(x)c(E+ E') = ia(x)c(E) + @14(x)c(E")

follows easily.
(i) Given a morphism € —C|, we must show commutativity of the diagram

Ext'(4,C) — T(C)
l

Ext'(4,C,) —— T(C)
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But this follows from commutativity of the diagram

U4y —— U%C) > T(C)
Uk(4)

— U%C) — T(G)

which results from the commutative diagram

0 C — B A 0
0 > () > B’ 4 >0

(iii) is purely algebraic. We have

Pra(* +2)c(E) = PocOe(x +3) = @ocOr(*) + @ocd£(y)
14(*)c(E) + 014(0)c(E) = (@14(%) + @14(»))e(E).

(iv) Given 4 -4, we must show commutativity of the diagram

U(d) ——— U,(4)

[Ext'(4,), T] — [Ext'(4),), T}
But this follows from commutativity of the diagram

Ui(d) — Up(C) —— T(C)

Ui(d)) —— Up(C) — T(C)
which results from the commutative diagram

0 > C > B’ 4 0

|

0 C B 4, 0
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(v) Commutativity of ¢, and ¢, with the connecting morphisms is clear
from the definition of ;. |J

Corollary 4.2, If T is an injective in the category (A, %), then the sequence of
satellites of T is exact. |

5. Projective Sequences

Let .o/ be a small category and let Seq(/, #) denote the class of all connec-
ted sequences of covariant functors from &7 to #. Using morphisms of con-
nected sequences as defined in §1 it is trivially verified that Seq(&/, &) is an
abelian category possessing all of the properties C;and C¥ that & has. The same

+
statement is true of the class of all positive connected sequences Seq(/, &),

- +
and the class of all negative connected sequences Seq(/, #) = Seq(/*, B*).
Consider the functors

F,: Seq(st, B) > (4, B)

defined for i > 0 by F,{T™}) = T*. Then the F;’s constitute a collectively faithful
set of exact functors. If Z is cocomplete, then a coadjoint for F; is given by

+
G;: (A, B) —>Seq(A, B)
where
G(Ty = §T for nxi
=0 for n<i.

If # has a generator, then so does (&7, #) by VI, 4.1. Choosing a generator
U; e (£, B) for each i, we then see by V, 1.5, that @ G;(U;) is a generator for
i>0

+
Seq(, B).

Consider now the functors

R.: Seq(t, B) > (1, B)

defined by

R({T")(4) = T(4)/U Im(35")

Ee€,

where 85! : T1(C) — T%(4) is the connecting morphism of the connected
sequence {77} relative to the short exact sequence £:0—A4—B—~>C—0.
Then the relations

RS; =0 for 1#j, RS, =1
follow easily using the construction of satellites given in 2.2. Consequently
condition 1 of V, 7.5, is satisfied. Now clearly the R;’s collectively take nonzero
objects into nonzero objects. Also an exact sequence of connected sequences

{T™} > {T"} >{T"} >0
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induces a commutative diagram

@ TV (C)—> ® THC)—> @ T" (C)——0
Ee€4 Ee¢€a Ee¢€a

T(4) — > Ti(4) ——— T"(d)——> 0

for each 4 € /. The bottom row is exact by assumption and the top row is
exact since coproducts preserve cokernels. Therefore the sequence of cokernels
of the vertical morphisms is exact. In other words R; is cokernel preserving.
Therefore, using V, 7.6, and VI, 4.1, we have:

Theorem 5.1, If o is a small category and B is a cocomplete category with projectives,

+ +
then Seq(f, B) has projectives. The projectives in Seq(/, ) are the objects of the
Sform D G;(P;) where P, is projective in (f , B) for all i. |

i20

6. Several Variables

A sequence of functors of several variables
T":dlxﬂzx...xdk—)ﬂ (nEZ)

is called a multiply connected sequence if each sequence of single variable
functorsobtained by keeping & — 1 of the variables fixed is a connected sequence
and if, furthermore, a morphism of the fixed variables induces a morphism of
connected sequences. The latter condition is equivalent to the condition that
the connecting morphism for each variable be a natural transformation of
functors of the remaining variables. A morphism {7"} —{U"} of multiply
connected sequences is a family of natural transformations of several variable
functors ¢ : T"— U" which when restricted to the partial functors of one
variable yield morphisms of connected sequences. A multiply connected
sequence is called positive, negative, or exact if each of the partial one
variable sequences has the corresponding property. Multiply connected pairs
are defined just as in the one variable case. If (7, T"') has the property that
for every multiply connected pair (U, U') and every natural transformation
@ : T—U there is a unique extension ¢': U'—>T! of ¢, then T'=8'T is
called the first cosatellite of 7. In general the partial one variable functors
associated with S! T will not be the first cosatellites of the partial one variable
functors associated with T. The nth cosatellite of T is defined inductively as
before.
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From VII, §5, we see that the sequence of two variable functors {Ext"}, . qis a
positive, exact, multiply connected sequence.

To simplify the notation we shall deal only with functors of two variables
where both variables are covariant. However, our results will generalize to
functors of any number of variables and arbitrary variance.

Given T:of x€—~% and Ce ¥, consider T,:.of ->% defined by
To(4) = T(4,C). A morphism C—C’ induces a natural transformation
T¢— T¢.,and hencea natural transformation §' T;— S! T¢... Therefore, if $! T
is defined for all C € €, we have a two variable functor § El)T defined by
8ty T(4,C) = 8'Ty(A), and for an exact sequence 0 >A4'—>A4—A"—0 in &/
we have a connecting morphism

8q): T(4" C) > S}, T(4',C) (1)

which is natural with respect to the variable C. If (U, U!) is a multiply con-
nected pair and ¢ : T— Ulis a natural transformation of two variable functors,
then by fixing the second variable we obtain a transformation ¢y, : § (',) T->U!
which is natural with respect to the first variable.

Lemma 6.1. ¢, is a natural transformation of two variable functors.

Proof. Given an exact sequence 0 >4’ — A4 — A" —0, consider the commuta-
tive diagram

T(4",C) —> 8§, T(4',C)
*u) (2)

U4, C) — U'4', ),

A morphism C—C’ gives rise to morphisms from the vertices of (2;) to the
vertices of (2), and from the resulting cube we see that the compositions
ShwT(,C)->U'(,C)>U'(,C’) and §},,T(,C)—S,,T(,C")->U'(,C")
extend the same transformation T'(, C} —U(, C’). Hence these compositions
are the same, or in other words ¢y, is natural in the second variable. |

Similarly, by considering partial functors with respect to the second variable
we can define a two variable functor §{,) T and connecting morphisms § ;).
The above transformation ¢ then induces a natural transformation
®@) : Sty T—U' of two variable functors. If §,,8,, T'is defined, we can define

a1 : Sin T(4",C) —>S‘(,)S}2)T(A’, €)
simply by replacing T'by 8, T'in (1). On the other hand, if § {5)S () T'is defined

we have

Sig(8ay) : Sl T (4", C) -»S}Z)S},)T(A’, )
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which is natural with respect to C, and which can be considered for fixed C as
the connecting morphism of a pair (S{y, T'( , C), S{ySt, T'(, C)). In the follow-
ing we shall suppress the superscript 1.

Proposition 6.2. If $,,S,T and S,S) T are defined, then we have a natural
equivalence of two variable functors

0 H S(I)S(Z) T_>S(2)S(l) T

and a commutative diagram

T(4",C"
82 S
SnySeT(4', C)
" " A’) S(l)(‘5(z))\ ’ " (3)
S T(A", C" ol Sy T(A', C")

s P
m(m S8y T4, C')

Sor exact sequences 0 >A'—>A->A"—0 and 0>C'>C—>C" >0 in o and €,
respectively.

Proof. Replacing T by S5, 7T and ¢ by the identity in 6.1 we obtain a natural
transformation @ of two variable functors making the lower left-hand corner
of (3) commutative. Interchanging the roles of the variables we obtain a natural

transformation
0, H S(2)S(l) T—>S(I)S(2) T

making the lower right-hand corner of (3) commutative. Now we have
00851)82) = 0'S()(8(1))8(2) = 0'815,8(y)
= Suy(8))8q).

But also 85;)8(5) =50)(8(2))8¢1), and so 8’685, and §,,) both extend §,.
Hence 803 5y = 85y, or in other words 68 extends theidentity on S, T'(, C”).
Hence 6’6 is the identity on S(;,S ;) 7. Interchanging variables we see that 66’
is the identity on Sy, $(;, 7. Thus 8 is a natural equivalence as required. |

Proposition 6.3. If S %l) Tand § }2) T are defined, then the first cosatellite of the two-
variable functor T is given by

SlT = S%UT®S%2)T.

The connecting morphism relative to a sequence 0—A"— A — A" —0 is given by the
composition

[
T(4",C) —>S%l) T4, C) —>S}1)T(A', C)® Sb)T(A', Cy,

with a similar definition for the connecting morphism of the second variable.
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Proof. Consider a connected pair (U, U') and a natural transformation of two
variable functors ¢ : T— U. Then clearly

¢' = (pqa)y @) ST @Sy T—>U!

extends ¢. On the other hand, using uniqueness of transformations induced on
one variable cosatellites, it is easily seen that ' is the only transformation
extending ¢. This proves the assertion. |

For an object 4 and an integer n> 0, let us define n4 ="4. Then using 6.2
and 6.3, we have the following corollary.

Corollary 6.4 (The Bifunctorial Theorem). Let .o/, B, and € be categories which
admit cosatellites for all one variable functors of —%B and € —8. Then the nth
cosatellite of a two variable functor T : o x € — is given by

on oy i i n—i

Exercises

1. Relative to an h.f. class & (V, exercise 5, and VII, exercise 6) develop a
theory of satellites and prove generalizations for each of the numbers in this
chapter with the exception of 3.2. Generalize 3.2 under the assumption that &
has the following property: If in the exact commutative diagram

0 0 0
0 — A’ — A A" 0
| |
0 - B’ B B’ > 0
8
0 > C' — C > C’ > 0
» L
0 0 0

all epimorphisms save possibly 8 are in &, then 8 is also in &. Show, in parti-
cular, that any closed class of epimorphisms has this property.
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2. If {T™} is a connected sequence of functors from . to & with connecting
morphisms §”, and if E and F are p-fold exact sequences in &7, then

S"E(-DF = 8"1-: @l’;'

If o/ is a C, category and the T™s are all coproduct preserving, then for any
class of p-fold exact sequences {E;} we have

"@E. = @ 8”5('
3. Consider a connected sequence of covariant functors {7"} and the exact,

3 by 3 commutative diagram of exercise 1. Show that for any integer n the
diagram of connecting morphisms

T”(C") _— s TII +](Cl)

T"+1(AII) Tn'+2(A,)

is anticommutative: that is, the composition in one direction is the negative of
the composition in the other direction. (Use VII, exercise 7.)

4. Consider exact, commutative diagrams (i = 1, 2)

0
K;
\
4 > A, A7 0
(D)
0 > B, > B.——> B!
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A morphism D, — D, induces a commutative diagram

K| —— F

|

Ky —— F,

where the horizontal arrows are the connecting morphisms defined in IV, §1.
Hence the homology functors H" = H_,: €(&/) >, together with the
connecting morphisms defined in VI, §8, comprise a connected sequence of
functors.

5. Let .o/ be a small category and let # and € be cocomplete. Consider
covariant functors U: &/ —-% and T: % —% with T cokernel preserving.
Then §"(TU) = T(S"U) for all n 2 0.

6. For 7T :.o/ -R% let T be the functor with values in # obtained by compo-
sing T with the forgetful functor R4 —%. Then the elements 7 of R induce
natural transformations 7 : T'— T. Hence if $! T is defined, we have natural
transformations S!(7) : §!T—S!T. In this way S'7 may be regarded as
having values in R4, and as such it is the first cosatellite of 7.

7. In the category € (/) of complexes in .27, every object X’ admits a mono-
morphism into a complex X such that H"(X) =0 for all n. (Consider the
projective class &% (%) of VI, §8, and apply duality.) Hence use exercise 4,
case 3 following 2.2, exercise 22 of Chapter VI, and duality to show the
following:

S'H® = Hwt S\H" = H™!
§1Z0 = H! $,2" =0
§1Zn=0 $,Z" = H*
S'B =0 $,8" = 0.

8. For any small category &7, Seq(./, %) has an injective cogenerator and
+ +
Seq(7, %) has a projective generator. Furthermore Seq(«/, &) has an in-
+
jective cogenerator. Every member of Seq(s/, %) is the quotient of an exact,

positive connected sequence and every member of Seq(%/, ¥) admits a
monomorphism into an exact, negative connected sequence.

9. LetJ, . be as defined in IV, §3. Establish a natural equivalence
[Ext(C, ), J 6] ~ [Ext(C, A), E]

to show that the right-hand side is the nth satellite of J, z evaluated at C.
Prove the latter fact directly, and then using the fact that satellites preserve
products give another proof of 5.2.



This Page Intentionally Left Blank



CCHAPTER IX]|

Global Dimension +

Introduction

In 1957, Eilenberg, Rosenberg, and Zelinsky [13] showed that for any
ring R, the (right or left) global dimension of the polynomial ring R[X|,. .., X;]
is k£ + gl. dim. R. Hochschild [23] generalized this result by showing that the
free ring over R on any set of letters has global dimension 1 + gl. dim. R. In §l
we put this last result in the setting of a fairly general abelian category. For the
most part our approach follows that of Hochschild. The proofof 1.4 is modelled
after a proof of Kaplansky.

In §4-§6 we generalize the notion of graded module over a graded ring in the
cases of free rings, polynomial rings, and exterior rings. This gives rise to more
applications of the projective class theory of V, §7. The main results here
generalize theorem 6.1 of [6, Chapter VIII], concerning freeness of gradable
projectives, in the cases of the three rings cited above. In particular, this
enables us to draw Hilbert’s theorem on chains of syzygies in its original
form [21].

In §7 we study the functor category [/, /] where I is a finite ordered set.
Specializing to the case where & = @R, in §8 we see that the category [, ¥*]
is equivalent to the category of modules over a certain ring of matrices over R,
This enables us to obtain results on global dimension for such a ring. One
would like to prove that associated with each finite ordered set I, there is a
number m such that

gl. dim.[/, ¥4®] = m + gl. dim. R

for all rings R. However, we have been able to show this only for some special
sets .

1. Free Categories

Throughout this chapter .o will denote a nontrivial abelian category and
R will denote a nontrivial ring.

1 A paper of the author to appear in the Journal of Algebra will show how the results on
global dimension in this chapter can be obtained without the use of projectives.

215
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Given a category . and a set I, we define the free category on I letters
over &/ as the category F ,({x;};c;) of diagrams in &/ over the scheme consisting
of one vertex and / arrows. Thus an object D in F,({;}) is an object 4 together
with a family of 7endomorphisms x; : 4 > A4. A morphism D — D’is a morphism
A — A’ such that for each i € I the diagram

A—— 4

z«j lz«
A—4

is commutative. If we define T(D) = A4, then T is an exact, faithful functor
from F 4({x;}) to &.

Let p denote the maximum of the cardinal number of I and the cardinal
number of the integers. If &/ has coproducts indexed over p, then a coadjoint
for T'is given as follows. For 4 € &, let §(4) be such that

TS(4) = @ 4.
)

(AR

where the coproduct is over all finite sequences (i,,..., ) in / (0 € ¢ < ») and
4;...;, = 4. Denoting the injection of 4, into the coproduct by u__ ;, we
define x; : TS(A) - TS(A) by

u.,

G =Y g JEL

A morphism $(4) —D in F,({x;}) is completely determined by a morphism
A— T (D). From this follows an adjoint relation

[S(4), D] % [4, T(D)].

Therefore by V, 7.2, if &/ has projectives then so does F,({x;}), and the pro-
jectivesin the latter are the objects of the form § (P) and their retracts, where P
is projective in 2.

Lemma 1.1. If o/ has projectives and exact coproducts over p, then for any A € of we
have

h.d. $(4) <hd. 4.

Proof. From the hypothesis on & it follows that S is exact, and so § preserves
projective resolutions. The conclusion then follows from VII, 6.4. ]

Lemma 1.2. Let & be a category with coproducts over p. If I is finite, then for any
object D in F o ({x;}), we have

h.d. D €1 +hd. ST(D). (n
If o has projectives and exact coproducts over p, then (1) is valid for any 1.
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Proof. Let T (D) = 4, and consider the sequence in &
a 8
O”’@( @ Ail...x}j)z @ 4; ,<4->0 (2)

FEL\ (i) ¥ Gredy) u
defined as follows. Denote the injections for the middle and left-hand co-
products by ;_; and u]__; . respectively. (In particular, thisdefines u.) Then

Tyeaaly 1o old

we define
Bu=1, (3)
Bu;. i = %% A1 A—>4 (1> 0) (4)
AUy g T Wi T Y i (5)
yu=20 (6)
t
Y iy =p)=3] U, i ey s S (¢>0). (7

The morphisms « and B give us a sequence
0—>15(4) >S(4) >D—0 (8)

in F,({x;}). We wish to show that (8) is exact. Since T is faithful, it suffices to
show that (2) is exact in /. We shall actually show that u, «, and B, y are the
injections and projections for a coproduct. Using (5), (6), and (7), it is
straightforward to verify the relation yau] ;i =uj . and so it follows that
ya = 1. Similarly, we have ay +uf = 1. Using Eq. (3), our assertion then
follows from the remark after I, 18.1. Now if / is finite, then we see from the
fact that Ext preserves finite coproducts that

h.d. ’S(4) = h.d. $(4). (9)

On the other hand, if .o/ has projectives and exact coproducts over p, then
F4({x;}) has exact coproducts over J, and we can use the coproduct of / copies
of a projective resolution for S(4) as a projective resolution for 1§(4). Con-
sequently, using VII, 6.4, we again have Eq. (9). Then applying VII, 6.1, 1 to
the exact sequence (8), we obtain the inequality (1). |

Lemma 1.3, If D is projective in F,({x;}), and T (D) = A, then x;: A—A 5 a
monomorphism for all 1 € 1.

Proof. If D is projective, thenitis a retract of $(A4). Since x;is a monomorphism
for S(4), the same must be true of D. |}

Consider the case where [ consists of only one element,and let L : F,,(x)—>2/
be defined by L(D) = T(D)/xT (D), where xT (D) denotes the image of the
morphism x: T(D)— T(D). If &/ has countable coproducts (so that § is
defined), then we have LS (A4) = A. From this it follows that if &/ has projec-
tives, then L preserves projectives. We shall also consider the functor
M : of —F 4(x) defined by TM(A) =Aand 0 =x: 4—A.
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Lemma 1.4, Let o be a category with projectives and countable coproducts. If A is a
nonzero object in of and h.d. A =m, thenh.d. M(A) =m + 1.

Proof. If P is projective in &, then T'(S(P)), being a coproduct of copies of P,
is also projective in &/. From this it follows that T preserves projectives, and
since 7 is also exact it preserves projective resolutions. Therefore for any D in
F(x) we have h.d. D 2 h.d. T (D). In particular this gives us the desired
result if m = co.

If m=0 then 4 is projective. Therefore by 1.2, h.d. M(4) < 1. But if
h.d. M (A) were zero, then M (A) would be projective, and this is impossible
by 1.3 since 4 #0. Hence h.d. M(4) = 1.

For m > | form an exact sequence in F(x)

0>K—>F—>M(A)—>0 (10)

with F projective. Since x4 =0 we have xT(F) < T(K). Hence using the
first Noether isomorphism theorem (I, 16.2) we have an exact sequence

0>TK)xT(F)—>T{F)|xT(F)>A4->0 (11)
in &7. Now since F is projective, L(F) is projective. From (11) we then have
hd. T(K)/xT(F) =m-—1. (12)
Assuming the lemma is true for m = 1, we can now prove the general case by
induction, For we have h.d. M (T (K)[xT(F)) = mand
hd. M(T(F)[xT(F)) =1,
Applying M to (11) and using VII, 6.1, 2, we see that h.d. M(4) =m + 1.

Hence we have only to prove the case m = 1. Consider the commutative
diagram

T(K) — T(F)

oy

xT(K) —— xT(F)

Since x is a monomorphism on T'(F) (1.3), it follows that the vertical arrows
are isomorphisms. Hence 4 = T(F)|T(K) =xT(F)/xT(K). Using the first
Noether isomorphism theorem we can then form an exact sequence
0+>4—->T(K)/xT(K)—>T(K)/xT(F)—0. (13)
Since h.d. A =1 and h.d. T(K)/xT(F) =0 by (12), we see from (13) that
h.d. L(K)=h.d. T(K)/xT(K) = 1. Now applying M to (11} and using the
result already proved for m = 0 we see by VII, 6.1, 1 that h.d. M (4) is ] or 2.

But if it were 1, then (10) shows that K would be projective, hence
h.d. L(K) = 0. This contradiction completes the proof. |
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Letj € 1, and consider the forgetful functor U : F,({x;}) —F(x;) where o/
has projectives and coproducts over p. Denoting the coadjoint &/ —F_ () by
§’, we have US (4) =78§’(A) where J is the set of all finite sequencesin I which
do not begin with j. From this it follows that U preserves projectives,

Lemma 1.5. Let o7 have projectives and exact coproducts over p. If D € F,({x,}) is
such that x;,A = O for some j € I where T (D) = A, thenh.d. D=1 + h.d. 4.

Proof. From 1.1 and 1.2 itfollows thath.d. D <1 4+ h.d. 4. If
hd. D <1 +hd. 4,

then since U preserves projective resolutions, we have h.d. U(D) < 1 +h.d. 4.
But this contradicts 1.4 since U(D) = M (4). ||

Lemma 1.5 implies in particular that if we start with 4 € .9/ and define
D e F,({x;}) such that T (D) = 4 with x; =0 for all / € ], then

hd.D =1+hd. 4.
Combining this with 1.1 and 1.2 we obtain:
Theorem 1.6. If & is a category with projectives and exact coproducts over p, then
gl. dim. F({x}) = 1 +gl. dim. &. |

In the case where & is the category @R, we see from V, 1.5 that S(R) is a
small projective generator for F,({x;}). Hence the latter is equivalent to the
category of right modules over the endomorphism ring of S (R). Using the fact
that an endomorphism of S(R) is completely determined by a morphism
R — TS(R) of right R-modules which, in turn, is completely determined by the
image of the identity element of R, it is not difficult to show that this endo-
morphism ring is isomorphic to the free ring over R on I letters Fp({X;}). The
latter is defined as the free R-module having as base the elements 1 and
X, X; ...X,, where the subscripts run through all finite sequences in 7, and

1,0,

where multiplication is defined by the rule
(1 & . . X)) (X, .. X,) = nnd,.. X X,...X,.
This gives us:
Corollary 1.7, For any ring R we have
r. gl. dim. Fr({X;}) = 1 +r. gl. dim. R, |

The opposite ring of Fg({X;}) is easily shown to be ring isomorphic to
Fpo({X;}). From this it follows that 1.7 is also valid for left global dimension.

2. Polynomial Categories

The polynomial category on k letters over & is the full subcategory
A [x1,.. ., %) of Fy(xq,..., %) consisting of all diagrams D satisfying the com-
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mutativity relations xx; = xx;. If T(D) = A, then the morphism x; : 4 —A may
be considered as an endomorphism of the object of &/ x,,.. ., x,_,] consisting of
the ¥ — 1 endomorphisms xi,...,%_;: A—A4. In this way we obtain an
isomorphism of categories

A5y %) & A1y 5[5

Using this, together with the fact that &/[x,] = F,(x,), we have inductively
from 1.6:

Theorem 2.1, If o/ is a category with projectives and exact countable coproducts, then
gl. dim. o [x,,..., 5] = &k +gl. dim. &. ]

If o/ has countable coproducts, then a coadjoint S for the evaluation functor
T: A [xy,. .., x] - is given by
TS4) = @ Ay
HLE<RE....SYy
where the coproduct is over all finite nondecreasing sequences i; € iy... < {, of

the integers 1,2,...,k (0 <t < x), and where 4; ;=4 The morphisms
%2 TS(A) — TS (4) are defined by

Wi = Wiy (1<j<k),

where in general |j| j,...J,| denotes the sequence obtained by putting the s
numbers jj, fs,. .., J; in their natural order. If &/ has projectives, then so does
&[x},..., %], and the projectives are the objects of the form S(P) and their
retracts, where P is projective in &7, If &/ is @R, then S (R) is a small projective
generator for &/[x,,..., x;]. Thus &/[x,,..., x;] is equivalent to the category of
right modules over the endomorphism ring of § (R), which is easily shown to be
isomorphic to the polynomial ring over R on & letters R[ X,..., X;]. Thus we
have:

Corollary 2.2, For any ring R we have
r. gl. dim. R[X,..., X;] = £ +r. gl. dim. R. |

The opposite ring of R[X|,..., X;] is clearly isomorphic to R*[X|,..., X;].
Hence 2.2 can be stated as well for left global dimension.

3. Grassmann Categories

The Grassmann category on £k letters over &/ is the full subcategory
E (xy,..., x;) of Foy(xy,..., x;) consisting of diagrams satisfying the relations
x%; +x;%, = 0 and xx; = 0. The coadjoint S for T": E,(xy,..., %) -2 isgiven
by

TS(4) = @ Aiiy i

i< iy e i
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where the coproduct is over all finite increasing sequences i} <7, <... <i of
the integers 1, 2,..., k& (0 <¢< k). The morphisms x;: T5(4) > TS(4) are
defined by

xu =0 if jed{i, iy .. 4}

S hat TR}

= 0(J, Lise e o Wi, i otherwise,

Here o(j, 1},...,4) denotes (—1)", where n is the number of transpositions
required to reduce (J, i,..., 1,) to the natural order. If & has projectives, then
so does E_,(x,..., x;), and the projectives are the objects of the form S (P) and
their retracts, where P is projective in .. If o7 is @R, then S(R) is a small
projective generator for E4(xy,..., ). Consequently, the latter is equivalent
to the category of right modules over the endomorphism ring of S(R),
which is isomorphic to the Grassmann (or exterior) ring over R on £ letters
Ex(Xy,.. X)),

Lemma 3.1. For A € o consider the morphism d : S(A) —S(A) defined by

d“i,...i, = (—1) Xl e

j=

it

Then the sequence

d d
S(A) —S(A4) ->S(4) (1)

is exact.

Proof. It is trivial to verify that d commutes with the x;’s; that is, that 4 is an
endomorphism of §(A4). It also follows easily from the relations xx; + x,%,=0,
x,x; = 0 that dd = 0. In order to prove that (1) is exact we need only prove that
TS(A)—> TS (A) - TS(A4) isexactsince T is faithful. We construct a morphism
s: TS(A) — TS (A) as follows:

Su

=0 for 1y #1
— (_1)1—1u

Tyoaofy

for #; = 1.

Tgeolg
By examining separately the cases 7, = 1 and 7; 5 1, one can verify the relation

(Sd + d‘g)ui....ﬁ = uil---il'

In other words sd + ds = 1. The required exactness now follows from 7, 19.4. }

4. Graded Free Categories

We define the graded free category on £ letters over &7 as the category
GF 4{(x|,..., x;) of diagrams in.e/ over the scheme whosevertices are theintegers
2> 0, and which has £ arrows from vertex n to vertex n+ 1 foreachn > 0. If D
is such a diagram we shall denote the ¥ morphisms D,—D, , by ¥j,..., %
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regardless of the vertex n. Coadjoints §, for the evaluation functors T, are given
by
T,5,(4) =0 for m<n
= @ 4, ; for m>=n

LN fesidinen
(i10esim—n)

where 4; ; = A, and where the coproduct is indexed over all (m — n) term
sequences of the integers 1, 2,..., . The morphisms x; : T,S§,(4) - T,,,,S5,(4)
are defined as before by

xu (m = n).

Wi imen — Yireedmen
Theorem 4.1, Let & be a projective class in s . Then the class §GF 4(x,,. . ., x;) of all
morphisms in GF 4(xy,. .. x,‘) which are pointwise in & is a projective class whose pro-
Jectives are of the form @ S,(P,), where P, is &-projective for each n.

Proof. Since a coproduct of the form @) S, (4,) involves only a finite number of
nz0

nonzero objects at each vertex #, it follows that the family {S,} is coproductive.
Thus the first statement is a consequence of V, 7.4. To show that the projectives
are as stated we define functors R? : GF ,(x,,..., x,) > by

RYD) = U xD,_, (nz21,0<q¢g<k).
i=¢+1
Thus R¥ = T,. If we define R, = RO for n>0 and R, = Ty, then it is readily
verified that the family {R,},, satisfies condition 1 of V, 7.5.

To show that condition 2 is also satisfied, consider o : D! — D? where D! and
D? are &GF 4(xy,. . ., %;)-projective, and suppose that R,(«) is an isomorphism
for all n > 0. We wish to show that T, («) is an isomorphism for all n > 0. We
know that Ty(«) is an isomorphism. Assume that R¢~!(«) is an isomorphism
and that R%_,(«) is an isomorphism for 0 < p < k. We show that RI(«) is an
isomorphism. Consider the sequence of natural transformations

07T, >R —->R1->0 1)

where the transformation on the right is the obvious epimorphism and the one
on the left is induced by x, : D, 1—->D The sequence (1) is exact when evalu-
ated at an object of the form @ S,(4,) where 4, is any object in 7. Thus it

nz0
follows from V, 7.4, that (1) is exact when evaluated at any &GF 4(x,..., x,)-

> n

projective. Therefore, applying « to (1) and using the inductive hypothesis and
the 5-lemma, we see that R?(«) is an isomorphism as required. |

Taking & to be the class & of all retractions in .o, we obtain:
Corollary 4.2. Any retract of an object of the form @ S,(A4,) in GFy(x\,..., %) is of
nz0

the same form. |

Since the T,’s are exact functors we have:
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Corollary 4.3, If o/ has projectives, then so does GF o (xy,. .., x). The projectives in
the latter are precisely the objects of the form @ S,(P,) where P,is proyctwe in & for all

20.1
If o/ has countable coproducts, then we can define a functor
L:GFy(x(y .y %) >Fy(%150 .05 %)

by TL(D) =@ D, and x, = v,,,%;, where v, denotes the nth injection for the
nz0 .
coproduct. For any integer n we have LS, =5: .9 —>F (x,..., x). Also L

preserves coproducts, so that in particular we have

L(@5.(4)) = D 54 )

for any family 4, of objects in .&. If the countable coproducts in %7 are exact,
then L is an exact functor. An objectin F,(x,,..., x;) which is isomorphic to an
object of the form L(D) is called a gradable object.

Proposition 4.4. [f .o/ hascountable coproducts and L(D)is projectiveinF 4 (x,,. . ., ),
then D is projective in GF (..., %),

Proof. Consider an epimorphism f: D! - D? and a morphism g: D—D? in
GF 4(x\,..., x,). Since L(D) is projective, this gives rise to a commutative
diagram in F;(x,...%)

@D D»

nz0

g

@Dl, —L) b D2

nz0 nz0

where f=@ f,, 2 =P g,, and k commutes with the x,’s. Denote the injections

nz0 nz0
and projections for @ D! by u,and p,, and for @ D2 by , and g,. Also denote
nz0
the injections for @ D by w,. Define 4, = p,hw,. Then we have
nz0

.f;lh'l =-f;lpnﬁwﬂ = qﬂfﬁwﬂ = q’lg-wﬂ = gn
and
xhy = P, = prpixhw, = pohxa,
= Pusrhtpg 1% = hoyy;.
Therefore the #,’s define a morphism % in GF(x,,..., x,) and fk=g. This

proves that D is projective. |}
The converse of 4.4 is also true (see exercise 3).



224 IX. GLOBAL DIMENSION

From 4.4 we see that any gradable projective in F(xy,. . ., x,) must be of the
form P S(P,) where P, is projective in & for all n. In particular, let o/ be ¥®,

>0
where R is a ring with the property that every projective right R-module is free
(i.e., isomorphic to a coproduct of copies of R). Then each P, is free, and so
since § preserves coproducts it follows that every gradable, projective right
module over the free ring Fp{X|,..., X;) is a free module. A consideration of
opposite rings shows that we can replace “right” by “left” in the above
discussion.

5. Graded Polynomial Categories

The full subcategory G#[xy,..., x,] of GF,(x,...,%,) consisting of all
diagrams D satisfying the relations x;x; = x.x;is called the graded polynomial
category on k letters over &. In this case the functors §, are given by

T,S,(4) =0 for m<n,

= @ 4., for m>n
i) Koo i
x)'ul',...im_n = u|jf|---iou—n|'
Theorem 5.1, Let & be a projective class in . Then the class EG (x4, ..., %) of
all morphisms in G (xy,..., %) which are pointwise in & is a projective class whose

projectives are of the form @ S,(P,), where P, is &-projective for each n.
n3»0

Proof. The proofis identical to that of 4.1, except that the sequence (1) must be
replaced here by
0—>RL >RI>R 0. |
Corollary 5.2. Any retract of an object of the form @ S,(4,) in G [xy,..., x,] is of
n»0
the same form. |

Corollary 5.3. Iff has projectives, then so does G [% . . ., x;]. The projectives in the
latter are precisely the objects of the form @ S,(P,) where P, is projective in s for all
n»0

nz20]
If & has countable coproducts, then we have the functor
L: Glxy,..., ] > A[x1,. .., %]
just as before, and the proof of 4.4 applies to the following.

Proposition 5.4. If . has countable coproducts and LD} is projectivein o [x,,..., x;],
then D is projective in G [x\,..., %]. |l

Again it follows from 5.4 that if R is a ring over which any projective module
is free (such as a field), then any gradable projective over the polynomial ring
R[X),...,X;] is free. Theorem 2.1 combined with this fact contains Hilbert’s
theorem on chains of syzygies [21].
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6. Graded Grassmann Categories

We define the graded Grassmann category on £ letters over & as the
category GE ,(x,,..., x,) of diagrams in & over the scheme whose vertices are
the integers (positive and negative) and which has k arrows x,,..., % from
vertex n to vertex n + | for each n € Z, subject to the conditions xx; + xx, = 0
and xx; = 0. Thus GE(x,) is just the category € (&) of complexes in 2.
Coadjoints S, for the evaluation functors are given by

T,5,(4) =0 for m<n,
= &) A i, for m>n,
i1 <o L i
xju,-l“_,-m_n = O’(], Lye ooy 1m—ﬂ)u|jl'l...im_.n|'

Theorem 6.1. Let & be a projective class in . Then the class EGE (xy,. .., ;) of all
morphisms in GE(xy,..., x,) which are pointwise in & is a projective class whose
projectives are of the form P S,(P,) where P, is &-projective for each n.

n€Z

Proof. A coproduct @ S§,(4,) involves only a finite number of nonzero objects
neZ
at each vertex n, and so the family {S,} is coproductive. Hence, again, the first

statement follows from V, 7.4. To prove the second statement we define R?as in
4.1. In this case we have the sequence

0—>R-1 S R Rl 0

which is exact when evaluated at any §GE ,(x),..., x,)-projective. Therefore
we can apply induction on ¢ alone to show that if R,(«) = R%(«) is an iso-
morphism for all n, then T,(«) = Rk(a) is an isomorphism. |

Corollary 6.2. Any retract of an object of the form @) S,(4,) in GE 4(xy,..., x,) is of

neZ
the same form. ||

Corollary 6.3. If <7 has projectives, then so does GE 4(x1,.. ., x;). The projectives in
the latter are precisely the objects of the form @) S,(P,) where P, is projective in A for
n€Z

all n.

Let GE (xy,. .., %) be the full subcategory of GE ,(x,..., x;) consisting of all
bounded objects; that is, objects D for which there exist integers ¢ and ¢ such
that D, = 0 for n> g and 2 < p. Then we have the functor

L: GEﬂ(xl,. vy xk) —>Ed(x1,. “ay xk)
defined by TL(D) = @ D,. If o has coproducts, then L can be defined on all

neZ
of GE(x,..., %) as before.
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Proposition 6.4, If D is bounded and L(D) is projective in E ;(x,. .., x,), then D is
projective in GE4(x\,...,x,). If & has countable coproducts, then the same
statement is true for any D in GE 4(x,,..., %;).

Proof. If o/ has countable coproducts and L(D) is projective, then the proof of
4.4 applies to show that D is projective. Thus, suppose that D is bounded and
L(D) is projective, but &/ does not necessarily have countable coproducts.
Assume that D, =0 for n <p and n>¢. Associated with an object D! in
GE 4(x)5- .., %;) we have the truncated object D! defined by D! =0 for n < p
andn> g + land D} = D} forp< n < ¢ + 1. Given an epimorphism f: D' —D?
and a morphism g : D — D? we consider the diagram

q+)
® D.
n=p
£
g+1 - g+1
® b} —— @ D}
r=p n=p

g+1 gt1
where f=@ f, and =@ g,. Then fand g can be considered as morphisms
n=p n=p
from L(D") to L(D?) and L(D) to L(D?), respectively. Therefore, since L(D) is
projective we obtain f such that fk =g, and & : D — D! can be defined from 4
just as in 4.4 to show that D is projective. ]

Theorem 6.5, If o/ is any abelian category with projectives, then
gl. dim. Ed(xl,. .oy x,‘) = 0o,

Proof. Let A be any nonzero projective in &/, and consider the morphism
d: §(4)—S(4) of 3.1. Clearly d is of the form L(8) where 8 : §;(4) —S4(4).
The kernel X of 8 is such that K, ; #0, hence X 0. On the other hand we
have x,x,...%8 = 0, and so the image I of & has the property

xlxz...x,‘l = 0. (l)

Now since L is exact we have L(I) = L(K) by 3.1. If we can show that L(]) is
not projective, then 3.1 will furnish us with an infinite projective resolution of
L(I) for which the kernel is never projective. By VII, 6.4, this will show that
L(I) has infinite homological dimension.
Suppose that L(]) is projective. Then by 6.4, Iis projective. Thus Iis of the
form @ S,(P,). Using (1) it follows that P,= 0 for all n. Thus /=0, and so
neZ

L(K) = L(I) = 0. Consequently K = 0, a contradiction. ||
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Corollary 6.6. For any ring R we have
r. gl. dim. Eg(X,..., X;) = . [ ]

Since the opposite ring of Ex(X),..., X}) is isomorphic to Eg«(X),..., X}),
Corollary 6.6 can also be stated for left global dimension.

7. Finite Commutative Diagrams

Let XZ'be a diagram scheme and let ~ be the largest commutativity relation
on Z. Thus [Z] ~, /] is the category of commutative diagrams in 2/ over X,
and 2/ ~, viewed as a category, is simply an ordered set. Since any ordered set
is equivalent as a category to an ordered set with the property that any two
members which precede each other are equal, we shall assume this to be true of
all ordered sets in the sequel. Furthermore, unless otherwise specified, all
ordered sets will be finite.

If{ < jin an ordered set 7, then we shall say that / immediately precedes j
or that j immediately follows i if there is no & such that i < £ <j. The order
of an element i is the length n of the longest chain of the form

i0<il<...<in_1<i" =i.

If i <, then clearly the order of ¢ is less than the order of j. We say that; and j
are compatible if one precedes the other. If i and j have the same order, then
they cannot be compatible.

If D € [I, &/] and i € j, then the morphism from D; to D; will be denoted by
D;;. The morphisms D;; can be considered collectively as a natural transforma-
tion from T; to T; (where T;(D) = D;). A coadjoint S; for T} is given by

T.5(4) = 4 for i<y

=0 otherwise;
=0 otherwise;
TS(a) = o for 1<y
=0 otherwise.

When there is more than one ordered set in question we shall denote S; by %
Observe that the finiteness condition on [ is not needed in defining ;.
We also define functors R; = R!: [I, /] —5/ by
j<i

If I’ is a subcategory of I, we let F': [I, /] —[I’, o] be the restriction functor.

Theorem 7.1. Let I be a finite ordered set and let & be a projective class in &f . Then the
class E[1, ) of morphisms in [1, ] which are pointwise in & is a projective class whose
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projectives are the objects of the form () S;(P;) where P; is &-projective for all i € 1. If
iel

D and E are E[1, o |-projective and a : D —> E is such that R,(a) is an isomorphism for
all i € I, then o ts an isomorphism.

Proof. By V, 7.5, it suffices to show that the last assertion is true. We wish to
show thatif R;(«) is an isomorphism for all ¢, then «; : D; - E;is an isomorphism
for all i. We proceed by induction on the number 7 of objects plus morphisrns
in I. If I has only identity morphisms (in particular, if n = 2) then R; = T; for
all 7, and so the condition is trivially satisfied. Otherwise we can find members
b, g of I'such that ¢is maximal in  and p immediately precedes ¢. First we take
I’ to be the full subcategory of I consisting of all objects i such that i < ¢. Then
for i € I’ we have FS§! =S¥, and so it follows from V, 7.4, that F takes &/, &]-
projectives into &[I’, &/]-projectives. Also we have RIF = Rlfor alli € I, and
so our induction allows us to assert that «; is an isomorphism for all i < ¢.

Now let J be the set of all elements j € I such that j < p but j precedes no
other element which immediately precedes ¢. Let I be the subcategory of 1
obtained by omitting the morphism from j to ¢ for all jeJ. If i ¢ J then
FS! = ST, whereas ifi € J, then FS! = S| @ 8! In any case it follows again that
F takes &[1, o )-projectives into &[I', &/]-projectives. For i7¢g we have
R!/F = R}, and so RI'F («) is an isomorphism. Furthermore, we have a sequence
of natural transformations

@T;>T,~>RIF>R -0 (1)

i<

i#f
which is easily seen to be exact when evaluated at any object of the form $7(A4)
for any i. Consequently, (1) is exact when evaluated at any &1,/ ]-projective.
Now applying « to (1) and using 5-lemma and what we have already proved,

we see that RIF(a) is also an isomorphism. Hence by induction, o; is an
isomorphism for all i € 1. ||

Corollary 7.2. Any retract of an object of the form @) S;(A4;) in [1, &) is isomorphic
i€l
to an object of the same form. ||

Corollary 7.3, If ./ has projectives, then so does [1, ). An object in the latier is
projective if and only if it is isomorphic to an object of the form @ S;(P;) where P; is
i€l

projective in & for all i. ||

Corollary 7.4. Let D be an object of the form @ Si(4;) in [I, ), and for eachi € I
iel

let A] < D, be such that

D,-=A,-’@(UIij,~).

J<i
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(In particular this means that A] is isomorphic to A;, but not necessarily as a subobject of
D,.) Then for each i we have

U Im(D;) = U Dy(4))

i<i i<i

and the union on the right side is a coproduct.

Proof. It suffices to prove that the morphism
a:@® S(4)) >D
iel

induced by the inclusions 4] < D; is an isomorphism. But this follows from 7.1
since for each 7, the morphism R;(«) is just the identity morphism on 4;. |

If .o/ has projectives, then a projective resolution for D in [, &/] can be
constructed as follows. For each D, choose an epimorphism P, — D, in &/ with P,
projective. This induces morphisms S;(P;) = D which are the coordinates of an

epimorphism
=@ S(P)—>D
i€l
in [1, &7]. Letting K ! denote the kernel, we repeat the process using K ! instead
of D. This iterative procedure then gives a projective resolution for D.

8. Homological Tic Tac Toe

We consider here the case wherc & is the category YR. Since / is finite, we
see from V, 1.5, that §(R (—D S;(R) is a small projective generator for

[1, @], and consequently [/, g“] is equivalent to the category of right modules
over the endomorphism ring of §(R). Consider the right module U =@ R;

i€l
where R; = Rforalli € I. Then we can regard S (R) as a network of submodules
of U. Explicitly, we have S(R); = @ R; < U, and for j < k£ the morphism

<]
S (R); can be considered simply as the inclusion

DR->DR.

i) ik
In this light, an endomorphism of § (R} is simply an endomorphism of the free
module U which takes every submodule in the network into itself. Such an
endomorphism can be identified with an I x I matrix over R of the form (r;)
where 7;=0if 7 >j. This identification being clearly an isomorphism of rings,
we have:

Theorem 8.1. The category [I, GR) is equivalent to the category G* where A is the
ring of Ix I matrices over R of the form (r;) such that r;=0 for i>j. |

For left R-modules we have

[L,R¥F] = [1, $™'].
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By 8.1 the right side is equivalent to the catcgory'gr * where I'* is the ring of
matrices over R* of the form (7;) such that r; = 0 for i & j. Now the opposite
ring I' of I'* is given by the transpose operation on matrices. Hence we have:

Theorem 8.1*. The category [I, RY] is equivalent to the category 9 where I' is the
ring of I x I matrices over R of the form (r;) such that r;=0 forj>i. ||

We now consider some examples.

1. The discrete set of n elements is the category I with n objects and whose
only morphisms are identities. In this case the endomorphism ring of S(R) is
just the ring of  x ndiagonal matrices, which is ring isomorphic to the product
of n copies of R. However it is clear that [I, #*] is simply the product (of
categories) of n copies of @R. Hence the category of right modules over R* is
equivalent to the product of n copies of ¥R.

2. If I, is the ordered set defined schematically by 1 —2, then §(R) is given
by the diagram

Rl —)Rl (—B Rz.

Here S(R)5(r) = (r, 0) for r € R. The category [I;, *] is equivalent to the
category of right modules over the ring of matrices over R of the form

G2

where we have put an x in any position where we are free to enter arbitrary
elements of R. More generally, if I is the linearly ordered set of n elements

15253>...5n—1->n,

then [I, #®] is equivalent to the category of right modules over the ring of
. n X n matrices which have (’s at every position below the main diagonal; that
is, the ring of n x n triangular matrices.
3. For the square
1
3

R, — RI@R2

|

ROR;— RO R, DR, DR,

IIXII: _—>

» —— N

_

S(R) takes the form
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where

SR)1z(r) = (1,0)  S(R)a(r, 5) = (1, 5,0, 0)

SRs(r) = (,0)  S(R)s4(r, 5) = (1, 0,5, 0).
The category [I, x I,, %] is equivalent to the category of right modules over
the ring of matrices over R of the form

X x x x
0 x 0 «
0 0 x «x
0 0 0 x

-

This last fact could also be obtained
categories

rom example 2 using the isomorphism of
(> 1, 9] = [, [1,, 9]

We return now to the general case. If| instead of using S(R) = @ S;(R)asa
small projective generator, we take @ S;(R%) where n;> 0 for a‘l?i (V, 1.5),
then we find that the corresponding'e::ndomorphism ring is isomorphic to a
certain ring of n x n matrices over R where n = 3, n;. Thusin example 3 above,
ifwetaken, =2,n=1,n3=3,and ny, =2, th::enl the matrix pattern becomes
( x x x X x x x X

x x x x

x
®
xR
®

00 x 000 x x

00 0 X x X x x
00 0 x x x x x
00 0 X x X x x

\000000 x x
00 0 O0O00O xx/

In the case where I consists of a single element, taking R" as a projective
generator we have the following result.

Proposition 8.2. For any integer n> O, the category R is equivalent to the category
GMnR) where M,(R) is the full ring of n x n matrices over R.

Let A be any subring of M, (R) defined by requiring that 0’s appear in
certain positions in the matrix and arbitrary elements of R elsewhere. We call
the corresponding array of x’s and 0’s a pattern, and we say that A is defined
by an n x n pattern over R. Since /A must contain the identity element of

M,(R), a pattern must have x’s at every position along the main diagonal.
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(Thus, x always wins....) Furthermore, patterns cannot be too random since /A
must be closed under multiplication. Explicitly, if x appears in both positions
(¢,7) and (§, k) then x must also appear in position (i, k). A permutation of the
integers 1 to n induces an isomorphism from A onto another ring defined by a
pattern. Consequently, we can alter a pattern by interchanging rows and the
corresponding columns without changing any property of 4. We now prove
the converse of 8.1.

Theorem 8.3. Let A be a ring defined by an n x n pattern over R. Then G4 is
equivalent to the category [I, GR) for some finite ordered set I.

Proof. By an interchange of columns (taking care to interchange the corre-
sponding rows) we may assume that the first column is the one with the least
number, say n; of x’s. Now the main diagonal must have x at every position,
and so in particular we must have x in the northwest corner of the pattern.
Making interchanges among rows 2 to n (and the corresponding columns) we
may assume that x appears at each of the first n, positions of the first column,
and consequently that O appears in the last n — n; positions. Then, using the
fact that matrix multiplication must preserve the pattern, we find that O must
appear in the last n — n; positions of each of the first n; columns. But since the
first column had the least number of x’s, this means that x must appear at each
position of the n; x n; block in the northwest corner. This will be referred to as
the block in position (1, 1).

Of the remaining n — n, columns we interchange so that column n, + 1 has
the least number of x’s. Note that such an interchange will not affect the
pattern already established in the first #; columns. We then make interchanges
among the last n — n, rows so as to have x appear at every position from n; + 1
to n; + ny, say, in column n, + 1, and so as to have 0 appear below position
n; + ny. Again, by closure of multiplication we see that we must have 0 below
position n,; + ny in each of the columns n; + | to n; + ny. For the same reason
it follows that there must be either all x’s or all 0’s in positions 1 to n, in column
n; + 1. In the case where there are all 0’s, one again uses closure of multipli-
cation to show that there are 0’s in every position of the n; x n, block formed by
the intersection of the first n, rows with columns n, + 1 to n; + n, {called the
block in the position (1,2)). Then since column n; + 1 had the least number of
x’s, it follows that there must be an x in every position of the ny x n, block
touching the block in position (1,1) atits southeast corner (the block in position
(2, 2)). The same reason shows that in the case where there are x’s at each of
positions 1 to n; in column n; + 1 there must be «’s throughout the blocks in
positions (1, 2) and (2, 2).

Continuing in this way we get a string of say £ square blocks along the main
diagonal (the blocks in position (4, i) for i = 1, 2,..., k) consisting entirely of

k
x’s. Suppose that the length of the block in position (i, 7) is n;, so that 3 n; = n.

i=1
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Then for i <j the n; x n; block in position (i, j) formed by intersecting the n;
rows passing through the ith diagonal block with the #; columns passing
through the jth diagonal block will consist either entirely of x’s or entirely of
0’s. All blocks below the diagonal consist entirely of 0’s. Furthermore,
another consequence of closure of multiplication is that if the blocks in
positions (4, §) and (J, k) consist entirely of x’s, then the same is true of
the block in position (7, £). Let I be the ordered set consisting of the integers
1,2,..., k with ¢ <j if and only if the block in position (z, j) consists entirely.
of ¥’s. Then @ S;(R™) is a small projective generator for [/, #®] whose endo-
iel

morphism ring is isomorphic to A. |

Corollary 8.4. Let A be a ring defined by an n x n pattern over R. Then for some
k< n, G4 is equivalent to G/ where Ay is defined by a k x k pattern over R and is a
subring of the k x k triangular matrices. ]

Left A-modules are right A*-modules, and /A* is isomorphic to the ring of
transposes of members of A. It follows that if I'is the ordered set obtained in 8.3
for right A-modules, then 49 is equivalent to [I*, R%].

9. Normal Subsets

Given I’ < I, we define the following two subsets of 7 — I’:

X(I,I') = {i|i follows no member of I’}
Y(,I') = {iliel-I' and j<i forsome jel'}.

Wesay that iy is a minimal element of I’ following ¢ if i, € I', i < iy, and for
no member j of I’ do we have i €j < ;. Considering I’ as an ordered subset
(that is, a full subcategory) of I, we say that I’ is a normal subset of 7 if the
following condition holds: For each ¢ € ¥(/, I') and each pair ¢;, 1, of minimal
elements of I’ following ¢ there exists no member £ of I’ such that i, < £ and
i; < k. As before, we shall denote the restriction functor [[, &/ —[I’, /] by F.

Lemma 9.1. If &/ has projectives and D € [I, /) is such that D; =0 for all
J€ X1, I'), then there exists a projective resolution for D every term of which also has
this property.

Proof. If D; = 0, then we can take P; = 0 in the discussion at the end of §7. Now
for je X(1,I') there is no element i <j for which D; #0. Consequently,

TJ(@ S,-(P,-)) =0forje X(1,I'),and so K} =0 forall j € X(I, I'). The result
i€l
now follows by iteration. ]

Lemma 9.2, Let I’ be a normal subset of I and suppose that S has projectives. If D is
projective in [1, /] and is such that D; = 0 for all j € X (I, I'), then F (D) is projective
in[I', .
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Proof. By 7.3 it suffices to consider D of the form S%(P) where P is projective in
&/ and where i is in I’ or Y (I, I'). In the first case we have FS{(P) = ST(P). In
the second case we have
FSi(P) = @ &/ (P)
ieJ
where J is the set of minimal elements of I’ following :. Hence, in either case,
FSY(P) is projective. |
Lemma 9.3, Let I’ be any ordered subset of 1. Then there is a functor
E:[I', o) >[I, A]
suchthat T.E = O for allj € X (I, I') and such that FE is the identity functor on [I', S].

Proof. Fori € I, let Y (i) be the ordered subset of I consisting of all members j of
I’ such that i <j. Given D' € [I", &/] we define E(D'); =0 for i € X(I, I},
and otherwise we take E(D'); as the limit of the restriction of D' to Y (i). The
limit exists by II, 2.7, since [ is finite. For i <j and ¢ ¢ X (I, I’) we have a
compatible family {E(D’);—> Di}scy ;) which gives rise to a limit morphism
E(D");: E(D");—E(D');. Likewise for i ¢ X (I, I'), the morphism E(a); rela-
tive to a morphism « in [I’, &7] can be defined as the limit morphism of the
family {o;};cy ). In this way E'becomes a functor with the required properties. ||

Proposition 9.4. If I' is a normal subset of I and of has projectives, then
gl. dim. [I’, &7] < gl. dim.[], 2/]. (1)

Proof. Given D' € [I’, &7], by 9.1 and 9.3 we can construct a projective reso-
lution for E(D’) every term of which is zero overj for all j € X (I, I'). Applying
F to this resolution and using 9.2 we obtain a projective resolution for
FE(D') =D'. Hence we have h.d. D' < h.d. E(D’}, and so (1) follows. ||

10. Dimension for Finite Ordered Sets
Throughout this section &7 will denote an abelian category with projectives.

Lemma 10.1. Consider D € [1, &/ and suppose that h.d. D;< n < o for somei € I.
If
a &

0— K+l s prtr > prtr=l > D' D% D -0 (1)
is an exact sequence with D projective for 0O k< n + 7 and r> 0, then Kit ' is a
coretraction for all § > i.
Proof. Since h.d. D; € nwe see that Im(d"*") = Ker(d*!) is projective in &,
hence d"*"*!is a coretraction. Since D"*" is projective we know also by 7.1 that
Dit is a coretraction. Hence since

] gkl 1
drtrHI Kl = D gt

it follows that K%*"*! is a coretraction. |
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Lemmal0.2. [f D € [{, /] andh.d. D; < n < o for all i € I, then there is an exact
sequence (1) with D¥ projective for 0 < k < n+r and such that K} =0 for all
elements 1 of order <rinl (r 2 0). If, furthermore, r 2 | and iy is an element of order
r + 1 which is preceded by only one element of order r, then we can take KIt+' = 0 aswell.

Proof. Construct an exact sequence in [/, &/]
0-K'->D"1'5D2». . . -D' D" >D0

with D* projective for 0 € k¥ < n — 1. Then since h.d. D; < n we see that K% is

projective for all i. Consequently, D" =P S;(K?) is projective, and we have the
i€l

obvious epimorphism D" — K". Letting K"*! be its kernel, we see again that

K7+ is projective for all ¢, and furthermore K*! = 0 for all elements i of order

0. We define inductively

D = D S(K).
iel

Then we have an epimorphism D" — K" whose kernel K**'*! is such that
Krtt! = 0 for all elements i of order <r. Ifr> 1 and iy is an element of order
r + | which is preceded by only one element j of order 7, then we apply 10.1 to
write

K = Im(K3) @ Kt

Then we can define D"t by
Dt — (@ S,-(K;'“)) ) Sin(K;:-H’)’
i,
and the kernel K"*! of the obvious epimorphism D*" — K™ will have the
desired property. i

Corollary 10.3. Ifh.d. D; < n < « for all i € I and the maximal order of a vertex
in Iis m, then h.d. D < m + n. Consequently

gl. dim.[/, &/] < m + gl. dim. <. |
Consider the linearly ordered set I; of two elements. We define functors
M,: o (I, and G : [I}, ] - by M,(4) = (A—0) and G(D) =D,/
Im D,,, respectively. Then from 7.1 we see that G preserves projectives.
Furthermore, anexactcomplexin [/,,.7] consisting of terms Dsuch that D 12182
monomorphism is taken by G into an exact complex in &7, This is simply the

statement that the quotient of an exact complex by an exact subcomplex is
again exact (VI, §8).

Lemma 10.4. Ifh.d. A=n3> 0, then h.d. M,(4) =n + 1.

Proof. By 10.1 we have h.d. M,(4) < n+ 1. Suppose thath.d. M(4) <n + 1.
If n = 0, then this means that M (A4) is projective, and it follows that 4 >01isa
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monomorphism. Consequently, 4 =0, a contradiction. If n> 0, consider an
exact sequence in [/, &7]

0 K - P A > 0

| |

0 —— P P—>0 ——>0

with P projective in /. Denoting X — P by K! we have h.d. K! < n. But if we
apply G to a projective resolution for K! of length < n, then we obtain a
projective resolution for G(K') = 4 of length < n. Hence h.d. 4 <, and so
again we have a contradiction. Therefore, h.d. M (4) =n+1. |

Corollary 10.5. The m-cube I is such that

gl. dim.[I7, /] = m + gl. dim. &/
Sorall .

Proof. For m = 1 this follows from 10.4 and 10.3. We then have inductively
gl. dim. [I7, &] = gl. dim.[{7! x [}, /]

= gl. dim.[IT7}, [1,, #/]]
(m—1) +gl. dim.[ ]}, #]

= (m—1)+ (1 +gl. dim. )

= m+ gl. dim. o, ]
Corollary 10.6. If I is nondiscrete, then

gl. dim.[7, ] > 1 + gl. dim. &/.

Proof. If I is nondiscrete, then / contains /, as a (necessarily normal) subset.
Hence the result follows from 10.5 and 9.4. |}

Corollary 10.7. Let A be a ring of matrices over R defined by a pattern with zeros
below the main diagonal and at least one x above the main diagonal. Then

r.gl.dim. 4> 1 +r. gl. dim. R.
The same statement is true for left global dimension. |}

We say that a member ¢ of / is a decision point for : if there are members
J» p» g of I'such that i < p <jand i < g <japd p and ¢ are incompatible. I is
called decision free if it has no decision points.

Lemma 10.8. Consider D € [I, o] and suppose thath.d. D; < ninf foralli e I
If I is decision free, thenh.d. D < n + 1.

Proof. We proceed by induction on the number m of elements in 1. If m = 1,
then h.d. D < n. Otherwise let 7, be maximal in I, and let J be the set of
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elements which immediately precede it. Then no two members of J are
compatible. Consider an exact sequence in [/, &7]

dn+1 dn

0 D s D D! . D—>D—50 @)

with D* projective for 0 < k£ < n. We wish to show that D™ is projective. Write
D = @ Si(P) (3)

where P; is projective for each i € I. We regard D"*! and D" as networks of

subobjects of P P;. Since h.d. D; € nwe know that Im(d?) is projective for all i.
i€l

Hence 4! is a coretraction for all . Since I is decision free we see that no two

members of J can be preceded by a common element, and so it follows from (3)

that the union .U D7 is a coproduct. But then since DI*! is a retract of Dj it
follows that L{, )5;“ is a coproduct and is further a retract of qu;‘ Since the
latterisa rct’react of D}, we see that .U Drtlisaretract of DY, hefce of D3+, Now
let I be the ordered subset of / obthaJincd by removing ;. Applying the restric-
tion functor F to (2) it follows by induction that F(D**1) is projective. This

combined with what we have proved above then shows that D"t is projective. ]
Theorem 10.9. Let I be nondiscrete and decision free. Then for any S we have

gl. dim.[/, &/] = 1 + gl. dim. . 4)
Conversely, if gl. dim. & is finite and (4) holds, then I is nondiscrete and decision free.

Proof. The first statement is immediate from 10.6 and 10.8. Conversely, sup-
pose that gl. dim. &7 is finite and that (4) holds. Then I cannot be discrete
since otherwise we would have gl. dim.[/, &/] =gl. dim. &/. On the other
hand, suppose that / is not decision free and let ¢ be a decision point in I of
maximal order. Let I’ be an ordered subset of / consisting of 4 elements ¢, j, p, ¢
where i < p <j, i < ¢ <j, and p and ¢ are incompatible. Then I’ must be a
normal subset of /, since otherwise there would be a decision point in I of order
greater than that of i. Hence, by 9.4 we have

gl. dim.[1', #) < gl. dim.[I, ]. (5)
But /' is just /%, and by 10.5 we have
gl. dim.[I', ] = 2 + gl. dim. . (6)

Combining (5) and (6) we obtain a contradiction to (4). Hence I is decision
free. |

Corollary 10.10. Let A be thering of m x mtriangular matricesover R (m > 1), Then

r.gl.dim. 4 = 1 +r. gl. dim. R,
The same s true for left global dimension. |
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Corollary 10.10 was obtained by Eilenberg, Rosenberg, and Zelinsky [13]
using a spectral sequence.
For m > 1, let I, denote the ordered set given schematically by

\XX XX””

' m-2
We have the functor M,,l : of —[1,, o] defined by
M, (4), =0 for ¢ #m

=4 for i =m.
Also for m > 2 wedefine L : [[,,, /] —>[I,_,, ] by
L(D); = Dy/Im(Dy ) for i#m—1

et/ IM(D,, 1) for {=m-1.

Then we have LS =0 = LS and LS{» = S/ for i #£m, m’. Hence L pre-
serves projectives. Also L preserves exact sequences consisting of terms D such
that Dy is a monomorphism for all i <.

Lemma 10.11. [fhd. A=n >0, then h.d. M,,(4) =m + n.

Proof. By 10.3 we have h.d. M, (4) < m + n. The reverse inequality will be
proved by induction on m. The case m =1 has been handled in 10.4. Thus
suppose m > 1, and take an exact sequence 0 K —+P—>4 —0 in &/ with P
projective. This gives rise to an exact sequence

0-—>K'—SIn(P) > M,(4) >0 (8)

in [1,, &/], and we have L(K'} = M,,_,(4). Ifh.d. M_(A) < m + n, then from
(8) we have h.d. K! <m + n— 1. Applying L to a projective resolution for K!
oflength < m + n — | we obtain a projective resolution for M,,_;(A) of length
< m+ n — 1. This contradicts the inductive hypothesis. ||

Combining 10.11 and 10.3 we have the following theorem, which was
conjectured by F. Linton.

Theorem 10.12. For all o/ we have
gl. dim.[[,, &] = m + gl. dim. /. |
For i € I we define Z(7) as the ordered subset of I consisting of all elements

jsuchthatj <
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Lemma 10.13, Let i,,..., 1, be the maximal elements of 1. Then

gl. dim.[], &] = sup gl. dim.[Z(3),& ].
1gk<p

Proof. Let D be an object in [/, /] with the property that its restriction to
each of the sets Z(i,) is projective in [Z(3), &/]. Then for each icl we can
choose a subobject 4/ < D, such that

D; = A ® (UIm D).
i<i

It then follows from 7.4 that we have for each ¢

Di = @ Djl'(A)',)’

IS

and consequently D is projective. On the other hand, if D is projective in
(1, o] then clearly the restriction of D to any set of the form Z(7) is projective
in [Z(i), &/]. The lemma is an easy consequence of these two facts. |}

Lemma 10.14. Let i be a maximal element in I and suppose that i is immediately
preceded by only one element j. If I' = I — {i} is nondiscrete, then

gl. dim.[l, o] = gl. dim.[I', &].
Proof. Clearly I' is a normal subset of /, and so by 9.4 we have only to show
gl. dim.[], &) < gl. dim.[I', &/].
If the right side is infinite there is nothing to prove. Thus suppose that we have
gl.dim.[I''&f] =n+r+1 (9)

where gl. dim. & = n. Since I’ is nondiscrete we know by 10.6 that r > 0.
Given D € [I, o], construct the exact sequence (1) of 10.1 with D* projective
for 0 <k <n+r Let F be the restriction functor from [/, &7] to [I', &].
Then applying F to (1) and using (9) we see that F (K"*"*!) is projective. Also
by 10.1 weknow that K3+ isa coretraction. It follows that K1 is projective,
and so h.d. D < n+r+ 1 as required. ||

Lemma 10.15. Let i be amaximal elementin Tand letI' = I — {i}. Ifgl. dim. &f =n
andgl. dim.[], /1 =m + n, thengl. dim.[I', A | >m +n— 1.

Proof. If m < 2,then thisis trivial. Thus,suppose thatgl. dim.[I’,. /] <m+n—1
where m > 2. Given D € [I, &], construct an exact sequence in [/, &7]

0—>Kmtr=2 _,pmtn=3_, Dl 5D 5sD-50

where DF is projective for 0 €< £ < m + n — 3. Applying the restriction functor
F, we see that F (K™"2) is projective. Thus, by 7.1 we may write

(K™% = @ SI'(B).

el
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But also K2 is projective, and we have an epimorphism

(@ 1)) @ Sickree-s) - gmor
jer

whose kernel is zero over j for j € I’ and is projective over i. Thus we obtain a
projective resolution of length < m + n — 1 for D. Consequently,

gl. dim.[], &/ < m + n,
a contradiction. Hence gl. dim.[l', ] 2m +n— 1. ]
Theorem 10.16. Suppose that gl. dim. & = n < ©, and that

gl. dim.[], & =m+n.
Then I has > 2m elements, with equality holding if and only if I = 1.

Proof. The proof is by induction on m. If m = 1, then I cannot be discrete,
hence I has at least 2 elements. If I has precisely 2 elements, then it is clear that
I =1I,. Supposing the theorem true for m — 1, let gl. dim.[I, o] = m + n. We
shall use the notation of diagram (7). By 10.13 we may assume that / has a
unique maximal element, say 1’, If T has < 2m elements, then I’ = I — {1} has
< 2m — 2 elements, and by 10.15 we have gl. dim.[I', /]2 (m—1) + n.
Hence, by induction, I’ = I,_,. It follows that 1" is immediately preceded by at
most one element, and so by 10.14 we have gl. dim. [I, &] = (m — 1) + n. This
contradiction shows that 7 has at least 2m elements.

Now suppose that [ has precisely 2m elements. Let 1’ and I’ be as above. If I
has only one maximal element, then by 10.14,

gl. dim.[I', &) = gl. dim.[], ] = m + n.

On the other hand, I’ has 2m — 1 elements, contradicting what we have
already proved. Therefore I' has at least two maximal elements. Among them
let 2’ be such that gl. dim.[I', &/] = gl. dim.[Z(2'), &/] (10.13). Then our
induction shows that Z(2") =1I,_,, and consequently I — Z(2’) consists of 1’
and one other element | immediately preceding 1’. It remains to be shown that
1 follows both 2 and 3’ (see diagram (7)). If 1 follows neither 2 nor 3’, then 1
has order < m — 1 in I. If 1 follows just one of 2 or 3/, then 1 has orderm — 1 in
I, but is immediately preceded by only one element in /. In either case one
uses 10.2 to construct projective resolutions for all objects D in [[, &/] of
length < m + n — 1. This contradiction shows that 1 follows both 2 and 3’,
andso/=1_, |

Corollary 10.17. Let A be defined by an m x m pattern over R, and suppose that
r. gl. dim. R < co. Then

r. gl. dim. A < m/2 +r. gl. dim. R,

with equality holding if and only if the pattern is isomorphic to one with O’s everywhere
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below the main diagonal and x’s everywhere above the main diagonal except in positions
(2,3),(4,5),6, 7)., m—2,m—1). ]

Let us define the dimension of a finite ordered set I to be m if
gl. dim.[], o] = m + gl. dim. o/

for all categories & with both projectives and injectives. Clearly, discrete sets
have dimension 0, and by 10.6 we see that these are the only such sets. By 10.9
we see that I has dimension 1 if and only if it is nondiscrete and decision free.,
If I has dimension m and J has dimension 7, then it follows from the isomor-
phism of categories

(U xJ, o] ~ [I,[J, &]]

that 7 x J has dimension m + n. Thus from 10.12 we see that I? has dimension
mn(m, n > 1). Furthermore, if I has dimension m, then we have

gl dim.[/*, o] = gl. dim.[]*, o/**]
= gl. dim.[], &/*]*
= gl. dim.[], o7*]

= m + gl. dim. &/*

= m + gl. dim. &,

and consequently I'* also has dimension m.
It is not known if this dimension is defined for all finite ordered sets.

Exercises

1. Show that when o/ = @R, then the category F,({x;}) is actually isomorphic
to the category of right modules over the free ring Fp({X;}). Do likewise for
x50y %] and E (x50, x;).

2. Consider an adjoint situation (n; S, T'; &/, #) where T'is exact and & and
2 are abelian categories (not necessarily with projectives). If P is projective
in 4, then S(P) is projective in & .

For any abelian category &, the evaluation functor T}, : GF(xy,..., x,) >
has an exact adjoint for all n > 0. Hence, if D is projective in GF,(xy,..., x),
then D, is projective for all n. Use 4.2 to show that for any abelian category o/
(not necessarily with projectives), the projectives in GFy(x,..., %) are
precisely the objects of the form @ S,(P,) where P, is projective in & for all

nz0

n2 0 (cf. 4.3).

Obtain similar results for G&/[x,,..., %], GE4(x,,..., %), and [, o] where
Iis any finite ordered set.
3. Suppose that .o/ has countable coproducts. Use exercise 2 to prove the
converse of 4.4; namely, if D is projective in GF(x,,..., x;), then L(D) is
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projective<dn F(x,..., x,). Hence show that if &/ has projectives and exact,
countable coproducts, then

gl. dim. GF4(x\,..., %) = 1 +gl. dim. &
Show similarly that in this case we have

gl. dim. G [xy,..., x,] = k +gl. dim. &
and
gl. dim. GE (xy,..., x,) = oc.

4. Show that if I is an infinite set, then for any category with projectives and
exact coproducts indexed over |I|, the polynomial category &/[{x;},c,] has
infinite global dimension.
3. Use V, 7.6, to obtain 4.3 independently of 4.1. Do likewise for 5.3, 6.3, and
7.3.
6. Consider the functor § : & — E ,(x,) of §3. In the case where & is R, show
that the ring of endomorphisms of §(R) is isomorphic to the ring of matrices
over R of the form

a 0

(s )

More generally, show that the exterior ring on any number generators
Eg(xys..., ;) is isomorphic to a certain ring of triangular matrices.

7. Consider the diagram scheme consisting of two vertices ¢ and j and two
arrows m and d from i to j and from j to j respectively. The category of diagrams
D of right R-modules satisfying the relations

Dd)D(m) =0  D(d)D(d) =0
has as a small projective generator the diagram G defined as follows:

G =R GG=ROAR®@R
G(m)(r) = (0,7,0)  G(d)(r,s,8) = (0,0,7).

Hence this category is equivalent to the category of right modules over the

ring of matrices of the form
a 0 0
(b c 0)
d ¢ a

8. A component of an ordered set I is an equivalence class of elements of /
under the equivalence relation generated by the compatibility relation. Let A
be defined by a pattern over R. Then the center of A is isomorphic to the pro-
duct of m copies of the center of R, where m is the number of components in the
ordered set associated with 4.

9. A full subcategory of an ordered set I can have dimension strictly greater
than that of 1. (Let I be defined by putting an object at the intersection of the
two intersecting arrows of I; (see diagram (7) of §10).)
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10. In an ordered set I, suppose that i, is immediately preceded by only one
element 7, and immediately followed by only one element 7,, and that 7, is
immediately preceded by only 7; and is immediately followed by only one
element 7. If I is the ordered subset of / obtained by omitting i,, then for any
category &/ with projectives we have

gl. dim.[, ] = gl. dim.[I’, o].

Hence if /is the union of two linearly ordered subsets which have at least three
elements each and which have only their initial elements and terminal
elements in common, then

gl. dim.[1, ] = 2 + gl. dim. .
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[CHAPTER X

Sheaves

Introduction

Sheaves with values in sets, rings, and modules were defined by Godement
in [18] in such a way as to open the road to a theory of sheaves with values in
more general categories. This generalization has been carried out indepen-
dently by J. Gray [19] and R. Deheuvels [7]. The treatment given here is a
modification of the work of Gray. The proofs of 3.1 and 5.1 have been taken
from [19].

After some preliminaries, the notion of an & -category is introduced. The
axioms for an # -category are precisely the conditions needed to prove the
important lemma 2.1. For abelian categories these axioms coincide with
Grothendieck’s axiom A.B.6 [20]. Using the techniques of adjoint functors, the
notions of associated sheaves and direct and inverse images of sheaves as
defined in [18] are generalized to sheaves with values in an & -category &/. If,
further, o7 is abelian, then the category of sheaves in &7 over a fixed topological
space is a complete C; category (6.3). In this case the standard theorems con-
cerning sheaves induced on locally closed subspaces can be proved (§8).

1. Preliminaries

Throughout the chapter, &/ will denote a complete, locally small category
with direct limits. In particular, &/ has intersections, inverse images, and a null
object (which we denote by 0). Also &/ has images (I, §10) and hence unions of
naturally directed systems of subobjects (II, 2.8).

Let X be a topological space, and let %, denote the family of opensets in X.
We consider %y as an ordered set by defining U € V if and only if V< U.
The functor category [#y, ] is called the category of presheaves in o/
over X, and is denoted by #(X, «&/). Thus a presheaf P assigns to each open set
Uin X an object P(U) in &/, and to each inclusion V' < U of open sets a mor-
phism Py, : P(U) — P(V) such that if W< V< U, then Pyy Py = Pyy, and
such that Py, = | for all open Uin X. A morphism « : P— P’ of presheavesisa

245
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family of morphisms oy, : P(U) - P'(U) such that for each inclusion of open
sets V< U we have a commutative diagram

PUVJ lplllv

PV) = — PY(V)

Let {U;}ic; be an open cover for an open set U (i.e., each U, is open and
UU;=U). Let Uy=U;N U, and for a presheaf P let p; denote the ith

iel
projection from the product X P(U;). Then we have the morphism
iel

u: P(U)—X P(U,) (1)

iel
such that pu = Pyy;,. Also we have morphisms

£e:XPU)~> X P(Uy). @)
i€l Uk)erx1

The (j, k)th coordinate of fis Py, p; and the (j, k)th coordinate of gis Py, 4.

Clearly fu = gu. If P has the property that for every open set U and every open

cover of U the morphism # is the equalizer of the two morphisms fand g, then

P is called a sheaf in o/ over X. The full subcategory of Z(X, /) consisting

of all sheaves in & over X will be denoted by F (X, 7).

Let P be the presheafsuch that P(U) =0 for all open sets U. Recalling that
the product of any number of null objects is again a null object, we see that P
is a sheaf. We call P the null sheaf, and we denote it also by 0.

A presheaf P will be called a monopresheaf if itsatisfies the weaker condi-
tion that (1) be always a monomorphism. The full subcategory of (X, &)
consisting of all monopresheaves is denoted by .#(X, o). If P is a monopre-
sheaf, then by considering the empty covering of the empty set o, we see from
(1) that P(g) is a subobject of a null object, and hence is itself a null object.

Since the category & is complete, we know that limits in the functor
category # (X, &) are computed pointwise (II, §11). Using the characteri-
zation of equalizers as limits (I, 17.4), it follows from II, 12.2, that the limit in
P(X, o) ofadiagram of sheaves is again a sheaf. In other words, # (X, &) isa
complete subcategory of (X, o). Likewise 4 (X, &) is a complete sub-
category of (X, o).

For each x € X, the open sets in X which contain x form a directed subset of
%y, and thus a presheaf P over X determines a direct system in &7/. We denote

P, = lim P(U)
ﬁ

xeU
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and we call P, the stalk of P over x. The morphism from P(U) to the direct
limit is denoted by Py,. If « : P— P’ is a morphism of presheaves, then we have
an induced morphism of stalks «, : P,— P, in.&Z, and in this way the process of
taking stalks becomes functorial. We let S, : #(X, &) > be defined by
S,(P) =P,and S, (o) = a,. By II, 12.2%, it follows that if & is cocomplete, then
S, is a colimit preserving functor for all x € X.
Given a family of objects {4, },cx, we form a presheaf Ry4 as follows. For
an open set U we define
RyAU) = X4,
xeU

and for V < Uwe have the morphism X 4, —X A4, which when composed with
U x€V

the xth projection from the codomain gives the xth projection from the
domain. The rules for a presheaf are trivially satisfied.

Lemma 1.1. RyA is a sheaf.

Proof. Relative to an open cover U =U Uj, consider the diagram
iel

’

B

X Ax—">X(X A,)% X (x A,)
xelU iel\xel, (K EIX I \x€ Uy
where u, f, and g are defined by (1) and (2), and v is such that fv = go. We wish

to find a morphism 4 : B—X 4, such that uh = v. Fory € U, let i, be any index
*x€U
such that y € U;,. Let A, : B— 4, be the composition

B>X ( X A,)—>X A4,
iel \xel, x€Usy,

It follows from the equality fo = gv that A, is independent of the choice of i,

and from this it is easy to verify that the morphism % induced by the family {4}

is such that uh = ». It is also easy to see that u is a monomorphism. Hence u is

the equalizer of fand g, and so Rx4 is a sheaf. ||

In particular, if P is a presheaf, then the family of stalks P, give rise to a
sheaf RyP. If o : P— P’ is a morphism of presheaves, then define

Rx(a) :Rxp—>RxP’
by the rule

In this way Ry : #(X, o) —~F (X, &) becomes a covariant functor.
Let (up)y: P(U) —X P, be the morphism whose xth coordinate is Py,
xeU
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Then for ¥V < U the diagram

PO) —— XP.

P(V) ——> XP,

is obviously commutative, and so ppis a morphism of presheaves. Furthermore
given a morphism « : P—P’ of presheaves, for each open set U we have a
commutative diagram

P(U) —> XP,

xelU

P'(U) —> XP.

In other words p is a natural transformation from the identity functor on
P(X, o) to the functor Ry.

A cosheaf in a category &/ over a topological space X is a contravariant
functor % y—&/ such that the associated covariant functor % y—&/* is a
sheaf. For the theory of cosheaves, the underlying hypothesis on the category
& is that it be cocomplete with inverse limits.

2. #-Categories

A category satisfying the blanket hypothesis of the chapter will be called an
F-category if it satisfies the following additional conditions:
& ,: LetI=U I, be adisjoint union of sets, and for each A let {A;‘};e,A bea

e

naturally directed system of subobjects of some fixed object 4. Then
n (U A.") =U ( n A')(A)) (N
Aea \iel, T \Aea

where the union on the right side is over all functions 7: 4 —1 such that
7(A) e I, forall A e A.

F,: Let{4;, 7} be adirect system in &7, and let {m; : 4;— A} be the direct
limit. For some index k let f, g: B— A, be such that =, f=mg, and denote
fi =myf, & = myg. Then we have

B = U Equ(f, &)
12k
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In the case where A is a set of two elements and one of the two direct systems
is the trivial one consisting of a single subobject B, then (1) becomes

BnU4,=U (Bn 4).

i€l iel
Therefore a cocomplete abelian category satisfying & | is a Cy category. In this

case it follows from I11, 1.8, that &, is also satisfied. We shall call a cocomplete
abelian category satisfying axiom & | a C,~category.

Lemma 2.1, Let o7 be an F -category and let P be a monopresheaf in of over X. Then
wp: P—> RyP is a pointwise monomorphism (that is, (up)y is a monomorphism in s
Sor each open U).

Proof. Suppose that we have two morphisms f, g : A —P(U) such that

APy X P, = A5P(UY>X P,

x€U xelU

Then for each x € U we have

f g
ASPU)>P, = ASP(U) P,
Therefore by &, we can write

4= U Equ(fy,e)

eV U

where f, = Py f, gv = Pyyg. Hence by & | we have

A=N ( U Equ(fy, gy>) - U (ngEqum(,,,g,(x)))

xeU \x€VcU T

where the union on the right side is over all functions 7 : U—> % such that

7(x) contains x and is contained in U. Hence to show that f = g, it suffices to

show that for each 7 the restrictions of fand g to N Equ( JSrw)s &r(xy) are the
xc€U

same (I, 9.1). Now for each 7, {r(x)},cy, is an open cover for U, and the
composition

QUEqU(ff(x), 8r() >4 —>P(U) —ﬁ(UP(T(x))

is the same whether 4 —P(U) is f or g. Therefore the conclusion follows since
P is a monopresheaf. |

Corollary 2.2, Let o be an F -category and let P be a monopresheaf in o over X such
that P, =0 for all x € X. Then P =0.

Proof. P, = 0 for all x implies RyP = 0. But then P, being a subsheaf of 0, is
also 0. §
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3. Associated Sheaves

It follows from the fact that limits in (X, &/) are computed pointwise that
inverse images and intersections of pointwise monomorphisms are again
pointwise monomorphisms, and that all equalizers in 2(X, &) are pointwise
monomorphisms. Also, since & is locally small, each object of (X, .&/) has
only a set of (equivalence classes of) pointwise subobjects. We use these
remarks in the following theorem.

Theorem 3.1. If o7 is an F ~category, then F (X, &) is a coreflective subcategory of
P(X, ), and for each P € P (X, ) the coreflection RyP is pointwise a subobject of
RyP. If o is cocomplete then so is F (X, ). If o is cocomplete with a generator, then
F (X, ) has a generalor.

Proof. Consider a presheaf morphism « : P—F where F is a sheaf. Form the
diagram

where the inner square is a pullback diagram and the outer square is com-
mutative since p is a natural transformation. By the definition of pullback, we
obtain a morphism P — E keeping the diagram commutative. Now E, being
the pullback of a diagram of sheaves, is also a sheaf. Since uris a monomor-
phism (2.1),s0is E— R4P (I, 7.1). Let RyP be the intersection of all pointwise
subsheaves of RyP through which pup factors. Then RyP is again a pointwise
subsheaf of RyP, and « factors through P— RyP. Furthermore, if there were
two distinct such factorizations, then the equalizer of the two factorizations
would provide us with a proper pointwise subsheaf of RyP through which pp
factors, contradicting the definition of RyP. Hence, the factorization is unique,
and so P—>RyP is the coreflection of P in F (X, o).

From V, 5.2, it now follows that if & is cocomplete then so is # (X, ). If &/
has a generator as well, then by VI, 4.3, Z(X, &) has a generator. Conse-
quently, by V, 1.5, # (X, &) has a generator. J

The coreflection RxP of a presheaf P in the category of sheaves & (X, &) is
called the associated sheaf of P, If X is an ihdiscrete space (i.e. X has two
open sets, X and @) then it is easily seen that a presheaf F is a sheaf if and only
if F() = 0. From this it follows that the associated sheaf RyP of a presheaf P
is such that RyP(X) = P(X) and RyP(e) = 0.
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4. Direct Images of Sheaves

Let f: X—Y be a continuous map of topological spaces (i.e., if Vis open in
Y, thenf~!(V)isopenin X). If V' < V, then f~1 (V') < f~1(V), so that f~! can
be regarded as a functor from %y to % . Given a presheaf P in o7 over X, we
obtain a presheaf f P in & over Y (called the direct image of P with respect
to f) by taking the composition Pf~' : %, —>./. Thus

fP(V) = P(f71(V).

A morphism «: P—P’ of presheaves induces an obvious morphism f, («)
S P —fP', and this makes f, : #(X, &) —-P(Y, o) into a covariant functor.
Since limits in (X, &) and P(Y, &) are computed pointwise, it follows that
S preserves limits. If .7 is cocomplete then f, also preserves colimits.

Let {V;} be an open cover for ¥ in Y. Then {f~!(V,)} is an open cover for
S7Y¥V) in X. From this it is trivial to verify that if F is a sheaf in .o over X,
then f, F is a sheaf in &7 over ¥. Observe that

fo: F X, ) >F (Y, )

preserves limits, but does not in general preserve colimits.

If g : Y—Z is another continuous map, then it follows from the relation
(gf )" (W) =f"1 g (W)) that (gf) s = g4 fa- Also if f: X— X is the identity
map, then f, : (X, &) >P(X, &) is the identity functor.

Theorem 4.1, Let of be any category and let f: X — Y be any continuous map of
topological spaces. Then the functor f : P(X, ) >P(Y, ) has a coadjoint f°. If
& is a Cy category then f© is exact.

Proof. Let Q € (Y, &7). For U an open set in X define

SRW) = lim Q(V).

—
ficv

(Thus, if f(U) happens to be a single point » in Y, then f°Q(U) = Q,.) If
U’ < U, thenf(U’) < f(U), and so the open sets in ¥ containing f(U) form a
subfamily of the open sets in ¥ containing f(U’). There results an obvious
morphism

SRUU) —=fQ(U)

and this makes f°Q a presheaf over X. Likewise, a morphism 8: @ - Q' of
presheaves gives rise to a morphism

(f°By:S°QU) —»f°Q"(U)
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and f%Bis clearly a morphism of presheaves. In this way f® becomes a covariant
functor from Z(Y, &) to (X, &). We wish to show that f0 is the coadjoint

Oof f -
Given Pe Z(X, /) and Q € #(Y, &) we define a function

Ner: [f°Q P1—>[Q, fuP]
as follows. For « : f0Q — P, define

nep(@)y: QV) £ P(V) = P(f(V))

as the composition

RQUV) =~ (V)) = P(f~1(V)).

The first morphism arises from the fact that f(f~1(V) < Vandso Q(V) isone of
the objects in the direct system defining f°Q(f~!(V)). The second morphism
is just as—i(py. It is then straightforward to show that 5 () is 2 morphism of
presheaves.

Now we define a function

Mor: [@ fxP1—>[f°Q, P].

Given B: Q@ —f,P, an open set U< X, and an open set ¥'< Y containing
Sf(U), we have the composition

Q(V) Zf*P(V) = P(f~'(V)) > P(U). (1y)

It follows from the fact that 8is a morphism of presheaves that {(1,)}; (1 is
a cocompatible family, and thus we get an induced morphism

p(B)u :f°Q(U) - P(U).

Again it is straightforward to show that 9g p(8) is a morphism of presheaves.
One then checks without difficulty that 5, » and 7 p are inverses of each
other, and finally that % is natural in § and P. This establishes that f° is the
coadjoint of f,,.
Now suppose that &7 is C3. Then corresponding to an exact sequence of
presheaves in 2(Y, /)

0>Q >-Q—>Q" >0
and an open set U in X, we have an exact direct limit sequence

0 lim —>Q'(V)— lim Q(V)— lim Q"(V)—0
—_— —_— —
v fHev v

by III, 1.9. Hence f? is an exact functor. }
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5. Inverse Images of Sheaves

Theorem 5.1. Let .oZ be an F -category. Then for any continuous map f: X —Y the
Sfunctor fo . F (X, ) —>P(Y, ) has acoadjointf* = Ry fO: P (Y, A ) >F (X, ).
Furthermore, f* has the following properties :

(1) f*|\F (Y, L) is the coadjoint of fy : F(X, ) >F (¥, ).
(ii) S*Ry = f*.
(i) If g : Y— Z is another continuous map, then (gf )* = f*g*.
(iv) For any presheaf Q € P(Y, o) and x € X we have (f*Q), x Q;,, and this
isomorphism is natural with respect to morphisms in P(Y, o).
(v) For all x € X and all presheaves P € P(X, o) the coreflection ¢ : P— RyP
induces an isomorphism @, 1 P,—(RyP),.
(vi) RyP =0ifandonlyif P, =0 for all x.

Proof. The functor f, : # (X, &) —>P(Y, &) can be regarded as the compo-
sition of the inclusion of & (X, &) into P (X, &) with the functor

foi PX, A) > P, A).

By 3.1 the former has a coadjoint Ry, and by 4.1 the latter has a coadjoint f°,
Hence f* = Ry {9 is the required adjoint (V, §!).

(i) It follows trivially from the definition of adjoint functor and the fact that
F (Y, o) isafull subcategory of (Y, o) that f*|F (Y, &) is the coadjoint of
Sfu: FX, &) >F (Y, A).

(i1) Regarding f, : F (X, &) >P(Y, of) as the composition of

fa  FX, A)>F (Y, A)

with the inclusion of # (Y, &) into #(Y, /) and using (i), we see that f*R,
is a coadjoint for f, : # (X, o) >P(Y, o). Hence, by uniqueness of coad-
joints {V, 2.2) we have f* = f*Ry, as required.

(iii) By definition, (gf)* is the coadjoint of

(gf)* =g*f*.§T(X’d) %.@(Z,.Sf).

Considering this last as the composition of f, : F (X, o) >F (Y, &) and
gx  F (Y, ) >P(Z, o), and again using part (i), we see that (gf)* = f*g*

(iv) Consider a pointx € X, and let g, : {p} — X be the map from a one point
topological space to X such that g,(p) = x. If P is a presheaf over X, then it
follows from the description of g as the composition of g2 with the coreflection
R, that (g¥P), = P, (see the remark at the end of §3 concerning the coreflec-
tion of a sheaf over anindiscrete space). Now for f: X — Y, we have fg, = g/(,,
and so for a presheaf @ over Y we have, using (iii),

Qe = (0@ = (f2)*Q), = (&F(f*Q), = (*Q)
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Since each of the above identifications is natural, the proof of (iv) is complete.
(v) Consider the following commutative diagram which the morphism
@p : P—RyP induces on coreflections:

P _L)RXP

?Pl lﬂx%

RxP —™  RyRyP

Since every sheaf is its own associated sheaf via the identity morphism, we see
that gz, p=1. Hence we have Rypp=1. Using the natural equivalence
established in (iv), consider the commutative diagram

P, == (RxP),
(9P)x (RX¢P)x

(RyP), = (RyRyP),

Since (Ry®pp), = 1, it follows that (¢p), is an isomorphism as required.

(vi) If P, =0 for all x, then RyP = 0. Hence, by 3.1, RxP = 0. Conversely,
suppose that RyP =0. Then (RyP),=0 for all x, and so by (v), P, =0 for
all x. |}

Corollary 5.2, Let o be acocomplete F -category and let X be a topological space. Then
Sfor each x € X the restriction of S, to F (X, &) is a colimit preserving functor.

Proof. We have seen in §1 that S, is colimit preserving on 2(X, o). Now the
colimitin # (X, &) ofadiagram in & (X, &f) is obtained by taking the colimit
in #(X, o) and coreflecting in & (X, &) (V, 5.2). Hence, the conclusion
follows from 5.1, (v) which says that coreflections induce isomorphisms on
stalks. ]

6. Sheaves in Abelian Categories

Lemma 6.1. Let 0—>P'—P—>P" >0 be an exact sequence of presheaves in an
abelian category.

(i) If P’ is a sheaf and P is a monopresheaf, then P" is a monopresheaf.
(ii) If P" is a monopresheaf and P is a sheaf, then P’ is a sheaf (cf. VI, 6.1).
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Proof. Let U=U U be an open covering, and consider the commutative

i€l
diagram
0 0 0
’ u’ ’ f,— ! ’
0 —— P(U) —*— XP(U) > X P(U)
l '

0 —— PU) —— XP(U,») - (;,k)?J(xl Pl

” u” ” S-e 4
0 —— P(U) —— Xpu) o X, PUp.

The left column is exact by assumption and the other two columns are exact
since products preserve kernels. Statements (i) and (ii) then follow by ele-
mentary diagram chasing. ]

Lemma 6.2. Let of be aCycategory. Suppose that o : F — Pis amorphism in P (X, L)
where F is a sheaf and P is a monopresheaf. Then o is an isomorphism if and only if e,
is an isomorphism for all x € X.

Proof. If « is an isomorphism then «, is an isomorphism by the functorial
property of S,. Conversely, suppose that «, is an isomorphism for all x € X.
Consider the exact sequence in #(X, o)

0 —>Ker ¢ > F — P —> Coker a —0. (1)

For any x € X we have by C; an exact sequence in .o/

0> (Ker «), - F, - P, - Coker( ), 0.

But since a, is an isomorphism, this means that (Ker «), and (Coker «), are 0
for all x € X. Consider the exact sequence

0—->Kera—F—->Ima—0.
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Since Im « is a subpresheaf of the monopresheaf P, it follows that Im «isalso a
monopresheaf. Hence, by 6.1, (ii), Ker ais a sheaf. But then since (Ker a), = 0
for all x, by 2.2, Ker « = 0. Using the exactsequence (1) and 6.1,(i), we then
see that Coker o is a monopresheaf, and so since (Coker «), = 0 for all x we
have Coker « =0. Therefore a is an isomorphism. |j

Theorem 6.3. Let o/ be a C, category and let X be any topological space. Then the
category of sheaves F (X, ) is a complete Cy category and the coreflector

Ry: PX, o) >F (X, o)

is an exact_functor.

Proof. By V, 5.3, it suffices to show that Ry preserveskernels. Let 0 -~ P'—P—P"
be an exact sequence in (X, &). Then by C; for &/ the sequence

0—>P,—>P P,
is exact in &f for all x. Therefore by 5.1, (v) the sequence
0 — (RyP); = (RxP), — (RxP"), 2)

is exact. Let K—RyP be the kernel in Z(X, o) of RyP—~RyP". By 6.1,
(ii), we know that K is a sheaf. Consider the diagram

R P > RyP > RyP"

/ (3)

K

Since Ry is an additive functor, the composition in the top row is zero. There
results 2 morphism « : RyP’ — K making (3) commutative. Passing to stalks,
using C; for the category &7, and using the exactness of (2), we see that a, is an
isomorphism for all x. Hence, by 6.2, «is an isomorphism. Thus RyP’ — RyP is
the kernel of RyP —RyP", and so Ry preserves kernels. |

Proposition 6.4, Let o/ be a C, category. Then a sequence
F' -F—>F" (4)
is exact in F (X, o) if and only if the induced sequence

F, -F,—»>F.
is exact in & for all x.
Proof. By 5.2, S, is a cokernel preserving functor on # (X, &), and by C; for o/

it is also kernel preserving, Consequently, it is an exact functor. This proves
the proposition in one direction. Now let

S(F) = @ F,
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for a sheaf F over X. Then by what has already been proved and by C, for o, S
is an exact functor. Also by 2.2, § preserves nonzero objects, and so it follows
from II, 7.2, that § is faithful. The proof of the proposition in the other
direction now follows from II, 7.1. ||

Corollary 6.5. If </ is a Cycategory, then a morphism o : F—G in F (X, o) is the
zero morphism if and only if «, : F,— G, is the zero morphism in & for all x € X, |

Proposition 6.6. Let o/ be a C, category and let f: X — Y be a continuous map of
topological spaces. Then the sheaf valued functor f* is exact on both P (Y, of) and
F (Y, A).

Proof. On (Y, &) we can write f* = Ry f°. Since f%is exact (4.1) and Ry is
exact (6.3), we see that f* is exact.

Now on & (¥, &), f* is a coadjoint (5.1, (i)) and consequently it is cokernel
preserving. Since the kernel of a morphism in F (Y, &) is the same as the
kernelin 2(Y, &), and since f * is kernel preserving on #(Y, &), it follows that

f * is also kernel preserving on % (Y, &). ||

7. Injective Sheaves

If the C, category &/ has a generator, then by 3.1, # (X, &) also has a
generator. But then & (X, &) being a C; category with a generator, has an
injective cogenerator (111, 3.4) and so, in particular, % (X, &) has injectives.
We are going to show more generally that if &7 has injectives, then so does
F (X, &). The procedure generalizes a method of Godement [18, p. 260].

Lemma 7.1. For each x € X let I, be an object in a category o . Let Q be the sheaf
defined by Q(U) =X I, (i.e., Q is Ryl in the notation of §1). Then for any presheaf P
x€U

we have a one to one correspondence

0:[P, Qlox.x) *é{ [P L]

which is natural in P.
Proof. For xy € U < X we have the projection

QU) = X1~>1I,
xeU
giving rise to a direct limit morphism p, : @, —1I, . If a : P—@ is a morphism
of presheaves, then the family of morphisms p, e, definesan element 6(«) in
X [P,, L] It is clear that 8 is natural in P. On the other hand, a family
x€X

{a,: P,—L},cx defines a morphism of presheaves RyP—>@ which, when
composed with up : P— RyP, gives us a morphism 6'(a) € [P, @]. We leave it
to the reader to show that § and 8’ are inverses of each other. ]
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Corollary 7.2, If o/ is a C, category and I, is injective in & for all x € X, then @ is
infective in P(X, ).

Proof. If P'—P is a monomorphism in &(X, &), then we must show that
[P, Q1 —>[P, @] is an epimorphism of groups. By C; for &/, P,—>P, is a
monomorphism for all x, hence since I, is injective in &, [P,, I,] —=[P;, 1] is
an epimorphism. Therefore by 7.1 and C} for 4, [P, Q] —[P’, Q] is an epi-
morphism. |

Theorem 7.3, If & is a C, category with injectives, then F (X, ) has injectives.

Proof, Given F € & (X, &), for each x € X let F, — I, be a monomorphism into
an injective. This gives rise to a monomorphism of presheaves RyF — @ where
@ is as in 7.1. Composing this with uy: F— ByF, by 2.1 we obtain a mono-
morphism from Finto Q. Now @ is a sheaf (1.1) and it is injective in #(X, o)
(7.2). Also it follows easily from the fact that a monomorphism in & (X, .&)is
necessarily a monomorphism in (X, &) that @ is also injective in & (X, &7).
This shows that # (X, &) has injectives. [

8. Induced Sheaves

We shall call a map f: X—Y of topological spaces a relative map if the
open sets in X are precisely the sets of the form f~!(V) where Vis openin Y.

Lemma 8.1. Iff: XY is relative, then for any category & the functor
Jo: P(X, A) > P(Y, A)

15 full. Furthermore, if a : P — Py is a morphism in P (X, o) such that f, () is an
tsomorphism, then o is an isomorphism.

Proof. Let B : f, P, —f P, be a morphism of presheaves over ¥, and let U be
an open set in X. Then U is of the form f~!(V) where Vis open in Y. Further-
more, if V' is also such that f~!(V') = U, thenf~!(V N V') = U, and we have

Bv = Brav = Byt Pi(U) —Py(U).

We define «;; = 8 where V is any open set such that f~1(V)=U. Then aisa
morphism of presheaves, and we have f, («) = 8. This shows that £, is full.
The assertion about isomorphisms is a tr1v1al consequence of the fact that
every open set in X is of the form f~!(V) for some open Vin Y. ||

Let.s be an % -category, so that by 5.1 the functor £, : F (X, &) ->F (¥, )
has a coadjoint f* : F (Y, o) >F (X, o). By V, §1, we have natural trans-
formations @ : | —f, f* and ¢ : f*f, —> 1.

Proposition 8.2, Let o be an F -category, and suppose that f : X — Y is relative. If
F is a sheuf over X, then there is a sheaf G over Y such that f*G =~ F.
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Proof. Consider the morphism
Yp i [ F—F.

By 8.1, f, is full. Consequently, by V, 1.3, f, (yiz) is an isomorphism. Hence,
again by 8.1, iz is an isomorphism, and so we may take G =f,F. ||

Lemma 8.3. Let o7 be a C, category and let f + X — Y be relative. If F is a sheaf over
Y and if K and M are the kernel and cokernel, respectively, inF (Y, &) for the morphism
@p i F—>fy f*F, then Ky and M,y are zero for all x € X.

Proof. Since f is full, by V, 1.3* we see that f*(¢p) is an isomorphism. Con-
sequently, since f * is exact (6.6) we see thatf*K and f* M are 0. The result then
follows from 5.1, (iv). |

Lemma 8.4, Let f be a C, category, and let f : X — Y be relative. If F and G are
sheaves in of over Y such thatF, = G, =0 forally ¢ f(X), andif 0 : f*F —f*G isan
isomorphism, then for some isomorphism 1 : F—G we have f*(7) = 0.

Proof. Consider the following exact sequences in # (¥, &)

\73 i

Ju f*F > M > 0
Q1,8 1)
% Pg
0 L > G —> fu S*G N > 0
Using 8.3 and the hypothesis on F and G we see that K, = L, =0 forally e .
Therefore, by 2.2, K = L =0. Now since N, =0 for y € f(X) and F, = 0 for
9 ¢ f(X), it follows from 6.5 that the composition p¢ f, (0) ¢ is zero. Hence, we
have an induced morphism 7 :F—G making (1) commutative. Likewise,
there is a morphism 7' : G—F and 7 and 7’ are necessarily inverses of each
other. Consider the commutative diagram

0 K F

S o
f*F == f* W f*F

88 /*n 22 I 0] (2)

I*9q
f*6 = LS
Using the fact that the inverse of f*¢ is f *(V, 1.3*), we see that if we replace
f*(7) by 8 in (2) we still have commutativity. This shows that f*(7) =, as
required. |

If fis the inclusion map of a subspace 4 into a space X and F'is asheafover X,
then we call f*F the sheaf induced by F over 4, and we denote it by F|4.
If A<= B < X, then it is clear from 5.1, (iii), that (F|B)|4 = F|4. Also, by 5.1,
(iv) and 2.2, wesee that F|4 = Oifand only if F, = Oforallx € 4. WecallA< X
a locally closed subspace if 4 is the intersection of an open subset and a
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closed subset of X. Equivalently, 4 is locally closed if there is a closed subspace
B containing 4 such that 4 is open in B.

Theorem 8.5, Let of be a C, category, and let A be a locally closed subspace of X. If F
is any sheaf over X, then there is a unique sheaf F 4 over X such that F 4|A ~ F| A and such
that Fg| X — A = 0. If A is closed, then we have an exact sequence

0>Fy 4>F—>F,;—0

inF (X, ).

Proof. Uniqueness of F; has been established in 8.4.
If A is closed, define F, = f, f*F where f : A— X is the inclusion map. Then

we have
¢p: F>fof*F = F4

and by V, 1.3%, f*(¢p) is an isomorphism. In other words, F4|4 =~ F|4. We
show that F, induces 0 over X — 4. For x € X — 4 we have

(Fa)e = (JuS*F)s = li_rgf*F(Uﬁ 4)

xeU

where U runs through all open sets in X containing x. But since 4 is closed, one
such Uis X — 4, and so since f*F (o) = 0, we have (F,), = 0. This proves the
assertion in the case where 4 is closed.

Still in the case where A is closed, let A denote the cokernel of ¢ in
F (X, ). Forae Awehave M, =0by8.3,andforx € X — Awehave M, =0
by what we have already proved. Consequently, M =0 and so ¢ is an epi-
morphism. Let Fy_, be defined by the exact sequence

?
0—>Fy_4—>F5F,—0. (3)

If we apply f* to (3), we obtain an exact sequence by 6.6. Since f*(¢g) is an
isomorphism, this shows that 0 =f*F, ,=Fy ,|A. On the other hand,
letting g : X— A — X be the inclusion and applying g* to (3), we obtain an
isomorphism g*Fy_, =~ g*Fsince g*F, = F 4| X — A = 0. Thus we have proved
the theorem in the case of an open subspace.

Now suppose that 4 < B < X where Bis closed in X and 4 is open in B. By
8.2 we can find a sheaf G over X such that G|B = (F|B),. Then we may take
Fy=0Gg |

Combining 8.2 and 8.5, we have:

Corollary 8.6, Let o be a C, category, and let A < X be a locally closed subspace.
If G is any sheaf in S over A, then there is a unique sheaf GX over X which induces G
onAandOon X — A. |
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Exercises

1. Relativeto a presheaf P and a point x € X, define a morphism g, : (RyP) P,
such that §,(up), = 1p,. Hence, show that if « : P— P’ is such that Ry(a) is an
isomorphism, then «, is an isomorphism for all x € X.

2. If .o/ has a zero object, then we have product injections u, : P,— RyP(U)
for each x € U and each presheaf P in over X. Passing to the direct limit we
obtain a morphism &, : P,—(RyP),. In general #, # (up),. (Let X be an
indiscrete space, and let P(X) = Z. Then @, is the xth injection Z —Z* whereas
(up), is the diagonal morphism 4 : Z —~ZX.)

3. The categories &, 7, and &/ of sets, topological spaces, and rings, res-
pectively, are & -categories. (For a discussion of the category of rings, see II,
exercise 21.)

For any ring R, the category ¥R is a C, category.

4. Define an object U to be very smalliffor each direct system {4;} with direct
limit 4, the induced morphism from the direct limit of the direct system of sets
[U, 4] to the set [U, A] is a monomorphism. Define U to be quite small if
every morphism from U to the union of a naturally directed system of sub-
objects factors through one of the subobjects. In a cocomplete abelian category
&, averysmall object is quite small. (UseIII, 1.5.) If o is C3, then a quite small
object is very small. In a category with coproducts, an object which is quite
small is small, and a small projective is quite small.

In 2.1, the assumption that .2/ be an & -category may be replaced by the
condition that .%/ have a generating class of very small objects. Hence all the
numbers in the chapter involving # -categories are valid for categories which
have a generating class of very small objects (J. Gray [19]).

If &/ is a cocomplete abelian category with a generating class of very small
objects, then & is C,.

5. Wesketch here an alternative treatment of sheaves, due to Freyd [15], in the
case where %7 is the category of abelian groups %. For an open set U in X let
PY be the presheaf defined as follows:

PUV)=Z if VeU

=0 otherwise
Py, =1 if WeVeU
=0 otherwise.

If U; < U, we have an obvious morphism P+ — PUs, For any presheaf P we
have the one to one correspondence

[PY, P]>P(U) (1)

which assigns to the presheaf morphism o : PY— P the element o(1) € P(U).
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Also (1) isnaturalin U. If U = U U, is an open cover, then we have the exact
sequence 'EI
PUit (@ PUi > pU (2)
(MEIXT i€l
where the first morphism is the difference between the two obvious ones. Let P

be any presheaf, and apply the contravariant functor [, P] to the exact
sequence (2). Using the identification (1) we obtain the sequence

P(U)>XP(U)—~ X P(Uy) (3)
i€l GHEIXT

where the morphisms are just those defined in §1. If P is injective in #(X, ),
then [, P] is an exact functor and hence (3) is exact. Now £(X, 9) has a
generator, and hence injective envelopes. Also from the exact sequence (3)
one sees that the injective envelope of a monopresheaf is a sheaf. (Show that
an essential extension of a monopresheaf is a monopresheaf.) From this one
verifies that # (X, ¢) is a monosubcategory of (X, %) (V, §6) and that an
object in (X, ) is pure if and only if it is a sheaf. Consequently, the con-
clusions of 6.3 follow from V, 6.8.

The remaining exercises serve to relate the classical theory of sheaves as given in [18]
to the present theory.

6. A presheaf P in the category of sets & is a monopresheaf if and only if it
satisfies the following condition:

Let U = U U; be an open cover, and let s and ¢ be two elements of P(U).
iel
If Pyy,(s) = Pyy,(t) for each i € I, then s =1,
A monopresheaf P is a sheafif and only ifit satisfies the following additional
condition:

Let U=U U, be an open cover, and for each i € I let 5; be an element of
iel

P(U;). If for each pair 1, j € Iwehave Py, (5;) = Py,y, (5;), then there exists
s € P(U) such that Py, (s) = s;forall i € 1.
7. A sheaf space (of sets) over a topological space X is a topological space E
together with a local homeomorphism p : E—X. (That is, every point ¢ € E
has an open neighborhood which is mapped homeomorphically onto an open
neighborhood of p(¢) in X. We do not require that p be onto.) If U is an open
subset of X, then a function s: U—FE satisfying p(s(x)) =« for all x e U is
continuous if and only if its image is open in E. In this case s is called a section
in E over U. The class of images of sections in E forms a basis for the topology
on E. If two sections agree at a point x € X, then they must agree in some
neighborhood of x. If p' : £’ — X is another sheaf space over X, then for a
function f': E — E’satisfying p'f = p, the conditions that f be continuous, open,
and a local homeomorphism are all equivalent. Taking such functions as
morphisms, the class Z (X, &) of sheaf spaces over X becomes a category.
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8. Let LE(U) denote the family of sections of the sheaf space E over the open
set U. If V< U, then a function LE(U) —LE(V) is defined by the operation
of restriction, and it is easily verified that LE is a sheafin & over X (exercise 6).
Furthermore, a morphism f: E—E’ of sheaf spaces induces a morphism
Lf: LE— LE’ defined by Lfy;(s) =f5, and in this way L becomes a covariant
functor from Z (X, &) to & (X, &). From exercise 7 it follows that the stalk
(LE),=lim LE(U) is in one to one correspondence with the subset
el

E,=p~l(x)c E.

On the other hand, given a presheaf Pin & over X, we let MP be the disjoint

union of sets U P, together with the map p : MP — X which sends each element
xeX

of P, into x. Associated with an element s € P(U) we have the function
§: U— MP which assigns to x the image of s under the morphism P(U) —P,.
Thus p(5(x)) = x for all x € U. The family {s(U)|s € P(U), U open in X} forms
a basis for a topology on MP, and with respect to this topology p is a local
homeomorphism. In this way M becomes a functor from the category (X, &)
to the category Z (X, ). Using exercise 7 we obtain an isomorphism
MLE ~ E, and this defines a natural equivalence from ML to the identity
functor on Z (X, &). On the other hand, starting with a presheaf P we have
the function

yp(U) : P(U) — LMP(U)

which assigns the section § to the element s € P(U) as described above, and ¢
is a natural transformation from the identity functor on (X, &) to LM. If
P is a sheaf, then i is an isomorphism. (Use exercise 6.) Hence the categories
F (X, %) and F (X, &) are equivalent.

9. For presheaves P and sheaves Fin & over X, establish a natural equivalence
of bifunctors

[P, F] ~ [LMP, F],

thereby showing that LM = Ry : (X, ) >F (X, &).

10. Consider a continuous map of topological spaces f: X—7Y and a sheaf

G e (Y, ). Let NG be the disjoint union of sets U G;,, and consider the
*€X

obvious map p : NG — X. Abasic section over anopen set Uin Xisdefined as
a function s : U — NG such that p(s(x)) = x for all x € U, and such that there
is a section ¢ : V—MG with f(U) < V and s(x) =t(f(x)) for all x € X. The
class of images of basic sections forms a basis for a topology on NG, and with
respect to this topology NG is a sheaf space over X. In this way

N:F(Y, &) >F X, &)

becomes a covariant functor,
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Establish a natural equivalence of bifunctors
[G,f«F) = [LNG, F]
for sheaves F and G over X and Y respectively, thereby showing that
LN =f*: %Y, %) >F (X, &).

11. A sheaf space of abelian groups over X is a sheaf space p: E>X
together with an abelian group structure for each of the sets E, = p~1(x), x € X,
such that addition is a continuous function from a subset of £ x E to E. (In
particular, p must be onto, since each of the sets p~!(x) must consist of at least
one element.) A morphism of sheaf spaces of abelian groups is a morphism
S E—>E’ of sheaf spaces of sets such that the induced map E,— E, is a mor-
phism of abelian groups for each x € X. The category of sheaf'spaces of abelian
groups over X is denoted by Z (X, %).

If Ee (X, ¥) and 5 and { are two sections over the open set U, then the
function s + ¢ : U—E defined by (s + ¢)(x) = s(x) + ¢(x) is a section over U.
The function X — E which assigns to each x € X the zero element of the corre-
sponding stalk is a section over X. If 5 is a section over U, then the function
—s: U—E defined by (— s5)(x) = — s(x) is a section over U. Thus the set of
sections LE (U) has the structure of an abelian group, and L can be considered
as a functor from Z (X, 9) to F (X, ).

On the other hand, if Pis a presheafin Z(X, &), then the additive structure
of the stalks P, is continuous with respect to the topology on MP defined in
exercise 8,and thus M canbe considered asa functor from# (X, ¥)to F (X, 4).
The natural transformations of exercise 8 are valid within the categories
P(X, %) and F (X, &), and it follows again that the categories % (X, &) and
Z (X, %) are equivalent. The natural equivalence of exercise 9 still holds,
showing that LM = Ry : #(X, 9) >F (X, %). The functor N of exercise 10
can be considered as a functor from & (Y, %) to Z (X, ¥), and the natural
equivalence of that exercise is valid. Thus LN =f* : # (Y, 9) >F (X, %).

If p : E—> X is a sheaf space and if each of the sets E, has a ring structure in
such a way that both addition and multiplication are continuous, and if further
the collection of unit elements forms a section over X, then E is called a sheaf
space of rings. The results of the exercise are then valid if the category of
abelian groups is replaced everywhere by the category of rings.

12. Iff: E—E’ is a morphism in & (X, &), then the kernel of f is that sub-
space of E consisting of all elements which are taken into the zero element of the
corresponding stalk of E’. The cokernel of fis stalkwise over x the cokernel of
the morphism E, — E, induced by f. The topology on Coker(f) is defined by
taking as a basis the class of images of sections in £’ under the obvious map
E’' - Coker(f). The image of fis given by the setwise image.
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If {EM)e is any family of objects in F (X, %), then the coproduct is given
stalkwise by the formula

(@ E*), = @ £}
Ae4 Aeq
The topology is obtained by taking as a basic family of sections the functions of

the form Y s, : U—>@ E?, where s, € LENU) is zero except for a finite
A4 AEA

number of A. The product of the above family is given stalkwise over x by the
set of all A-tuples (s5,), where s, is a section in E) defined over a common open
set U containing x for all A € 4, modulo the equivalence relation which identi-
fies two tuples (s)) and (¢)) if and only if there is an open set ¥ containing x such
that 53|V =t)|V for all A € A.

The intersection of a family of subobjects in & (X, G) is given by the
interior of the setwise intersection.
13. Let w denote the set of positive integers. For n € w let F™ be the sheaf space
of abelian groups defined over the closed interval [0, 1], such that F* = Z for
x € [0, 1/n) and F? =0 for x € [1/n, 1], where the only sections in F" are the
constant maps. Let F* be the subsheaf space of F" such that F* = F7 for
x € (1/2n, 1/n) and F = 0 otherwise. Then the product of epimorphisms

X Fr X F*|F*

nEw n€w
is not an epimorphism, and consequently the category # ([0, 1], &) isnot C¥.
(Show that ( XF ") o =“Z, whereas ( X Fr|F "') o = Z*.) Hence deduce from

n€w nEw
III, exercise 2 that this category does not have projectives,
14. Let X be a locally compact Hausdorff space (so that every point has a
basic family of compact neighborhoods). Then # (X, ¥) is a C, category, and
consequently # (X, ¥) is a C, category.
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& -antimorphism, 95
&-function, 95
& -morphism, 95
o/ -relation, 95
simple, 95
Abelian, semigroup, 3
category, 33
Add (&), 37
Additive, category, 28
functor, 49, 67
subcategory, 52
Adjoint functor, 67, 117, 124
Algebras, category of, 79
Antimorphism, 95
Arrow, 42
composite, 42
identity, 42
Associated sheaf, 250

Balanced, 6

Bifunctor, 58

Big abelian group, 164
Biproduct, 27

C, (see Category)
Carried into, 11
Categorical statement, 94
Category, 1
abelian, 33
additive, 28
balanced, 6
C,, 81
C,, 81
C,, 82
Cy, 249
C}, 86
cocomplete, 46

Subject Index

Category— (cont.)
colocally small, 7
complete, 44
conormal, 16
dual, 4
exact, 18
F-,248
finitely cocomplete, 46
finitely complete, 44
free, 216
graded free, 221
graded Grassmann, 225
graded polynomial, 224
Grassmann, 220
locally small, 7
normal, 16
of abelian groups, 34
of algebras, 79
of compact Hausdorff spaces, 37, 157
of finitely generated abelian groups, 78
of groups, 38
of Hausdorfl spaces, 37, 157
of kernel preserving functors, 148, 150
of monopresheaves, 246
of presheaves, 245
of sets, 3
of sets with base point, 3
of sheaf spaces, 262, 264
of sheaves, 246
of topological spaces, 3
of topological spaces with base point, 3
of torsion groups, 91
polynomial, 219
quotient, 4
semiadditive, 28
Z-cocomplete, 46
Z-complete, 44
small, 2
Center of a ring, 113
Closed, class of epimorphisms, 136
locally, 259
Coadjoint, 67, 117, 124
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Cocompatible family, 46
Cocomplete, 46
finitely, 46
Coderived functor, 148
Codiagonal, 26
Codomain, of a functor, 49
of a morphism, 2
Coequalizer, 8
Cofinal, 48
Cogenerator, 72
Cohomological dimension, 180
Coimage, 12
Cointersection, 11
Cokernel, 15
Colimit, 46
preserving functor, 52
Collectively, faithful, 121
preserves nonzero objects, 138
Colocally small, 7
Commutative diagram, 7, 42
Commutativity relation, 42
generalized, 78
Compatible, elements in an ordered set, 227
family, 44
Complete, 44
finitely, 44
subcategory, 52
Complex, 152
Component of an ordered set, 242
Composite arrow, 42
Composition, of functors, 50
of morphisms, 1, 2
of natural transformations, 59
Conjugate transformation, 123
Connected pair, 193
Connected sequence, 191, 208
exact, 192
isomorphism of, 193
morphism of, 192
negative, 192
positive, 192
Connecting morphism, 95, 168, 178, 183, 191
Conormal, category, 16
quotient object, 16
Contains, 6
Contravariant, 49
Conull object, 14
Coordinate, 26
Coproduct, 26
Coproductive, 121
Coreflection, 128
Coreflective, 129

SUBJECT INDEX

Coreflector, 129
Coretraction, 4
Cosatellite, 193, 208
Cosheaf, 248
Covariant, 49
Cube, 43

D
Decision, free, 236
point, 236
Derived functor, 147
Diagonal, 26
Diagram, 42
chasing, 36, 97
finite, 42
scheme, 42
Dimension, cohomological, 180
global, 180
homological, 179
of a finite ordered set, 241
Direct, family of subobjects, 48
image of a sheaf, 251
limit, 47
system, 47
Directed, class, 4
set, 4
Discrete ordered set, 230
Divisible, abelian group, 73
module, 78
Division ring, 29
Domain, of a functor, 49
of a morphism, 1, 2
Dual category, 4
Duality functor, 49

&-projective, 136
Endomorphism, 5
Epifunctor, 51
Epimorphic image, 12
Epimorphism, 5

pointwise, 60
Equalizer, 8
Equivalence, natural 59

of categories, 52, 61

of exact sequences, 172
Equivalent subcategory, 52
Evaluation functor, 65
Exact, category, 18

functor, 51

sequence, 18

subcategory, 52



Ext!, 164
Ext*, 173
Extension, 161
Extremity, 42

Factors through, 7
Faithful, 51, 56
collectively, 121
Field, 29
Finite, diagram, 42, 227
intersection, 10
Finitely, cocomplete, 46
complete, 44
generated, 72
Five lemma, 35, 38, 94
Fixed ends, 170
Follows, 4
Free, category, 216
object, 72
ring, 219
Functor, additive, 49, 67
category, 63
colimit preserving, 52
contravariant, 49
covariant, 49
duality, 49
evaluation, 65
exact, 51
faithful, 51, 56

finite intersection preserving, 54

forgetful, 50

full, 52

group valued, 50

identity, 49

imbedding, 52

inclusion, 49

kernel preserving, 51

limit preserving, 52, 54

morphism, 50, 53

of several variables, 58

partial, 58

projection, 49

representable, 99

representative, 52

zero preserving, 51
Full, functor, 52

subcategory, 3

Generators, 72
family of, 71

SUBJECT INDEX

Gradable, 223
Graded, free category, 221
Grassmann category, 225
polynomial category, 224
Grassmann, category, 220
ring, 221
Group, 5
big abelian, 164
object, 114
valued functor, 50

H

h.f. class, 139, 188, 211
Homological dimension, 179
Homology, 152, 182

Idempotent, 31
Identity, arrow, 42
functor, 49
morphism, 1, 2
transformation, 59
Image, direct—of a sheaf, 251
inverse, 13
inverse—of a sheaf, 253
of a functor, 62
of a morphism, 12
Imbedding, 52
full—theorem, 151
group valued—theorem, 101
theorem for big categories, 103
Immediately, 227
Inclusion, functor, 49
morphism, 6
Induced sheaf, 259
Inductive, 4

Injection morphism, of a coproduct, 26

of a product, 25
Injective, envelope, 88

object, 71

resolution, 71
Integral domain, 29
Intersection, 10
Inverse, image of a morphism, 13

image of a sheaf, 253

limit, 49

of an isomorphism, 5

system, 48
Isomorphic, objects, 5

subobjects, 6
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Isomorphism, 5

of categories, 52

of connected sequences, 193
Iterated connecting morphism, 193

K
Kernel, 14
preserving functor, 51, 150

L

Length, of a composite arrow, 42
of an exact sequence, 170
Limit, 44
direct, 47
inverse, 49
preserving functor, 52, 54
Linearly ordered, 4
Locally, closed, 259
small, 7

M
Maximal, ¢4

Minimal element following a vertex, 233

Module, 69
Monofunctor, 50
Monomorphism, 5

pointwise, 60

pure, 132
Monopresheaf, 246
Monosubcategory, 132
Morphism, 1

codiagonal, 26

coordinate, 26

diagonal, 26

inclusion, 6

functor, 50, 53

of abelian groups, 34

of connected sequences of functors, 192

of diagrams, 42

of exact sequences, 39, 162, 170
of rings, 50

of semigroups, 50

zero, 14

N

Natural, equivalence, 59
transformation, 59
Nine lemma, 20

Noether isomorphism theorem, first, 21

second, 24

SUBJECT INDEX

Normal, category, 16
subobject, 16
subset, 233

Object, 1
group, 114
injective, 71
projective, 69
pure, 132
small, 74
torsion, 132
Opposite ring, 29
Order of an element, 227
Ordered, class, 3
subclass, 4
Origin, 42

Pattern, 231
Pointwise, 60
Precedes, 4
Preservation properties, 52
Presheaf, 245
Pretext *, 173
Product, 24
of categories, 58, 121
of diagram schemes, 43
Projection, functor, 49
of a coproduct, 26
of a product, 25
Projective, 69
class, 136
&-, 136
resolution, 71
Proper subobject, 6, 86
Pullback, 9
Pure, monomorphism, 132
object, 132
Pushout, 10

Q

Quotient, category, 4
object, 7
Quite small, 261

R
R-object, 68
Reflection, 128
Reflective subcategory, 129
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SUBJECT INDEX

Reflector, 129
Relative map, 258
Representable functor, 99
Representative, class of subobjects, 7
functor, 52
Restriction, 6
Retract, 4
Retraction, 5
Ring, 29
division, 29
free, 219
Grassmann, 221
opposite, 29
polynomial, 220

Satellite, 194
Section, 262
Semiadditive category, 28
Semigroup, 3
Sheaf, 246
associated, 250
direct image of a, 251
induced, 259
inverse image of a, 253
null, 246
space of abelian groups, 264
space of rings, 264
space of sets, 262
Short exact sequence, 19
Small, category, 2
colocally, 7
locally, 7
object, 74
quite, 261
very, 261
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Solution set, 124
Split exact sequence, 32
Stalk, 247
Subcategory, 3
additive, 52
complete, 52
exact, 52
full, 3
Subfunctor generated by, 76
Subobject, 6
isomorphic, 6
normal, 16
proper, 6, 86

T
Tensor product, 142
of modules, 157
Torsion, free, 156
group, 91
object, 132
Transformation, conjugate, 123
natural, 59
Trifunctor, 58

Union, 11

A4
Vertex of a diagram, 42
Very small, 261

z
Zero, element of an abelian group, 3
morphism, 14
object, 14
Zorn's lemma, 4
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