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PIN(2)-EQUIVARIANT SEIBERG-WITTEN FLOER HOMOLOGY AND

THE TRIANGULATION CONJECTURE

CIPRIAN MANOLESCU

Abstract. We define Pin(2)-equivariant Seiberg-Witten Floer homology for rational ho-
mology 3-spheres equipped with a spin structure. The analogue of Frøyshov’s correction
term in this setting is an integer-valued invariant of homology cobordism whose mod 2
reduction is the Rokhlin invariant. As an application, we show that there are no ho-
mology 3-spheres Y of Rokhlin invariant one such that Y#Y bounds an acyclic smooth
4-manifold. By previous work of Galewski-Stern and Matumoto, this implies the existence
of non-triangulable high-dimensional manifolds.

1. Introduction

The existence of topological manifolds that do not admit combinatorial triangulations
(that is, piecewise linear structures) has been known in dimension ≥ 5 since the celebrated
work of Kirby and Siebenmann [30]. Freedman [17] constructed such examples in dimension
four. In dimensions ≤ 3, every topological manifold has a unique piecewise-linear structure,
by the older work of Radó [50] and Moise [40].

A related question is whether topological manifolds admit simplicial triangulations. A
simplicial triangulation is a homeomorphism to a locally finite simplicial complex; this
complex does not have to be a piecewise linear manifold. A typical example of a simplicial
triangulation that is not combinatorial can be obtained as follows: Take a non-trivial ho-
mology sphere M (such as the Poincaré sphere), and form its double suspension Σ2M . By
the double suspension theorem of Edwards [10, 11] and Cannon [6], Σ2M is homeomorphic
to a sphere. An arbitrary triangulation of M induces one of Σ2M that is not combinatorial,
because the links of the cone points are not spheres.

The Triangulation Conjecture (in dimension n) states that every n-dimensional topolog-
ical manifold has a simplicial triangulation. The conjecture is true for n ≤ 3, but false in
dimension four: Using the properties of the Casson invariant [1], it can be shown that the
Freedman E8-manifold cannot be triangulated.

In dimensions ≥ 5, Galewski and Stern [26] and Matumoto [39] reduced the Triangulation
Conjecture to a problem in low-dimensional topology: They showed that the conjecture is
true if and only if there exists a homology 3-sphere Y such that Y has Rokhlin invariant
one, and Y is of order two in the homology cobordism group θH3 .

Let us recall the relevant definitions: The group θH3 is generated by equivalence classes
of integral homology 3-spheres, where Y0 is equivalent to Y1 if there exists a piecewise-
linear (or, equivalently, a smooth) compact, oriented 4-dimensional cobordism W from Y0

to Y1, such that H∗(W,Y0;Z) = H∗(W,Y1;Z) = 0. Addition in θH3 is given by connected
sum. It is known that θH3 is infinite, and in fact infinitely generated [13, 23, 14]. There
is a distinguished map µ : θH3 → Z/2, called the Rokhlin homomorphism [51, 12]. More
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generally, one can associate a Rokhlin invariant µ(Y, s) ∈ 1
8Z (mod 2Z) to any 3-manifold

Y equipped with a spin structure s. One takes an arbitrary compact, smooth, spin four-
manifold (W, t) with boundary (Y, s) and sets

µ(Y, s) =
σ(W )

8
(mod 2Z),

where σ(W ) denotes the signature of W . When Y is an integral homology sphere, there is
a unique spin structure s on Y , and σ(W ) is divisible by 8; the Rokhlin homomorphism is
defined by µ(Y ) = µ(Y, s).

The main result of this paper is:

Theorem 1.1. To every rational homology 3-sphere Y equipped with a spin structure s we
can associate an invariant β(Y, s) ∈ 1

8Z, with the following properties:

(1) If −Y denotes Y with the orientation reversed, then β(−Y, s) = −β(Y, s);
(2) The mod 2 reduction of −β(Y, s) is the generalized Rokhlin invariant µ(Y, s);
(3) Suppose that W is a smooth, oriented, negative-definite cobordism from Y0 to Y1,

and let b2(W ) denote the second Betti number of W . If W admits a spin structure
t, then

β(Y1, t|Y1
) ≥ β(Y0, t|Y0

) +
1

8
b2(W ).

When Y is an integral homology sphere, we simply write β(Y ) = β(Y, s) ∈ Z for the
unique spin structure s. We then have β(Y ) ≡ µ(Y ) (mod 2). The third property of β
mentioned in Theorem 1.1 shows that β is an invariant of homology cobordism. Together
with the other two properties, this implies the following:

Corollary 1.2. If Y is a homology sphere of Rokhlin invariant one, then Y#Y is not
homology cobordant to S3.

In view of the work of Galewski-Stern and Matumoto [26, 39], this disproves the Trian-
gulation Conjecture in high dimensions:

Corollary 1.3. For every n ≥ 5, there exists a closed n-dimensional topological manifold
that does not admit a simplicial triangulation.

Indeed, Galewski and Stern proved in [25, Theorem 2.1] that (assuming the truth of
Corollary 1.2) an obstruction to the existence of simplicial triangulations on manifolds
M of dimension ≥ 5 is the non-vanishing of Sq1 ∆(M) ∈ H5(M ;Z/2), where ∆(M) ∈
H4(M ;Z/2) is the Kirby-Siebenmann obstruction to combinatorial triangulations, and Sq1

denotes the first Steenrod square. It follows from the work of Galewski-Stern, Matumoto,
and earlier work of Siebenmann [57] that all orientable 5-manifolds are triangulable. A
specific non-orientable five-dimensional manifold M5 with Sq1∆(M) 6= 0 is constructed in
[25]. Hence M5 is non-triangulable. To get non-orientable examples of non-triangulable
manifolds in dimensions n > 5 we can take the product of M5 with the torus T n−5. To get
an orientable example in dimension 6 we can consider the non-orientable S1-bundle over M
given by M̃ ×Z/2 S

1, where M̃ → M is the oriented double cover; the total space of this
bundle is orientable. To get orientable examples in dimensions n > 6, we can then take
products with T n−6.

Let us discuss the origin of the invariant β from Theorem 1.1. There are two important
antecedents. The first is Casson’s invariant of integral homology spheres [1]. Casson’s
invariant λ satisfies the analogues of properties (1) and (2) in Theorem 1.1 (anti-symmetry
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under orientation reversal, and being a lift of the Rokhlin invariant), but is not an invariant
of homology cobordism. Nevertheless, this sufficed to make some progress in the direction
of Corollary 1.2: A particular class of homology spheres Y such that Y#Y is homology
cobordant to S3 is given by those Y that admit an orientation reversing homeomorphism;
using λ, one can show that homology spheres of this kind have Rokhlin invariant zero.

The second antecedent of β consists of the “correction terms” in Floer homology inspired
by the work of Frøyshov [18]. Correction terms were defined first by Frøyshov in instanton
(Yang-Mills) Floer homology [19], then by Ozsváth-Szabó in Heegaard Floer homology [44],
and by Frøyshov and Kronheimer-Mrowka in monopole (Seiberg-Witten) Floer homology
[20, 33, 32]. In all these cases, one studies a version of Floer homology for Y , and captures
a numerical invariant from its grading.

For example, if Y is a homology 3-sphere, its monopole Floer homology }HM (Y ) (as
defined in [32]) is a graded module over the polynomial ring Z[U ], with U lowering degree

by 2. The module }HM (Y ) consists of some Z[U ]-torsion part and a single “infinite tail” of
the form:

Z 0 Z

U
{{

0 Z

U
{{

0 . . .

U
{{

where the U -action is indicated by arrows. The Frøyshov invariant h(Y ) is defined as minus
one-half of the minimal grading of an element in this tail.

The correction terms mentioned above all satisfy analogues of the properties (1) and (3)
in Theorem 1.1 (anti-symmetry under orientation reversal, and a strong form of monotonic-
ity under negative-definite cobordisms). However, none of them reduces to the Rokhlin
invariant mod 2.

The invariant β combines the good properties of the Casson and Frøyshov-type invariants.
It is defined as a correction term in a new, Pin(2)-equivariant version of Seiberg-Witten
Floer homology. This version uses an extra symmetry of the Seiberg-Witten equations that
appears in the presence of a spin structure. The same symmetry was previously used with
success in four dimensions, most notably in Furuta’s proof of the 10/8-Theorem [24].

In three dimensions, we use the extra symmetry to define Pin(2)-equivariant Seiberg-
Witten Floer homology with coefficients in the field F2 of two elements. Given a rational
homology sphere Y with a spin structure s, its Pin(2)-equivariant Seiberg-Witten Floer
homology is a graded module over the ring F2[q, v]/(q

3), with q and v lowering degrees by
1 and 4, respectively. This Floer homology has an infinite tail of the form:

. . . F2 F2

q
��

F2

q
��

0 F2

v

ii F2

q
��

v

ii F2

q
��

v

ii 0 . . .

v

ii . . .

v

ii . . .

v

ii

If we forget the action of q, the tail consists of three direct summands supported in three
different degrees mod 4. One defines three invariants α(Y, s), β(Y, s), γ(Y, s) in terms of
the the minimal possible gradings of elements in each of the three summands. The middle
invariant β is the one used in Theorem 1.1. The invariants α and γ satisfy the exact
analogues of properties (2) and (3) in Theorem 1.1, but they are less useful than β because
they get switched under orientation reversal:

α(−Y, s) = −γ(Y, s), γ(−Y, s) = −α(Y, s).
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A key fact to be noted is that the tail in Pin(2)-equivariant Seiberg-Witten Floer homology
is periodic only mod 4 (not mod 2). This allows us to get a hold on the mod 2 reductions
of α, β, and γ: The reductions all end up being equal to the Rokhlin invariant.

The construction of Pin(2)-equivariant Seiberg-Witten Floer homology in this paper
uses the techniques previously employed by the author in [36]. It involves doing finite-
dimensional approximations of the Seiberg-Witten equations, using Conley index theory
to construct a Pin(2)-equivariant space, and then taking the homology of this space. In
[36], this was done in an S1-equivariant context. Adapting the construction to the Pin(2)-
equivariant setting presents no major difficulties.

We mention that we chose the methods in [36] because (for rational homology 3-spheres)
they seemed easiest from a technical point of view. However, we expect that Pin(2)-
equivariant Seiberg-Witten Floer homology can also be defined in the spirit of the work
of Kronheimer and Mrowka [32]. Furthermore, there should be a Pin(2)-version of Hee-
gaard Floer homology, where the role of the extra symmetry is played by the interchange of
the alpha and beta curves. The advantage of using these theories (rather than the Conley
index method) is that they should make it possible to define Pin(2)-Floer homology for all
spin 3-manifolds, and to make it more computable.

Acknowledgements. I would like to thank Ron Fintushel, Mikio Furuta, Jin-Hong Kim,
Peter Kronheimer, Timothy Nguyen, Nikolai Saveliev, Ron Stern, Raphael Zentner and the
referees for helpful comments on previous versions of this paper.

2. Spaces of type SWF

In this section we discuss some facts regarding the algebraic topology of spaces with
a Pin(2)-action. We show that under certain conditions, one can extract from their Borel
homology groups three quantities a, b, c ∈ Z. Later, in Section 3, we will use this information
in the context of Floer theory to obtain the three new invariants of homology cobordism.

2.1. Pin(2)-equivariant topology. Let H = C⊕Cj = {x+ yi+ zj +wk | x, y, z, w ∈ R}
be the space of quaternions. Inside the group of unit quaternions S(H) = SU(2) we have
the circle group S1 = C ∩ S(H), and also the subgroup

G := Pin(2) = S1 ∪ S1j.

There is a short exact sequence

(1) 1 −→ S1 −→ G −→ Z/2 −→ 1.

Furthermore, the inclusion G ⊂ SU(2) can be viewed as part of a fibration

(2) G −→ SU(2) −→ RP2,

where the second map is the composition of the Hopf fibration with the involution on S2.
Among the real irreducible representations of G, we mention the following three:

• the trivial representation R;
• the one-dimensional sign representation R̃ on which S1 ⊂ G acts trivially and j acts
by multiplication by −1;

• the quaternions H, acted on by G via left multiplication.



PIN(2)-EQUIVARIANT SEIBERG-WITTEN FLOER HOMOLOGY 5

We want to study the topology of spaces with a G-action. Let us start by understanding
the classifying space BG = EG/G. The short exact sequence (1) shows that BG is the
quotient of BS1 = CP∞ under the involution

[z1 : w1 : z2 : w2 : . . . ] → [−w̄1 : z̄1 : −w̄2 : z̄2 : . . . ].

An alternate (and more useful) description of BG comes from (2), which gives a fibration

(3) RP2 −→ BG −→ B SU(2) = HP∞.

We are interested in the cohomology of BG with coefficients in the field F2 = Z/2. The
Leray-Serre spectral sequence associated to (3) has no room for higher differentials, so the
cohomology groups of BG are

F2 F2 F2 0 F2 F2 F2 0 . . .

in degrees 0, 1, 2, . . . Moreover, the multiplicative properties of the spectral sequence show
that, as a ring,

(4) R := H∗(BG;F2) ∼= F2[q, v]/(q
3),

with elements q in degree 1 and v in degree 4.
Let X be a pointed, finite G-CW complex. Consider its (reduced) Borel homology and

cohomology

H̃G
∗ (X;F2) = H̃∗(EG+ ∧G X;F2),

H̃∗
G(X;F2) = H̃∗(EG+ ∧G X;F2),

where EG+ denotes the union of EG with a disjoint basepoint.
Both Borel homology and Borel cohomology are modules over H̃∗

G(S
0;F2) = H∗(BG;F2) =

R. Note that since we work with coefficients over a field, the Borel homology and Borel co-
homology of X (in any given grading) are dual vector spaces, and their R-module structures

are also related to each other by duality. For example, the description (4) of H̃∗
G(S

0;F2)
implies that the Borel homology of S0 is:

F2 F2

q
��

F2

q
��

0 F2

v

ii F2

q
��

v

ii F2

q
��

v

ii 0 . . .

v

ii . . .

v

ii . . .

v

ii

in degrees 0, 1, 2, . . . , with the module structure indicated through the arrows.
One property of Borel cohomology that we need is a version of the localization theorem;

see [9, III (3.8)] for a proof:

Proposition 2.1. Suppose A ⊆ X is a G-subcomplex such that the action of G on X −A
is free. Then the inclusion of A into X induces an isomorphism on equivariant coho-
mology after inverting the element v ∈ H∗(BG;F2); that is, we have an isomorphism of
F2[q, v, v

−1]/(q3)-modules:

(5) v−1H̃∗
G(A;F2) ∼= v−1H̃∗

G(X;F2).

Another important property of Borel cohomology (with F2 coefficients) is its invariance
under suspensions, up to a shift in degree. Precisely, if V is a finite-dimensional representa-
tion of G, let us denote by V + the one-point compactification of V , and by ΣV X = V +∧X
the suspension of X by this representation. We have:
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Proposition 2.2. For any finite-dimensional representation V of G, we have an isomor-
phism of R-modules:

(6) H̃∗
G(Σ

VX;F2) ∼= H̃∗−dimV
G (X;F2).

A similar isomorphism holds for Borel homology.

Proof. There is a V -bundle:

p : EG×G (V ×X) → EG×G X.

Applying the relative Thom isomorphism theorem (with F2 coefficients) to this bundle over
the pair (EG×G X,EG × pt), we obtain (6). �

Remark 2.3. Borel homology and Borel cohomology with Z coefficients are not invariant
under arbitrary suspensions. The analogue of the isomorphism (6) with Z coefficients holds
if V is a trivial representation, and also (using the relative Thom isomorphism theorem) if
V is a complex representation of G such as H. However, it does not hold for non-trivial real
representations such as R̃.

2.2. Equivariant duality. The problem mentioned in Remark 2.3 can be fixed (with Z

coefficients) by using the RO(G)-graded homology theory of Lewis, May and McClure [34,
35]. This theory is invariant under suspension by any representation, up to a corresponding
shift in the RO(G)-grading. In this paper we will only make use of the RO(G)-graded
theory indirectly: With coefficients in F2, we can collapse its grading to Z via the natural
map RO(G) → Z, V 7→ dimV , and the result is the usual Borel homology. It follows
that Borel homology (with F2 coefficients) satisfies the various properties established in the
literature for RO(G)-graded homology.

In particular, we are interested in the behavior of Borel homology under equivariant
Spanier-Whitehead duality. This was studied in [60, 61, 35, 28] in the context of RO(G)-
graded homology. We gather below a few facts taken from these sources. We simplify the
exposition so as to be in terms of Borel homology with F2 coefficients, and also in terms of
spaces rather than spectra.

Recall that in non-equivariant algebraic topology, two pointed, connected spaces X and
X ′ are said to be Spanier-Whitehead m-dual if there is a map ε : X ∧X ′ → Sm such that
slant product with the fundamental class of Sm induces an isomorphismH∗(X) → Hm−∗(X)
in all degrees [58, 59]. The equivariant analogue of this is V -duality, with respect to a
representation V of G. The original definition, as given in [35, Definition 3.4], involves an
isomorphism on the equivariant stable homotopy of the infinite suspensions of X and X ′.
In the case of finite G-CW complexes, according to [35, Theorem 3.6], there is an equivalent
and more elementary definition:

Definition 2.4. Let V be a finite-dimensional representation of G. Two pointed, finite
G-CW complexes X and X ′ are called (equivariantly) V -dual if there exists a G-map ε :
X∧X ′ → V + such that for any subgroup H ⊆ G, the fixed point set map εH : XH∧(X ′)H →
(V H)+ induces a non-equivariant duality between XH and (X ′)H .

The examples of V -dual spaces that we need in this paper come from the following:

Lemma 2.5. Suppose N is a smooth G-manifold with boundary embedded in a representa-
tion V of G, such that dimN = dimV = m. Further, suppose that ∂N admits a decompo-
sition ∂N = L∪L′ with L and L′ being smooth (m− 1)-dimensional G-manifolds such that
L ∩ L′ = ∂L = ∂L′. Then N/L and N/L′ are equivariantly V -dual.
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Proof. The non-equivariant analogue of this lemma is well-known; see for example [2] or [8,
Lemma 3.6]. The equivariant version is a direct consequence of [35, Theorem 4.1], which
states that (under certain technical assumptions, automatically satisfied for embeddings
of smooth G-manifolds), if we have inclusions of G-spaces A ⊂ X ⊂ V as neighborhood
retracts, then X/A and (V −A)/(V −X) are dual with respect to V . For the case at hand,
take (X,A) = (N,L) and observe that (V − L)/(V −N) is G-equivalent to N/L′. �

If X and X ′ are V -dual, the Borel homology of X is related to the Borel cohomology
of X ′ as follows. Let m = dimV . First, the Borel cohomology of X ′ can be viewed as an
equivariant generalized homology of X, called co-Borel homology and denoted by cHG

∗ :

(7) cH̃G
∗ (X;F2) ∼= H̃m−∗

G (X ′;F2) = H̃m−∗(EG+ ∧G X ′;F2).

Second, the Borel and co-Borel homologies fit into a long exact sequence, whose third
term is another equivariant generalized homology tHG

∗ , called Tate homology:

(8) . . . −→ cH̃G
∗ (X;F2) −→ tH̃G

∗ (X;F2) −→ H̃G
∗−2(X;F2) −→ . . .

Tate homology was defined by Greenlees and May [28] as the co-Borel homology of

ẼG ∧ X, where ẼG is the unreduced suspension of EG (with one of the cone points as
basepoint). We will need the following facts:

• Being an (equivariant) generalized homology theory, Tate homology satisfies the
usual Eilenberg-Steenrod axioms: homotopy, excision and exactness.

• Tate homology with coefficients in F2 is invariant under suspensions by arbitrary
representations of G:

(9) tH̃G
∗ (ΣV X;F2) ∼= tH̃G

∗−dimV (X;F2).

This holds because Tate homology is a particular case of co-Borel homology.
• If X has a free G-action away from the basepoint, then

(10) tH̃G
∗ (X;F2) = 0.

This is proved in [28, Proposition 2.4].
• Tate homology is 4-periodic, that is,

(11) tH̃G
∗ (X;F2) ∼= tH̃G

∗−4(X;F2).

Indeed, the right hand side is the Tate homology of ΣHX by (9). On the other
hand, ΣHX contains X as a subset whose complement has a free G-action, so (10)

and exactness imply that tH̃G
∗ (ΣHX;F2) ∼= tH̃G

∗ (X;F2).
• For X = S0 we have a graded isomorphism:

(12) tH̃G
∗−2(S

0;F2) ∼= v−1R ∼= F2[q, v, v
−1]/(q3).

Indeed, the Tate cohomology tH̃∗
G(S

0;F2) is isomorphic (as a graded vector space)
to F2[q, v, v

−1]/(q3), according to the computation in [28, Corollary 9.10]. Further,

we have tH̃∗
G(S

0;F2) ∼= tH̃G
−∗(S

0;F2) by [28, p. 58]. Of course, given the structure
of F2[q, v, v

−1]/(q3), reversing its grading is the same as shifting it by 2. From here
we get (12) as an isomorphism of graded vector spaces. The fact that (12) is also
an isomorphism of R-modules follows from the fact that the exact sequence (8)
(applied to S0) is one of modules, together with the 4-periodicity of Tate homology
as a module.
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These properties makes Tate homology computable in many cases. Combining (7) with

(8) and with knowledge of tH̃∗, one can get information about the Borel homology of X in
terms of the Borel cohomology of X ′.

Remark 2.6. The discussion above should be compared with its analogue in the S1-equivariant
case, which appeared in in [31, Section 5.2] in connection with S1-equivariant Seiberg-
Witten Floer homology. The readers familiar with Heegaard Floer homology should think
of the Borel, co-Borel and Tate homologies as similar to HF+,HF− and HF∞; compare
[31, Conjecture 1].

2.3. Spaces of type SWF. The definition below is motivated by the construction of the
Seiberg-Witten Floer spectrum in Section 3. We let G = Pin(2) as before.

Definition 2.7. Let s ≥ 0. A space of type SWF (at level s) is a pointed, finite G-CW
complex X with the following properties:

(a) The S1-fixed point set XS1

is G-homotopy equivalent to the sphere (R̃s)+;

(b) The action of G is free on the complement X −XS1

.

Given a space X of type SWF at level s, we can apply Proposition 2.1 to the subcomplex

A = XS1

and obtain

(13) v−1H̃∗
G(X;F2) ∼= v−1H̃∗

G((R̃
s)+;F2) ∼= (v−1R)[s],

where the last isomorphism follows from (4) and the suspension invariance of Borel co-
homology (Proposition 2.2). The notation [s] indicates a grading shift by s, so that the
element 1 ∈ F2[q, v, v

−1]/(q3) ∼= v−1R is moved to degree s.

Equation (13) implies that there are nonzero elements in H̃∗
G(X;F2) in some degrees

congruent to s, s + 1 and s + 2 (mod4), such that these elements do not get killed by
inverting v; that is, for any l ≥ 0, multiplying them by vl does not give zero.

Thus, to the space X we can associate the following three quantities:

a(X) = min{r ≡ s (mod 4) | ∃ x ∈ H̃r
G(X;F2), vlx 6= 0 for all l ≥ 0},

b(X) = min{r ≡ s+ 1 (mod 4) | ∃ x ∈ H̃r
G(X;F2), vlx 6= 0 for all l ≥ 0} − 1,

c(X) = min{r ≡ s+ 2 (mod 4) | ∃ x ∈ H̃r
G(X;F2), vlx 6= 0 for all l ≥ 0} − 2.

Concretely, the Borel cohomology of X looks like the Borel cohomology of S0 in high
enough degrees (after a grading shift by s). Indeed, forgetting the action of q for the

moment, we see that as an F2[v]-module, H̃∗
G(X;F2) consists of some F2[v]-torsion part and

three summands isomorphic to F2[v], supported in degrees congruent to s, s+ 1 and s+ 2

modulo 4. Since X is a finite CW complex, we have that H̃∗
G(X;F2) is finitely generated

as an F2[v]-module, so its F2[v]-torsion part is bounded above in grading. The quantities
a(X), b(X) + 1 and c(X) + 2 describe the grading of 1 ∈ F2[v] in each of the F2[v]-free
summands.

It is clear from the construction that

(14) a(X) ≡ b(X) ≡ c(X) ≡ s (mod 4).

and that a(X), b(X), c(X) ≥ 0.
To explore the properties of a, b, c further, it is helpful to introduce an “infinity” version

of Borel cohomology:
∞H̃∗

G(X;F2) = image
(
H̃∗

G(X;F2) −→ v−1H̃∗
G(X;F2)

)
.
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Observe that ∞H̃∗
G(X;F2) can be identified with the quotient of H̃∗

G(X;F2) by the kernel

of vl for l ≫ 0. This quotient R-module is the F2[v]-free part of H̃∗
G(X;F2), consisting of

the three summands mentioned above.
Note also that ∞H̃∗

G(X;F2) is a graded R-submodule of v−1H̃∗
G(X;F2) ∼= (v−1R)[s] sup-

ported in non-negative degrees. Let n be a negative number congruent to s modulo 4. The
submodule of (v−1R)[s] consisting of all elements in grading ≥ n can be identified with

R[n], so that ∞H̃∗+n
G (X;F2) becomes a graded ideal of the ring R. Moreover, we must have

v−1
(∞

H̃∗+n
G (X;F2)

)
= v−1R.

The following lemma describes all the possibilities for the ideal ∞H̃∗+n
G (X;F2):

Lemma 2.8. Let J be a graded ideal of R = F2[q, v]/(q
3) such that v−1J = v−1R. Then

J = (vi, qvj , q2vk),

for some i ≥ j ≥ k ≥ 0.

Proof. Let us ignore the action of q for the moment. Thus, we view R as a graded F2[v]-
module and J as a graded submodule of R. We have a decomposition J = J0 ⊕ J1 ⊕ J2,
where Js denotes the part of J supported in degrees ≡ s (mod 4). Then J0 is a graded
submodule of F2[v], and it is nontrivial because v−1J = v−1R implies v−1J0 = F2[v, v

−1].
Therefore, we must have J0 = (vi) for some i ≥ 0. Similarly, we see that J1 = (qvj) and
J2 = (q2vk) for some j, k ≥ 0.

We now consider the action of q. Since J must be invariant under this action and
vi ∈ J0 ⊂ J , we deduce that qvi ∈ J1, so i ≥ j. Similarly, we get j ≥ k. �

If ∞H̃∗+n
G (X;F2) = (vi, qvj , q2vk), we see that

a(X) = 4i+ n, b(X) = 4j + n, c(X) = 4k + n.

It follows from Lemma 2.8 that:

(15) a(X) ≥ b(X) ≥ c(X).

Observe that if X is a space of type SWF at level s, then the suspensions ΣR̃X and ΣHX
are of type SWF at levels s+ 1 and s, respectively.

Lemma 2.9. Let X be a space of type SWF, and V a representation of G of the form
R̃n ⊕Hp, for some n, p ≥ 0. Then:

a(ΣV X) = a(X) + dimV, b(ΣV X) = b(X) + dimV, c(ΣV X) = c(X) + dimV.

Proof. This follows immediately from Proposition 2.2. �

Finally, let us note that we can alternatively describe a(X), b(X), c(X) in terms of Borel

homology. If x is a nonzero element of H̃r
G(X;F2), we can complete x to a basis of Borel

cohomology in degree r and construct a dual element x∗ in Borel homology. The condition
vlx 6= 0 is equivalent to 0 6= x∗ ∈ image(vl). Therefore, if we let

(16) ∞H̃G
∗ (X;F2) :=

⋂

l≥0

image
(
vl : H̃G

∗+4l(X;F2) −→ H̃G
∗ (X;F2)

)
,
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we obtain:

a(X) = min{r ≡ s (mod 4) | ∃ x, 0 6= x ∈ ∞H̃
G
r (X;F2)},(17)

b(X) = min{r ≡ s+ 1 (mod 4) | ∃ x, 0 6= x ∈ ∞H̃
G
r (X;F2)} − 1,(18)

c(X) = min{r ≡ s+ 2 (mod 4) | ∃ x, 0 6= x ∈ ∞H̃
G
r (X;F2)} − 2.(19)

2.4. Examples. The simplest example of a space of type SWF is S0, for which we have

a(S0) = b(S0) = c(S0) = 0.

To obtain more interesting examples, suppose that G acts freely on a finite G-CW-
complex Z, and let Q = Z/G be the respective quotient. Let

Z̃ =
(
[0, 1] × Z

)
/(0, z) ∼ (0, z′) and (1, z) ∼ (1, z′) for all z, z′ ∈ Z

denote the unreduced suspension of Z, where G acts trivially on the [0, 1] factor. We view

Z̃ as a pointed G-space, with one of the two cone points being the basepoint. Clearly Z̃ is

of type SWF, with (Z̃)S
1

= S0. Note that the cone of the inclusion of (Z̃)S
1

into Z̃ is the

reduced suspension ΣRZ+. Information about the Borel cohomology of Z̃ can be extracted
from the long exact sequence:

. . . −→ H̃∗
G(Z̃;F2) −→ H̃∗

G(S
0;F2) −→ H̃∗+1

G (ΣRZ+;F2) −→ . . .

Since G acts freely on Z, we have H̃∗+1
G (ΣRZ+;F2) ∼= H̃∗(Z+) ∼= H∗(Q), so the above

sequence can be written

(20) . . . −→ H̃∗
G(Z̃;F2) −→ H∗(BG;F2)

κ∗

−−→ H∗(Q;F2) −→ . . .

The map κ∗ is induced from the map κ : Q → BG that classifies the G-bundle Z over Q.
The image of κ∗ produces the G-characteristic classes of that bundle.

Example 2.10. Let Z = G, acting on itself via left multiplication, so that the quotient Q
is a single point. As a topological space, G̃ is the suspension of two disjoint circles. In the
exact sequence (20), the map κ∗ is an isomorphism in degree 0. We deduce that H̃∗

G(G̃;F2)
is isomorphic to the submodule of H∗(BG;F2) ∼= F2[q, v]/(q

3) consisting of the elements in
degrees ≥ 1. Therefore,

a(G̃) = 4, b(G̃) = c(G̃) = 0.

Example 2.11. More generally, for n ≥ 1, let

Zn =
(
S(Cn)× {0}

)
∪
(
{0} × S(jCn)

)
⊂ Cn ⊕ jCn ∼= Hn.

This is a G-invariant subset of Hn, with quotient Qn = CPn−1. (In particular, Z1 = G
is the previous example.) The bundle Zn → CPn−1 can be viewed as induced from the
S1-bundle S(Cn) → CPn−1 via the monomorphism S1 → G. Thus, the classifying map
κ : CPn−1 → BG factors as

CPn−1 −֒→ CP∞ ∼= BS1 η
−→ BG.

We can figure out the map induced by η on cohomology by noticing that there is a fiber
bundle

S2 −→ CP∞ −→ HP∞
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which double covers the bundle (3). Using the functorial properties of the Leray-Serre
spectral sequences, we see that η∗ : H∗(BG;F2) → H∗(CP∞;F2) is an isomorphism in
degrees divisible by 4, and zero otherwise. It follows that the map

κ∗ : H
∗(BG;F2) → H∗(CPn−1;F2)

is an epimorphism in degrees divisible by 4, and zero otherwise. Using this information, we
deduce from the exact sequence (20) that:

(21) a(Z̃n) = 4⌈n/2⌉, b(Z̃n) = c(Z̃n) = 0.

Example 2.12. For n ≥ 1, let

Z ′
n = S(Cn)× S(jCn) ⊂ Cn ⊕ jCn ∼= Hn.

This is a G-invariant subset of Hn. We shall see in the next subsection (Example 2.14) that:

(22) a(Z̃ ′
n) = b(Z̃ ′

n) = 4n, c(Z̃ ′
n) = 4n− 4⌈n/2⌉.

2.5. Other properties. Let us understand the behavior of the invariants a, b, c under
equivariant Spanier-Whitehead duality:

Proposition 2.13. Suppose X and X ′ are spaces of type SWF that are V -dual, for some
G-representation V ∼= R̃n ⊕Hp. Then:

(23) a(X ′) = dimV − c(X), b(X ′) = dimV − b(X), c(X ′) = dimV − a(X).

Proof. Let m = dimV = n + 4p, and assume that X is of type SWF at level s. By the

definition of V -duality, the fixed point sets XS1 ∼= (R̃s)+ and (X ′)S
1

are non-equivariantly
n-dual. Therefore, X ′ must be of type SWF at level n− s.

Using the isomorphism (7) and the exact sequence (8), we see that the Borel homology
of X is related to the Borel cohomology of X ′ by a long exact sequence of R-modules:

(24) . . . −→ H̃m−∗
G (X ′;F2) −→ tH̃G

∗ (X;F2) −→ H̃G
∗−2(X;F2) −→ . . .

The Tate homology of X can be computed using the properties mentioned at the end of

Subsection 2.2. Since X−XS1

has a free G-action, Equations (10) and (12) combined with
excision and suspension invariance imply that

tH̃G
∗ (X;F2) ∼= tH̃G

∗ (XS1

;F2) ∼= tH̃G
∗−s(S

0;F2) ∼= (v−1R)[s+2].

Let us study the exact sequence (24) more closely. Since every element of v−1R is in

the image of vl for all l, it follows that the map from tH̃G
∗ (X;F2) to H̃G

∗−2(X;F2) factors

through the submodule ∞H̃G
∗−2(X;F2). Similarly, since vl is an isomorphism on v−1R for

all l, the map from H̃m−∗
G (X ′;F2) to tH̃G

∗ (X;F2) must takes the kernel of vl to zero, i.e., it

must factor through the quotient module ∞H̃m−∗
G (X ′;F2). (Recall that

∞H̃∗
G was identified

with the quotient of H∗
G by vl for l ≫ 0.) Therefore, we can write a trimmed version

of the exact sequence (24) that involves only the “infinity” parts of Borel homology and
cohomology. After shifting degrees by s+ 2, it reads:

(25) . . . −→ ∞H̃
m−s−2−∗

G (X ′;F2) −→ (v−1R)∗ −→
∞H̃

G
∗+s(X;F2) −→ . . .

The exactness of (25) follows from the exactness of (24).
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Recall that the infinity parts of Borel homology and cohomology are determined by the
invariants a, b and c. Precisely, we have:

∞H̃
m−s−2−r
G (X ′;F2) =





F2 if r = m− a(X ′)− s− 4j − 2, j ≥ 0,

F2 if r = m− b(X ′)− s− 4j − 3, j ≥ 0,

F2 if r = m− c(X ′)− s− 4j − 4, j ≥ 0,

0 otherwise,

and

∞H̃
G
r+s(X;F2) =





F2 if r = a(X)− s+ 4j, j ≥ 0,

F2 if r = b(X)− s+ 4j + 1, j ≥ 0,

F2 if r = c(X) − s+ 4j + 2, j ≥ 0,

0 otherwise.

Note that a(X), b(X) and c(X) are all congruent to smodulo 4, and similarly a(X ′), b(X ′)
and c(X ′) are all congruent to n− s (hence to m− s = n+ 4p − s) modulo 4. Taking into
account the inequalities (15) for the invariants ofX andX ′, an analysis of the exact sequence
(25) shows that we must have the desired constraints (23). �

Example 2.14. Let Zn be the space considered in Example 2.11. Its unreduced suspension
Z̃n can be identified with the subset

(
Cn × {0}

)
∪
(
{0} × jCn

)
∪ {∞} ⊂ (Cn ⊕ jCn)+ ∼= (Hn)+

The quotient (Hn)+/Z̃n admits a G-equivariant deformation retraction onto the unreduced

suspension Z̃ ′
n of the space Z ′

n = S(Cn)× S(jCn) from Example 2.12. It follows from [35,

Theorem 4.1] that Z̃ ′
n is Hn-dual to Z̃n. The calculations in (21) together with Proposi-

tion 2.13 imply the results for a(Z̃ ′
n), b(Z̃

′
n), c(Z̃

′
n) stated in (22).

Another useful result is the behavior of a(X), b(X), c(X) under a certain kind of equi-
variant maps:

Proposition 2.15. Suppose X and X ′ are spaces of type SWF at the same level m, and
suppose that f : X → X ′ is a G-equivariant map whose S1-fixed point set map is a G-
homotopy equivalence. Then:

a(X) ≤ a(X ′), b(X) ≤ b(X ′), c(X) ≤ c(X ′).

Proof. Since the S1-fixed point set map associated to f is a G-homotopy equivalence, the
functoriality of the localization maps in (13) implies that f induces an isomorphism on
Borel cohomology after inverting v. Given the structure of Borel cohomology for a space of
type SWF, this means that f induces an isomorphism on Borel cohomology in large enough
degrees. By taking duals, we see that the map induced by f on Borel homology:

f∗ : H̃
G
∗ (X;F2) → H̃G

∗ (X ′;F2)

must also be an isomorphism in large enough degrees. Since f∗ commutes with the action
of v, it must map the submodule ∞H̃G

∗ (X;F2) to
∞H̃G

∗ (X ′;F2).

Suppose we have a nonzero element x′ ∈ ∞H̃
G
r (X

′;F2) in some grading r. For any l we

can find some y′ ∈ ∞H̃
G
r+4l(X

′;F2) with x′ = vly′. If we choose l large enough, y′ must

be of the form f∗(y) for some y ∈ ∞H̃
G
r+4l(X;F2). Let x = vly ∈ H̃G

r (X;F2). Since y is

in ∞H̃
G
∗ (X;F2), so is x; moreover, we have f∗(x) = x′, so x is nonzero. Thus, we found a
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nonzero element in ∞H̃G
r (X;F2). Using the definitions of a, b, c in terms of Borel homology,

the desired inequalities follow. �

2.6. A fourth quantity. Let us describe another numerical invariant, dp(X), that can be
associated to a space X of type SWF. The quantity dp(X) depends also on the choice of
p ∈ Z, which can be either zero or a prime. Let F be a field of characteristic p. Instead
of the Pin(2)-equivariant cohomology of X, we use the S1-equivariant cohomology with
coefficients in F:

H̃∗
S1(X;F) = H̃∗(ES1

+ ∧X;F),

which is a module over H∗
S1(pt;F) = F[U ], with U in degree 2. Since S1 ⊂ G acts trivially

on R̃, suspension by R preserves S1-equivariant cohomology, up to a degree shift. The same
is true for suspension by the complex representation H; see Remark 2.3. This is why in the
S1-equivariant case we can let the field F be arbitrary.

Localization with respect to S1 shows that, if X is of type SWF at level s,

U−1H̃∗
S1(X;F) ∼= U−1H̃∗

S1((R̃
s)+;F) ∼= F[U,U−1][s]

We define
∞H̃∗

S1(X;F) = image
(
H̃∗

S1(X;F) −→ U−1H̃∗
S1(X;F)

)
.

and let dp(X) be the minimal degree of a non-zero element in ∞H̃∗
S1(X;F). The same

methods as in the G-equivariant case can be used to prove the analogues of Lemma 2.9,
Proposition 2.13 and Proposition 2.15 for dp instead of a, b, c. In particular, if X and X ′

are V -dual, we have
dp(X

′) = dimV − dp(X).

The S1-equivariant and G-equivariant cohomologies of a space are related to each other
by equivariant transfer; see for example [5, Ch. III] or [9, Proposition 9.13]. Precisely,

the element j ∈ G induces an involution on S1-equivariant cohomology. Let
(
H∗

S1(X;F)
)j

denote the fixed point set of this involution. If p 6= 2, we have a transfer isomorphism:

H∗
G(X;F) ∼=

(
H∗

S1(X;F)
)j
.

However, equivariant transfer fails over F2, and the invariants a, b, c are defined in terms of
Borel cohomology with coefficients in F2. Because of this, there does not seem to be any
direct relation between dp and the invariants a, b, c.

Example 2.16. Consider the space Zn from Example 2.11, with unreduced suspension Z̃n.
The same methods used to compute a(Zn), b(Zn) and c(Zn) can be applied to show that

dp(Z̃n) = 2n,

for any p. In particular, Z̃0 and Z̃1 have the same values of a, b and c, but different values
for dp.

3. Pin(2)-equivariant Seiberg-Witten Floer homology

In this section we review the construction of the Seiberg-Witten Floer spectrum from
[36], and explain the changes needed to take into account the full Pin(2)-symmetry of the
equations. Our focus is not the spectrum itself, but rather its equivariant homology. This
homology can be defined without reference to spectra and, to keep the exposition simple,
this is what we do. For completeness, we also discuss the construction of the Floer spectrum,
but only briefly—in Subsection 3.4.
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Here is a rough sketch of what follows: Given a rational homology 3-sphere Y , we con-
sider a finite dimensional approximation of the Seiberg-Witten equations on Y . (This is
inspired by a similar approximation used by Bauer and Furuta for the Seiberg-Witten equa-
tions in four dimensions [4, 24].) In three dimensions, the approximation takes the form of
a gradient flow, to which one can associate a based Pin(2)-space called the (equivariant)
Conley index. The Pin(2)-homotopy type of the Conley index is invariant under deforma-
tions. As we consider larger finite-dimensional approximations, the Conley index changes
by suspension. We take its suitably normalized Borel homology to be our definition of the
Pin(2)-equivariant Seiberg-Witten Floer homology. We show that the Conley index is a
space of type SWF, so (using the methods from Section 2) we can extract from it three
quantities α, β, and γ. We then show that these invariants satisfy the properties advertised
in the introduction, and compute them in a few examples.

3.1. The Seiberg-Witten equations. Let Y be a rational homology three-sphere, g a
metric on Y , s a spin structure on Y , and S the spinor bundle for s. Let ρ : TY → End(S)
denote the Clifford multiplication, and /∂ : Γ(S) → Γ(S) the Dirac operator. Consider the
configuration space:

C(Y, s) = iΩ1(Y )⊕ Γ(S).

The gauge group G = C∞(Y, S1) acts on C(Y, s) by u · (a, φ) = (a − u−1du, u · φ). We
define the normalized gauge group G0 to consist of those u = eiξ ∈ G such that

∫
Y ξ = 0.

We have a global Coulomb slice:

V = i ker d∗ ⊕ Γ(S) ⊂ C(Y, s).

Given (a, φ) ∈ C(Y, s), there is a unique element of V which is obtained from (a, φ) by a
normalized gauge transformation; we call this element the Coulomb projection of (a, φ).

In addition to the gauge symmetry, we have an action of the group G = Pin(2) = S1∪S1j
on C(Y, s). Indeed, since the spin bundle S has structure group SU(2) = S(H), there is a
natural action of G on Γ(S) by left multiplication.1 On forms a ∈ iΩ1(Y ), we let S1 ⊂ G
act trivially, and j ∈ G act by multiplication by −1. Note that the action of S1 ⊂ G on
C(Y, s) coincides with that of the constant gauge transformations. Observe also that the
Coulomb slice V is preserved by the G-action.

Next, consider the Chern-Simons-Dirac functional CSD : C(Y, s) → R, given by:

CSD(a, φ) =
1

2
(

∫

Y
〈φ, /∂φ+ ρ(a)φ〉dvol −

∫

Y
a ∧ da).

Its critical points are the solutions to the Seiberg-Witten equations:

∗da+ τ(φ, φ) = 0, /∂φ+ ρ(a)φ = 0,

where τ(φ, φ) = ρ−1(φ⊗ φ∗)0 ∈ Ω1(Y ; iR). One can readily check that the CSD functional
is gauge invariant and G-invariant.

Consider the restriction of CSD to the global Coulomb slice V . By measuring the length
of the projections of tangent vectors to local Coulomb slices, we obtain a Riemannian metric
g̃ on V such that the trajectories of the gradient flow of CSD |V are the Coulomb projections

1If we identify the spinor bundle with C2, then the j action takes (v, w) to (−w̄,−v̄). We further identify
C2 with the quaternions by (v, w) → v + wj, and then j acts by left multiplication. Our conventions are
different from [24], where G acted on the right.
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of the original gradient flow trajectories in C(Y, s). In V with the metric g̃, we can write
the flow trajectories of ∇(CSD |V ) as

∂

∂t
x(t) = −(ℓ+ c)(x(t)),

for

ℓ(a, φ) = (∗da, /∂φ)

c(a, φ) = (π ◦ τ(φ, φ), ρ(a)φ − iξ(φ)φ),

where π : Ω1(Y ; iR) → i ker d∗ denotes the orthogonal projection, and ξ(φ) ∈ Ω0(Y ) is
determined by dξ(φ) = i(1− π) ◦ τ(φ, φ) and

∫
Y ξ(φ) = 0.

For any integer k ≥ 0, let V(k) denote the completion of V with respect to the L2
k Sobolev

norm. The gradient of CSD on V extends to a map

ℓ+ c : V(k+1) → V(k),

such that ℓ is a linear Fredholm operator, and c is compact. The corresponding flow lines
are called Seiberg-Witten trajectories (in Coulomb gauge). A Seiberg-Witten trajectory
x = (a, φ) : R → V is said to be of finite type if CSD(x(t)) and ‖φ(t)‖C0 are bounded in t.

Note that both ℓ and c are G-equivariant maps.

3.2. Finite-dimensional approximation and the Conley index. Let V ν
τ be the finite-

dimensional subspace of V spanned by the eigenvectors of ℓ with eigenvalues in the interval
(τ, ν]. The orthogonal projection from V to V ν

τ will be denoted p̃ντ . We want to modify it to
make it smooth in ν and τ . To do this, choose a smooth, non-negative function χ : R → R

that is non-zero exactly on (0, 1), and such that
∫
R
χ(θ)dθ = 1. Then set

pντ =

∫ 1

0
χ(θ)p̃ν−θ

τ+θdθ.

Consider the restriction of CSD to V ν
τ . The gradient flow equation becomes:

(ℓ+ pντc)(x(t)) = −
∂

∂t
x(t).

We refer to its solutions as approximate Seiberg-Witten trajectories.
Fix a natural number k ≥ 4. There exists a constant R > 0, such that all Seiberg-Witten

trajectories x = (a, φ) : R → V of finite type are contained in B(R), the ball of radius R in
V(k+1). The following is a corresponding compactness result for approximate Seiberg-Witten
trajectories:

Proposition 3.1 (Proposition 3 in [36]). For any ν and −τ sufficiently large (compared to

R), if x : R → V ν
τ is a trajectory of the gradient flow ℓ+ pντc, and x(t) is in B(2R) for all

t, then in fact x(t) is contained in B(R).

Pick a smooth, G-equivariant function u : V ν
τ → R that vanishes outside B(3R) and is

the identity on B(2R). Then u(ℓ+ pντc) is a compactly supported vector field on V ν
τ , which

generates a global flow on V ν
τ :

ϕν
τ = {(ϕν

τ )t : V
ν
τ → V ν

τ }t∈R.

Let us recall a few basic notions of Conley index theory, following [7]. If we have a one-
parameter subgroup ϕ = {ϕt} of diffeomorphisms of a manifold M , and a compact subset
A ⊆ X, define

Inv(A,φ) = {x ∈ A | ϕt(x) ∈ A for all t ∈ R}.
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We say that a compact subset S ⊆ M is an isolated invariant set if it has an isolating
neighborhood A, that is, a compact set A ⊆ M such that S = Inv(A,ϕ) ⊆ int(A).

Definition 3.2. Let S be an isolated invariant set. An index pair (N,L) for S is a pair of
compact sets L ⊆ N ⊆ M such that:

(i) Inv(N − L,ϕ) = S ⊂ int (N − L),
(ii) For all x ∈ N , if there exists t > 0 such that ϕt(x) is not in N , there exists 0 ≤ τ < t

with ϕτ (x) ∈ L (L is an exit set for N),
(iii) Given x ∈ L, t > 0, if ϕs(x) ∈ N for all 0 ≤ s ≤ t, then ϕs(x) is in L for 0 ≤ s ≤ t

(L is positively invariant in N).

It was proved by Conley [7] that any isolated invariant set S admits an index pair. The
Conley index for an isolated invariant set S is defined to be the pointed space

I(S) := (N/L, [L]).

The pointed homotopy type of I(S) is an invariant of the triple (X,ϕt, S). Moroever, the
Conley index is invariant under continuous deformations of the flow, as long as S remains
isolated in a suitable sense.

Floer [15] and Pruszko [49] developed an equivariant refinement of Conley index theory.
If a Lie group G acts smoothly on M preserving the flow ϕ and the set S, there exists a
G-equivariant index pair (N,L) for S, and the Conley index IG(S) = (N/L, [L]) is well-
defined up to G-equivariant homotopy equivalence. Furthermore, it was shown by G

‘
eba

[27, Proposition 5.6] that one can choose N and L so that IG(S) is a finite G-CW complex.
Returning to the situation at hand, consider the flow ϕν

τ on V ν
τ . Let Sν

τ denote the set

of points that lie on the trajectories of ϕν
τ inside B(2R). Recall from Proposition 3.1 that

these trajectories stay inside B(R). Therefore, Sν
τ is an isolated invariant set, and we can

associate to it a G-equivariant Conley index:

Iντ = IG(S
ν
τ ).

3.3. Pin(2)-equivariant Seiberg-Witten Floer homology. Let us understand to what
extent the G-homotopy type of the Conley index Iντ depends on the choices made in its
construction. From general Conley index theory we know that it is a deformation invariant
as long as we do not change the ambient space V ν

τ . Therefore, the only choices we need to
consider are ν ≫ 0, τ ≪ 0, and the Riemannian metric g.

It is shown in [36, Section 7] that when we increase the upper cut-off ν, the Conley index
Iντ is unchanged (up to equivalence). On the other hand, when we decrease the lower cut-off
from τ to τ ′ < τ , the Conley index changes by suspension by the G-representation V τ

τ ′ . We
know from Proposition 2.2 that Borel homology is invariant under suspension, up to a shift
in grading. It follows that the normalized Borel homology

(26) SWFHG
∗ (Y, s, g) := H̃G

∗+dimV 0
τ

(Iντ ;F2)

is an invariant of the triple (Y, s, g).
The dependence on g was also studied in [36]. Suppose we deform the metric in a one-

parameter family {gt}t∈[0,1], and we choose ν ≫ 0 and τ ≪ 0 such that they are not

eigenvalues of ℓ = (∗d, /∂) at any time during the deformation. (Such choices exist if the
deformation is small.) Then the dimension of V ν

τ does not change, and the properties of
the Conley index show that it is invariant under this deformation, up to G-equivalence.
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Nevertheless, if we have a deformation of g as above, the homology SWFHG
∗ (Y, s, g) from

(26) may change by a shift in degree. This is because the dimension of V 0
τ changes by

the spectral flow of the Dirac operator /∂. (By contrast, ∗d has trivial spectral flow.) The
spectral flow of /∂ is controlled by a quantity

n(Y, s, g) ∈
1

8
Z,

which can be defined as follows. (Compare [36, Section 6].) Pick a compact, spin 4-manifold
(W, t) with boundary (Y, s). Equip W with a Riemannian metric such that a neighborhood
of the boundary is isometric to [0, 1]× Y . Let /D be the Dirac operator on W with spectral
boundary conditions as in [3], and set

(27) n(Y, s, g) = indC( /D) +
σ(W )

8
.

It can be shown that n(Y, s, g) is independent of the choice of (W, t), and that during a
deformation {gt}t∈[0,1] of the metric on Y , the spectral flow of /∂ is given by the formula

S.F.(/∂) = n(Y, s, g0)− n(Y, s, g1).

With this in mind, we define

(28) SWFHG
∗ (Y, s) := SWFHG

∗+2n(Y,s,g) = H̃G
∗+dimV 0

τ
+2n(Y,s,g)(I

ν
τ ;F2)

to be the G-equivariant Seiberg-Witten Floer homology of (Y, s). The same arguments as in
[36, proof of Theorem 1] imply the following:

Proposition 3.3. Let Y be a rational homology 3-sphere and s a spin structure on Y . The
isomorphism class of SWFHG

∗ (Y, s), as a module over R ∼= F2[q, v]/(q
3), is an invariant of

the pair (Y, s).

Remark 3.4. The homology SWFHG
∗ is the G-equivariant analogue of the version }HM of

monopole Floer homology, as defined by Kronheimer and Mrowka [32]. Instead of the Borel
homology of the Conley index Iντ , one could take its (suitably normalized) co-Borel and

Tate homologies, and obtain the G-equivariant analogues of ĤM and HM .
Since our spectrum-based construction is different from the one in [32], we have chosen

the notation SWFH rather than }HM .

3.4. A Pin(2)-equivariant Seiberg-Witten Floer spectrum. As an aside, in this sub-
section we explain how the Conley indices Iντ fit naturally into a (metric-dependent) sus-
pension spectrum SWF(Y, s, g).

Following [35, Ch. I, §2], we define a G-universe U to be a countably infinite dimensional
representation of G with a G-invariant inner product, such that:

• U contains the trivial representation R, and
• U contains infinitely many copies of each of its finite dimensional subrepresentations.

Let U be a G-universe. A G-prespectrum X indexed on U consists of pointed G-spaces
X(U) for each finite dimensional subrepresentation U ⊂ U , together with based maps

σU ′−U : ΣU ′−UX(U) → X(U ′),

for all U ⊆ U ′, where U ′ −U denotes the orthogonal complement of U in U ′. The maps are
required to satisfy an appropriate transitivity condition.
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A G-prespectrum X is called a G-spectrum if the adjoint maps X(U) → ΩU ′−UX(U ′) are
homeomorphisms. It is shown in [35, Ch. I] that any G-prespectrum can be turned into a
G-spectrum by a “spectrification” functor.

Recall from the previous subsections that as we change the value of ν ≫ 0, the Conley in-
dices Iντ change by G-equivalences, whereas if we change τ ≪ 0, they change by suspensions.
Let us fix ν and τ and consider the universe

U = V 0
−∞ ⊕ R∞

consisting of the eigenspaces of ℓ with non-positive eigenvalues (with the L2 inner product),
together with infinitely many copies of the trivial representation R. Note that V 0

∞ is the

direct sum of infinitely many copies of the representations R, R̃ and H of G = Pin(2).
Define a G-prespectrum X = swf(Y, s, g, ν, τ) as the formal desuspension of Iντ by V 0

τ ,
that is:

X(U) =

{
ΣU−V 0

τ Iντ if V 0
τ ⊆ U,

∗ otherwise,

with the maps σU ′−U being the obvious identifications when V 0
τ ⊆ U ⊆ U ′. (Compare [35,

Definition 4.1].)
We denote by SWF(Y, s, g, ν, τ) the spectrification of swf(Y, s, g, ν, τ). The arguments in

[36, proof of Theorem 1] can be used to prove:

Proposition 3.5. The G-spectrum SWF(Y, s, g) := SWF(Y, s, g, ν, τ) is an invariant of the
triple (Y, s, g), up to stable G-homotopy equivalence (that is, equivalence in the homotopy
category of spectra indexed by U).

We can describe the metric-dependent Floer homology SWFHG
∗ (Y, s, g) from (26) as the

G-equivariant homology of the spectrum SWF(Y, s, g), in the sense of [34, 35]. From (28)
we deduce that:

SWFHG
∗ (Y, s) = H̃G

∗+2n(Y,s,g)(SWF(Y, s, g)).

As we vary the metric g, the universe U changes, and it is not possible to identify these
different universes in a natural way. Nevertheless, by analogy with the construction in [36,
Section 6], one could define a metric-independent invariant SWF(Y, s) that lives in an G-
equivariant analogue of the classical Spanier-Whitehead category. Thus, one can see that
SWFHG

∗ (Y, s) is well-defined as an R-module, up to canonical isomorphism. (I would like
to thank Mikio Furuta for this observation.)

3.5. Numerical invariants. Let us return to the G-equivariant Seiberg-Witten Floer ho-
mology, defined in (28) as the shifted Borel homology of the Conley index Iντ . To be able
to apply the constructions from Section 2.3, we need:

Lemma 3.6. For all ν,−τ ≫ 0 we can find an index pair (N,L) for Sν
τ such that the

Conley index Iντ = N/L is a space of type SWF at some level

s ≡ dimV 0
τ (mod 4).

Proof. To understand the action of G on Iντ , we use the arguments in [36, Section 8].
Precisely, note that the Seiberg-Witten equations have a unique reducible solution (a, φ) =
(0, 0). We can perturb the CSD functional by a one-form ω ∈ iΩ1(Y ) to get

CSDω(a, φ) = CSD(a, φ) +
1

2

∫

Y
a ∧ dω.
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There is still one reducible solution, (ω, 0), and CSDω evaluates to zero on this solution.
We construct a new isolated invariant set T = T ν

τ ⊂ V ν
τ using the flow of CSDω instead of

the flow of CSD . Let us interpolate linearly between 0 and ω, and denote by {ℓt}t∈[0,1] the
linearizations of the Seiberg-Witten maps on V during this interpolation. If the perturbation
ω is small, we can choose ν and τ such that they are not eigenvalues of any ℓt for t ∈ [0, 1].
If this is the case, the original Conley index Iντ = I(Sν

τ ) is G-homotopy equivalent to the
new Conley index I(T ν

τ ).
For a generic choice of ω, we can arrange so that the new reducible solution, (ω, 0), is

a nondegenerate critical point of CSDω|V , and such there that are no irreducible critical
points x with CSDω(x) ∈ (0, ǫ), for some fixed ǫ > 0. In this situation, in addition to
T = T ν

τ , we can identify four other isolated invariant sets in the gradient flow of CSDω|V ν

τ

:

• T irr
>0 = the set of (irreducible) critical points x with CSDω(x) > 0, together with all

points on the flow trajectories between the critical points of this type;
• T irr

≤0 = same as above, but with CSDω(x) ≤ 0 and requiring x to be irreducible;

• T≤0 = same as above, with CSDω(x) ≤ 0 but allowing x to be reducible or irre-
ducible;

• Θ = {(ω, 0)}, the reducible critical point by itself.

The Conley indices associated to these sets are related to each other by attractor-repeller
coexact sequences:

(29) I(T≤0) −→ I(T ) −→ I(T irr
>0) −→ ΣI(T≤0) −→ . . .

and

(30) I(T irr
≤0) −→ I(T≤0) −→ I(Θ) −→ ΣI(T irr

≤0) −→ . . .

The action of G is free in neighborhoods of T irr
>0 and T irr

≤0, so it is also free on the respective

Conley indices (away from the basepoints). Moroever, since the reducible is nondegenerate,
we have

I(Θ) ∼= (V 0
τ )

+ ∼= (R̃s ⊕Hp)+

for some s, p ≥ 0. From the coexact sequences we deduce that the S1-fixed point set of
I(T ) is G-equivalent to the S1-fixed point set of I(Θ), which is the sphere (R̃s)+. Also, the

action of G must be free on the complement of I(T )S
1

.
This proves that Iντ = I(Sν

τ ) ∼ I(T ν
τ ) is of type SWF for some particular ν and τ . In

turn, it implies the same thing for all ν ′ > ν and τ ′ < τ , because the corresponding Conley
indices can only change by suspensions by R̃ or H (up to G-homotopy equivalence), and the
property of being of type SWF is preserved by such suspensions.

Since V 0
τ
∼= R̃s ⊕ Hp and dimH = 4, we also know that the level s of Iντ is congruent to

dimV 0
τ modulo 4. �

Recall from Section 2.3 that to any space X of type SWF at level s one can associate
three quantities a(X), b(X), c(X) ∈ Z, all congruent to s modulo 4.

For ν and −τ sufficiently large, let us define:

α(Y, s) =
(
a(Iντ )− dimV 0

τ

)
/2− n(Y, s, g),(31)

β(Y, s) =
(
b(Iντ )− dimV 0

τ

)
/2− n(Y, s, g),(32)

γ(Y, s) =
(
c(Iντ )− dimV 0

τ

)
/2− n(Y, s, g).(33)
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Proposition 3.7. If Y is a rational homology three-sphere, and s is a spin structure on Y ,
then the quantities α(Y, s), β(Y, s), γ(Y, s) ∈ 1

8Z are invariants of the pair (Y, s). Moreover,
we have:

α(Y, s) ≡ β(Y, s) ≡ γ(Y, s) ≡ −µ(Y, s) (mod 2Z),

where µ(Y, s) is the generalized Rokhlin invariant.

Proof. By analogy with (16), set

∞SWFHG
∗ (Y, s) :=

⋂

l≥0

image
(
vl : SWFHG

∗+4l(Y, s) −→ SWFHG
∗ (Y, s)

)
.

Let s be the level of the Conley index Iντ for some cut-offs ν and τ . We know from
Lemma 3.6 that s is congruent mod 4 to the dimension of V 0

τ . Using the descriptions (17),
(18), (19) of a, b, c, and the description (28) of the G-equivariant Seiberg-Witten Floer
homology, we can write:

α(Y, s) = 1
2 min{r ≡ −2n(Y, s, g) (mod 4Z) | ∃ x, 0 6= x ∈ ∞SWFHG

r (Y, s)},

(34)

β(Y, s) = 1
2

(
min{r ≡ −2n(Y, s, g) + 1 (mod 4Z) | ∃ x, 0 6= x ∈ ∞SWFHG

∗ (Y, s)} − 1
)
,

(35)

γ(Y, s) = 1
2

(
min{r ≡ −2n(Y, s, g) + 2 (mod 4Z) | ∃ x, 0 6= x ∈ ∞SWFHG

∗ (Y, s)} − 2
)
.

(36)

Proposition 3.3 now implies that α, β and γ are invariants of (Y, s).
Recall that a(Iντ ), b(I

ν
τ ) and c(Iντ ) are all congruent mod 4 to the level s, and hence to

the dimension of V 0
τ . Looking at the definitions (31), (32), (33), we deduce that α, β and γ

are congruent to −n(Y, s, g) modulo 2Z. The quantity n(Y, s, g) was introduced in (27) as

n(Y, s, g) = indC( /D) +
σ(W )

8
.

Since the Dirac operator /D goes between quaternionic vector spaces, its complex index is
divisible by 2. It follows that α(Y, s), β(Y, s) and γ(Y, s) are congruent to σ(W )/8 modulo
2Z. The reduction of σ(W )/8 modulo 2Z is exactly the generalized Rokhlin invariant
µ(Y, s). �

Proposition 3.8. Let (Y, s) be an oriented rational homology three-sphere equipped with a
spin structure s. Let −Y denote Y with the opposite orientation. Then:

α(−Y, s) = −γ(Y, s), β(−Y, s) = −β(Y, s), γ(−Y, s) = −α(Y, s).

Proof. The Seiberg-Witten flow for −Y is the reverse of the Seiberg-Witten flow for Y .
Orientation reversal also reverses the signs of the eigenvalues of ℓ, so if we denote by V̄ the
Coulomb slice for −Y , then the finite dimensional approximation V ν

τ can be identified with
V̄ −τ
−ν . (Here, we pick ν and τ so that they are not eigenvalues of l.)

Cornea [8] proved that on a stably parallelized manifold (such as V ν
τ
∼= V̄ −τ

−ν ) the Conley
indices associated to a flow and its inverse are Spanier-Whitehead dual to each other. His
result can be extended to the G-equivariant setting. Precisely, one can adapt [8, proof of
Theorem 3.5] to show that we can find index pairs (N,L) and (N,L′) for Sν

τ under the flow
ϕν
τ and its reverse, such that N,L and L′ satisfy the hypotheses of Lemma 2.5, with N

being embedded in the representation V ν
τ . It follows that the corresponding Conley indices

are equivariantly (V ν
τ )-dual.
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The Atiyah-Patodi-Singer index theorem gives

n(Y, s, g) + n(−Y, s, g) = dimC(ker /∂).

Observe also that:
dimV 0

τ + dim V̄ 0
−ν + 2dimC(ker /∂) = dimV ν

τ .

The desired result now follows from the two equalities above, together with Proposition 2.13
and the formulas (31), (32), (33). �

3.6. Behavior under cobordisms. Let W be a compact four-manifold with boundary Y ,
such that b1(Y ) = 0. Suppose we have a spin structure t on W whose restriction to Y is s.
Following [36, Section 9] (as corrected by Khandhawit in [29]), we can do finite dimensional
approximation for the Seiberg-Witten equations on W with suitable boundary conditions.

We assume for simplicity that b1(W ) = 0. Pick a Riemannian metric g on W so that the
boundary has a neighborhood isometric to [0, 1]× Y . Let S+ and S− denote the two spinor
bundles on W , and Ω1

g(W ) denote the space of one-forms on W in double Coulomb gauge,
as in [29, Definition 1]. For a fixed cut-off ν ≫ 0, we can define a Seiberg-Witten map for
W :

S̃W
ν
: iΩ1

g(W )⊕ Γ(S+) −→ iΩ2
+(W )⊕ Γ(S−)⊕ V ν

−∞.

After doing finite dimensional approximation, we obtain from here a based map:

(37) Ψν,τ,U,U ′ : (U ′)+ −→ U+ ∧ Iντ ,

where U ′ ⊂ iΩ1
g(W )⊕ Γ(S+) and U ⊂ iΩ2

+(W )⊕ Γ(S−) are finite dimensional G-invariant
subspaces. (In fact, U ′ is determined by U , ν and τ ; we refer to [36, Section 9] for more
details.) As representations of G, we have

U ′ ∼= R̃m′

⊕Hp′ , U ∼= R̃m ⊕Hp,

where m′, p′,m, p ≥ 0 are related by the formulas:

m′ −m = dimR V 0
τ (R̃)− b+2 (W ),(38)

p′ − p = dimH V 0
τ (H) + indH( /D) =

1

4

(
dimR V 0

τ (H) + 2n(Y, s, g) − σ(W )/4
)
.(39)

Here, V 0
τ = V 0

τ (R̃)⊕V 0
τ (H) is the decomposition of V 0

τ into its one-form and spinorial parts.

The S1-fixed point set of the Seiberg-Witten map S̃W
ν
is a linear Fredholm map; see

[36, Proposition 5]. Starting from here one can identify the S1-fixed point set map of (37).
This is induced on the one-point compactifications by a linear, injective operator

(40) R̃m′

−→ R̃m ⊕ R̃s,

where s = dimR V 0
τ (R̃) is the level of Iντ as a space of type SWF. (See the proof of

Lemma 3.6.) From (38) we have m′−m = s− b+2 (W ), so the cokernel of the map (40) must
have dimension b+2 (W ).

The discussion in the previous subsections was phrased in terms of Y being a rational
homology 3-sphere. However, it applies equally well when Y is a disjoint unions of rational
homology spheres. (In [36], we worked in this greater generality.) The Conley index Iντ
coming from a disjoint union is the smash product of the Conley indices coming from each
component.

In particular, suppose we have a compact, spin cobordism (W, t) between rational homol-
ogy spheres Y0 and Y1, so that ∂W = (−Y0) ∪ Y1. Let V0, V̄0 and V1 denote the Coulomb
slices corresponding to Y0,−Y0 and Y1. To simplify notation, let us pick eigenvalue cut-offs
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ν and τ = −ν, so that (V0)
ν
−ν

∼= (V̄0)
ν
−ν . Let (I0)

ν
−ν , (Ī0)

ν
−ν and (I1)

ν
−ν denote the Conley

indices associated to the finite-dimensional approximations for the Seiberg-Witten maps on
Y0,−Y0 and Y1, respectively. The map (37) can be written as

(41) (U ′)+ −→ U+ ∧ (I1)
ν
τ ∧ (Ī0)

ν
−ν .

Recall from the proof of Proposition 3.8 that the Conley indices (I0)
ν
−ν and (Ī0)

ν
−ν are

(V0)
ν
−ν-dual to each other. Thus, we have a duality map

ε : (Ī0)
ν
−ν ∧ (I0)

ν
−ν → ((V0)

ν
−ν)

+.

Consider the smash product of the map (41) with the identity on (I0)
ν
−ν , and the smash

product of the identity on U+ ∧ (I1)
ν
−ν with the duality map ε. The composition of these

two maps takes the form:

(U ′)+ ∧ (I0)
ν
−ν −→ U+ ∧ (I1)

ν
−ν ∧ ((V0)

ν
−ν)

+.

After changing the vector spaces involved by isomorphisms, we can write this more simply
as a map between suspensions:

(42) f : Σm′R̃Σp′H(I0)
ν
−ν −→ Σm′′R̃Σp′′H(I1)

ν
−ν .

Using (38), (39), we can figure out the differences in suspension indices. Precisely, we
have

m′ −m′′ = dimR

(
(V1)

0
−ν(R̃)

)
− dimR

(
(V0)

0
−ν(R̃)

)
− b+2 (W )

and

p′−p′′ =
1

4

(
dimR

(
(V1)

0
−ν(H)

)
−dimR

(
(V0)

0
−ν(H)

)
+2n(Y1, t|Y1

, g)−2n(Y0, t|Y0
, g)−σ(W )/4

)
.

The S1-fixed point set of (42) is still induced (on the one-point compactifications) by a
linear injective map with cokernel of dimension b+2 (W ).

Proposition 3.9. Suppose that W is a smooth, oriented, negative-definite cobordism from
Y0 to Y1. Let b2(W ) denote the second Betti number of W . If W admits a spin structure t,
then:

α(Y1, t|Y1
) ≥ α(Y0, t|Y0

) + 1
8b2(W ),

β(Y1, t|Y1
) ≥ β(Y0, t|Y0

) + 1
8b2(W ),

γ(Y1, t|Y1
) ≥ γ(Y0, t|Y0

) + 1
8b2(W ).

Proof. By doing surgery on loops in W , we can assume without loss of generality that
b1(W ) = 0, so we can apply the discussion in this section. Observe that (42) is a G-
equivariant map between spaces of type SWF. Furthermore, since b+2 (W ) = 0, the as-
sociated S1-fixed point set map is a G-homotopy equivalence. Thus, the hypotheses of
Proposition 2.15 are satisfied. The results follow from that proposition, in view of the
formulas (31), (32), (33). �

Corollary 3.10. Suppose that W is a smooth oriented cobordism between rational homology
spheres Y0 and Y1, such that b2(W ) = 0. If W admits a spin structure t, then:

α(Y0, t|Y0
) = α(Y1, t|Y1

), β(Y0, t|Y0
) = β(Y1, t|Y1

), γ(Y0, t|Y0
) = γ(Y1, t|Y1

).

Proof. Apply Proposition 3.9 to both W and −W , where the latter is viewed as a cobordism
from Y1 to Y0. �
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If Y is an integral homology sphere, then it has a unique spin structure s, and we write

α(Y ) = α(Y, s), β(Y ) = β(Y, s), γ(Y ) = γ(Y, s).

Recall from the introduction that θ3H denotes the (integral) homology cobordism group
in dimension three. Corollary 3.10 implies that our three invariants descend to maps

α, β, γ : θH3 → Z.

(We do not claim that these maps are homomorphisms.)
We can now complete the proofs of the results announced in the introduction:

Proof of Theorem 1.1. This follows directly from Propositions 3.7, 3.8 and 3.9. �

Proof of Corollary 1.2. Observe that Y#Y being homology cobordant to S3 is the same
as Y being homology cobordant to −Y . If Y has this property, the properties listed in
Theorem 1.1 imply that β(Y ) = β(−Y ) = −β(Y ), so β(Y ) = 0 and hence µ(Y ) = 0. �

Remark 3.11. When we proved invariance of α, β, γ in Proposition 3.7, we used the invari-
ance of the isomorphism class of SWFHG

∗ (Y, s) (cf. Proposition 3.3). In turn, this relied
on the arguments from [36] about the behavior of the Conley index under changes in the
eigenvalue cut-off and the Riemannian metric. It is worth pointing out that one can give
an alternative proof of the invariance of α, β, γ (and thus establish Theorem 1.1) by using
Corollary 3.10 instead. Indeed, suppose that, a priori, α, β and γ depended on the metric
on Y . Let g0 and g1 be two Riemannian metrics on Y , and consider the identity cobordism
I×Y with a metric that restricts to g0 on one end and g1 on the other, and is cylindrical near
the ends. Then, the argument in Corollary 3.10 shows that α, β, γ are metric independent.

3.7. A fourth invariant. Let Y , s, g, ν and τ be as in Section 3.3. Instead of consid-
ering the Pin(2)-equivariant homology of the Conley index Iντ as in (28), one can take its
suitably normalized S1-equivariant homology, with coefficients in an arbitrary field F (of
characteristic p). Set:

SWFH S1

∗ (Y, s;F) := H̃S1

∗+dimV 0
τ
+2n(Y,s,g)(I

ν
τ ;F)

This is the S1-equivariant Seiberg-Witten Floer homology of (Y, s). It can be viewed as the
Borel homology of the S1-equivariant suspension spectrum SWF(Y, s) constructed in [36].

In Section 2.6 we defined a quantity dp associated to a space of type SWF. Let us apply
this to the Conley index Iντ . After a suitable normalization, it yields an invariant

δp(Y, s) =
(
dp(I

ν
τ )− dimV 0

τ

)
/2− n(Y, s, g) ∈ 1

8Z.

Alternately, if we set

∞SWFH S1

∗ (Y, s;F) :=
⋂

l≥0

image
(
U l : SWFH S1

∗+2l(Y, s;F) −→ SWFH S1

∗ (Y, s;F)
)
,

we can write:

δp(Y, s) =
1
2 min{r | ∃ x, 0 6= x ∈ ∞SWFH S1

r (Y, s;F)}.

It is customary to take F = R, so p = 0. In this case we write δ = δ0. After a change
in sign, the invariant δ is the exact analogue of the correction term defined by Frøyshov in
[20] and Kronheimer-Mrowka [32, Section 39.1]. In Heegaard Floer theory, the counterpart
of δ is one-half of the correction term d(Y, s) defined by Ozsváth and Szabó in [44].
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Remark 3.12. Although in principle the correction terms (in monopole Floer, or Heegaard
Floer theory) depend on the characteristic p of the underlying field, in practice no examples
of 3-manifolds are known where this makes a difference.

3.8. Examples. The simplest case where Seiberg-Witten Floer homology can be computed
is that of elliptic rational homology 3-spheres (quotients of S3). If Y is such a manifold,
then it admits a metric g with positive scalar curvature, so by the arguments in [36, Section
10] or [37, Section 7.1], the Conley index Iντ is a representation sphere, and we get that

SWFHG
∗ (Y, s)

∼= F2[q, v]/(q
3),

shifted in degree by −2n(Y, s, g). The same is true for the S1-equivariant Seiberg-Witten
Floer homology. Therefore,

α(Y, s) = β(Y, s) = γ(Y, s) = δ(Y, s) = −n(Y, s, g).

In particular, for Y = S3 we obtain

α(S3) = β(S3) = γ(S3) = 0.

Next, let us consider the Brieskorn spheres Σ(2, 3, n) with gcd(6, n) = 1, oriented as
boundaries of negative definite plumbings. With these conventions, Σ(2, 3, 6m−1) is −1/m
surgery on the left-handed trefoil, and Σ(2, 3, 6m+1) is −1/m surgery on the right-handed
trefoil.

The S1-equivariant Floer spectrum SWF(−Σ(2, 3, n)) was computed in [37, Section 7.2];
the Floer spectrum for Σ(2, 3, n) is its Spanier-Whitehead dual. The calculation was based
on the work of Mrowka, Ozsváth and Yu [41], who described the Seiberg-Witten solutions
and flow trajectories for Seifert fibrations equipped with particular Riemannian metrics.
(They also used some nonstandard connections instead of the Levi-Civita connections, but
finite-dimensional approximation still works in this setting, and yields the same answers.)
One then uses the attractor-repeller sequences (29), (30) to obtain information about the
Floer spectrum. The same methods as in [37, Section 7.2] can be employed to compute the
G-equivariant Seiberg-Witten Floer homology; we just have to keep track of the additional
symmetry when describing the Seiberg-Witten flow.

When n = 12k − 1, the Seiberg-Witten equations on Σ(2, 3, 12k − 1) have one reducible
solution in degree zero, and 2k irreducibles in degree one. The irreducibles come in k pairs
related by the action of j ∈ G. Each irreducible is connected to the reducible by a single flow
line. From (29), (30) we deduce that there is a long exact sequences on Borel homology:

. . . −→ H∗(BG;F2) −→ SWFHG
∗ (Σ(2, 3, 12k − 1)) −→ (Fk

2)[1] −→ . . .

where the subscript [1] denotes the respective degree. The same discussion as in [37, Sec-
tion 7.2] shows that the connecting map from (Fk

2)[1] to H0(BG;F2) ∼= F2 must be non-
trivial. This implies that, as a module, the G-equivariant Seiberg-Witten Floer homology
of Σ(2, 3, 12k − 1) is

Fk−1
2

⊕

F2 F2

q
{{

0 F2 F2

q
��

v

ii F2

q
��

v

ii 0 . . .

v

ii . . .

v

ii . . .

v

ii

in degrees 1, 2, 3, . . . In view of the formulas (34), (35), (36), we have

α(Σ(2, 3, 12k − 1)) = 2, β(Σ(2, 3, 12k − 1)) = γ(Σ(2, 3, 12k − 1)) = 0.
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In particular, SWFHG
∗ (Σ(2, 3, 11)) agrees with the Borel homology of the unreduced

suspension G̃ of G, which was discussed in Example 2.10. We should think of G̃ as a model
for the G-equivariant Floer spectrum of Σ(2, 3, 11). In fact, if we equip Σ(2, 3, 11) with the
metric from [41], we can apply the methods in [37] to show that (for ν,−τ ≫ 0) the Conley

indices Iντ are G-equivalent to suitable suspensions of G̃.
Next, let us consider the case n = 12k− 5. This is entirely similar to n = 12k− 1, except

that the reducible is in degree −2 and the irreducibles in degree −1. The G-equivariant
Seiberg-Witten Floer homology agrees to the one for Σ(2, 3, 12k − 1), shifted in degree by
−2. Thus, we have

α(Σ(2, 3, 12k − 5)) = 1, β(Σ(2, 3, 12k − 5)) = γ(Σ(2, 3, 12k − 5)) = −1.

When n = 12k + 1, there is one reducible in degree 0 and 2k irreducibles in degree −1.
As before, the irreducibles come in k pairs related by the action of j. We find a long exact
sequence

. . . −→ H∗(BG;F2) −→ SWFHG
∗ (Σ(2, 3, 12k + 1)) −→ (Fk

2)[−1] −→ . . .

For grading reasons, the only possibility is that SWFHG
∗ (Σ(2, 3, 12k + 1)) is (even as a

module) isomorphic to the direct sum H∗(BG;F2)⊕ (Fk
2)[−1]. From here we get

α(Σ(2, 3, 12k + 1)) = β(Σ(2, 3, 12k + 1)) = γ(Σ(2, 3, 12k + 1)) = 0.

The case when n = 12k + 5 is similar, except for a degree shift by −2 in homology.
Therefore,

α(Σ(2, 3, 12k + 5)) = β(Σ(2, 3, 12k + 5)) = γ(Σ(2, 3, 12k + 5)) = 1.

We summarize our results in the following table. For comparison, we have also included
the corresponding values of the correction term δ in S1-equivariant Seiberg-Witten Floer
homology, and of the Casson invariant λ:

Brieskorn sphere α β γ δ = d/2 = −h λ

Σ(2, 3, 12k − 5) 1 −1 −1 0 −2k + 1
Σ(2, 3, 12k − 1) 2 0 0 1 −2k
Σ(2, 3, 12k + 1) 0 0 0 0 −2k
Σ(2, 3, 12k + 5) 1 1 1 1 −2k − 1

Here, the values of δ for these Brieskorn spheres can be readily deduced from [37, Section
7.2]. They agree (up to a sign) with the values of the Frøyshov invariant h. The latter
can be computed using the surgery exact triangles in monopole Floer homology [33], along
the lines of the corresponding computation for the correction terms d in Heegaard Floer
homology [44, Section 8.1]. Finally, the values of the Casson invariant [1] can be deduced
from its surgery formula applied to the two trefoils.

4. Further directions

Our construction of Pin(2)-equivariant Seiberg-Witten Floer homology was limited to
rational homology spheres. This is because the Seiberg-Witten configuration space acquires
non-trivial topology when b1(Y ) > 0, and doing finite dimensional approximation in this
setting becomes more difficult. Nevertheless, as mentioned in the introduction, we expect
that one can define Pin(2)-Floer homologies for all compact 3-manifolds equipped with spin
structures. Both monopole Floer homology, as constructed by Kronheimer and Mrowka
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in their book [32], and the Heegaard Floer homology of Ozsváth and Szabó [47, 46, 48]
are defined for arbitrary 3-manifolds. We expect that one can construct Pin(2)-versions of
these theories. Moreover, if one were to establish Pin(2)-versions of the usual surgery exact
triangles, this should allow the computation of the invariants α, β, γ in more examples.

In particular, it would be interesting to compute our invariants for a larger class of
plumbed 3-manifolds, as was done for Heegaard Floer homology in [45]. Neumann and
Siebenmann [43, 56] independently constructed an invariant µ̄(Y, s) ∈ 1

8Z for spin 3-
manifolds that are given by plumbing spheres along a tree. The Neumann-Siebenmann
invariant reduces to the generalized Rokhlin invariant mod 2. (We follow the conventions
for µ̄ from [54], which differ from the original ones in [43] by a factor of 1/8.) Neumann
[43] conjectured that µ̄ is a homology cobordism invariant, and Saveliev showed this to be
true when we restrict µ̄ to the class of Seifert fibered integral homology spheres [55]; see
also [21, 22]. We propose the following:

Conjecture 4.1. If (Y, s) is a Seifert fibered rational homology 3-sphere with a spin struc-
ture, then β(Y, s) = −µ̄(Y, s).

The conjecture holds for the Brieskorn spheres Σ(2, 3, 6m ± 1) considered in the last
section.

A related question is the existence of an analogue of α, β or γ in instanton theory. Let I∗
denote the original instanton homology defined by Floer [16]. Saveliev [53, 54] conjectured
that the quantity

ν(Y ) =
1

2

7∑

n=0

(−1)(n+1)(n+2)/2 dimQ In(Y )

is an invariant of homology cobordism, and showed that ν(Y ) = µ̄(Y ) for all Seifert fibered
homology spheres. It is possible that the invariant ν (perhaps defined with the field Q

replaced by F2) is related to −β.
When Y is a Seifert fibered homology sphere, ν(Y ) = µ̄(Y ) can also be interpreted

as half the Lefschetz number of the map induced on I∗(Y ) by the mapping cylinder of a
canonical involution on Y ; see [52]. A related interpretation exists in the context of Seiberg-
Witten theory [42, Section 11.3], using a Casson-type invariant λSW for 4-manifolds with
the homology of S1 × S3. One can ask about the relation between λSW and the invariants
constructed in this paper.

In yet another direction, it would be interesting to understand the behavior of Pin(2)-
equivariant Floer homology (and of the invariants α, β, γ) under taking connected sums. We
expect that the connected sum of two 3-manifolds corresponds to the smash product of their
Floer spectra. The Borel homology of a smash product is related to the Borel homology
of the two pieces by an Eilenberg-Moore spectral sequence. The possible existence of non-
trivial higher differentials makes the behavior of α, β and γ difficult to predict.

Finally, we mention that one can turn invariants of homology cobordism into invariants
of (smooth) knot concordance. Given a knot K ⊂ S3, one simply evaluates the original
invariant to the double cover of S3 branched along K. This was done for the Ozsváth-
Szabó correction term d in [38]. It would be worthwhile to study the concordance invariants
associated to α, β, and γ.
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