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A GEOMETRIC PROOF OF ROCHLIN'S THEOREM

MICHAEL FREEDMAN* AND ROBION KIRBY**

0. In 1974 Andrew Casson outlined to us a proof of Rochlin’s Theorem (stated
below) on the index of a smooth, closed 4-manifold M4. His proof involved th
Arf invariant of a certain quadratic form defined on the first homology group of a
surface.in M* which is dual to the second Stiefel-Whitney class of M*. Our proof
was detived from Casson’s; it is the same in principle but differs considerably in
detail. After this manuscript was written, we discovered that Rochlin had already
in 1971 given a short sketch of this proof; it appears in a paper [Rq] about real

" algebraic curves in RP?, .

In addition we obtain (Theorem 2) a “stable” converse to the Kervaire-Milnor
nonimbedding theorem [K-M], and in §2, by relaxing some orientability assump-
tions, we prove a new (but unspectacular) nonimbedding theorem (Theorem 4)
and find an obstruction to approximating unoriented simplicial 3-chains in a 5-
manifold by an immersed 3-manifold.

We thank John Morgan for several valuable conversations.

1. Let M* be a closed, orientable, PL (hence smooth) 4-manifold. It has an inter-
section form Ho(M; Z)fiorsion X Ho(M; Z) yorion = Z which is a symmetric,
unimodular, integral bilinear form [M;]; denote this pairing by x-y or xy. Its
signature is o(M) = index M.

We say that w € Hy(M; Z)/ 5mmi0n i characteristic if its mod 2 reduction [w), is
Poincaré dual to the second Stiefel-Whitney class wy € HA(M; Z,). This implies
that @-x = x-x (mod 2) for all x € Hy(M; Z). For this congruence follows from
the equality [w];-y = y-y for all y € Hy(M; Z,), which is dual to the equality
wy U P =9 U5 (" denotes Poincaré dual) which is a definition of the second
Steifel-Whitney class w; of a 4-manifold.
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It is an easy bit of algebra [M-H, p. 24}, that v -w = o(M) (mod 8). Thus
if w, = 0 so that 0 is characteristic, then g(3/) = 0 (mod 8). Rochlin improved
this by a factor of 2.

THEOREM [Ry]. If M is closed, orientable, PL and w, = 0 then (M) = 0 (mod 16).

Rochlin’s Theorem is an anomaly in this sense: in dimensions 4k, k£ > 1, there
are closed, orientable, almost parallelizable PL (not smooth) manifolds P4 with
o(P%) = 8 [M,]. These PL manifolds are missing in dimension 4, and this accounts
for the counterexamples to existence and uniqueness of PL structures on manifolds .
[K-S], [S;]. Rochlin’s Theorem is not known for topological 4-manifolds; the ex-
istence of such a topological 4-manifold of index 8 is equivalent to proving topol-
ogical transversality in codimension 4 [S,].

Let 83 be the group of homology cobordism classes of homology 3-spheres. Then
Rochlin’s Theorem provides an epimorphism §; —+R Z,. If 33 is a representative
of 63, it bounds a PL, parallelizable 4-manifold Q% Then ¢(Q%)/8 (mod 2) e Z,
is easily seen to be an invariant of the homology cobordism class of 23 by use
of Rochlin’s Theorem [R,].

The usual proof [R,], [M-K] of Rochlin’s Theorem is homotopy theoretic,
requiring: the decomposability of Sq3, the calculation of J: z3(SO) — z%, Hirze-
bruch’s identity, a(M*) = ip\(rrs) [M*], and the identification of pi(zps) with
+2{obstruction to extending over M a trivialization of 7,u|(M4-point)}. Our
proof is geometric, except for the use of the isomorphism Q, —¢ Z where Q, is the
oriented bordism group of oriented 4-manifolds.

Here is some motivation for our proof. From now on, all 4-manifolds are closed,
orientable and smooth. First consider the generalization [K-M]: if the character-
istic element w € Hy(M*; Z) is represented by a smooth, imbedded 52, then @-w
— o(M% = 0 (16).

In general, w is represented by an orientable (if H,(M; Z/2) = 0) surface K2,
and w-w — o(M*) = 0 (8), so it is predictable that there is a Z2 obstruction as-
sociated with surgering K2 to a 2-sphere. Here is the simplest case where that
obstruction occurs.

Let Q* = CP2 #¥#8 CP2 be complex projective space connected sum eight copies
reversed orientation. Let aq generate H,(CP?; Z) and let «; generate the ith
copy of Hy(CP?; Z). Then w = 3ay + a; + -+ + asis characteristic and w-w =
1. Since w-@ — o(Q%) = 8, w cannot be represented by a smooth imbedded S2.
(To see this directly from Rochlin’s Theorem, suppose S2 represents w; its normal
disk bundie N is the Hopf bundle, since w-w = 1, so 9N = S3; remove N and sew
in Bt; the new manifold has w, = 0 and index—8, a contradiction.) In this case
ap is represented by any nonsingular cubic, all of which are tori S! x S!.q; is
represented by CP! = S?, so w is represented by an S! x S1, and we cannot
reduce the genus.

We can try to surger K inside M* to get a 2-sphere. Let 4;,---, 45, be imbedded
circles representing the generators of a symplectic basis of H\(K; Z) = Z%. To
surger some A;, we must smoothly imbed a 2-ball D; in M with D; N K = 4, D;
and K transverse, and so that the normal vector field v to 9D; which is tangent to
K extends to a normal vector field ¥ to D;. We can then replace the normal 1-disk
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bundle to 4, in K by the normal 0-sphere bundle (the boundary of the 1-disk bundle
determined by the vector field V) of D;, thereby reducing the genus of K by 1.

We can always imbed D, transversely to K with §D; = A,. The obstruction to
extending v over D is an integer x € Z = 7,(SO(2)). The algebraic intersection of
int D; with X, m(int D,, K), is another integer 4. Also we may spin D; once around
A;, asin Figure 1, changing xto x + 1and dtod + 1, so thatd — x is unchanged.
By iteration we can make either d or x zero.

Let S be a smooth imbedded 2-sphere in M. Since K is characteristic, K-S =
S-S (mod 2); S-S is the Euler class of the normal bundle. Under the connected sum
D, # 5, xchanges to x + S-S and d changestod + K-S.Thusd —x=d + x
=d+x+ K-S+ S-S (mod 2) is a possible Z, obstruction to surgery on A;.
Associatingd + x (mod 2) to each A4,, we obtain a quadratic form §: H(K; Z;) —
Z,. The Arf invariant of §, ¢(M, K), is shown in Lemmas 3-5 to be an invariant
of the pair (M, K) up to cobordism of such pairs.

L - ’

t=0 t=1/8 -

t=x
L 4
t = 3/8 t=% t =5/8
N o
t=3/4 t=17/8 t=1
FIGURE 1

This is a movie of D; spinning around 4,. In particular, we choose an interval
of A;, represented by the time ¢ axis, so that at a fixed time A, is represented by
the center dot. The horizontal line is a slice of K, normal to A,. The vertical line
represents a collar of 8D; in D;. The one point of intersection of K and int D;
occurs at time 3/8.

To be precise, let Q% be the group (under disjoint union) of “characteristic”
pairs (M4, K2) up to “characteristic’” bordism, where M and X are closed and ori-
ented and [K] € Hy(M; Z)/ orsi0n 18 Characteristic. Two pairs (M, K) and (M’, K’) are
characteristically bordant if there exist an oriented 5-manifold M and an oriented
3-submanifold K3 with [K], dual to wx(zg) and 3(M, K) = (M, K) U —(M’, K).

Thus we have ¢: Qger — Z,.

We show (Lemmas 1 and 2) that a: Q¢ - Z @ Z is an isomorphism where
(M, K) = (o(M), (K-K — a(M))/8), and exhibit generators of Q5. Only here
do we need the fact that @, = Z.

Finally we show that the Z,-invariant #: Qf* — Z,, defined by (M, K) =
((K-K — o(M))/8)(2), is equal to ¢, by showing they are equal on the generators
of fIger (Lemma 6, Theorem 1).
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LEMMA 1. a: Q@ — Z & Z is an injection.

PROOF. a(M, K) = (6(M), (K-K — o(M))[8). Signature and intersection are both
additive with respect to disjoint sum. ¢ is well known to be an oriented bordism
invariant. Also, K- K is invariant, for if (M, K) = 9(M, K), then

KK=RURMI=KUKGIMD) =K RO0)=0
(here we denote Poincaré duals by “~” and i: M — M is inclusion). Therefore
a is a well-defined homomorphism.

.To show « is injective, suppose a characteristic pair (M, K) satisfies (M) =
K-K = 0. M and K can be assumed connected. It is tempting to let K be an oriented
3-manifold with 9K = Kand M = M x I g« K x B2 |J W, where W is a spin
S-manifold whose boundary is the component of (M x I {J K x B?) other than
M. Unfortunately K may not be dual to w(M).

Given a Morse function on M, we can assume any extra crmcal points of index
0 or 4 have been cancelled. The critical points of index 1 determine descending
1-manifolds which in turn determine a family of disjointly imbedded, oriented
circles, which, by general position, are disjoint from X. Since X is dual to wy(M),
we can frame the tangent bundle of M — K. This determines a framing of the nor-
mal bundles of the circles. Let N* be obtained from M x I by adding 2-handles to
the circles in M x 1 according to the framing. Then 9N = M x 0 J 9, M and
01N is 1-connected. Furthermore K x Iin N is dual to w-(N) because the comple-
ment is still framed and K x I is still the obstruction to extending this framing.
The same is true for N = N'4k(S? x BS), the boundary connected sum of N
alongg;N — K x 1 withk copies of §% x B3,

Since ¢(8,N) = 0 and 7,(3,N) = 0, N has the same intersection form as X =
$r(S? x S2) £e(S? R S?) where S$2 X S? is the nontrivial S? bundle over S? and
¢ = 0 or 1. By Theorem W, below, 3,V is diffeomorphic, via A, to X for some k.
-We must choose A correctly.

In X, let a;, B; € Hy((S? x S?);; Z) and 7, § € Hy(S? X §2; Z) be the standard
bases with intersection forms

(4 4] H 5
B: [1 - 0] a1 B J’
respectively. Since k [K] is dual to wy(X), it follows that A, [K] is a sum of even
multiples of the a;’s, ;’s and § and an odd multiple of 7. Since K-K = 0, by
Theorem W, below [W,], we can find an orthogonal automorphism of Hy(X; Z)
taking A.[K] to 2na; (if ¢ = 0) or to (2n + 1)y (if ¢ = 1). By Theorem W3 below
[W;], this automorphism is realized by a diffeomorphism #': X — X.

Let Y = #r(S? x B3)#e(S? X BS), 0Y = X. Let M = N (J Y where we identify
2Y with 9,N by I'h. Let @, and 7 € Hy(Y, 3; Z) be the classes represented by B3
fibers so that 8@; = «a; and 97 = 7. There is an oriented 3-manifold (/,9) < (¥, X)
with 8J = (Wh)(K x 1) and [/, 9] = 2n@, or (2n + 1)F as ¢ = O or 1. (This follows
from a relative version of the representability of codimension two integral homol-
ogy classes by oriented submanifolds.) Clearly [J, 3] is dual to w(Y).

Now let K = K x I|J J, identified along 9J = K x 1. K is dual to wy(M)
(use the Mayer-Vietoris sequence on M = N |J Y), K is oriented, and aK K.
Thus we have constructed a null bordism of (M, K) in Q¢=r. [
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Note. Bspin¢ is defined as the pullback

BSpini—— »

BSO —*—k(z,3)

A spin¢-structure on an oriented 4-manifold is a lifting of the tangent bundle to
Bspine. It is known that every oriented smooth manifold has a spinc-structure,
[H, H]. It follows from Lemma 1 that every oriented smooth 4-manifold, M, with
o(M) = 0, admits a spin¢-structure which is a spinc boundary. (Proof. If M is spin
let K ¢ M satisfy [K] = 0e Hy(M; Z). Now K-K = 0 and (M, K) = 3(M, K) with
[Kle Hy(M, M; Z) dual to wy(z(M)). So M bounds M with wy(z(M)) integral;
hence there is a spinc-structure on M; its restriction is the desired spin‘-structure
on M. If M is not spin, by the classification of symmetric-unimodular-odd-bilinear
forms there is a basis ay,++s Aps Aptyre*es Aoy for Ho(M; Z) satisfying a;-a; = +1
forlsi<nandajq; = —1forn+1=5i<2n anda;-a; = Ofori+#j. Let
K G M represent Y, #,q,. K is characteristic and K-K = 0. Now, as above, M
bounds ‘M and can be a spinc-boundary.) "

We have used:

THEOREM W, [W, P. 147]. If two simply connected, smooth, closed, 4&-manifolds,
M, and M,, have isomorphic intersection forms, then M $k(S? x S?) is diffeomorphic
to M, #k(S? x S?) for some k.

REMARK. The proof relies on the fact that 2§° —¢ Z is injective.
Only here do we need the calculation of Q§°.

THEOREM W, [W;, THEOREM 4]. The group of automorphisms of
Hy(M#2(S? x 89): Z)/ sorsion

which are orthogonal (preserve the intersection form) is transitive on primitive
characteristic elements of a given square.

THEOREM W3 [W,, THEOREM 2}. If M is a smooth, simply connected, closed
4-manifold with an - indefinite intersection form, thenm any automorphism of
Hy(M %8? x S?, Z) can be represented by a diffeomorphism of M#S? x S2.

LEMMA 2. a: Q¢* —» Z @ Z is onto.

PROOF. a (CP2, CPY) = (1, 0) and a(CP2 #CP? 3r¥CP") = (0, 1), where CP?
has the orientation (opposite to CP?) for which CP!- CP! = — 1 and 3y is the non-
singular complex (elliptic) curve of degree 3 in CP? (homologically it is 3 times the
generator [CP)). Since « is additive under disjoint union (or pairwise connected
sum), the proof is finished. [ '

We define a characteristic 2-ad,

” B S
A M
N g
to be a characteristic pair (M, K) together with an imbedding of an unoriented
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family of circles, 4, in K, and an imbedding of an unoriented surface, B, in M,
which meets K normally at 4 = 9B and transversally at isolated points of X — A4.
(Generally we will suppress inclusions from our notation.) We say that two-char-
2-ads,

</'B\
M and

N ket | Nkt
are equivalent (written ~) if (M, K) and (M’, K') are characteristically bordant,
via (M, K), and 4 U 4’ = 9(K) bounds an unoriented surface, 4 = K.

We now define a Z, valued invariant, g, of characteristic 2-ads. Let vpq,, and
vspsx denote the normal bundles. We have vgap |9B = vogox @ £. Since K is
orientable the first summand is trivial; so £ is also trivial (as vyp.x @D £ extends
over B). Let F be a framing v, | 55, restricting to a framing on each factor. Let
wovpan | aps F) = 32 € HXB, 0B; Zy) be the relative Stiefel-Whitney class.

(2 is the mod 2 reduction of the obstruction in H%(B, 8B, Z,,;4.s) to extending
Vspak tO a section of vey.) Let X = y,[B, 0], = 0 or 1. We define

q(A
Nk
By m ( , ) we mean the number (mod 2) of transverse intersections.

LemMa 3. If

</'B\
A M

y |

M) = (Nuint B, K) + X (mod 2).

B B
(At/ S ) ~ (A' 0N M')

N ke Nk
then
B B’
q(A M) = (A’ M’)
k< Sk
PROOF. Y = A |J B | B’ is a closed unoriented surface.
Diagram: '

Let i: Y G M be the inclusion

Y-R = (B, K) + N4 B) + \ae (B, K).

The middle term is to be interpreted as the obstruction (mod 2) to extending
VAL A’GBIB to a section Ofvxgﬂlz.

On the other hand,

Y-K = h*(wy(z(J))) [Y] = wy(x(M) | y) [ Y]
= wilbyam) + Wo(o(Y)) + wiGyam) - wi(o(Y))-
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But # is oriented, 50 0 = wi(c M| Y) = wi(oyegg) + wi(z(Y), 50 wi(y<g) wi(z(Y))
= wie(Y))2 = wyc(¥)) by the Wu formula, s0 wa(z (M) | p)[¥] = weloyer) [Y].
(Note that if Y is oriented and M unoriented the preceding assertion is still true.)

Rounding corners, vy g4, + has a framing, F, which extends F (restricted to 4
this is (¥, inward normal to B)). We can use this framing to break wy(vy<g) up into
three relative Stiefel-Whitney classes

woorem Y] = WZ(”BsM: F)[B, 3] + wy(vacm, F)l4, 0] + Wzl(lvngM, F)B, 9]

x x'
w2(vA=Ms F) = WZ(”K:M I As FZ.S) + wl(vf(cﬂs FZ.S)'wl(vAc:fb Fl)

where F,3 (and F;) denote the last two (and the first) vectors of F. Let
wi(vgems Fo3) = uand wi(vaeg, F1) = 7.

u +v=wiem F) = wi(c(4), framing of (411 4"))

(because M is orientable). As in the closed case, (u + v) U x = Sqlx = x2 for all
xe HYA4,9; Z,). =+ v) U v = uv + 12, so uv = 0. Therefore, wy(vy.g)Y1]
= + (lu(4, K), 50

M(B, K) + x = sl B, K') + ¥ (mod2). O

Note. The above result holds if the hypothesis that (M; M, M’) is oriented is
replaced by: Y and K are oriented.

COROLLARY 1. If (M, K) is a characteristic pair, q determines a well-defined
Sunction, §: H(K; Z,) — Z,.

Proor. We kill H,(M; Z,) with a finite number of framed 1-surgeries in the com-
plement of K (call the trace N). To 8 € Hy(K; Z,) we associate an unoriented
surface (B, 9) ¢ (M, K) with [0B] = B. Define

B
4B = q 33/ M].

N g
To check that this procedure is well defined let N be an alternative trace. Let

U, K)=(N, KxD/ U F.KxD, o, R)y=(Mo, KU - (¥, K.

Let (By, 8) and (B,, 9) denote unoriented surfaces in (M, K;) and (M,, K)) with
[0Bo] = Be H\(Ky; Zy), [0B1] = 8 € Hi(K;; Z,). There is an unoriented bordism
A < K with 94 = 3B, | 0B,, so by definition
B, B,
aBo/ Mo ~ aBl/ \M1 .
k. ~g
By Lemma 3, § is well defined.

LemMma 4. §: H(K; Zy) - Z, is quadratic, i.e. q(¢ + 0) — q(¢) — q(0) = &-9
Jor all &, 6 € Hi(K; Z,).
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ProoF. Let 4, and A; represent ¢ and §. Let B, and B; be as before. Suppose 4,
and A; intersect transversally at one point p. Let 4, be the connected sum (repre-
senting ¢ + ) as in Figure 2. Piecewise linearly, we get B, from B, U By U T3 U T»
where T and T, are two curved triangles as shaded in Figure 2; note that 9B, =
A,. The normal vector fields on B, and B; must be extended to the new part of 4,
as drawn. Consider the boundary (a circle) of a neighborhood of B in. B, and push
it off itself using the vector field. The two circles link, indicating that the obstruc-
tion to extending the vector field over the neighborhood is one. We have verified
that y..5 — y. — yo =€ =1.

-

1 B
K )
t .

d‘.‘ ..... : \

e f‘Y‘r
B > !
-», T

<Y &3 E:':
e
2.

-

FIGURE 2

Ifint B, N int B; # J, then we may push these double points of B, off the bound-
ary, adding two points to int B, (| K. Thus () (B., K) + (\(Bs, K) = (\(B,, K)
(mod 2). We have shown in this special case that g(c¢ + 8) — q(g) — ¢(0) = e-0;
the other (easier) cases are left to the reader. [J
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Let ¢(M, K) be the Arf invariant of §: H1(K; Z;) — Z,. (See the Appendix of
[R-S] for a short presentation of the Arf invariant.)

LEMMA 5. ¢ determines a well-defined homomorphism: Q3* —¢ Z,.

PROOF. Assume that (M, K) and (M’, K’) are characteristically bordant via
(M, K). For the usual reason

dim(V = Ker(Hy(K U K’, Zy) » Hy(K; Z»)))
= 1dim(H,(0K; Z,)).

The intersection pairing on H{(K |J K'; Z,) is identically zero when restricted to V.
GgKUK)=gK)® §(K'). If viewed properly, Lemma 3 implies that
G(K U K")| V is identically zero. (If AV and A=A, then AeHx(K, KK'; Z,);
one should regard 9(M,K,4) as M U — M', KU — K', 4A) U (¢, ¢, ¢).) Hence
$AK U K7) = 0, 50 $(3(K)) = @(K)). O
LEMMA 6. ¢(CP2, CPY) = 0 and §(CP2 #CP?, 3r#CP!) = 1.

Proor. CPlis §2, so H, is zero and thus ¢(CP2, CPY) = 0.

&(CP2 #CP? 378CP") = ¢(CP?, 37). In CP?, 3y is represented by any cubic; it is
convenient to pick x3 = y2z. In the coordinate charts x = 1 or y = 1, the solution
is nonsingular, but for z = 1, y2 = x3 is the cone on the (2, 3)-torus knot (= trefoil
knot). So 3y is represented by a smooth 2-sphere except for the cone point. If B is
centered at the cone point, replace the cone in B4 by the Seifert surface (Figure 3)
of the trefoil knot in S® = 9B*, obtaining a 2-torus 7% as a representative of 37.
The circles A, A, in the Seifert surface generate Hi(T2; Z). Each 4, is a trivial
knot and bounds a 2-ball B; in B The obstruction to extending v 4,1z to a
section of vg.pe is the linking number of A4; and s(4,) in S5, where s is a
nonzero section of v o72. L(4;, 5(4;)) = + 1. Since m(int B;, T?) = 0, it follows
that g(4;) = 1. Thus ¢(CP?, T?) = 1 (see Appendix [R-S]). O '

Let 6: Qg — Z, be the homomorphism given by (M, K) = (K-K — o(M))/8
(mod 2).

FIGURE 3
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THEOREM 1. O(M, K) = ¢(M, K).

ProOF. Since both § and ¢ are homomorphisms (Lemma 5), it is sufficient to
check the equality on the generators of Qger, (CP2, CP!) and (CP2 #CP?, 3r#CPY).
But we have seen (Lemmas 2 and 6), that § and ¢ are both zero on the first genera-
tor, as on the second. []

COROLLARY 2 [K-M, THEOREM 1}). If (M, K) is a characteristic pair, and K is a
2-sphere, then O(M, K) = 0.

COROLLARY 3 (ROCHLIN’S THEOREM [Ry)). If (M, @) is a characteristic pair, then
0(M, ) = 0.

ProOFs. H((K, Z;) = 0 for K = S% or @, therefore ¢(M, K) = 0. By Theorem
1,0(M, K) =0,

Note. Suppose K ¢ M is a PL imbedding with nonlocally flat points py,---, p,
at which KX is the cone on knots Sy,---, S,, Let Arf(S;) be the Arf invariant of S;
(see [R;]). Then if we define

HMK) = $@(H(K: Z)) + 5 AH(S) (mod2),

we may still conclude that 8(M, K) = ¢(M, K).

We now show that “stably” ¢ is the only obstruction to surgering K to a 2-sphere,
Let M, = M#s(S? x S2), and let j, be the composition
1

inc 4

HM; Z) Hy(M — D% Z) 22— Hy(M,; Z).

“THEOREM 2. Suppose 7,(M*%) = 0. Then ¢(M,K) = O iff for some 5,31 (M,, K)
such that K' is a 2-sphere and i [K'} = j(i,[K]).

Note. Larry Taylor has independently obtained this result.

Proor. The if direction follows from Theorem 1 [K-M] and our Theorem 1.

The argument for the only if direction will be quite liberal with copies of S x 2.
Since ¢(M, K) = 0, there is a subspace V = H (K; Z,) such that (1) dim(V) =
3 dim(H (K; Z5)), (2) v;-v, = O for vy, vae ¥, and (3) g(v) = O for ve V. Let 4;,--,
A, be circles disjointly imbedded in K representing a basis for V. Let 4,,--, 4,
denote copies of 4y,:-, 4, pushed off in a normal direction to X so that the linking
numbers I(K, 4;) = 0. Since K is characteristic, 7(M) | A4; is canonically framed.
Since 7,(M) = 0, framed surgery on {4},---, 4,} replaces M with M,. In M, there
are disjointly imbedded 2-disks, By,---, B, with9B; = A4;and B; N K = 4,. There
is an Euler class obstruction y; e H¥(B;, 9; Z) to extending v, .x to a section of
VEeu, DUt 0 = gl4]] = y[B;, 9] (mod 2).

Consider the diagonal imbedding 4: 82 G 52 x S2%. (v s2c4sexs2) {S?] = 2. [ B;, 0]
may be altered by 1 2 by taking a connected sum of pairs (3,, B)#(S2 x Sz,
+ 4(S?)). In this way it is possible to alter M, and B, so that y,[B,, 9] becomes
zero and M, becomes M,,,. y; is the only obstruction to ambient surgery on K
along B;. The result of surgery on By,:--, B, is a smooth submanifold, K’, with
H\(K'; Z;) = 0; so K' is a 2-sphere. To verify i[K'] = j(i,[K], recall that
LK, 4)=0. O

Note. A similar argument shows: If 7z;(M*%) = 0 and & € Hy(M*; Z), then for
some s, j,(€) is represented by an imbedded torus.
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2. In §1, M, M, K, K were taken to be oriented, while B and Y were unoriented
(and possibly unorientable). Orienting M, M, K, K was convenient in that it enabled
us to calculate the corresponding bordism group, 2¢**. We chose B (and Y) un-
oriented because we were defining a quadratic form on Hy(K; Zz) and orientations
would be superfluous.

In the following application we unorient XK.

TﬁEOREM 3. Although (CP?, y) — (CP?, 3y) = 9(CP? x I, unoriented simplicial
3-chain), (CP?, y) — (CP?, 3y) cannot be written as 9(CP x I, immersed unoriented
3-manifold). '

ProoF. This is an exercise from the proof of Lemma 3. ¢(CP?, y) # ¢(CP?, 3y),
but a manifold bordism (even an immersed one) K from 7 to 3y would force ¢ to
assume equal values at each end. [J

ReEMARK 1. There is an old and elegant procedure for approximating a Z,-
simplicial-cycle of dimension 2 in a triangulated 3-manifold by an unoriented, tri-
angulated submanifold. This procedure generalizes for 2-dimensional cycles in any
manifold, and for (n — 1)-dimensional cycles in any #-manifold. The first open case
would be: Can you approximate a 3-dimensional Z,-simplicial-chain in a triangu-
lated 5-manifold by an unoriented, triangulated submanifold? Theorem 3 provides
an example (in the relative case) where the answer is no.

REMARK 2. A key calculation occurs in the proof of Lemma 3 in which we show

h*wy(c(M NY] = wylvyarmp Y]

We observe that this equality still holds if we replace the assumption (1) M is
oriented and Y is unoriented, with (2) M is unoriented and Y is oriented.

Suppose M, M’ are unoriented with K ¢ M and K’ ¢ M’ oriented surfaces dual
to wy(z(M)) and wy(z(M")), respectively, and that image(H\(K; Z)) « Hy(M; Z)
and image(H\(K'; Z)) = H(M'; Z) are zero. Then if M is unoriented and
K is oriented, with K dual to wy(z(M)), §(H\(K; Z7)) and J(Hy(K'; Zp)) will be
defined and

$(M, K) = Arf(@(H(K; Z,))) = Arf(@(H\(X"; Zp)) = $(M, K")

This is because, with the above assumptions, we will be able to choose B and 4
(see notation preceding Lemma 3) to be oriented compatibly so that Y also is
oriented. Now the proof of Lemma 5 goes through using our second set of ori-
entability assumptions. This leads to the following nonimbedding theorem.

THEOREM 4. Let M be an orientable PL 4-manifold and let o € Hy(M ; Z) satisfy
(ara — a(M))/8 = 1 (mod 2). Let N be an unorientable PL 4-manifold with
wa(t(N)) = O (or it is sufficient to assume wy(z(N)) is represented by a smoothly im-
bedded oriented surface Az < ™ N withinc,(H(4; Z)) = 0e Hy(N;Z) and ¢(N, A) =
0; note that ¢ is defined for the pair despite the fact that N is unoriented). Then o' =
image(a) € Hy(M ¥N; Z) is not represented by a smooth imbedding S2 c* M % N.

LEMMA 7. A Z-oriented simplicial cycle, 83, of dimension 3 in an unoriented trian-
gulated 5-manifold may be approximated by a Z-oriented imbedded, triangulated
submanifold.
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ProoF. By a modification in a spindle neighborhood of the 2-simplexes of 83 (see
Figure 4), we may assume /8 is a manifold away from its 1 skeleton.

+ + + ¥ ¥ }
\l I' I/
« 2 - skeleton(p?) HEC

FiGure 4

Let ¥V be a tubular neighborhood of the 1-skeleton 9V = j(S1 x §%)
. #K(S? X S3) (51X S? denotes the twisted product). 9V () §° &f L is an oriented sur-
face imbedded in 9V (oriented, because L is imbedded with trivial normal bun-
dle in the (33 —1)-skeleton). We will show that there is an oriented 3-manifold
Lo vwithol = L.

There are j + k normal 4-disks (D4, 9); < (¥, 9) such that ¥, “cut” along | );D4
is a closed 4-disk, X. For each i, there are 2-copies of D%, D% ; and D% ; included in
0X. We may assume L meets each D; in a link L,. Because L was oriented, the as-
sociated links L,; ¢ 8D}, and L, c 9D}, are oriented oppositely (comparing
orientations by regluing D} ; and Df, to form D4). Let J; D} be an orientable
surface with 9J; = L,. Again let J;; ¢ D%, and J; , ¢ D}, be the corresponding
copies of J; in 9X oriented so that 8(J;,)) = — L;; and 3(J; ) = — L.

ng(L - (')L;> Uidin Ui iz 5 0X

is an oriented surface. Let Z ¢ X be an oriented 3-manifold with 9Z = W. Be-
cause the orientations on L;; and L, , are opposite, so are the orientations on J;,,
and J; ,. As a result, if we reglue X to form ¥, the image of Z (which we will call L)
is an orientable 3-manifold contained in ¥ with 9L = L.

Now we can approximate 83 by (82 — ¥) U — L, an oriented submanifold. [J

ProOF oF THEOREM 4. We only consider the case: wy(z(N)) = 0. (As an example
N might be $! X $3.) By Theorem 1, « is represented by a smoothly imbedded
surface K g‘M with ¢(M, K) = 1. If we consider K ¥ M # N representing a',
H(M#N, K) is defined and equal to 1. If &' were represented by a smooth
imbedding, S3 c* M §N, ¢(M #N, S2 ) would be defined and equal 0.

But by a relative form of Lemma 7, there is a smooth oriented 3-manifold, T,
with 8T = K — S? and a smooth imbedding

(T;K.8?) L. (M$Nx L N¥N x 0, M§ N x 1)

restricting to the imbeddings i’ x 0and /2 x 1 on the boundary.
Remark 2 shows that the existence of j: T ¢ M # N x I implies ¢(M ¥ N, K) =
&(M # N, S?), contradicting the above. [
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