
INVARIANCE THEORY� THE HEAT EQUATION�

AND THE

ATIYAH�SINGER INDEX THEOREM

by Peter B� Gilkey

Electronic reprint� copyright ����� Peter B� Gilkey
Book originally published on paper by Publish or Perish Inc�� USA� ����
Library of Congress Catalog Card Number ��	
�����
ISBN 
	���
��	�
	�



INTRODUCTION

This book treats the Atiyah�Singer index theorem using heat equation
methods� The heat equation gives a local formula for the index of any
elliptic complex� We use invariance theory to identify the integrand of
the index theorem for the four classical elliptic complexes with the invari�
ants of the heat equation� Since the twisted signature complex provides
a su�ciently rich family of examples� this approach yields a proof of the
Atiyah�Singer theorem in complete generality� We also use heat equation
methods to discuss Lefschetz �xed point formulas� the Gauss�Bonnet the�
orem for a manifold with smooth boundary� and the twisted eta invariant�
We shall not include a discussion of the signature theorem for manifolds
with boundary�
The �rst chapter reviews results from analysis� Sections ��� through ���

represent standard elliptic material� Sections ��	 through ���
 contain the
material necessary to discuss Lefschetz �xed point formulas and other top�
ics�
Invariance theory and di�erential geometry provide the necessary link be�

tween the analytic formulation of the index theorem given by heat equation
methods and the topological formulation of the index theorem contained in
the Atiyah�Singer theorem� Sections ��� through �� are a review of char�
acteristic classes from the point of view of di�erential forms� Section ���
gives an invariant�theoretic characterization of the Euler form which is used
to give a heat equation proof of the Gauss�Bonnet theorem� Sections ���
and ��� discuss the Pontrjagin forms of the tangent bundle and the Chern
forms of the coe�cient bundle using invariance theory�
The third chapter combines the results of the �rst two chapters to prove

the Atiyah�Singer theorem for the four classical elliptic complexes� We �rst
present a heat equation proof of the Hirzebruch signature theorem� The
twisted spin complex provides a uni�ed way of discussing the signature�
Dolbeault� and de Rham complexes� In sections ������ we discuss the
half�spin representations� the spin complex� and derive a formula for the
�A genus� We then discuss the Riemann�Roch formula for an almost complex
manifold in section �� using the SPINc complex� In sections ����� we
give a second derivation of the Riemann�Roch formula for holomorphic
Kaehler manifods using a more direct approach� In the �nal two sections
we derive the Atiyah�Singer theorem in its full generality�



vi Introduction

The �nal chapter is devoted to more specialized topics� Sections �������
deal with elliptic boundary value problems and derive the Gauss�Bonnet
theorem for manifolds with boundary� In sections ������ we discuss the
twisted eta invariant on a manifold without boundary and we derive the
Atiyah�Patodi�Singer twisted index formula� Section ��� gives a brief dis�
cussion of Lefschetz �xed point formulas using heat equation methods� In
section ��� we use the eta invariant to calculate the K�theory of spherical
space forms� In section ���� we discuss Singer�s conjecture for the Euler
form and related questions� In section ��	� we discuss the local formulas
for the invariants of the heat equation which have been derived by several
authors� and in section ��� we apply these results to questions of spectral
geometry�
The bibliography at the end of this book is not intended to be exhaustive

but rather to provide the reader with a list of a few of the basic papers
which have appeared� We refer the reader to the bibliography of Berger
and Berard for a more complete list of works on spectral geometry�
This book is organized into four chapters� Each chapter is divided into

a number of sections� Each Lemma or Theorem is indexed according to
this subdivision� Thus� for example� Lemma ���� is the third Lemma of
section � of Chapter ��
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CHAPTER �

PSEUDO�DIFFERENTIAL OPERATORS

Introduction

In the �rst chapter� we develop the analysis needed to de�ne the index
of an elliptic operator and to compute the index using heat equation meth�
ods� Sections ��� and ��� are brief reviews of Sobolev spaces and pseudo�
di�erential operators on Euclidean spaces� In section ��� we transfer these
notions to compact Riemannian manifolds using partition of unity argu�
ments� In section ��� we review the facts concerning Fredholm operators
needed in section ��� to prove the Hodge decomposition theorem and to
discuss the spectral theory of self�adjoint elliptic operators� In section ���
we introduce the heat equation and in section ��� we derive the local for�
mula for the index of an elliptic operator using heat equation methods�
Section ��	 generalizes the results of section ��� to �nd a local formula
for the Lefschetz number of an elliptic complex� In section ���� we dis�
cuss the index of an elliptic operator on a manifold with boundary and in
section ���
� we discuss the zeta and eta invariants�

Sections ��� and ��� review basic facts we need� whereas sections ��	
through ���
 treat advanced topics which may be omitted from a �rst
reading� We have attempted to keep this chapter self�contained and to
assume nothing beyond a �rst course in analysis� An exception is the
de Rham theorem in section ��� which is used as an example�
A number of people have contributed to the mathematical ideas which

are contained in the �rst chapter� We were introduced to the analysis of
sections ��� through ��� by a course taught by L� Nirenberg� Much of the
organization in these sections is modeled on his course� The idea of using
the heat equation or the zeta function to compute the index of an elliptic
operator seems to be due to R� Bott� The functional calculus used in the
study of the heat equation contained in section ��� is due to R� Seeley as
are the analytic facts on the zeta and eta functions of section ���
�
The approach to Lefschetz �xed point theorems contained in section ��	

is due to T� Kotake for the case of isolated �xed points and to S� C� Lee
and the author in the general case� The analytic facts for boundary value
problems discussed in section ��� are due to P� Greiner and R� Seeley�



���� Fourier Transform� Schwartz Class�

And Sobolev Spaces�

The Sobolev spaces and Fourier transform provide the basic tools we
shall need in our study of elliptic partial di�erential operators� Let x �
�x�� � � � � xm� � Rm� If x� y � Rm� we de�ne�

x � y � x�y� � � � �� xmym and jxj � �x � x����
as the Euclicean dot product and length� Let � � ���� � � � � �m� be a multi�
index� The �j are non�negative integers� We de�ne�

j�j � �� � � � �� �m � �� � ��� � � ��m� � x� � x��� � � �x�mm �

Finally� we de�ne�

d�x �

�
�

�x�

���
� � �

�
�

�xm

��m
and D�

x � ��i�j�jd�x
as a convenient notation for multiple partial di�erentiation� The extra
factors of ��i� de�ning D�

x are present to simplify later formulas� If f�x� is
a smooth complex valued function� then Taylor�s theorem takes the form�

f�x� �
X
j�j�n

d�xf�x��
�x� x��

�

��
� O�jx� x�jn����

The Schwartz class S is the set of all smooth complex valued functions
f on Rm such that for all �� � there are constants C��� such that

jx�D�
xf j � C��� �

This is equivalent to assuming there exist estimates of the form�

jD�
xf j � Cn�� �� � jxj��n

for all �n� ��� The functions in S have all their derivatives decreasing faster
at � than the inverse of any polynomial�
For the remainder of Chapter �� we let dx� dy� d�� etc�� denote Lebesgue

measure on Rm with an additional normalizing factor of �����m�� � With
this normalization� the integral of the Gaussian distribution becomes�Z

e�
�
� jxj� dx � ��

We absorb the normalizing constant into the measure in order to sim�
plify the formulas of the Fourier transform� If C�� �Rm� denotes the set of
smooth functions of compact support on Rm� then this is a subset of S �
Since C��R

m� is dense in L��Rm�� S is dense in L��Rm��
We de�ne the convolution product of two elements of S by�

�f � g��x� �
Z

f�x� y�g�y� dy �
Z

f�y�g�x� y� dy�

This de�nes an associative and commutative multiplication� Although
there is no identity� there do exist approximate identities�



Fourier Transform� Schwartz Class �

Lemma ������ Let f � S with
R
f�x� dx � �� De�ne fu�x� � u�mf� xu ��

Then for any g � S � fu � g converges uniformly to g as u� 
�

Proof� Choose C so
R jf�x�j dx � C and jg�x�j � C� Because the �rst

derivatives of g are uniformly bounded� g is uniformly continuous� Let
	 
 
 and choose � 
 
 so jx � yj � � implies jg�x�� g�y�j � 	� BecauseR
fu�x� dx � �� we compute�

jfu � g�x�� g�x�j�
����Z fu�y�fg�x� y�� g�x�g dy

����
�
Z
jfu�y�fg�x� y�� g�x�gj dy�

We decompose this integral into two pieces� If jyj � � we bound it by C	�
The integral for jyj � � can be bounded by�

�C
Z
jyj��

jfu�y�j dy � �C
Z
jyj���u

jf�y�j dy�

This converges to zero as u � 
 so we can bound this by C	 if u � u�	��
This completes the proof�

A similar convolution smoothing can be applied to approximate any ele�
ment of Lp arbitrarily well in the Lp norm by a smooth function of compact
support�
We de�ne the Fourier transform �f��� by�

�f��� �
Z

e�ix�� f�x� dx for f � S �

For the moment � � Rm� when we consider operators on manifolds� it will
be natural to regard � as an element of the �ber of the cotangent space�
By integrating by parts and using Lebesgue dominated convergence� we
compute�

D�
� f �f���g � ����j�j dfx�fg and �� �f��� � dfD�

x fg�

This implies �f � S so Fourier transform de�nes a map S � S �
We compute the Fourier transform of the Gaussian distribution� Let

f��x� � exp���
� jxj��� then f� � S and

R
f��x� dx � �� We compute�

�f���� �
Z

e�ix�� e�
�
� jxj� dx

� e�
�
� j�j�

Z
e��x�i����x�i���� dx�
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We make a change of variables to replace x � i� by x and to shift the
contour in Cm back to the original contour Rm� This shows the integral is
� and �f���� � exp

���
� j�j�

�
so the function f� is its own Fourier transform�

In fact� the Fourier transform is bijective and the Fourier inversion for�
mula gives the inverse expressing f in terms of �f by�

f�x� �
Z

eix�� �f��� d� � ��f��x��

We de�ne T �f� �
��f��x� � R eix�� �f��� d� as a linear map from S � S � We

must show that T �f� � f to prove the Fourier inversion formula�
Suppose �rst f�
� � 
� We expand�

f�x� �
Z �

�

d

dt
ff�tx�g dt �

X
j

xj
Z �

�

�f

�xj
�tx� dt �

X
j

xjgj

where the gj are smooth� Let  � C�� �Rm� be identically � near x � 
�
Then we decompose�

f�x� � f�x� � ��� �f�x� �
X
j

xjgj �
X
j

xj

�
xj��� �f

jxj�
�
�

Since gj has compact support� it is in S � Since  is identically � near
x � 
� xj�� � �f�jxj� � S � Thus we can decompose f �

P
xjhj for

hj � S � We Fourier transform this identity to conclude�

�f �
X
j

dfxjhjg �X
j

i
��hj
��j

�

Since this is in divergence form� T �f��
� �
R �f��� d� � 
 � f�
��

More generally� let f � S be arbitrary� We decompose f � f�
�f� �

�f � f�
�f�� for f� � exp���
� jxj��� Since �f� � f� is an even function�

T �f�� � f� so that T �f��
� � f�
�f��
��T �f�f�
�f�� � f�
�f��
� � f�
�
since �f � f�
�f���
� � 
� This shows T �f��
� � f�
� in general�
We use the linear structure on Rm to complete the proof of the Fourier

inversion formula� Let x� � Rm be �xed� We let g�x� � f�x� x�� then�

f�x�� � g�
� � T �g��
� �
Z

e�ix�� f�x� x�� dx d�

�
Z

e�ix�� eix� ��f�x� dx d�

� T �f��x���
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This shows the Fourier transform de�nes a bijective map S � S � If we
use the constants C��� � supx�Rm jx�D�

xf j to de�ne a Frechet structure
on S � then the Fourier transform is a homeomorphism of topological vector
spaces� It is not di�cult to show C�� �Rm� is a dense subset of S in this
topology� We can use either pointwise multiplication or convolution to
de�ne a multiplication on S and make S into a ring� The Fourier transform
interchanges these two ring structures� We compute�

�f � �g �
Z

e�ix�� f�x�e�iy�� g�y� dx dy

�
Z

e�i�x�y��� f�x� y�e�iy�� g�y� dx dy

�
Z

e�ix�� f�x� y�g�y� dx dy�

The integral is absolutely convergent so we may interchange the order of

integration to compute �f � �g � d�f � g�� If we replace f by �f and g by �g

we see �f � g���x� � d
� �f � �g� using the Fourier inversion formula� We now

take the Fourier transform and use the Fourier inversion formula to seed�f � g����� � � �f � �g����� so that d�f � g� � �f � �g�
The �nal property we shall need of the Fourier transform is related to

the L� inner product �f� g� �
R
f�x�g�x� dx� We compute�

� �f� g� �
Z

f�x�e�ix�� g��� dx d� �
Z

f�x�e�ix�� g��� d� dx

� �f� �g��x���

If we replace g by �g then � �f� �g� � �f� ��g��x�� � �f� g� so the Fourier trans�
form is an isometry with respect to the L� inner product� Since S is dense
in L�� it extends to a unitary map L��Rm� � L��Rm�� We summarize
these properties of the Fourier transform as follows�

Lemma ����	� The Fourier transform is a homeomorphism S � S such
that�
�a� f�x� �

R
eix�� �f��� d� �

R
ei�x�y��� f�y� dy d� �Fourier inversion for�

mula�	

�b� D�
x f�x� �

R
eix�� �� �f��� d� and �� �f��� �

R
e�ix��D�

x f�x� dx	

�c� �f � �g � d�f � g� and �f � �g � d�f � g�	
�d� The Fourier transform extends to a unitary map of L��Rm�� L��Rm�

such that �f� g� � � �f� �g�� �Plancherel theorem��

We note that without the normalizing constant of �����m�� in the de��
nition of the measures dx and d� there would be various normalizing con�
stants appearing in these identities� It is property �b� which will be of the
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most interest to us since it will enable us to interchange di�erentiation and
multiplication�
We de�ne the Sobolev space Hs�R

m� to measure L� derivatives� If s is
a real number and f � S � we de�ne�

jf j�s �
Z

�� � j�j��sj �f���j� d��

The Sobolev space Hs�R
m� is the completion of S with respect to the norm

js� The Plancherel theorem shows H��R
m� is isomorphic to L��Rm�� More

generally� Hs�R
m� is isomorphic to L� with the measure �� � j�j��s�� d��

Replacing �� � j�j��s by �� � j�j��s in the de�nition of js gives rise to an
equivalent norm since there exist positive constants ci such that�

c��� � j�j��s � �� � j�j��s � c��� � j�j��s�

In some sense� the subscript �s � counts the number of L� derivatives� If
s � n is a positive integer� there exist positive constants c�� c� so�

c��� � j�j��n �
X
j�j�n

j��j� � c��� � j�j��n�

This implies that we could de�ne

jf j�n �
X
j�j�n

Z
j�� �f j� d� �

X
j�j�n

Z
jD�

x f j� dx

as an equivalent norm for Hn�R
m�� With this interpretation in mind� it is

not surprising that when we extend D�
x to Hs� that j�j L� derivatives are

lost�

Lemma ������ D�
x extends to de�ne a continuous mapD�

x �Hs � Hs�j�j �

Proof� Henceforth we will use C to denote a generic constant� C can
depend upon certain auxiliary parameters which will usually be supressed
in the interests of notational clarity� In this proof� for example� C depends
on �s� �� but not of course upon f � The estimate�

j��j��� � j�j��s�j�j � C�� � j�j��s

implies that�

jD�
x f j�s�� �

Z
j�� �f���j��� � j�j��s�j�j d� � Cjf j�s

for f � S � Since Hs is the closure of S in the norm js� this completes the
proof�
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We can also use the sup norm to measure derivatives� If k is a non�
negative integer� we de�ne�

jf j��k � sup
x�Rm

X
j�j�k

jD�
x f j for f � S �

The completion of S with respect to this norm is a subset of Ck�Rm�
�the continuous functions on Rm with continuous partial derivatives up
to order k�� The next lemma relates the two norms js and j��k � It will
play an important role in showing the weak solutions we will construct to
di�erential equations are in fact smooth�

Lemma ������ Let k be a non�negative integer and let s 
 k � m
�
� If

f � Hs� then f is Ck and there is an estimate jf j��k � Cjf js� �Sobolev
Lemma��

Proof� Suppose �rst k � 
 and f � S � We compute

f�x� �
Z

eix�� �f��� d�

�
Z
feix�� �f����� � j�j��s��g � f�� � j�j���s��g d��

We apply the Cauchy�Schwarz inequality to estimate�

jf�x�j� � jf j�s
Z
�� � j�j���s d��

Since �s 
 m� ��� j�j���s is integrable so jf�x�j � Cjf js� We take the sup
over x � Rm to conclude jf j��� � Cjf js for f � S � Elements of Hs are
the limits in the js norm of elements of S � The uniform limit of continuous
functions is continuous so the elements of Hs are continuous and the same
norm estimate extends to Hs� If k 
 
� we use the estimate�

jD�
x f j��� � CjD�

x f js�j�j � Cjf js for j�j � k and s� k 

m

�

to conclude jf j��k � Cjf js for f � S � A similar argument shows that the
elements of Hs must be Ck and that this estimate continues to hold�

If s 
 t� we can estimate �� � j�j��s � �� � j�j��t� This implies that
jf js � jf jt so the identity map on S extends to de�ne an injection of
Hs � Ht which is norm non�increasing� The next lemma shows that this
injection is compact if we restrict the supports involved�
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Lemma ������ Let ffng � S be a sequence of functions with support in
a �xed compact set K� We suppose there is a constant C so jfnjs � C for
all n� Let s 
 t� There exists a subsequence fnk which converges in Ht�
�Rellich lemma��

Proof� Choose g � C��R
m� which is identically � on a neighborhood of

K� Then gfn � fn so by Lemma ������c� �fn � �g � �fn� We let �j �
�

��j
then �j��g � �fn� � �j�g � �fn so that�

j�j �fn���j �
Z
jf�j�g�� � ��g � �fn���j d��

We apply the Cauchy�Schwarz inequality to estimate�

j�j �fn���j � jfnjs �
�Z

j�j�g�� � ��j��� � j� j���s d�
����

� C � h���

where h is some continuous function of �� A similar estimate holds for
j �fn���j� This implies that the f �fng form a uniformly bounded equi�con�
tinuous family on compact � subsets� We apply the Arzela�Ascoli theorem
to extract a subsequence we again label by fn so that �fn��� converges
uniformly on compact subsets� We complete the proof by verifying that fn
converges in Ht for s 
 t� We compute�

jfj � fkj�t �
Z
j �fj � �fkj��� � j�j��t d��

We decompose this integral into two parts� j�j � r and j�j � r� On j�j � r
we estimate �� � j�j��t � �� � r��t�s�� � j�j��s so that�

Z
j�j�r

j �fj � �fkj��� � j�j��t d� � �� � r��t�s
Z
j �fj � �fkj��� � j�j��s d�

� �C�� � r��t�s �

If 	 
 
 is given� we choose r so that �C�� � r��t�s � 	� The remaining

part of the integral is over j�j � r� The �fj converge uniformly on compact
subsets so this integral can be bounded above by 	 if j� k 
 j�	�� This
completes the proof�

The hypothesis that the supports are uniformly bounded is essential� It
is easy to construct a sequence ffng with jfnjs � � for all n and such that
the supports are pair�wise disjoint� In this case we can �nd 	 
 
 so that
jfj � fkjt 
 	 for all �j� k� so there is no convergent subsequence�



And Sobolev Spaces 

We �x  � S and let ��x� � �	x�� We suppose �
� � � and �x f � S �
We compute�

D�
x �f � �f� � ��� ��D

�
x f � terms of the form 	jD�

x�	x�D
	
xf�

As 	 � 
� these other terms go to zero in L�� Since � � � pointwise�
�����Dxf goes to zero in L�� This implies �f � f in Hn for any n � 

as 	� 
 and therefore �f � f in Hs for any s� If we take  � C�� �Rm��
this implies C�� �Rm� is dense in Hs for any s�

Each Hs space is a Hilbert space so it is isomorphic to its dual� Be�
cause there is no preferred norm for Hs� it is useful to obtain an invariant
alternative characterization of the dual space H�

s �

Lemma ����
� The L� pairing which maps S 	S � C extends to a map
of Hs	H�s � C which is a perfect pairing and which identi�es H�s with
H�
s � That is�

�a� j�f� g�j � jf jsjgj�s for f� g � S �
�b� given f � S there exists g � S so �f� g� � jf jsjgj�s and we can de�ne

jf js � sup
g�S � g 	��

j�f� g�j
jgj�s �

Proof� This follows from the fact that Hs is L
� with the weight function

���j�j��s andH�s is L� with the weight function ���j�j���s� We compute�

�f� g� � � �f� �g� �
Z

�f����� � j�j��s���g����� � j�j���s�� d�

and apply the Cauchy�Schwartz inequality to prove �a��

To prove part �b�� we note jf js � sup
g�S � g 	��

j�f� g�j
jgj�s � We take g to be

de�ned by�

�g � �f�� � j�j��s � S

and note that �f� g� � � �f� �g� � jf j�s and that jgj��s � jf j�s to see that
equality can occur in �a� which proves �b�

If s 
 t 
 u then we can estimate�

�� � j�j��t � 	�� � j�j��s � C�	��� � j�j��u

for any 	 
 
� This leads immediately to the useful estimate�
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Lemma ������ Let s 
 t 
 u and let 	 
 
 be given� Then

jf jt � 	jf js � C�	�jf ju�

If V is a �nite dimensional vector space� let C��V � be the space of
smooth complex valued maps of Rm � V � We choose a �xed Hermitian
inner product on V and de�ne S �V � and Hs�V � as in the scalar case� If
dim�V � � k and if we choose a �xed orthonormal basis for V � then S �V �
and Hs�V � become isomorphic to the direct sum of k copies of S and of
Hs� Lemmas ����� through ����� extend in the obvious fashion�
We conclude this subsection with an extremely useful if elementary esti�

mate�

Lemma ������ �Peetre�s Inequality�� Let s be real and x� y � Rm�
Then �� � jx� yj�s � �� � jyj�s�� � jxj�jsj�
Proof� We suppose �rst s 
 
� We raise the triangle inequality�

� � jx� yj � � � jxj� jyj � �� � jyj��� � jxj�

to the sth power to deduce the desired inequality� We now suppose s � 
�
A similar inequality�

�� � jyj��s � �� � jx� yj��s�� � jxj��s

yields immediately�

�� � jx� yj�s � �� � jyj�s�� � jxj��s

to complete the proof�
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A linear partial di�erential operator of order d is a polynomial expression
P � p�x�D� �

P
j�j�d a��x�D

�
x where the a��x� are smooth� The symbol

�P � p is de�ned by�

�P � p�x� �� �
X
j�j�d

a��x��
�

and is a polynomial of order d in the dual variable �� It is convenient to
regard the pair �x� �� as de�ning a point of the cotangent space T ��Rm��
we will return to this point again when we discuss the e�ect of coordinate
transformations� The leading symbol �LP is the highest order part�

�LP �x� �� �
X
j�j�d

a��x��
�

and is a homogeneous polynomial of order d in ��
We can use the Fourier inversion formula to express�

Pf�x� �
Z

eix��p�x� �� �f��� d� �
Z

ei�x�y��� p�x� ��f�y� dyd�

for f � S � We note that since the second integral does not converge abso�
lutely� we cannot interchange the dy and d� orders of integration� We use
this formalism to de�ne the action of pseudo�di�erential operators ��DO�s�
for a wider class of symbols p�x� �� than polynomials� We make the follow�
ing

Definition� p�x� �� is a symbol of order d and we write p � Sd if

�a� p�x� �� is smooth in �x� �� � Rm 	Rm with compact x support�
�b� for all ��� �� there are constants C��� such that

jD�
xD

�
� p�x� ��j � C��� �� � j�j�d�j�j�

For such a symbol p� we de�ne the associated operator P �x�D� by�

P �x�D��f��x� �
Z

eix��p�x� �� �f��� d� �
Z

e�x�y��� p�x� ��f�y� dy d�

as a linear operator mapping S � S �
A di�erential operator has as its order a positive integer� The order of

a pseudo�di�erential operator is not necessarily an integer� For example� if
f � C�� �Rm�� de�ne�

p�x� �� � f�x��� � j�j��d�� � Sd for any d � R�
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This will be a symbol of order d� If p � Sd for all d� then we say that
p � S�� is in�nitely smoothing� We adopt the notational convention
of letting p� q� r denote symbols and P � Q� R denote the corresponding
�DO�s�
Because we shall be interested in problems on compact manifolds� we

have assumed the symbols have compact x support to avoid a number of
technical complications� The reader should note that there is a well de�ned
theory which does not require compact x support�

When we discuss the heat equation� we shall have to consider a wider
class of symbols which depend on a complex parameter� We postpone
discussion of this class until later to avoid unnecessarily complicating the
discussion at this stage� We shall phrase the theorems and proofs of this
section in such a manner that they will generalize easily to the wider class
of symbols�
Our �rst task is to extend the action of P from S to Hs�

Lemma ��	��� Let p � Sd then jPf js�d � Cjf js for f � S � P extends
to a continuous map P �Hs � Hs�d for all s�

Proof� We compute Pf�x� �
R
eix��p�x� �� �f��� d� so that the Fourier

transform is given by�

cPf��� � Z eix����
�p�x� �� �f��� d� dx�

This integral is absolutely convergent since p has compact x support so we
may interchange the order of integration� If we de�ne

q�� � �� �
Z

e�ix�
p�x� �� dx

as the Fourier transform in the x direction� then

cPf��� � Z q�� � �� �� �f��� d��

By Lemma ������ jPf js�d � sup
g�S

j�Pf� g�j
jgjd�s � We compute�

�Pf� g� �
Z

q�� � �� �� �f��� �g��� d� d��

De�ne�
K�� � �� � q�� � �� ���� � j�j��s�� � j� j�s�d

then�

�Pf� g� �
Z

K�� � �� �f����� � j�j�s �g����� � j� j�d�s d� d��
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We apply the Cauchy�Schwarz inequality to estimate�

j�Pf� g�j �
�Z

jK�� � ��j j �f���j��� � j�j��s d� d�
����

	
�Z

jK�� � ��j j�g���j��� � j� j��d��s d� d�
����

�

We complete the proof by showingZ
jK�� � ��j d� � C and

Z
jK�� � ��j d� � C

since then j�Pf� g�j � Cjf jsjgjd�s�
By hypothesis� p has suppport in a compact set K and we have estimates�

jD�
x p�x� ��j � C��� � j�j�d�

Therefore�

j��q�� � ��j �
����Z e�ix�
D�

x p�x� �� dx

���� � C��� � j�j�d vol�K��

Therefore� for any integer k� jq�� � ��j � Ck��� j�j�d��� j� j��k vol�K� and�

jK�� � ��j � Ck�� � j�j�d�s�� � j� j�s�d�� � j� � �j��k vol�K��

We apply Lemma ����	 with x� y � � and y � � to estimate�

jK�� � ��j � Ck�� � j� � �j�jd�sj�k vol�K��

If we choose k 
 m
� � jd� sj� then this will be integrable and complete the

proof�

Our next task is to show that the class of �DO�s forms an algebra under
the operations of composition and taking adjoint� Before doing that� we
study the situation with respect to di�erential operators to motivate the
formulas we shall derive� Let P �

P
� p��x�D

�
x and let Q �

P
� q��x�D

�
x

be two di�erential operators� We assume p and q have compact x support�
It is immediate that�

P � �
X
�

D�
x p

�
� and PQ �

X
���

p��x�D
�
x q��x�D

�
x

are again di�erential operators in our class� Furthermore� using Leibnitz�s
rule

D�
x �fg� �

X
��	��

D�
x �f� �D	

x�g� �
��

����
�

d�� ��
��	 � � �	 � �� � ���

��
�
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it is an easy combinatorial exercise to compute that�

��P �� �
X
�

d��D
�
x p

���� and ��PQ� �
X
�

d�� p �D�
x q��� �

The perhaps surprising fact is that these formulas remain true in some
sense for �DO�s� only the sums will become in�nite rather than �nite�

We introduce an equivalence relation on the class of symbols by de�ning
p 
 q if p � q � S�� � We note that if p � S�� then P �Hs � Ht for all
s and t by Lemma ������ Consequently by Lemma ������ P �Hs � C�� for
all s so that P is in�nitely smoothing in this case� Thus we mod out by
in�nitely smoothing operators�
Given symbols pj � Sdj where dj � ��� we write

p 

�X
j��

pj

if for every d there is an integer k�d� such that k � k�d� implies that

p �Pk
j�� pj � Sd� We emphasize that this sum does not in fact need to

converge� The relation p 
P pj simply means that the di�erence between
P and the partial sums of the Pj is as smoothing as we like� It will turn out
that this is the appropriate sense in which we will generalize the formulas
for ��P �� and ��PQ� from di�erential to pseudo�di�erential operators�
Ultimately� we will be interested in operators which are de�ned on com�

pact manifolds� Consequently� it poses no di�culties to restrict the domain
and the range of our operators� Let U be a open subset of Rm with com�
pact closure� Let p�x� �� � Sd have x support in U � We restrict the domain
of the operator P to C�� �U� so P �C�� �U� � C�� �U�� Let �d�U� denote
the space of all such operators� For d � d
� then �d�U� � �d��U�� We
de�ne

��U� �
�
d

�d�U� and ����U� �
	
d

�d�U�

to be the set of all pseudo�di�erential operators on U and the set of in�nitely
smoothing pseudo�di�erential operators on U �
More generally� let p�x� �� be a matrix valued symbol� we suppose the

components of p all belong to Sd� The corresponding operator P is given
by a matrix of pseudo�di�erential operators� P is a map from vector val�
ued functions with compact support in U to vector valued functions with
compact support in U � We shall not introduce separate notation for the
shape of p and shall continue to denote the collection of all such operators
by �d�U�� If p and q are matrix valued and of the proper shape� we de�ne
p �q and also the operator P �Q by matrix product and by composition� We
also de�ne p� and P � to be the matrix adjoint and the operator adjoint so
that �P �f� g� � �f� P �g� where f and g are vector valued and of compact
support� Before studying the algebra structure on ��U�� we must enlarge
the class of symbols which we can admit�
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Lemma ��	�	� Let r�x� �� y� be a matrix valued symbol which is smooth
in �x� �� y�� We suppose r has compact x support inside U and that there
are estimates�

jD�
xD

�
�D

	
y rj � C����	 �� � j�j�d�j�j

for all multi�indices ��� �� ��� If f is vector valued with compact support
in U � we de�ne�

Rf�x� �
Z

ei�x�y��� r�x� �� y�f�y� dyd��

Then this operator is in �d�U� and the symbol is given by�

�R�x� �� 

�X

�

d��D
�
y r�x� �� y����

������
x�y

�

Proof� We note that any symbol in Sd belongs to this class of operators
if we de�ne r�x� �� y� � p�x� ��� We restricted to vector valued functions
with compact support in U � By multiplying r by a cut�o� function in y
with compact support which is � over U � we may assume without loss of
generality the y support of r is compact as well� De�ne�

q�x� �� �� �
Z

e�iy�
r�x� �� y� dy

to be the Fourier transform of r in the y variable� Using Lemma ����� we

see d�rf� � �r � �f � This implies that�

Z
e�iy�� r�x� �� y�f�y� dy �

Z
q�x� �� �� �� �f��� d��

The argument given in the proof of Lemma ����� gives estimates of the
form�

jq�x� �� ��j � Ck�� � j�j�d�� � j� j��k and j �f���j � Ck�� � j� j��k

for any k� Consequently�

jq�x� �� �� �� �f���j � Ck�� � j�j�d�� � j� � � j��k�� � j� j��k �

We apply Lemma ����	 to estimate�

jq�x� �� � � �� �f���j � Ck�� � j�j�jdj�k�� � j� j�jdj�k



�
 ��	� Pseudo�Differential Operators

so this is absolutely integrable� We change the order of integration and
express�

Rf�x� �
Z

eix�� q�x� �� �� �� �f��� d� d��

We de�ne�

p�x� �� �
Z

eix���
� q�x� �� � � �� d�

and compute�

Rf�x� �
Z

eix�
p�x� �� �f��� d�

is a pseudo�di�erential operator once it is veri�ed that p�x� �� is a symbol
in the correct form�
We change variables to express�

p�x� �� �
Z

eix�� q�x� � � � � �� d�

and estimate�

jq�x� � � � � ��j � Ck�� � j� � � j�d�� � j�j��k
� Ck�� � j� j�d�� � j�j�jdj�k �

This is integrable so jp�x� ��j � C 
k�� � j� j�d� Similar estimates on jD�
xD

�



q�x� � � � � ��j which arise from the given estimates for r show that p � Sd

so that R is a pseudo�di�erential operator�
We use Taylor�s theorem on the middle variable of q�x� ��� � �� to expand�

q�x� � � � � �� �
X
j�j�k

d�
 q�x� � � ���
�

��
� qk�x� � � ���

The remainder qk decays to arbitrarily high order in ��� �� and after inte�
gration gives rise to a symbol in Sd�k which may therefore be ignored� We
integrate to conclude

p�x� ���
X
j�j�k

Z
eix��

d�
 q�x� � � ���
�

��
d� � remainder

�
X
j�j�k

d�
D
�
y r�x� � � y�

��

����
x�y

� a remainder

using Lemma ������ This completes the proof of the lemma�

We use this technical lemma to show that the pseudo�di�erential opera�
tors form an algebra�
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Lemma ��	��� Let P � �d�U� and let Q � �e�U�� Then�
�a� If U 
 is any open set with compact closure containing U � then P � �
�d�U


� and ��P �� 
P� d
�
�D

�
x p

���� �
�b� Assume that P and Q have the proper shapes so PQ and pq are de�ned�
Then PQ � �d�e�U� and ��PQ� 
P� d

�
� p �D�

x q��� �

Proof� The fact that P � lies in a larger space is only a slight bit of
technical bother� this fact plays an important role in considering boundary
value problems of course� Let �f� g� � f � g be the pointwise Hermitian
inner product� Fix  � C�� �U 
� to be identically � on U and compute�

�Pf� g� �
Z

ei�x�y��� p�x� ���y�f�y� � g�x� dy d� dx

�
Z

f�y� � ei�y�x��� p��x� ���y�g�x� dyd� dx

since the inner product is Hermitian� By approximating p��x� �� by func�
tions with compact � support� we can justify the use of Fubini�s theorem
to replace dy d� dx by dx d� dy and express�

�Pf� g� �
Z

f�y� � ei�y�x��� p��x� ���y�g�x� dx d�dy
� �f� P �g�

where we de�ne�

P �g�y� �
Z

ei�y�x��� p��x� ���y�g�x� dx d��

This is an operator of the form discussed in Lemma ����� so P � � �d�U

�

and we compute�

��P �� 

X
�

d��D
�
x p

����

since  � � on the support of p� This completes the proof of �a�� We note
that we can delete the factor of  from the expression for P �g since it was
only needed to prove P � was a �DO�
We use �a� to prove �b�� Since�

Q�g�y� �
Z

ei�y�x��� q��x� ��g�x� dx d�

the Fourier inversion formula implies�

d�Q�g� � Z e�ix�� q��x� ��g�x� dx�
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If !q is the symbol of Q�� then we interchange the roles of Q and Q� to see�

d�Qg� � Z e�ix�� !q��x� ��g�x� dx�

Therefore�

PQg�x� �
Z

eix��p�x� ��d�Qg���� d�
�
Z

ei�x�y��� p�x� ��!q��y� ��g�y� dyd�

which is an operator of the form discussed in Lemma ����� if r�x� �� y� �
p�x� ��!q��y� ��� This proves PQ is a pseudo�di�erential operator of the
correct order� We compute the symbol of PQ to be�



X
�

d��D
�
y �p�x� ��!q

��y� ������ evaluated at x � y�

We use Leibnitz�s formula and expand this in the form�



X
��	

d�� p�x� ��D
�
y d

	
�D

	
y !q
������ �

The sum over � yields the symbol of Q�� � Q so we conclude �nally

��PQ� 

X
�

d�� p�x� ��D
�
xq�x� �����

which completes the proof�

Let K�x� y� be a smooth matrix valued function with compact x support
in U � If f is vector valued with compact support in U � we de�ne�

P �K��f��x� �
Z

K�x� y�f�y� dy�

Lemma ��	��� Let K�x� y� be smooth with compact x support in U � then
P �K� � ����U��

Proof� We let ��� � C�� �Rm� with
R
��� d� � �� De�ne�

r�x� �� y� � ei�y�x��� ���K�x� y�

then this is a symbol in S�� of the sort discussed in Lemma ������ It
de�nes an in�nitely smoothing operator� It is immediate that�

P �K��f��x� �
Z

ei�x�y��� r�x� �� y�f�y� dyd��

Conversely� it can be shown that any in�nitely smoothing map has a
smooth kernel� In general� of course� it is not possible to represent an ar�
bitrary pseudo�di�erential operator by a kernel� If P is smoothing enough�
however� we can prove�
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Lemma ��	��� Let r satisfy the hypothesis of Lemma 
���� where d �
�m � k� We de�ne K�x� y� �

R
ei�x�y��� r�x� �� y� d�� Then K is Ck in

�x� y� and Rf�x� �
R
K�x� y�f�y� dy�

Proof� If we can show K is well de�ned� then the representation of R in
terms of the kernel K will follow from Fubini�s theorem� We estimate�

D�
xD

�
yK�x� y� �

X
�������
�������

�� ��

������ ��� ���
����j��j

	
�Z

ei�x�y��� ������D��
x D��

y r�x� �� y� d�

�
�

Since we can estimate�

j������D��
x D��

y r�x� �� y�j � C�� � j�j�d�j�j�j�j

this will be integrable for j�j�j�j � k� ThusK is Ck and the representation
of R follows immediately�

In Lemma ����� we computed the symbol of the pseudo�di�erential op�
erator de�ned by r�x� �� y� in terms of d��D

�
y r when x � y� This implies

the singular �i�e�� the non�smoothing part� of R is concentrated near the
diagonal x � y� We make this more precise�

Lemma ��	�
� Let r�x� �� y� satisfy the hypothesis of Lemma 
����� Sup�
pose the x support of r is disjoint from the y support of r� then R is in�nitely
smoothing and is represented by a smooth kernel function K�x� y��

Proof� We would like to de�ne K�x� y� �
R
e�x�y��� r�x� �� y� d�� Un�

fortunately� this integral need not converge in general� By hypothesis�
jx�yj � 	 
 
 on the support of r� We de�ne the Laplacian "� �

P
� D

�
��
�

Since "�e
i�x�y��� � jx�yj�ei�x�y��� we integrate by parts in a formal sense

k times to express�

Rf�x� �
Z

ei�x�y��� jx� yj��k"k
� r�x� �� y�f�y� dyd��

This formal process may be justi�ed by �rst approximating r by a function
with compact � support� We now de�ne

K�x� y� �
Z

ei�x�y��� jx� yj��k"k
� r�x� �� y� d�

for any k su�ciently large� Since "k
� r decays to arbitrarily high order in

�� we use the same argument as that given in Lemma ����� to show that
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K�x� y� is arbitrarily smooth in �x� y� and hence is C�� This completes
the proof�

We note that in general K�x� y� will become singular at x � y owing to
the presence of the terms jx� yj��k if we do not assume the support of x
is disjoint from the support of y�
A di�erential operator P is local in the sense that if f � 
 on some open

subset of U � then Pf � 
 on that same subset since di�erentiation is a
purely local process� �DO�s are not local in general since they are de�ned
by the Fourier transform which smears out the support� Nevertheless� they
do have a somewhat weaker property� they do not smear out the singular
support of a distribution f � More precisely� let f � Hs� If  � C�� �U��
we de�ne the map f �� f � If we take r�x� �� y� � �x� and apply Lemma
������ then we see that this is a pseudo�di�erential operator of order 
�
Therefore f � Hs as well� This gives a suitable notion of restriction� We
say that f is smooth on an open subset U 
 of U if and only if f � C� for
every such � An operator P is said to be pseudo�local if f is smooth on
U 
 implies Pf is smooth on U 
�

Lemma ��	��� Pseudo�di�erential operators are pseudo�local�

Proof� Let P � �d�U� and let f � Hs� Fix x � U 
 and choose  �
C�� �U 
� to be identically � near x� Choose � � C�� �U 
� with support
contained in the set where  is identically �� We must verify that �Pf is
smooth� We compute�

�Pf � �Pf � �P ��� �f�

By hypothesis� f is smooth so �Pf is smooth� The operator �P ��� �
is represented by a kernel of the form ��x�p�x� ���� � �y�� which has
disjoint x and y support� Lemma ����� implies �P �� � �f is smooth
which completes the proof�

In Lemmas ����� and ���� we expressed the symbol of an operator as a
in�nite asymptotic series� We show that the algebra of symbols is complete
in a certain sense�

Lemma ��	��� Let pj � Sdj �U� where dj � ��� Then there exists
p 
Pj pj which is a symbol in our class� p is a unique modulo S�� �

Proof� We may assume without loss of generality that d� 
 d� 
 � � � �
��� We will construct p � Sd� � The uniqueness is clear so we must
prove existence� The pj all have support inside U � we will construct p with
support inside U 
 where U 
 is any open set containing the closure of U �
Fix a smooth function  such that�


 �  � �� ��� � 
 for j�j � �� ��� � � for j�j � ��
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We use  to cut away the support near � � 
� Let tj � 
 and de�ne�

p�x� �� �
X
j

�tj��pj�x� ���

For any �xed �� �tj�� � 
 for all but a �nite number of j so this sum is
well de�ned and smooth in �x� ��� For j 
 � we have

jpj�x� ��j � Cj�� � j�j�dj � Cj�� � j�j�d� �� � j�j�dj�d� �

If j�j is large enough� �� � j�j�dj�d� is as small as we like and therefore by
passing to a subsequence of the tj we can assume

j�tj��pj�x� ��j � ��j ��� j�j�d� for j 
 ��

This implies that jp�x� ��j � �C� � ���� � j�j�d� � We use a similar ar�
gument with the derivatives and use a diagonalization argument on the
resulting subsequences to conclude p � Sd� The supports of all the pj are

contained compactly in U so the support of p is contained in U which is
contained in U 
�
We now apply exactly the same argument to pd� � � � � to assume that

pd� � � � � � Sd� � We continue in this fashion and use a diagonalization
argument on the resulting subsequences to conclude in the end that

�X
j�j�

�tj��pj�x� �� � Sk for k � dj� �

Since pj � �tj��pj � S�� � this implies p�Pj�
j�� pj � Sk and completes

the proof�

If K�x� y� is smooth with compact x� y support in U � then P �K� �
����U� de�nes a continuous operator from Hs � Ht for any s� t� Let
jP js�t denote the operator norm so jPf jt � jP js�tjf js for any f � S � It will
be convenient to be able to estimate jKj��k in terms of these norms�

Lemma ��	�� Let K�x� y� be a smooth kernel with compact x� y support
in U � Let P � P �K� be the operator de�ned by K� If k is a non�negative
integer� then jKj��k � C�k�jP j�k�k
Proof� By arguing separately on each entry in the matrix K� we may
reduce ourselves to the scalar case� Suppose �rst k � 
� Choose  �
C�� �Rm� positive with

R
�x� dx � �� Fix points �x�� y�� � U 	 U and

de�ne�

fn�x� � nm�n�x� x��� and gn�y� � nm�n�y � y����
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Then if n is large� fn and gn have compact support in U � Then�

K�x�� y�� � lim
n��

Z
fn�x�K�x� y�gn�y� dy dx � lim

n��
�fn� Pgn�

by Lemma ������ We estimate

j�fn� Pgn�j � jP j���jfnj�jgnj� � jP j���jj��
to complete the proof in this case�

If j�j � k� j�j � k then�

D�
xD

�
yK�x� y� � lim

n��

Z
fn�x�



D�
xD

�
yK�x� y�

�
gn�y� dy dx

� lim
n��

Z �
D�
x fn�K�x� y��D�

y gn�y�
�
dy dx

� lim
n��

�D�
x fn� PD

�
y gn��

We use Lemma ����� to estimate this by

jD�
x fnj�k jPD�

y gnjk � jfnj�jP j�k�k jD�
y gnj�k

� jfnj�jgnj�jP j�k�k � jP j�k�k jj��
to complete the proof�



���� Ellipticity and Pseudo�Di�erential

Operators on Manifolds�

The norms we have given to de�ne the spacesHs depend upon the Fourier
transform� In order to get a more invariant de�nition which can be used
to extend these notions to manifolds� we must consider elliptic pseudo�
di�erential operators�
Let p � Sd�U� be a square matrix and let U� be an open set with

U�  U � We say that p is elliptic on U� if there exists an open subset U�

with U�  U�  U�  U and if there exists q � S�d such that pq�I � S��

and qp�I � S�� over U�� �To say that r � S�� over U� simply means the
estimates of section ��� hold over U�� Equivalently� we assume r � S��

for every  � C�� �U���� This constant technical fuss over domains will be
eliminated very shortly when we pass to considering compact manifolds�
the role of U� is to ensure uniform estimates over U��
It is clear that p is elliptic over U� if and only if there exists constants

C� and C� such that p�x� �� is invertible for j�j � C� and

jp�x� ����j � C��� � j�j��d for j�j � C�� x � U��

We de�ne q � ���p���x� �� where ��� is a cut�o� function identically 

near � � 
 and identically � near � ��� We used similar cuto� functions
in the proof of Lemma ����	� Furthermore� if p� � Sd�� � then p is elliptic
if and only if p � p� is elliptic� adding lower order terms does not alter
the ellipticity� If p is a polynomial and P is a di�erential operator� then
p is elliptic if and only if the leading symbol �L�p� �

P
j�j�d p��x��

� is

invertible for � �� 
�
There exist elliptic operators of all orders� Let �x� � C�� and de�ne

the symbol p�x� �� � �x��� � j�j��d��I� then this is an elliptic symbol of
order d whenever �x� �� 
�

Lemma ������ Let P � �d�U� be elliptic over U� then�
�a� There exists Q � ��d�U� such that PQ � I 
 
 and QP � I 
 

over U� �i�e�� �PQ � I� and �QP � I� are in�nitely smoothing for any
 � C�� �U����
�b� P is hypo�elliptic over U�� i�e�� if f � Hs and if Pf is smooth over U�

then f is smooth over U��
�c� There exists a constant C such that jf jd � C�jf j� � jPf j�� for f �
C�� �U��� �Garding�s inequality��

Proof� We will de�ne Q to have symbol q� � q� � � � � where qj � S�d�j �
We try to solve the equation

��PQ� I� 

X
��j

d�� p �D�
x qj���� I 
 
�
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When we decompose this sum into elements of S�k � we conclude we must
solve X

j�j�j�k
d�� p �D�

x qj��� �

�
I if k � 


 if k �� 
�

We de�ne q� � q and then solve the equation inductively to de�ne�

qk � �q �
X

j�j�j�k
j�k

d�� p �D�
x qj��� �

This de�nes Q so ��PQ�I� 
 
 over U�� Similarly we could solve ��Q�P�
I� 
 
 over U�� We now compute ��Q�Q�� � ��Q�Q�PQ����Q�PQ�
Q�� � ���I �Q�P �Q� � ��Q��QP � I�� 
 
 over U� so that in fact Q and
Q� agree modulo in�nitely smoothing operators� This proves �a��
Let f � Hs with Pf smooth over U�� and choose  � C��U��� We

compute�
f � �I �QP �f � QPf�

As �I � QP � 
 
� �I � QP �f is smooth� Since Pf is smooth over U��
QPf is smooth since Q is pseudo�local� Thus f is smooth which proves
�b��
Finally� we choose  � C�� �U�� to be identically � on U�� Then if

f � C�� �U���

jf jd � jf jd � j�I �QP �f � QPf jd � j�I �QP �f jd � jQPf jd�
We estimate the �rst norm by Cjf j� since �I � QP � is an in�nitely
smoothing operator� We estimate the second norm by CjPf j� since Q
is a bounded map from L� to Hd� This completes the proof�

We note �c� is immediate if d � 
 since jd � j�� If d 
 
� jf j� � jPf j� �
C�jf jd� so this gives a equivalent norm on Hd�

We now consider the e�ect of changes of coordinates on our class of

pseudo�di�erential operators� Let h�U � eU be a di�eomorphism� We

de�ne h��C��eU�� C��U� by h�f�x� � f�h�x��� If P is a linear operator

on C��U�� we de�ne h�P acting on C��eU� by �h�P �f � �h����P �h�f��
The fundamental lemma we shall need is the following�

Lemma ����	� Let h�U � eU be a di�eomorphism� Then�

�a� If P � �d�U� then h�P � �d�eU�� Let p � ��P � and de�ne h�x� � x�
and dh�x�t�� � �� Let p��x�� ��� � p�x� �� then ��h�P �� p� � Sd�� �
�b� Let U� be an open subset with U�  U � There exists a constant C such
that jh�f jd � Cjf jd for all f � C�� �h�U���� In other words� the Sobolev
spaces are invariant�

Proof� The �rst step is to localize the problem� Let fig be a partition
of unity and let Pij � iPj so P �

P
i�j Pij � If the support of i is
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disjoint from the support of j � then Pij is an in�nitely smoothing operator
with a smooth kernel Kij�x� y� by Lemma ������ Therefore h�Pij is also
given by a smooth kernel and is a pseudo�di�erential operator by Lemma
������ Consequently� we may restrict attention to pairs �i� j� such that the
supports of i and j intersect� We assume henceforth P is de�ned by a
symbol p�x� �� y� where p has arbitrarily small support in �x� y��
We �rst suppose h is linear to motivate the constructions of the general

case� Let h�x� � hx where h is a constant matrix� We equate�

hx � x�� hy � y�� ht�� � �

and de�ne
p��x�� ��� y�� � p�x� �� y��

�In the above� ht denotes the matrix transpose of h�� If f � C�� �eU�� we
compute�

�h�P �f�x�� �
Z

ei�x�y��� p�x� �� y�f�hy� dyd�

�
Z

eih
���x��y���� p�h��x�� �� h��y��f�y��

	 j det�h�j�� dy� d��
We now use the identities h���x��y���� � �x��y����� and j det�h�j d�� �
d� to write�

�h�P �f�x�� �
Z

ei�x��y����� p�h��x�� ht��� h��y��f�y�� dy� d��

�
Z

ei�x��y����� p��x�� ��� y��f�y�� dy� d���

This proves that �h�P � is a pseudo�di�erential operator on eU � Since we
don�t need to localize in this case� we compute directly that

��h�P ��x�� ��� � p�h��x�� ht����

We regard �x� �� as giving coordinates for T �M when we expand any co�
vector in the form

P
�i dx

i� This is exactly the transformation for the
cotangent space so we may regard �P as being invariantly de�ned on
T �Rm�
If h is not linear� the situation is somewhat more complicated� Let

x� y � h���x��� h���y�� �
Z �

�

d

dt
fh���tx� � ��� t�y��g dt

�
Z �

�

d�h����tx� � ��� t�y�� � �x� � y�� dt � T �x�� y���x� � y��



	
 ���� Ellipticity and Pseudo�Differential

where T �x�� y�� is a square matrix� If x� � y�� then T �x�� y�� � d�h���
is invertible since h is a di�eomorphism� We localize using a partition of
unity to suppose henceforth the supports are small enough so T �x�� y�� is
invertible for all points of interest�

We set �� � T �x�� y��
t� and compute�

�h�P ��f��x�� �
Z

ei�x�y��� p�x� �� y�f�hy� dyd�

�
Z

eiT �x� �y���x��y���� p�h��x�� �� h��y��f�y��J dy� d�

�
Z

ei�x��y����� p��x�� ��� y��f�y��

	 J j detT �x�� y��j�� dy� d��

where J � j det�dh���j � j detT �y�� y��j� By Lemma ������ this de�nes a
pseudo�di�erential operator of order d such that ��h�P � � p� modulo Sd��

which completes the proof of �a�� Since jdhj is uniformly bounded on U��
jf j� � Cjh�f j� and jh�f j� � Cjf j�� If P is elliptic� then h�P is elliptic of
the same order� For d 
 
� choose P elliptic of order d and compute�

jh�f jd � C�jh�f j� � jPh�f j�� � C�jf j� � j�h�P �f j�� � Cjf jd

which completes the proof of �b� if d � 
� The result for d � 
 follows by
duality using Lemma ������b��

We introduce the spaces Sd�Sd�� and de�ne �L�P � to be the element
de�ned by ��P � in this quotient� Let P and Q be pseudo�di�erential op�
erators of order d� and d� Then PQ is a pseudo�di�erential operator of
order d��d� and �L�PQ� � �L�P ��L�Q� since the remaining terms in the
asymptotic series are of lower order� Similarly �L�P

�� � �L�P ��� If we
de�ne �x� �� as coordinates for T ��Rm� by representing a cotangent vector
at a point x in the form

P
�idx

i� then Lemma ���� implies �L�P � is invari�
antly de�ned on T ��Rm�� If P �

P
� p�D

�
x is a di�erential operator there

is a natural identi�cation of
P
j�j�d p��

� with the image of p in Sd�Sd��

so this de�nition of the leading symbol agrees with that given earlier�
We now extend the results of section ��� to manifolds� Let M be a

smooth compact Riemannian manifold without boundary� Let m be the
dimension of M and let dvol or sometimes simply dx denote the Riemanian
measure on M � In Chapter �� we will use the notation j dvol j to denote
this measure in order to distinguish between measures and m�forms� but
we shall not bother with this degree of formalism here� We restrict to
scalars �rst� Let C��M� be the space of smooth functions on M and let
P �C��M� � C��M� be a linear operator� We say that P is a pseudo�
di�erential operator of order d and write P � �d�M� if for every open chart
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U onM and for every � � � C�� �U�� the localized operator P� � �d�U��
We say that P is elliptic if P� is elliptic where ��x� �� 
� If Q � �d�U��
we let P � Q� for � � � C�� �U�� Lemma ���� implies P is a pseudo�
di�erential operator on M so there exists operators of all orders on M � We
de�ne�

��M� �
�
d

�d�M� and ����M� �
	
d

�d�M�

to be the set of all pseudo�di�erential operators on M and the set of in�
�nitely smoothing operators on M �
In any coordinate system� we de�ne ��P � to the symbol of the operator

P where  � � near the point in question� this is unique modulo S�� �
The leading symbol is invariantly de�ned on T �M � but the total symbol
changes under the same complicated transformation that the total symbol
of a di�erential operator does under coordinate transformations� Since we
shall not need this transformaton law� we omit the statement� it is implicit
in the computations performed in Lemma �����

We de�ne L��M� using the L� inner product

�f� g� �
Z
M

f�x�g�x� dx� jf j�� � �f� f��

We let L��M� be the completion of C��M� in this norm� Let P �C��M��
C��M�� We let P � be de�ned by �Pf� g� � �f� P �g� if such a P � exists�
Lemmas ���� and ���� imply that�

Lemma ������
�a� If P � �d�M�� then P � � �d�M� and �L�P

�� � �L�P ��� In any coor�
dinate chart� ��P �� has a asymptotic expansion given by Lemma 
�����a��
�b� If P � �d�M� and Q � �e�M�� then PQ � �d�e�M� and �L�PQ� �
�L�P ��L�Q�� In any coordinate chart ��PQ� has an asymptotic expansion
given in Lemma 
�����b��

We use a partition of unity to de�ne the Sobolev spaces Hs�M�� CoverM
by a �nite number of coordinate charts Ui with di�eomorphisms hi�Oi �
Ui where the Oi are open subsets of Rm with compact closure� If f �
C�� �Ui�� we de�ne�

jf j�i�s � jh�i f js
where we shall use the superscript �i� to denote the localized norm� Let
fig be a partition of unity subordinate to this cover and de�ne�

jf js �
X

jif j�i�s �
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If � � C��M�� we note that ji�f j�i�s � Cjif j�i�s since multiplication by
� de�nes a �DO of order 
� Suppose fU 
j � O
j � h
j � 
jg is another possible

choice to de�ne j
s� We estimate�

j
jf j
�j�s �
X
i

j
jif j
�j�s �

Since 
jif � C�� �Ui � U 
j�� we can use Lemma ���� �b� to estimate j
�j�s

by j�i�s so

j
jf j
�j�s �
X
i

Cj
jif j�i�s � Cjif j�i�s � Cjf js

so that jf j
s � Cjf js� Similarly jf js � Cjf j
s� This shows these two norms
are equivalent so Hs�M� is de�ned independent of the choices made�

We note that� X
i

fjif j�i�s g� � jf j�s � C
X
i

fjif j�i�s g�

so by using this equivalent norm we conclude the Hs�M� are topologically
Hilbert spaces� If f�ig are given subordinate to the cover Ui with �i � 

and � �

P
i �i 
 
� we let i � �i�� and compute�X
i

j�if j�i�s �
X
i

j�if j�i�s � C
X
i

jif j�i�s � Cjf jsX
i

jif j�i�s �
X
i

j����if j�i�s � C
X
i

j�if j�i�s

to see the norm de�ned by
P

i j�if j�i�s is equivalent to the norm jf js as
well�
Lemma ����� implies that jf jt � jf js if t � s and that the inclusion of

Hs�M� � Ht�M� is compact� Lemma ����� implies given s 
 t 
 u and
	 
 
 we can estimate�

jf jt � 	jf js � C�	�jf ju�

We assume the coordinate charts Ui are chosen so the union Ui � Uj is
also contained in a larger coordinate chart for all �i� j�� We decompose
p � �d�M� as P �

P
i�j Pi�j for Pi�j � iPj � By Lemma ����� we can

estimate�
jiPjf j�i�s � Cjjf j�j�s�d

so jPf js � Cjf js�d and P extends to a continuous map from Hs�d�M��
Hs�M� for all s�
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We de�ne�
jf j��k �

X
i

jif j�i���k

as a measure of the sup norm of the kth derivatives of f � This is independent
of particular choices made� Lemma ����� generalizes to�

jf j��k � Cjf js for s 

m

�
� k�

Thus Hs�M� is a subset of Ck�M� in this situation�
We choose �i � C��Ui� with

P
i �

�
i � � then�

j�f� g�j � j
X
i

��if� �ig�j �
X
i

j��if� �ig�j

� C
X
i

j�if j�i�s j�igj�i��s � Cjf jsjgj�s�

Thus the L� inner product gives a continuous map Hs�M�	H�s�M�� C�

Lemma ������
�a� The natural inclusion Hs � Ht is compact for s 
 t� Furthermore� if
s 
 t 
 u and if 	 
 
� then jf jt � 	jf js � C�	�jf ju�
�b� If s 
 k � m

� then Hs�M� is contained in Ck�M� and we can estimate
jf j��k � Cjf js�
�c� If P � �d�M� then P �Hs�d�M�� Hs�M� is continuous for all s�
�d� The pairing Hs�M�	H�s�M�� C given by the L� inner product is
a perfect pairing�

Proof� We have proved every assertion except the fact �d� that the pair�
ing is a perfect pairing� We postpone this proof brie#y until after we have
discussed elliptic �DO�s�

The sum of two elliptic operators need not be elliptic� However� the
sum of two elliptic operators with positive symbols is elliptic� Let Pi have
symbol ���j�ij��d�� on Ui and let i be a partition of unity� P �

P
i iPii�

this is an elliptic �DO of order d for any d� so elliptic operators exist�
We let P be an elliptic �DO of order d and let �i be identically � on
the support of i� We use these functions to construct Q � ��d�M� so
PQ� I � ����M� and QP � I � ����M�� In each coordinate chart� let
Pi � �iP�i then Pi�Pj � ��� on the support of ij � We construct Qi

as the formal inverse to Pi on the support of i� then Qi �Qj � ��� on
the support of ij since the formal inverse is unique� Modulo ��� we
have P �

P
i iP 


P
i iPi� We de�ne Q �

P
j Qjj and note Q has the

desired properties�
It is worth noting we could also construct the formal inverse using a

Neumann series� By hypothesis� there exists q so qp�I � S�� and pq�I �
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S�� � where p � �L�P �� We construct Q� using a partition of unity so
�L�Q�� � q� We let Qr and Ql be de�ned by the formal series�

Ql � Q�

�X
k

����k�PQ� � I�k
�

Qr �

�X
k

����k�Q�P � I�k
�
Q�

to construct formal left and right inverses so Q � Qr � Ql modulo ��� �
Let P be elliptic of order d 
 
� We estimate�

jf jd � j�QP � I�f jd � jQPf jd � Cjf j� � CjPf j� � Cjf jd

so we could de�ne Hd using the norm jf jd � jf j� � jPf j�� We specialize
to the following case� Let Q be elliptic of order d�� and let P � Q�Q� ��
Then Q�Q is self�adjoint and non�negative so we can estimate jf j� � jPf j�
and we can de�ne jf jd � jPf j� in this case� Consequently�

jf j�d � �Pf� Pf� � �f� P �Pf� � �f� g��

for g � P �Pf � Since jP �Pf j�d � Cjf jd� we conclude�

jf jd � �Pf� Pf��jf jd � C�f� g��jgj�d � C sup
h
j�f� h�j�jhj�d�

Since the pairing of Hd with H�d is continuous� this proves Hd � H�
�d�

Topologically these are Hilbert spaces so we see dually that H�
d � H�d�

This completes the proof of Lemma ����� We also note that we have
proved�

Lemma ������ Let P � �d be elliptic� Then there exists Q � ��d so
PQ� I � ��� and QP � I � ��� � P is hypoelliptic� If d 
 
� we can
de�ne hd by using the norm jf j� � jPf j� and de�ne H�d by duality�

If V is a vector bundle� we cover M by coordinate charts Ui over which
V is trivial� We use this cover to de�ne Hs�V � using a partition of unity�
We shall always assume V has a given �ber metric so L��V � is invariantly
de�ned� P �C��V � � C��W � is a �DO of order d if P� is given by
a matrix of d th order �DO�s for � � � C�� �U� for any coordinate chart
U over which V and W are trivial� Lemmas ���� and ���� generalize
immediately to this situation�
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Index of a Fredholm Operator�

Elliptic �DO�s are invertible modulo ��� � Lemma ���� will imply that
elliptic �DO�s are invertible modulo compact operators and that such op�
erators are Fredholm� We brie#y review the facts we shall need concerning
Fredholm and compact operators�

LetH be a Hilbert space and let END�H� denote the space of all bounded
linear maps T �H � H� There is a natural norm on END�H� de�ned by�

jT j � sup
x�H

jTxj
jxj

where the sup ranges over x �� 
� END�H� becomes a Banach space under
this norm� The operations of addition� composition� and taking adjoint are
continuous� We let GL�H� be the subset of END�H� consisting of maps T
which are ��� and onto� The inverse boundedness theorem shows that if
T � END�H� is ��� and onto� then there exists 	 
 
 such that jTxj � 	jxj
so T�� is bounded as well� The Neuman series�

��� z��� �
�X
k��

zk

converges for jzj � �� If jI � T j � �� we may express T � I � �I � T �� If
we de�ne

S �
�X
k��

�I � T �k

then this converges in END�H� to de�ne an element S � END�H� so
ST � TS � I� Furthermore� this shows jT j�� � ��� jI � T j��� so GL�H�
contains an open neighborhood of I and the map T � T�� is continuous
there� Using the group operation on GL�H�� we see that GL�H� is a open
subset of END�H� and is a topological group�

We say that T � END�H� is compact if T maps bounded sets to pre�
compact sets$i�e�� if jxnj � C is a bounded sequence� then there exists a
subsequence xnk so Txnk � y for some y � H� We let COM�H� denote
the set of all compact maps�

Lemma ������ COM�H� is a closed ��sided ��ideal of END�H��

Proof� It is clear the sum of two compact operators is compact� Let
T � END�H� and let C � COM�H�� Let fxng be a bounded sequence in
H then fTxng is also a bounded sequence� By passing to a subsequence�
we may assume Cxn � y and CTxn � z� Since TCxn � Ty� this implies
CT and TC are compact so COM�H� is a ideal� Next let Cn � C in
END�H�� and let xn be a bounded sequence in H� Choose a subsequence
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x�n so C�x
�
n � y�� We choose a subsequence of the x�n so C�x

�
n � y��

By continuing in this way and then using the diagonal subsequence� we
can �nd a subsequence we denote by xnn so Ck�x

n
n� � yk for all k� We

note jCxnn � Ckx
n
nj � jC � Ckjc� Since jC � Ckj � 
 this shows the

sequence Cxnn is Cauchy so C is compact and COM�H� is closed� Finally
let C � COM�H� and suppose C� �� COM�H�� We choose jxnj � � so
jC�xn � C�xmj � 	 
 
 for all n� m� We let yn � C�xn be a bounded
sequence� then �Cyn � Cym� xn � xm� � jC�xn � C�xmj� � 	�� Therefore
	� � jCyn � Cymjjxn � xmj � �jCyn � Cymj so Cyn has no convergent
subsequence� This contradicts the assumption C � COM�H� and proves
C� � COM�H��

We shall assume henceforth that H is a separable in�nite dimensional
space� Although any two such Hilbert spaces are isomorphic� it is conven�
ient to separate the domain and range� If E and F are Hilbert spaces� we
de�ne HOM�E�F � to be the Banach space of bounded linear maps from
E to F with the operator norm� We let ISO�E�F � be the set of invert�
ible maps in HOM�E�F � and let COM�E�F � be the closed subspace of
HOM�E�F � of compact maps� If we choose a �xed isomorphism of E with
F � we may identify HOM�E�F � � END�E�� ISO�E�F � � GL�E�� and
COM�E�F � � COM�E�� ISO�E�F � is a open subset of HOM�E�F � and
the operation of taking the inverse is a continuous map from ISO�E�F � to
ISO�F�E�� If T � HOM�E�F �� we de�ne�

N�T � � f e � E � T �E� � 
 g �the null space�

R�T � � f f � F � f � T �e� for some e � E g �the range��

N�T � is always closed� but R�T � need not be� If � denotes the operation of
taking orthogonal complement� then R�T �� � N�T ��� We let FRED�E�F �
be the subset of HOM�E�F � consisting of operators invertible modulo com�
pact operators�

FRED�E�F � � fT � HOM�E�F � � �S�� S� � HOM�F�E� so

S�T � I � COM�E� and TS� � I � COM�F � g�

We note this condition implies S��S� � COM�F�E� so we can assume S� �
S� if we like� The following lemma provides another useful characterization
of FRED�E�F ��

Lemma ����	� The following are equivalent�

�a� T � FRED�E�F �	
�b� T � END�E�F � has dimN�T � ��� dimN�T �� ��� R�T � is closed�

and R�T �� is closed�

Proof� Let T � FRED�E�F � and let xn � N�T � with jxnj � �� Then
xn � �I � S�T �xn � Cxn� Since C is compact� there exists a convegent
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subsequence� This implies the unit sphere in N�T � is compact so N�T �
is �nite dimensional� Next let yn � Txn and yn � y� We may assume
without loss of generality that xn � N�T ��� Suppose there exists a constant
C so jxnj � C� We have xn � S�yn � �I � S�T �xn� Since S�yn � S�y
and since �I � S�T � is compact� we can �nd a convergent subsequence so
xn � x and hence y � limn yn � limn Txn � Tx is in the range of T so
R�T � will be closed� Suppose instead jxnj � �� If x
n � xn�jxnj we have
Tx
n � yn�jxnj � 
� We apply the same argument to �nd a subsequence
x
n � x with Tx � 
� jxj � �� and x � N�T ��� Since this is impossible�
we conclude R�T � is closed �by passing to a subsequence� one of these two
possibilities must hold�� Since T �S�� � I � C�� and S��T

� � I � C�� we
conclude T � � FRED�F�E� so N�T �� is �nite dimensional and R�T �� is
closed� This proves �a� implies �b��

Conversely� suppose N�T � and N�T �� are �nite dimensional and that
R�T � is closed� We decompose�

E � N�T ��N�T �� F � N�T ��� R�T �

where T � N�T �� � R�T � is ��� and onto� Consequently� we can �nd a
bounded linear operator S so ST � I on N�T �� and TS � I on R�T �� We
extend S to be zero on N�T �� and compute

ST � I � �N�T � and TS � I � �N�T��

where � denotes orthogonal projection on the indicated subspace� Since
these two projections have �nite dimensional range� they are compact which
proves T � FRED�E�F ��

If T � FRED�E�F � we shall say that T is Fredholm� There is a natural
law of composition�

Lemma ������

�a� If T � FRED�E�F � then T � � FRED�F�E��

�b� If T� � FRED�E�F � and T� � FRED�F�G� then T�T� � FRED�E�G��

Proof� �a� follows from Lemma ������ If S�T��I � C�E� and S�T��I �
C�F � then S�S�T�T�� I � S��S�T�� I�T���S�T�� I� � C�E�� Similarly
T�T�S�S� � I � C�E��

If T � FRED�E�F �� then we de�ne�

index�T � � dimN�T �� dimN�T ���

We note that ISO�E�F � is contained in FRED�E�F � and that index�T � � 

if T � ISO�E�F ��
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Lemma ������
�a� index�T � � � index�T ���
�b� If T � FRED�E�F � and S � FRED�F�G� then

index�ST � � index�T � � index�S��

�c� FRED�E�F � is a open subset of HOM�E�F ��
�d� index� FRED�E�F �� Z is continuous and locally constant�

Proof� �a� is immediate from the de�nition� We compute

N�ST � � N�T �� T���R�T � � N�S��

N�T �S�� � N�S��� �S�����R�S�� �N�T ���

� N�S��� �S�����R�T �� � N�S���

so that

index�ST � � dimN�T � � dim�R�T � �N�S��� dimN�S��

� dim�R�T �� �N�S���

� dimN�T � � dim�R�T � �N�S�� � dim�R�T �� � N�S��

� dimN�S��� dim�R�T �� � N�S���

� dim�R�T �� �N�S��

� dimN�T � � dimN�S�� dimN�S��� dim�R�T ���

� dimN�T � � dimN�S�� dimN�S��� dimN�T ��

� index�S� � index�T �

We prove �c� and �d� as follows� Fix T � FRED�E�F �� We decompose�

E � N�T ��N�T �� and F � N�T ��� R�T �

where T � N�T �� � R�T � is ��� onto� We let ���E � N�T � be orthog�
onal projection� We de�ne E� � N�T �� � E and F� � N�T � � F to
be Hilbert spaces by requiring the decompositon to be orthogonal� Let
S � HOM�E�F �� we de�ne S� � HOM�E�� F�� by�

S��f� � e� � ���e�� �f� � S��e���

It is clear jS� � S 
�j � jS � S 
j so the map S � S� de�nes a continuous
map from HOM�E�F � � HOM�E�� F��� Let i��E � E� be the natural
inclusion and let ���F� � F be the natural projection� Since N�T � and
N�T �� are �nite dimensional� these are Fredholm maps� It is immediate
from the de�nition that if S � HOM�E�F � then

S � ��S�i��
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If we let T � S and decompose e � e��e� and f � f��f� for e� � N�T �
and f� � N�T ��� then�

T��f� � e� � e�� � e� � f� � Te�

so that T� � ISO�E�� F��� Since ISO�E�� F�� is an open subset� there exists
	 
 
 so jT �S j � 	 implies S� � ISO�E�� F��� This implies S� is Fredholm
so S � ��S�i� is Fredholm and FRED�E�F � is open� Furthermore� we
can compute index�S� � index���� � index�S�� � index�i�� � index���� �
index�i�� � dimN�T ��dimN�T �� � index�T � which proves index is locally
constant and hence continuous� This completes the proof of the lemma�

We present the following example of an operator with index �� Let n
be orthonormal basis for L� as n � Z� De�ne the one sided shift

Tn �

�
n�� if n 
 


 if n � 

n if n � 


then T is surjective so N�T �� � f
g� Since N�T � is one dimensional�
index�T � � �� Therefore index�Tn� � n and index��T ��n� � �n� This
proves index� FRED�E�F �� Z is surjective� In the next chapter� we will
give several examples of di�erential operators which have non�zero index�

If we specialize to the case E � F then COM�E� is a closed two�sided
ideal of END�E� so we can pass to the quotient algebra END�E��COM�E��
If GL�END�E��COM�E�� denotes the group of invertible elements and if
�� END�E�� END�E��COM�E� is the natural projection� then FRED�E�
is ��� of the invertible elements� If C is compact and T Fredholm� T�tC is
Fredholm for any t� This implies index�T � � index�T�tC� so we can extend
index�GL�END�E��COM�E��� Z as a surjective group homomorphism�

Let P �C��V � � C��W � be a elliptic �DO of order d� We construct
an elliptic �DO S of order �d with S �C��W �� C��V � so that SP � I
and PS � I are in�nitely smoothing operators� Then

P �Hs�V �� Hd�s�W � and S �Hd�s�W �� Hs�V �

are continuous� Since SP � I�Hs�V � � Ht�V � is continuous for any t� it
is compact� Similarly PS � I is a compact operator so both P and S are
Fredholm� If f � N�P �� then f is smooth by Lemma ����� Consequently�
N�P � and N�P �� are independent of the choice of s and index�P � is invari�
antly de�ned� Furthermore� if P is a smooth ��parameter family of such
operators� then index�P� is independent of the parameter � by Lemma
������ In particular� index�P � only depends on the homotopy type of the
leading symbol of P � In Chapter � we will give a topological formula for
index�P � in terms of characteristic classes�
We summarize our conclusions about index�P � in the following
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Lemma ������ Let P �C��V �� C��W � be an elliptic �DO of order d
over a compact manifold without boundary� Then�
�a� N�P � is a �nite dimensional subset of C��V ��
�b� P �Hs�V �� Hs�d�W � is Fredholm� P has closed range� index�P � does
not depend on the particular s chosen�
�c� index�P � only depends on the homotopy type of the leading symbol of
P within the class of elliptic �DO�s of order d�
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� Elliptic Complexes�

The Hodge Decomposition Theorem�

And Poincar�e Duality�

Let V be a graded vector bundle� V is a collection of vector bundles
fVjgj�Z such that Vj �� f
g for only a �nite number of indices j � We let
P be a graded �DO of order d� P is a collection of d th order pseudo�
di�erential operators Pj �C

��Vj� � C��Vj���� We say that �P� V � is a
complex if Pj��Pj � 
 and �LPj���LPj � 
 �the condition on the symbol
follows from P � � 
 for di�erential operators�� We say that �P� V � is elliptic
if�

N��LPj��x� �� � R��LPj����x� �� for � �� 


or equivalently if the complex is exact on the symbol level�
We de�ne the cohomology of this complex by�

Hj�V� P � � N�Pj��R�Pj����

We shall show later in this section that Hj�V� P � is �nite dimensional if
�P� V � is an elliptic complex� We then de�ne

index�P � �
X
j

����j dimHj�V� P �

as the Euler characteristic of this elliptic complex�
Choose a �xed Hermitian inner product on the �bers of V � We use that

inner product together with the Riemannian metric on M to de�ne L��V ��
We de�ne adjoints with respect to this structure� If �P� V � is an elliptic
complex� we construct the associated self�adjoint Laplacian�

"j � �P �P �j � P �j Pj � Pj��P �j���C
��Vj�� C��Vj��

If pj � �L�Pj�� then �L�"j� � p�jpj � pj��p�j��� We can also express the
condition of ellipticity in terms of "j �

Lemma ������ Let �P� V � be a d th order partial di�erential complex�
Then �P� V � is elliptic if and only if "j is an elliptic operator of order �d
for all j �

Proof� We suppose that �P� V � is elliptic� we must check �L�"j� is non�
singular for � �� 
� Suppose �p�jpj � pj��p�j����x� ��v � 
� If we dot this
equation with v� we see pjv �pjv� p�j��v � p�j��v � 
 so that pjv � p�j��v �


� Thus v � N�pj� so v � R�pj��� so we can write v � pj��w� Since
p�j��pj��w � 
� we dot this equation with w to see pj��w � pj��w � 
 so

v � pj��w � 
 which proves "j is elliptic� Conversely� let �L�"j� be non�
singular for � �� 
� Since �P� V � is a complex� R�pj��� is a subset of N�pj��
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Conversely� let v � N�pj�� Since �L�"j� is non�singular� we can express
v � �p�jpj � pj��p�j���w� We apply pj to conclude pjp

�
jpjw � 
� We dot

this equation with pjw to conclude pjp
�
jpjw � pjw � p�jpjw � p�jpjw � 
 so

p�jpjw � 
� This implies v � pj��p�j��w � R�pj��� which completes the
proof�

We can now prove the following�

Theorem ����	 �Hodge decomposition theorem�� Let �P� V � be
a d th order �DO elliptic complex� Then
�a� We can decompose L��Vj� � N�"j��R�Pj����R�P �j � as an orthogonal
direct sum�
�b� N�"j� is a �nite dimensional vector space and there is a natural isomor�
phism of Hj�P� V � � N�"j�� The elements of N�"j� are smooth sections
to Vj �

Proof� We regard "j �H�d�Vj�� L��Vj�� Since this is elliptic� it is Fred�
holm� This proves N�"j� is �nite dimensional� Since "j is hypoelliptic�
N�"j� consists of smooth sections to V � Since "j is self adjoint and Fred�
holm� R�"j� is closed so we may decompose L��Vj� � N�"j��R�"j�� It is
clear R�"j� is contained in the span of R�Pj��� and R�P �j �� We compute

the L� inner product�

�P �j f� Pj��g� � �f� PjPj��g� � 


since PjPj�� � 
� This implies R�Pj��� and R�P �j � are orthogonal� Let

f � N�"j�� we take the L� inner product with f to conclude


 � �"jf� f� � �Pjf� Pjf� � �P �j��f� P
�
j��f�

so N�"j� � N�Pj� � N�P �j���� This implies R�"j� contains the span of

R�Pj��� and R�P �j �� Since these two subspaces are orthogonal and R�"j�

is closed� R�Pj��� and R�P �j � are both closed and we have an orthogonal
direct sum�

L��Vj� � N�"j�� R�Pj���� R�P �j ��

This proves �a��
The natural inclusion of N�"j� into N�Pj� de�nes a natural map of

N�"j� � Hj�P� V � � N�Pj��R�Pj���� Since R�Pj��� is orthogonal to
N�"j�� this map is injective� If f � C��Vj� and Pjf � 
� we can decom�
pose f � f� �"jf� for f� � N�"j�� Since f and f� are smooth� "jf� is
smooth so f� � C��Vj�� Pjf � Pjf� � Pj"jf� � 
 implies Pj"jf� � 
�
We dot this equation with Pjf� to conclude�


 � �Pjf�� PjP
�
j Pjf� � PjPj��P �j��f�� � �P �j Pjf�� P

�
j Pjf��



And Poincar�e Duality �

so P �j Pjf� � 
 so "jf� � Pj��P �j��f� � R�Pj���� This implies f and f�
represent the same element of Hj�P� V � so the map N�"j�� Hj�P� V � is
surjective� This completes the proof�

To illustrate these concepts� we discuss brie#y the de Rham complex�
Let T �M be the cotangent space of M � The exterior algebra %�T �M� is
the universal algebra generated by T �M subject to the relation � � � � 

for � � T �M � If fe�� � � � � emg is a basis for T �M and if I � f� � i� �
i� � � � � � ip � mg� we de�ne eI � ei� � � � � � eip � The feIg form a basis
for %�T �M� which has dimension �m� If we de�ne jIj � p� then %p�T �M�
is the span of the feIgjIj�p � this is the bundle of p�forms� A section of
C��%pT �M� is said to be a smooth p�form over M �
Let x � �x�� � � � � xm� be local coordinates on M and let fdx�� � � � � dxmg

be the corresponding frame for T �M � If f � C��M� � C��%��T �M���
we de�ne�

df �
X
k

�f

�xk
dxk�

If y � �y�� � � � � ym� is another system of local coordinates on M � the iden�
tity�

dyj �
X
k

�yj
�xk

dxk

means that d is well de�ned and is independent of the coordinate system
chosen� More generally� we de�ne d�fdxI� � df � dxI so that� for example�

d

�X
j

fj dx
j

�
�
X
j�k

�
�fk
�xj

� �fj
�xk

�
dxj � dxk�

Again this is well de�ned and independent of the coordinate system� Since
mixed partial derivatives commute� d� � 
 so

d�C��%p�T �M��� C��%p�� �T �M��

forms a complex�
Let � � T �M and let ext���� %p�T �M�� %p�� �T �M� be de�ned by ex�

terior multiplication� i�e�� ext���� � � � �� If we decompose � �
P

�j dxj
relative to a local coordinate frame� then df �

P
j �f��xj dxj implies

��d� � i ext���� the symbol of exterior di�erentiation is exterior multipli�
cation up to a factor of i� Fix � �� 
 and choose a basis fe�� � � � � emg for
T �M such that � � e�� Then

ext���eI �

�

 if i� � �
eJ for J � f�� i�� � � � � ipg if i� 
 ��

From this it is clear that N�ext���� � R�ext���� so the de Rham complex
is an elliptic complex�
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A Riemannian metric on M de�nes �ber metrics on %p�T �M�� If feig is
an orthonormal local frame for TM we take the dual frame fe�i g for T �M �
For notational simplicity� we will simply denote this frame again by feig�

The corresponding feIg de�ne an orthonormal local frame for %�T �M��
We de�ne interior multiplication int���� %p�T �M�� %p���T �M� to be the
dual of exterior multiplication� Then�

int�e��eI �

�
ej for J � fi�� � � � � ipg id i� � �

 if i� 
 �

so

int�e�� ext�e�� � ext�e�� int�e�� � I�

If j�j� denotes the length of the covector �� then more generally�

�i ext���� i int����� � j�j�I�

If � �C��%p�T �M��� C��%p���T �M�� is the adjoint of d� then �L� �
i int���� We let �d � d� � �d � ��� � "� �L" � j�j� is elliptic� The
de Rham theorem gives a natural isomorphism from the cohomology of M
to H��%� d��

Hp�M �C� � N�dp��R�dp���

where we take closed modulo exact forms� The Hodge decomposition the�
orem implies these groups are naturally isomorphic to the harmonic p�
forms N�"p� which are �nite dimensional� The Euler�Poincar�e character�
istic ��M� is given by�

��M� �
X

����p dimHp�M �C� �
X

����p dimN�"p� � index�d�

is therefore the index of an elliptic complex�
If M is oriented� we let dvol be the oriented volume element� The Hodge

� operator �� %p�T �M�� %m�p�T �M� is de�ned by the identity�

� � �� � �� � �� dvol

where ��� denotes the inner product de�ned by the metric� If feig is an
oriented local frame for T �M � then dvol � e� � � � � � em and

��e� � � � � � ep� � ep�� � � � � � em�

The following identities are immediate consequences of Stoke�s theorem�

�� � ����p�m�p� and � � ����mp�m�� � d � �



And Poincar�e Duality ��

Since " � �d���� � d���d we compute �" � "� so �� N�"p�� N�"m�p�
is an isomorphism� We may regard � as an isomorphism ��Hp�M �C� �
Hm�p�M �C�� in this description it is Poincar�e duality�
The exterior algebra is not very suited to computations owing to the

large number of signs which enter in the discussion of �� When we discuss
the signature and spin complexes in the third chapter� we will introduce
Cli�ord algebras which make the discussion of Poincar�e duality much easier�
It is possible to �roll up� the de Rham complex and de�ne�

�d� ��e�C
��%e�T �M��� C��%o�T �M��

where

%e�T �M� �
M
�k

%�k�T �M� and %o�T �M� �
M
�k��

%�k�� �T �M�

denote the di�erential forms of even and odd degrees� �d� �� is an elliptic
operator since �d� ���e �d � ��e � " is elliptic since dim%e � dim%o� �In
this representation �d� ��e is not self�adjoint since the range and domain
are distinct� �d� ���e � �d� ��o�� It is clear index�d� ��e � dimN�"e� �
dimN�"o� � ��M�� We can always �roll up� any elliptic complex to
form an elliptic complex of the same index with two terms� Of course�
the original elliptic complex does not depend upon the choice of a �ber
metric to de�ne adjoints so there is some advantage in working with the
full complex occasionally as we shall see later�

We note �nally that if m is even� we can always �nd a manifold with
��M� arbitrary so there exist lots of elliptic operators with non�zero index�
We shall see that index�P � � 
 if m is odd �and one must consider pseudo�
di�erential operators to get a non�zero index in that case��
We summarize these computations for the de Rham complex in the fol�

lowing�

Lemma ������ Let %�M� � %�T �M� be the complete exterior algebra�
�a� d�C��%p�T �M��� C��%p���T �M�� is an elliptic complex� The sym�
bol is �L�d��x� �� � i ext����
�b� If � is the adjoint� then �L����x� �� � �i int����
�c� If "p � �d� � �d�p is the associated Laplacian� then N�"p� is �nite
dimensional and there are natural identi�cations�

N�"p� � N�dp��R�dp��� � Hp�M �C��

�d� index�d� � ��M� is the Euler�Poincar�e characteristic of M �
�e� If M is oriented� we let � be the Hodge operator� Then

�� � ����p�m�p� and � � ����mp�m�� � d � �
Furthermore� �� N�"p� � N�"m�p� gives Poincar�e duality�

In the next chapter� we will discuss the Gauss�Bonnet theorem which
gives a formula for index�d� � ��M� in terms of curvature�



���� The Heat Equation�

Before proceeding with our discussion of the index of an elliptic operator�
we must discuss spectral theory� We restrict ourselves to the context of a
compact self�adjoint operator to avoid unnecessary technical details� Let
T � COM�H� be a self�adjoint compact operator on the Hilbert space H�
Let

spec�T � � f� � C � �T � �� �� GL�H� g�
Since GL�H� is open� spec�T � is a closed subset of C� If j�j 
 jT j� the
series

g��� �
�X
n��

Tn��n��

converges to de�ne an element of END�H�� As �T���g��� � g����T��� �
�I� � �� spec�T �� This shows spec�T � is bounded�

Since T is self�adjoint� N�T �  �� � f
g if � �� R� This implies R�T � ��
is dense in H� Since Tx � x is always real� j�T � ��x � xj � im���j jxj� so
that j�T � ��xj � im���j jxj� This implies R�T � �� is closed so T � � is
surjective� Since T � � is injective� � �� spec�T � if � � C�R so spec�T � is
a subset of R� If � � &�jT j� jT j'� we de�ne E��� � fx � H � Tx � �x g�
Lemma ��
��� Let T � COM�H� be self�adjoint� Then

dimfE��jT j�� E�jT j�g 
 
�

Proof� If jT j � 
 then T � 
 and the result is clear� Otherwise choose
jxnj � � so that jTxnj � jT j� We choose a subsequence so Txn � y� Let
� � jT j� we compute�

jT �xn � ��xnj� � jT �xnj� � j��xnj� � ���T �xn � xn
� ��� � ���jTxnj� � 
�

Since Txn � y� T �xn � Ty� Thus ��xn � Ty� Since �� �� 
� this
implies xn � x for x � Ty���� Furthermore jT �x � ��xj � 
� Since
�T � � ��� � �T � ���T � ��� either �T � ��x � 
 so x � E���� �� f
g or
�T � ���y�� � 
 for y� � �T � ��x �� 
 so E��� �� f
g� This completes the
proof�

If � �� 
� the equation Tx � �x implies the unit disk in E��� is compact
and hence E��� is �nite dimensional� E��� is T �invariant� Since T is self�
adjoint� the orthogonal complement E��� is also T �invariant� We take an
orthogonal decomposition H � E�jT j� � E��jT j� � H�� T respects this
decomposition� we let T� be the restriction of T to H�� Clearly jT�j � jT j�
If we have equality� then Lemma ����� implies there exists x �� 
 in H�
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so T�x � �jT jx� which would be false� Thus jT�j � jT j� We proceed
inductively to decompose�

H � E����� E������ � � � �E��n�� E���n��Hn

where �� 
 �� 
 � � � 
 �n and where jTnj � �n� We also assume E��n��
E���n� �� f
g� We suppose that the �n do not converge to zero but
converge to 	 positive� For each n� we choose xn so jxnj � � and Txn �
��nxn� Since T is self�adjoint� this is an orthogonal decomposition� jxj �
xkj �

p
�� Since T is compact� we can choose a convergent subsequence

�nxn � y� Since �n � 	 positive� this implies xn � x� This is impossible
so therefore the �n � 
� We de�ne H� �

T
nHn as a closed subset of H�

Since jT j � �n for all n on H�� jT j � 
 so T � 
 and H� � E�
�� This
de�nes a direct sum decomposition of the form�

H �
M
k

E��k�� E�
�

where the �k � R are the non�zero subspace of the E��n� and E���n��
We construct a complete orthonormal system fng�n�� for H with either
n � E�
� or n � E��k� for some k� Then Tn � �nn so n is an
eigenvector of T � This proves the spectral decomposition for self�adjoint
compact operators�

Lemma ��
�	� Let T � COM�H� be self�adjoint� We can �nd a complete
orthonormal system for H consisting of eigenvectors of T �

We remark that this need not be true if T is self�adjoint but not compact
or if T is compact but not self�adjoint�
We can use this lemma to prove the following�

Lemma ��
��� Let P �C��V �� C��V � be an elliptic self�adjoint �DO
of order d 
 
�
�a� We can �nd a complete orthonormal basis fng�n�� for L��V � of eigen�
vectors of P � Pn � �nn�
�b� The eigenvectors n are smooth and limn�� j�nj ���
�c� If we order the eigenvalues j��j � j��j � � � � then there exists a constant
C 
 
 and an exponent � 
 
 such that j�nj � Cn� if n 
 n� is large�
Remark� The estimate �c� can be improved to show j�nj 
 nd�m but the
weaker estimate will su�ce and is easier to prove�

Proof� P �Hd�V �� L��V � is Fredholm� P � N�P �� �Hd�M�� N�P �� �
L��V � is ��� and onto� by G(arding�s inequality P � L� implies  � Hd�
We let S denote the inverse of this map and extend S to be zero on the
�nite dimensional space N�P �� Since the inclusion of Hd�M� into L��V �
is compact� S is a compact self�adjoint operator� S is often referred to
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as the Greens operator� We �nd a complete orthonormal system fng of
eigenvectors of S � If Sn � 
 then Pn � 
 since N�S� � N�P �� If
Sn � �nn �� 
 then Pn � �nn for �n � ���n � Since the �n � 
� the
j�nj � �� If k is an integer such that dk 
 �� then P k � �kn is elliptic�
Since �P k � �kn�n � 
� this implies n � C��V �� This completes the
proof of �a� and �b��

By replacing P with P k we replace �n by �kn� Since kd 

m
� if k is large�

we may assume without loss of generality that d 
 m
�

in the proof of �c��
We de�ne�

jf j��� � sup
x�M

jf�x�j for f � C��V ��

We estimate�

jf j��� � Cjf jd � C�jPf j� � jf j���
Let F �a� be the space spanned by the j where j�j j � a and let n �
dimF �a�� We estimate n � n�a� as follows� We have

jf j��� � C�� � a�jf j� on F �a��

Suppose �rst V � M 	 C is the trivial line bundle� Let cj be complex
constants� then this estimate shows�

���� nX
j��

cjj�x�

���� � C�� � a�

� nX
j��

jcj j�
����

�

If we take cj �  j�x� then this yields the estimate�

nX
j��

j�x� j�x� � C�� � a�

� nX
j��

j�x� j�x�

����
�

i�e��
nX

j��

j�x� j�x� � C��� � a���

We integrate this estimate over M to conclude

n � C��� � a�� vol�M�

or equivalently

C��n� C��
��� � a � j�nj

from which the desired estimate follows�
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If dimV � k� we choose a local orthonormal frame for V to decompose
j into components uj for � � u � k� We estimate�

���� nX
j��

cuj 
u
j �x�

���� � C�� � a�

� nX
j��

jcuj j�
����

for u � �� � � � � k�

If we let cuj �  uj �x�� then summing over u yields�

���� nX
j��

j  j�x�

���� � kC�� � a�

���� nX
j��

j  j�x�

�������
since each term on the left hand side of the previous inequality can be
estimated seperately by the right hand side of this inequality� This means
that the constants which arise in the estimate of �c� depend on k� but this
causes no di�culty� This completes the proof of �c��

The argument given above for �c� was shown to us by Prof� B� Allard
�Duke University� and it is a clever argument to avoid the use of the
Schwarz kernel theorem�

Let P �C��V � � C��V � be an elliptic �DO of order d 
 
 which is
self�adjoint� We say P has positive de�nite leading symbol if there exists
p�x� ���T �M � END�V � such that p�x� �� is a positive de�nite Hermitian
matrix for � �� 
 and such that �P � p � Sd�� in any coordinate system�
The spectrum of such a P is not necessarily non�negative� but it is bounded
from below as we shall show� We construct Q� with leading symbol

p
p

and let Q � Q��Q�� Then by hypothesis P �Q � Sd�� � We compute�

�Pf� f� � ��P �Q�f� f� � �Qf� f�

j��P �Q�f� f�j � Cjf jd��j�P �Q�f jd�� � Cjf jd��jf jd����
�Qf� f� � �Q�f�Q�f� and jf j�d�� � Cjf j�� � CjQ�f j���

We use this to estimate for any 	 
 
 that�

j��P �Q�f� f�j � Cjf jd���jf jd����� � 	jf j�d�� � C�	�jf jd��jf j�
� �	jf j�d�� � C�	�jf j��
� �C	jQ�f j�� � C�	�jf j���

Choose 	 so �C	 � � and estimate�

�Pf� f� � �Q�f�Q�f�� j��P �Q�f� f�j � �C�	�jf j���

This implies�
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Lemma ��
��� Let P �C��V � � C��V � be an elliptic �DO of order
d 
 
 which is self�adjoint with positive de�nite leading symbol� Then
spec�P � is contained in &�C��� for some constant C�

We �x such a P henceforth� The heat equation is the partial di�erential
equation��

d

dt
� P

�
f�x� t� � 
 for t � 
 with f�x� 
� � f�x��

At least formally� this has the solution f�x� t� � e�tP f�x�� We decompose
f�x� �

P
cnn�x� for cn � �f� n� in a generalized Fourier series� The

solution of the heat equation is given by�

f�x� t� �
X
n

e�t�n cnn�x��

Proceeding formally� we de�ne�

K�t� x� y� �
X
n

e�t�nn�x��  n�y��Vy � Vx

so that�

e�tP f�x� �
Z
M

K�t� x� y�f�y� dvol�y�

�
X
n

e�t�nn�x�
Z
M

f�y� � n�y� dvol�y��

We regard K�t� x� y� as an endomorphism from the �ber of V over y to the
�ber of V over x�
We justify this purely formal procedure using Lemma ����� We estimate

that�

jnj��k � C�jnj� � jP jj�� � C�� � j�njj� where jd 
 k � m
� �

Only a �nite number of eigenvalues of P are negative by Lemma ������
These will not a�ect convergence questions� so we may assume � 
 
�
Estimate�

e�t��j � t�jC�j�e�t���

to compute�

jK�t� x� y�j��k � t�j�k�C�k�
X
n

e�t�n�� �

Since j�j � Cn� for � 
 
 and n large� the series can be bounded byX
n��

e�tn
���
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which converges� This shows K�t� x� y� is an in�nitely smooth function
of �t� x� y� for t 
 
 and justi�es all the formal procedures involved� We
compute

TrL� e�tP �
X

e�t�n �
Z
M

TrVx K�t� x� x� dvol�x��

We can use this formula to compute the index of Q�

Lemma ��
��� Let Q�C��V � � C��W � be an elliptic �DO of order
d 
 
� Then for t 
 
� e�tQ

�Q and e�tQQ
�

are in ��� with smooth kernel
functions and

index�Q� � Tr e�tQ
�Q � Tr e�tQQ

�

for any t 
 
�

Proof� Since e�tQ
�Q and e�tQQ

�

have smooth kernel functions� they are
in ��� so we must only prove the identity on index�Q�� We de�ne E���� �
f � L��V � � Q�Q � � g and E���� � f � L��W � � QQ� � � g�
These are �nite dimensional subspaces of smooth sections to V and W �
Because Q�Q�Q� � �QQ��Q and Q��QQ�� � �Q�Q�Q�� Q and Q� de�ne
maps�

Q�E����� E���� and Q��E����� E�����

If � �� 
� � � Q�Q�E���� � E���� � E���� is an isomorphism so
dimE���� � dimE����� We compute�

Tr e�tQ
�Q � Tr e�tQQ

�

�
X
�

e�t�fdimE����� dimE����g

� e�t�fdimE��
�� dimE��
�g
� index�Q�

which completes the proof�

If �Q� V � is a elliptic complex� we use the same reasoning to conclude
e�t	i is in ��� with a smooth kernel function� We de�ne Ei��� � f �
L��Vi� � "i � � g� Then Qi�Ei���� Ei����� de�nes an acyclic complex
�i�e�� N�Qi� � R�Qi���� if � �� 
 so that

P
����i dimEi��� � 
 for � �� 
�

Therefore
index�Q� �

X
i

����i Tr�e�t	i �

and Lemma ����� generalizes to the case of elliptic complexes which are not
just two term complexes�
Let P be an elliptic �DO of order d 
 
 which is self�adjoint with positive

de�nite leading symbol� Then spec�P � is contained in &�C��� for some
constant C� For � �� spec�P �� �P � ���� � END�L��V �� satis�es�

j�P � ���� j � dist��� spec�P ���� � inf
n
j�� �nj�� �
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The function j�P � ���� j is a continuous function of � � C� spec�P �� We
use the Riemann integral with values in the Banach space END�L��V �� to
de�ne�

e�tP �
�

��i

Z
	

e�t��P � ���� d�

where � is the path about &�C��� given by the union of the appropriate
pieces of the straight lines Re���C��� � � Im��� pictured below� We let
R be the closed region of C consisting of � together with that component
of C� � which does not contain &�C����

We wish to extend �P � ���� to Hs� We note that

j�� �j�� � C for � � R� � � spec�P �

so that j�P � ����f j� � Cjf j�� We use Lemma ���� to estimate�

j�P � ����f jkd � CfjP k�P � ����f j� � j�P � ����f j�g
� CfjP k��f j� � j�P k���P � ����f j� � jf j�g
� Cfjf jkd�d � j�j j�P � ����f jkd�dg�

If k � �� this implies j�P � ����f jd � C�� � j�j�jf j�� We now argue by
induction to estimate�

j�P � ����f jkd � C�� � j�j�k�� jf jkd�d �

We now interpolate� If s 
 
� choose k so kd � s 
 kd� d and estimate�

j�P � ����f js � Cj�P � ����f jkd � C�� � j�j�k�� jf jkd�d
� C�� � j�j�k�� jf js�
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Similarly� if s � 
� we use duality to estimate�

j��P � ����f� g�j � j�f� �P �  ����g�j � C�� � j�j�k�� jf jsjgj�s

which by Lemma ���� shows

j�P � ����f js � C�� � j�j�k�� jf js

in this case as well�

Lemma ��
�
� Let P be a elliptic �DO of order d 
 
 which is self�
adjoint� We suppose the leading symbol of P is positive de�nite� Then�
�a� Given s there exists k � k�s� and C � C�s� so that

j�P � ����f js � C�� � j�j�kjf js

for all � � R�
�b� Given j there exists k � k�j� d� so �P k � ���� represents a smoothing
operator with Cj kernel function which is of trace class for any � � R�
Proof� �a� follows from the estimates previously� To prove �b� we let

Kk�x� y� �� �
X
n

�

�kn � �
n�x�� n�y�

be the kernel of �P k � ���� � The region R was chosen so j!� � �j � 	j!�j
for some 	 
 
 and !� � R�� Therefore j��kn � ��j�� � 	j�knj�� � 	��n�k�

by Lemma ����� The convergence of the sum de�ning Kk then follows
using the same arguments as given in the proof that e�tP is a smoothing
operator�

This technical lemma will be used in the next subsection to estimate
various error terms which occur in the construction of a parametrix�



��� Local Formula for

The Index of an Elliptic Operator�

In this subsection� let P �C��V � � C��V � be a self�adjoint elliptic
partial di�erential operator of order d 
 
� Decompose the symbol ��P � �
pd � � � �� p� into homogeneous polymonials pj of order j in � � T �M � We
assume pd is a positive de�nite Hermitian matrix for � �� 
� Let the curve
� and the region R be as de�ned previously�
The operator �P � ���� for � � R is not a pseudo�di�erential operator�

We will approximate �P ����� by a pseudo�di�erential operator R��� and
then use that approximation to obtain properties of exp��tP �� Let U be
an open subset of Rm with compact closure� Fix d � Z� We make the
following de�nition to generalize that given in section ����

Definition� q�x� �� �� � Sk����U� is a symbol of order k depending on
the complex parameter � � R if

�a� q�x� �� �� is smooth in �x� �� �� � Rm	Rm	R� has compact x�support
in U and is holomorphic in ��

�b� For all ��� �� �� there exist constants C����	 such that�

jD�
xD

�
�D

	
�q�x� �� ��j � C����	 �� � j�j� j�j��d�k�j�j�dj	j �

We say that q�x� �� �� is homogeneous of order k in ��� �� if

q�x� t�� td�� � tkq�x� �� �� for t � ��

We think of the parameter � as being of order d� It is clear if q is ho�
mogeneous in ��� ��� then it satis�es the decay conditions �b�� Since the
pj are polynomials in �� they are regular at � � 
 and de�ne elements of
S j���� If the pj were only pseudo�di�erential� we would have to smooth
out the singularity at � � 
 which would destroy the homogeneity in ��� ��
and they would not belong to S j���� equivalently� d�� pj will not exhibit

decay in � for j�j 
 j if pj is not a polynomial� Thus the restriction to
di�erential operators is an essential one� although it is possible to discuss
some results in the pseudo�di�erential case by taking more care with the
estimates involved�

We also note that �pd � ���� � S�d��� and that the spaces S���� form
a symbol class closed under di�erentiation and multiplication� They are
suitable generalizations of ordinary pseudo�di�erential operators discussed
earlier�
We let �k����U� be the set of all operators Q����C�� �U�� C�� �U� with

symbols q�x� �� �� in Sk��� having x�support in U � we let q � �Q� For any
�xed �� Q��� � �k�U� is an ordinary pseudo�di�erential operator of order
k� The new features arise from the dependence on the parameter �� We
extend the de�nition of 
 given earlier to this wider class by�

q 

X
j

qj
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if for every k 
 
 there exists n�k� so n � n�k� implies q �Pj�n qj �
S�k���� Lemmas ������ �����b�� and ���� generalize easily to yield the
following Lemma� We omit the proofs in the interests of brevity as they are
identical to those previously given with only minor technical modi�cations�

Lemma ������
�a� Let Qi � �ki ����U� with symbol qi� Then Q�Q� � �k��k� ����U� has
symbol q where�

q 

X
�

d�� q�D
�
x q���� �

�b� Given n 
 
 there exists k�n� 
 
 such that Q � ��k�n� ����U� implies
Q��� de�nes a continuous map from H�n � Hn and we can estimate the
operator norm by�

jQ���j�n�n � C�� � j�j��n �
�c� If h�U � eU is a di�eomorphism� then h�� �k����U�� �k����eU� and

��h�P �� p�h��x�� �dh���x���t��� �� � Sk������eU��

As before� we let �����U� �
S
n �n����U� be the set of all pseudo�

di�erential operators depending on a complex parameter � � R de�ned
over U � This class depends on the order d chosen and also on the region R�
but we supress this dependence in the interests of notational clarity� There
is no analogue of the completeness of Lemma ����	 for such symbols since
we require analyticity in �� Thus in constructing an approximation to the
parametrix� we will always restrict to a �nite sum rather than an in�nite
sum�
Using �c�� we extend the class ���� to compact manifolds using a par�

tition of unity argument� �a� and �b� generalize suitably� We now turn to
the question of ellipticity� We wish to solve the equation�

��R����P � ���� I 
 
�

Inductively we de�ne R��� with symbol r� � r� � � � � where rj � S�d�j ����
We de�ne p
j�x� �� �� � pj�x� �� for j � d and p
d�x� �� �� � pd�x� �� � ��

Then ��P � �� �
Pd

j�� p


j � We note that p
j � S j��� and that p
d

�� �
S�d��� so that �P � �� is elliptic in a suitable sense� The essential feature
of this construction is that the parameter � is absorbed in the leading
symbol and not treated as a lower order perturbation�

The equation ��R����P � ��� 
 I yields�X
��j�k

d�� rj �D�
x p



k��� 
 I�
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We decompose this series into terms homogeneous of order �n to write�X
n

X
j�j�j�d�k�n

d�� rj �D�
x p



k��� 
 I

where j� k � 
 and k � d� There are no terms with n � 
� i�e�� positive
order� If we investigate the term with n � 
� we arrive at the condition
r�p



d � I so r� � �pd � ���� and inductively�

rn � �r�
X

j�j�j�d�k�n
j�n

d�� rjD
�
x p



k��� �

If k � d then j�j 
 
 so D�
x p



k � D�

x pk in this sum� Therefore we may
replace p
k by pk and write

rn � �r�
X

j�j�j�d�k�n
j�n

d�� rjD
�
x pk��� �

In a similar fashion� we can de�ne eR��� so ���P � �� eR���� I� 
 
� This

implies ��R���� eR���� 
 
 so R��� provides a formal left and right inverse�
Since such an inverse is unique modulo lower order terms� R��� is well

de�ned and unique modulo lower order terms in any coordinate system�
We de�ne R��� globally on M using a partition of unity argument� To
avoid convergence questions� we shall let R��� have symbol r� � � � �� rn�
where n� is chosen to be very large� R��� is unique modulo ��n��d ����
For notational convenience� we supress the dependence of R��� upon n��
R��� gives a good approximation to �P � ���� in the following sense�

Lemma ����	� Let k 
 
 be given� We can choose n� � n��k� so that

jf�P � ���� �R���gf jk � Ck�� � j�j��k jf j�k for � � R� f � C��V ��

Thus �P � ���� is approximated arbitrarily well by the parametrix R���
in the operator norms as ����

Proof� We compute�

jf�P � ���� �R���gf jk � j�P � ����fI � �P � ��R���gf jk
� Ck�� � j�j� �j�I � �P � ��R����f jk

by Lemma ������ Since I � �P � ��R��� � S�n� � we use Lemma ����� to
complete the proof�

We de�ne E�t� � �
��i

R
	
e�t�R��� d�� We will show shortly that this has

a smooth kernelK 
�t� x� y�� LetK�t� x� y� be the smooth kernel of e�tP � We
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will use Lemma ����� to estimate the di�erence between these two kernels�
We compute�

E�t�� e�tP �
�

��i

Z
	

e�t��R���� �P � ����� d��

We assume 
 � t � � and make a change of variables to replace t� by ��
We use Cauchy�s theorem to shift the resulting path t� inside R back to
the original path � where we have uniform estimates� This expresses�

E�t�� e�tP �
�

��i

Z
	

e���R�t����� �P � t�����t�� d�

We estimate therefore�

jE�t�� e�tP j�k�k � Ck
Z
	

je���� � t�� j�j��k d�j

� Ckt
k

provided n� is large enough� Lemma ����� implies

Lemma ������ Let k be given� If n� is large enough� we can estimate�

jK�t� x� y��K 
�t� x� y�j��k � Ckt
k for 
 � t � ��

This implies that K 
 approximates K to arbitrarily high jets as t� 
�

We now study the operator E�t�� We de�ne

en�t� x� �� �
�

��i

Z
	

e�t�rn�x� �� �� d��

then E�t� is a �DO with symbol e� � � � �� en� � If we integrate by parts in
� we see that we can express

en�t� x� �� �
�

��i

�

tk

Z
	

e�t�
dk

d�k
rn�x� �� �� d��

Since
dk

d�k
rn is homogeneous of degree �d � n � kd in ��� ��� we see that

en�t� x� �� � S�� for any t 
 
� Therefore we can apply Lemma ����� to
conclude En�t� which has symbol en�t� is represented by a kernel function
de�ned by�

Kn�t� x� y� �
Z

ei�x�y��� en�t� x� �� d��
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We compute�

Kn�t� x� x� �
�

��i

ZZ
	

e�t�rn�x� �� �� d� d��

We make a change of variables to replace � by t��� and � by t���d� to
compute�

Kn�t� x� x� � t�
m
d �� �

��i

ZZ
	

e��rn�x� t
��
d �� t���� d� d�

� t�
m
d ���n�d

d
�

��i

ZZ
	

e��rn�x� �� �� d� d�

� t
n�m
d en�x�

where we let this integral de�ne en�x��
Since pd�x� �� is assumed to be positive de�nite� d must be even since pd

is a polynomial in �� Inductively we express rn as a sum of terms of the
form�

rj�� q�r
j�
� q� � � � r

jk
�

where the qk are polynomials in �x� ��� The sum of the degrees of the qk is
odd if n is odd and therefore rn�x���� �� � �rn�x� �� ��� If we replace �
by �� in the integral de�ning en�x�� we conclude en�x� � 
 if n is odd�

Lemma ������ Let P be a self�adjoint elliptic partial di�erential operator
of order d 
 
 such that the leading symbol of P is positive de�nite for
� �� 
� Then�
�a� If we choose a coordinate system forM near a point x �M and choose a
local frame for V � we can de�ne en�x� using the complicated combinatorial
recipe given above� en�x� depends functorially on a �nite number of jets
of the symbol p�x� ���
�b� If K�t� x� y� is the kernel of e�tP then

K�t� x� x� 

�X
n��

t
n�m
d en�x� as t� 
�

i�e�� given any integer k there exists n�k� such that�����K�t� x� x��
X

n�n�k�
t
n�m
d en�x�

����
��k

� Ckt
k for 
 � t � ��

�c� en�x� � END�V� V � is invariantly de�ned independent of the coordinate
system and local frame for V �
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�d� en�x� � 
 if n is odd�

Proof� �a� is immediate� We computed that

K 
�t� x� x� �
n�X
n��

t
n�m
d en�x�

so �b� follows from Lemma ����� Since K�t� x� x� does not depend on the
coordinate system chosen� �c� follows from �b�� We computed �d� earlier
to complete the proof�

We remark that this asymptotic representation of K�t� x� x� exists for
a much wider class of operators P � We refer to the literature for further
details� We shall give explicit formulas for e�� e�� and e� in section ��	 for
certain examples arising in geometry�
The invariants en�x� � en�x� P � are sections to the bundle of endomor�

phisms� END�V �� They have a number of functorial properties� We suma�
rize some of these below�

Lemma ������
�a� Let Pi�C

��Vi� � C��Vi� be elliptic self�adjoint partial di�erential
operators of order d 
 
 with positive de�nite leading symbol� We form
P � P� � P��C

��V� � V�� � C��V� � V��� Then P is an elliptic self�
adjoint partial di�erential operator of order d 
 
 with positive de�nite
leading symbol and en�x� P� � P�� � en�x� P��� en�x� P���
�b� Let Pi�C

��Vi� � C��Vi� be elliptic self�adjoint partial di�erential
operators of order d 
 
 with positive de�nite leading symbol de�ned over
di�erent manifolds Mi� We let

P � P� � � � �� P��C
��V� � V��� C��V� � V��

over M � M� 	M�� Then P is an elliptic self�adjoint partial di�erential
operator of order d 
 
 with positive de�nite leading symbol over M and

en�x� P � �
X

p�q�n

ep�x�� P��� eq�x�� P���

�c� Let P �C��V � � C��V � be an elliptic self�adjoint partial di�erential
operator of order d 
 
 with positive de�nite leading symbol� We decom�
pose the total symbol of P in the form�

p�x� �� �
X
j�j�d

p��x��
��

Fix a local frame for V and a system of local coordinates on M � We let
indices a� b index the local frame and let p� � pab� give the components
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of the matrix p�� We introduce formal variables pab��� � D�
xpab� for

the jets of the symbol of P � De�ne ord�pab��� � � j�j � d � j�j� Then
en�x� P � can be expressed as a sum of monomials in the fpab���g variables
which are homogeneous of order n in the jets of the symbol as discussed
above and with coe�cients which depend smoothly on the leading symbol
fpab�gj�j�d �
�d� If the leading symbol of P is scalar� then the invariance theory can be
simpli�ed� We do not need to introduce the components of the symbol ex�
plicitly and can compute en�x� P � as a non�commutative polynomial which
is homogeneous of order n in the fp���g variables with coe�cients which
depend smoothly upon the leading symbol�
Remark� The statement of this lemma is somewhat technical� It will be
convenient� however� to have these functorial properties precisely stated for
later reference� This result su�ces to study the index theorem� We shall
give one more result which generalizes this one at the end of this section
useful in studying the eta invariant� The objects we are studying have a
bigrading� one grading comes from counting the number of derivatives in
the jets of the symbol� while the other measures the degree of homogeneity
in the ��� �� variables�

Proof� �a� and �b� follow from the identities�

e�t�P�P�� � e�tP� � e�tP�

e�t�P������P�� � e�tP� � e�tP�

so the kernels satisfy the identities�

K�t� x� x� P� � P�� � K�t� x� x� P���K�t� x� x� P��

K�t� x� x� P� � � � �� P�� � K�t� x�� x�� P���K�t� x�� x�� P���

We equate equal powers of t in the asymptotic series�X
t
n�m
d en�x� P� � P��



X

t
n�m
d en�x� P���

X
t
n�m
d en�x� P��X

t
n�m
d en�x� P� � � � �� P��



�X

t
p�m�

d ep�x�� P��

�
�
�X

t
q�m�

d eq�x�� P��

�
to complete the proof of �a� and �b�� We note that the multiplicative prop�
erty �b� is a direct consequence of the identity e�t�a�b� � e�tae�tb � it was
for this reason we worked with the heat equation� Had we worked instead
with the zeta function to study Tr�P�s� the corresponding multiplicative
property would have been much more di�cult to derive�
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We prove �c� as follows� expand p�x� �� �
P

j pj�x� �� into homogeneous

polynomials where pj�x� �� �
P
j�j�j p��x��

�� Suppose for the moment

that pd�x� �� � pd�x� ��IV is scalar so it commutes with every matrix� The
approximate resolvant is given by�

r� � �pd�x� ��� ����

rn � �r�
X

j�j�j�d�k�n
j�n

d�� rjD
�
x pk��� �

Since pd is scalar� r� is scalar so it and all its derivatives commute with any
matrix� If we assume inductively rj is of order j in the jets of the symbol�
then d�� rjD

�
x pk��� is homogeneous of order j � j�j� d� k � n in the jets

of the symbol� We observe inductively we can decompose rn in the form�

rn �
X

n�dj�d�j�j
j�j�n

rj�rn�j���x��
�

where the rn�j���x� are certain non�commutative polynomials in the jets of
the total symbol of P which are homogeneous of order n in the sense we
have de�ned�
The next step in the proof of Lemma ����� was to de�ne�

en�t� x� �� �
�

��i

Z
	

e�t�rn�x� �� �� d�

�
�

��i

X
j��

rn�j���x��
�
Z
	

e�t�rj� d�

en�x� �
�

��i

X
j��

rn�j���x�
Z �Z

	

e��rj� d�
�
�� d��

We note again that en � 
 if n is odd since the resulting function of �
would be odd� The remaining coe�cients of rn�j���x� depend smoothly on
the leading symbol pd� This completes the proof of the lemma�

If the leading symbol is not scalar� then the situation is more com�
plicated� Choose a local frame to represent the p� � pab� as matri�
ces� Let h�x� �� �� � det�pd�x� �� � ���� � By Cramer�s rule� we can ex�
press r� � r�ab � f�pd � ����gab as polynomials in the fh� �� �� pab��x�g
variables� We noted previously that rn was a sum of terms of the form
r�q�r�q� � � � r�qkr�� The matrix components of such a product can in turn
be decomposed as a sum of terms hv !qv where !qv is a polynomial in the
��� �� pab���� variables� The same induction argument which was used in
the scalar case shows the !qv will be homogeneous of order n in the jets of
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the symbol� The remainder of the argument is the same� performing the
d� d� integral yields a smooth function of the leading symbol as a coe�cient
of such a term� but this function is not in general rational of course� The
scalar case is much simpler as we don�t need to introduce the components
of the matrices explicitly �although the frame dependence is still there of
course� since r� can be commuted� This is a technical point� but one often
useful in making speci�c calculations�
We de�ne the scalar invariants

an�x� P � � Tr en�x� P �

where the trace is the �ber trace in V over the point x� These scalar
invariants an�x� P � inherit suitable functorial properties from the functorial
properties of the invariants en�x� P �� It is immediate that�

TrL� e�tP �
Z
M

TrVx K�t� x� x� dvol�x�



�X
n��

t
m�n
d

Z
M

an�x� P � dvol�x��



�X
n��

t
m�n
d an�P �

where an�P � �
R
M
an�x� P � dvol�x� is the integrated invariant� This is

a spectral invariant of P which can be computed from local information
about the symbol of P �
Let �P� V � be an elliptic complex of di�erential operators and let "i be

the associated Laplacians� We de�ne�

an�x� P � �
X
i

����i Tr en�x�"i�

then Lemma ����� and the remark which follows this lemma imply

index�P � �
X
i

����i Tr e�t	i 

�X
n��

t
n�m
d

Z
M

an�x� P � dvol�x��

Since the left hand side does not depend on the parameter t� we conclude�

Theorem ����
� Let �P� V � be a elliptic complex of di�erential opera�
tors�
�a� an�x� P � can be computed in any coordinate system and relative to any
local frames as a complicated combinatorial expression in the jets of P and
of P � up to some �nite order� an � 
 if n is odd�
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�b� Z
M

an�x� P � dvol�x� �

�
index�P � if n � m

 if n �� m�

We note as an immediate consequence that index�P � � 
 if m is odd�
The local nature of the invariants an will play a very important role in our
discussion of the index theorem� We will develop some of their functorial
properties at that point� We give one simple example to illustrate this fact�

Let ��M� � M� be a �nite covering projection with �ber F � We can
choose the metric on M� to be the pull�back of a metric on M� so that �
is an isometry� Let d be the operator of the de Rham complex� an�x� d� �
an��x� d� since an is locally de�ned� This implies�

��M�� �
Z
M�

am�x� d� dvol�x� � jF j
Z
M�

am�x� d� dvol�x� � jF j��M��

so the Euler�Poincare characteristic is multiplicative under �nite coverings�
A similar argument shows the signature is multiplicative under orientation
preserving coverings and that the arithmetic genus is multiplicative under
holomorphic coverings� �We will discuss the signature and arithmetic genus
in more detail in Chapter ��
We conclude this section with a minor generalization of Lemma �����

which will be useful in discussing the eta invariant in section ���
�

Lemma ������ Let P �C��V �� C��V � be an elliptic self�adjoint partial
di�erential operator of order d 
 
 with positive de�nite leading symbol
and let Q be an auxilary partial di�erential operator on C��V � of order
a � 
� Qe�tP is an in�nitely smoothing operator with kernel QK�t� x� y��
There is an asymptotic expansion on the diagonal�

fQK�t� x� y�gjx�y 

�X
n��

t�n�m�a��d en�x�Q� P ��

The en are smooth local invariants of the jets of the symbols of P and Q and
en � 
 if n� a is odd� If we let Q �

P
q�D

�
x � we de�ne ord�q�� � a� j�j�

If the leading symbol of P is scalar� we can compute en�x�Q� P � as a
non�commutative polynomial in the variables fq�� p���g which is homo�
geneous of order n in the jets with coe�cients which depend smoothly on
the fp�gj�j�d variables� This expression is linear in the fq�g variables and
does not involve the higher jets of these variables� If the leading symbol
of P is not scalar� there is a similar expression for the matrix components
of en in the matrix components of these variables� en�x�Q� P � is additive
and multiplicative in the sense of Lemma 
�����a� and �b� with respect to
direct sums of operators and tensor products over product manifolds�
Remark� In fact it is not necessary to assume P is self�adjoint to de�ne e�tP

and to de�ne the asymptotic series� It is easy to generalize the techniques
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we have developed to prove this lemma continues to hold true if we only
asume that det�pd�x� ��� �� �� 
 for � �� 
 and Im��� � 
� This implies
that the spectrum of P is pure point and contained in a cone about the
positive real axis� We omit the details�

Proof� Qe�tP has smooth kernel QK�t� x� y� where Q acts as a di�eren�
tial operator on the x variables� One representative piece is�

q��x�D
�
xKn�t� x� y� � q��x�D

�
x

Z
ei�x�y��� en�t� x� �� d�

� q��x�
X

��	��

��

�� ��

Z
ei�x�y��� ��D	

xen�t� x� �� d��

We de�ne q��	 �x� � q��x�
��

�� ��
where � � � � �� then a representative

term of this kernel has the form�

q��	 �x�
Z

ei�x�y��� ��D	
xen�t� x� �� d�

where q��	 �x� is homogeneous of order a�j�j�j�j in the jets of the symbol
of Q�
We suppose the leading symbol is scalar to simplify the computations�

the general case is handled similarly using Cramer�s rule� We express

en �
�

��i

Z
e�t�rn�x� �� �� d�

where rn is a sum of terms of the form rn�j���x��
�rj�� When we di�erentiate

such a term with respect to the x variables� we change the order in the jets of
the symbol� but do not change the ��� �� degree of homogeneity� Therefore
QK�t� x� y� is a sum of terms of the form�

q��	 �x�
Z �Z

e�t�rj��x� �� �� d�
�
ei�x�y��� ����!rn�j���x� d�

where�
rn�j�� is of order n� j�j in the jets of the symbol�

� d� n � �jd� j� j�
We evaluate on the diagonal to set x � y� This expression is homogeneous
of order �d�n� j�j in ��� ��� so when we make the appropriate change of
variables we calculate this term becomes�

t�n�m�j�j��d q��	 �x�!rn�j���x� �
�Z n

e��rj��x� �� �� d�
o
���� d�

�
�
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This is of order n�j�j�a�j�j�j�j � n�a�j�j � � in the jets of the symbol�
The exponent of t is �n�m�j�j��d � ���a�j�j�m�j�j��d � ���a�m��d�
The asymptotic formula has the proper form if we index by the order in
the jets of the symbol �� It is linear in q and vanishes if j�j � j� j is odd�
As d is even� we compute�

� � a � n� a� j�j� a � jd� d� j� j� �a� j�j � j� j� j�j mod �

so that this term vanishes if � � a is odd� This completes the proof�
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Let T �M �M be a continuous map� T � de�nes a map on the cohomol�
ogy of M and the Lefschetz number of T is de�ned by�

L�T � �
X

����p Tr�T � on Hp�M �C���

This is always an integer� We present the following example to illustrate
the concepts involved� Let M � S� 	 S� be the two dimensional torus
which we realize as R� modulo the integer lattice Z�� We de�ne T �x� y� �
�n�x� n�y� n
x� n�y� where the ni are integers� Since this preserves the
integer lattice� this de�nes a map from M to itself� We compute�

T ���� � �� T ��dx � dy� � �n�n� � n�n
�dx � dy
T ��dx� � n� dx� n� dy� T ��dy� � n
 dx� n� dy

L�T � � � � �n�n� � n�n
�� �n� � n���

Of course� there are many other interesting examples�
We computed L�T � in the above example using the de Rham isomor�

phism� We let T � � %p�dT �� %p�T �M� � %p�T �M� to be the pull�back
operation� It is a map from the �ber over T �x� to the �ber over x� Since
dT � � T �d� T � induces a map on Hp�M�C� � ker�dp�� image�dp���� If T
is the identity map� then L�T � � ��M�� The perhaps somewhat surprising
fact is that Lemma ����� can be generalized to compute L�T � in terms of
the heat equation�
Let "p � �d� � �d�p�C

��%pT �M� � C��%pT �M� be the associated
Laplacian� We decompose L��%pT �M� �

L
� Ep��� into the eigenspaces

of "p� We let ��p� �� denote orthogonal projection on these subspaces� and
we de�ne T ��p� �� � ��p� ��T ��Ep���� Ep���� It is immediate that�

Tr�T �e�t	p � �
X
�

e�t� Tr�T ��p� ����

Since dT � � T �d and d� � �d� for � �� 
 we get a chain map between the
exact sequences�

� � � Ep�����
d�� Ep���

d�� Ep����� � � �yT� yT� yT�
� � � L��%p��� d�� L��%p�

d�� L��%p�� � � � �y� y� y�
� � � Ep�����

d�� Ep���
d�� Ep����� � � �
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Since this diagram commutes and since the two rows are long exact se�
quences of �nite dimensional vector spaces� a standard result in homological
algebra implies� X

p

����p Tr�T ��p� ��� � 
 for � �� 
�

It is easy to see the corresponding sum for � � 
 yields L�T �� so Lemma
����� generalizes to give a heat equation formula for L�T ��
This computation was purely formal and did not depend on the fact that

we were dealing with the de Rham complex�

Lemma ������ Let �P� V � be an elliptic complex over M and let T �M �
M be smooth� We assume given linear maps Vi�T ��Vi�Tx�� Vi�x� so that
Pi�Vi�T �� � Vi�T �Pi� Then T induces a map on Hp�P� V �� We de�ne

L�T �P �
X
p

����p Tr�T on Hp�P� V ���

Then we can compute L�T �P �
P

p Tr�Vi�T �e
�t	p � where "p � �P �P �

PP ��p is the associated Laplacian�

The Vi�T � are a smooth linear action of T on the bundles Vi� They will
be given by the representations involved for the de Rham� signature� spin�
and Dolbeault complexes as we shall discuss in Chapter �� We usually
denote Vi�T � by T � unless it is necessary to specify the action involved�

This Lemma implies Lemma ����� if we take T � I and Vi�T � � I�
To generalize Lemma ����� and thereby get a local formula for L�T �P � we
must place some restrictions on the map T � We assume the �xed point
set of T consists of the �nite disjoint union of smooth submanifolds Ni�
Let ��Ni� � T �M��T �Ni� be the normal bundle over the submanifold Ni�
Since dT preserves T �Ni�� it induces a map dT� on the bundle ��Ni�� We
suppose det�I � dT� � �� 
 as a non�degeneracy condition� there are no
normal directions left �xed in�nitesimally by T �
If T is an isometry� this condition is automatic� We can construct a

non�example by de�ning T �z� � z��z � ���S� � S�� The only �xed point
is at z � 
 and dT �
� � I� so this �xed point is degenerate�
If K is the kernel of e�tP � we pull back the kernel to de�ne T ��K��t� x� y�

� T ��x�K�t� Tx� y�� It is immediate T �K is the kernel of T �e�tP �

Lemma ����	� Let P be an elliptic partial di�erential operator of order
d 
 
 which is self�adjoint and which has a positive de�nite leading symbol
for � �� 
� Let T �M � M be a smooth non�degenerate map and let
T ��VT �x� � Vx be a smooth linear action� If K is the kernel of e�tP then

Tr�T �e�tP � �
R
M

Tr�T �K��t� x� x� dvol�x�� Furthermore�

�a� If T has no �xed points� jTr�T �e�tP �j � Cnt
�n as t� 
� for any n�




� ���� Lefschetz Fixed Point Theorems

�b� If the �xed point set of T consists of submanifolds Ni of dimension mi�
we will construct scalar invariants an�x� which depend functorially upon a
�nite number of jets of the symbol and of T � The an�x� are de�ned over
Ni and

Tr�T �e�tP � 

X
i

�X
n��

t
n�mi

d

Z
Ni

an�x� dvoli�x��

dvoli�x� denotes the Riemannian measure on the submanifold�
It follows that if T has no �xed points� then L�T �P � 
�

Proof� Let fen� rn� Kng be as de�ned in section ���� The estimates of
Lemma ���� show that jT �K �Pn�n� T

�Knj��k � C�k�t�k as t � 
�

for any k if n� � n��k�� We may therefore replace K by Kn in proving �a�
and �b�� We recall that�

en�t� x� �� �
�

��i

Z
	

e�t�rn�x� �� �� d��

We use the homogeneity of rn to express�

en�t� x� �� �
�

��i

Z
	

e��rn�x� �� t����t�� d�

� t
n
d

�

��i

Z
	

e��rn�x� t
�
d �� �� d�

� t
n
d en�x� t

�
d ��

where we de�ne en�x� �� � en��� x� �� � S�� � Then�

Kn�t� x� y� �
Z

ei�x�y��� en�t� x� �� d�

� t
n�m
d

Z
ei�x�y��t

� �
d � en�x� �� d��

This shows that�

T �Kn�t� x� x� � t
n�m
d

Z
T ��x�ei�Tx�x��t

���d� en�Tx� �� d��

We must study terms which have the form�Z
ei�Tx�x��t

���d� Tr�T ��x�en�Tx� ��� d� dx

where the integral is over the cotangent space T ��M�� We use the method
of stationary phase on this highly oscillatory integral� We �rst bound
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jTx � xj � 	 
 
� Using the argument developed in Lemma ������ we
integrate by parts to bound this integral by C�n� k� 	�tk as t � 
 for any
k� If T has no �xed points� this proves �a�� There is a slight amount of
notational sloppiness here since we really should introduce partitions of
unity and coordinate charts to de�ne Tx� x� but we supress these details
in the interests of clarity�
We can localize the integral to an arbitrarily small neighborhood of the

�xed point set in proving �b�� We shall assume for notational simplicity that
the �xed point set of T consists of a single submanifold N of dimensionm��
The map dT� on the normal bundle has no eigenvalue �� We identify � with
the span of the generalized eigenvectors of dT on T �M�jN which correspond
to eigenvalues not equal to �� This gives a direct sum decomposition over
N �

T �M� � T �N�� � and dT � I � dT� �

We choose a Riemannian metric for M so this splitting is orthogonal� We
emphasize that these are bundles over N and not over the whole manifold
M �
We describe the geometry near the �xed manifold N using the nor�

mal bundle �� Let y � �y�� � � � � ym�
� be local coordinates on N and let

f�s�� � � � � �sm�m�
g be a local orthonormal frame for �� We use this local

orthonormal frame to introduce �ber coordinates z � �z�� � � � � zm�m�
� for

� by decomposing any �s � � in the form�

�s �
X
j

zj�sj�y��

We let x � �y� z� be local coordinates for �� The geodesic #ow identi�es a
neighborhood of the zero section of the bundle � with a neighborhood of
N in M so we can also regard x � �y� z� as local coordinates on M �

We decompose
T �x� � �T��x�� T��x��

into tangential and �ber coordinates� Because the Jacobian matrix has the
form�

dT �y� 
� �

�
I 



 dT�

�
we conclude that T��x�� y must vanish to second order in z along N �

We integrate Tr�T �Kn��t� x� x� along a small neighborhood of the zero
section of �� We shall integrate along the �bers �rst to reduce this to
an integral along N � We decompose � � ���� ��� corresponding to the
decomposition of x � �y� z�� Let

D��� � f �y� z� � jzj � � g
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be the unit disk bundle of the normal bundle� Let U � T ��D���� be the
cotangent bundle of the unit disk bundle of the normal bundle� We assume
the metric chosen so the geodesic #ow embeds D��� in M � We parametrize

U by f �y� z� ��� ��� � jzj � � g� Let s � t
�
d � Modulo terms which vanish to

in�nite order in s� we compute�

I def
�
Z
M

Tr��T �Kn��t� x� x�� dx

� sn�m
Z
U

ei�T��y�z��y����s
��

ei�T��y�z��z����s
��

	 Tr�T ��x�en�Tx� ��� ���� d�� d�� dz dy�

The non�degeneracy assumption on T means the phase function w �
T��y� z��z de�nes a non�degenerate change of variables if we replace �y� z�
by �y� w�� This transforms the integral into the form�

I � sn�m
Z
U

ei�T��y�w��y����s
��

eiw���s
��

	 j det�I � dT��j�� Tr�T ��y� w�en�T �y� w�� ��� ��� d�� d�� dw dy�

where U is the image of U under this change� We now make another change
of coordinates to let w � s��w� As s � 
� s��U will converge to T ��v��
Since dw � sm�m� dw this transforms the integral I to the form�

I � sn�m�

Z
s��U

ei�T��y�sw��y����s
��

eiw��� j det�I � dT��
�� j�y� sw�

	 Tr�T ��y� sw�en�T �y� sw�� ��� ���� d�� d�� dw dy�

Since the phase function T��y� w�� y vanishes to second order at w � 
�
the function �T��y� sw�� y�s�� is regular at s � 
� De�ne�

e
n�y� w� ��� ��� s� � ei�T��y�sw��y����s
�� j det�I � dT���y� sw�j
	 Tr�T ��y� sw�en�T �y� sw�� ��� �����

This vanishes to in�nite order in ��� �� at � and is regular at s � 
� To
complete the proof of Lemma ��	��� we must evaluate�

s�n�m��
Z
s��U

e
n�y� w� ��� ��� s�e
iw��� d�� d�� dw dy�

We expand e
n in a Taylor series in s centered at s � 
� If we di�erentiate
e
n with respect to s a total of k times and evaluate at s � 
� then the
exponential term disappears and we are left with an expression which is
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polynomial in w and of degree at worst �k� It still vanishes to in�nite order
in ���� ���� We decompose�

e
n �
X
j�j�

sj
X
j�j��j

cj���y� ��� ���w
� � sj�	�y� w� ��� ��� s�

where 	 is the remainder term�
We �rst study a term of the form�

sn�j�m�

Z
jwj�s��

cj���y� ��� ���w
�ei�� �w d�� d�� dw dy�

Since cj�� vanishes to in�nite order in �� the d� integral creates a function
which vanishes to in�nite order in w� We can let s � 
 to replace the
domain of integration by the normal �ber� The error vanishes to in�nite
order in s and gives a smooth function of y� The dw integral just yields the
inverse Fourier transform with appropriate terms and gives rise to asymp�
totics of the proper form� The error term in the Taylor series grows at
worst polynomially in w and can be bounded similarly� This completes the
proof� If there is more than one component of the �xed point set� we sum
over the components since each component makes a separate contibution
to the asymptotic series�

The case of isolated �xed points is of particular interest� Let d � � and
�L�P � � j�j�IV � We compute the �rst term at a �xed point�

r��x� �� �� � �j�j� � ���� e��x� �� t� � e�tj�j
�Z

Tr�T �K���t� x� x� dvol�x� �
Z

Tr�T ��x��ei�Tx�x��� e�tj�j
�

d� dx�

We assume T �
� � 
 is an isolated non�degenerate �xed point� We let
y � Tx� x be a change of variables and compute the �rst term�Z

Tr�T ��y��eiy�� j det�I � dT �y��j��e�tj�j� d� dy�

We make a change of variables � � �t���� and y � yt��� to express the
�rst term� Z

Tr�T ��yt�����eiy�� j det�I � dT �yt����je�j�j� d� dy�

The d� integral just gives e�jyj
�

so this becomesZ
Tr�T ��yt�����j det�I � dT �yt�����j��e�jyj� dy�

We expand this in a Taylor series at t � 
 and evaluate to get

TrT ��
� j det�I � dT �O��j���
This proves�
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Lemma ������ Let P be a second order elliptic partial di�erential op�
erator with leading symbol j�j�I� Let T �M � M be smooth with non�
degenerate isolated �xed points� Then�

TrT �e�tP �
X
i

Tr�T �� j det�I � dT �j���xi�

summed over the �xed point set�

We combine Lemmas ��	�� and ��	�� to constuct a local formula for
L�T �P to generalize the local formula for index�P � given by Theorem ������
we will discuss this further in the fourth chapter�
We can use Lemma ��	� to prove the classical Lefschetz �xed point

formula for the de Rham complex� Let T �V � V be a linear map� then it
is easily computed that�X

p

����p Tr%p�T � � det�I � T ��

We compute�

L�T � �
X
p

����p Tr�T �e�t	p �

�
X
p�i

����p Tr�%pdT � j det�I � dT �j���xi�

�
X
i

det�I � dT � j det�I � dT �j���xi�

�
X
i

sign det�I � dT ��xi�

summed over the �xed point set of T � This proves�

Theorem ����� �Classical Lefschetz Fixed Point Formula��
Let T �M �M be smooth with isolated non�degenerate �xed points� Then�

L�T � �
X
p

����p Tr�T � on Hp�M �C��

�
X
i

sign det�I � dT ��xi�

summed over the �xed point set�

Remark� We can generalize Lemma ��	�� to study Tr�T �Qe�tP � where Q
is an auxilary di�erential operator of order a� Just as in lemma ����� we
may obtain an asymptotic series�

Tr�T �Qe�tP � 

X
i

�X
n��

t�n�mi�a��d an�x�Q� P � dvoli�x��
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We shall omit the details as the additional terms created by the operator
Q are exactly the same as those given in the proof of Lemma ������ Each
term an is homogeneous of order n in the jets of the symbols of �Q�P � and
of the map T in a suitable sense�



���� Elliptic Boundary Value Problems�

In section ��� we derived a local formula for the index of an elliptic
partial�di�erential complex using heat equation methods� This formula will
lead to a heat equation proof of the Atiyah�Singer index theorem which
we shall discuss later� Unfortunately� it is not known at present how to
give a heat equation proof of the Atiyah�Bott index theorem for manifolds
with boundary in full generality� We must adopt a much stronger notion
of ellipticity to deal with the analytic problems involved� This will yield
a heat equation proof of the Gauss�Bonnet theorem for manifolds with
boundary which we shall discuss in the fourth chapter�

Let M be a smooth compact manifold with smooth boundary dM and
let P �C��V � � C��V � be a partial di�erential operator of order d 
 
�
We let p � �L�P � be the leading symbol of P � We assume henceforth that
p is self�adjoint and elliptic$i�e�� det p�x� �� �� 
 for � �� 
� Let R� denote
the non�zero positive)negative real numbers� It is immediate that

detfp�x� ��� �g �� 
 for ��� �� �� �
� 
� � T ��M�	 fC�R� �R�g�
since p is self�adjoint and elliptic�
We �x a �ber metric on V and a volume element on M to de�ne the

global inner product ��� �� on L��V �� We assume that P is formally self�
adjoint�

�Pf� g� � �f� Pg�

for f and g smooth section with supports disjoint from the boundary dM �
We must impose boundary conditions to make P self�adjoint� For example�
if P � �����x� on the line segment &
� A'� then P is formally self�adjoint
and elliptic� but we must impose Neumann or Dirichlet boundary condi�
tions to ensure that P is self�adjoint with discrete spectrum�

Near dM we let x � �y� r� where y � �y�� � � � � ym��� is a system of local
coordinates on dM and where r is the normal distance to the boundary� We
assume dM � fx � r�x� � 
g and that ���r is the inward unit normal� We
further normalize the choice of coordinate by requiring the curves x�r� �
�y�� r� for r � &
� �� are unit speed geodesics for any y� � dM � The inward
geodesic #ow identi�es a neighborhood of dM in M with the collar dM 	
&
� �� for some � 
 
� The collaring gives a splitting of T �M� � T �dM��
T �R� and a dual splitting T ��M� � T ��dM� � T ��R�� We let � � �� � z�
for � � T ��dM� and z � T ��R� re#ect this splitting�
It is convenient to discuss boundary conditions in the context of graded

vector bundles� A graded bundle U over M is a vector bundle U together
with a �xed decomposition

U � U� � � � � � Ud��

into sub�bundles Uj where Uj � f
g is permitted in this decomposition�
We let W � V � �d � V � � � � � V restricted to dM be the bundle of
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Cauchy data� If Wj � V jdM is the �j � ��st factor in this decomposition�
then this de�nes a natural grading on W � we identify Wj with the bundle
of j th normal derivatives� The restriction map�

��C��V �� C��W �

de�ned by�

��f� � �f�� � � � � fd��� where fj � Dj
rf jdM � ��i�j �jf

�rj

����
dM

assigns to any smooth section its Cauchy data�
Let W 
 be an auxiliary graded vector bundle over dM � We assume that

dimW � d � dimV is even and that � dimW 
 � dimW � Let B�C��W ��
C��W 
� be a tangential di�erential operator over dM � Decompose B �
Bij for

Bij �C
��Wi�� C��W 


j�

and assume that
ord�Bij� � j � i�

It is natural to regard a section to C��Wi� as being of order i and to de�ne
the graded leading symbol of B by�

�g�B�ij�y� �� �

�
�L�Bij��y� �� if ord�Bij� � j � i

 if ord�Bij� � j � i�

We then regard �g�B� as being of graded homogeneity 
�
We let PB be the operator P restricted to those f � C��V � such that

B�f � 
� For example� let P � �����x� on the interval &
� A'� To de�ne
Dirichlet boundary conditions at x � 
� we would set�

W 
 � C� 
 and B��� � �� B��� � B��� � B��� � 


while to de�ne Neumann boundary conditions at x � 
� we would set�

W 
 � 
�C and B��� � �� B��� � B��� � B��� � 
�

To de�ne the notion of ellipticity we shall need� we consider the ordinary
di�erential equation�

p�y� 
� � �Dr�f�r� � �f�r� with lim
r��

f�r� � 


where
�� � �� �� �
� 
� � T ��dM�	C�R� �
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We say that �P�B� is elliptic with respect to C�R� if det�p�x� ����� �� 

on the interior for all �� � �� �� �
� 
� � T ��M� 	 C � R� and if on the
boundary there always exists a unique solution to this ordinary di�erential
equation such that �g�B��y� ���f � f 
 for any prescribed f 
 � W 
� In a
similar fashion� we de�ne ellipticity with respect to C�R� �R� if these
conditions hold for � � C�R� �R��

Again� we illustrate these notions for the operator P � �����x� and a
boundary condition at x � 
� Since dimM � �� there is no dependence on
� and we must simply study the ordinary di�erential equation�

�f 

 � �f with lim
r��

f�r� � 
 �� �� 
��

If � � C�R� � then we can express � � �� for Im��� 
 
� Solutions to the
equation �f 

 � �f are of the form f�r� � aei�r � be�i�r � The decay at�
implies b � 
 so f�r� � aei�r � Such a function is uniquely determined by
either its Dirichlet or Neumann data at r � 
 and hence P is elliptic with
respect to either Neumann or Dirichlet boundary conditions�

We assume henceforth that PB is self�adjoint and that �P�B� is elliptic
with respect to either the cone C �R� or the cone C �R� �R�� It is
beyond the scope of this book to develop the analysis required to discuss
elliptic boundary value problems� we shall simply quote the required results
and refer to the appropriate papers of Seeley and Greiner for further details�
Lemmas ���� and ����� generalize to yield�

Lemma ����� Let P �C��V �� C��V � be an elliptic partial di�erential
operator of order d 
 
� Let B be a boundary condition� We assume �P�B�
is self�adjoint and elliptic with respect to C�R� �R��
�a� We can �nd a complete orthonormal system fng�n�� for L��V � with
Pn � �nn�
�b� n � C��V � and satisfy the boundary condition B�n � 
�
�c� �n � R and limn�� j�nj � �� If we order the �n so j��j � j��j � � �
then there exists n� and � 
 
 so that j�nj 
 n� for n 
 n��
�d� If �P�B� is elliptic with respect to the cone C �R� � then the �n are
bounded from below and spec�PB� is contained in &�C��� for some C�

For example� if P � � ��

�x�
on &
� �' with Dirichlet boundary condi�

tions� then the spectral resolution becomes
nq

�
� sin�nx�

o�
n��

and the cor�

responding eigenvalues are n��
If �P�B� is elliptic with respect to the cone C � R�� then e�tPB is a

smoothing operator with smooth kernel K�t� x� x
� de�ned by�

K�t� x� x
� �
X
n

e�t�nn�x��  n�x

��

Lemma ����� generalizes to yield�
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Lemma ���	� Let �P�B� be elliptic with respect to the cone C � R��
and be of order d 
 
�
�a� e�tPB is an in�nitely smoothing operator with smooth kernelK�t� x� x
��
�b� On the interior we de�ne an�x� P � � Tr en�x� P � be as in Lemma 
�����
On the boundary we de�ne an�y� P�B� using a complicated combinatorial
recipe which depends functorially on a �nite number of jets of the symbols
of P and of B�
�c� As t� 
� we have an asymptotic expansion�

Tr e�tPB �
X
n

e�t�n �
Z
M

TrK�t� x� x� dvol�x�



�X
n��

t
n�m
d

Z
M

an�x� P � dvol�x�

�
�X
n��

t
n�m��

d

Z
dM

an�y� P�B� dvol�y��

�d� an�x� P � and an�y� P�B� are invariantly de�ned scalar valued functions
which do not depend on the coordinate system chosen nor on the local frame
chosen� an�x� P � � 
 if n is odd� but an�y� P�B� is in general non�zero for
all values of n�

The interior term an�x� P � arises from the calculus described previously�
We �rst construct a parametrix on the interior� Since this parametrix will
not have the proper boundary values� it is necessary to add a boundary
correction term which gives rise to the additional boundary integrands
an�y� P�B��

To illustrate this asymptotic series� we let P � � ��

�x�
� e�x� on the in�

terval &
� A' where e�x� is a real potential� Let B be the modi�ed Neumann
boundary conditions� f 
�
�� s�
�f�
� � f 
�A�� s�A�f�A� � 
� This is el�
liptic and self�adjoint with respect to the cone C�R�� It can be computed
that�

Tr e�tPB


 ���t�����
Z
f� � t � e�x� � t� � �e

�x� � e�x����� � � � �g dx

�
�

�
�

�
t

�

���� �
s�
�� s�A�

�
�

t

�
� �e�
� � e�A� � �s��
� � �s��A�

�
� � � �

The terms arising from the interior increase by integer powers of t while
the terms from the boundary increase by powers of t���� In this integral�
dx is ordinary unnormalized Lebesgue measure�



�� ��� Elliptic Boundary

In practice� we shall be interested in �rst order operators which are
elliptic with respect to the cone C�R��R� and which have both positive
and negative spectrum� An interesting measure of the spectral asymmetry

of such an operator is obtained by studying Tr�PBe
�tP �

B � which will be
discussed in more detail in the next section� To study the index of an

elliptic operator� however� it su�ces to study e�tP
�
B � it is necessary to

work with P �
B of course to ensure that the spectrum is positive so this

converges to de�ne a smoothing operator� There are two approaches which

are available� The �rst is to work with the function e�t�
�

and integrate
over a path of the form�

���
���

���
���

���

XXX
XXX

XXX
XXX

XX

XXXXXXXXXXXXXX

���������������

to de�ne e�tP
�
B directly using the functional calculus� The second approach

is to de�ne e�tP
�
B using the operator P � with boundary conditions B�f �

B�Pf � 
� These two approaches both yield the same operator and give
an appropriate asymptotic expansion which generalizes Lemma ������

We use the heat equation to construct a local formula for the index
of certain elliptic complexes� Let Q�C��V�� � C��V�� be an elliptic
di�erential operator of order d 
 
� Let Q��C��V�� � C��V�� be the
formal adjoint� Let B��C

��W��� C��W 

�� be a boundary condition for

the operator Q� We assume there exists a boundary condition B� for Q�

of the same form so that

�QB�
�� � �Q��B�

�

We form�
P � Q�Q� and B � B� � B�

so P �C��V� � V�� � C��V� � V��� Then PB will be self�adjoint� We
assume that �P�B� is elliptic with respect to the cone C�R� �R��

This is a very strong assmption which rules out many interesting cases�
but is necessary to treat the index theorem using heat equation methods�
We emphasize that the Atiyah�Bott theorem in its full generality does not
follow from these methods�
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Since P � � Q�Q � QQ�� it is clear that P �
B decomposes as the sum

of two operators which preserve C��V�� and C��V��� We let S be the
endomorphism �� on V� and �� on V� to take care of the signs� it is clear
P �
BS � SP �

B � The same cancellation lemma we have used previously yields�

index�Q�� B�� � dimN�QB�
�� dimN�Q�B�

� � Tr�S e�tP �
B ��

�The fact that this de�nition of the index agrees with the de�nition given
in the Atiyah�Bott paper follows from the fact that B�C��W �� C��W��
is surjective�� Consequently� the application of Lemma ����� yields�

Theorem ����� Let Q�C��V�� � C��V�� be an elliptic di�erential
operator of order d 
 
� Let Q��C��V��� C��V�� be the formal adjoint
and de�ne P � Q�Q��C��V��V��� C��V��V��� Let B � B��B� be
a boundary condition such that �P�B� is elliptic with respect to the cone
C�R� �R� and so that PB is self�adjoint� De�ne S � �� on V� and ��
on V� then�
�a� index�QB�

� � Tr�S e�tP �
B � for all t�

�b� There exist local invariants an�x�Q� and an�y�Q�B�� such that�

Tr�S e�tP �
B �


�X
n��

t
n�m
�d

Z
M

an�x�Q� dvol�x�

�
�X
n��

t
n�m��

�d

Z
dM

an�y�Q�B�� dvol�y��

�c�Z
M

an�x�Q� dvol�x� �
Z
dM

an���y�Q�B�� dvol�y�

�

�
index�QB�

� if n � m

 if n �� m�

This gives a local formula for the index� there is an analogue of Lemma
����� giving various functorial properties of these invariants we will discuss
in the fourth chapter where we shall discuss the de Rham complex and the
Gauss�Bonnet theorem for manifolds with boundary�
We now specialize henceforth to �rst order operators� We decompose

p�x� �� �
X
j

ej�x��j

and near the boundary express�

p�y� 
� � � z� � e��y� � z �
m��X
j��

ej�y��j � e��y� � z � p�y� 
� � � 
��



�
 ��� Elliptic Boundary

We study the ordinary di�erential equation�

fip����r � p�y� 
� � � 
�gf�r� � �f�r�

or equivalently�

�ip�f���r � ip��� p�y� 
� � � 
�� ip��� ��gf�r� � 
�

With this equation in mind� we de�ne�

��y� � � �� � ip��� �p�y� 
� � � 
�� ���

Lemma ����� Let p�x� �� be self�adjoint and elliptic� Then ��y� � � �� has
no purely imaginary eigenvalues for �� � �� �� �
� 
� � T ��dM�	 �C�R� �
R���

Proof� We suppose the contrary and set ��y� � � ��v � izv where z is real
and v �� 
� This implies that�

�p�y� 
� � � 
�� ��v � p�zv

or equivalently that�
p�y� 
� � ��z�v � �v�

Since p is self�adjoint� this implies � � 
 so � �� 
 which contradicts the
ellipticity of p�

We de�ne bundles *���� over T ��dM�	fC�R��R�g��
� 
� to be the
span of the generalized eigenvectors of � which correspond to eigenvalues
with positive)negative real part� *� � *� � V � The di�erential equation
has the form�

f���r � �gf � 


so the condition limr�� f�r� � 
 implies that f�
� � *����� Thus *����
is the bundle of Cauchy data corresponding to solutions to this ODE� Since
d � �� the boundary condition B is just an endomorphism�

B�VjdM �W 


and we conclude�

Lemma ����� Let P be a �rst order formally self�adjoint elliptic di�er�
ential operator� Let B be a 
th order boundary condition� De�ne

��y� � � �� � ip��� �p�y� 
� � � 
�� ���

Then � has no purely imaginary eigenvalues and we de�ne *���� to be
bundles of generalized eigenvectors corresponding to eigenvalues with pos�
itive real and negative real parts� �P�B� is elliptic with respect to the cone
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C � R� � R� if and only if B� *���� � W 
 is an isomorphism for all
�� � �� �� �
� 
� � T ��dM�	fC�R� �R�g� PB is self�adjoint if and only
if p� N�B� is perpendicular to N�B��

Proof� We have checked everything except the condition that PB be self�
adjoint� Since P is formally self�adjoint� it is immediate that�

�Pf� g�� �f� Pg� �
Z
dM

��ip�f� g��

We know that on the boundary� both f and g have values in N�B� since
they satisfy the boundary condition� Thus this vanishes identically if and
only if �p�f� g� � 
 for all f� g � N�B� which completes the proof�

We emphasize that these boundary conditions are much stronger than
those required in the Atiyah�Bott theorem to de�ne the index� They are
much more rigid and avoid some of the pathologies which can occur other�
wise� Such boundary conditions do not necessarily exist in general as we
shall see later�
We shall discuss the general case in more detail in Chapter �� We com�

plete this section by discussing the one�dimensional case case to illustrate
the ideas involved� We consider V � &
� �'	C� and let P be the operator�

P � �i �
�r

�

 �

� 


�
�

At the point 
� we have�

���� � �i�
�

 �

� 


�
�

Thus if Im��� 
 
 we have *���� �

�

a
a

��
while if Im��� � 
 we have

*���� �
n�

a
�a
�o

� We let B be the boundary projection which projects

on the �rst factor$N�B� �

�

�
a

��
� we take the same boundary condition

at x � � to de�ne an elliptic self�adjoint operator PB � Let P � � � ��

�x�
with boundary conditions� Dirichlet boundary conditions on the �rst factor
and Neumann boundary conditions on the second factor� The index of the
problem is ���



����� Eta and Zeta Functions�

We have chosen to work with the heat equation for various technical
reasons� However� much of the development of the subject has centered
on the zeta function so we shall brie#y indicate the relationship between
these two in this section� We shall also de�ne the eta invariant which plays
an important role in the Atiyah�Singer index theorem for manifolds with
boundary�

Recall that + is de�ned by�

+�s� �
Z �

�

ts��e�tdt

for Re�s� 
 
� We use the functional equation s+�s� � +�s � �� to ex�
tend + to a meromorphic function on C with isolated simple poles at
s � 
������� � � � � Let P �C��V � � C��V � be an elliptic self�adjoint
partial di�erential operator of order d 
 
 with positive de�nite leading
symbol� We showed in section ��� that this implies spec�P � is contained
in &�C��� for some constant C� We now assume that P itself is positive
de�nite$i�e�� spec�P � is contained in &	��� for some 	 
 
�
Proceeding formally� we de�ne P s by�

P s �
�

��i

Z
�

�s�P � ���� d�

where � is a suitable path in the half�plane Re��� 
 
� The estimates of
section ��� imply this is smoothing operator if Re�s� � 
 with a kernel
function given by�

L�s� x� y� �
X
n

�snn�x��  n�y��

this converges to de�ne a Ck kernel if Re�s� � s��k��
We use the Mellin transform to relate the zeta and heat kernels�Z �

�

ts��e��tdt � ��s
Z �

�

��t�s��e��td��t� � ��s+�s��

This implies that�

+�s� Tr�P�s� �
Z �

�

ts�� Tr e�tP dt�

We de�ne ��s� P � � Tr�P�s�� this is holomorphic for Re�s� � 
� We

decompose this integral into
R �
�
�
R�
� � We have bounded the eigenvalues of
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P away from zero� Using the growth estimates of section ��� it is immediate
that� Z �

�

ts�� Tr e�tP dt � r�s� P �

de�nes an entire function of s� If 
 � t � � we use the results of section
��� to expand

Tr e�tP �
X
n�n�

t
n�m
d an�P � � O

�
t
n��m

d

�
an�P � �

Z
M

an�x� P � dvol�x�

where an�x� P � is a local scalar invariant of the jets of the total symbol of
P given by Lemma ������

If we integrate the error term which is O
�
t
n��m

d

�
from 
 to �� we de�ne

a holomorphic function of s for Re�s�� n��m
d 
 
� We integrate ts��t

�n�m�
d

between 
 and � to conclude�

+�s� Tr�P�s� � +�s���s� P � �
X
n�n�

d�sd� n�m���an�P � � rn�

where rn� is holomorphic for Re�s� 
 � �n��m�
d � This proves +�s���s� P �

extends to a meromorphic function on C with isolated simple poles� Fur�
thermore� the residue at these poles is given by a local formula� Since +
has isolated simple poles at s � 
������� � � � we conclude that�

Lemma ������� Let P be a self�adjoint� positive� elliptic partial di�er�
ential operator of order d 
 
 with positive de�nite symbol� We de�ne�

��s� P � � Tr�P�s� � +�s���
Z �

�

ts�� Tr e�tP dt�

This is well de�ned and holomorphic for Re�s� � 
� It has a meromor�
phic extension to C with isolated simple poles at s � �m � n��d for n �

� �� �� � � � � The residue of � at these local poles is an�P �+��m� n��d����
If s � 
���� � � � is a non�positive integer� then ��s� P � is regular at this
value of s and its value is given by an�P � Ress��m�n��d +�s�� an�P � is
the invariant given in the asymptotic expansion of the heat equation�
an�P � �

R
M
an�x� P � dvol�x� where an�x� P � is a local invariant of the

jets of the total symbol of P � an vanishes if n is odd�

Remark� If A is an auxilary di�erential operator of order a� we can de�ne

��s� A� P � � Tr�AP�s� � +�s���
Z �

�

ts�� Tr�Ae�tP � dt�



�� ����� Eta and Zeta Functions

We apply Lemma ����� to see this has a meromorphic extension to C with
isolated simple poles at s � �m � a � n��d� The residue at these poles is
given by the generalized invariants of the heat equation

an�A�P �

+f�m� a� n��dg �

There is a similar theorem if dM �� � and if B is an elliptic boundary
condition as discussed in section ����
If P is only positive semi�de�nite so it has a �nite dimensional space

corresponding to the eigenvalue 
� we de�ne�

��s� P � �
X
�n��

��sn

and Lemma ���
 extends to this case as well with suitable modi�cations�
For example� if M � S� is the unit circle and if P � ������� is the
Laplacian� then�

��s� P � � �
X
n��

n��s

is essentially just the Riemann zeta function� This has a simple isolated
pole at s � ����
If Q�C��V�� � C��V��� then the cancellation lemma of section ���

implies that�

	�s index�Q� � ��s�Q�Q� 	�� ��s�QQ� � 	�

for any 	 
 
 and for any s� � is regular at s � 
 and its value is given
by a local formula� This gives a local formula for index�Q�� Using Lemma
���
�� and some functorial properties of the heat equation� it is not di�cult
to show this local formula is equivalent to the local formula given by the
heat equation so no new information has resulted� The asymptotics of the
heat equation are related to the values and residues of the zeta function by
Lemma ���
���
If we do not assume that P is positive de�nite� it is possible to de�ne

a more subtle invariant which measures the di�erence between positive
and negative spectrum� Let P be a self�adjoint elliptic partial di�erential
operator of order d 
 
 which is not necessarily positive de�nite� We de�ne
the eta invariant by�

��s� P � �
X
�n��

��sn �
X
�n��

���n��s �
X
�n 	��

sign��n�j�nj�s

� Tr�P � �P ����s����� ��



Eta and Zeta Functions ��

Again� this is absolutely convergent and de�nes a holomorphic function if
Re�s�� 
�

We can also discuss the eta invariant using the heat equation� The
identity� Z �

�

t�s������e��
�t dt � +��s� ����� sign���j�j�s

implies that�

��s� P � � +��s� �������
Z �

�

t�s����� TrfPe�tP � g dt�

Again� the asymptotic behavior at t � 
 is all that counts in producing poles
since this decays exponentially at � assuming P has no zero eigenvector�
if dimN�P � 
 
 a seperate argument must be made to take care of this
eigenspace� This can be done by replacing P by P � 	 and letting 	� 
�

Lemma ����� shows that there is an asymptotic series of the form�

Tr�Pe�tP
�

� 

�X
n��

t
n�m�d

�d an�P� P
��

for

an�P� P
�� �

Z
M

an�x� P� P
�� dvol�x��

This is a local invariant of the jets of the total symbol of P �
We substitute this asymptotic expansion into the expression for � to see�

��s� P �+��s� ������� �
X
n�n�

�d

ds� n�m
an�P� P

�� � rn�

where rn� is holomorphic on a suitable half�plane� This proves � has a
suitable meromorphic extension to C with locally computable residues�
Unfortunately� while it was clear from the analysis that � was regular at

s � 
� it is not immediate that � is regular at s � 
 since + does not have
a pole at �

� to cancel the pole which may be introduced when n � m� in
fact� if one works with the local invariants involved� an�x� P� P

�� �� 
 in
general so the local poles are in fact present at s � 
� However� it is a fact
which we shall discuss later that � is regular at s � 
 and we will de�ne

!��p� �
�

�
f��
� p� � dimN�p�g mod Z

�we reduce modulo Z since � has jumps in �Z as eigenvalues cross the
origin��
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We compute a speci�c example to illustrate the role of � in measuring
spectral asymmetry� Let P � �i���� on C��S��� then the eigenvalues of
p are the integers so ��s� p� � 
 since the spectrum is symmetric about the
origin� Let a � R and de�ne�

Pa � P � a� ��s� Pa� �
X
n�Z

signfn� agjn� aj�s�

We di�erentiate this with respect to the parameter a to conclude�

d

da
��s� P �a�� �

X
n�Z

s��n� a�����s����� �

If we compare this with the Riemann zeta function� thenX
n�Z

��n� a�����s�����

has a simple pole at s � 
 with residue � and therefore�

d

da
��s� P �a��

����
s��

� ��

Since � vanishes when a � 
� we integrate this with respect to a to conclude�

��
� P �a�� � �a� � mod �Z and !��P �a�� � a�
�

�

is non�trivial� �We must work modulo Z since specP �a� is periodic with
period � in a��
We used the identity�

d

da
��s� Pa� � �sTr� ,Pa�P �

a �
��s����� �

in the previous computation� it in fact holds true in general�

lemma �����	� Let P �a� be a smooth 
�parameter family of elliptic self�
adjoint partial di�erential operators of order d 
 
� Assume P �a� has no
zero spectrum for a in the parameter range� Then if ��� denotes di�eren�
tiation with respect to the parameter a�

,��s� P �a�� � �sTr� ,P �a��P �a�����s����� ��

If P �a� has zero spectrum� we regard ��s� P �a�� � C�Z�
Proof� If we replace P by P k for an odd positive integer k� then ��s� P k�
� ��ks� P �� This shows that it su�ces to prove Lemma ���
�� for d � 
�
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By Lemma ������ �P � ���� is smoothing and hence of trace class for d
large� We can take trace inside the integral to compute�

��s� P �a�� �
�

��i

�Z
	�

��s Tr��P �a�� ����� d�

�
Z
	�

�����s Tr��P �a�� ���� d�
�

where �� and �� are paths about the positive)negative real axis which
are oriented suitably� We di�erentiate with respect to the parameter a to
express�

d

da
��P �a�� ���� � ��P �a�� ���� ,P �a��P �a�� ���� �

Since the operators involved are of Trace class�

Tr

�
d

da
�P �a�� ����

�
� �Tr� ,P �a��P �a�� ������

We use this identity and bring trace back outside the integral to compute�

��s� P �a�� �
�

��i
Tr� ,P �a��

�Z
	�

���s�P �a�� ���� d�

�
Z
	�

�����s�P �a�� ���� d�
�
�

We now use the identity�

d

d�
��P �a�� ����� � �P �a�� ����

to integrate by parts in � in this expression� This leads immediately to the
desired formula�

We could also calculate using the heat equation� We proceed formally�

d�

da
�s� P �a�� � +f�s� ����g��

Z �

�

t�s����� Tr
�
d

da
�P �a�e�tP �a�

�

�

�
dt

� +f�s� ����g��
Z �

�

t�s����� Tr
�
dP

da
��� �tP ��e�tP

�

�
dt

� +f�s� ����g��
Z �

�

t�s�����
�
� � �t

d

dt

�
Tr

�
dP

da
e�tP

�

�
dt�

We now integrate by parts to compute�
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� +f�s� ����g��
Z �

�

�st�s����� Tr
�
dP

da
e�tP

�

�
dt


 �s+f�s� ����g��
X
n

Z �

�

t�s����� t�n�m�d���d an

�
dP

da
� P �

�
dt


 �s+f�s� ����g��
X
n

���s� �n�m��d�an

�
dP

da
� P �

�
�

In particular� this shows that
d!�

da
is regular at s � 
 and the value

�+� �� ��� am �dPda � P �

�
is given by a local formula�
The interchange of order involved in using global trace is an essential

part of this argument� Tr� ,P �a��P ����s����� � has a meromorphic extension
to C with isolated simple poles� The pole at s � ���� can be present� but
is cancelled o� by the factor of �s which multiplies the expression� Thus
d

da
Ress�� ��s� P �a�� � 
� This shows the global residue is a homotopy

invariant� this fact will be used in Chapter � to show that in fact � is
regular at the origin� This argument does not go through locally� and in
fact it is possible to construct operators in any dimension m � � so that
the local eta function is not regular at s � 
�
We have assumed that P �a� has no zero spectrum� If we supress a

�nite number of eigenvalues which may cross the origin� this makes no
contribution to the residue at s � 
� Furthermore� the value at s � 

changes by jumps of an even integer as eigenvalues cross the origin� This
shows !� is in fact smooth in the parameter a and proves�

Lemma �������
�a� Let P be a self�adjoint elliptic partial di�erential operator of positive
order d� De�ne�

��s� P � � Tr�P �P ����s����� � � +f�s�����g��
Z �

�

t�s����� Tr�Pe�tP
�

� dt�

This admits a meromorphic extension to C with isolated simple poles at
s � �m� n��d� The residue of � at such a pole is computed by�

Ress��m�n��d � �+f�m� d� n���dg��
Z
M

an�x� P� P
�� dvol�x�

where an�x� P� P
�� is de�ned in Lemma 
����	 it is a local invariant in the

jets of the symbol of P �
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�b� Let P �a� be a smooth 
�parameter family of such operators� If we
assume eigenvalues do not cross the origin� then�

d

da
��s� P �a�� � �sTr

�
dP

da
� �P �a�����s�����

�
� ��s+f�s� ����g��

Z �

�

t�s����� Tr
�
dP

da
� e�tP �

�
dt�

Regardless of whether or not eigenvalues cross the origin� !��P �a�� is smooth
in R mod Z in the parameter a and

d

da
!��P �a�� � �+��� ���am

�
dP

da
� P �

�
� �+��� ���

Z
M

am

�
x�
dP

da
� P �

�
dvol�x�

is the local invariant in the jets of the symbols of

�
dP

da
� P �

�
given by

Lemma 
�����

In the example on the circle� the operator P �a� is locally isomorphic to
P � Thus the value of � at the origin is not given by a local formula� This
is a global invariant of the operator� only the derivative is locally given�

It is not necessary to assume that P is a di�erential operator to de�ne
the eta invariant� If P is an elliptic self�adjoint pseudo�di�erential operator
of order d 
 
� then the sum de�ning ��s� P � converges absolutely for s� 

to de�ne a holomorphic function� This admits a meromorphic extension
to the half�plane Re�s� 
 �� for some � 
 
 and the results of Lemma
���
� continue to apply� This requires much more delicate estimates than
we have developed and we shall omit details� The reader is referred to the
papers of Seeley for the proofs�
We also remark that it is not necessary to assume that P is self�adjoint�

it su�ces to assume that det�p�x� ���it� �� 
 for ��� t� �� �
� 
� � T �M	R�
Under this ellipticity hypothesis� the spectrum of P is discrete and only a
�nite number of eigenvalues lie on or near the imaginary axis� We de�ne�

��s� P � �
X

Re��i���

��i�
�s �

X
Re��i���

���i��s

!��P � �
�

�

�
��s� P �� �

s
Ress�� ��s� P � � dimN�iR�

�
s��

mod Z

where dimN�iR� is the dimension of the �nite dimensional vector space of
generalized eigenvectors of P corresponding to purely imaginary eigenval�
ues�
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In section ��� we will discuss the eta invariant in further detail and use it
to de�ne an index with coe�cients in a locally #at bundle using secondary
characteristic classes�
If the leading symbol of P is positive de�nite� the asymptotics of Tr�e�tP �

as t � 
� are given by local formulas integrated over the manifold� Let
A�x� � a�x

a� � � ��aa and B�x� � b�x
b� � � ��bb be polynomials where b� 



� The operator A�P �e�tB�P � is in�nitely smoothing� The asymptotics of
Tr�A�P �e�tB�P � � are linear combinations of the invariants aN �P � giving
the asymptotics of Tr�e�tP �� Thus there is no new information which
results by considering more general operators of heat equation type� If the
leading symbol of P is inde�nite� one must consider both the zeta and eta
function or equivalently�

Tr�e�tP
�

� and Tr�Pe�tP
�

��

Then if b� 
 
 is even� we obtain enough invariants to calculate the asymp�
totics of Tr�A�P �e�tB�P � �� We refer to Fegan�Gilkey for further details�



CHAPTER �

CHARACTERISTIC CLASSES

Introduction

In the second chapter� we develop the theory of characteristic classes� In
section ���� we discuss the Chern classes of a complex vector bundle and
in section ��� we discuss the Pontrjagin and Euler classes of a real vector
bundle� We shall de�ne the Todd class� the Hirzebruch L�polynomial� and
the A�roof genus which will play a central role in our discussion of the index
theorem� We also discuss the total Chern and Pontrjagin classes as well as
the Chern character�
In section ��� we apply these ideas to the tangent space of a real mani�

fold and to the holomorphic tangent space of a holomorphic manifold� We
compute several examples de�ned by Cli�ord matrices and compute the
Chern classes of complex projective space� We show that suitable products
of projective spaces form a dual basis to the space of characteristic classes�
Such products will be used in chapter three to �nd the normalizing con�
stants which appear in the formula for the index theorem�
In section ��� and in the �rst part of section ���� we give a heat equa�

tion proof of the Gauss�Bonnet theorem� This is based on �rst giving an
abstract characterization of the Euler form in terms of invariance theory�
This permis us to identify the integrand of the heat equation with the Euler
integrand� This gives a more direct proof of Theorem ����	 which was �rst
proved by Patodi using a complicated cancellation lemma� �The theorem
for dimension m � � is due to McKean and Singer��

In the remainder of section ���� we develop a similar characterization of
the Pontrjagin forms of the real tangent space� We shall wait until the third
chapter to apply these results to obtain the Hirzebruch signature theorem�
There are two di�erent approaches to this result� We have presented both
our original approach and also one modeled on an approach due to Atiyah�
Patodi and Bott� This approach uses H� Weyl�s theorem on the invariants
of the orthogonal group and is not self�contained as it also uses facts about
geodesic normal coordinates we shall not develop� The other approach is
more combinatorial in #avor but is self�contained� It also generalizes to
deal with the holomorphic case for a Kaehler metric�

The signature complex with coe�cients in a bundle V gives rise to in�
variants which depend upon both the metric on the tangent space of M
and on the connection ��form of V � In section ���� we extend the results of
section ��� to cover more general invariants of this type� We also construct
dual bases for these more general invariants similar to those constructed
in section �� using products of projective spaces and suitable bundles over
these spaces�



�� Chapter 	

The material of sections ��� through �� is standard and reviews the
theory of characteristic classes in the context we shall need� Sections ���
through ��� deal with less standard material� The chapter is entirely self�
contained with the exception of some material in section ��� as noted above�
We have postponed a discussion of similar material for the holomorphic
Kaehler case until sections �� and �� of chapter three since this material
is not needed to discuss the signature and spin complexes�
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Of a Complex Vector Bundle�

The characteristic classes are topological invariants of a vector bundle
which are represented by di�erential forms� They are de�ned in terms of
the curvature of a connection�
Let M be a smooth compact manifold and let V be a smooth complex

vector bundle of dimension k over M � A connection r on V is a �rst order
partial di�erential operator r�C��V �� C��T �M � V � such that�

r�fs� � df � s� frs for f � C��M� and s � C��V ��

Let �s�� � � � � sk� be a local frame for V � We can decompose any section
s � C��V � locally in the form s�x� � fi�x�si�x� for fi � C��M�� We
adopt the convention of summing over repeated indices unless otherwise
speci�ed in this subsection� We compute�

rs � dfi � si � firsi � dfi � si � fi�ij � sj where rsi � �ij � sj �

The connection ��form � de�ned by

� � �ij

is a matrix of ��forms� The connection r is uniquely determined by the
derivation property and by the connection ��form� If we specify � arbitrar�
ily locally� we can de�ne r locally� The convex combination of connections
is again a connection� so using a partition of unity we can always construct
connections on a bundle V �
If we choose another frame for V � we can express s
i � hijsj � If h

��
ij s
j �

si represents the inverse matrix� then we compute�

rs
i � �
ij � s
j � r�hiksk� � dhik � sk � hik�kl � sl

� �dhikh
��
kj � hik�klh

��
lj �� s
j �

This shows �
 obeys the transformation law�

�
ij � dhikh
��
kj � hik�klh

��
lj i�e�� �
 � dh � h�� � h�h��

in matrix notation� This is� of course� the manner in which the 
th order
symbol of a �rst order operator transforms�
We extend r to be a derivation mapping

C��%pT �M � V �� C��%p��T �M � V �

so that�
r��p � s� � d�p � s� ����p�p � rs�
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We compute that�

r��fs� � r� df � s� frs� � d�f � s� df �rs� df �rs� fr�s � fr�s

so instead of being a second order operator� r� is a 
th order operator� We
may therefore express

r��s��x�� � -�x��s�x��

where the curvature - is a section to the bundle %��T �M�� END�V � is a
��form valued endomorphism of V �

In local coordinates� we compute�

-�si� � -ij � sj � r��ij � sj� � d�ij � sj � �ij � �jk � sk

so that�
-ij � d�ij � �ik � �kj i�e�� - � d� � � � ��

Since r� is a 
th order operator� - must transform like a tensor�

-
ij � hik-klh
��
lj i�e�� -
 � h-h�� �

This can also be veri�ed directly from the transition law for �
� The reader
should note that in some references� the curvature is de�ned by - � d��
� � �� This sign convention results from writing V � T �M instead of
T �M � V and corresponds to studying left invariant rather than right
invariant vector �elds on GL�k� C��
It is often convenient to normalize the choice of frame�

Lemma 	����� Let r be a connection on a vector bundle V � We can
always choose a frame s so that at a given point x� we have

��x�� � 
 and d-�x�� � 
�

Proof� We �nd a matrix h�x� de�ned near x� so that h�x�� � I and
dh�x�� � ���x��� If s
i � hijsj � then it is immediate that �
�x�� � 
�
Similarly we compute d-
�x�� � d�d�
��
 ��
��x�� � �
�x��� d�
�x���
d�
�x�� � �
�x�� � 
�

We note that as the curvature is invariantly de�ned� we cannot in general
�nd a parallel frame s so � vanishes in a neighborhood of x� since this would
imply r� � 
 near x� which need not be true�

Let Aij denote the components of a matrix in END�Ck� and let P �A� �
P �Aij� be a polynomial mapping END�Ck� � C� We assume that P is
invariant$i�e�� P �hAh��� � P �A� for any h � GL�k�C�� We de�ne P �-�
as an even di�erential form on M by substitution� Since P is invariant
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and since the curvature transforms tensorially� P �-�
def
� P �r� is de�ned

independently of the particular local frame which is chosen�
There are two examples which are of particular interest and which will

play an important role in the statement of the Atiyah�Singer index theorem�
We de�ne�

c�A� � det

�
I �

i

��
A

�
� � � c��A� � � � �� ck�A� �the total Chern form�

ch�A� � Tr eiA��� �
X
j

Tr

�
iA

��

�j�
j � �the total Chern character�

The cj�A� represent the portion of c�A� which is homogeneous of order j �
cj�r� � %�j �M�� In a similar fashion� we decompose ch�A� �

P
j chj�A�

for chj�A� � Tr �iA����j�j �
Strictly speaking� ch�A� is not a polynomial� However� when we sub�

stitute the components of the curvature tensor� this becomes a �nite sum
since Tr�-j� � 
 if �j 
 dimM � More generally� we can de�ne P �-� if
P �A� is an invariant formal power series by truncating the power series
appropriately�

As a di�erential form� P �r� depends on the connection chosen� We
show P �r� is always closed� As an element of de Rham cohomology� P �r�
is independent of the connection and de�nes a cohomology class we shall
denote by P �V ��

Lemma 	���	� Let P be an invariant polynomial�
�a� dP �r� � 
 so P �r� is a closed di�erential form�
�b� Given two connections r� and r�� we can de�ne a di�erential form
TP �r��r�� so that P �r��� P �r�� � dfTP �r��r��g�
Proof� By decomposing P as a sum of homogeneous polynomials� we may
assume without loss of generality that P is homogeneous of order k� Let
P �A�� � � � � Ak� denote the complete polarization of P � We expand P �t�A��
� � �� tkAk� as a polynomial in the variables ftjg� ��k� times the coe�cient
of t� � � � tk is the polarization of P � P is a multi�linear symmetric function
of its arguments� For example� if P �A� � Tr�A
�� then the polarization is
given by �

� Tr�A�A�A
 �A�A�A
� and P �A� � P �A�A�A��
Fix a point x� of M and choose a frame so ��x�� � d-�x�� � 
� Then

dP �-��x�� � dP �-� � � � �-��x�� � kP �d-�-� � � � �-��x�� � 
�

Since x� is arbitrary and since dP �-� is independent of the frame chosen
this proves dP �-� � 
 which proves �a��
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Let rt � tr� � �� � t�r� have connection ��form �t � �� � t� where
� � ������ The transformation law for � implies relative to a new frame�

�
 � �
� � �
� � �dh � h�� � h��h
���� �dh � h�� � h��h

���

� h��� � ���h
�� � h�h��

so � transforms like a tensor� This is of course nothing but the fact that the
di�erence between two �rst order operators with the same leading symbol
is a 
th order operator�

Let -t be the curvature of the connection rt� This is a matrix valued
��form� Since � is a ��form� it commutes with ��forms and we can de�ne

P ���-t� � � � �-t� � %�k�� �T �M�

by substitution� Since P is invariant� its complete polarization is also in�
variant so P �h���h� h��-th� � � � � h

��-th� � P ���-t� � � � �-t� is invariantly
de�ned independent of the choice of frame�
We compute that�

P �r��� P �r�� �
Z �

�

d

dt
P �-t� � � � �-t� dt � k

Z �

�

P �-
t�-t� � � � �-t� dt�

We de�ne�

TP �r��r�� � k
Z �

�

P ���-t� � � � �-t� dt�

To complete the proof of the Lemma� it su�ces to check

dP ���-t� � � � �-t� � P �-
t�-t� � � � �-t��

Since both sides of the equation are invariantly de�ned� we can choose a
suitable local frame to simplify the computation� Let x� � M and �x t��
We choose a frame so �t�x�� t�� � 
 and d-t�x�� t�� � 
� We compute�

-
t � fd�� � td� � �t � �tg

� d� � �
t � �t � �t � �
t

-
t�x�� t�� � d�

and
dP ���-t� � � � �-t��x�� t�� � P �d��-t� � � � �-t��x�� t��

� P �-
t�-t� � � � �-t��x�� t��

which completes the proof�

TP is called the transgression of P and will play an important role in our
discussion of secondary characteristic classes in Chapter � when we discuss
the eta invariant with coe�cients in a locally #at bundle�
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We suppose that the matrix A � diag���� � � � � �k� is diagonal� Then

modulo suitable normalizing constants
�
i
��

�j
� it is immediate that cj�A� is

the j th elementary symmetric function of the �i�s since

det�I � A� �
Y

�� � �j� � � � s���� � � � �� sk����

If P ��� is any invariant polynomial� then P �A� is a symmetric function of
the �i�s� The elementary symmetric functions form an algebra basis for
the symmetric polynomials so there is a unique polynomial Q so that

P �A� � Q�c�� � � � � ck��A�

i�e�� we can decompose P as a polynomial in the ci�s for diagonal matrices�
Since P is invariant� this is true for diagonalizable matrices� Since the
diagonalizable matrices are dense and P is continuous� this is true for all
A� This proves�

Lemma 	����� Let P �A� be a invariant polynomial� There exists a unique
polynomial Q so that P � Q�c��A�� � � � � ck�A���

It is clear that any polynomial in the ck�s is invariant� so this completely
characterizes the ring of invariant polynomials� it is a free algebra in k
variables fc�� � � � � ckg�
If P �A� is homogeneous of degree k and is de�ned on k	 k matrices� we

shall see that if P �A� �� 
 as a polynomial� then there exists a holomor�
phic manifold M so that if Tc�M� is the holomorphic tangent space� thenR
M
P �Tc�M�� �� 
 where dimM � �k� This fact can be used to show that

in general if P �A� �� 
 as a polynomial� then there exists a manifold M
and a bundle V over M so P �V � �� 
 in cohomology�
We can apply functorial constructions on connections� De�ne�

r� �r� on C��V� � V��

r� �r� on C��V� � V��

r�� on C��V �� �

by�
�r� �r���s� � s�� � �r�s��� �r�s��

with � � �� � �� and - � -� � -�

�r� �r���s� � s�� � �r�s��� �r�s��

with � � �� � � � �� �� and - � -� � � � �� -�

�r�s�� s
�
�� � �s��r��s��� � d�s�� s

�
��

relative to the dual frame � � ��t� and - � �-t
��
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In a similar fashion we can de�ne an induced connection on %p�V � �the
bundle of p�forms� and Sp�V � �the bundle of symmetric p�tensors�� If V
has a given Hermitian �ber metric� the connection r is said to be unitary
or Riemannian if �rs�� s�� � �s��rs�� � d�s�� s��� If we identify V with

V � using the metric� this simply means r � r�� This is equivalent to
the condition that � is a skew adjoint matrix of ��forms relative to a local
orthonormal frame� We can always construct Riemannian connections lo�
cally by taking � � 
 relative to a local orthonormal frame and then using
a partition of unity to construct a global Riemannian connection�

If we restrict to Riemannian connections� then it is natural to consider
polynomials P �A� which are de�ned for skew�Hermitian matrices A�A� �

 and which are invariant under the action of the unitary group� Exactly
the same argument as that given in the proof of Lemma ���� shows that
we can express such a P in the form P �A� � Q�c��A�� � � � � ck�A�� so that
the GL���C� and the U��� characteristic classes coincide� This is not true
in the real category as we shall see� the Euler form is a characteristic form
of the special orthogonal group which can not be de�ned as a characteristic
form using the general linear group GL���R��

The Chern form and the Chern character satisfy certain identities with
respect to functorial constructions�

Lemma 	�����
�a�

c�V� � V�� � c�V��c�V��

c�V �� � �� c��V � � c��V �� � � �� ����kck�V ��

�b�
ch�V� � V�� � ch�V�� � ch�V��

ch�V��� V�� � ch�V��ch�V���

Proof� All the identities except the one involving c�V �� are immediate
from the de�nition if we use the direct sum and product connections� If we
�x a Hermitian structure on V � the identi�cation of V with V � is conjugate
linear� The curvature of r� is �-t so we compute�

c�V �� � det

�
I � i

��
-t

�
� det

�
I � i

��
-

�
which gives the desired identity�

If we choose a Riemannian connection on V � then - �  -t � 
� This
immediately yields the identities�

ch�V � � ch�V � and c�V � � c�V �
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so these are real cohomology classes� In fact the normalizing constants
were chosen so ck�V � is an integral cohomology class$i�e�� if N�k is any
oriented submanifold of dimension �k� then

R
N�k

ck�V � � Z� The chk�V �
are not integral for k 
 �� but they are rational cohomology classes� As we
shall not need this fact� we omit the proof�

The characteristic classes give cohomological invariants of a vector bun�
dle� We illustrate this by constructing certain examples over even dimen�
sional spheres� these examples will play an important role in our later
development of the Atiyah�Singer index theorem�

Definition� A set of matrices fe�� � � � � emg are Cli�ord matrices if the
ei are self�adjoint and satisfy the commutation relations eiej � ejei � ��ij
where �ij is the Kronecker symbol�

For example� if m � � we can take�

e� �

�
� 



 ��

�
� e� �

�

 �

� 


�
� e� �

�

 i

�i 


�

to be the Dirac matrices� More generally� we can take the ei�s to be given
by the spin representations� If x � Rm�� � we de�ne�

e�x� �
X
i

xiei so e�x�� � jxj�I�

Conversely let e�x� be a linear map from Rm to the set of self�adjoint
matrices with e�x� � jxj�I� If fv�� � � � � vmg is any orthonormal basis for
Rm� fe�v��� � � � � e�vm�g forms a set of Cli�ord matrices�

If x � Sm� we let *��x� be the range of �
� �� � e�x�� � ���x�� This

is the span of the �� eigenvectors of e�x�� If e�x� is a �k 	 �k matrix�
then dim*��x� � k� We have a decomposition Sm 	 C�k � *� � *��
We project the #at connection on Sm 	 C�k to the two sub�bundles to
de�ne connections r� on *�� If e�� is a local frame for *��x��� we de�ne
e��x� � ��e�� as a frame in a neighborhood of x�� We compute

r�e� � �� d��e��� -�e� � �� d�� d��e���

Since e�� � e��x��� this yields the identity�

-��x�� � �� d�� d���x���

Since - is tensorial� this holds for all x�




 	��� Characteristic Classes

Let m � �j be even� We wish to compute chj � Suppose �rst x� �
��� 
� � � � � 
� is the north pole of the sphere� Then�

���x�� �
�

�
�� � e��

d���x�� �
�

�

X
i��

dxiei

-��x�� �
�

�
�� � e��

�
�

�

X
i��

dxiei

��

-��x��
j �

�

�
�� � e��

�
�

�

X
i��

dxiei

��j
� ��m��m��� � e���e� � � � em��dx� � � � � � dxm��

The volume form at x� is dx� � � � � � dxm� Since e� anti�commutes with
the matrix e� � � � em� this matrix has trace 
 so we compute�

chj�-���x�� �

�
i

��

�j
��m��m� Tr�e� � � � em� dvol�x���j � �

A similar computation shows this is true at any point x� of Sm so that�

Z
Sm

chj�*�� �

�
i

��

�j
��m��m� Tr�e� � � � em� vol�sm��j � �

Since the volume of Sm is j ��m���j�m� we conclude�

Lemma 	����� Let e�x� be a linear map from Rm�� to the set of self�
adjoint matrices� We suppose e�x�� � jxj�I and de�ne bundles *��x� over
Sm corresponding to the �� eigenvalues of e� Let m � �j be even� then�Z

Sm
chj�*�� � ij��j Tr�e� � � � em��

In particular� this is always an integer as we shall see later when we
consider the spin complex� If

e� �

�
� 



 ��

�
� e� �

�

 �

� 


�
� e� �

�

 i

�i 


�

then Tr�e�e�e�� � ��i so R
S� ch��*�� � � which shows in particular *�

is a non�trivial line bundle over S��
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There are other characteristic classes arising in the index theorem� These
are most conveniently discussed using generating functions� Let

xj �
i

��
�j

be the normalized eigenvalues of the matrix A� We de�ne�

c�A� �
kY

j��

�� � xj� and ch�A� �
kX

j��

exj �

If P �x� is a symmetric polynomial� we express P �x� � Q�c��x�� � � � � ck�x��
to show P �A� is a polynomial in the components of A� More generally if
P is analytic� we �rst express P in a formal power series and then collect
homogeneous terms to de�ne P �A�� We de�ne�

Todd class� Td�A� �
kY

j��

xj
�� e�xj

� � �
�

�
c��A� �

�

��
�c�� � c���A� �

�

��
c��A�c��A� � � � �

The Todd class appears in the Riemann�Roch theorem� It is clear that it is
multiplicative with respect to direct sum$Td�V� � V�� � Td�V��Td�V���

The Hirzebruch L�polynomial and the �A polynomial will be discussed in
the next subsection� These are real characteristic classes which also are
de�ned by generating functions�

If V is a bundle of dimension k� then V �� will be a bundle of dimension
k��� It is clear c�V ��� � c�V � and Td�V ��� � Td�V � so these are stable
characteristic classes� ch�V � on the other hand is not a stable characteristic
class since ch��V � � dimV depends explicitly on the dimension of V and
changes if we alter the dimension of V by adding a trivial bundle�



���� Characteristic Classes of a Real Vector Bundle�

Pontrjagin and Euler Classes�

Let V be a real vector bundle of dimension k and let Vc � V �C denote
the complexi�cation of V � We place a real �ber metric on V to reduce
the structure group from GL�k�R� to the orthogonal group O�k�� We re�
strict henceforth to Riemannian connections on V � and to local orthonor�
mal frames� Under these assumptions� the curvature is a skew�symmetric
matrix of ��forms�

- � -t � 
�

Since Vc arises from a real vector bundle� the natural isomorphism of V
with V � de�ned by the metric induces a complex linear isomorphism of Vc
with V �c so cj�Vc� � 
 for j odd by Lemma ������ Expressed locally�

det

�
I �

i

��
A

�
� det

�
I �

i

��
At

�
� det

�
I � i

��
A

�

if A�At � 
 so c�A� is an even polynomial in A� To avoid factors of i we
de�ne the Pontrjagin form�

p�A� � det

�
I �

�

��
A

�
� �� p��A� � p��A� � � � �

where pj�A� is homogeneous of order �j in the components of A� the cor�
responding characteristic class pj�V � � H�j �M �R�� It is immediate that�

pj�V � � ����jc�j �Vc�

where the factor of ����j comes form the missing factors of i�

The set of skew�symmetric matrices is the Lie algebra of O�k�� Let P �A�
be an invariant polynomial under the action of O�k�� We de�ne P �-� for
r a Riemannian connection exactly as in the previous subsections� Then
the analogue of Lemma ���� is�

Lemma 	�	��� Let P �A� be a polynomial in the components of a ma�
trix A� Suppose P �A� � P �gAg��� for every skew�symmetric A and for
every g � O�k�� Then there exists a polynomial Q�p�� � � �� so P �A� �
Q�p��A�� � � �� for every skew�symmetric A�

Proof� It is important to note that we are not asserting that we have
P �A� � Q�p��A�� � � �� for every matrix A� but only for skew�symmetric A�
For example� P �A� � Tr�A� vanishes for skew symmetric A but does not
vanish in general�



Classes of a Real Bundle 

It is not possible in general to diagonalize a skew�symmetric real matrix�
We can� however� put it in block diagonal form�

A �

�BBBBBB�


 ��� 
 
 � � � � � �

�� 
 
 
 � � � � � �


 
 
 ��� � � � � � �


 
 �� 
 � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � � � � � � � �

�CCCCCCA
If k is odd� then the last block will be a � 	 � block with a zero in it�

We let xj � ��j���� the sign convention is chosen to make the Euler form
have the right sign� Then�

p�A� �
Y
j

�� � x�j �

where the product ranges from � through
�
k
�

�
�

If P �A� is any invariant polynomial� then P is a symmetric function in
the fxjg� By conjugating A by an element of O�k�� we can replace any xj
by �xj so P is a symmetric function of the fx�jg� The remainder of the

proof of Lemma ����� is the same� we simply express P �A� in terms of the
elementary symmetric functions of the fx�jg�

Just as in the complex case� it is convenient to de�ne additional charac�
teristic classes using generating functions� The functions�

z� tanh z and zf� sinh�z���g
are both even functions of the parameter z� We de�ne�

The Hirzebruch L�polynomial�

L�x� �
Y
j

xj
tanhxj

� � �
�


p� �

�

��
��p� � p��� � � �

The �A �A�roof � genus�

A�x� �
Y
j

xj
� sinh�xj���

� �� �

��
p� �

�

���

��p�� � �p�� � � � � �

These characteristic classes appear in the formula for the signature and
spin complexes�
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For both the real and complex case� the characteristic ring is a pure
polynomial algebra without relations� Increasing the dimension k just adds
generators to the ring� In the complex case� the generators are the Chern
classes f�� c�� � � � � ckg� In the real case� the generators are the Pontrjagin
classes f�� p�� � � � � p�k���g where &k��' is the greatest integer in k��� There
is one �nal structure group which will be of interest to us�
Let V be a vector bundle of real dimension k� V is orientable if we can

choose a �ber orientation consistently� This is equivalent to assuming that
the real line bundle %k�V � is trivial� We choose a �ber metric for V and
an orientation for V and restrict attention to oriented orthonormal frames�
This restricts the structure group from O�k� to the special orthogonal group
SO�k��
If k is odd� no new characteristic classes result from the restriction of the

�ber group� We use the �nal �	 � block of 
 in the representation of A to
replace any �i by ��i by conjugation by an element of SO�k�� If n is even�
however� we cannot do this as we would be conjugating by a orientation
reversing matrix�
Let P �A� be a polymonial in the components of A� Suppose P �A� �

P �gAg��� for every skew�symmetric A and every g � SO�k�� Let k � � k
be even and let P �A� � P �x�� � � � � xk�� Fix g� � O�k�� SO�k� and de�ne�

P��A� �
�

�
�P �A� � P �g�Ag

��
� �� and P��A� �

�

�
�P �A�� P �g�Ag

��
� ���

Both P� and P� are SO�k� invariant� P� is O�k� invariant while P� changes
sign under the action of an element of O�k�� SO�k��

We can replace x� by �x� by conjugating by a suitable orientation re�
versing map� This shows�

P��x�� x�� � � � � � �P ��x�� x�� � � � �

so that x� must divide every monomial of P�� By symmetry� xj divides
every monomial of P� for � � j �  k so we can express�

P��A� � x� � � �xkP


��A�

where P 
��A� is now invariant under the action of O�k�� Since P 
� is poly�
nomial in the fx�jg� we conclude that both P� and P 
� can be represented
as polynomials in the Pontrjagin classes� We de�ne�

e�A� � x� � � �xk so e�A�� � det�A� � pk�A� �
Y
j

x�j

and decompose�
P � P� � e�A�P 
��
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e�A� is a square root of the determinant of A�
It is not� of course� immediate that e�A� is a polynomial in the com�

ponents of A� Let fvig be an oriented orthonormal basis for Rk� We let
Avi �

P
j Aijvj and de�ne

��A� �
�

��

X
i�j

Aijvi � vj � %��Rk��

We let v� � � � � � vk be the orientation class of Rk and de�ne�

e�A� � ���A�
k� v� � � � � � vk��k�

where � � � denotes the natural inner product on %kRk � R� It is clear
from the de�nition that e�A� is invariant under the action of SO�k� since
��A� is invariantly de�ned for skew�symmetric matrices A� It is clear that
e�A� is polynomial in the components of A� If we choose a block basis so
that�

Av� � ��v�� Av� � ���v�� Av
 � ��v�� Av� � ���v
� � � �
then we compute�

��A� � f���v� � v� � ��v
 � v� � � � g��� � x�v� � v� � x�v
 � v� � � �
e�A� � x�x� � � �

This new characteristic class is called the Euler class� While the Pontrja�
gin classes can be computed from the curvature of an arbitrary connection�
the Euler class can only be computed from the curvature of a Riemannian
connection� If -ij are the matrix components of the curvature of V relative
to some oriented orthomormal basis� then�

e�-� � ������k�k�
X
�

sign���-�������� � � �-��k�����k� � %k�M�

for � k � k � dim�V �� The sum ranges over all possible permutations ��
We de�ne e�V � � 
 if dim�V � is odd� It is immediate that e�V� � V�� �

e�V��e�V�� if we give the natural orientation and �ber metric to the direct
sum and if we use the direct sum connection�
We illustrate this formula �and check that we have the correct normal�

izing constants� by studying the following simple example� Let m � � and
letM � S� be the unit sphere� We calculate e�TS��� ParametrizeM using
spherical coordinates f�u� v� � �cosu sin v� sinu sin v� cos v� for 
 � u � ��
and 
 � v � �� De�ne a local orthonormal frame for T �R
� over S� by�

e� � �sin v������u � �� sinu� cosu� 
�

e� � ���v � �cosu cos v� sinu cos v�� sin v�

e
 � N � �cosu sin v� sinu sin v� cos v��
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The Euclidean connection er is easily computed to be�

ere�e� � �sin v����� cosu�� sinu� 
� � ��cos v� sin v�e� � e
ere�e� � �cos v� sin v��� sinu� cosu� 
� � �cos v� sin v�e�ere�e� � 
ere�e� � �� cosu sin v�� sinu sin v�� cos v� � �e
�
Covariant di�erentiation r on the sphere is given by projecting back to
T �S�� so that�

re�e� � �� cos v� sin v�e� re�e� � �cos v� sin v�e�

re�e� � 
 re�e� � 


and the connection ��form is given by�

re� � �� cos v� sin v�e� � e� so ��� � 
 and ��� � ��cos v� sin v�e�
re� � �cos v� sin v�e� � e� so ��� � 
 and ��� � �cos v� sin v�e��

As du � e�� sin v we compute ��� � � cos v du so -�� � sin v dv � du �
�e� � e� and -�� � e� � e�� From this we calculate that�

e�-� � � �

��
�-�� � -��� �

e� � e�
��

and consequently
R
S� E� � vol�S����� � � � ��S���

There is a natural relation between the Euler form and ck� Let V be
a complex vector space of dimension  k and let Vr be the underlying real
vector space of dimention � k � k� If V has a Hermitian inner product�
then Vr inherits a natural real inner product� Vr also inherits a natural
orientation from the complex structure on V � If fejg is a unitary basis for
V � then fe�� ie�� e�� ie�� � � �g is an oriented orthonormal basis for Vr� Let A
be a skew�Hermitian matrix on V � The restriction of A to Vr de�nes a skew�
symmetric matrix Ar on Vr� We choose a basis fejg for V so Aej � i�jej �
Then�

xj � ��j��� and ck�A� � x� � � �xk

de�nes the  kth Chern class� If v� � e�� v� � ie�� v
 � e�� v� � ie�� � � �
then�

Arv� � ��v�� Arv� � ���v�� Arv
 � ��v�� Arv� � ���v
� � � �

so that
e�Ar� � ck�A��

We summarize these results as follows�
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Lemma 	�	�	� Let P �A� be a polynomial with P �A� � P �gAg��� for
every skew symmetric A and every g � SO�k��
�a� If k is odd� then P �A� is invariant under O�k� and is expressible in
terms of Pontrjagin classes�
�b� If k � � k is even� then we can decompose P �A� � P��A� � e�A�P��A�
where Pi�A� are O�k� invariant and are expressible in terms of Pontrjagin
classes�
�c� e�A� is de�ned by�

e�A� � ������k
X
�

sign���A�������� � � �A��k�����k� �k�

This satis�es the identity e�A�� � pk�A�� �We de�ne e�A� � 
 if k is odd��

This completely describes the characteristic ring� We emphasize the
conclusions are only applicable to skew�symmetric real matrices A� We
have proved that e�A� has the following functorial properties�

Lemma 	�	���
�a� If we take the direct sum connection and metric� then e�V� � V�� �
e�V��e�V���
�b� If we take the metric and connection of Vr obtained by forgetting the
complex structure on a complex bundle V then e�Vr� � ck�V ��

This lemma establishes that the top dimensional Chern class ck does not
really depend on having a complex structure but only depends on having
an orientation on the underlying real vector bundle� The choice of the sign
in computing det�A���� is� of course� motivated by this normalization�
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So far� we have only discussed covariant di�erentiation from the point
of view of the total covariant derivative� At this stage� it is convenient
to introduce covariant di�erentiation along a direction� Let X � T �M�
be a tangent vector and let s � C��V � be a smooth section� We de�ne
rXs � C��V � by�

rXs � X � rs
where ��� denotes the natural pairing from T �M�� T ��M�� V � V � Let
&X�Y ' � XY � Y X denote the Lie�bracket of vector �elds� We de�ne�

-�X�Y � � rXrY �rYrX �r�X�Y �

and compute that�

-�fX� Y �s � -�X� fY �s � -�X�Y �fs � f-�X�Y �s

for f � C��M�� s � C��V �� and X�Y � C��TM��

If feig is a local frame for T �M�� let feig be the dual frame for T ��M��
It is immediate that�

rs �
X
i

ei �rei�s�

so we can recover the total covariant derivative from the directional deriva�
tives� We can also recover the curvature�

-s �
X
i�j

ei � ej � -�ei� ej�s�

If V � T �M�� there is a special connection called the Levi�Civit.a con�
nection on T �M�� It is the unique Riemannian connection which is torsion
free$i�e��

�rXY� Z� � �Y�rXZ� � X�Y� Z�

rXY �rYX � &X�Y ' � 


�Riemannian�

�Torsion free��

Let x � �x�� � � � � xm� be a system of local coordinates onM and let f���xig
be the coordinate frame for T �M�� The metric tensor is given by�

ds� �
X
i�j

gij dx
i � dxj for gij � ����xi� ���xj��

We introduce the Christo�el symbols +kij and +ijk by�

r���xi ���xj �
X
k

+kij���xk

�r���xi ���xj � ���xk� � +ijk�
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They are related by the formula�

+ijk �
X
l

+lijglk� +kij �
X
l

+ijlg
lk

where glk � �dxl� dxk� is the inverse of the matrix gij � It is not di�cult to
compute that�

+ijk � �
�fgjk�i � gik�j � gij�kg

where we use the notation ��� to denote �multiple� partial di�erentiation�
The complete curvature tensor is de�ned by�

-����xi� ���xj����xk �
X
l

Rijk
l���xl

or equivalently if we lower indices�

�-����xi� ���xj����xk� ���xl� � Rijkl�

The expression of the curvature tensor in terms of the derivatives of the
metric is very complicated in general� By making a linear change of coordi�
nates we can always normalize the metric so gij�x�� � �ij is the Kronecker
symbol� Similarly� by making a quadratic change of coordinates� we can
further normalize the metric so gij�k�x�� � 
� Relative to such a choice of
coordinates�

+kij�x�� � +ijk�x�� � 


and

Rijkl�x�� � Rijk
l�x�� �

�
�fgjl�ik � gik�lj � gjk�il � gil�jkg�x���

At any other point� of course� the curvature tensor is not as simply ex�
pressed� In general it is linear in the second derivatives of the metric�
quadratic in the �rst derivatives of the metric with coe�cients which de�
pend smoothly on the gij �s�

We choose a local orthonormal frame feig for T ��M�� Let m � �  m be
even and let orn � � � � � dvol be the oriented volume� Let

e � Em�g� orn

be the Euler form� If we change the choice of the local orientation� then e
and orn both change signs so Em�g� is scalar invariant of the metric� In
terms of the curvature� if �  m � m� then�

c�m� � ���� m�	��� m �

�  m��

Em � c�m�
X
��

sign��� sign���R�������������� � � �R��m�����m��m����m�
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where the sum ranges over all permutations �� � of the integers � through
m� For example�

E� � �������R����

E� � ������
X
i�j�k�l

fRijijRklkl �RijklRijkl � �RijikRljlkg�	�

Let dvol be the Riemannian measure on M � If M is oriented� thenZ
M

Em dvol �
Z
M

e

is independent of the orientation of M and of the metric� If M is not
orientable� we pass to the double cover to see

R
M
Em dvol is a topological

invariant of the manifold M � We shall prove later this integral is the Euler
characteristic ��M� but for the moment simply note it is not dependent
upon a choice of orientation of M and is in fact de�ned even if M is not
orientable�
It is worth computing an example� We let S� be the unit sphere in R
�

Since this is homogeneous� E� is constant on S�� We compute E� at the
north pole �
� 
� �� and parametrize S� by �u� v� ��� u� � v������� Then

���u � ��� 
��u���� u� � v������� ���v � �
� ���v���� u� � v������

g�� � � � u����� u� � v��

g�� � � � v����� u� � v��

g�� � uv���� u� � v���

It is clear gij�
� � �ij and gij�k�
� � 
� Therefore at u � v � 
�

E� � �������R���� � �������fg����� � g����� � �g�����g��
� �������f
 � 
� �g�� � ������

so that Z
S�

E� dvol � ���������� � � � ��S���

More generally� we can let M � S� 	 � � � 	 S� where we have  m factors
and �  m � m� Since e�V� � V�� � e�V��e�V��� when we take the product
metric we have Em � �E��

m � ����� m for this example� Therefore�Z
S������S�

Em dvol � � m � ��S� 	 � � � 	 S���

We will use this example later in this chapter to prove
R
M
Em � ��M� in

general� The natural examples for studying the Euler class are products



Of Complex Projective Space ���

of two dimensional spheres� Unfortunately� the Pontrjagin classes vanish
identically on products of spheres so we must �nd other examples�
It is convenient at this point to discuss the holomorphic category� A

manifold M of real dimension m � �  m is said to be holomorphic if we have
local coordinate charts z � �z�� � � � � z m��M � C m such that two charts are
related by holomorphic changes of coordinates� We expand zj � xj � iyj
and de�ne�

���zj � �
� ����xj � i���yj��

dzj � dxj � i dyj �

��� zj � �
� ����xj � i���yj�

d zj � dxj � i dyj �

We complexify T �M� and T ��M� and de�ne�

Tc�M� � spanf���zjg�
%����M� � spanfdzjg�
%����M� � spanfd zjg�

Then
%��M� � %����M�� %����M�

Tc�M�� � %����M��

As complex bundles� Tc�M� � %����M�� De�ne�

��f� �
X
j

�f��zj dz
j �C��M�� C��%����M��

 ��f� �
X
j

�f�� zj d z
j �C��M�� C��%����M��

then the Cauchy�Riemann equations show f is holomorphic if and only if
 �f � 
�
This decomposes d � � �  � on functions� More generally� we de�ne�

%p�q � spanfdzi� � � � � � dzip � d zj� � � � � � d zjqg
%n �

M
p�q�n

%p�q �

This spanning set of %p�q is closed� We decompose d � � �  � where

��C��%p�q�� C��%p���q � and  ��C��%p�q�� C��%p�q�� �

so that �� �  �  � �  �� � �  � � 
� These operators and bundles are all
invariantly de�ned independent of the particular holomorphic coordinate
system chosen�
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A bundle V over M is said to be holomorphic if we can cover M by
holomorphic charts U� and �nd frames s� over each U� so that on U��U�
the transition functions s� � f��s� de�ne holomorphic maps to GL�n�C��
For such a bundle� we say a local section s is holomorphic if s �

P
� a

�
�s

�
�

for holomorphic functions a��� For example� Tc�M� and %p���M� are holo�
morphic bundles over M � %��� is anti�holomorphic�

If V is holomorphic� we use a partition of unity to construct a Hermitian
�ber metric h on V � Let h� � �s�� s�� de�ne the metric locally� this
is a positive de�nite symmetric matrix which satis�es the transition rule
h� � f��h�  f�� � We de�ne a connection ��form locally by�

�� � �h�h
��
�

and compute the transition rule�

�� � �ff��h�  f��g  f���� h
��
� f���� �

Since f�� is holomorphic�  �f�� � 
� This implies df�� � �f�� and �  f�� �

 so that�

�� � �f��f
��
�� � f���h�h

��
� f���� � df��f

��
�� � f����f

��
�� �

Since this is the transition rule for a connection� the f��g patch together
to de�ne a connection rh�

It is immediate from the de�nition that�

�rhs�� s�� � �s��rhs�� � ��h� � h��
�
� � �h� �  �h� � dh�

so rh is a unitary connection on V � Since rhs� � C��%��� � V � we
conclude rh vanishes on holomorphic sections when di�erentiated in anti�
holomorphic directions �i�e�� rh is a holomorphic connection�� It is easily
veri�ed that these two properties determine rh�
We shall be particularly interested in holomorphic line bundles� If L is a

line bundle� then h� is a positive function on U� with h� � jf�� j�h� � The
curvature in this case is a ��form de�ned by�

-� � d�� � �� � �� � d��h�h
��
� � �  �� log�h�� � ��  � log�h���

Therefore�

c��L� �
�

��i
�  � log�h�

is independent of the holomorphic frame chosen for evaluation� c��L� �
C��%����M�� and dc� � �c� �  �c� � 
 so c��L� is closed in all possible
senses�
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Let CPn be the set of all lines through 
 in Cn�� � Let C� � C� 
 act
on Cn�� � 
 by complex multiplication� then CPn � �Cn�� � 
��C� and
we give CPn the quotient topology� Let L be the tautological line bundle
over CPn�

L � f �x� z� � CPn 	Cn�� � z � x g�
Let L� be the dual bundle� this is called the hyperplane bundle�

Let �z�� � � � � zn� be the usual coordinates on Cn�� � Let Uj � f z � zj ��

 g� Since Uj is C� invariant� it projects to de�ne an open set on CPn we
again shall denote by Uj � We de�ne

zjk � zk�zj

over Uj � Since these functions are invariant under the action of C�� they

extend to continuous functions on Uj � We let zj � �zj�� � � � �
c
zjj � � � � � z

j
n�

where we have deleted zjj � �� This gives local coordinates on Uj in CPn�
The transition relations are�

zj� � �zkj �
��zk�

which are holomorphic so CPn is a holomorphic manifold�

We let sj � �zj�� � � � � z
j
n� be a section to L over Uj � Then sj � �zkj �

��sk

transform holomorphically so L is a holomorphic line bundle overCPn� The
coordinates zj on Cn�� give linear functions on L and represent global
holomorphic sections to the dual bundle L�� There is a natural inner
product on the trivial bundle CPn 	Cn�� which de�nes a �ber metric on
L� We de�ne�

x � �c��L� � i

��
�  � log�� � jzj j��

then this is a closed ��form over CPn�
U�n��� acts on Cn�� � this action induces a natural action on CPn and

on L� Since the metric on L arises from the invariant metric on Cn�� � the
��form x is invariant under the action of U�n� ���

Lemma 	����� Let x � �c��L� over CPn� Then�
�a�
R
CPn

xn � ��

�b�H��CPn�C� is a polynomial ring with additive generators f�� x� � � � � xng�
�c� If i�CPn�� � CPn is the natural inclusion map� then i��x� � x�

Proof� �c� is immediate from the naturality of the constructions involved�
Standard methods of algebraic topology give the additive structure of
H��CPn�C� � C � 
 � C � 
 � � � � C� Since x � H��CPn�C� satis�es
xn �� 
� �a� will complete the proof of �b�� We �x a coordinate chart Un�
Since CPn � Un � CPn�� � it has measure zero� It su�ces to check that�Z

Un

xn � ��
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We identify z � Un � Cn with �z� �� � Cn�� � We imbed U�n� in
U�n� �� as the isotropy group of the vector �
� � � � � 
� ��� Then U�n� acts
on �z� �� in Cn�� exactly the same way as U�n� acts on z in Cn� Let
dvol � dx� � dy� � � � � � dxn � dyn be ordinary Lebesgue measure on Cn

without any normalizing constants of ��� We parametrize Cn in the form
�r� �� for 
 � r � � and � � S�n�� � We express xn � f�r� �� dvol� Since x is
invariant under the action of U�n�� f�r� �� � f�r� is spherically symmetric
and does not depend on the parameter ��
We compute that�

x � � �

��i
�  � log

�
� �
X

zj  zj

�
� � �

��i
�

�X
j

zj d zj��� � jzj��
�

� � �

��i

�X
j

dzj � d zj��� � r���
X
j�k

zj  zk dzk � d zj��� � r���
�
�

We evaluate at the point z � �r� 
� � � � � 
� to compute�

x � � �

��i

�X
j

dzj d zj��� � r��� r� dz� � d z���� � r���
�

� � �

��i

�
dz� � d z���� � r��� �

X
j��

dzj � d zj��� � r��

�
�

Consequently at this point�

xn �

�
� �

��i

�n
n��� � r���n�� dz� � d z� � � � � � dzn � d zn

� ��nn��� � r���n�� dx� � dy� � � � � � dxn � dyn
� ��nn��� � r���n�� dvol �

We use the spherical symmetry to conclude this identitiy holds for all z�
We integrate over Un � Cn and use spherical coordinates�Z
xn � n���n

Z
�� � r���n�� dvol � n���n

Z
�� � r���n��r�n�� dr d�

� n���n vol�S�n�� �
Z �

�

�� � r���n��r�n�� dr

�
�

�
n���n vol�S�n�� �

Z �

�

�� � t��n�� tn�� dt�

We compute the volume of S�n�� using the identity
p
� �

R�
�� e�t

�

dt�
Thus�

�n �
Z

e�r
�

dvol � vol�S�n�� �
Z �

�

r�n��e�r
�

dr

�
�

�
vol�S�n�� �

Z �

�

tn��e�t dt �
�n� ���

�
vol�S�n�� ��
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We solve this for vol�S�n�� � and substitute to compute�Z
xn � n

Z �

�

�� � t��n�� tn�� dt � �n� ��
Z �

�

�� � t��ntn�� dt � � � �

�
Z �

�

�� � t��� dt � �

which completes the proof�

x can also be used to de�ne a U�n� �� invariant metric on CPn called
the Fubini�Study metric� We shall discuss this in more detail in Chapter 
as this gives a Kaehler metric for CPn�

There is a relation between L and %����CPn� which it will be convenient
to exploit�

Lemma 	���	� Let M � CPn�
�a� There is a short exact sequence of holomorphic bundles�


� %����M�� L� �n�� � �� 
�

�b� There is a natural isomorphism of complex bundles�

Tc�M�� � � L� � �n�� � L� � � � � � L�� �z �
n�� times

�

Proof� Rather than attempting to give a geometric proof of this fact� we
give a combinatorial argument� Over Uk we have functions zki which give
coordinates 
 � i � n for i �� k� Furthermore� we have a section sk to
L� We let fski gni�� give a frame for L � �n�� � L � � � � � L� We de�ne
F � %����M�� L� �n�� on Uk by�

F �dzki � � ski � zki s
k
k�

We note that zkk � � and F �dzkk � � 
 so this is well de�ned on Uk� On the

overlap� we have the relations zki � �zjk�
��zji and�

ski � �zjk�
��sji and dzki � �zjk�

�� dzji � �zjk�
��zji dz

j
k�

Thus if we compute in the coordinate system Uj we have�

F �dzki � � �zjk�
���sji � zji s

j
j�� �zjk�

��zji �s
j
k � zjks

j
j�

� ski � zji s
k
j � zki s

k
k � zji s

k
j � ski � zki s

k
k

which agrees with the de�nition of F on the coordinate system Uk � Thus
F is invariantly de�ned� It is clear F is holomorphic and injective� We let
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� � L � �n��� image�F �� and let � be the natural projection� It is clear
that skk is never in the image of F so �skk �� 
� Since

F �dzkj � � skj � zkj s
k
k � zkj �s

j
j � skk�

we conclude that �sjj � �skk so s � �skk is a globally de�ned non�zero

section to �� This completes the proof of �a�� We dualize to get a short
exact sequence�


� �� L� � �n�� � Tc�M�� 
�

These three bundles have natural �ber metrics� Any short exact sequence
of vector bundles splits �although the splitting is not holomorphic� and this
proves �b��

From assertion �b� it follows that the Chern class of Tc�CPn� is given
by�

c�Tc� � c�Tc � �� � c�L� � � � � � L�� � c�L��n�� � �� � x�n�� �

For example� if m � �� then c�Tc� � �� � x�� � � � �x� In this case�
c��Tc� � e�T �S��� and we computed

R
S� e�T �S�� � � so

R
S� x � � which

checks with Lemma �����
If we forget the complex structure on Tc�M� when M is holomorphic�

then we obtain the real tangent space T �M�� Consequently�

T �M��C � Tc � T �c

and
c�T �CPn��C� � c�Tc�CPn�� T �c �CPn��

� �� � x�n�� ��� x�n�� � ��� x��n�� �

When we take into account the sign changes involved in de�ning the total
Pontrjagin form� we conclude�

Lemma 	�����
�a� IfM � S�	 � � �	S� has dimension �n� then

R
M
e�T �M�� � ��M� � �n�

�b� If M � CPn has dimension �n� then

c�Tc�M�� � �� � x�n�� and p�T �M�� � �� � x��n�� �

x � H��CPn�C� is the generator given by x � c��L
�� � �c��L�� L is

the tautological line bundle over CPn� and L� is the dual� the hyperplane
bundle�

The projective spaces form a dual basis to both the real and complex
characteristic classes� Let � be a partition of the positive integer k in the
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form k � i� � � � �� ij where we choose the notation so i� � i� � � � � � We
let ��k� denote the number of such partitions� For example� if k � � then
���� � � and the possible partitions are�

� � �� � �  � �� � � � � �� � � � � � � �� � � � � � � � � ��

We de�ne classifying manifolds�

M c
� � CPi� 	 � � � 	CPij and Mr

� � CP�i� 	 � � � 	CP�ij
to be real manifolds of dimension �k and �k�

Lemma 	����� Let k be a positive integer� Then�
�a� Let constants c��� be given� There exists a unique polynomial P �A� of
degree k in the components of a k 	 k complex matrix which is GL�k�C�
invariant such that the characteristic class de�ned by P satis�es�Z

Mc
�

P �Tc�M
c
��� � c���

for every such partition � of k�
�b� Let constants c��� be given� There exists a polynomial P �A� of degree
�k in the components of a �k	�k real matrix which is GL��k�R� invariant
such that the characteristic class de�ned by P satis�es�Z

Mr
�

P �T �Mr
� �� � c���

for every such partition � of k� If P 
 is another such polynomial� then
P �A� � P 
�A� for every skew�symmetric matrix A�
In other words� the real and complex characteristic classes are completely

determined by their values on the appropriate classifying manifolds�

Proof� We prove �a� �rst� Let Pk denote the set of all such polynomials
P �A�� We de�ne c� � ci� � � � cij � Pk � then by Lemma ���� the fc�g form
a basis for Pk so dim�Pk� � ��k�� The fc�g are not a very convenient basis
to work with� We will de�ne instead�

H� � chi� � � � chij � Pk
and show that the matrix�

a��� �� �
Z
Mc

�

H��Tc�M
c
 ��

is a non�singular matrix� This will prove the H� also form a basis for Pk
and that the M c

 are a dual basis� This will complete the proof�
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The advantage of working with the Chern character rather than with the
Chern class is that�

chi�Tc�M� 	M��� � chi�TcM� � TcM�� � chi�TcM�� � chi�TcM���

Furthermore� chi�TcM� � 
 if �i 
 dim�M�� We de�ne the length ���� � j
to be the number of elements in the partition �� Then the above remarks
imply�

a��� �� � 
 if ���� 
 �����

Furthermore� if ���� � ����� then a��� �� � 
 unless � � �� We de�ne the
partial order � 
 � if ���� 
 ���� and extend this to a total order� Then
a��� �� is a triangular matrix� To show it is invertible� it su�ces to show
the diagonal elements are non�zero�
We �rst consider the case in which � � � � k� Using the identity

Tc�CPk��� � �L�� � � ��L�� �k�� times�� it is clear that chk�TcCPk� �
�k � ��chk�L

��� For a line bundle� chk�L
�� � c��L

��k�k� � If x � c��L
�� is

the generator of H��CPk�C�� then chk�TcCPk� � �k���xk�k� which does
not integrate to zero� If � � � � fi�� � � � � ijg then�

a��� �� � c

����Y
���

a�i� � i� �

where c is a positive constant related to the multiplicity with which the i�
appear� This completes the proof of �a��
To prove �b� we replace M c

� by M c
�� � Mr

� and H� by H��� We compute

ch�i�T �M��
def
� ch�i�T �M��C� � ch�i�TcM � T �cM�

� ch�i�TcM� � ch�i�T
�
cM�

� �ch�i�TcM��

Using this fact� the remainder of the proof of �b� is immediate from the
calculations performed in �a� and this completes the proof�

The Todd class and the Hirzebruch L�polynomial were de�ned using
generating functions� The generating functions were chosen so that they
would be particularly simple on the classifying examples�

Lemma 	�����
�a� Let xj � ��j���i be the normalized eigenvalues of a complex matrix
A� We de�ne Td�A� � Td�x� �

Q
j xj����e�xj � as the Todd class� Then�

Z
Mc

�

Td�Tc�M
c
��� � � for all ��
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�b� Let xj � �j��� where the eigenvalues of the skew�symmetric real ma�
trix A are f���� � � �g� We de�ne L�A� � L�x� �

Q
j xj� tanhxj as the

Hirzebruch L�polynomial� Then
R
Mr

�
L�T �Mr�� � � for all ��

We will use this calculation to prove the integral of the Todd class gives
the arithmetic genus of a complex manifold and that the integral of the
Hirzebruch L�polynomial gives the signature of an oriented real manifold�
In each case� we only integrate the part of the total class which is of the
same degree as the dimension of the manifold�

Proof� Td is a multiplicative class�

Td�Tc�M� 	M��� � Td�Tc�M��� Tc�M��� � Td�Tc�M���Td�Tc�M����

Similarly the Hirzebruch polynomial is multiplicative� This shows it su�ces
to prove Lemma ���� in the case � � k so M � CPk or CP�k �
We use the decomposition Tc�CPk�� � � L� � � � � � L� �k � � times�

to compute Td�Tc�CPk�� � &Td�x�'k�� where x � c��L
�� is the generator

of H��CPk�R�� Since xk integrates to �� it su�ces to show the coe�cient
of xk in Td�x�k�� is � or equivalently to show�

Resx�� x
�k�� &Td�x�k�� ' � Resx����� e�x��k�� � ��

If k � 
� then�

��� e�x��� �

�
x� �

�
x� � � � �

���
� x��

�
� �

�

�
x� � � �

�
and the result follows� Similarly� if k � �

��� e�x��� � x���� � x� � � ��

and the result follows� For larger values of k� proving this directly would be
a combinatorial nightmare so we use instead a standard trick from complex
variables� If g�x� is any meromorphic function� then Resx�� g


�x� � 
� We
apply this to the function g�x� � ��� e�x��k for k � � to conclude�

Resx����� e�x��k��e�x � 
�

This implies immediately that�

Resx����� e�x��k�� � Resx����� e�x��k�� ��� e�x�

� Resx����� e�x��k � �

by induction which completes the proof of assertion �a��
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We now assume k is even and studyCPk� Again� using the decomposition
Tc�CPk�� � � L� � � � � � L� it follows that

L�T �CPk�� � &L�x�'k�� �
xk��

tanhk�� x
�

Since we are interested in the coe�cient of xk� we must show�

Resx�� tanh
�k�� x � � if k is even

or equivalently

Resx�� tanh
�k x � � if k is odd�

We recall that

tanhx �
ex � e�x

ex � e�x

tanh�� x �
� � x� � � � �
�x� � � �

so the result is clear if k � �� We now proceed by induction� We di�eren�
tiate tanh�k x to compute�

�tanh�k x�
 � �k�tanh�k�� x���� tanh� x��

This implies

Resx�� tanh
�k�� x � Resx�� tanh

�k�� x

for any integer k� Consequently Resx�� tanh
�k x � � for any odd integer

k since these residues are periodic modulo �� �The residue at k even is� of
course� zero�� This completes the proof�
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Let P be a self�adjoint elliptic partial di�erential operator of order d 
 
�
If the leading symbol of P is positive de�nite� we derived an asymptotic
expansion for Trfe�tP g in section ���� This is too general a setting in which
to work so we shall restrict attention henceforth to operators with leading
symbol given by the metric tensor� as this is the natural category in which
to work�
Let P �C��V �� C��V � be a second order operator� We choose a local

frame for V � Let x � �x�� � � � � xm� be a system of local coordinates� Let
ds� � gij dx

i dxj be the metric tensor and let gij denote the inverse matrix�
dxi � dxj � gij is the metric on the dual space T ��M�� We assume P has
the form�

P � �gij ��

�xi�xj
I � aj

�

�xj
� b

where we sum over repeated indices� The aj and b are sections to END�V ��
We introduce formal variables for the derivatives of the symbol of P � Let

gij�� � d�xgij � aj�� � d�xaj � b�� � d�x b�

We will also use the notation gij�kl���� aj�kl���� and b�kl��� for multiple partial
derivatives� We emphasize that these variables are not tensorial but depend
upon the choice of a coordinate system �and local frame for V ��

There is a natural grading on these variables� We de�ne�

ord�gij��� � j�j� ord�aj��� � � � j�j� ord�b��� � � � j�j�

Let P be the non�commutative polynomial algebra in the variables of pos�
itive order� We always normalize the coordinate system so x� corresponds
to the point �
� � � � � 
� and so that�

gij�x�� � �ij and gij�k�x�� � 
�

Let K�t� x� x� be the kernel of e�tP � Expand

K�t� x� x� 

X
n��

t
n�m
� en�x� P �

where en�x� P � is given by Lemma ������ Lemma ������c� implies�

Lemma 	����� en�x� P � � P is a non�commutative polynomial in the
jets of the symbol of P which is homogeneous of order n� If an�x� P � �
Tr en�x� P � is the �ber trace� then an�x� P � is homogeneous of order n in
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the components �relative to some local frame� of the jets of the total symbol
of P �

We could also have proved Lemma ����� using dimensional analysis and
the local nature of the invariants en�x� P � instead of using the combinatorial
argument given in Chapter ��
We specialize to the case where P � "p is the Laplacian on p�forms�

If p � 
� then "� � �g�����xifggij���xjg� g � det�gij�
��� de�nes

the Riemannian volume dvol � g dx� The leading symbol is given by the
metric tensor� the �rst order symbol is linear in the ��jets of the metric
with coe�cients which depend smoothly on the metric tensor� The 
th

order symbol is zero in this case� More generally�

Lemma 	���	� Let x � �x�� � � � � xm� be a system of local coordinates on
M � We use the dxI to provide a local frame for %�T �M�� Relative to this
frame� we expand ��"p� � p� � p� � p�� p� � j�j�I� p� is linear in the

�jets of the metric with coe�cients which depend smoothly on the gij �s�
p� is the sum of a term which is linear in the ��jets of the metric and a
term which is quadratic in the 
�jets of the metric with coe�cients which
depend smoothly on the gij �s�

Proof� We computed the leading symbol in the �rst chapter� The re�
mainder of the lemma follows from the decomposition " � d� � �d �
�d � d � � � d � d� In #at space� " � �Pi �

���x�i as computed earlier�
If the metric is curved� we must also di�erentiate the matrix representing
the Hodge � operator� Each derivative applied to ��� reduces the order of
di�erentiation by one and increases the order in the jets of the metric by
one�

Let an�x� P � � Tr en�x� P �� Then�

Tr e�tP 

X
n��

t
n�m
�

Z
M

an�x� P � dvol�x��

For purposes of illustration� we give without proof the �rst few terms in
the asymptotic expansion of the Laplacian� We shall discuss such formulas
in more detail in the fourth chapter�

Lemma 	�����
�a� a��x�"p� � ������ dim�%p� � ������

�
m
p

�
�

�b� a��x�"�� � ��������Rijij����
�c�

a��x�"�� �
�

��
� ���Rijij �kk � �RijijRklkl � �RijikRljlk � �RijklRijkl

�

�

In this lemma� � �� denotes multiple covariant di�erentiation� a�� a��
a�� and a� have been computed for "p for all p� but as the formulas are
extremely complicated� we shall not reproduce them here�



The Gauss�Bonnet Theorem ��

We consider the algebra generated by the variables fgij��gj�j�� � If
X is a coordinate system and G a metric and if P is a polynomial in
these variables� we de�ne P �X�G��x�� by evaluation� We always normal�
ize the choice of X so gij�X�G��x�� � �ij and gij�k�X�G��x�� � 
� and
we omit these variables from consideration� We say that P is invariant
if P �X�G��x�� � P �Y�G��x�� for any two normalized coordinate systems
X and Y � We denote the common value by P �G��x��� For example� the
scalar curvature K � ��

�Rijij is invariant as are the an�x�"p��
We let Pm denote the ring of all invariant polynomials in the derivatives

of the metric for a manifold of dimension m� We de�ned ord�gij��� � j�j�
let Pm�n be the subspace of invariant polynomials which are homogeneous
of order n� This is an algebraic characterization� it is also useful to have
the following coordinate free characterization�

Lemma 	����� Let P � Pm� then P � Pm�n if and only if P �c�G��x�� �
c�nP �G��x�� for every c �� 
�

Proof� Fix c � 
 and let X be a normalized coordinate system for the
metric G at the point x�� We assume x� � �
� � � � � 
� is the center of the
coordinate system X� Let Y � cX be a new coordinate system� then�

���yi � c�����xi

d�y � c�j�jd�x

c�G����yi� ���yj� � G����xi� ���xj�

gij���Y� c
�G� � c�j�jgij���X�G��

This implies that if A is any monomial of P that�

A�Y� c�G��x�� � c� ord�A�A�X�G��x���

Since Y is normalized coordinate system for the metric c�G� P �c�G��x�� �
P �Y� c�G��x�� and P �G��x�� � P �X�G��x��� This proves the Lemma�

If P � Pm we can always decompose P � P� � � � � � Pn into homoge�
neous polynomials� Lemma ����� implies the Pj are all invariant separately�
Therefore Pm has a direct sum decomposition Pm � Pm�� � Pm�� � � � � �
Pm�n � � � � and has the structure of a graded algebra� Using Taylor�s theo�
rem� we can always �nd a metric with the gij���X�G��x�� � cij�� arbitrary
constants for j�j � � and so that gij�X�G��x�� � �ij � gij�k�X�G��x�� � 
�
Consequently� if P � Pm is non�zero as a polynomial� then we can always
�nd G so P �G��x�� �� 
 so P is non�zero as a formula� It is for this reason
we work with the algebra of jets� This is a pure polynomial algebra� If
we work instead with the algebra of covariant derivatives of the curvature
tensor� we must introduce additional relations which correspond to the
Bianchi identities as this algebra is not a pure polynomial algebra�
We note �nally that Pm�n is zero if n is odd since we may take c � ���

Later in this chapter� we will let Pm�n�p be the space of p�form valued
invariants which are homogeneous of order n� A similar argument will
show Pm�n�p is zero if n� p is odd�

Lemmas ����� and ����� imply�
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Lemma 	����� an�x�"p� de�nes an element of Pm�n �

This is such an important fact that we give another proof based on
Lemma ����� to illustrate the power of dimensional analysis embodied in
this lemma� Fix c 
 
 and let "p�c

�G� � c��"p�G� be the Laplacian cor�
responding to the new metric� Since dvol�c�G� � cm dvol�G�� we conclude�

e�t	p�c
�G� � e�tc

��	p�G�

K�t� x� x�"p�c
�G�� dvol�c�G� � K�c��t� x� x�"p�G�� dvol�G�

K�t� x� x�"p�c
�G�� � c�mK�c��t� x� x�"p�G��X

n

t
n�m
� an�x�"p�c

�G�� 

X
n

c�mcmc�nt
n�m
� an�x�"p�G��

an�x�"p�c
�G�� � c�nan�x�"p�G���

We expand an�x�"p�G�� �
P

� an���p � r in a �nite Taylor series about
gij � �ij in the gij�� variables� Then if an���p is the portion which is
homogeneous of order �� we use this identity to show an���p � 
 for n �� �
and to show the remainder in the Tayor series is zero� This shows an is a
homogeneous polynomial of order n and completes the proof�

Since an�x�"p� � 
 if n is odd� in many references the authors replace the
asymptotic series by t�

m
�

P
n t

nan�x�"p�� They renumber this sequence
a�� a�� � � � rather than a�� 
� a�� 
� a�� � � � � We shall not adopt this notational
convention as it makes dealing with boundary problems more cumbersome�

H� Weyl�s theorem on the invariants of the orthogonal group gives a
spanning set for the spaces Pm�n �

Lemma 	���
� We introduce formal variables Ri�i�i�i� �i	 ���ik for the mul�
tiple covariant derivatives of the curvature tensor� The order of such a
variable is k � �� We consider the polynomial algebra in these variables
and contract on pairs of indices� Then all possible such expressions generate
Pm� In particular�

f�g spans Pm�� � fRijijg spans Pm��

fRijij �kk� RijijRklkl � RijikRljlk� RijklRijklg spans Pm�� �

This particular spanning set for Pm�� is linearly independent and forms
a basis if m � �� If m � � dim�P
��� �  while if m � �� dim�P���� � �
so there are relations imposed if the dimension is low� The study of these
additional relations is closely related to the Gauss�Bonnet theorem�

There is a natural restriction map

r�Pm�n � Pm���n
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which is de�ned algebraically as follows� We let

degk�gij��� � �i�k � �j�k � ��k�

be the number of times an index k appears in the variable gij��� Let

r�gij��� �

�
gij�� � Pm�� if degm�gij��� � 


 if degm�gij��� 
 
�

We extend r�Pm � Pm�� to be an algebra morphism� r�P � is a polynomial
in the derivatives of a metric on a manifold of dimension m� �� It is clear
r preserves the degree of homogeneity�
r is the dual of a natural extension map� Let G
 be a metric on a

manifold M 
 of dimension m � �� We de�ne i�G
� � G � d�� on the
manifold M � M 
	S� where S� is the unit circle with natural parameter
�� If X
 is a local coordinate system on M 
� then i�X
� � �x� �� is a local
coordinate system on M � It is clear that�

�rP ��X
� G
��x
�� � P �i�X
�� i�G
���x
�� ���

for any �� � S�� what we have done by restricting to product manifolds
M 
 	 S� with product metrics G
 � d�� is to introduce the relation which
says the metric is #at in the last coordinate� Restiction is simply the
dual of this natural extension� rP is invariant if P is invariant� Therefore
r � Pm�n � Pm�n�� �
There is one �nal description of the restriction map which will be useful�

In discussing a H� Weyl spanning set� the indices range from � through
m� We de�ne the restriction by letting the indices range from � through
m� �� Thus Rijij � Pm�� is its own restriction in a formal sense� of course
r�Rijij� � 
 if m � � since there are no non�trivial local invariants over a
circle�

Theorem 	�����
�a� r�Pm�n � Pm���n is always surjective�
�b� r�Pm�n � Pm���n is bijective if n � m�
�c� r�Pm�m � Pm���m has 
�dimensional kernel spanned by the Euler class
Em if m is even� If m is odd� Pm�m � Pm���m � 
�
�c� is an axiomatic characterization of the Euler form� It is an expression
of the fact that the Euler form is a unstable characteristic class as opposed
to the Pontrjagin forms which are stable characteristic classes�

Proof� �a� is consequence of H� Weyl�s theorem� If we choose a H� Weyl
spanning set� we let the indices range from � to m instead of from � to
m � � to construct an element in the inverse image of r� The proof of
�b� and of �c� is more complicated and will be postponed until the next
subsection� Theorem ����� is properly a theorem in invariance theory� but
we have stated it at this time to illustrate how invariance theory can be
used to prove index theorems using heat equation methods�
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Theorem 	����� Let an�x� d � �� �
P

p����pan�x�"p� � Pn�m be the
invariant of the de Rham complex� We showed in Lemma 
���� that�Z

M

an�x� d� �� dvol�x� �

�
��M� if n � m

 if n �� m�

Then�
�a� an�x� d� �� � 
 if either m is odd or if n � m�
�b� am�x� d � �� � Em is m is even so ��M� �

R
M
Em dvol�x� �Gauss�

Bonnet theorem��

Proof� We suppose �rst that m is odd� Locally we can always choose an
orientation for T �M�� We let � be the Hodge operator then �"p � �"m�p�
locally� Since these operators are locally isomorphic� their local invariants
are equal so an�x�"p� � an�x�"m�p�� If m is odd� these terms cancel
in the alternating sum to give an�x� d � �� � 
� Next we suppose m is
even� Let M � M 
 	 S� with the product metric� We decompose any
� � %�T �M� uniquely in the form

� � �� � �� � d� for �i � %�T �M 
��

We de�ne�
F ��� � �� � d� � ��

and compute easily that F" � "F since the metric is #at in the S�

direction� If we decompose %�M� � %e�M� � %o�M� into the forms of
even and odd degree� then F interchanges these two factors� Therefore�
an�x�"e� � an�x�"�� so an�x� d � �� � 
 for such a product metric�
This implies r�an� � 
� Therefore an � 
 for n � m by Theorem ������
Furthermore�

am � cmEm

for some universal constant cm� We show cm � � by integrating over the
classifying manifold M � S� 	 � � � 	 S�� Let �  m � m� then

� m � ��M� �
Z
M

am�x� d� �� dvol�x� �
Z
M

Em dvol�x�

by Lemma ����� This completes the proof of the Gauss�Bonnet theorem�
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Pontrjagin Classes of the Tangent Bundle�

In the previous subsection� we gave in Theorem ����� an axiomatic char�
acterization of the Euler class in terms of functorial properties� In this
subsection we will complete the proof of Theorem ������ We will also give
a similar axiomatic characterization of the Pontrjagin classes which we will
use in our discussion of the signature complex in Chapter �
Let T �Rm � Rm be the germ of a di�eomorphism� We assume that�

T �
� � 
 and dT �x� � dT �
� �O�x�� for dT �
� � O�k��

IfX is any normalized coordinate system for a metricG� then TX is another
normalized coordinate system for G� We de�ne an action of the group of
germs of di�eomorphisms on the polynomial algebra in the fgij��g� j�j � �
variables by de�ning the evaluation�

�T �P ��X�G��x�� � P �TX�G��x���

Clearly P is invariant if and only if T �P � P for every such di�eomorphism
T �
Let P be invariant and let A be a monomial� We let c�A�P � be the

coe�cient of A in P � c�A�P � de�nes a linear functional on P for any
monomial A� We say A is a monomial of P if c�A�P � �� 
� Let Tj be the
linear transformation�

Tj�xk� �

��xj if k � j
xk if k �� j �

This is re#ection in the hyperplane de�ned by xj � 
� Then

T �j �A� � ����degj�A�A

for any monomial A� Since

T �j P �
X

����degj�A�c�A�P �A � P �
X

c�A�P �A�

we conclude degj�A� must be even for any monomial A of P � If A has the
form�

A � gi�j���� � � � girjr��r

we de�ne the length of A to be�

��A� � r�

It is clear ���A� � ord�A� �
P

j degj�A� so ord�A� is necessarily even if A
is a monomial of P � This provides another proof Pm�n � 
 if n is odd�
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In addition to the hyperplane re#ections� it is convenient to consider
coordinate permutations� If � is a permutation� then T �� �A� � A� is de�ned
by replacing each index i by ��i� in the variables gij�k���� Since T

�
� �P � � P �

we conclude the form of P is invariant under coordinate permutations or
equivalently c�A�P � � c�A�� P � for every monomial A of P �
We can use these two remarks to begin the proof of Theorem ������

Fix P �� 
 with r�P � � 
 and P � Pm�n � Let A be a monomial of P �
Then r�P � � 
 implies degm�A� 
 
 is even� Since P is invariant under
coordinate permutations� degk�A� � � for � � k � m� We construct the
chain of inequalities�

�m �
X
k

degk�A� � ���A� � ord�A�

�
X
�

�� � j�� j� �
X
�

�j�� j � �ord�A� � �n�

We have used the fact j�� j � � for � � � � ��A�� This implies m � n so in
particular P � 
 if n � m which proves assertion �b� of Theorem ������ If
n � m� then all of the inequalities in this string must be equalities� This
implies ���A� � m� degk�A� � � for all k� and j�� j � � for all �� Thus the
monomial A must have the form�

A � gi�j��k� l� � � � girjr�krlr for �r � m

and in particular� P only involves the second derivatives of the metric�
In order to complete the proof of Theorem ������ we must use some

results involving invariance under circle actions�

Lemma 	����� Parametrize the circle SO��� by z � �a� b� for a��b� � ��
Let Tz be the coordinate transformation�

y� � ax� � bx�� y� � �bx� � ax�� yk � xk for k 
 ��

Let P be a polynomial and assume T �z P � P for all z � S�� Then�
�a� If g���� divides a monomial A of P for some �� then g���� divides a
monomial B of P for some ��
�b� If gij�� divides a monomial of A of P for some �i� j�� then gkl�� divides
a monomial B of P for some � and some �k� l� where ���� � ���� � ����
and ���� � 
�
Of course� the use of the indices � and � is for convenience only� This
lemma holds true for any pair of indices under the appropriate invariance
assumption�

We postpone the proof of this lemma for the moment and use it to
complete the proof of Theorem ������ Let P �� 
 � Pm�m with r�P � � 
�
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Let A be a monomial of P � We noted degk�A� � � for � � k � m and A
is a polynomial in the ��jets of the metric� We decompose

A � gi�j��k� l� � � �girjr�krlr for �r � m�

By making a coordinate permutation we can choose A so i� � �� If j� �� ��
we can make a coordinate permutation to assume j� � � and then apply
Lemma ������a� to assume i� � j� � �� We let P� �

P
c�A�P �A where

the sum ranges over A of the form�

A � g���k�l� � � � girjr�krlr

which are monomials of P � Then P� �� 
 and P� is invariant under coor�
dinate transformations which �x the �rst coordinate� Since deg��A� � ��
the index � appears nowhere else in A� Thus k� is not � so we may make
a coordinate permutation to choose A so k� � �� If l� �� �� then l� �  so
we may make a coordinate permutation to assume l� � � We then apply
Lemma ������b� to choose A a monomial of P� of the form�

A � g�����A

�

We have deg��A� � deg��A� � � so deg��A

� � deg��A


� � 
 so these
indices do not appear in A
� We de�ne P� �

P
c�A�P �A where the sum

ranges over those monomial A of P which are divisible by g����� � then
P� �� 
�
We proceed inductively in this fashion to show �nally that

A� � g�����g

��� � � � gm���m���mm

is a monomial of P so c�A�� P � �� 
� The function c�A�� P � is a separating
linear functional on the kernel of r in Pm�m and therefore

dim�fP � Pm�m � r�P � � 
 g� � ��

We complete the proof of Theorem ������c� by showing that r�Em� � 
� If
Em is the Euler form and M � M 
 	 S�� then�

Em�M� � Em�M 
 	 S�� � Em���M 
�E��S
�� � 


which completes the proof� dimN�r� � � and Em � N�r� spans�

Before we begin the proof of Lemma ������ it is helpful to consider a few
examples� If we take A � g����� then it is immediate�

���y� � a���x� � b���x� � ���y� � �b���x� � a���x�

���yk � ���xk for k 
 ��
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We compute T �z �A� by formally replacing each index � by a�� b� and each
index � by �b�� a� and expanding out the resulting expression� Thus� for
example�

T �z �g������ � ga��b��a��b��a��b��a��b�

� a�g����� � �a
bg����� � �a
bg�����

� a�b�g����� � a�b�g����� � �a�b�g�����

� �ab
g����� � �ab
g����� � b�g����� �

We note that those terms involving a
b arose from changing exactly one
index to another index ��� � or �� ��� the coe�cient re#ects the multi�
plicity� Thus in particular this polynomial is not invariant�

In computing invariance under the circle action� all other indices remain
�xed so

T �z �g
���� � g
����� � �a�g
���� � b�g
���� � �abg
����

� a�g
���� � b�g
���� � �abg
�����

� �a� � b���g
���� � g
���� �

is invariant� Similarly� it is easy to compute�

T �z �g����� � g����� � �g������ � �a� � b����g����� � g����� � �g������

so this is invariant� We note this second example is homogeneous of degree
� in the �a� b� variables since deg��A� � deg��A� � ��
With these examples in mind� we begin the proof of Lemma ������ Let

P be invariant under the action of the circle acting on the �rst two coor�
dinates� We decompose P � P� � P� � � � � where each monomial A of Pj
satis�es deg��A� � deg��A� � j � If A is such a monomial� then T �z �A� is a
sum of similar monomials� Therefore each of the Pj is invariant separately
so we may assume P � Pn for some n� By setting a � b � ��� we see n
must be even� Decompose�

T �z �P � � anP ��� � ban��P ��� � � � �� bnP �n�

where P � P ��� � We use the assumption T �z �P � � P and replace b by �b
to see�


 � T ��a�b� �P �� T ��a��b� �P � � �ban��P ��� � �b
an�
P �
� � � � �

We divide this equation by b and take the limit as b� 
 to show P ��� � 
�

�In fact� it is easy to show P ��j��� � 
 and P ��j� �
�
n��
j

�
P but as we shall

not need this fact� we omit the proof��
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We let A� denote a variable monomial which will play the same role as
the generic constant C of Chapter �� We introduce additional notation
we shall �nd useful� If A is a monomial� we decompose T ��a�b�A � anA �

an��bA��� � � � � � If B is a monomial of A��� then deg��B� � deg��A�� �
and B can be constructed from the monomial A by changing exactly one
index � � � or � � �� If deg��B� � deg��A� � �� then B is obtained
from A by changing exactly one index � � �� c�B�A���� is a negative
integer which re#ects the multiplicity with which this change can be made�
If deg��B� � deg��A�� �� then B is obtained from A by changing exactly
one index �� �� c�B�A���� is a positive integer� We de�ne�

A��� �� �
X

c�B�A����B summed over deg��B� � deg��A�� �

A��� �� �
X

�c�B�A����B summed over deg��B� � deg��A� � �

A��� � A��� ���A��� ���

For example� if A � �g���

�
�g����� then n � � and�

A��� �� � �g���

g���

g����� � ��g���

�
�g�����

A��� �� � �g���

g���

g����� �

It is immediate from the de�nition that�X
B

c�B�A��� ��� � deg��A� and
X
B

c�B�A��� ��� � deg��A��

Finally� it is clear that c�B�A���� �� 
 if and only if c�A�B���� �� 
� and
that these two coe�cients will be opposite in sign� and not necessarily equal
in magnitude�

Lemma 	���	� Let P be invariant under the action of SO��� on the �rst
two coordinates and let A be a monomial of P � Let B be a monomial of
A��� � Then there exists a monomial of A� di�erent from A so that

c�B�A����c�A�P �c�B�A
���
� �c�A�� P � � 
�

Proof� We know P ��� � 
� We decompose

P ��� �
X
A

c�A�P �A��� �
X
B

c�A�P �c�B�A����B�

Therefore c�B�P ���� � 
 impliesX
A

c�A�P �c�B�A���� � 




�	� 	��� Invariance Theory

for all monomials B� If we choose B so c�B�A���� �� 
 then there must be
some other monomial A� of P which helps to cancel this contribution� The
signs must be opposite which proves the lemma�

This lemma is somewhat technical and formidable looking� but it is ex�
actly what we need about orthogonal invariance� We can now complete the
proof of Lemma ������ Suppose �rst that A � �g�����

kA� for k 
 
 where

g���� does not divide A�� Assume c�A�P � �� 
� Let B � g�����g�����
k��A�

then c�B�A���� � �k �� 
� Choose A� �� A so c�A�� P � �� 
� Then
c�A�� B

���� �� 
� If c�A�� B�� � ��� �� 
 then A� is constructed from B
by changing a � � � index so A� � g���� � � � has the desired form� If
c�A�� B��� ��� �� 
� we expand B��� �� � A� terms divisible by g����
for some �� Since A� �� A� again A� has the desired form which proves �a��
To prove �b�� we choose gij�� dividing some monomial of P � Let � be cho�

sen with ��������� � ��������� and ��k� � ��k� for k 
 � with ���� max�
imal so guv�� divides some monomial of P for some �u� v�� Suppose ���� ��

� we argue for a contradiction� Set � � �������� ������� ���� � � � � ��m���
Expand A � �guv���

kA� and de�ne B � guv�	 �guv���
k��A� where guv��

does not divide A�� Then c�B�A���� � �����k �� 
 so we may choose
A� �� A so c�A�� B

���� �� 
� If c�A�� B�� � ��� �� 
 then either A� is
divisible by gu�v��	 or by guv�	� where �


��� � ���� � �� �
��� � ����� ��
and �
�j� � ��j� for j 
 �� Either possibility contradicts the choice of �
as maximal so c�A�� B��� ��� �� 
� However� B��� �� � ����A� terms
divisible by gu�v��	 for some �u
� v
�� This again contradicts the maximal�
ity as A �� A� and completes the proof of Lemma ����� and thereby of
Theorems ����� and ����	�
If I � f� � i� � � � � � ip � mg� let jIj � p and dxI � dxi� � � � � �

dxip � A p�form valued polynomial is a collection fPIg � P for jIj � p of
polynomials PI in the derivatives of the metric� We will also sometimes
write P �

P
jIj�p PI dx

I as a formal sum to represent P � If all the fPIg are
homogeneous of order n� we say P is homogeneous of order n� We de�ne�

P �X�G��x�� �
X
I

PI �X�G� dxI � %p�T �M�

to be the evaluation of such a polynomial� We say P is invariant if
P �X�G��x�� � P �Y�G��x�� for every normalized coordinate systems X
and Y � as before we denote the common value by P �G��x��� In analogy
with Lemma ����� we have�

Lemma 	����� Let P be p�form valued and invariant� Then P is homo�
geneous of order n if and only if P �c�G��x�� � cp�nP �G��x�� for every
c �� 
�

The proof is exactly the same as that given for Lemma ������ The only
new feature is that dyI � cp dxI which contributes the extra feature of cp

in this equation�
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We de�ne Pm�n�p to be the vector space of all p�form valued invariants
which are homogeneous of order n on a manifold of dimension m� If Pm���p
denotes the vector space of all p�form valued invariant polynomials� then
we have a direct sum decomposition Pm���p �

L
n Pm�n�p exactly as in the

scalar case p � 
�
We de�ne degk�I� to be � if k appears in I and 
 if k does not appear

in I�

Lemma 	����� Let P � Pm�n�p with P �� 
� Then n� p is even� If A is a
monomial then A is a monomial of at most one PI � If c�A�PI� �� 
 then�

degk�A� � degk�I� is always even�

Proof� Let T be the coordinate transformation de�ned by T �xk� � �xk
and T �xj� � xj for j �� k� Then

P � T ��P � �
X
I�A

����degk�A��degk�I� c�A�PI� dxI

which implies degk�A� � degk�I� is even if c�A�PI� �� 
� ThereforeX
k

degk�A� � degk�I� � ���A� � ord�A� � p � ���A� � n� p

must be even� This shows n�p is even if P �� 
� Furthermore� if c�A�PI� ��

 then I is simply the ordered collection of indices k so degk�A� is odd which
shows A is a monomial of at most one PI and completes the proof�

We extend the Riemannian metric to a �ber metric on %�T �M��C� It
is clear that P � P �

P
I PI

 PI since the fdxIg form an orthonormal basis
at x�� P � P is a scalar invariant� We use Lemma ����� to prove�

Lemma 	����� Let P be p�form valued and invariant under the action of
O�m�� Let A be a monomial of P � Then there is a monomial A� of P with
degk�A�� � 
 for k 
 ���A��

Proof� Let r � ��A� and let P 
r �
P

��B��r c�B�PI� dx
I �� 
� Since

this is invariant under the action of O�m�� we may assume without loss
of generality P � Pr� We construct a scalar invariant by taking the inner
product Q � �P� P �� By applying Lemma ������a� and making a coordinate
permutation if necessary� we can assume g����� divides some monomial of
Q� We apply ������b� to the indices 
 � to assume ���k� � 
 for k 
 ��
g����� must divide some monomial of P � Let

P� �
X
A� �I

c�g�����A�� PI�g�����A� dx
I �� 
�
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This is invariant under the action of O�m��� on the lastm�� coordinates�
We let Q� � �P�� P�� and let gi�j���� divide some monomial of Q�� If both
i� and j� are � � we leave this alone� If i� � � and j� �  we perform a
coordinate permutation to assume j� � � In a similar fashion if i� � 
and j� � �� we choose this variable so i� � � Finally� if both indices � �
we apply Lemma ������a� to choose this variable so i� � j� � � We apply
Lemma ������b� to the variables k � � to choose this variable so ���k� � 

for k 
 �� If A� � g����� gi�j���� then�

degk�A�� � 
 for k 
 � and A� divides some monomial of P �

We continue inductively to construct Ar � g����� � � �girjr��r so that

degk�Ar� � 
 for k 
 �r and Ar divides some monomial of P �

Since every monomial of P has length r� this implies Ar itself is a monomial
of P and completes the proof�

Let Pj�G� � pj�TM� be the j th Pontrjagin form computed relative to
the curvature tensor of the Levi�Civita connection� If we expand pj in
terms of the curvature tensor� then pj is homogeneous of order �j in the
fRijklg tensor so pj is homogeneous of order �j in the jets of the metric� It
is clear pj is an invariantly de�ned �j �form so pj � Pm��j��j � The algebra
generated by the pj is called the algebra of the Pontrjagin forms� By
Lemma ������ this is also the algebra of real characteristic forms of T �M��
If � is a partition of k � i� � � � �� ij we de�ne p� � pi� � � �pij � Pm��k��k �
The fp�g form a basis of the Pontrjagin �k forms� By Lemma ����� these
are linearly independent if m � �k since the matrix

R
Mr

�
p� is non�singular�

By considering products of these manifolds with #at tori Tm��k we can
easily show that the fp�g are linearly independent in Pm��k��k if �k � m�
We let ��k� be the number of partitions of k� this is the dimension of the
Pontrjagin forms�
The axiomatic characterization of the real characteristic forms of the

tangent space which is the analogue of the axiomatic characterization of
the Euler class given in Theorem ����� is the following�

Lemma 	���
�
�a� Pm�n�p � 
 if n � p�
�b� Pm�n�n is spanned by the Pontrjagin forms�i�e��

Pm�n�n � 
 if n is not divisible by �k�

Pm��k��k � spanfp�g for �k � m has dimension ��k��

Proof� By decomposing P into its real and imaginary parts� it su�ces to
prove this lemma for polynomials with real coe�cients� Let 
 �� P � Pm�n�p
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and let A be a monomial of P � Use Lemma ����� to �nd a monomial A� of
some PI where I � f� � i� � � � � � ip � mg so degk�A� � 
 for k 
 ���A��
Since degip�A� is odd �and hence non�zero� and since ���A� �P j�� j � n
as A is a polynomial in the jets of order � and higher� we estimate�

p � ip � ���A� � n�

This proves P � 
 if n � p� which proves �a��
If n � p� then all of these inequalities must have been equalities� This

shows that the higher order jets of the metric do not appear in P so P is
a polynomial in the fgij�klg variables� Furthermore� ip � p and there is
some monomial A so that

degk�A� � 
 for k 
 p and Adx� � � � � � dxp appears in P�

There is a natural restriction map r�Pm�n�p � Pm���n�p de�ned in the
same way as the restriction map r�Pm�n�� � Pm���n�� discussed earlier�
This argument shows r�Pm�n�n � Pm���n�n is injective for n � m since
r�Adx� � � � � � dxp� � Adx� � � � � � dxp appears in r�P �� The Pontrjagin
forms have dimension ��k� for n � �k� By induction� rm�n �Pm�n�n �
Pn�n�n is injective so dimPm�n�n � dimPn�n�n �

We shall prove Lemma ������b� for the special case n � m� If n is
not divisible by �k� then dimPn�n�n � 
 which implies dimPm�n�n � 
�
If n � �k� then dimPn�n�n � ��k� implies that ��k� � dimPm�n�n �
dimPn�n�n � ��k� so dimPm�n�n � ��k�� Since the Pontrjagin forms span
a subspace of exactly dimension ��k� in Pm�n�n this will complete the proof
of �b��

This lemma is at the heart of our discussion of the index theorem� We
shall give two proofs for the case n � m � p� The �rst is based on H� Weyl�s
theorem for the orthogonal group and follows the basic lines of the proof
given in Atiyah�Bott�Patodi� The second proof is purely combinatorial and
follows the basic lines of the original proof �rst given in our thesis� The
H� Weyl based proof has the advantage of being somewhat shorter but
relies upon a deep theorem we have not proved here while the second proof
although longer is entirely self�contained and has some additional features
which are useful in other applications�
We review H� Weyl�s theorem brie#y� Let V be a real vector space with

a �xed inner product� Let O�V � denote the group of linear maps of V � V

which preserve this inner product� Let
Nk�V � � V � � � � � V denote the

kth tensor prodect of V � If g � O�V �� we extend g to act orthogonally

on
Nk�V �� We let z �� g�z� denote this action� Let f �

Nk�V � � R

be a multi�linear map� then we say f is O�V � invariant if f�g�z�� � f�z�
for every g � O�V �� By letting g � ��� it is easy to see there are no
O�V � invariant maps if k is odd� We let k � �j and construct a map
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f� �
Nk�V � � �V � V �� �V � V �� � � � � �V � V � � R using the metric

to map �V � V � � R� More generally� if � is any permutation of the

integers � through k� we de�ne z �� z� as a map from
Nk�V � � Nk�V �

and let f��z� � f��z��� This will be O�V � invariant for any permutation ��
H� Weyl�s theorem states that the maps ff�g de�ne a spanning set for the
collection of O�V � invariant maps�
For example� let k � �� Let fvig be an orthonormal basis for V and

express any z � N��V � in the form aijklvi � vj � vk � vl summed over
repeated indices� Then after weeding out duplications� the spanning set is
given by�

f��z� � aiijj � f��z� � aijij � f��z� � aijji

where we sum over repeated indices� f� corresponds to the identity permu�
tation� f� corresponds to the permutation which interchanges the second
and third factors� f� corresponds to the permutation which interchanges
the second and fourth factors� We note that these need not be linearly in�
dependent� if dimV � � then dim�

N� V � � � and f� � f� � f
� However�
once dimV is large enough these become linearly independent�

We are interested in p�form valued invariants� We take
Nk�V � where

k � p is even� Again� there is a natural map we denote by

fp�z� � f��z�� � %�z��

where we decompose
Nk�V � �

Nk�p�V ��Np�V �� We let f� act on the

�rst k � p factors and then use the natural map
Np�V �

�� %p�V � on the
last p factors� If � is a permutation� we set fp� �z� � fp�z��� These maps are
equivariant in the sense that fp� �gz� � gfp� �z� where we extend g to act on
%p�V � as well� Again� these are a spanning set for the space of equivariant

multi�linear maps from
Nk�V � to %p�V �� If k � � and p � �� then after

eliminating duplications this spanning set becomes�

f��z� � aiijkvj � vk � f��z� � aijikvj � vk � f
�z� � aijkivj � vk
f��z� � ajikivj � vk � f��z� � ajiikvi � vk � f��z� � ajkiivj � vk �

Again� these are linearly independent if dimV is large� but there are re�
lations if dimV is small� Generally speaking� to construct a map fromNk�V � � %p�V � we must alternate p indices �the indices j � k in this ex�
ample� and contract the remaining indices in pairs �there is only one pair
i� i here��

Theorem 	���� �H� Weyl�s theorem on the invariants of the
orthogonal group�� The space of maps ffp� g constructed above span

the space of equivariant multi�linear maps from
Nk V � %pV �

The proof of this theorem is beyond the scope of the book and will be
omitted� We shall use it to give a proof of Lemma ����� along the lines
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of the proof given by Atiyah� Bott� and Patodi� We will then give an
independent proof of Lemma ����� by other methods which does not rely
on H� Weyl�s theorem�
We apply H� Weyl�s theorem to our situation as follows� Let P � Pn�n�n

then P is a polynomial in the ��jets of the metric� If we let X be a system of
geodesic polar coordinates centered at x�� then the ��jets of the the metric
are expressible in terms of the curvature tensor so we can express P as
a polynomial in the fRijklg variables which is homogeneous of order n���

The curvature de�nes an element R � N��T �M�� since it has � indices�
There are� however� relations among the curvature variables�

Rijkl � Rklij � Rijkl � �Rjikl� and Rijkl �Riklj � Riljk � 
�

We let V be the sub�bundle of
N��T �M�� consisting of tensors satisfying

these  relations�
If n � �� then P �V � %��T �M�� is equivariant while more generally�

P �
Nn���V � � %n�T �M�� is equivariant under the action of O�T �M���

�We use the metric tensor to raise and lower indices and identify T �M� �
T ��M��� Since these relations de�ne an O�T �M�� invariant subspace ofN�n�T �M��� we extend P to be zero on the orthogonal complement ofNn���V � in

N�n�T �M�� to extend P to an equivariant action on the whole
tensor algebra� Consequently� we can use H� Weyl�s theorem to span Pn�n�n
by expressions in which we alternate n indices and contract in pairs the
remaining n indices�

For example� we compute�

p� � C �RijabRijcd dx
a � dxb � dxc � dxd

for a suitable normalizing constant C represents the �rst Pontrjagin form�
In general� we will use letters a� b� c� � � � for indices to alternate on and
indices i� j � k� � � � for indices to contract on� We let P be such an element
given by H� Weyl�s theorem� There are some possibilities we can eliminate
on a priori grounds� The Bianchi identity states�

Riabc dx
a � dxb � dxc � �


�Riabc � Ribca � Ricab� dx

a � dxb � dxc � 


so that three indices of alternation never appear in any R��� variable� Since
there are n�� R variables and n indices of alternation� this implies each R
variable contains exactly two indices of alternation� We use the Bianchi
identity again to express�

Riajb dx
a � dxb � �

�
�Riajb � Ribja� dx

a � dxb

�
�

�
�Riajb � Ribaj � dx

a � dxb

� ��

�
Rijba dx

a � dxb � �

�
Rijab dx

a � dxb�
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This together with the other curvature identities means we can express
P in terms of Rijab dx

a � dxb � -ij variables� Thus P � P �-ij� is a
polynomial in the components of the curvature matrix where we regard
-ij � %��T �M�� �This di�ers by various factors of � from our previous
de�nitions� but this is irrelevant to the present argument�� P �-� is an
O�n� invariant polynomial and thus is a real characteristic form� This
completes the proof�

The remainder of this subsection is devoted to giving a combinatorial
proof of this lemma in the case n � m � p independent of H� Weyl�s
theorem� Since the Pontrjagin forms span a subspace of dimension ��k�
if n � �k we must show Pn�n�n � 
 if n is not divisible by � and that
dimP�k��k��k � ��k� since then equality must hold�

We showed n � �j is even and any polynomial depends on the ��jets of
the metric� We improve Lemma ����� as follows�

Lemma 	����� Let P satisfy the hypothesis of Lemma ����
 and be a
polynomial in the ��jets of the metric� Then�

�a� Let A � g����A� be a monomial of P � Either by interchanging 
 and
� indices or by changing two � indices to 
 indices we can construct a
monomial A� of the form A� � g����A



� which is a monomial of P �

�b� Let A � gij���A� be a monomial of P � Either by interchanging 

and � indices or by changing two � indices to 
 indices we can construct a
monomial of A� of the form A� � gi�j ����A



� which is a monomial of P �

�c� The monomial A� �� A� If deg��A�� � deg��A��� then c�A�P �c�A�� P �

 
� Otherwise deg��A�� �� deg��A� and c�A�P �c�A�� P � � 
�

Proof� We shall prove �a� as �b� is the same� we will also verify �c�� Let
B � g����A� so c�B�A��� ��� �� 
� Then deg��B� � deg��A� � �� Apply

Lemma ����� to �nd A� �� A so c�B�A
���
� � �� 
� We noted earlier in the

proof of ����� that A� must have the desired form� If c�A�� B��� ��� �� 

then deg��A�� � deg��B��� � deg��A��� so A� is constructed from A by

changing two � to � indices� Furthermore� c�B�A
���
� � 
 
 and c�B�A���� �


 implies c�A�P �c�A�� P � 
 
� If� on the other hand� c�A�� B��� ��� �� 

then deg��A�� � deg��B� � � � deg��A� and A changes to A� by inter�

changing a � and a � index� Furthermore� c�B�A
���
� � � 
 and c�B�A���� � 


implies c�A�P �c�A�� P � � 
 which completes the proof�

Let P � Pn�n�n and express P � P 
 dx� � � � � � dxn� P 
 � �P is a
scalar invariant which changes sign if the orientation of the local coordinate
system is reversed� We identify P with P 
 for notational convenience and
henceforth regard P as a skew�invariant scalar polynomial� Thus degk�A�
is odd for every k and every monomial A of P �

The indices with degk�A� � � play a particularly important role in our
discussion� We say that an index i touches an index j in the monomial A
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if A is divisible by a variable gij��� or g���ij where ���� indicate two indices
which are not of interest�

Lemma 	���� Let P � Pn�n�n with P �� 
� Then there exists a monomial
A of P so
�a� degk�A� �  all k�
�b� If degk�A� � � there exists an index j�k� which touches k in A� The
index j�k� also touches itself in A�
�c� Let degj A � degk A � �� Suppose the index j touches itself and the
index k in A� There is a unique monomial A� di�erent from A which can
be formed from A by interchanging a j and k index� degj A��degk A� � �
and the index j touches itself and the index k in A�� c�A�P ��c�A�� P � � 
�

Proof� Choose A so the number of indices with degk�A� � � is minimal�
Among all such choices� we choose A so the number of indices which touch
themselves is maximal� Let degk�A� � � then k touches some index j �
j�k� �� k in A� Suppose A has the form A � gjk���A� as the other case
is similar� Suppose �rst that degj�A� � �� Use lemma ����	 to �nd A� �
gkk���A�� Then degk�A�� �� degk�A� implies degk�A�� � degk�A� � � � �
Also degj�A�� � degj�A� � � �  so A� has one less index with degree
� which contradicts the minimality of the choice of A� We suppose next
degj�A� � �� If T is the coordinate transformation interchanging xj and
xk� then T reverses the orientation so T �P � �P � However degj�A� �
degk�A� � � implies T �A � A which contradicts the assumption that A is
a monomial of P � Thus degj�A� �  which proves �a��

Suppose j does not touch itself in A� We use Lemma ����	 to con�
struct A� � gkk���A



�� Then degk�A�� � degk�A� � � �  and degj�A�� �

degj�A� � � � �� This is a monomial with the same number of indices of
degree � but which has one more index �namely k� which touches itself�
This contradicts the maximality of A and completes the proof of �b��
Finally� let A� � f k � degk�A� � � g for � � �� � The map k �� j�k�

de�nes an injective map from A� �A
 since no index of degree  can touch
two indices of degree � as well as touching itself� The equalities�

n � card�A���card�A
� and �n �
X
k

degk�A� � card�A��� card�A
�

imply � card�A
� � n� Thus card�A�� � card�A
� � n�� and the map
k �� j�k� is bijective in this situation�

�c� follows from Lemma ����	 where j � � and k � �� Since degk�A� � ��
A� cannot be formed by transforming two k indices to j indices so A� must
be the unique monomial di�erent from A obtained by interchanging these
indices� For example� if A � gjj�abgjk�cdA�� then A� � gjk�abgjj�cdA��
The multiplicities involved are all � so we can conclude c�A�P ��c�A�� P � �

 and not just c�A�P �c�A�� P � � 
�
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Before further normalizing the choice of the monomial A� we must prove
a lemma which relies on cubic changes of coordinates�

Lemma 	������ Let P be a polynomial in the ��jets of the metric in�
variant under changes of coordinates of the form yi � xi � cjklxjxkxl�
Then�
�a� g����� and g����� divide no monomial A of P �
�b� Let A � g�
���A� and B � g����
A� then A is a monomial of P if and
only if B is a monomial of P � Furthermore� c�A�P � and c�B�P � have the
same sign�
�c� Let A � g�����A� and B � g�����A�� then A is a monomial of P if and
only if B is a monomial of P � Furthermore� c�A�P � and c�B�P � have the
same sign�

Proof� We remark the use of the indices �� ��  is for notational con�
venience only and this lemma holds true for any triple of distinct indices�
Since gij�X�G� � �ij �O�x��� gij�kl�X�G��x�� � �gij�kl�X�G��x��� Fur�
thermore� under changes of this sort� d�y �x�� � d�x �x�� if j�j � �� We
consider the change of coordinates�

y� � x� � cx
��

dy� � dx� � cx�� dx��

yk � kx otherwise

dyk � dxk otherwise

with
g���Y�G� � g���X�G� � cx�� �O�x���

gij�Y�G� � gij�X�G� � O�x�� otherwise

g����� �Y�G��x�� � g����� �X�G��x��� �c

gij�kl�Y�G��x�� � gij�kl�X�G��x�� otherwise�

We decompose A � �g������
�A�� If � 
 
� T ��A� � A���c�g����� ����A��

O�c��� Since T ��P � � P � and since there is no way to cancel this additional
contribution� A cannot be a monomial of P so g����� divides no monomial
of P �
Next we consider the change of coordinates�

y� � x� � cx��x��

dy� � dx� � �cx�x� dx� � cx�� dx��

yk � xk otherwise

dyk � dxk otherwise

with
g����� �Y�G��x�� � g������X�G��x��� �c

g����� �Y�G��x�� � g������X�G��x��� �c

gij�kl�Y�G��x�� � gij�kl�X�G��x�� otherwise�

We noted g����� divides no monomial of P � If A � �g����� �
�A�� then � 
 


implies T ��A� � A � �cv�g����� �
���A� � O�c��� Since there would be no
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way to cancel such a contribution� A cannot be a monomial of P which
completes the proof of �a��
Let A
� be a monomial not divisible by any of the variables g�
��� � g����
 �

g�
��� � g����
 and let A�p� q� r� s� � �g�
��� �
p�g����
�

q�g�
��� �
r�g����
�

sA
��
We set c�p� q� r� s� � c�A�p� q� r� s�� P � and prove �b� by establishing some
relations among these coe�cients� We �rst consider the change of coordi�
nates�

y� � x� � cx��x
�

dy� � dx� � �cx�x
 dx� � cx�� dx
�

yk � xk otherwise

dyk � dxk otherwise

with
g����
 �Y�G��x�� � g����
�X�G��x��� �c

g�
��� �Y�G��x�� � g�
����X�G��x��� �c

gij�kl�Y�G��x�� � gij�kl�X�G��x�� otherwise�

We compute that�

T ��A�p� q� r� s��

� A�p� q� r� s� � cf��qA�p� q � �� r� s�� �pA�p� �� q� r� s�g� O�c���

Since T ��P � � P is invariant� we conclude

pc�p� q� r� s� � �q � ��c�p� �� q � �� r� s� � 
�

By interchanging the roles of � and  in the argument we also conclude�

pc�p� q� r� s� � �r � ��c�p� �� q� r� �� s� � 
�

�We set c�p� q� r� s� � 
 if any of these integers is negative��
Next we consider the change of coordinates�

y� � x� � cx�x�x
�

dy� � dx� � cx�x� dx
 � cx�x
 dx� � cx�x
 dx��

yk � xk otherwise

dyk � dxk otherwise

with
g����
 �Y�G��x�� � g����
�X�G��x��� �c

g����
 �Y�G��x�� � g����
�X�G��x��� c

g�
��� �Y�G��x�� � g�
����Y�G��x��� c

so that

T ��A�p� q� r� s�� � A�p� q� r� s� � cf��sA�p� q� r� s� ��

� rA�p� q� r� �� s�� qA�p� q � �� r� s�g� O�c���
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This yields the identities

�q � ��c�p� q � �� r� s� �� � �r � ��c�p� q� r� �� s� �� � �sc�p� q� r� s� � 
�

Let p �� 
 and let A � g�
���A


� be a monomial of P � Then c�p��� q��� r� s�

and c�p��� q� r��� s� are non�zero and have the opposite sign as c�p� q� r� s��
Therefore �q � ��c�p� �� q � �� r� s� � �r � ��c�p� �� q� r� �� s� is non�zero
which implies c�p��� q� r� s����s��� is non�zero and has the same sign as
c�p� q� r� s�� This shows g����
A



� is a monomial of P � Conversely� if A is not

a monomial of P � the same argument shows g����
A


� is not a monomial of

P � This completes the proof of �b��
The proof of �c� is essentially the same� Let A
� be a monomial not

divisible by the variables fg����� � g����� � g�����g and let

A�p� q� r� � �g������
p�g������

q�g������
r�

Let c�p� q� r� � c�A�p� q� r�� P �� Consider the change of coordinates�

y� � x� � cx�x
�
��

dy� � dx� � cx�� dx� � �cx�x� dx��

yk � xk otherwise

dyk � dxk otherwise

with
g����� �Y� g��x�� � g������X�G��x��� �c

g����� �Y�G��x�� � g������X�G��x��� �c

gij�kl�Y�G��x�� � gij�kl�X�G��x�� otherwise�

This yields the relation �pc�p� q� r� � �q � ��c�p � �� q � �� r� � 
� By
interchanging the roles of � and � we obtain the relation �rc�p� q� r�� �q�
��c�p� q � �� r � �� � 
 from which �c� follows�

This step in the argument is functionally equivalent to the use made of
the fRijklg variables in the argument given previously which used H� Weyl�s
formula� It makes use in an essential way of the invariance of P under a
wider group than just �rst and second order transformations� For the
Euler form� by contrast� we only needed �rst and second order coordinate
transformations�
We can now construct classifying monomials using these lemmas� Fix

n � �n� and let A be the monomial of P given by Lemma ������ By
making a coordinate permutation� we may assume degk�A� �  for k � n�
and degk�A� � � for k 
 n�� Let x�i� � i � n� for � � i � n�� we may
assume the index I touches itself and x�i� in A for i � n��
We further normalize the choice of A as follows� Either g���ij or gij���

divides A� Since deg��A� �  this term is not g����� and by Lemma �����

it is not g����x��� nor g�x������ � By Lemma �����
�b� or �����
�c�� we may
assume A � g���ij � � � for i� j � �� Since not both i and j can have degree
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� in A� by making a coordinate permutation if necessary we may assume
that i � �� If j � �� we apply Lemma ������c� to the indices � and x���
to perform an interchange and assume A � g����x���A�� The index � must
touch itself elsewhere in A� We apply the same considerations to choose A
in the form A � g����x��� g���ijA�� If i or j is �� the cycle closes and we
express A � g����x��� g����x���A� where degk�A�� � 
 for k � �� �� � � n��
� � n�� If i� j 
 � we continue this argument until the cycle closes� This
permits us to choose A to be a monomial of P in the form�

A � g����x��� g���
x�
� � � � gj���j���jx�j�gjj��x���A�

where degk�A�� � 
 for � � k � j and n� � � � k � n� � j �
We wish to show that the length of the cycle involved is even� We apply

Lemma �����
 to show

B � g�x������ g
x�
���� � � �g�x����jjA�

satis�es c�A�P �c�B�P � 
 
� We apply Lemma ����� a total of j times to
see

C � g����x��� g

��x��� � � � g���jx�j�A�

satis�es c�B�P �c�C�P �����j 
 
� We now consider the even permutation�

���� � j

��k� �

�
k � �� � � k � j
k� j � k � n�

��k�j�� � x���j�� for � � j � n�

to see that c�C�� P �c�C�P � 
 
� However A � C� so c�A�P ������j 
 

which shows j is necessarily even� �This step is formally equivalent to using
the skew symmetry of the curvature tensor to show that only polynomials
of even degree can appear to give non�zero real characteristic forms��
We decompose A� into cycles to construct A inductively so that A has

the form�

A �fg����x��� � � � gi�i���x���g
fgi����i����i����x�i���� � � �gi��i� �i��i��i� �x�i�� g � � �

where we decompose A into cycles of length i�� i�� � � � with n� � i�� � � ��ij �
Since all the cycles must have even length� ��A� � n�� is even so n is
divisible by ��
We let n � �k and let � be a partition of k � k�� � � ��kj � We let A� be

de�ned using the above equation where i� � �k�� i� � �k�� � � � � By making
a coordinate permutation we can assume i� � i� � � � � � We have shown
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that if P � 
� then c�A�� P � � 
 for some �� Since there are exactly ��k�
such partitions� we have constructed a family of ��k� linear functionals
on Pn�n�n which form a seperating family� This implies dimPn�n�n � ��k�
which completes the proof�

We conclude this subsection with a few remarks on the proofs we have
given of Theorem ����� and Lemma ������ We know of no other proof of
Theorem ����� other than the one we have given� H� Weyl�s theorem is only
used to prove the surjectivity of the restriction map r and is inessential in
the axiomatic characterization of the Euler form� This theorem gives an
immediate proof of the Gauss�Bonnet theorem using heat equation meth�
ods� It is also an essential step in settling Singer�s conjecture for the Euler
form as we shall discuss in the fourth chapter� The fact that r�Em� � 
 is�
of course� just an invariant statement of the fact Em is an unstable charac�
teristic class� this makes it di�cult to get hold of axiomatically in contrast
to the Pontrjagin forms which are stable characteristic classes�
We have discussed both of the proofs of Lemma ����� which exist in

the literature� The proof based on H� Weyl�s theorem and on geodesic
normal coordinates is more elegant� but relies heavily on fairly sophisticated
theorems� The second is the original proof and is more combinatorial� It
is entirely self�contained and this is the proof which generalizes to Kaehler
geometry to yield an axiomatic characterization of the Chern forms of
Tc�M� for a holomorphic Kaehler manifold� We shall discuss this case
in more detail in section ���



���� Invariance Theory and

Mixed Characteristic Classes

of the Tangent Space and of a Coe�cient Bundle�

In the previous subsection� we gave in Lemma ����� an axiomatic char�
acterization of the Pontrjagin forms in terms of functorial properties� In
discussing the Hirzebruch signature formula in the next chapter� it will
be convenient to have a generalization of this result to include invariants
which also depend on the derivatives of the connection form on an auxilary
bundle�
Let V be a complex vector bundle� We assume V is equipped with a

Hermitian �ber metric and let r be a Riemannian or unitary connection
on V � We let �s � �s�� � � � � sa� � � � � sv� be a local orthonormal frame for V
and introduce variables �abi for the connection ��form�

r�sa� � �abi dx
i � sb� i�e�� r�s � � � �s�

We introduce variables �abi�� � d�x ��abi� for the partial derivatives of the
connection ��form� We shall also use the notation �abi�jk��� � We use indices
� � a� b� � � � � v to index the frame for V and indices � � i� j� k � m for
the tangent space variables� We de�ne�

ord��abi��� � � � j�j and degk��abi��� � �i�k � ��k��

We let Q be the polynomial algebra in the f�abi��g variables for j�j � �� if
Q � Q we de�ne the evaluation Q�X��s�r��x��� We normalize the choice of
frame �s by requiring r��s��x�� � 
� We also normalize the coordinate sys�
tem X as before so X�x�� � 
� gij�X�G��x�� � �ij � and gij�k�X�G��x�� �

� We say Q is invariant if Q�X��s�r��x�� � Q�Y� �s 
�r��x�� for any nor�
malized frames �s� �s 
 and normalized coordinate systems X� Y � we denote
this common value by Q�r� �although it also depends in principle on the
metric tensor and the ��jets of the metric tensor through our normalization
of the coordinate system X�� We let Qm�p�v denote the space of all invari�
ant p�form valued polynomials in the f�abi��g variables for j�j � � de�ned
on a manifold of dimension m and for a vector bundle of complex �ber
dimension v� We let Qm�n�p�v denote the subspace of invariant polynomials
homogeneous of order n in the jets of the connection form� Exactly as was
done for the P� algebra in the jets of the metric� we can show there is a
direct sum decomposition

Qm�p�v �
M
n

Qm�n�p�v and Qm�n�p�v � 
 for n� p odd�

Let Q�gAg��� � Q�A� be an invariant polynomial of order q in the
components of a v	v matrix� Then Q�-� de�nes an element ofQm��q�q�v for
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any m � �q� By taking Q �  Q we can de�ne scalar valued invariants and by
taking ��Q� we can de�ne other form valued invariants in Qm��q����q���v �
Thus there are a great many such form valued invariants�

In addition to this algebra� we let Rm�n�p�v denote the space of p�form
valued invariants which are homogeneous of order n in the fgij��� �abk��g
variables for j�j � � and j�j � �� The spaces Pm�n�p and Qm�n�p�v are both
subspaces of Rm�n�p�v � Furthermore wedge product gives a natural map
Pm�n�p �Qm�n��p��v �Rm�n�n��p�p��v � We say that R � Rm�p�p�v is a char�
acteristic form if it is in the linear span of wedge products of Pontrjagin
forms of T �M� and Chern forms of V � The characteristic forms are char�
acterized abstractly by the following Theorem� This is the generalization
of Lemma ����� which we shall need in discussing the signature and spin
complexes�

Theorem 	�
���
�a� Rm�n�p�v � 
 if n � p or if n � p and n is odd�
�b� If R � Rm�n�n�v then R is a characteristic form�

Proof� The proof of this fact relies heavily on Lemma ����� but is much
easier� We �rst need the following generalization of Lemma ������

Lemma 	�
�	� Using the notation of Lemma ����
 we de�ne T �z �R� if R
is a scalar invariant in the fgij��� �abj��g variables�
�a� Let g���� divide some monomial of R� then g���� divides some other
monomial of R�
�b� Let g���� divide some monomial of R� then g���� divides some other
monomial of R where ���� � ���� � ���� and ���� � 
�
�c� Let �abi�� divide some monomial of R for i 
 �� then �abi�� divides
some other monomial of R where ���� � ���� � ���� and ���� � 
�

The proof of this is exactly the same as that given for Lemma ����� and
is therefore omitted�

The proof of Theorem ����� parallels the proof of Lemma ����� for a
while so we summarize the argument brie#y� Let 
 �� R � Rm�n�p�v � The
same argument given in Lemma ���� shows an invariant polynomial is
homogeneous of order n if R�c�G�r� � cp�nR�G�r� which gives a invari�
ant de�nition of the order of a polynomial� The same argument as given
in Lemma ����� shows n � p must be even and that if A is a monomial
of R� A is a monomial of exactly one of the RI � If c�A�RI� � 
 then
degk�A� � degk�I� is always even� We decompose A in the form�

A � gi�j���� � � � giqjq��q�a�b�k���� � � ��arbrkr��r � AgA�

and de�ne ��A� � q � r to the length of A� We argue using Lemma
����� to choose A so degk�A

g� � 
 for k 
 �q� By making a coordinate
permutation we can assume that the k� � �q � r for � � � � r� We
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apply Lemma ������c� a total of r times to choose the �i so ���k� � 
 for
k 
 �q� r��� ���k� � 
 for k 
 �q� r��� � � �� �r�k� � 
 for k 
 �q��r�
This chooses A so degk�A� � 
 for k 
 ���A�� If A is a monomial of RI

for I � f� � i� � � � � � ip � mg then degip�A� is odd� We estimate

p � ip � ���A� �P j�� j�
P

�j��j��� � n so that Pm�n�p�v � f
g if n � p
or if n� p is odd which proves �a� of Theorem ������
In the limiting case� we must have equalities so j�� j � � and j��j � ��

Furthermore� ip � p so there is some monomial A so degk�A� � 
 for
k 
 p � n and Adx�� � � ��dxp appears in R� There is a natural restriction
map

r�Rm�n�p�v �Rm���n�p�v

and our argument shows r�Rm�n�n�v � Rm���n�n�v is injective for n � m�
Since the restriction of a characteristic form is a characteristic form� it
su�ces to prove �b� of Theorem ����� for the case m � n � p�
Let 
 �� R � Rn�n�n�v then R is a polynomial in the fgij�kl� �abi�jg

variables� The restriction map r was de�ned by considering products M�	
S� but there are other functorial constructions which give rise to useful
projections� Fix non�negative integers �s� t� so that n � s � t� Let M�

be a Riemannian manifold of dimension s� Let M� be the #at torus of
dimension t and let V� be a vector bundle with connection r� over M��
Let M � M� 	 M� with the product metric and let V be the natural
extension of V� to M which is #at in the M� variables� More exactly� if
���M �M� is a projection on the second factor� then �V�r� � ����V��r��
is the pull back bundle with the pull back connection� We de�ne

��s�t��R��G��r�� � R�G� 	 ��r��

Using the fact that Ps�n��p� � 
 for s � p� or n� � p� and the fact
Qt�n� �p� �k � 
 for t � p� or n� � p� it follows that ��s�t� de�nes a map

��s�t� �Rn�n�v � Ps�s�s �Qt�t�t�v �

More algebraically� let A � AgA� be a monomial� then we de�ne�

��s�t� �A� �
n

 if degk�A

g� 
 
 for k 
 s or degk�A
�� 
 
 for k � s

A otherwise�

The only additional relations imposed are to set gij�kl � 
 if any of these
indices exceeds s and to set �abi�j � 
 if either i or j is less than or equal
to s�
We use these projections to reduce the proof of Theorem ����� to the

case in which R � Qt�t�t�v � Let 
 �� R � Rn�n�n�v and let A � AgA� be a
monomial of R� Let s � ���Ag� � ord�Ag� and let t � n � s � ���A�� �
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ord�A��� We choose A so degk�A
g� � 
 for k 
 s� Since degk�A� � � must

be odd for each index k� we can estimate�

t �
X
k�s

degk�A� �
X
k�s

degk�A
�� �

X
k

degk�A
�� � ord�A�� � t�

As all these inequalities must be equalities� we conclude degk�A
�� � 


for k � s and degk�A
�� � � for k 
 s� This shows in particular that

��s�t��R� �� 
 for some �s� t� so thatM
s�t�n

��s�t� �Rn�n�n�v �
M

s�t�n

Ps�s�s �Qt�t�t�v

is injective�
We shall prove that Qt�t�t�v consists of characteristic forms of V � We

showed earlier that Ps�s�s consists of Pontrjagin forms of T �M�� The char�
acteristic forms generated by the Pontrjagin forms of T �M� and of V are
elements ofRn�n�n�v and ��s�t� just decomposes such products� Thererfore �
is surjective when restricted to the subspace of characteristic forms� This
proves � is bijective and also that Rn�n�n�v is the space of characteristic
forms� This will complete the proof of Theorem ������

We have reduced the proof of Theorem ����� to showing Qt�t�t�v consists
of the characteristic forms of V � We noted that 
 �� Q � Qt�t�t�v is a
polynomial in the f�abi�jg variables and that if A is a monomial of Q�
then degk�A� � � for � � k � t� Since ord�A� � t is even� we conclude
Qt�t�t�v � 
 if t is odd�
The components of the curvature tensor are given by�

-abij � �abi�j � �abi�j and -ab �
X

-abij dxi � dxj
up to a possible sign convention and factor of �

� which play no role in this
discussion� If A is a monomial of P � we decompose�

A � �a�b�i��i� � � ��aubuit���it where �u � t�

All the indices i� are distinct� If � is a permutation of these indices� then
c�A�P � � sign���c�A�� P �� This implies we can express P in terms of the
expressions�

 A � ��a�b�i��i� � �a�b�i��i� � � � � ��aubuit���it � �aubuit�it��
�

dxi� � � � � � dxit
� -a�b�i�i� � � �-aubuit�� it dxi� � � � � � dxit

Again� using the alternating nature of these expression� we can express P
in terms of expressions of the form�

-a�b� � � � � � -aubu
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so that Q � Q�-� is a polynomial in the components -ab of the curvature�
Since the value of Q is independent of the frame chosen� Q is the invariant
under the action of U�v�� Using the same argument as that given in the
proof of Lemma ���� we see that in fact Q is a characteristic form which
completes the proof�

We conclude this subsection with some uniqueness theorems regarding
the local formulas we have been considering� If M is a holomorphic man�
ifold of real dimension m and if V is a complex vector bundle of �ber
dimension v� we let Rch

m�m�p�v denote the space of p�form valued invariants
generated by the Chern forms of V and of Tc�M�� There is a suitable ax�
iomatic characterization of these spaces using invariance theory for Kaehler
manifolds which we shall discuss in section ��� The uniqueness result we
shall need in proving the Hirzebruch signature theorem and the Riemann�
Roch theorem is the following�

Lemma 	�
���
�a� Let 
 �� R � Rm�m�m�v then there exists �M�V � so M is oriented andR
M
R�G�r� �� 
�

�b� Let 
 �� R � Rch
m�m�m�v then there exists �M�V � so M is a holomorphic

manifold and
R
M
R�G�r� �� 
�

Proof� We prove �a� �rst� Let � � f� � i� � � � � � i�g be a partition
k��� � i�� � � ��i� for �k � s � m� Let fMr

�g be the collection of manifolds
of dimension s discussed in Lemma ����� Let P� be the corresponding real
characteristic form so Z

Mr
�

P�G� � ��� �

The fP�g forms a basis for Pm�s�s for any s � m� We decompose

R �
X
�

P�Q� for Q� � Qm�t�t�k � where t� s � m�

This decomposition is� of course� nothing but the decomposition de�ned by
the projections ��s�t� discussed in the proof of the previous lemma�

Since R �� 
� at least one of the Q� �� 
� We choose � so k��� is maximal
with Q� �� 
� We consider M � Mr

� 	 M� and �V�r� � ����V��r��
where �V��r�� is a bundle over M� which will be speci�ed later� Then we
compute� Z

M

P�G�Q�r� � 


unless ord�Q� � dim�M�� since r is #at along Mr
� � This implies k��� �

k��� so if this integral is non�zero k��� � k��� by the maximality of �� This
impliesZ

M

P�G�Q�r� �
Z
Mr

�

P�G� �
Z
M�

Q�r�� � ���
Z
M�

Q�r���



��
 	�
� Invariance Theory

This shows that Z
M

R�G�r� �
Z
M�

Q��r��

and reduces the proof of this lemma to the special case Q � Qm�m�m�v �
Let A be a v	 v complex matrix and let fx�� � � � � xvg be the normalized

eigenvalues of A� If �k � m and if � is a partition of k we de�ne

x� � xi�� � � �xi�� �

then x� is a monomial of Q�A� for some �� We let M � M� 	 � � � 	M�

with dim�Mj� � �ij and let V � L� � � � � � L� � �v�� where the Lj are
line bundles over Mj � If c�x�� Q� is the coe�cient of x in Q� then�

Z
M

Q�r� � c�x�� Q�
�Y

j��

Z
Mj

c��Lj�
ij �

This is� of course� nothing but an application of the splitting principle�
This reduces the proof of this lemma to the special case Q � Qm�m�m�� �
If Q � ck� we take M � S� 	 � � � 	 S� to be the k�fold product of two

dimensional spheres� We let Lj be a line bundle over the j th factor of S�

and let L � L� � � � � � Lk� Then c��L� � c��Lj� so

Z
M

c��L�
k � k�

kY
j��

Z
S�

c��Lj�

which reduces the proof to the case m � � and k � �� We gave an ex�
ample in Lemma ����� of a line bundle over S� so

R
S� c��L� � �� Al�

ternatively� if we use the Gauss�Bonnet theorem with L � Tc�S
��� thenR

S� c��Tc�S
��� �

R
S� e��T �S

��� � ��S�� � � �� 
 completes the proof of
�a�� The proof of �b� is the same where we replace the real manifoldsMr

� by
the corresponding manifolds M c

� and the real basis P� by the correspond�
ing basis P c

� of characteristic forms of Tc�M�� The remainder of the proof
is the same and relies on Lemma ���� exactly as for �a� and is therefore
omitted in the interests of brevity�



CHAPTER �

THE INDEX THEOREM

Introduction

In this the third chapter� we complete the proof of the index theorem for
the four classical elliptic complexes� We give a proof of the Aityah�Singer
theorem in general based on the Chern isomorphism between K�theory and
cohomology �which is not proved�� Our approach is to use the results of the
�rst chapter to show there exists a suitable formula with the appropriate
functorial properties� The results of the second chapter imply it must be a
characteristic class� The normalizing constants are then determined using
the method of universal examples�
In section ��� we de�ne the twisted signature complex and prove the

Hirzebruch signature theorem� We shall postpone until section �� the
determination of all the normalizing constants if we take coe�cients in an
auxilary bundle� In section ��� we introduce spinors as a means of connect�
ing the de Rham� signature and Dolbeault complexes� In section �� we
discuss the obstruction to putting a spin structure on a real vector bundle
in terms of Stie�el�Whitney classes� We compute the characteristic classes
of spin bundles�
In section ��� we discuss the spin complex and the �A genus� In sec�

tion ��� we use the spin complex together with the spinc representation
to discuss the Dolbeault complex and to prove the Riemann�Roch theo�
rem for almost complex manifolds� In sections �� and �� we give another
treatment of the Riemann�Roch theorem based on a direct approach for
Kaehler manifolds� For Kaehler manifolds� the integrands arising from the
heat equation can be studied directly using an invariant characterization
of the Chern forms similar to that obtained for the Euler form� These two
subsections may be deleted by a reader not interested in Kaehler geometry�
In section �	� we give the preliminaries we shall need to prove the Atiyah�

Singer index theorem in general� The only technical tool we will use which
we do not prove is the Chern isomorphism between rational cohomology and
K�theory� We give a discussion of Bott periodicity using Cli�ord algebras�
In section ��� we show that the index can be treated as a formula in rational
K�theory� We use constructions based on Cli�ord algebras to determine the
normalizing constants involved� For these two subsections� some familarity
with K�theory is helpful� but not essential�
Theorems ���� and ����
 were also derived by V� K� Patodi using a

complicated cancellation argument as a replacement of the invariance the�
ory presented in Chapter �� A similar although less detailed discussion
may also be found in the paper of Atiyah� Bott and Patodi�
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The signature complex is best described using Cli�ord algebras as these
provide a uni�ed framework in which to discuss �and avoid� many of the
� signs which arise in dealing with the exterior algebra directly� The
reader will note that we are choosing the opposite sign convention for our
discussion of Cli�ord algebras from that adopted in the example of Lemma
������ This change in sign convention is caused by the

p�� present in
discussing the symbol of a �rst order operator�

Let V be a real vector with a positive de�nite inner product� The Cli�ord
algebra CLIF�V � is the universal algebra generated by V subject to the
relations

v � v � �v� v� � 
 for v � V�

If the feig are an orthonormal basis for V and if I � f� � i� � � � � � ip �
dim�V �g then ei � ej � ej � ei � ���ij is the Kronecker symbol and

eI � ei� � � � � � eip
is an element of the Cli�ord algebra� CLIF�V � inherits a natural inner
product from V and the feIg form an orthonormal basis for V �
If %�V � denotes the exterior algebra of V and if END�%�V �� is the

algebra of linear endomorphisms of %�V �� there is a natural representa�
tion of CLIF�V � into END�%�V �� given by Cli�ord multiplication� Let
ext�V � END�%�V �� be exterior multiplication on the left and let int�v�
be interior multiplication� the adjoint� For example�

ext�e���ei� � � � � � eip� �
�
e� � ei� � � � � � eip if i� 
 �

 if i� � �

int�e���ei� � � � � � eip� �
�
ei� � � � � � eip if i� � �

 if i� 
 ��

We de�ne
c�v� � ext�v�� int�v��V � END�%�V ���

It is immediate from the de�nition that

c�v�� � ��ext�v� int�v� � int�v� ext�v�� � �jvj�I

so that c extends to de�ne an algebra morphism

c� CLIF�V �� END�%�V ���

Furthermore�
c�eI�� � ei� � � � � � eip
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so the map w �� c�w�� de�nes a vector space isomorphism �which is not� of
course an algebra morphism� between CLIF�V � and %�V �� Relative to an
orthonormal frame� we simply replace Cli�ord multiplication by exterior
multiplication�
Since these constructions are all independent of the basis chosen� they

extend to the case in which V is a real vector bundle over M with a
�ber metric which is positive de�nite� We de�ne CLIF�V �� %�V �� and
c� CLIF�V � � END�%�V �� as above� Since we only want to deal with
complex bundles� we tensor with C at the end to enable us to view these
bundles as being complex� We emphasize� however� that the underlying
constructions are all real�

Cli�ord algebras provide a convenient way to describe both the de Rham
and the signature complexes� Let �d� ���C��%�T �M��� C��%�T �M��
be exterior di�erentiation plus its adjoint as discussed earlier� The leading
symbol of �d��� is

p���ext���� int���� �
p��c���� We use the following

diagram to de�ne an operator A� let r be covariant di�erentiation� Then�

A�C��%�T �M��
r� C��T �M � %�T �M��

c� C��%�T �M���

A is invariantly de�ned� If feig is a local orthonormal frame for T ��M�
which we identify with T �M�� then�

A��� �
X
i

�ext�ei�� int�ei��rei����

Since the leading symbol of A is
p��c���� these two operators have the

same leading symbol so �d����A � A� is an invariantly de�ned 
th order
operator� Relative to a coordinate frame� we can express A� as a linear
combination of the ��jets of the metric with coe�cients which are smooth
in the fgijg variables� Given any point x�� we can always choose a frame
so the gij�k variables vanish at x� so A��x�� � 
 so A� � 
� This proves
A � �d � �� is de�ned by this diagram which gives a convenient way of
describing the operator �d� �� in terms of Cli�ord multiplication�

This trick will be useful in what follows� If A and B are natural �rst
order di�erential operators with the same leading symbol� then A � B
since A � B is a 
th order operator which is linear in the ��jets of the
metric� This trick does not work in the holomorphic category unless we
impose the additional hypothesis that M is Kaehler� This makes the study
of the Riemann�Roch theorem more complicated as we shall see later since
there are many natural operators with the same leading symbol�

We let � � END�%�T �M�� be de�ned by�

���p� � ����p�p for �p � %p�T �M��
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It is immediate that

ext���� � �� ext��� and int���� � �� int���

so that ���d���� and �d��� have the same leading symbol� This implies

��d� �� � ��d� ����

We decompose %�T �M� � %e�T �M��%o�T �M� into the di�erential forms
of even and odd degree� This decomposes %�T �M� into the �� eigenspaces
of �� Since �d� �� anti�commutes with �� we decompose

�d� ��e�o �C
��%e�o�T �M��� C��%e�o�T �M��

where the adjoint of �d���e is �d���o� This is� of course� just the de Rham
complex� and the index of this elliptic operator is ��M��

If dim�M� � m is even and if M is oriented� there is another natural
endomorphism � � END�%�T �M��� It can be used to de�ne an elliptic
complex over M called the signature complex in just the same way that
the de Rham complex was de�ned� Let dvol � %m�T �M� be the volume
form� If feig is an oriented local orthonormal frame for T �M � then dvol �
e� � � � � � em� We can also regard dvol � e� � � � � � em � CLIF�T �M� and
we de�ne

� � �
p���m��c�dvol� � �

p���m��c�e�� � � � c�em��

We compute�

�� � ����m��c�e� � � � � � em � e� � � � � � em�

� ����m������m��m���������

� �����m��m���m��� � ��

Because m is even� c���� � ��c��� so � anti�commutes with the symbol of
�d � ��� If we decompose %�T �M� � %��T �M� � %��T �M� into the ��
eigenvalues of � � then �d� �� decomposes to de�ne�

�d� ����C��%��T �M��� C��%��T �M��

where the adjoint of �d� ��� is �d� ���� We de�ne�

signature�M� � index�d� ���

to be the signature of M � �This is also often refered to as the index of
M � but we shall not use this notation as it might be a source of some
confusion��
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We decompose the Laplacian " � "� �"� so

signature�M� � dimN�"��� dimN�"���

Let asn�x� orn� � an�x�"
���an�x�"�� be the invariants of the heat equa�

tion� they depend on the orientation orn chosen� Although we have com�
plexi�ed the bundles %�T �M� and CLIF�T �M�� the operator �d��� is real�
If m � � ���� then � is pure imaginary� Complex conjugation de�nes an
isomorphism

%��T �M�
�� %��T �M� and "� �� "��

This implies signature�M� � 
 and asn�x� orn� � 
 in this case� We can
get a non�zero index if m � � ��� if we take coe�cients in some auxiliary
bundle as we shall discuss shortly�

If m � 
 ���� then � is a real endomorphism� In general� we compute�

��e� � � � � � ep�� �
p���m��e� � � � � � em � e� � � � � � ep

� �
p���m������p�p����� ep�� � � � � � em�

If ��� is the Hodge star operator discussed in the �rst sections� then

�p � �
p���m���p�p��� �p

acting on p�forms� The spaces %p�T �M��%m�p�T �M� are invariant under
� � If p �� m� p there is a natural isomorphism

%p�T �M�
�� �%p�T �M�� %m�p�T �M��� by �p �� �

� ��p � �p��

This induces a natural isomorphism from

"p
�� "� on �%p�T �M�� %m�p�T �M���

so these terms all cancel o� in the alternating sum and the only contribution
is made in the middle dimension p � m� p�
If m � �k and p � �k then � � �� We decompose N�"p� � N�"�

p � �
N�"�

p � so signature�M� � dimN�"�
p � � dimN�"�

p �� There is a natural

symmetric bilinear form on H�k�T �M �C� � N�"p� de�ned by

I���� ��� �
Z
M

�� � ���

If we use the de Rham isomorphism to identify de Rham and simplicial
cohomology� then this bilinear form is just the evaluation of the cup product
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of two cohomology classes on the top dimensional cycle� This shows I can
be de�ned in purely topological terms�
The index of a real quadratic form is just the number of �� eigenvalues

minus the number of �� eigenvalues when it is diagonalized over R� Since

I��� �� �
Z
M

� � � �
Z
M

��� ��� dvol � ��� ���L� �

we see

index�I� � dimf�� eigenspace of � on Hpg
� dimf�� eigenspace of � on Hpg

� dimN�"��� dimN�"�� � signature�M��

This gives a purely topological de�nition of the signature of M in terms
of cup product� We note that if we reverse the orientation of M � then the
signature changes sign�

Example� Let M � CP�k be complex projective space� Let x � H��M �C�
be the generator� Since xk is the generator of H�k�M �C� and since xk �
xk � x�k is the generator of H�k�M �C�� we conclude that �xk � xk�
dimN�"�

�k� � � and dimN�"�
�k� � 
 so signature�CP�k� � ��

An important tool in the study of the de Rham complex was its multi�
plicative properties under products� Let Mi be oriented even dimensional
manifolds and letM � M�	M� with the induced orientation� Decompose�

%�T �M� � %�T �M��� %�T �M��

CLIF�T �M� � CLIF�T �M��� CLIF�T �M��

as graded non�commutative algebras$i�e��

��� � ��� � ��
� � �
�� � ����deg �� �deg ��� ��� � �
��� ��� � �
��

for � � either � or �� Relative to this decomposition� we have�

� � �� � �� where the �i commute�

This implies that�

%��M� � %��T �M��� %��T �M�� � %��T �M��� %��T �M��

%��M� � %��T �M��� %��T �M�� � %��T �M��� %��T �M��

N�"�� � N�"�
� �� N�"�

� � � N�"�
� �� N�"�

� �

N�"�� � N�"�
� �� N�"�

� � � N�"�
� �� N�"�

� �

signature�M� � signature�M�� signature�M���
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Example� Let � be a partition of k � i� � � � � � ij and Mr
� � CP�i� 	

� � � 	 CP�ij � Then signature�Mr
� � � �� Therefore if Lk is the Hirzebruch

L�polynomial�

signature�Mr
� � �

Z
Mp

�

Lk�T �M
r
� ��

by Lemma �����

We can now begin the proof of the Hirzebruch signature theorem� We
shall use the same argument as we used to prove the Gauss�Bonnet theorem
with suitable modi�cations� Let m � �k and let asn�x� orn� � an�x�"

���
an�x�"

�� be the invariants of the heat equation� By Lemma ������

Z
M

asn�x� orn� �

�

 if n �� m
signature�M� if n � m

so this gives a local formula for signature�M�� We can express � functorially
in terms of the metric tensor� We can �nd functorial local frames for
%� relative to any oriented coordinate system in terms of the coordinate
frames for %�T �M�� Relative to such a frame� we express the symbol of
"� functorially in terms of the metric� The leading symbol is j�j�I� the
�rst order symbol is linear in the ��jets of the metric with coe�cients
which depend smoothly on the fgijg variables� the 
th order symbol is
linear in the ��jets of the metric and quadratic in the ��jets of the metric
with coe�cients which depend smoothly on the fgijg variables� By Lemma
������ we conclude asn�x� orn� is homogeneous of order n in the jets of the
metric�

It is worth noting that if we replace the metric G by c�G for c 
 
� then
the spaces %� are not invariant� On %p we have�

��c�G���p� � c�p�m��G���p��

However� in the middle dimension we have � is invariant as are the spaces
%�p for �p � m� Clearly "�

p �c
�G� � c��"�

p �G�� Since asn�x� orn� only
depends on the middle dimension� this provides another proof that asn is
homogeneous of order n in the derivatives of the metric since

asn�x� orn��c
�G� � an�x� c

��"�
p �� an�x� c

��"�
p �

� c�nan�x�"�
p �� c�nan�x�"�

p � � c�nasn�x� orn��G��

If we reverse the orientation� we interchange the roles of "� and "� so asn
changes sign if we reverse the orientation� This implies asn can be regarded
as an invariantly de�ned m�form� asn�x� � asn�x� orn� dvol � Pm�n�m �
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Theorem ������ Let asn � fan�x�"���an�x�"��g dvol � Pm�n�m then�
�a� asn � 
 if either m � � ��� or if n � m�
�b� If m � �k� then as�k � Lk is the Hirzebruch polynomial so

signature�M� �
Z
M

Lk�

�Hirzebruch Signature Theorem��

Proof� We already noted that "� is naturally isomorphic to "� if m �
� ��� so asn � 
 in that case� Lemma ����� implies asn � 
 for n � m� If
m � �k� then asm is a characteristic form of T �M� by Lemma ������ We
know Z

Mr
�

asm � signature�Mr
� � � � �

Z
Mr

�

Lk

so Lemma ���� implies asm � Lk� Since signature�M� �
R
M
asm for any

manifold M � we conclude signature�M� �
R
M
Lk in general which com�

pletes the proof of �b��

If � � %�T �M�� we de�ne
R
M
� �

R
M
�m of the top degree form� With

this notational convention� we can also express

signature�M� �
Z
M

L

which is a common form in which the Hirzebruch signature theorem ap�
pears�
It is worth making a few remarks about the proof of this result� Just as

in the case of the de Rham complex� the heat equation furnishes us with
the a priori local formula for the signature of M � The invariance theory of
the second chapter identi�es this local formula as a characteristic class� We
evaluate this local formula on a su�cient number of classifying examples
to determine the normalizing constants to prove asm � Lk�

There are a great many consequences of this theorem and of the Gauss�
Bonnet theorem� We present just a few to illustrate some of the applica�
tions�

Corrolary ����	�
�a� Let F � M� � M� be a �nite covering projection� Then ��M�� �
��M��jF j� IfM� is orientable� thenM� is orientable and we give it the natu�
ral orientation inherited fromM�� Then signature�M���signature�M��jF j�
�b� If M� and M� are manifolds of dimension m� we let M� /M� be the
connected sum� This is de�ned by punching out disks in both manifolds
and gluing along the common resulting boundaries� Then ��M� /M�� �
��Sm� � ��M�� � ��M��� If M� and M� are oriented by some orientation
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on M� /M� then signature�M� /M�� � signature�M�� � signature�M���
if m � 
 ����

Proof� �a� is an immediate consequence of the fact we have local formulas
for the Euler characteristic and for the signature� To prove �b�� we note
that the two disks we are punching out glue together to form a sphere� We
use the additivity of local formulas to prove the assertion about X� The
second assertion follows similarly if we note signature�Sm� � 
�

This corollary has topological consequences� Again� we present just one
to illustrate the methods involved�

Corollary ������ Let F � CP�j � M be a �nite covering� Then
jF j � � and M � CP�j �

Proof� ��CP�j � � �j � � so as �j � � � jF j��M�� we conclude jF j must
be odd� Therefore� this covering projection is orientation preserving soM is
orientable� The identity � � signature�CP�j� � jF j signature�M� implies
jF j � � and completes the proof�

If m � � ���� the signature complex does not give a non�trivial index�
We twist by taking coe�cients in an auxiliary complex vector bundle V to
get a non�trivial index problem in any even dimension m�

Let V be a smooth complex vector bundle of dimension v equipped with
a Riemannian connection r� We take the Levi�Civita connection on T ��M�
and on %�T �M� and letr be the tensor product connection on %�T �M��V �
We de�ne the operator �d� ��V on C��%�T �M�� V � using the diagram�

�d� ��V �C
��%�T �M�� V �

r� C�T �M � %�T �M�� V �
c����� C��%�T �M�� V ��

We have already noted that if V � � is the trivial bundle with #at connec�
tion� then the resulting operator is �d� ���
We de�ne �V � � � �� then a similar argument to that given for the

signature complex shows ��V � � and �V anti�commutes with �d� ��V � The
�� eigenspaces of �V are %��T �M��V and the twisted signature complex
is de�ned by the diagram�

�d� ���V �C
��%��T �M�� V �� C��%��T �M�� V �

where as before �d � ���V is the adjoint of �d � ���V � We let "�
V be the

associated Laplacians and de�ne�

signature�M�V � � index��d� ���V � � dimN�"�
V �� dimN�"�

V �

asn�x� V � � fan�x�"�
V �� an�x�"

�
V �g dvol � %mZ

M

asn�x� V � � signature�M�V ��
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The invariance of the index under homotopies shows signature�M�V � is
independent of the metric on M � of the �ber metric on V � and of the
Riemannian connection on V � If we do not choose a Riemannian connection
on V � we can still compute signature�M�V � � index��d � ���V �� but then

�d� ���V is not the adjoint of �d� ���V and asn is not an invariantly de�ned
m form�

Relative to a functorial coordinate frame for %�� the leading symbol of
"� is j�j�I� The �rst order symbol is linear in the ��jets of the metric
and the connection form on V � The 
th order symbol is linear in the ��jets
of the metric and the connection form and quadratic in the ��jets of the
metric and the connection form� Thus asn�X�V � � Rm�n�m�v � Theorem
����� implies asn � 
 for n � m while asm is a characteristic form of T �M�
and of V �

If m � � and if v � �� then R������� is one dimensional and is spanned

by the �rst Chern class c��V � � ch�V � � i
��-� Consequently as� � cc� in

this case� We shall show later that this normalizing constant c � �$i�e��

Lemma ������ Let m � � and let V be a line bundle over M�� Then�

signature�M�V � � �
Z
M

c��L��

We postpone the proof of this lemma until later in this chapter�
With this normalizing constant established� we can compute a formula

for signature�M�V � in general�

Theorem ������ Let L be the total L�polynomial and let ch�V � be the
Chern character� Then�

�a� asn�x� V � � 
 for n � m�

�b� asm�x� V � �
P

�s��t�m Ls�TM� � �tcht�V � so that�

signature�M�V � �
X

�s��t�m

Z
M

Ls�TM� � �tcht�V ��

The factors of �t are perhaps a bit mysterious at this point� They arise
from the normalizing constant of Lemma ���� and will be explained when
we discuss the spin and Dolbeault complexes�

Proof� We have already proved �a�� We know asm�x� V � is a characteristic
form which integrates to signature�M�V � so it su�ces to verify the formula
of �b�� If V� and V� are bundles� we let V � V� � V� with the direct sum
connection� Since "�

V � "�
V�
�"�

V�
we conclude

signature�M�V� � V�� � signature�M�V�� � signature�M�V���



Hirzebruch Signature Formula ���

Since the integrals are additive� we apply the uniqueness of Lemma ����
to conclude the local formulas must be additive� This also follows from
Lemma ����� so that�

asn�x� V� � V�� � asn�x� V�� � asn�x� V���

Let fP�gj�j�s be the basis for Pm��s��s and expand�

asm�x� V � �
X

�j�j��t�m
P� �Qm�t�v�� for Qm�t�v�� � Qm��t��t�v

a characteristic form of V � Then the additivity under direct sum implies�

Qm�t�v���V� � V�� � Qm�t�v����V�� �Qm�t�v����V���

If v � �� then Qm�t�����V�� � c � c��V �t since Qm��t��t�� is one dimensional�
If A is diagonal matrix� then the additivity implies�

Qm�t�v���A� � Qm�t�v����� � c �
X
j

�tj � c � cht�A��

Since Q is determined by its values on diagonal matrices� we conclude�

Qm�t�v���V � � c�m� t� ��cht�V �

where the normalizing constant does not depend on the dimension v� There�
fore� we expand asm in terms of cht�V � to express�

asm�x� V � �
X

�s��t�m

Pm�s � �tcht�V � for Pm�s � Pm��s��s �

We complete the proof of the theorem by identifying Pm�s � Ls� we have
reduced the proof of the theorem to the case v � ��

We proceed by induction on m� Lemma ���� establishes this theorem if
m � �� Suppose m � 
 ���� If we take V to be the trivial bundle� then if
�k � m�

asm�x� �� � Lk � Pm�k

follows from Theorem ����� We may therefore assume �s � m in comput�
ing Pm�s� Let M � M� 	S� and let V � V� �V� where V� is a line bundle
over M� and where V� is a line bundle over S� so

R
S� c��V�� � �� �We

constructed such a line bundle in section ��� using Cli�ord matrices�� We
take the product connection on V� � V� and decompose�

%��V � � %��V��� %��V�� � %��V��� %��V��

%��V � � %��V��� %��V�� � %��V��� %��V���
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A similar decomposition of the Laplacians yields�

signature�M�V � � signature�M�� V�� signature�M�� V��

� � signature�M�� V��

by Lemma ����� Since the signatures are multiplicative� the local formulas
are multiplicative by the uniqueness assertion of Lemma ����� This also
follows by using Lemma ����� that

asm�x� V � �
X

p�q�m

asp�x�� V��a
s
q�x�� V��

and the fact ap � 
 for p � m� and aq � 
 for q � m�� Thus we conclude�

asm�x� V � � asm�
�x�� V��a

s
m�

�x�� V��

where� of course� m� � � and m� � m� ��
We use the identity�

ch�V� � V�� � ch�V��ch�V��

to conclude therefore�

signature�M�� V��

�
�

�
signature�M�V �

�
�

�

� X
�s��t�m��

Z
MI

Pm�s � �tcht�V��

�Z
M�

�ch��V��

�
X

�s��t�m��

Z
M�

Pm�s � �tcht�V���

We apply the uniqueness assertion of Lemma ���� to conclude Pm�s �
Pm���s for �s � m � �� Since by induction� Pm���s � Ls this completes
the proof of the theorem�

We note that the formula is non�zero� so Lemma ���� implies that in
any even dimension m� there always exist �M�V � so signature�M�V � �� 
�
In fact� much more is true� Given any orientable manifold M � we can �nd
V over M so signature�M�V � �� 
 if dim�M� is even� Since the proof of

this assertion relies on the fact ch�K�M��Q �� H���M �Q� we postpone
a discussion of this fact until we discuss the index theorem in general�
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To de�ne the signature complex� we needed to orient the manifold M �
For any Riemannian manifold� by restricting to local orthonormal frames�
we can always assume the transition functions of T �M� are maps g�� �U��
U� � O�m�� If M is oriented� by restricting to local orthonormal frames�
we can choose the transition functions of T �M� to lie in SO�m� and to
reduce the structure group from GL�m�R� to SO�m�� The signature com�
plex results from the represntation %� of SO�m�� it cannot be de�ned in
terms of GL�m�R� or O�m�� By contrast� the de Rham complex results
from the representation %e�o which is a representation of GL�m�R� so the
de Rham complex is de�ned for non�orientable manifolds�

To de�ne the spin complex� which is in some sense a more fundamental
elliptic complex than is either the de Rham or signature complex� we will
have to lift the transition functions from SO�m� to SPIN�m�� Just as every
manifold is not orientable� in a similar fashion there is an obstruction to
de�ning a spin structure�

If m � � then ���SO�m�� � Z�� Abstractly� we de�ne SPIN�m� to
be the universal cover of SO�m�� �If m � �� then SO��� � S� and we let
SPIN��� � S� with the natural double cover Z� � SPIN���� SO��� given
by � �� ���� To discuss the representations of SPIN�m�� it is convenient
to obtain a more concrete representation of SPIN�m� in terms of Cli�ord
algebras�
Let V be a real vector space of dimension v � 
 ���� LetN

V � R� V � �V � V �� � � � �Nk V � � � �

be the complete tensor algebra of V � We assume V is equipped with a
symmetric positive de�nite bilinear form� Let I be the two�sided ideal
of
N

V generated by fv � v � jvj�gv�V � then the real Cli�ord algebra
CLIF�V � �

N
V mod I� �Of course� we will always construct the corre�

sponding complex Cli�ord algebra by tensoring CLIF�V � with the complex
numbers�� There is a natural transpose de�ned on

N
V by�

�v� � � � � � vk�
t � vk � � � � � v��

Since this preserves the ideal I� it extends to CLIF�V �� If fe�� � � � � evg are
the orthonormal basis for V � then ei � ej � ej � ei � ���ij and

�ei� � � � � � eip�t � ����p�p����� ei� � � � � � eip �

If V is oriented� we let feig be an oriented orthonormal basis and de�ne�

� � �
p���v��e� � � � � � ev �
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We already computed that�

�� � ����v��e� � � � � � ev � e� � � � � ev

� ����v�v����� e� � � � � � ev � e� � � � � � ev
� e� � � � � � ev � ev � � � � � e� � ����v � ��

We let SPIN�V � be the set of all w � CLIF�V � such that w can be
decomposed as a formal product w � v� � � � � � v�j for some j where the
vi � V are elements of length �� It is clear that wt is such an element and
that wwt � � so that SPIN�V � forms a group under Cli�ord multiplication�
We de�ne

��w�x � wxwt for x � CLIF� w � CLIF�V ��

For example� if v� � e� is the �rst element of our orthonormal basis� then�

e�eie� �

��e� i � �
ei i �� ��

The natural inclusion of V in
N

V induces an inclusion of V in CLIF�V ��
��e�� preserves V and is re#ection in the hyperplane de�ned by e�� If w �
SPIN�V �� then ��w��V � V is a product of an even number of hyperplane
re#ections� It is therefore in SO�V � so

�� SPIN�V �� SO�V �

is a group homomorphism� Since any orthogonal transformation of determi�
nant one can be decomposed as a product of an even number of hyperplane
re#ections� � is subjective�

If w � CLIF�V � is such that

wvwt � v all v � V and wwt � �

then wv � vw for all v � V so w must be in the center of CLIF�V ��

Lemma ��	��� If dimV � v is even� then the center of CLIF�V � is one
dimensional and consists of the scalars�

Proof� Let feig be an orthonormal basis for V and let feIg be the cor�
responding orthonormal basis for CLIF�V �� We compute�

ei � ei� � � � � � eip � ei � ei� � � � � � eip for p � ��

if �a� p is even and i is one of the ij or �b� p is odd and i is not one
of the ij � Thus given I we can choose i so ei � eI � �eI � ei� Thus
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ei � �
P

I cIeI � �
P

I cIeI � ei for all i implies cI � 
 for jIj 
 
 which
completes the proof�

�We note that this lemma fails if dimV is odd since the center in that case
consists of the elements a�be� � � � ��ev and the center is two dimensional��
If ��w� � � and w � SPIN�V �� this implies w is scalar so w � ��� By

considering the arc in SPIN�V � given by w��� � ��cos ��e� � �sin ��e�� �
���cos ��e� � �sin ��e��� we note w�
� � � and w��� � � �� so SPIN�V � is
connected� This proves we have an exact sequence of groups in the form�

Z� � SPIN�V �� SO�V �

and shows that SPIN�V � is the universal cover of SO�V � for v 
 ��
We note that is it possible to de�ne SPIN�V � using Cli�ord algebras

even if v is odd� Since the center of CLIF�V � is two dimensional for v odd�
more care must be used with the relevant signs which arise� As we shall
not need that case� we refer to Atiyah�Bott�Shapiro �see bibliography� for
further details�

SPIN�V � acts on CLIF�V � from the left� This is an orthogonal action�

Lemma ��	�	� Let dimV � �v�� We complexify CLIF�V �� As a left
SPIN�V � module� this is not irreducible� We can decompose CLIF�V � as a
direct sum of left SPIN�V � modules in the form

CLIF�V � � �v�"�

This representation is called the spin representation� It is not irreducible
but further decomposes in the form

" � "� �"��

If we orient V and let � be the orientation form discussed earlier� then left
multiplication by � is �� on "� so these are inequivalent representations�
They are irreducible and act on a representation space of dimension �v���

and are called the half�spin representations�

Proof� Fix an oriented orthonormal basis feig for V and de�ne�

�� �
p�� e�e�� �� �

p�� e
e�� � � � � �v� �
p�� ev��ev

as elements of CLIF�V �� It is immediate that � � �� � � ��v� and�

��i � � and �i�j � �j�i�

We let the f�ig act on CLIF�V � from the right and decompose CLIF�V �
into the �v� simultaneous eigenspaces of this action� Since right and left
multiplication commute� each eigenspace is invariant as a left SPIN�V �
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module� Each eigenspace corresponds to one of the �v� possible sequences
of � and � signs� Let 	 be such a string and let "� be the corresponding
representation space�

Since e��� � ���e� and e��i � �ie� for i 
 �� multiplication on the
right by e� transforms "� � "�� � where 	��� � �	
��� and 	�i� � 	
�i� for
i 
 �� Since this map commutes with left multiplication by SPIN�V �� we
see these two representations are isomorphic� A similar argument on the
other indices shows all the representation spaces "� are equivalent so we
may decompose CLIF�V � � �v�" as a direct sum of �v� equivalent repre�
sentation spaces "� Since dim�CLIF �V �� � �v � �v� � the representation
space " has dimension �v� � We decompose " into �� eigenspaces under
the action of � to de�ne "�� Since e� � � � �� ev is in the center of SPIN�V ��
these spaces are invariant under the left action of SPIN�V �� We note that
elements of V anti�commute with � so Cli�ord multiplication on the left
de�nes a map�

cl�V �"� � "�

so both of the half�spin representations have the same dimension� They
are clearly inequivalent� We leave the proof that they are irreducible to
the reader as we shall not need this fact�

We shall use the notation "� to denote both the representations and
the corresponding representation spaces� Form the construction we gave�
it is clear the CLIF�V � acts on the left to preserve the space " so " is a
representation space for the left action by the whole Cli�ord algebra� Since
v� � ��v for v � V � Cli�ord multiplication on the left by an element of V
interchanges "� and "��

Lemma ��	��� There is a natural map given by Cli�ord multiplication of
V �"� � "�� This map induces a map on the representations involved�
��"� �� "�� If this map is denoted by v � w then v � v � w � �jvj�w�
Proof� We already checked the map on the spaces� We check�

wvwt � wx �� wvwtwx � wvx

to see that the map preserves the relevant representation� We emphasize
that "� are complex representations since we must complexify CLIF�V �
to de�ne these representation spaces �wwt � � for w � SPIN��

There is a natural map �� SPIN�V �� SO�V �� There are natural repre�
sentations %� %�� %e�o of SO�V � on the subspaces of %�V � � CLIF�V �� We
use � to extend these representations of SPIN�V � as well� They are related
to the half�spin representations as follows�

Lemma ��	���
�a� % � "�"�
�b� �%� � %�� � �"� �"��� �"� �"���
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�c� �%e � %o� � �"� �"��� �"� �"������v���
These identities are to be understood formally �in the sense of K�theory��
They are shorthand for the identities�

%� � �"� �"��� �"� �"�� and "� � �"� �"��� �"� �"��

and so forth�

Proof� If we let SPIN�V � act on CLIF�V � by right multiplication by
wt � w�� � then this representation is equivalent to left multiplication so
we get the same decomposition of CLIF�V � � �v�" as right spin modules�
Since ��w�x � wxwt� it is clear that % � "�"where one factor is viewed as
a left and the other as a right spin module� Since %� is the decomposition
of SPIN�V � under the action of � from the left� �b� is immediate� �c�
follows similarly once the appropriate signs are taken into consideration�
w � CLIF�V �even if and only if

�w� t � ����v��w
which proves �c��

It is helpful to illustrate this for the case dimV � �� Let fe�� e�g be an
oriented orthonormal basis for V � We compute that��

�cos��e� � �sin��e�
��
�cos��e�� �sin ��e�

�
�
�� cos� cos� � sin� sin �

�
�
�
cos� sin� � sin� cos �

�
e�e�

so elements of the form cos ���sin ��e�e� belong to SPIN�V �� We compute��
cos�� �sin��e�e�

��
cos � � �sin ��e�e�

�
� cos��� �� � sin��� ��e�e�

so spin�V � is the set of all elements of this form and is naturally isomorphic
to the circle S� � &
� ��' with the endpoints identi�ed� We compute that

��w��e�� �
�
cos � � �sin ��e�e�

�
e�
�
cos � � �sin ��e�e�

�
�
�
cos� � � sin� �

�
e� � ��cos � sin ��e�

� cos����e� � sin����e�

��w��e�� � cos����e� � sin����e�

so the map ��S� � S� is the double cover � �� ���
We construct the one dimensional subspaces Vi generated by the ele�

ments�

v� � � � ��

�v� � v��

v�� � v��

v� � �� ��

�v� � �v��
v�� � �v��

v
 � �� � ��e��

�v
 � v
�

v
� � �v
�

v� � ��� ��e��

�v� � �v��
v�� � v��
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When we decompose CLIF�V � under the left action of SPIN�V ��

V� � V
 � "� and V� � V� � "��

When we decompose CLIF�V � under the right action of SPIN�V �� and
replace � by �� � � t acting on the right�

V� � V
 � "� and V� � V� � "��

From this it follows that as SO�V � modules we have�

V� � "� �"�� V� � "� �"�� V
 � "� �"� � V� � "� �"�

from which it is immediate that�

%e � V� � V� � "� �"� � "� �"�

%o � V
 � V� � "� �"� � "� �"�

%� � V� � V
 � "� �"� � "� �"�

%� � V� � V� � "� �"� � "� �"��

If V is a one�dimensional complex vector space� we let Vr be the under�
lying real vector space� This de�nes a natural inclusion of U���� SO����
If we let J � V � V be complex multiplication by

p�� then J�e�� � e�
and J�e�� � �e� so J is equivalent to Cli�ord multiplication by e�e� on
the left� We de�ne a complex linear map from V to "� �"� by�

T �v� � v � iJ�v� � V�

by computing T �e�� � �e� � ie�� � ��� ie�e���e�� and T �e�� � e� � ie� �
�i��e� � ie���

Lemma ��	��� Let U��� be identi�ed with SO��� in the usual manner� If
V is the underlying complex ��dimensional space corresponding to Vr then
V � "� �"� and V � � "� �"� as representation spaces of SPIN����

Proof� We have already veri�ed the �rst assertion� The second follows
from the fact that V � was made into a complex space using the map �J
instead of J on Vr� This takes us into V
 instead of into V�� It is also
clear that "� � �"��� if dimV � �� Of course� all these statements are
to be interpreted as statements about representations since they are trivial
as statements about vector spaces �since any vector spaces of the same
dimension are isomorphic��
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We wish to apply the constructions of �� to vector bundles over mani�
folds� We �rst review some facts regarding principal bundles and Stie�el�
Whitney classes which we shall need�

Principal bundles are an extremely convenient bookkeeping device� If G
is a Lie group� a principal G�bundle is a �ber space ��PG �M with �ber
G such that the transition functions are elements of G acting on G by left
multiplication in the group� Since left and right multiplication commute�
we can de�ne a right action of G on PG which is �ber preserving� For
example� let SO��k� and SPIN��k� be the groups de�ned by R�k with the
cannonical inner product� Let V be an oriented Riemannian vector bundle
of dimension �k over M and let PSO be the bundle of oriented frames
of V � PSO is an SO��k� bundle and the natural action of SO��k� from
the right which sends an oriented orthonormal frame s � �s�� � � � � s�k� to
s � g � �s
�� � � � � s



�k� is de�ned by�

s
i � s�g��i � � � �� s�kg�k�i �

The �ber of PSO is SO�Vx� where Vx is the �ber of V over the point x�
This isomorphism is not natural but depends upon the choice of a basis�
It is possible to de�ne the theory of characteristic classes using principal

bundles rather than vector bundles� In this approach� a connection is a
splitting of T �PG� into vertical and horizontal subspaces in an equivariant
fashion� The curvature becomes a Lie algebra valued endomorphism of
T �PG� which is equivariant under the right action of the group� We refer
to Euguchi� Gilkey� Hanson for further details�
Let fU�g be a cover of M so V is trivial over U� and let �s� be local

oriented orthonormal frames over U�� On the overlap� we express �s� �
g���s� where g�� �U� � U� � SO��k�� These satisfy the cocycle condition�

g��g�	g	� � I and g�� � I�

The principal bundle PSO of oriented orthonormal frames has transition
functions g�� acting on SO��k� from the left�

A spin structure on V is a lifting of the transition functions to SPIN��k�
preserving the cocyle condition� If the lifting is denoted by g
� then we
assume�

��g
��� � g�� � g
��g


�	g



	� � I � and g
�� � I�

This is equivalent to constructing a principal SPIN��k� bundle PSPIN to�
gether with a double covering map ��PSPIN � PSO which preserves the
group action$i�e��

��x � g
� � ��x� � ��g
��
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The transition functions of PSPIN are just the g
�� acting on the left�
Attempting to �nd a spin structure on V is equivalent to taking a square

root in a certain sense which we will make clear later� There is an ob�
struction to de�ning a spin structure which is similar to that to de�ning an
orientation on V � These obstructions are Z� characteristic classes called
the Stie�el�Whitney classes and are most easily de�ned in terms of 0Cech
cohomology� To understand these obstructions better� we review the con�
struction brie#y�
We �x a Riemannian structure on T �M� to de�ne a notion of distance�

Geodesics on M are curves which locally minimize distance� A set U is
said to be geodesically convex if �a� given x� y � U there exists a unique
geodesic in M joining x to y with d�x� y� � length��� and �b� if � is any
such geodesic then � is actually contained in U � It is immediate that the
intersection of geodesically convex sets is again geodesically convex and
that every geodesically convex set is contractible�
It is a basic theorem of Riemannian geometry that there exist open

covers of M by geodesically convex sets� A cover fU�g is said to be simple
if the intersection of any number of sets of the cover is either empty or is
contractible� A cover of M by open geodesically convex sets is a simple
cover�
We �x such a simple cover hence forth� Since U� is contractible� any

vector bundle over M is trivial over U�� Let Z� be the multiplicative
group f��g� A 0Cech j �cochain is a function f���� � � � � �j� � Z� de�ned
for j � ��tuples of indices where U�� � � � � � U�j �� � which is totally
symmetric$i�e��

f������ � � � � � ���j�� � f���� � � � � �j�

for any permutation �� If Cj�M �Z�� denotes the multiplicative group of
all such functions� the coboundary � �Cj�M�Z��� Cj���M �Z�� is de�ned
by�

��f����� � � � � �j��� �

j��Y
i��

f���� � � � � b�i� � � � � �j����
The multiplicative identity of Cj�M �Z�� is the function � and it is an

easy combinatorial exercise that ��f � �� For example� if f� � C��M �Z��
and if f� � C��M �Z��� then�

��f������ ��� � f����f����

��f������ ��� ��� � f���� ���f���� ���f��o� ����

Z� is a particularly simple coe�cient group to work with since every ele�
ment is its own inverse� in de�ning the 0Cech cohomology with coe�cients
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in other abelian groups� more care must be taken with the signs which
arise�
Let Hj�M �Z�� � N��j��R��j��� be the cohomology group� it is an easy

exercise to show these groups are independent of the particular simple cover
chosen� There is a ring structure on H��M �Z��� but we shall only use the
�additive� group structure �which we shall write multiplicatively��
Let V be a real vector bundle� not necessarily orientable� Since the U�

are contractible� V is trivial over the U and we can �nd a local orthonormal
frame �s� for V over U�� We let �s� � g���s� and de�ne the ��cochain�

f���� � det�g��� � ���

This is well de�ned since U� � U� is contractible and hence connected�
Since f��� �� � f��� ��� this de�nes an element of C��M �Z��� Since the
fg��g satisfy the cocycle condition� we compute�

�f��� �� �� � det�g��g�	g	�� � det�I� � �

so ��f� � � and f de�nes an element of H��M �Z��� If we replace �s� by
�s 
� � h��s� the new transition functions become g
�� � h�g��h

��
� so if

f���� � det�h���

f 
��� �� � det�h�g��h
��
� � � det�h��f��� �� det�h�� � ��f��f

and f changes by a coboundary� This proves the element in cohomology
de�ned by f is independent of the particular frame chosen and we shall
denote this element by w��V � � H��M �Z���

If V is orientable� we can choose frames so det�g��� � � and thus
w��V � � � represents the trivial element in cohomology� Conversely� if
w��V � is trivial� then f � �f�� If we choose h� so det�h�� � f����� then
the new frames �s 
� � h��s� will have transition functions with det�g
��� � �

and de�ne an orientation of V � Thus V is orientable if and only if w��V � is
trivial and w��V �� which is called the �rst Stie�el�Whitney class� measures
the obstruction to orientability�

If V is orientable� we restrict henceforth to oriented frames� Let dimV
� �k be even and let g�� � SO��k� be the transition functions� We choose
any lifting !g�� to SPIN��k� so that�

��!g��� � g�� and !g��!g�� � I�

since the U� are contractible such lifts always exist� We have g��g�	g	�
� I so ��!g��!g�	!g	�� � I and hence !g��!g�	!g	� � �I � f��� �� ��I where
f��� �� �� � Z�� V admits a spin structure if and only if we can choose
the lifting so f��� �� �� � �� It is an easy combinatorial exercise to show
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that f is symmetric and that �f � 
� Furthermore� if we change the choice
of the �s� or change the choice of lifts� then f changes by a coboundary�
This implies f de�nes an element w��V � � H��M �Z�� independent of the
choices made� w� is called the second Stie�el�Whitney class and is trivial
if and only if V admits a spin structure�
We suppose w��V � � w��V � � � are trivial so V is orientable and admits

a spin structure� Just as there are two orientations which can be chosen
on V � there can be several possible inequivalent spin structures �i�e�� sev�
eral non�isomorphic principal bundles PSPIN �� It is not di�cult to see
that inequivalent spin structures are parametrized by representations of
the fundamental group ���M� � Z� just as inequivalent orientations are
parametrized by maps of the components of M into Z��
To illustrate the existence and non�existence of spin structures on bun�

dles� we take M � S�� S� � CP� is the Riemann sphere� There is a
natural projection from C� � 
 to S� given by sending �x�w� �� z�w� S�

is obtained by identifying �z� w� � ��z� �w� for �z� w� �� �
� 
� and � �� 
�
There are two natural charts for S��

U� � fz � jzj � �g and U� � fz � jzj � �g � f�g
where w � ��z gives coordinates on U��
CP� is the set of lines in C�� we let L be the natural line bundle over

S�� this is also refered to as the tautological line bundle� We have natural
sections to L over Ui de�ned by�

s� � �z� �� over U� and s� � ��� w� over U��

these are related by the transition function�

s� � zs�

so on U� � U� we have g�� � ei� � The double cover SPIN��� � SO��� is
de�ned by � �� �� so this bundle does not have a spin structure since this
transition function cannot be lifted to SPIN����
This cover is not a simple cover of S� so we construct the cover given in

the following

V�

V�

V�

V
��
��

J
J

�
�
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�where we should �fatten up� the picture to have an open cover�� If we
have sections �si to L over Vi� then we can choose the transition functions
so �sj � ei��s� for � � j �  and �s� � �s� � �s
� We let


 � � � ��� parametrize V� � V�
��� � � � ��� parametrize V� � V�
��� � � � �� parametrize V
 � V�

and de�ne�
!g�� � ei��� � !g�� � ei��� � !g
� � ei���

and all the !gjk � � for � � j � k �  then we compute�

!g�
!g
�!g�� � e�ei� � ��

so the cochain de�ning w� satis�es�

f��� � �� � �� with f�i� j� k� � � if i or j or k���

We compute this is non�trivial in cohomology as follows� suppose f � �f��
Then�

� � f��� �� � � f���� ��f���� �f���� �

� � f��� �� �� � f���� ��f���� ��f���� ��

� � f��� � �� � f���� �f���� ��f��� ��

and multiplying together�

� � f���� ��
�f���� �

�f���� ��
�f���� ��f���� �f��� ��

� f���� ��f���� �f��� �� � f��� � �� � ��

which is a contradiction� Thus we have computed combinatorially that
w� �� � is non�trivial�

Next we let V � T �M� be the real tangent bundle� We identify U���
with SO��� to identify T �M� with TC �M�� Since w � ��z we have�

d

dz
�

dw

dz

d

dw
� �z�� d

dw

so the transition function on the overlap is �e��i� � The minus sign can be

eliminated by using � d

dw
instead of

d

dw
as a section over U� to make the

transition function be e��i� � Since the double cover of SPIN��� � SO���
is given by � �� ��� this transition function lifts and T �M� has a spin
structure� Since S� is simply connected� the spin structure is unique� This



��� ���� Spin Structures

also proves TC �M� � L��L� since the two bundles have the same transition
functions�
There is a natural inclusion of SPIN�V � and SPIN�W � into subgroups

of SPIN�V �W � which commute� This induces a map from SPIN�V � 	
SPIN�W �� SPIN�V �W �� Using this map� it is easy to compute w��V �
W � � w��V �w��W �� To de�ne w��V �� we needed to choose a �xed orien�
tation of V � It is not di�cult to show that w��V � is independent of the
orientation chosen and of the �ber metric on V � �Our de�nition does de�
pend upon the fact that V is orientable� Although it is possible to de�ne
w��V � more generally� the identity w��V �W � � w��V �w��W � fails if V
and W are not orientable in general�� We summarize the properties of w�

we have derived�

Lemma ������ Let V be a real oriented vector bundle and let w��V � �
H��M �Z�� be the second Stie�el�Whitney class� Then�
�a� w��V � � � represents the trivial cohomology class if and only if V
admits a spin structure�
�b� w��V �W � � w��V �w��W ��
�c� If L is the tautological bundle over S� then w��L� is non�trivial�

We emphasize that �b� is written in multiplicative notation since we
have chosen the multiplicative version of Z�� w� is also functorial under
pull�backs� but as we have not de�ned the 0Cech cohomology as a functor�
we shall not discuss this property� We also note that the Stie�el�Whitney
classes can be de�ned in general� w�V � � � � w��V � � � � � � H��M �Z��
is de�ned for any real vector bundle and has many of the same properties
that the Chern class has for complex bundles�

We can use Lemma ��� to obtain some other results on the existence
of spin structures�

Lemma ����	�
�a� IfM � Sm then any bundle over Sm admits a spin structure for m �� ��
�b� If M � CPk and if L is the tautological bundle over M � then L does
not admit a spin structure�
�c� If M � CPk and if V � T �M� is the tangent space� then V admits a
spin structure if and only if k is odd�
�d� If M � QPk is quaternionic projective space� then any bundle over M
admits a spin structure�

Proof� H��M �Z�� � f�g in �a� and �d� so w� must represent the trivial
element� To prove �b�� we suppose L admits a spin structure� S� is em�
bedded in CPk for k � � and the restriction of L to S� is the tautological
bundle over S�� This would imply L admits a spin structure over S� which
is false� Finally� we use the representation�

Tc�CPj�� � � L� � � � � � L�
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so that
T �CPj�� �� � �L�r�� � � � � �L�r�� �z �

j�� times

where L�r denotes the real vector bundle obtained from L� by forgetting
the complex structure� Then w��L

�
r� � w��Lr� since these bundles are

isomorphic as real bundles� Furthermore�

w��T �CPj�� � w��Lr�
j��

and this is the trivial class if j �� is even �i�e�� j is odd� while it is w��Lr�
and non�trivial if j � � is odd �i�e�� j is even��

Let M be a manifold and let V be a real vector bundle over M � If
V admits a spin structure� we shall say V is spin and not worry for the
moment about the lack of uniqueness of the spin structure� This will not
become important until we discuss Lefschetz �xed point formulas�

If V is spin� we de�ne the bundles "��V � to have transition functions
"��!g��� where we apply the representation "� to the lifted transition
functions� Alternatively� if PSPIN is the principal spin bundle de�ning the
spin structure� we de�ne�

"��V � � PSPIN �	� "�

where the tensor product across a representation is de�ned to be PSPIN 	
"� module the identi�cation �p � g� 	 z � p 	 �"��g�z� for p � PSPIN �
g � PSPIN ��k�� z � "�� �The slight confusion of notation is caused by
our convention of using the same symbol for the representation and the
representation space��

Let b� be a �xed unitary frame for "�� If �s is a local oriented orthonor�
mal frame for V � we let !si be the two lifts of �s � PSO to PSPIN � !s� � �!s�
but there is no natural way to distinguish these lifts� although the pair is
cannonically de�ned� If r is a Riemannian connection on V � let r�s � ��s
be the connection ��form� � is a skew symmetric matrix of ��forms and is
a ��form valued element of the Lie algebra of SO��k�� Since the Lie alge�
bra of SO��k� and SPIN��k� coincide� we can also regard � as an element
which is ��form valued of the Lie algebra of SPIN��k� and let "���� act
on "��V �� We de�ne bases !si � b� for "��V � and de�ne�

r�!si � b�� � !si �"����b�

to de�ne a natural connection on "��V �� Since the same connection is
de�ned whether !s� or !s� � �!s� is chosen� the Z� ambiguity is irrelevant
and r is well de�ned�
Lemma ���� and ���� extend to�
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Lemma ������ Let V be a real oriented Riemannian vector bundle of
even �ber dimension v� Suppose V admits a spin structure and let "��V �
be the half�spin bundles� Then�
�a� %�V � � "�V ��"�V ��
�b� �%� � %���V � � �"� �"��� �"� �"���V ��
�c� �%e � %o��V � � ����v���"� �"��� �"� �"���V ��
�d� If v � � and if V is the underlying real bundle of a complex bundle Vc
then Vc � "� �"� and V �c � "� �"��
�e� If r is a Riemannian connection on V and if we extend r to "��V ��
then the isomorphisms given are unitary isomorphisms which preserve r�
Spinors are multiplicative with respect to products� It is immediate from

the de�nitions we have given that�

Lemma ������ Let Vi be real oriented Riemannian vector bundles of even
�ber dimensions vi with given spin structures� Let V��V� have the natural
orientation and spin structure� Then�

�"� �"���V� � V�� � f�"� �"���V��g � f�"� �"���V��g�

If ri are Riemannian connections on Vi and if we de�ne the natural in�
duced connections on these bundles� then the isomorphism is unitary and
preserves the connections�

A spin structure always exists locally since the obstruction to a spin
structure is global� Given any real oriented Riemannian bundle V of even
�ber dimension with a �xed Riemannian connection r� we de�ne %�V � and
"�V � � "��V � � "��V �� With the natural metrics and connections� we
relate the connection ��forms and curvatures of these  bundles�

Lemma ������ Let feig be a local oriented orthonormal frame for V � We
let rej � �jksk represent the connection ��form and -ej � -jkek be the
curvature matrix for -jk � d�jk � �jl � �lk � Let %e and "e denote the
natural orthonormal frames on %�V � and "�V �� Relative to these frames
we compute the connection ��forms and curvature matrices of %�V � and
"�V � by�

�� � �jk ext�ek� int�ej� -� � -jk ext�ek� int�ej��a�

�	 � �
��jkej � ek -	 � �

�-jkej � ek��b�

Proof� We sum over repeated indices in these expressions� We note �a�
is true by de�nition on %��V � � V � Since both � and - extend to act as
derivations on the exterior algebra� this implies �a� is true on forms of all
degree�
Let so�n� � fA � n	n real matrices with A�At � 
g be the Lie algebra

of SO�n�� This is also the Lie algebra of SPIN�n� so we must identify this
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with an appropriate subset of the Cli�ord algebra in order to prove �b��
We choose a representative element of so�n� and de�ne

Ae� � e�� Ae� � �e�� Aej � 
 for j 
 ��

i�e��
A�� � �� A�� � ��� Ajk � 
 otherwise�

If we let g�t� � SO�n� be de�ned by

g�t�e� � �cos t�e� � �sin t�e��

g�t�e� � �cos t�e� � �sin t�e��

g�t�ej � ej j 
 ��

then g�
� � I and g
�
� � A� We must lift g�t� from SO�n� to SPIN�n��
De�ne�

h�t� �
�
cos�t���e� � sin�t���e�

��� cos�t���e� � sin�t���e�
�

� cos�t��� � sin�t���e�e� � SPIN�n�

Then ��h� � SO�n� is de�ned by�

��h�ej �
�
cos�t��� � sin�t���e�e�

�
ej
�
cos�t���� sin�t���e�e�

�
so that ��h�ej � ej for j 
 �� We compute�

��h�e� �
�
cos�t���e� � sin�t���e�

��
cos�t���� sin�t���e�e�

�
�
�
cos��t���� sin��t���

�
e� � � sin�t��� cos�t���e�

��h�e� �
�
cos�t���e� � sin�t���e�

��
cos�t���� sin�t���e�e�

�
�
�
cos��t���� sin��t���

�
e� � � sin�t��� cos�t���e�

so that ��h� � g� This gives the desired lift from SO�n� to SPIN�n�� We
di�erentiate to get

h
�
� �
�

�
e�e� �

�

�
Ajkej � ek �

This gives the lift of a matrix in this particular form� Since the whole
Lie algebra is generated by elements of this form� it proves that the lift of
Ajk in general is given by �

�Ajkej � ek � Since SPIN�n� acts on the Cli�ord
algebra by Cli�ord multiplication on the left� this gives the action of the
curvature and connection ��form on the spin representations and completes
the proof�



��� ���� Spin Structures

We can de�ne ch�"��V �� as SO characteristic forms� They can be ex�
pressed in terms of the Pontrjagin and Euler forms� We could use the
explicit representation given by Lemma ��� to compute these forms� it
is most easy� however� to compute in terms of generating functions� We
introduce formal variables fxjg for � � j � �dimV ��� so that

p�V � �
Y
j

�� � x�j � and e�V � �
Y
j

xj �

All these computations are really induced from the corresponding matrix
identities and the fxjg arise from putting a skew�symmetric matrix A in
block form�

Lemma ����
� Let V be an oriented real Riemannian vector bundle of
dimension n � 
 ���� Let ch�"��V �� be a real characteristic form	 these
are well de�ned even if V does not admit a global spin structure� Then�
�a� ch�"��V �� � ch�"��V �� � ch�"�V �� �

Q
j

fexj�� � e�xj��g�
�b�

����n��fch�"��V ��� ch�"��V ��g �
Y
j

fexj�� � e�xj��g

� e�V ��� � higher order terms��

Proof� This is an identity among invariant polynomials in the Lie algebra
so�n�� We may therefore restrict to elements of the Lie algebra which
split in block diagonal form� Using the multiplicative properties of the
Chern character and Lemma ���� it su�ces to prove this lemma for the
special case that n � � so "��V � are complex line bundles� Let Vc be
a complex line bundle and let V be the underlying real bundle� Then
x� � x � c��Vc� � e�V �� Since�

Vc � "� �"� and V �c � "� �"�

we conclude�

x � �c��"
�� and � x � �c��"

��

which shows �a� and the �rst part of �b�� We expand�

ex�� � e�x�� � x�
�

��
x
 � � � �

to see ch�"��� ch�"�� � e�V ��� � �
�� p��V � � � � �� to complete the proof

of �b��
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There is one �nal calculation in characteristic classes which will prove
helpful� We de�ned L and �A by the generating functions�

L�x� �
Y
j

xj
tanhxj

�
Y
j

xj
exj � e�xj

exj � e�xj

�A�x� �
Y
j

xj
sinh�xj���

�
Y
j

xj
exj�� � e�xj��

�

Lemma ������ Let V be an oriented Riemannian real vector bundle of
dimension n � �n�� If we compute the component of the di�erential form
which is in %n�T �M� then�

fL�V ��gn � fch�"�V �� � �A�V �gn�

Proof� It su�ces to compute the component of the corresponding sym�
metric functions which are homogeneous of order n�� If we replace xj by
xj�� then�

fL�xj�gn� � f�n�L�xj���gn�
�

�Y
j

xj tanh�xj���

�
n�

�

���Y
j

xj
ex�� � e�x��

exj�� � e�xj��

�� 
n�

� fch�"�V �� � �A�V �gn�
which completes the proof�
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We shall use the spin complex chie#y as a formal construction to link the
de Rham� signature� and Dolbeault complexes� Let M be a Riemannian
manifold of even dimension m� Let T �M� be the real tangent space� We
assume that M is orientable and that T �M� admits a spin structure� We
let "��M� be the half�spin representations� There is a natural map given
by Lemma ��� from the representations of

T ��M�� HOM�"��M��"��M��

which we will call c��� �since it is essentially Cli�ord multiplication� such
that c���� � �j�j�I� We extend the Levi�Civita connection to act naturally
on these bundles and de�ne the spin complex by the diagram�

A��C��"��M��
r� C��T �M �"��M��

c� C��"��M��

to be the operator with leading symbol c� �A��� � A� and A� is elliptic
since c���� � �j�j�I� this operator is called the Dirac operator�

Let V be a complex bundle with a Riemannian connection r� We de�ne
the spin complex with coe�cients in r by using the diagram�

A�V �C
��"��M�� V �� C��T �M �"��M�� V �

c����� C��"��M�� V ��

This is completely analogous to the signature complex with coe�cients in
V � We de�ne�

index�V� spin� � index�A�
V ��

a priori this depends on the particular spin structure chosen on V � but we
shall show shortly that it does not depend on the particular spin structure�
although it does depend on the orientation� We let

aspinn �x� V �

denote the invariants of the heat equation� If we reverse the orientation of
M � we interchange the roles of "� and of "� so aspinn changes sign� This
implies aspinn can be regarded as an invariantly de�ned m�form since the
scalar invariant changes sign if we reverse the orientation�
Let X be an oriented coordinate system� We apply the Gramm�Schmidt

process to the coordinate frame to construct a functorial orthonormal frame
�s �X� for T �M� � T ��M�� We lift this to de�ne two local sections �si�X�
to the principal bundle PSPIN with �s��X� � ��s��X�� There is� of course�
no cannonical way to prefer one over the other� but the pair is invariantly
de�ned� Let b� be �xed bases for the representation space "� and let
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b�i �X� � �si�X� � b� provide local frames for "��M�� If we �x i � �
or i � �� the symbol of the spin complex with coe�cients in V can be
functorially expressed in terms of the ��jets of the metric on M and in
terms of the connection ��form on V � The leading symbol is given by
Cli�ord multiplication� the 
th order term is linear in the ��jets of the
metric on M and in the connection ��form on V with coe�cients which are
smooth functions of the metric on M � If we replace b�� by b�� � �b�� then
the local representation of the symbol is unchanged since multiplication by
�� commutes with di�erential operators� Thus we may regard aspinn �x� V � �
Rm�n�m�dim V as an invariantly de�ned polynomial which is homogeneous
of order n in the jets of the metric and of the connection form on V which
is m�form valued�

This interpretation de�nes aspinn �x� V � even if the base manifold M is
not spin� We can always de�ne the spin complex locally as the Z� indeter�
minacy in the choice of a spin structure will not a�ect the symbol of the
operator� Of course�

R
M
aspinm �x� V � can only be given the interpretation of

index�V� spin� if M admits a spin structure� In particular� if this integral
is not an integer� M cannot admit a spin structure�
aspinn �x� V � is a local invariant which is not a�ected by the particular

global spin structure chosen� Thus index�V� spin� is independent of the
particular spin structure chosen�
We use exactly the same arguments based on the theorem of the second

chapter and the multiplicative nature of the twisted spin complex as were
used to prove the Hirzebruch signature theorem to establish�

Lemma ������
�a� aspinn � 
 if n � m and aspinm is a characteristic form of T �M� and of V �
�b�
R
M
aspinm �x� V � � index�V� spin��

�c� There exists a characteristic form �A
 of T �M� in the form�

�A
 � � � �A� � � � �

which does not depend on the dimension of M together with a universal
constant c such that

aspinm �
X

�s��t�m

�A
s � ctch�V �t�

We use the notation �A
 since we have not yet shown it is the A�roof
genus de�ned earlier� In proving the formula splits into this form� we do
not rely on the uniqueness property of the second chapter� but rather on the
multiplicative properties of the invariants of the heat equation discussed in
the �rst chapter�

The spin complex has an intimate relation with both the de Rham and
signature complexes�
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Lemma ����	� Let U be an open contractible subset of M � Over U � we
de�ne the signature� de Rham� and spin complexes� Then�
�a� �%e � %o�� V � ����m���"� �"��� �"� �"��� V �
�b� �%� � %��� V � �"� �"��� �"� �"��� V �
�c� These two isomorphisms preserve the unitary structures and the con�
nections� They also commute with Cli�ord multiplication on the left�
�d� The natural operators on these complexes agree under this isomor�
phism�

Proof� �a���c� follow from previous results� The natural operators on
these complexes have the same leading symbol and therefore must be the
same since they are natural �rst order operators� This proves �d��

We apply this lemma in dimension m � � with V � the trivial bundle
and M � S��

��S�� � � � index�d� �� � index�"� �"�� spin�

�
Z
S�

cfc��"��� c��"
��g

� c
Z
S�

e�TM� � �c

by Lemmas ����� ���� and ���� This establishes that the normalizing
constant of Lemma ���� must be � so that�

aspinm �
X

�s��t�m

�A
 � cht�V ��

We apply this lemma to the twisted signature complex in dimension m � �
with V a non�trivial line bundle over S� to conclude�

signature�S�� V � � index��"� �"��� V� spin�

�
Z
S�

ch��"� �"��� V � �
Z
S�

� � c��V ��

This shows that the normalizing constant of Lemma ���� for the twisted
signature complex is � and completes the proof of Lemma ����� This there�
fore completes the proof of the Hirzebruch signature theorem in general�
The de Rham complex with coe�ecients in V is de�ned by the diagram�

C��%e�o�M�� V �
r� C��T �M � %e�o�M�� V �

c����� C��%o�e�M�� V �

and we shall denote the operator by �d � ��eV � The relations given by
Lemma ���� give rise to relations among the local formulas�

an�x� �d� ��eV � � an�x�A
�
����m���	��	���V �

an�x� �d� ���V � � an�x�A
�
�	��	���V �
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where �d � ���V is the operator of the twisted signature complex� These
relations are well de�ned regardless of whether or not M admits a spin
structrue on T �M��
We deal �rst with the de Rham complex� Using Lemma ���� and the

fact that the normalizing constant c is �� we conclude�

an�x� �d� ��eV � � �A
 � ch�����m���"� �"���� � ch�V ��

Since ch�����m���"��"��� � e�M� is already a top dimensional form by
Lemma ����b�� we conclude an�x� �d���eV � � �dimV �e�M�� This proves�

Theorem ������ Let �d� ��eV be the de Rham complex with coe�cients
in the bundle V and let an�x� �d� ��eV � be the invariants of the heat equa�
tion� Then�
�a� an�x� �d� ��eV � � 
 if n � m�
�b� am�x� �d���eV � � �dimV �e�M� where e�M� is the Euler form of T �M��
�c�

index��d� ��eV � � �dimV ���M� �
Z
m

�dimV �e�M��

This shows that no information about V �except its dimension� is ob�
tained by considering the de Rham complex with coe�cients in V and it
is for this reason we did not introduce this complex earlier� This gives a
second proof of the Gauss�Bonnet theorem independent of the proof we
gave earlier�
Next� we study the signature complex in order to compute �A� Using

Lemma ���� with the bundle V � �� we conclude for m � �k�

am�x� �d� ���V � � f �A
 � ch�"�gm�

Using Theorem ���� and Lemma ���� we compute therefore�

Lk � fch�"� � �Agm � fch�"� � �A
gm � am�x� �d� ���V �

so as the Chern character is formally invertible� �A � �A
 is given by the
generating function zj� sinh�zj��� by Lemma ���� We can now improve
Lemma ���� and determine all the relevant normalizing constants�

Theorem ������ Let T �M� admit a spin structure� then�
�a� aspinn � 
 if n � m�

�b� aspinm �x� V � �
P

�s��t�m
�As � cht�V ��

�c� index�V� spin� �
R
M
aspinm �x� V ��
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For Almost Complex Manifolds�

So far� we have discussed three of the four classical elliptic complexes�
the de Rham� the signature� and the spin complexes� In this subsection� we
de�ne the Dolbeault complex for an almost complex manifold and relate it
to the spin complex�
Let M be a Riemannian manifold of dimension m � �n� An almost

complex structure on M is a linear map J �T �M� � T �M� with J� �
��� The Riemannian metric G is unitary if G�X�Y � � G�JX� JY � for all
X�Y � T �M�� we can always construct unitary metrics by averaging over
the action of J � Henceforth we assume G is unitary� We extend G to be
Hermitian on T �M��C� T ��M��C� and %�M��C�
Since J� � ��� we decompose T �M� � C � T 
�M� � T 

�M� into the

�i eigenspaces of J � This direct sum is orthogonal with respect to the
metric G� Let %����M� and %����M� be the dual spaces in T ��M��C to
T 
 and T 

� We choose a local frame fejg for T �M� so that J�ej� � ej�n
for � � i � n� Let fejg be the corresponding dual frame for T ��M�� Then�

T 
�M� � spanCfej � iej�ngnj�� T 

�M� � spanCfej � iej�ngnj��
%����M� � spanCfej � iej�ngnj�� %����M� � spanCfej � iej�ngnj���

These four vector bundles are all complex vector bundles over M � The
metric gives rise to natural isomorphisms T 
�M� � %����M� and T 

�M� �
%����M�� We will use this isomorphism to identify ej with ej for much of
what follows�

If we forget the complex structure on T 
�M�� then the underlying real
vector bundle is naturally isomorphic to T �M�� Complex multiplication by
i on T 
�M� is equivalent to the endomorphism J under this identi�cation�
Thus we may regard J as giving a complex structure to T �M��
The decomposition�

T ��M��C � %����M�� %����M�

gives rise to a decomposition�

%�T �M��C �
M
p�q

%p�q�M�

for
%p�q�M� � %p�%����M��� %q�%����M���

Each of the bundles %p�q is a complex bundle over M and this decomposi�
tion of %�T �M��C is orthogonal� Henceforth we will denote these bundles
by T 
� T 

� and %p�q when no confusion will arise�
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If M is a holomorphic manifold� we let z � �z�� � � � � zn� be a local holo�
morphic coordinate chart� We expand zj � xj � iyj and de�ne�

�

�zj
�

�

�

�
�

�xj
� i

�

�yj

�
�

�

� zj
�

�

�

�
�

�xj
� i

�

�yj

�
dzj � dxj � idyj � d zj � dxj � idyj �

We de�ne�

��f� �
X
j

�f

�zj
dzj and  ��f� �

X
j

�f

� zj
d zj �

The Cauchy�Riemann equations imply that a function f is holomorphic
if and only if  ��f� � 
� If w � �w�� � � � � wn� is another holomorphic
coordinate system� then�

�

�wj
�
X
k

�zk
�wj

�

�zk
�

�

�  wj
�
X
k

� zk
�  wj

�

� zk

dwj �
X
k

�wj
�zk

dzk� d  wj �
�  wj
� zk

d zk�

We de�ne�

T 
�M� � span

�
�

�zj

�n
j��

� T 

�M� � span

�
�

� zj

�n
j��

%����M� � spanfdzjgnj��� %����M� � spanfd zjgnj��
then these complex bundles are invariantly de�ned independent of the
choice of the coordinate system� We also note

��C��M�� C��%����M�� and  ��C��M�� C��%����M��

are invariantly de�ned and decompose d � � �  � �
There is a natural isomorphism of T 
�M� with T �M� as real bundles

in this example and we let J be complex multiplication by i under this
isomorphism� Equivalently�

J

�
�

�xj

�
�

�
�

�yj

�
and J

�
�

�yj

�
� � �

�xj
�

T 
�M� � Tc�M� is the complex tangent bundle in this example� we shall
reserve the notation Tc�M� for the holomorphic case�

Not every almost complex structure arises from a complex structure�
there is an integrability condition� If J is an almost complex structure� we
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decompose the action of exterior di�erentiation d on C��%� with respect
to the bigrading �p� q� to de�ne�

��C��%p�q�� C��%p���q � and  � �C��%p�q�� C��%p�q�� ��

Theorem ����� �Nirenberg�Neulander�� The following are equiv�
alent and de�ne the notion of an integrable almost complex structure�
�a� The almost complex structure J arises from a holomorphic structure
on M �
�b� d � � �  � �
�c�  �  � � 
�
�d� T 
�M� is integrable�i�e�� given X�Y � C��T 
�M��� then the Lie
bracket &X�Y ' � C��T 
�M�� where we extend & � ' to complex vector
�elds in the obvious fashion�

Proof� This is a fairly deep result and we shall not give complete details�
It is worth� however� giving a partial proof of some of the implications
to illustrate the concepts we will be working with� Suppose �rst M is
holomorphic and let fzjg be local holomorphic coordinates on M � De�ne�

dzI � dzi� � � � � � dzip and d zJ � d zj� � � � � � d zjq
then the collection fdzI � d zJg gives a local frame for %p�q which is closed�
If � � C��%p�q�� we decompose � �

P
fI�J dz

I � d zJ and compute�

d� � d

�X
fI�J dz

I � d zJ
�

�
X

dfI�J � dzI � d zJ �

On functions� we decompose d � � �  �� Thus d� � C��%p���q � %p�q�� �
has no other components� Therefore d� � �� �  �� so �a� implies �b��
We use the identity d� � 
 to compute �� �  ��� � ���� � ��  � �  ��� �

� �� � � 
� Using the bigrading and decomposing this we conclude ���� �
��  � �  ��� � � �� � � 
 so �b� implies �c�� Conversely� suppose that  �  � � 

on C��M�� We must show d�C��%p�q� � C��%p���q � %p�q�� � has no
other components� Let fejg be a local frame for %��� and let f ejg be the
corresponding local frame for %��� � We decompose�

dej � �ej �  �ej � Aj for Aj � %���

d ej �  � ej � � ej �  Aj for  Aj � %��� �

Then we compute�

d

�X
fjej

�
�
X

dfj � ej � fjdej

�
X
f�fj � ej �  �fj � ej � fj�ej � fj  �ej � fjAjg

� �

�X
fjej

�
�  �

�X
fjej

�
�
X

fjAj �
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Similarly

d

�X
fj ej

�
� �

�X
fj ej

�
�  �

�X
fj ej

�
�
X

fj  Aj �

If A and  A denote the 
th order operators mapping %��� � %��� and %��� �
%��� then we compute�

d��� � ���� �  ���� �A� for � � C��%����

d� �� � �� �� �  �� �� �  A � for  � � C��%�����

Let f � C��M� and compute�


 � d�f � d��f �  �f� � ��� �  A ��f � ��  � �  ���f � � �� � A��f

where we have decomposed the sum using the bigrading� This implies that
�  ���A��f � 
 so A�f � 
� Since f�fg spans %��� � this implies A �  A � 

since A is a 
th order operator� Thus dej � �ej �  �ej and d ej � � ej�  � ej�
We compute d�eI �  eJ � has only �p � �� q� and �p� q � �� components so
d � � �  � � Thus �b� and �c� are equivalent�
It is immediate from the de�nition that X � T 
�M� if and only if ��X� �


 for all � � %��� � If X�Y � C��T �M�� then Cartan�s identity implies�

d��X�Y � � X��Y �� Y ��X�� ��&X�Y '� � ���&X�Y '��

If �b� is true then d� has no component in %��� so d��X�Y � � 
 which
implies ��&X�Y '� � 
 which implies &X�Y ' � C��T 
M� which implies �d��
Conversly� if �d� is true� then d��X�Y � � 
 so d� has no component in
%��� so d � ��  � on %��� � By taking conjugates� d � ��  � on %��� as well
which implies as noted above that d � � �  � in general which implies �c��

We have proved that �b���d� are equivalent and that �a� implies �b�� The
hard part of the theorem is showing �b� implies �a�� We shall not give this
proof as it is quite lengthy and as we shall not need this implication of the
theorem�

As part of the previous proof� we computed that d����  �� is a 
th order
operator �which vanishes if and only ifM is holomorphic�� We now compute
the symbol of both � and  �� We use the metric to identify T �M� � T ��M��
Let fejg be a local orthonormal frame for T �M� such that J�ej� � ej�n
for � � j � n� We extend ext and int to be complex linear maps from
T ��M��C� END�%�T �M��C��

Lemma ����	� Let � and  � be de�ned as before and let � 
 and � 

 be the
formal adjoints� Then�
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�a�

��C��%p�q�� C��%p���q �

and �L����x� �� �
i

�

X
j�n

��j � i�j�n� ext�ej � iej�n�

 ��C��%p�q�� C��%p�q�� �

and �L�  ���x� �� �
i

�

X
j�n

��j � i�j�n� ext�ej � iej�n�

� 
�C��%p�q�� C��%p���q �

and �L��

��x� �� � � i

�

X
j�n

��j � i�j�n� int�ej � iej�n�

� 

�C��%p�q�� C��%p�q�� �

and �L��


��x� �� � � i

�

X
j�n

��j � i�j�n� int�ej � iej�n��

�b� If "

c � ��� � 
�� and "



c � � � � � 

�� then these are elliptic on % with
�L�"



c� � �l�"




c � �

�
� j�j�I�

Proof� We know �L�d��x� �� � i
P

j �j ext�ej�� We de�ne

A��� �
�

�

X
j�n

��j�n� ext�ej � iej�n�

then A���� %p�q � %p���q and  A���� %p�q � %p�q�� � Since iA��� � i  A��� �
�L�d�� we conclude that iA and i  A represent the decomposition of �L�d�
under the bigrading and thus de�ne the symbols of � and  �� The symbol
of the adjoint is the adjoint of the symbol and this proves �a�� �b� is an
immediate consequence of �a��

If M is holomorphic� the Dolbeault complex is the complex f ��%��qg and
the index of this complex is called the arithmetic genus of M � If M is not
holomorphic� but only has an almost complex structure� then  �� �� 
 so
we can not de�ne the arithmetic genus in this way� Instead� we use a trick
called �rolling up� the complex� We de�ne�

%��� �
M
q

%���q and %��� �
M
q

%���q��

to de�ne a Z� grading on the Dolbeault bundles� �These are also often
denoted by %��even and %��odd in the literature�� We consider the two term
elliptic complex�

�  � � � 

���C��%����� C��%����
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and de�ne the arithmetic genus of M to be the index of �  � � � 

��� The
adjoint of �  � � � 

�� is �  � � � 

�� and the associated Laplacian is just
"


c restricted to %��� so this is an elliptic complex� If M is holomorphic�

then the index of this elliptic complex is equal to the index of the complex
� ��%��q� by the Hodge decomposition theorem�
We de�ne�

c
��� � �
p
����

X
j�n

f��j � i�j�n� ext�ej � iej�n�

� ��j � i�j�n� int�ej � iej�n�g

then it is immediate that�

c
���c
��� � �j�j� and �L�  � � � 

� � ic
����
p
��

Let r be a connection on %��� � then we de�ne the operator A��r� by the
diagram�

A��r��C��%���� r� C��T �M � %����
c��
p
�

���� C��%����

This will have the same leading symbol as �  � � � 

��� There exists a
unique connection so A��r� � � � � � 

�� but as the index is constant
under lower order perturbations� we shall not need this fact as the index of
A��r� � index� � � � 

�� for any r� We shall return to this point in the
next subsection�
We now let V be an arbitrary coe�cient bundle with a connection r and

de�ne the Dolbeault complex with coe�cients in V using the diagram�

A��C��%��� � V �
r� C��T �M � %��� � V �

c��
p
���

������ C��%��� � V �

and we de�ne index�V�Dolbeault� to be the index of this elliptic complex�
The index is independent of the connections chosen� of the �ber metrics
chosen� and is constant under perturbations of the almost complex struc�
ture�
If M is holomorphic and if V is a holomorphic vector bundle� then we

can extend  ��C��%��q � V � � C��%��q�� � V � with  �  � � 
� Exactly as
was true for the arithmetic genus� the index of this elliptic complex is equal
to the index of the rolled up elliptic complex so our de�nitions generalize
the usual de�nitions from the holomorphic category to the almost complex
category�
We will compute a formula for index�V�Dolbeault� using the spin com�

plex� There is a natural inclusion from U�m� � � U�n� into SO�m�� but
this does not lift in general to SPIN�m�� We saw earlier that T �CPk�
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does not admit a spin structure if k is even� even though it does admit
a unitary structure� We de�ne SPINc�m� � SPIN�m� 	 S��Z� where we
choose the Z� identi�cation �g� �� � ��g����� There is a natural map
�c� SPINc�m� � SO�m� 	 S� induced by the map which sends �g� �� ��
���g�� ���� This map is a Z� double cover and is a group homomorphism�
There is a natural map of U�m� � into SO�m� 	 S� de�ned by sending

g �� �g� det�g��� The interesting thing is that this inclusion does lift� we
can de�ne f � U�m� �� SPINc�m� so the following diagram commutes�

�
�
�
�
�
�
�

SPINc�m�

f

y �c � �	 ��

U�m� �
�	 det���������� SO�m�	 S�

We de�ne the lifting as follows� For U � U�m� �� we choose a unitary
basis fejgnj�� so that U�ej� � �jej � We de�ne ej�n � iej so fejg�nj�� is an

orthogonal basis for Rm � Cn� Express �j � ei�j and de�ne�

f�U� �
nY

j��

fcos��j��� � sin��j���ejej�ng 	
nY

j��

ei�j�� � SPINc�m��

We note �rst that ejej�n is an invariant of the one�dimensional complex
subspace spanned by ej and does not change if we replace ej by zej for
jzj � �� Since all the factors commute� the order in which the eigenvalues
is taken does not a�ect the product� If there is a multiple eigenvalue� this
product is independent of the particular basis which is chosen� Finally�
if we replace �j by �j � �� then both the �rst product and the second
product change sign� Since �g� �� � ��g���� in SPINc�m�� this element is
invariantly de�ned� It is clear that f�I� � I and that f is continuous� It is
easily veri�ed that �cf�U� � i�U�	 det�U� where i�U� denotes the matrix
U viewed as an element of SO�m� where we have forgotten the complex
structure on Cn� This proves that f is a group homomorphism near the
identity and consequently f is a group homomorphism in general� �c is a
covering projection�
The cannonical bundle K is given by�

K � %n�� � %n�T 
M��
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so K� � %n�T 
M� is the bundle with transition functions det�U��� where
the U�� are the transitions for T 
M � If we have a spin structure on M � we
can split�

PSPINc
� PSPIN 	 PS��Z�

where PS� represents a line bundle L� over M � From this description� it
is clear K� � L� � L�� Conversely� if we can take the square root of K
�or equivalently of K��� then M admits a spin structure so the obstruction
to constructing a spin structure on an almost complex manifold is the
obstruction to �nding a square root of the cannonical bundle�

Let V � Cn � Rm with the natural structures� We extend "� to
representations "� of SPINc�m� in the natural way� We relate this repre�
sentation to the Dolbeault representation as follows�

Lemma ������ There is a natural isomorphism between %��� and "�
c

which de�nes an equivalence of these two representations of U�m� �� Under
this isomorphism� the action of V by Cli�ord multiplication on the left is
preserved�

Proof� Let fejg be an orthonormal basis for Rm with Jej � ej�n for
� � j � n� De�ne�

�j � iejej�n� �j � ej � iej�n�  �j � ej � iej�n for � � j � n�

We compute�

�j�j � ��j and �j�k � �k�j for k �� j�

We de�ne � � �� � � ��n then � spans %n�� and ��j � ��� � � j � n� We
de�ne�

%��� �
M
q

%��q and %n�� �
M
q

%n�q � %�����

Since dim�%���� � �n� we conclude that %���� is the simultaneous ��
eigenspace for all the �j and that therefore�

"c � %����

as a left representation space for SPIN�m�� Again� we compute�

�j�j � �j � �j  �j � � �j � �j�k � �k�j � �j  �k �  �k�j for j �� k

so that if x � %��q� then since � � �� � � ��n we have �x � ����qx so that

"�
c � %�����
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We now study the induced representation of U�n�� Let

g �
�
cos����� � sin�����e�Je�

� � ei��� � SPINc�m��

We compute�

g�� � fcos������ i sin�����gei����� � ��

g  �� � fcos����� � i sin�����gei���  �� � ei�  ��

g�k � �kg and g  �k �  �kg for k 
 ��

Consequently�

g  �j� �

�
 �j� if j� 
 �
ei�  �j� if j� � ��

A similar computation goes for all the other indices and thus we compute
that if Uej � ei�j ej is unitary that�

f�U�  �J� � ei�j� � � � ei�jq  �J�

which is of course the natural represenation of U�n� on %��q �
Finally we compare the two actions of V by Cli�ord multiplication� We

assume without loss of generality that � � ��� 
� � � � � 
� so we must study
Cli�ord multiplication by e� on "c and

fext�e� � ie��n �� int�e� � ie��n �g�
p
� � c
�e��

on %���� We compute�

e��� � �� � ie�e� � �e� � ie���e� � ie���� �  �������

e�  ���� � �����
e�  �k � � �ke� for k 
 ��

From this it follows immediately that�

e�  �J� � ����q
�

 ��  �J��� if j� 
 �
� �J �� where J 
 � fj�� � � � � jqg if j� � ��

Similarly� we compute�

c
�e��  �J �

�
 ��  �J�

p
� if j� 
 �

�p� �J � for J 
 � fj�� � � � � jqg if j� � ��

From these equations� it is immediate that if we de�ne T �  �J � �  �J��
then T will not preserve Cli�ord multiplication� We let a�q� be a sequence
of non�zero constants and de�ne T � %��� � "�

c by�

T �  �J � � a�jJ j�  �J��
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Since the spaces %��q are U�n� invariant� this de�nes an equivalence between
these two representations of U�n�� T will induce an equivalence between
Cli�ord multiplication if and only if we have the relations�

����qa�q��� � a�q � ���
p
� and

p
�a�q � �� � ����q � � � a�q��

These give rise to the inductive relations�

a�q � �� � ����qa�q��
p
� and a�q� � ����q��a�q � ���

p
��

These relations are consistent and we set a�q� � �
p
���q����q�q����� to

de�ne the equivalence T and complete the proof of the Lemma�

From this lemma� we conclude�

Lemma ������ There is a natural isomorphism of elliptic complexes
�"�

c � "�
c � � V � �%��� � %���� � V which takes the operator of the

SPINc complex to an operator which has the same leading symbol as the
Dolbeault complex �and thus has the same index�� Furthermore� we can
represent the SPINc complex locally in terms of the SPIN complex in the
form� �"�

c �"�
c �� V � �"� �"��� L� � V where L� is a local square

root of %n�T 
M��

We use this sequence of isomorphisms to de�ne an operator on the Dol�
beault complex with the same leading symbol as the operator �  � � �

�
which is locally isomorphic to the natural operator of the SPIN complex�
The Z� ambiguity in the de�nition of L� does not a�ect this construction�
�This is equivalent to choosing an appropriate connection called the spin
connection on %��� �� We can compute index�V�Dolbeault� using this op�
erator� The local invariants of the heat equation for this operator are the
local invariants of the twisted spin complex and therefore arguing exactly
as we did for the signature complex� we compute�

index�V�Dolbeault� �
Z
M

�A�TM� � ch�L�� � ch�V �

where ch�L�� is to be understood as a complex characteristic class of
T 
�M��

Theorem ����� �Riemann�Roch�� Let Td�T 
M� be the Todd class
de�ned earlier by the generating function Td�A� �

Q
� x�����e�x� �� Then

index�V�Dolbeault� �
Z
M

Td�T 
M� � ch�V ��

Proof� We must simply identify �A�TM� � ch�L�� with Td�T 
M�� We
perform a computation in characteristic classes using the splitting principal�
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We formally decompose T 
M � !L� � � � � � !Ln as the direct sum of line
bundles� Then %n�T 
M� � !L� � � � � � !Ln so c��%

nT 
M� � c��!L�� �

� � � � c��!Ln� � x� � � � � � xn� Since L� � L� � %nT 
M � we conclude
c��L�� �

�
� �x� � � � �� xn� so that�

ch�L�� �
Y
�

ex����

Therefore�

�A�M� � ch�L�� �
Y
�

x�
ex���

ex��� � e�x���

�
Y
�

x�
�� e�x�

� Td�T 
M��

Of course� this procedure is only valid if the given bundle does in fact
split as the direct sum of line bundles� We can make this procedure a
correct way of calculating characteristic classes by using #ag manifolds or
by actually calculating on the group representaton and using the fact that
the diagonizable matrices are dense�

It is worth giving another proof of the Riemann�Roch formula to ensure
that we have not made a mistake of sign somewhere in all our calculations�
Using exactly the same multiplicative considerations as we used earlier and
using the qualitative form of the formala for index�V�Dolbeault� given by
the SPINc complex� it is immediate that there is some formula of the form�

index�V�Dolbeault� �
Z
N

X
s�t�n

Td
s�T

M� � ctcht�V �

where c is some universal constant to be determined and where Td
s is some
characteristic form of T 
M �
If M � CPj � then we shall show in Lemma ���	 that the arithmetic

genus of CPj is �� Using the multiplicative property of the Dolbeault
complex� we conclude the arithmetic genus of CPj� 	 � � � 	 CPjk is � as
well� If M c

� are the manifolds of Lemma ���� then if we take V � � we
conclude�

� � index���Dolbeault� � arithmetic genus of CPj� 	 � � � 	CPjk
�
Z
Mc

�

Td
�T 
M��

We veri�ed in Lemma ���� that Td�T 
M� also has this property so by
the uniqueness assertion of Lemma ���� we conclude Td � Td
� We take
m � � and decompose�

%� � %� � %��� � %��� and %� � %��� � %���
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so that

%e � %o � �%��� � %����� �%��� � %�����

In dimension � �and more generally if M is Kaehler�� it is an easy exercise
to compute that " � �� �� 

 � � 

  �� so that the harmonic spaces are the
same therefore�

��M� � index�%��� �Dolbeault�� index�%��� �Dolbeault�

� �c
Z
M

ch�%���� � c
Z
M

ch�T 
M� � c
Z
M

e�M��

The Gauss�Bonnet theorem �or the normalization of Lemma ���� implies
that the normalizing constant c � � and gives another equivalent proof of
the Riemann�Roch formula�

There are many applications of the Riemann�Roch theorem� We present
a few in dimension � to illustrate some of the techniques involved� If
dimM � �� then we showed earlier that�

c��T

M� � e��TM� and ��c� � c����T


M� � p��T

M��

The Riemann�Roch formula expresses the arithmetic genus of M in terms
of c� and c��� Consequently� there is a formula�

arithmetic genus � a�
Z
M

e��TM� � a�
Z
M

p��TM��

� a���M� � a� signature�M�

where a� and a� are universal constants� If we consider the manifolds
S� 	 S� and CP� we derive the equations�

� � a� � � � a� � 
 and � � a� �  � a� � �

so that a� � a� � ��� which proves�

Lemma ����
� If M is an almost complex manifold of real dimension ��
then�

arithmetic genus�M� � f��M� � signature�M�g���
Since the arithmetic genus is always an integer� we can use this result to

obtain some non�integrability results�

Corollary ������ The following manifolds do not admit almost com�
plex structures�
�a� S� �the four dimensional sphere��
�b� CP� with the reversed orientation�
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�c� M� /M� where the Mi are ��dimensional manifolds admitting almost
complex structures �/ denotes connected sum��

Proof� We assume the contrary in each of these cases and attempt to
compute the arithmetic genus�

a�g��S�� � �
� �� � 
� � �

�

a�g���CP�� � �
� �� �� � �

�

a�g��M� /M�� �
�
� ���M� / dM�� � sign�M� /M��

� �
� ���M�� � ��M��� � � sign�M�� � sign�M���

� a�g��M�� � a�g��M��� �
�
�

In none of these examples is the arithmetic genus an integer which shows
the impossibility of constructing the desired almost complex structure�
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In the previous subsection� we proved the Riemann�Roch theorem using
the SPINc complex� This was an essential step in the proof even if the
manifold was holomorphic�
Let M be holomorphic and let the coe�cient bundle V be holomorphic

�i�e�� the transition functions are holomorphic�� We can de�ne the Dol�
beault complex directly by de�ning�

 �V �C��%��q � V �� C��%��q�� � V � by  �V �� � s� �  �� � s

where s is a local holomorphic section to V � It is immediate  �V  �V � 
 and
that this is an elliptic complex� the index of this elliptic complex is just
index�V�Dolbeault� as de�ned previously�

We let an�x� V�Dolbeault� be the invariant of the heat equation for this
elliptic complex� we use the notation aj�x�Dolbeault� when V is the trivial
bundle� Then�

Remark ��
��� Let m � �n 
 �� Then there exists a unitary Rieman�
nian metric on the m�torus �with its usual complex structure� and a point
x such that�
�a� aj�x�Dolbeault� �� 
 for j even and j � n�
�b� am�x�Dolbeault� �� Tdn where both are viewed as scalar invariants�

The proof of this is quite long and combinatorial and is explained else�
where� we simply present the result to demonstrate that it is not in general
possible to prove the Riemann�Roch theorem directly by heat equation
methods�
The di�culty is that the metric and the complex structure do not �t

together properly� Choose local holomorphic coordinates z � �z�� � � � � zn�
and extend the metric G to be Hermitian on T �M��C so that T 
 and T 



are orthogonal� We de�ne�

gjk � G����zj � ���zk�

then the matrix gjk is a positive de�nite Hermitian matrix which deter�

mines the original metric on T �M��

ds� � �
X
j�k

gjkdz
j � d zk

G����xj � ���xk� � G����yj � ���yk� � �gjk � gk� �

G����xj � ���yk� � �G����yj � ���xk� �
�

i
�gjk � gk� �

We use this tensor to de�ne the Kaehler ��form�

- � i
X
j�k

gjkdz
j � d zk�
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This is a real ��form which is de�ned by the identity�

-&X�Y ' � �G�X� JY ��

�This is a slightly di�erent sign convention from that sometimes followed��
The manifold M is said to be Kaehler if - is closed and the heat equation
gives a direct proof of the Riemann�Roch theorem for Kaehler manifolds�
We introduce variables�

gjk�l and gjk�l

for the jets of the metric� On a Riemannian manifold� we can always �nd
a coordinate system in which all the ��jets of the metric vanish at a point�
this concept generalizes as follows�

Lemma ��
�	� Let M be a holomorphic manifold and let G be a unitary
metric on M � The following statements are equivalent�
�a� The metric is Kaeher �i�e�� d- � 
��
�b� For every z� �M there is a holomorphic coordinate system Z centred
at z� so that gjk�Z�G��z�� � �jk and gjk�l�Z�G��z�� � 
�

�c� For every z� � M there is a holomorphic coordinate system Z centred
at z� so gjk�Z�G��z�� � �jk and so that all the ��jets of the metric vanish
at z��

Proof� We suppose �rst the metric is Kaehler and compute�

d- � i
X
j�k

fgjk�ldzl � dzj � d zk � gjk�ld z
l � dzj � d zkg�

Thus Kaehler is equivalent to the conditions�

gjk�l � glk�j � gjk�l � gjl�k � 
�

By making a linear change of coordinates� we can assume that the holo�
morphic coordinate system is chosen to be orthogonal at the center z�� We
let

z
j � zj �
X

cjklzkzl �where cjkl � cjlk�

and compute therefore�

dz
j � dzj � �
X

cjklzldzk

���z
j � ���zj � �
X

ckjlzl���zk �O�z��

g

jk

� gjk � �
X

ckjlzl � terms in  z � O�jzj��
g

jk�l

� gjk�l � �ckjl at z��
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We de�ne ckjl �
�
�
gjk�l and observe that the Kaehler condition shows this

is symmetric in the indices �j� l� so �a� implies �b�� To show �b� implies �c�
we simply note that gjk�l � gk� �l � 
 at z�� To prove �c� implies �a� we

observe d-�z�� � 
 so since z� was arbitrary� d- � 
�

If M is Kaehler� then �- is linear in the ��jets of the metric when we
compute with respect to a holomorphic coordinate system� This implies
that �- � 
 so - is harmonic� We compute that -k is also harmonic for
� � k � n and that -n � c � dvol is a multiple of the volume form �and in
particular is non�zero�� This implies that if x is the element in H��M �C�
de�ned by - using the Hodge decomposition theorem� then �� x� � � � � xn

all represent non�zero elements in the cohomology ring of M � This can
be used to show that there are topological obstructions to constructing
Kaehler metrics�

Remark ��
��� If M � S� 	 Sm�� for m even and m � � then this
admits a holomorphic structure� No holomorphic structure on M admits
a Kaehler metric�

Proof� Since H��M �C� � 
 it is clear M cannot admit a Kaehler metric�
We construct holomorphic structures on M as follows� let � � C with
j�j 
 � and let M� � fCn � 
g�� �where we identify z and w if z � �kw
for some k � Z�� The M� are all topologically S� 	 Sm�� � for example if
� � R and we introduce spherical coordinates �r� �� on Cn � Rm then we
are identifying �r� �� and ��kr� ��� If we let t � log r� then we are identifying
t with t�k log� so the manifold is just &�� log�'	Sm�� where we identify
the endpoints of the interval� The topological identi�cation of M� for other
� is similar�
We now turn to the problem of constructing a Kaehler metric on CPn�

Let L be the tautological line bundle over CPn and let x � �c��L� �
%����CPn� be the generator of H��CPn�Z� discussed earlier� We expand
x in local coordinates in the form�

x �
i

��

X
j�k

gjkdz
j � d zk

and de�ne G����zk� ���zk� � gjk� This gives an invariantly de�ned form

called the Fubini�Study metric on Tc�CPn�� We will show G is positive
de�nite and de�nes a unitary metric on the real tangent space� Since the
Kaehler form of G� - � ��x� is a multiple of x� we conclude d- � 
 so G
will be a Kaehler metric�
The ��form x is invariant under the action of U�n���� Since U�n��� acts

transitively on CPn� it su�ces to show G is positive de�nite and symmetric
at a single point� Using the notation of section ��� let Un � fz � CPn �
zn�� �z� �� 
g� We identify Un with Cn by identifying z � Cn with the line
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in Cn�� through the point �z� ��� Then�

x �
i

��
�  � log�� � jzj��

so at the center z � 
 we compute that�

x �
i

��

X
j

dzj � d zj so that gjk � �jk�

If G
 is any other unitary metric on CPn which is invariant under the
action of U�n � ��� then G
 is determined by its value on Tc�CPn� at a
single point� Since U�n� preserves the origin of Un � Cn� we conclude
G
 � cG for some c 
 
� This proves�

Lemma ��
���
�a� There exists a unitary metric G on CPn which is invariant under the
action of U�n � �� such that the Kaehler form of G is given by - � ��x
where x � �c��L� �L is the tautological bundle over CPn�� G is a Kaehler
metric�
�b�
R
CPn

xn � ��

�c� If G
 is any other unitary metric on CPn which is invariant under the
action of U�n� �� then G
 � cG for some constant c 
 
�

A holomorphic manifold M is said to be Hodge if it admits a Kaehler
metric G such that the Kaehler form - has the form - � c��L� for some
holomorphic line bundle L over M � Lemma ���� shows CPn is a Hodge
manifold� Any submanifold of a Hodge manifold is again Hodge where
the metric is just the restriction of the given Hodge metric� Thus every
algebraic variety is Hodge� The somewhat amazing fact is that the converse
is true�

Remark ��
��� A holomorphic manifold M is an algebraic variety �i�e��
is holomorphically equivalent to a manifold de�ned by algebraic equations
in CPn for some n� if and only if it admits a Hodge metric�

We shall not prove this remark but simply include it for the sake of com�
pleteness� We also note in passing that there are many Kaehler manifolds
which are not Hodge� The Riemann period relations give obstructions on
complex tori to those tori being algebraic�

We now return to our study of Kaehler geometry� We wish to relate the
 � cohomology of M to the ordinary cohomology� De�ne�

Hp�q�M� � ker  �� im  � in bi�degree �p� q��

Since the Dolbeault complex is elliptic� these groups are �nite dimensional
using the Hodge decomposition theorem�
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Lemma ��
�
� Let M be Kaehler and let - � i
P

gjkdz
j � d zk be the

Kaehler form� Let d � � �  � and let � � � 
 � � 

� Then we have the
identities�
�a�  � int�-�� int�-� � � i� 
�
�b�  �� 
 � � 
  � � �� 

 � � 

� � 
�
�c� d� � �d � ���� 
 � � 
�� � �� �� 

 � � 

  ���
�d� We can decompose the de Rham cohomology in terms of the Dolbeault
cohomology�

Hn�M �C� �
M

p�q�n

Hp�q�M �C��

�e� There are isomorphisms Hp�q � Hq�p � Hn�p�n�q � Hn�q�n�p �

Proof� We �rst prove �a�� We de�ne�

A �  � int�-�� int�-� � � i� 
�

If we can show that A is a 
th order operator� then A will be a functori�
ally de�ned endomorphism linear in the ��jets of the metric� This implies
A � 
 by Lemma ����� Thus we must check �L�A� � 
� We choose an
orthonormal basis fejg for T �M� � T ��M� so Jej � ej�n� � � j � n� By
Lemma ����� it su�ces to show that�

ext�ej � iej�n� int�-�� int�-� ext�ej � iej�n� � �i � int�ej � iej�n�

for � � j � n� Since gjk � �
� �jk� - is given by

- �
i

�

X
j

�ej � iej�n� � �ej � iej�n� �
X
j

ej � ej�n�

The commutation relations�

int�ek� ext�el� � ext�el� int�ek� � �k�l

imply that int�ek � ek�n� � � int�ek� int�ek�n� commutes with ext�ej �
iej�n� for k �� j so these terms disappear from the commutator� We must
show�

ext�ej � iej�n� int�ej � ej�n�� int�ej � ej�n� ext�ej � iej�n�

� �i � int�ej � iej�n��

This is an immediate consequence of the previous commutation relations
for int and ext together with the identity int�ej� int�ek��int�ek� int�ej� � 
�
This proves �a��
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From �a� we compute�

 �� 
 � � 
  � � i�� � int�-� �� � i�  � int�-� �� � 


and by taking complex conjugates �� 

 � � 

� � 
� This shows �b�� Thus

" � �d���� � d���d � f�� 
�� 
�g�f �� 

�� 

�g � f��� 
g��f ��� 

g�

since all the cross terms cancel� We apply �a� again to compute�

�  � int�-�� � int�-� � � i�� 


 � int�-�� � int�-� �� � i� 
�

which yields the identity�

i��� 
 � � 
�� � �  � int�-�� � int�-� � �  � int�-�� � int�-� ���

Since - is real� we take complex conjugate to conclude�

�i�  �� 

 � � 

  �� �  �� int�-��  � int�-�� � � int�-� � � int�-��  �

� �i��� 
 � � 
���

This shows � �� 

 � � 

  �� � ��� 
 � � 
�� so " � �� �� 

 � � 

  �� which proves
�c��

Hn�M �C� denotes the de Rham cohomology groups of M � The Hodge
decomposition theorem identi�es these groups with the null�space of �d����
Since N�d � �� � N� � � � 

�� this proves �d�� Finally� taking complex
conjugate and applying � induces the isomorphisms�

Hp�q � Hq�p � Hn�q�n�p � Hn�p�n�q �

In particular dimH��M �C� is even if M admits a Kaehler metric� This
gives another proof that S� 	 S�n�� does not admit a Kaehler metric for
n 
 ��
The duality operations of �e� can be extended to the Dolbeault com�

plex with coe�cients in a holomorphic bundle V � If V is holomorphic�
the transition functions are holomorphic and hence commute with  � � We
de�ne�

 ��C��%p�q � V �� �%p�q�� � V �

by de�ning  ��� � s� �  �� � s relative to any local holomorphic frame for
V � This complex is equivalent to the one de�ned in section �� and de�nes
cohomology classes�

Hp�q�V � � ker  �� im  � on C��%p�q � V ��
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It is immediate from the de�nition that�

Hp�q�V � � H��q�%p�� � V ��

We de�ne

index�V�  �� � index�V�Dolbeault� �
X

����q dimH��q�V �

to be the index of this elliptic complex�
There is a natural duality �called Serre duality� which is conjugate linear

 ��Hp�q�V � � Hn�p�n�q �V ��� where V � is the dual bundle� We put a
unitary �ber metric on V and de�ne�

T �s���s�� � s� � s�

so T �V � V � is conjugate linear� If �� %k � %m�k is the ordinary Hodge
operator� then it extends to de�ne �� %p�q � %n�q�n�p � The complex con�
jugate operator de�nes  �� %p�q � %n�p�n�q � We extend this to have coe��
cients in V by de�ning�

 ��� � s� �  �� � Ts

so  �� %p�q � V � %n�p�n�q � V � is conjugate linear� Then�

Lemma��
��� Let � 

V be the adjoint of  �V on C��%p���V � with respect
to a unitary metric on M and a Hermitian metric on V � Then
�a� � 

 � � � �V  ��
�b�  � induces a conjugate linear isomorphism between the groups Hp�q�V �
and Hn�p�n�q �V ���

Proof� It is important to note that this lemma� unlike the previous one�
does not depend upon having a Kaehler metric� We suppose �rst V is
holomorphically trivial and the metric on V is #at� Then %� V � %� �k

for some k and we may suppose k � � for the sake of simplicity� We noted

� � � � d� � � �d �

in section ���� This decomposes

� � � 
 � � 

 � � �� � �  � � ��

Since  �� %p�q � %n�p�n�q � we conclude � 
 � � �� � and � 

 � � � � �� This
completes the proof if V is trivial� More generally� we de�ne

A � � 

V �  � � ��
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This must be linear in the ��jets of the metric on V � We can always
normalize the choice of local holomorphic frame so the ��jets vanish at
a basepoint z� and thus A � 
 in general which proves �a�� We identify
Hp�q�V � with N� �V ��N�� 

V � using the Hodge decomposition theorem� Thus
 ��Hp�q�V �� Hn�p�n�q �V ��� Since  �� � ��� this completes the proof�

We de�ned x � �c��L� � %����CPn� for the standard metric on the
tautological line bundle over CPn� In section �� we showed that x was
harmonic and generates the cohomology ring of CPn� Since x de�nes a
Kaehler metric� called the Fubini�Study metric� Lemma ���� lets us de�
compose Hn�CPn�C� �

L
p�q�n H

p�q�CPn�� Since x
k � Hk�k this shows�

Lemma ��
��� Let CPn be given the Fubini�Study metric� Let x �
�c��L�� Then Hk�k�M� � C is generated by xk for � � k � n� Hp�q�M� �

 for p �� q� Thus in particular�

index� �� � arithmetic genus �
X

����k dimH��k � � for CPn�

Since the arithmetic genus is multiplicative with respect to products�

index� �� � � for CPn� 	 � � � 	CPnk �

We used this fact in the previous subsection to derive the normalizing
constants in the Riemann�Roch formula�
We can now present another proof of the Riemann�Roch theorem for

Kaehler manifolds which is based directly on the Dolbeault complex and
not on the SPINc complex� Let Z be a holomorphic coordinate system and
let

guv � G����zu� ���zv�

represent the components of the metric tensor� We introduce additional
variables�

guv��� � d�z d
�
z guv

for � � u� v � n� � � ���� � � � � �n�� and � � ���� � � � � �n��

These variables represent the formal derivatives of the metric�
We must also consider the Dolbeault complex with coe�cients in a holo�

morphic vector bundle V � We choose a local �ber metric H for V � If
s � �s�� � � � � sk� is a local holomorphic frame for V � we introduce variables�

hp�q � H�sp� sq�� hp�q��� � d�z d
�
zhpq for � � p� q � k � dimV �

If Z is a holomorphic coordinate system centered at z� and if s is a local
holomorphic frame� we normalize the choice so that�

guv�Z�G��z�� � �u�v and hpq�s�H��z�� � �p�q �
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The coordinate frame f���zug and the holomorphic frame fspg for V are
orthogonal at z�� Let R be the polynomial algebra in these variables� If
P � R we can evaluate P �Z�G� s�H��z�� once a holomorphic frame Z is
chosen and a holomorphic frame s is chosen� We say P is invariant if
P �Z�G� s�H��z�� � P �G�H��z�� is independent of the particular �Z� s�
chosen� let Rc

n�k denote the sub�algebra of all invariant polynomials� As
before� we de�ne�

ord�gu�v��� � � ord�spq���� � j�j� j�j�
We need only consider those variables of positive order as gu�v � �jv and
sp�q � �p�q at z�� If Rc

n���k denotes the subspace of invariant polynomials

homogenous of order � in the jets of the metrics �G�H�� then there is a
direct sum decomposition�

Rc
n�k �

M
Rc
n���k �

In the real case in studying the Euler form� we considered the restriction
map from manifolds of dimension m to manifolds of dimension m � �� In
the complex case� there is a natural restriction map

r�Rc
n���k �Rc

n�����k

which lowers the complex dimension by one �and the real dimension by
two�� Algebraically� r is de�ned as follows� let

degk�guv���� � �k�u � ��k�

degk�hpq���� � ��k�

degk�guv��� � � �k�v � ��k�

degk�hpq���� � ��k��

We de�ne�

r�guv���� �

�
guv��� if degn�guv���� � degn�guv��� � � 



 if degn�guv���� � degn�guv��� � 
 


r�hpq���� �

�
hpq��� if degn�hpq���� � degn�hpq���� � 



 if degn�hpq���� � degn�hpq���� 
 
�

This de�nes a map r�Rn �Rn�� which is an algebra morphism� we simply
set to zero those variables which do not belong to Rn�� � It is immediate
that r preserves both invariance and the order of a polynomial� Geometri�
cally� we are considering manifolds of the form Mn � Mn�� 	 T� where
T� is the #at two torus� just as in the real case we considered manifolds
Mm � Mm�� 	 S��

Let Rch
n�p�k be the space of p�forms generated by the Chern forms of

Tc�M� and by the Chern forms of V � We take the holomorphic connection
de�ned by the metrics G and H on Tc�M� and on V � If P � Rch

n�m�k then
�P is a scalar invariant� Since P vanishes on product metrics of the form
Mn�� 	 T� which are #at in one holomorphic direction� r��P � � 
� This
is the axiomatic characterization of the Chern forms which we shall need�
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Theorem ��
�� Let the complex dimension of M be n and let the �ber
dimension of V be k� Let P � Rc

n���k and suppose r�P � � 
� Then�

�a� If � � �n then P �G�H� � 
 for all Kaehler metrics G�
�b� If � � �n then there exists a unique Q � Rch

n�m�k so P �G�H� �

�Q�G�H� for all Kaehler metrics G�

As the proof of this theorem is somewhat technical� we shall postpone the
proof until section ��� This theorem is false if we don�t restrict to Kaehler
metrics� There is a suitable generalization to form valued invariants� We
can apply Theorem ���� to give a second proof of the Riemann�Roch the�
orem�

Theorem ��
���� Let V be a holomorphic bundle over M with �ber
metric H and let G be a Kaehler metric on M � Let  �V �C��%��q � V ��
C��%��q�� � V � denote the Dolbeault complex with coe�cients in V and
let a� �x�  �V � be the invariants of the heat equation� a� � Rc

n���k andZ
M

a� �x�  �V � dvol�x� �

�

 if � �� �n
index� �V � if � � �n�

Then
�a� a� �x�  �V � � 
 for � � �n�
�b� a�n�x�  �V � � �fTd�TcM� � ch�V �gm�
Proof� We note this implies the Riemann�Roch formula� By remark
����� we note this theorem is false in general if the metric is not assumed to
be Kaehler� The �rst assertions of the theorem �including the homogene�
ity� follow from the results of Chapter �� so it su�ces to prove �a� and �b��
The Dolbeault complex is multiplicative under products M � Mn�� 	 T��
If we take the product metric and assume V is the pull�back of a bundle
over Mn�� then the natural decomposition�

%��q � V � %��q�Mn���� V � %��q�� �Mn���� V

shows that r�a� � � 
� By Theorem ����� this shows a� � 
 for � � �n
proving �a��
In the limiting case � � �n� we conclude �a�n is a characteristic �n

form� We �rst suppose m � �� Any one dimensional complex manifold is
Kaehler� Then

index� �V � � a�
Z
M

c��Tc�M�� � a�
Z
M

c��V �

where a� and a� are universal constants to be determined� Lemma ���� im�
plies that dimH��� � dimH� � � � dimH� � dimH��� while dimH��� �
dimH��� � g where g is the genus of the manifold� Consequently�

��M� � �� �g � � index� ���
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We specialize to the case M � S� and V � � is the trivial bundle� Then
g � 
 and

� � index� �V � � a�
Z
M

c��Tc�M�� � �a�

so a� � �
�
� We now take the line bundle V � %��� so

index� �V � � g � � � �� � � � a�
Z
M

c��T
�
c � � �� �a�

so that a� � �� Thus the Riemann�Roch formula in dimension � becomes�

index� �V � �
�

�

Z
M

c��Tc�M�� �
Z
M

c��V ��

We now use the additive nature of the Dolbeault complex with respect
to V and the multiplicative nature with respect to products M� 	M� to
conclude that the characteristic m�form �am must have the form�

fT 
d�TcM� � ch�V �g

where we use the fact the normalizing constant for c��V � is � if m � ��
We now use Lemma �����a� together with the fact that index� �V � � � for
products of complex projective spaces to show Td


 � Td � This completes
the proof�



��� An Axiomatic Characterization

Of the Characteristic Forms for

Holomorphic Manifolds with Kaehler Metrics�

In subsection �� we gave a proof of the Riemann�Roch formula for
Kaehler manifolds based on Theorem ���� which gave an axiomatic char�
acterization of the Chern forms� This subsection will be devoted to giving
the proof of Theorem ����� The proof is somewhat long and technical so
we break it up into a number of steps to describe the various ideas which
are involved�
We introduce the notation�

gu�v��u� ���ujv� ���vk

for the jets of the metric onM � Indices �u� v� w� will refer to Tc�M� and will
run from � thru n � m

� � We use � u�  v�  w� for anti�holomorphic indices� The
symbol ��� will refer to indices which are not of interest in some particular
argument� We let A� denote a generic monomial� The Kaehler condition
is simply the identity�

guv�w � gwv�u and guv� w � gu w�v �

We introduce new variables�

g�u�� � � � � uj �  v�� � � � �  vk� � gu�v��u� ���ujv� ���vk �

If we di�erentiate the Kaehler identity� then we conclude g��u��v� is sym�
metric in �u � �u�� � � � � uj� and �v � �v�� � � � � vj�� Consequently� we may also
use the multi�index notation g���  �� to denote these variables� We de�ne�

ord�g���  ��� � j�j� j�j � �� degu g���
 �� � ��u�� degu g���

 �� � ��u��

We already noted in Lemma ���� that it was possible to normalize the
coordinates so guv�w�z�� � guv� w�z�� � 
� The next lemma will permit us
to normalize coordinates to arbitrarily high order modulo the action of the
unitary group�

Lemma ������ Let G be a Kaehler metric and let z� �M � Let � � � be
given� Then there exists a holomorphic coordinate system Z centered at
z� so that
�a� guv�Z�G��z�� � �uv �
�b� guv���Z�G��z�� � guv���Z�G��z�� � 
 for � � j�j � � � ��
�c� Z is unique modulo the action of the unitary group U�n� and modulo
coordinate transformations of order � � � in z�

Proof� We proceed by induction� It is clear U�n� preserves such coor�
dinate systems� The case � � � is just Lemma ���� and the unique�
ness is clear� We now consider W given which satis�es �a� and �b� for
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� � j�j � � � � and de�ne a new coordinate system Z by setting�

wu � zu �
X
j�j��

Cu��z
�

where the constants Cu�� remain to be determined� Since this is the identity
transformation up to order �� the � � � jets of the metric are unchanged
so conditions �a� and �b� are preserved for j�j � � � �� We compute�

�

�zu
�

�

�wu
�
X

v�j�j��
Cv����u�z

�u
�

�wv

where �u is the multi�index de�ned by the identity zuz
�u � z� �and which

is unde�ned if ��u� � 
�� This implies immediately that�

guv�Z�G� � guv�W�G� �
X
j�j�n

Cv����u�z
�u � terms in  z � O�z��� ��

The ���zu and ���wu agree to �rst order� Consequently�

guv��u �Z�G� � guv��u �W�G� � ��Cv�� �O�z�  z��

Therefore the symmetric derivatives are given by�

g���  v��Z�G��z�� � g���  v��W�G��z�� � ��Cv��

The identity g���  v��Z�G��z�� � 
 determines the Cv�� uniquely� We take
complex conjugate to conclude g�v�  ���Z�G��z�� � 
 as well�
This permits us to choose the coordinate system so all the purely holo�

morphic and anti�holomorphic derivatives vanish at a single point� We
restrict henceforth to variables g���  �� so that j�j � �� j�j � ��

We introduced the notation hpq��� for the jets of the metric H on the
auxilary coe�cient bundle V �

Lemma ����	� Let H be a �ber metric on a holomorphic bundle V � Then
given v � � there exists a holomorphic frame s near z� for V so that�
�a� hpq�s�H��z�� � �pq �
�b� hpq���s�H��z�� � hpq���s�H��z�� � 
 for � � j�j � ��
�c� The choice of s is unique modulo the action of the unitary group U�k�
�where k is the �ber dimension of V � and modulo transformations of order
� � ��

Proof� If � � 
� we make a linear change to assume �a�� We proceed by
induction assuming s
 chosen for � � �� We de�ne�

sp � s
p �
X

q� j�j��
Cq��s



qz

��
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We adopt the notational conventions that indices �p� q� run from � through
k and index a frame for V � We compute�

hpq�s�H� � hpq�s

� H� �

X
j�j��

Cq��z
�

� terms in  z� terms vanishing to order � � �

hpq���x�H��z�� � hpq���s

� H��z�� � ��Cq�� for j�j � �

and derivatives of lower order are not disturbed� This determines the
Cq�� uniquely so hpq���s�H��z�� � 
 and taking complex conjugate yields
hqp���s�H��z�� � 
 which completes the proof of the lemma�

Using these two normalizing lemmas� we restrict henceforth to polyno�
mials in the variables fg���  ��� hpq��� �� g where j�j � �� j�j � �� j��j � ��

j��j � �� We also restrict to unitary transformations of the coordinate
system and of the �ber of V �
If P is a polynomial in these variables and if A is a monomial� let c�A�P �

be the coe�cient of A in P � A is a monomial of P if c�A�P � �� 
� Lemma
����� exploited invariance under the group SO��� and was central to our
axiomatic characterization of real Pontrjagin forms� The natural groups
to study here are U���� SU��� and the coordinate permutations� If we set
���w� � a���z�� ���  w� �  a��� z� for a a � � and if we leave the other
indices unchanged� then we compute�

A�W� �� � adeg��A� adeg
��A�A�Z� ���
If A is a monomial of an invariant polynomial P � then deg��A� � deg��A�
follows from this identity and consequently degu�A� � degu�A� for all
� � u � n�
This is the only conclusion which follows from U��� invariance so we now

study the group SU���� We consider the coordinate transformation�

���w� � a���z� � b���z��

���  w� �  a��� z� � b��� z��

���w� � � b���z� �  a���z��

���  w� � �b��� z� � a��� z��

���wu � ���zu for u 
 ��

���  wu � ��� zu for u 
 ��

a a� b b � ��

We let j � deg��A� � deg��A� � deg��A� � deg��A� and expand

A�W� �� � aj ajA�Z� �� � aj�� ajbA��� � or  ��  ���Z� ��
� aj aj�� bA��� � or  ��  ���Z� ��

� other terms�
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The notation �A��� � or  ��  ��� indicates all the monomials �with mul�
tiplicity� of this polynomial constructed by either changing a single index
� � � or a single index  � �  �� This plays the same role as the polyno�
mial A��� of section ��� where we must now also consider holomorphic and
anti�holomorphic indices�

Let P be U��� invariant� Without loss of generality� we may assume
deg��A� � deg��A� � j is constant for all monomials A of P since this
condition is U��� invariant� �Of course� the use of the indices � and � is
for notational convenience only as similar statements will hold true for any
pairs of indices�� We expand�

P �W� �� �aj ajP �Z� �� � aj�� ajbP ��� � or  ��  ��

� aj aj�� bP ��� � or  ��  �� � O�b� b���

Since P is invariant� we conclude�

P ��� � or  ��  �� � P ��� � or  ��  �� � 
�

We can now study these relations� Let B be an arbitrary monomial and
expand�

B��� �� � c�A� � � � �� ckAk B� ��  �� � ��d�A
� � � � �� dkA


k�

where the c�s and d�s are positive integers with
P

c� � deg��B� and
P

d� �
deg��B�� Then it is immediate that the fAjg and the fA
jg denote disjoint

collections of monomials since deg��A�� � deg��B�� � while deg��A�


� �

deg��B�� We compute�

A� ��� �� � �c
�B � other terms A
� � ��  �� � d
�B � other terms

where again the c�s and d�s are positive integers �related to certain multi�
plicities�� Since P �� � � or  � �  �� is zero� if P is invariant� we conclude
an identity�

c�B�P ��� � or  ��  ��� �
X
�

�c
� c�A� � P � �
X
�

d
� c�A


� � P � � 
�

By varying the creating monomial B �and also interchanging the indices
� and ��� we can construct many linear equations among the coe�cients�
We note that in practice B will never be a monomial of P since deg��B� ��
deg��B�� We use this principle to prove the following generalization of
Lemmas ����� and ������
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Lemma ������ Let P be invariant under the action of U��� and let A be
a monomial of P �
�a� If A � g���  ��A
�� then by changing only 
 and � indices and  � and
 � indices we can construct a new monomial A� of P which has the form
A� � g����  ���A




� where ���� � ���� � ����� and where ����� � 
�

�b� If A � hpq���A


� then by changing only 
 and � indices and  � and

 � indices we can construct a new monomial A� of P which has the form
A� � hpq��� ��A




� where ���� � ���� � ����� and where ����� � 
�

Proof� We prove �a� as the proof of �b� is the same� Choose A of this
form so ���� is maximal� If ���� is zero� we are done� Suppose the contrary�
Let B � g����  ��A



� where �� � ����� � �� ���� � �� ���� � � � � ��n��� We

expand�

B��� �� � �����A� monomials divisible by g����  ��

B� ��  �� � monomials divisible by g����  ��� for some ���

Since A is a monomial of P � we use the principle described previously to
conclude there is some monomial of P divisible by g����  ��� for some ���
This contradicts the maximality of � and shows ���� � 
 completing the
proof�

We now begin the proof of Theorem ����� Let 
 �� P � Rc
n���k be a

scalar valued invariant homogeneous of order � with r�P � � 
� Let A be a
monomial of P � Decompose

A � g����  ��� � � �g��r�  �r�hp�q���r�� �r�� � � �hpsqs��r�s �r�s �

Let ��A� � r � s be the length of A� We show ��A� � n as follows�
Without changing �r� s� j�� j� j�� j� we can choose A in the same form so
that ���u� � 
 for u 
 �� We now �x the index � and apply Lemma ���
to the remaining indices to choose A so ���u� � 
 for � 
 �� We continue
in this fashion to construct such an A so that degu�A� � 
 for u 
 r � s�
Since degn�A� � degn�A� 
 
� we conclude therefore that r � s � n� We
estimate�

� � ord�P � �
X
��r
fj��j� j��j � �g�

X
r���r�s

fj��j� j�ujg

� �r � �s � �n � m

since ord�g��� ��� � � and ord�hpq���� � �� This proves � � m � ��
Consequently� if � � m we conclude P � 
 which proves the �rst assertion
of Theorem ���
We assume henceforth that we are in the limiting case � � m� In this

case� all the inequalities must have been equalities� This implies r � s � n
and

j��j� j��j � � for � � r and j��j� j��j � � for r � � � s� r�
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This holds true for every monomial of P since the construction of A� from
A involved the use of Lemma ��� and does not change any of the orders
involved� By Lemma ���� and ���� we assumed all the purely holomorphic
and purely anti�holomorphic derivatives vanished at z� and consequently�

j��j � j��j � � for � � r and j��j � j��j � � for r � � � s� r�

Consequently� P is a polynomial in the fg�i�i��  ��  ���hpq�i� g variables� it
only involves the mixed ��jets involved�

We wish to choose a monomial of P in normal form to begin counting
the number of possible such P � We begin this process with�

Lemma ������ Let P satisfy the hypothesis of Theorem ������b�� Then
there exists a monomial A of P which has the form�

A � g����  ��  �


�� � � �g�tt�  �t  �



t �hp�q��t����t�� � � �hpsqs�m��n

where t� s � n�

Proof� We let � denote indices which are otherwise unspeci�ed and let
A� be a generic monomial� We have degn�A� 
 
 for every monomial A
of P so degu�A� 
 
 for every index u as well� We apply Lemma ��� to
choose A of the form�

A � g����  ��  �


��A��

Suppose r 
 �� If A � g���� ��g��� � ��A�� then we could argue as before
using Lemma ��� that we could choose a monomial A of P so degk�A� � 

for k 
 � � ��A�� � r � s � � � n � � which would be false� Thus A �
g���� ��g�jk� ��A� where not both j and k are �� We may apply a coordinate
permutation to choose A in the form A � g���� ��g��j � ��A�� If j � �
we can apply Lemma ��� to choose A � g���� ��g���� ��A�� Otherwise
we suppose A � g���� ��g���� ��A�� We let B � g���� ��g���� ��A� and
compute�

B��� �� � A� terms divisible by g���� ��g���� ��
B� ��  �� � terms divisible by g���� ��g���� ��

so that we conclude in any event we can choose A � g���� ��g���� ��A�� We
continue this argument with the remaining indices to construct�

A � g���� ��g���� �� � � �g�tt� ��hp�q��u�v� � � �hpsqs�usvs �
We have degu�A� �� 
 for all u� Consequently� the indices ft��� � � � � t� sg
must appear among the indices fu�� � � � � usg� Since these two sets have
s elements� they must coincide� Thus by rearranging the indices we can
assume u� � � � t which completes the proof� We note degu�A� � � for
u � t and degu�A� � � for u 
 t�

This lemma does not control the anti�holomorphic indices� we further
normalize the choice of A in the following�



	�� ���� Characteristic Forms

Lemma ������ Let P satisfy the hypothesis of Theorem ������b�� Then
there exists a monomial A of P which has the form�

A � g����  ��  �


�� � � �g�tt�  �t  �



t �hp� q��t���t�� � � �hpsqs�nn

for
� � j�� j



� � t�

Proof� If A has this form� then degj�A� � � for j 
 t� Therefore
deg� �A� � � for j 
 t which implies � � j�� j



� � t automatically� We

say that  � touches itself in A if A is divisible by g���  �  � � for some �� We
say that j touches  � in A if A is divisible by hpq�j � for some �p� q�� Choose
A of the form given in Lemma ���� so the number of indices j 
 t which
touch  � in A is maximal� Among all such A� choose A so the number of
 � �  t which touch themselves in A is maximal� Suppose A does not sat�
isfy the conditions of the Lemma� Thus A must be divisible by hpq�uv for
u �� v and u 
 t� We suppose �rst v 
 t� Since degv�A� � degv�A� � ��
v does not touch  v in A� We let A � hpq�uvA� and B � hpq�uuA� then
degv�B� � 
� We compute�

B� u�  v� � A�A� and B�v � u� � A�

where A� is de�ned by interchanging  u and  v and where A� is de�ned by
replacing both v and  v by u and  u in A� Thus degv�A�� � 
 so A� is not
a monomial of A� Thus A� � hpq�uuA



� must be a monomial of P � One

more index �namely u� touches its holomorphic conjugate in A� than in A�
This contradicts the maximality of A and consequently A � hpq�uvA



� for

u 
 t� v � t� �This shows hp�q��u�v� does not divide A for any u� �� v�
and  v� 
  t�� We have degu�A� � � so the anti�holomorphic index  u must
appear somewhere in A� It cannot appear in a h variable and consequently
A has the form A � g���  u  w�hpq�uvA

� � We de�ne B � g���  w  w�hpq�uvA




�

and compute�

B�  w�  u� � A� terms divisible by g���  w  w�

B�u� w� � g���  w  w�hpq�wvA



� �

Since g���  w  w�hpq�wvA



� does not have the index u� it cannot be a monomial

of P � Thus terms divisible by g���  w  w� must appear in P � We construct
these terms by interchanging a  w and  u index in P so the maximality of
indices u� touching  u� for u� 
 t is unchanged� Since  w does not touch  w in
A� we are adding one additional index of this form which again contradicts
the maximality of A� This �nal contradiction completes the proof�

This constructs a monomial A of P which has the form

A � A�A� for

�
degu�A�� � degu�A�� � 
� u 
 t�
degu�A�� � degu�A�� � 
� u � t�
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A� involves only the derivatives of the metric g and A� involves only the
derivatives of h� We use this splitting in exactly the same way we used
a similar splitting in the proof of Theorem ����� to reduce the proof of
Theorem ���� to the following assertions�

Lemma ����
� Let P satisfy the hypothesis of Theorem ������b��
�a� If P is a polynomial in the fhpq�uvg variables� then P � �Q for Q a
Chern m form of V �
�b� If P is a polynomial in the fg�u�u��  v� v��g variables� then P � �Q for
Q a Chern m form of TcM �

Proof� �a�� If A is a monomial of P � then degu�A� � degu�A� � � for all
u so we can express

A � hp�q���u� � � �hpnqn�nun

where the fu�g are a permutation of the indices i through n� We let
A � h���u�h���u�A



� and B � h���u�h���u�A



�� Then�

B� u� �  u�� � A� A�

B�u� � u�� � A�

for A� � h���u�h���u�A


�

for degu� �A�� � 
�

Therefore A� is not a monomial of P � Thus A� is a monomial of P and
furthermore c�A�P � � c�A�� P � � 
� This implies when we interchange  u�
and  u� that we change the sign of the coe�cient involved� This implies
immediately we can express P is terms of expressions�

��-V
p�q� � � � � � -V

pnqn� �
X
�u��v

��hp� q��u�v� du� � d v� � � �

� hpnqn�unvn dun � dvn�
� n�

X
�

sign���hp�q������� � � �hpnqn�n��n� � � � �

where � is a permutation� This implies �P can be expressed as an invariant
polynomial in terms of curvature which implies it must be a Chern form
as previously computed�
The remainder of this section is devoted to the proof of �b��

Lemma ������ Let P satisfy the hypothesis of Lemma ������b�� Then we
can choose a monomial A of P which has the form�

A � g����  u� u�� � � �g�nn�  un un��

This gives a normal form for a monomial� Before proving Lemma �����
we use this lemma to complete the proof of Lemma �����b�� By making a
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coordinate permutation if necessary we can assume A has either the form
g����  � ��A
� or g����  � ��A
�� In the latter case� we continue inductively to
express A � g����  � ��g����   � � � � g�u � �� u � ��  u u�g�uu�  � ��A
� until the
cycle closes� If we permit u � � in this decomposition� we can also include
the �rst case� Since the indices � through u appear exactly twice in A
they do not appear in A
�� Thus we can continue to play the same game
to decompose A into cycles� Clearly A is determined by the length of
the cycles involved �up to coordinate permutations�� the number of such
classifying monomials is ��n�� the number of partitions of n� This shows
that the dimension of the space of polynomials P satisfying the hypothesis
of Lemma �����b� is � ��n�� Since there are exactly ��n� Chern forms
the dimension must be exactly ��n� and every such P must be a Chern m
form as claimed�
We give an indirect proof to complete the proof of Lemma ����� Choose

A of the form given by Lemma ���� so the number of anti�holomorphic
indices which touch themselves is maximal� If every anti�holomorphic index
touches itself� then A has the form of Lemma ���� and we are done� We
suppose the contrary� Since every index appears exactly twice� every anti�
holomorphic index which does not touch itself touches another index which
also does not touch itself� Every holomorphic index touches only itself� We
may choose the notation so A � g���  � ��A
�� Suppose �rst  � does not touch
 � in A
�� Then we can assume A has the form�

A � g���  � ��g���  � �g���  � k�A
�

where possibly k �  in this expression� The index � touches itself in A�
The generic case will be�

A � g���� ��g���  � ��g���  � �g���  � k�A
��

The other cases in which perhaps A � g����  � �� � � � or g����  � � � � � or
g����  � k� � � � are handled similarly� The holomorphic and anti�holomorphic
indices do not interact� In exactly which variable they appear does not
matter� This can also be expressed as a lemma in tensor algebras�
We suppose k �� � we will never let the � and  variables interact so the

case in which k �  is exactly analogous� Thus A has the form�

A � g���� ��g���  � ��g���  � �g���  � k�g���   � �A
�

where possibly j � k� Set B � ���� ��g���  � ��g���  � �g���  � k�g���   � �A
�
then�

B� ��  �� � �A�A



B��� �� � �A�
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for
A

 � g���� ��g���  � ��g���  � �g���  � k�g���   � �A
�
A� � g���� ��g���  � ��g���  � �g���  � k�g���   � �A
��

A

 is also a monomial of the form given by Lemma ����� Since one more
anti�holomorphic index touches itself in A

 then does in A� the maximality
of A shows A

 is not a monomial of P � Consequently A� is a monomial of
P � Set B� � g���� ��g���  � ��g���   �g���  � k�g���   � �A
� then�

B�� �  �� � �A� � A�

B���� � � A




for
A� � g���� ��g���  � ��g���   �g���  � k�g���  � � �A
�
A


 � g��� ��g���  � ��g���   �g���  � k�g���   � �A
��

However� deg��A



� � 
� Since r�P � � 
� A


 cannot be a monomial of P

so A� is a monomial of P � Finally we set

B� � g���� ��g���  � ��g���   �g���  � k�g���  � � �A
�
so

B���� �� � A�

B�� ��  �� � A
 � �A�

for
A
 � g���� ��g���  � ��g���   �g���  � k�g���  � � �A
�
A� � g���� ��g���  � ��g���   �g���  � k�g���  � � �A
��

This implies either A
 or A� is monomial of P � Both these have every holo�
morphic index touching itself� Furthermore� one more anti�holomorphic
index �namely  � touches itself� This contradicts the maximality of A�

In this argument it was very important that  � ��   as we let the index  �
interact with each of these indices separately� Thus the �nal case we must
consider is the case in which A has the form�

A � g���� ��g���� ��g���  � ��g���  � ��A��

So far we have not had to take into account multiplicities or signs in com�
puting A��� �� etc� we have been content to conclude certain coe�cients
are non�zero� In studying this case� we must be more careful in our analysis
as the signs involved are crucial� We clear the previous notation and de�ne�

A� � g���� ��g���� ��g���  � ��g���  � ��A�

A� � g���� ��g���� ��g���  � ��g���  � ��A�

A
 � g���� ��g���� ��g���  � ��g���  � ��A�

A� � g���� ��g���� ��g���  � ��g���  � ��A��
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We note that A
 is not a monomial of P by the maximality of A� A�

is not a monomial of P as deg��A�� � 
 and r�P � � 
� We let B �
g���� ��g���� ��g���  � ��g���  � ��A�� Then

B� ��  �� � �A� A
� B��� �� � �A�

so that A� must be a monomial of P since A is a monomial of P and A� is
not� We now pay more careful attention to the multiplicities and signs�

A� ��  �� � B � � � � and A���� �� � B � � � �

However  � �  � introduces a  b while � � � introduces a � b so using the
argument discussed earlier we conclude not only c�A�� P � �� 
 but that
c�A�P � � c�A�� P � � 
 so c�A�� P � � c�A�P �� A� behaves similarly so
the analogous argument using B� � g���� ��g���� ��g���  � ��g���  � �� shows
c�A�� P � � c�A�P �� We now study B� � g���� ��g���� ��g���  � ��g���  � ��
and compute�

B���� �� � A� B�� ��  �� � �A� � �A�

A� is not a monomial of P as noted above� We again pay careful attention
to the signs�

A�� ��  �� � B� and A�� ��  �� � B�

This implies c�A�� P �� c�A�� P � � 
� Since c�A�� P � � c�A�� P � � c�A�P �
this implies �c�A�P � � 
 so A was not a monomial of P � This �nal con�
tradiction completes the proof�

This proof was long and technical� However� it is not a theorem based
on unitary invariance alone as the restriction axiom plays an important
role in the development� We know of no proof of Theorem ���� which
is based only on H� Weyl�s theorem� in the real case� the corresponding
characterization of the Pontrjagin classes was based only on orthogonal
invariance and we gave a proof based on H� Weyl�s theorem in that case�
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In section �� we shall discuss the Atiyah�Singer index theorem in general
using the results of section ��� The index theorem gives a topological
formula for the index of an arbitrary elliptic operator� Before begining
the proof of that theorem� we must �rst review brie#y the Bott periodicity
theorem from the point of Cli�ord modules� We continue our consideration
of the bundles over Sn constructed in the second chapter� Let

GL�k�C� � fA � A is a k 	 k complex matrix with det�A� �� 
 g
GL
�k�C� � fA � GL�k�C� � det�A� it� �� 
 for all t � R g

U�k� � fA � GL�k�C� � A �A� � I g
S�k� � fA � GL�k�C� � A� � I and A � A� g
S��k� � fA � S�k� � Tr�A� � 
 g�

We note that S��k� is empty if k is odd� U�k� is compact and is a
deformation retract of GL�k�C�� S�k� is compact and is a deformation
retract of GL
�k�C�� S��k� is one of the components of S�k��
Let X be a �nite simplicial complex� The suspension 1X is de�ned by

identifying X	f�� g to a single point N and X	f��
� g to single point S in

the product X 	 ���
� �

�
�

�
� Let D��X� denote the northern and southern

�hemispheres� in the suspension� the intersection D��X� � D��X� � X�

�Reprinter�s note� A figure depicting the suspension of X belongs here��

We note both D��X� and D��X� are contractible� 1�X� is a �nite sim�
plicial complex� If Sn is the unit sphere in Rn�� � then 1�Sn� � Sn�� �
Finally� if W is a vector bundle over some base space Y � then we choose a
�ber metric on W and let S�W � be the unit sphere bundle� 1�W � is the
�berwise suspension of S�W � over Y � This can be identi�ed with S�W����
It is beyond the scope of this book to develop in detail the theory of

vector bundles so we shall simply state relevant facts as needed� We let
Vectk�X� denote the set of isomorphism classes of complex vector bundles
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over X of �ber dimension k� We let Vect�X� �
S
k Vectk�X� be the set of

isomorphism classes of complex vector bundles over X of all �ber dimen�
sions� We assume X is connected so that the dimension of a vector bundle
over X is constant�
There is a natural inclusion map Vectk�X� � Vectk���X� de�ned by

sending V �� V � � where � denotes the trivial line bundle over X�

Lemma ������ If �k � dimX then the map Vectk�X�� Vectk���X� is
bijective�

We let F �Vect�X�� be the free abelian group on these generators� We
shall let �V � denote the element of K�X� de�ned by V � Vect�X�� K�X� is
the quotient modulo the relation �V �W � � �V ���W � for V�W � Vect�X��
K�X� is an abelian group� The natural map dim�Vect�X� � Z� extends

to dim�K�X� � Z� eK�X� is the kernel of this map� We shall say that

an element of K�X� is a virtual bundle� eK�X� is the subgroup of virtual
bundles of virtual dimension zero�
It is possible to de�ne a kind of inverse in Vect�X��

Lemma ����	� Given V � Vect�X�� there existsW � Vect�X� so V�W �
�j is isomorphic to a trivial bundle of dimension j � dimV � dimW �

We combine these two lemmas to give a group structure to Vectk�X� for
�k � dimX� Given V�W � Vectk�X�� then V�W � Vect�k�X�� By Lemma
�	��� the map Vectk�X� � Vect�k�X� de�ned by sending U �� U � �k is
bijective� Thus there is a unique element we shall denote by V � W �
Vectk�X� so that �V � W � � �k � V � W � It is immediate that this is
an associative and commutative operation and that the trivial bundle �k

functions as the unit� We use Lemma �	�� to construct an inverse� Given
V � Vectk�X� there exists j and W � Vectj�X� so V �W � �j�k� We
assume without loss of generality that j � k� By Lemma �	��� we choose
W � Vectk�X� so that V �W��j�k � V �W � �j�k� Then the bijectivity
implies V �W � ��k so W is the inverse of V � This shows Vectk�X� is a
group under this operation�

There is a natural map Vectk�X� � eK�X� de�ned by sending V ��
�V �� ��k�� It is immediate that�

�V �W �� �k � �V �W � � ��k�� ���k� � ��V �W �� �k�� ���k�

� �V �W �� ���k�

� �V � � �W �� ���k� � �V �� ��k� � �W �� ��k�

so the map is a group homomorphism� eK�X� is generated by elements of
the form �V � � �W � for V�W � Vectj X for some j � If we choose W so

W � W � �v then �V � � �W � � �V � W� � ��v� so eK�X� is generated
by elements of the form �V � � ��v� for V � Vectv�X�� Again� by adding
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trivial factors� we may assume v � k so by Lemma �	�� V � V� � �j�k

and �V � � ��j� � �V�� � ��k� for V� � Vectk�X�� This implies the map

Vectk�X� � eK�X� is subjective� Finally� we note that that in fact K�X�
is generated by Vectk�X� subject to the relation �V � � �W � � �V �W � �

�V �W � � ��k� so that this map is injective and we may identify eK�X� �

Vectk�X� and K�X� � Z � eK�X� � Z � Vectk�X� for any k such that
�k � dimX�

Tensor product de�nes a ring structure on K�X�� We de�ne �V ���W � �
�V �W � for V�W � Vect�X�� Since �V��V��� �W � � �V��W �V� �W ��
this extends from F �Vect�X�� to de�ne a ring structure on K�X� in which

the trivial line bundle � functions as a multiplicative identity� eK�X� is an
ideal of K�X��
K�X� is a Z�module� It is convenient to change the coe�cient group and

de�ne�
K�X�C� � K�X��Z C

to permit complex coe�cients� K�X�C� is the free C�vector space gen�
erated by Vect�X� subject to the relations V � W � V � W � By using
complex coe�cients� we eliminate torsion which makes calculations much
simpler� The Chern character is a morphism�

ch� Vect�X�� Heven �X�C� �
M
q

H�q�X�C��

We de�ne ch using characteristic classes in the second section if X is a
smooth manifold� it is possible to extend this de�nition using topological
methods to more general topological settings� The identities�

ch�V �W � � ch�V � � ch�W � and ch�V �W � � ch�V � ch�W �

imply that we can extend�

ch�K�X�� Heven �X�C�

to be a ring homomorphism� We tensor this Z�linear map with C to get

ch�K�X�C�� Heven �X�C��

Lemma ����� �Chern isomorphism�� ch�K�X�C�� Heven �X�C� is
a ring isomorphism�

If eHeven �X�C� �
L

q�o H
�q�X�C� is the reduced even dimensional co�

homology� then ch� eK�X�C� � eHeven �X�C� is a ring isomorphism� For

this reason� eK�X� is often refered to as reduced K�theory� We emphasize
that in this isomorphism we are ignoring torsion and that torsion is crucial
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to understanding K�theory in general� Fortunately� the index is Z�valued
and we can ignore torsion in K�theory for an understanding of the index
theorem�
We now return to studying the relation between K�X� and K�1X�� We

shall let &X�Y ' denote the set of homotopy classes of maps from X to
Y � We shall always assume that X and Y are equipped with base points
and that all maps are basepoint preserving� We �x �k � dimX and let
f �X � S���k�� Since f�x� is self�adjoint� and f�x�

� � I� the eigenvalues of
f�x� are ��� Since Tr f�x� � 
� each eigenvalue appears with multiplicity
k� We let *��f� be the bundles over X which are sub�bundles of X 	 �k

so that the �ber of *��f� at x is just the �� eigenspace of f�x�� If we
de�ne ���f��x� � �

�
��� f�x�� then these are projections of constant rank

k with range *��f�� If f and f� are homotopic maps� then they determine
isomorphic vector bundles� Thus the assignment f �� *��f� � Vectk�X�
de�nes a map *�� &X�S���k�'� Vectk�X��

Lemma ������ The natural map &X�S���k�'� Vectk�X� is bijective for
�k � dimX�

Proof� Given V � Vectk�X� we choose W � Vectk�X� so V �W � ��k �
We choose �ber metrics on V and on W and make this sum orthogonal�
By applying the Gram�Schmidt process to the given global frame� we can
assume that there is an orthonormal global frame and consequently that
V �W � ��k is an orthogonal direct sum� We let ���x� be orthogonal
projection on the �ber Vx of ��k and f�x� � ����x� � I� Then it is
immediate that f �X � S���k� and ���f� � V � This proves the map is
subjective� The injectivity comes from the same sorts of considerations as
were used to prove Lemma �	�� and is therefore omitted�

If f �X � GL
�k�C�� we can extend the de�nition to let *��f��x� be
the span of the generalized eigenvectors of f corresponding to eigenval�
ues with positive)negative real part� Since there are no purely imaginary
eigenvalues� *��f� has constant rank and gives a vector bundle over X�

In a similar fashion� we can classify Vectk 1X � &X�U�k�'� Since U�k� is
a deformation retract of GL�k�C�� we identify &X�U�k�' � &X�GL�k�C�'�
If g�X � GL�k�C�� we use g as a clutching function to de�ne a bundle over
1X� Over D��X�� we take the bundles D��X�	Ck� D��X��D��X� �
X� On the overlap� we identify �x� z�� � �x� z
�� if z � g�x� � z
� If we let
s� and s� be the usual frames for Ck over D� then

P
z�i gijs

�
j �

P
z�i s

�
i

so that we identify the frames using the identity

s� � gs��

We denote this bundle by Vg� Homotopic maps de�ne isomorphic bundles
so we have a map &X�GL�k�C�' � Vectk 1X� Conversely� given a vector
bundle V over 1X we can always choose local trivializations for V over
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D��X� since these spaces are contractible� The transition function s� �
gs� gives a map g�X � GL�k�C�� It is convenient to assume X has
a base point x� and to choose s� � s� at x�� Thus g�x�� � I� This
shows the map &X�GL�k�C�' � Vectk 1X is surjective� If we had chosen
di�erent trivializations !s� � h�s� and !s� � h�s� then we would have
obtained a new clutching function !g � h�g�h���� � Since h� are de�ned
on contractible sets� they are null homotopic so !g is homotopic to g� This
proves�

Lemma ������ The map &X�GL�k�C�' � &X�U�k�'� Vectk�1X�� given
by associating to a map g the bundle de�ned by the clutching function g�
is bijective�

It is always somewhat confusing to try to work directly with this de�ni�
tion� It is always a temptation to confuse the roles of g and of its inverse
as well as the transposes involved� There is another de�nition which avoids
this di�culty and which will be very useful in computing speci�c examples�
If g�X � GL�k�C�� we shall let g�x�z denote matrix multiplication� We
shall regard Ck as consisting of column vectors and let g act as a matrix
from the left� This is� of course� the opposite convention from that used
previously�

Let � � &��
� �

�
� ' be the suspension parameter� We de�ne�

1� &X�GL�k�C�'� &1X�GL
��k�C�'

1� &X�GL
�k�C�'� &1X�GL�k�C�'

by

1g�x� �� �

�
�sin ��Ik �cos ��g��x�

�cos ��g�x� ��sin ��Ik

�
1f�x� �� � �cos ��f�x�� i�sin ��Ik�

We check that 1 has the desired ranges as follows� If g�X � GL�k�C��
then it is immediate that 1g is self�adjoint� We compute�

�1g�� �

�
�sin� ��Ik � �cos� ��g�g 



 �sin� ��Ik � �cos� ��gg�

�
�

This is non�singular since g is invertible� Therefore 1g is invertible� If

� � ���� then 1g �

�
I 



 �I

�
is independent of x� If g is unitary� 1g �

S���k�� If f � GL
�k�C�� then f has no purely imaginary eigenvalues so
1f is non�singular�



		� ���� The Chern Isomorphism

Lemma ����
� Let g�X � GL�k�C� and construct the bundle *��1g�
over 1X� Then this bundle is de�ned by the clutching function g�

Proof� We may replace g by a homotopic map without changing the
isomorphism class of the bundle *��1g�� Consequently� we may assume
without loss of generality that g�X � U�k� so g�g � gg� � Ik� Conse�
quently �1g�� � I�k and ���1g� �

�
� �I�k �1g�� If z � Ck� then�

���1g��x� ��

�
z




�
�

�

�

�
z � �sin ��z

�cos ��g�x�z

�
�

This projection from Ck to *��1g� is non�singular away from the south
pole S and can be used to give a trivialization of *��1g� on 1X � S �

From this description� it is clear that *��1g� is spanned by vectors of

the form
�

�

�
�� � �sin ���z

�cos ��g�x�z

�
away from the south pole� At the south pole�

*��1g� consists of all vectors of the form

�



w

�
� Consequently� projection

on the second factor ���S��

�
a

b

�
�
�



b

�
is non�singular away from the

north poleN and gives a trivialization of *��1g� on 1X�N � We restrict to
the equator X and compute the composite of these two maps to determine
the clutching function��

z




�
�� �

�

�
z

g�x�z

�
�� �

�

�



g�x�z

�
�

The function g�x��� is homotopic to g which completes the proof�

This is a very concrete description of the bundle de�ned by the clutching
function g� In the examples we shall be considering� it will come equipped
with a natural connection which will make computing characteristic classes
much easier�

We now compute the double suspension� Fix f �X � S���k� and g�X �
GL�k�C��

1�f�x� �� �

�

�
sin cosf�cos ��f� � i sin �g

cosf�cos ��f�x�� i sin �g � sin

�
1�g�x� �� �

�

�
cos sin � � i sin cos cos �g��x�
cos cos �g�x� � cos cos � � i sin

�
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We let U��� be the direct limit of the inclusions U�k�� U�k� �� � � � and
S���� be the direct limit of the inclusions S���k� � S���k � �� � � � � �
Then we have identi�ed�

eK�X� � &X� S����' and eK�1X� � &1X� S����' � &S�U���'

We can now state�

Theorem ����� �Bott periodicity�� The map

1�� eK�X� � &X� S����'� eK�1�X� � &1�X� S����'

induces a ring isomorphism� Similarly� the map

1�� eK�1X� � &X�U���'� eK�1�X� � &1�X�U���'

is a ring isomorphism�

We note that &X�U���' inherits a natural additive structure from the
group structure on U��� by letting g � g
 be the direct sum of these two
maps� This group structure is compatible with the additive structure oneK�1X� since the clutching function of the direct sum is the direct sum of
the clutching functions� Similarly� we can put a ring structure on &X�U���'

using tensor products to be compatible with the ring structure on eK�1X��

The Chern character identi�es eK�X�C� with eHeven �X�C�� We may
identify 1�X with a certain quotient of X 	 S�� Bott periodicity in this
context becomes the assertion K�X 	 S�� � K�X� �K�S�� which is the
Kunneth formula in cohomology�

We now consider the case of a sphere X � Sn� The unitary group U���
decomposes as U��� � U���	SU��� � S�	S
 topologically so ���U���� �

Z� ���U���� � 
 and �
�U���� � Z� This implies eK�S�� � eK�S
� � 


and eK�S�� � eK�S�� � Z� Using Bott periodicity� we know more generally
that�

Lemma ����� �Bott periodicity�� If n is odd� then

eK�Sn� � �n���U���� � 
�

If n is even� then eK�Sn� � �n���U���� � Z�

It is useful to construct explicit generators of these groups� Let x �
�x�� � � � � xn� � Sn� let y � �x� xn��� � Sn�� � and let z � �y� xn��� �
Sn�� � If f �Sn � GL
�k�C� and g�X � GL�k�C� we extend these to
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be homogeneous of degree � with values in the k 	 k matrices� Then we
compute�

1f�y� � f�x�� ixn��

1�f�z� �

�
xn�� f��x� � ixn��

f�x�� ixn�� �xn��

�

1g�y� �

�
xn�� g��x�
g�x� �xn��

�

1�g�z� �

�
xn�� � ixn�� g��x�

g�x� �xn�� � ixn��

�
�

If we suppose that f is self�adjoint� then we can express�

1�f�z� � xn��

�
� 



 ��

�
� Ik � xn��

�

 i

�i 


�
� Ik �

�

 �

� 


�
� f�x��

We can now construct generators for �n�� U��� and eK�Sn� using Clif�
ford algebras� Let g�x�� x�� � x� � ix� generate ���S

�� � Z then

1g�x�� x�� x�� � x�e� � x�e� � x�e�

for

e� �

�

 �

� 


�
� e� �

�

 i

�i 


�
� e� �

�
� 



 ��

�
�

The fejg satisfy the relations ejek�ekej � ��jk and e�e�e� � �iI�� *��1g�

is a line bundle over S� which generates eK�S��� We compute�

1�g�x�� x�� x�� x
� � x�e� � x�e� � x�e� � ix
I��

If we introduce z� � x� � ix� and z� � x� � ix
 then

1�g�z�� z�� �

�
 z� z�
 z� �z�

�
�

Consequently 1�g generates �
�U����� We suspend once to construct�

1
g�x�� x�� x�� x
� x��

� x�e� � e� � x�e� � e� � x�e� � e� � x
e� � I � x�e� � I�

The bundle *��1

g� is a ��plane bundle over S� which generates eK�S���

We express 1
g � x�e
�
� � � � �� x�e

�
� then these matrices satisfy the com�

mutation relations e�j e
�
j � e�ke

�
j � ��jk and e��e

�
�e

�
�e

�

e

�
� � �I�
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We proceed inductively to de�ne matrices e�kj for 
 � j � �k so that

eiej � ejei � ��ij and e�k� � � � e�k�k � ��i�kI� These are matrics of shape
�k 	 �k such that 1�k�� �g��x� �

P
xje

�k
j � In Lemma ����� we computed

that� Z
S�k

chk�*�1
�k��g� � ik��k Tr�e�k� � � � e�k�k� � ��

These bundles generate eK�S�k� and 1�k�g� generates ��k�� �U����� We
summarize these calculations as follows�

Lemma ����� Let fe�� � � � � e�kg be a collection of self�adjoint matrices of
shape �k	�k such that eiej�ejei � ��ij and such that e� � � � e�k � ��i�kI�
We de�ne e�x� � x�e�� � � ��x�ke�k for x � S�k � Let *��e� be the bundle of

�� eigenvectors of e over S�k � Then *��e� generates eK�S�k� � Z� 1e�y� �

e�x� � ix�k�� generates ��k�� �U���� � Z�
R
S�k chk�V �� eK�S�k� � Z is

an isomorphism and
R
S�k chk�*�e� � ��

Proof� We note that
R
S�k chk�V � is the index of the spin complex with

coe�cients in V since all the Pontrjagin forms of T �S�k� vanish except for
p�� Thus this integral� called the topological charge� is always an integer�
We have checked that the integral is � on a generator and hence the map

is surjective� Since eK�S�k� � Z� it must be bijective�

It was extremely convenient to have the bundle with clutching function
1�k��g so concretely given so that we could apply Lemma ����� to compute
the topological charge� This will also be important in the next chapter�



���� The Atiyah�Singer Index Theorem�

In this section� we shall discuss the Atiyah�Singer theorem for a general
elliptic complex by interpreting the index as a map in K�theory� Let M
be smooth� compact� and without boundary� For the moment we make
no assumptions regarding the parity of the dimension m� We do not as�
sume M is orientable� Let P �C��V�� � C��V�� be an elliptic complex
with leading symbol p�x� ���S�T �M�� HOM�V�� V��� We let 1�T �M� be
the �berwise suspension of the unit sphere bundle S�T �M�� We identify
1�T �M� � S�T �M � ��� We generalize the construction of section �	 to
de�ne 1p� 1�T �M�� END�V� � V�� by�

1p�x� �� �� �

�
�sin ��IV� �cos ��p��x� ��

�cos ��p�x� �� � �sin ��IV�

�
�

This is a self�adjoint invertible endomorphism� We let *��1p� be the sub�
bundle of V� �V� over 1�T �M� corresponding to the span of the eigenvec�
tors of 1p with positive)negative eigenvalues� If we have given connections
on V� and V�� we can project these connections to de�ne natural connec�
tions on *��1p�� The clutching function of *��1p� is p in a sense we
explain as follows�

We form the disk bundles D��M� over M corresponding to the north�
ern and southern hemispheres of the �ber spheres of 1�T �M�� Lemma
�	�� generalizes immediately to let us identify *��1p� with the bundle
V �
� � V �� over the disjoint union D��M� � D��M� attached using the

clutching function p over their common boundary S�T �M�� If dimV� � k�
then *��1p� � Vectk�1�T

�M��� Conversely� we suppose given a bundle
V � Vectk�1�T

�M��� Let N �M � 1�T �M� and S �M � 1�T �M� be
the natural sections mapping M to the northern and southern poles of the
�ber spheres� N�x� � �x� 
� �� and S�x� � �x� 
���� in S�T �M � ��� N
and S are the centers of the disk bundles D��M�� We let N��V � � V�
and S��V � � V� be the induced vector bundles over M � D��M� deforma�
tion retracts to M 	 fNg and M 	 fSg� Thus V restricted to D��M�
is cannonically isomorphic to the pull back of V� and V�� On the in�
tersection S�T �M� � D��M� � D��M� we have a clutching or glueing
function relating the two decompositions of V � This gives rise to a map
p�S�T �M�� HOM�V�� V�� which is non�singular� The same argument as
that given in the proof of Lemma �	�� shows that V is completely deter�
mined by the isomorphism class of V� and of V� together with the homotopy
class of the map p�S�T �M�� HOM�V�� V���

Given an order � we can recover the leading symbol p by extending p
from S�T �M� to T �M to be homogeneous of order �� We use this to
de�ne an elliptic operator P� �C

��V��� C��V�� with leading symbol p� �
If Q� is another operator with the same leading symbol� then we de�ne
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P� �t� � tP� � �� � t�Q� � This is a ��parameter family of such operators
with the same leading symbol� Consequently by Lemma ����� index�P� � �
index�Q� �� Similarly� if we replace p by a homotopic symbol� then the
index is unchanged� Finally� suppose we give two orders of homgeneity
�� 
 ��� We can choose a self�adjoint pseudo�di�erential operator R on
C��V�� with leading symbol j�j����� IV� � Then we can let P�� � RP�� so
index�P�� � � index�R��index�P�� �� Since R is self�adjoint� its index is zero
so index�P�� � � index�P�� �� This shows that the index only depends on
the homotopy class of the clutching map over S�T �M� and is independent
of the order of homogeneity and the extension and the particular operator
chosen� Consequently� we can regard index�Vect�1�T �M�� � Z so that
index�*��1p�� � index�P � if P is an elliptic operator� �We can always �roll
up� an elliptic complex to give a ��term elliptic complex in computing the
index so it su�ces to consider this case��
It is clear from our de�nition that 1�p� q� � 1�p��1�q� and therefore

*��1�p� q�� � *��1�p���*��1�q��� Since index�P �Q� � index�P � �
index�Q� we conclude�

index�V �W � � index�V � � index�W � for V�W � Vect�1�T �M���

This permits us to extend index�K�1�T �M�� � Z to be Z�linear� We
tensor with the complex numbers to extend index�K�1�T �M��C� � C�
so that�

Lemma ����� There is a natural map index�K�1�T �M��C�� C which
is linear so that index�P � � index�*��1p�� if P �C�V� � C�V� is an
elliptic complex over M with symbol p�

There is a natural projection map �� 1�T �M��M � This gives a natural
map ���K�M �C�� K�1�T �M��C�� If N denotes the north pole section�
then �N � �M so N��� � � and consequently �� is injective� This permits
us to regard K�M �C� as a subspace of K�1�T �M��C�� If V � ��V�� then
the clutching function de�ning V is just the identity map� Consequently�
the corresponding elliptic operator P can be taken to be a self�adjoint
operator on C��V � which has index zero� This proves�

Lemma ���	� If V � K�1�T �M��C� can be written as ��V� for V� �
K�M �C� then index�V � � 
� Thus index�K�1�T �M��C��K�M �C�� C�

These two lemmas show that all the information contained in an elliptic
complex from the point of view of computing its index is contained in the
corresponding description in K�theory� The Chern character gives an iso�
morphism of K�X�C� to the even dimensional cohomology� We will exploit
this isomorphism to give a formula for the index in terms of cohomology�
In addition to the additive structure on K�X�C�� there is also a ring

structure� This ring structure also has its analogue with respect to elliptic
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operators as we have discussed previously� The multiplicative nature of the
four classical elliptic complexes played a fundamental role in determining
the normalizing constants in the formula for their index�
We give 1�T �M� the simplectic orientation� If x � �x�� � � � � xm� is a

system of local coordinates on M � let � � ���� � � � � �m� be the �ber coordi�
nates on T �M � Let u be the additional �ber coordinate on T �M � �� We
orient T �M � � using the form�

��m�� � dx� � d�� � � � � � dxm � d�m � du�

Let �N be the outward normal on S�T �M��� and de�ne ��m on S�T �M���
by�

��m�� � �N � ��m � ��m � �N�

This gives the orientation of Stokes theorem�

Lemma �����
�a� Let P �C��V�� � C��V�� be an elliptic complex over M� and let
Q�C��W�� � C��W�� be an elliptic complex over M�� We assume P
and Q are partial di�erential operators of the same order and we let M �
M� 	M� and de�ne over M

R � �P � � � ��Q�� �P � � �� ��Q���C��V� �W� � V� �W��

� C��V� �W� � V� �W���

Then R is elliptic and index�R� � index�P � � index�Q��
�b� The four classical elliptic complexes discussed earlier can be decom�
posed in this fashion over product manifolds�
�c� Let p and q be arbitrary elliptic symbols over M� and M� and de�ne

r �

�
p� � ��� q�

�� q p� � �

�
over M � M� 	M��

Let �i � Heven �Mi�C� for i � �� �� then�Z
��T�M�

�� � �� � ch�*��1r��

�
Z
��T�M��

�� � ch�*��1p�� �
Z
��T�M��

�� � ch�*��1q���

�d� Let q be an elliptic symbol over M� and let p be a self�adjoint elliptic
symbol overM�� OverM � M�	M� de�ne the self�adjoint elliptic symbol
r by�

r �

�
�� p q� � �

q � � ��� p

�
�
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Let �� � %e�M�� and �� � %o�M�� be closed di�erential forms� Give
S�T �M�� 1�T �M�� and S�T �M�� the orientations induced from the sim�
plectic orientations� Then�Z

S�T�M�

�� � �� � ch�*�r�

�
Z
��T�M��

�� � ch�*��1q�� �
Z
S�T�M��

�� � ch�*��p���

Remark� We will use �d� to discuss the eta invariant in Chapter �� we
include this integral at this point since the proof is similar to that of �c��

Proof� We let �p� q� r� be the symbols of the operators involved� Then�

r �

�
p� � ��� q�

�� q p� � �

�
r� �

�
p� � � �� q�

��� q p� �

�

so that�

r�r �

�
p�p� � � �� q�q 



 pp� � � � �� qq�

�

rr� �

�
pp� � � � �� q�q 



 p�p� � � �� qq�

�
�

r�r and rr� are positive self�adjoint matrices if ���� ��� �� �
� 
�� This
veri�es the ellipticity� We note that if �P�Q� are pseudo�di�erential� R will
still be formally elliptic� but the symbol will not in general be smooth at
�� � 
 or �� � 
 and hence R will not be a pseudo�di�erential operator in
that case� We compute�

R�R �

�
P �P � � � ��Q�Q 



 PP � � � � ��QQ�

�

RR� �

�
PP � � � � ��Q�Q 



 P �P � � � ��QQ�

�
N�R�R� � N�P �P ��N�Q�Q� � N�PP ��� N�QQ��

N�RR�� � N�PP ���N�Q�Q� � N�P �P �� N�QQ��

index�R� � fdimN�P �P �� dimN�PP ��g
	 fdimN�Q�Q�� dimN�QQ��g

� index�P � index�Q�

which completes the proof of �a��
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We verify �b� on the symbol level� First consider the de Rham complex
and decompose�

%�T �M�� � %e
� � %o

�� %�T �M�� � %e
� � %o

��

%�T �M� � �%e
� � %e

� � %o
� � %o

�� � �%o
� � %e

� � %e
� � %o

���

Under this decomposition�

�L��d� ��M ����� ��� �

�
c���� � � ��� c����

�� c���� c���� � �

�
�

c��� denotes Cli�ord multiplication� This veri�es the de Rham complex
decomposes properly�
The signature complex is more complicated� We decompose

%��T �M�� � %��e� � %��o�

to decompose the signature complex into two complexes�

�d� ���C��%��e
� �� C��%��o� �

�d� ���C��%��o
� �� C��%��e� ��

Under this decomposition� the signature complex of M decomposes into
four complexes� If� for example� we consider the complex�

�d� ���C��%��e
� � %��e

� � %��o� � %��o� ��
C��%��o� � %��e

� � %��e
� � %��o� �

then the same argument as that given for the de Rham complex applies to
show the symbol is� �

c���� � � ��� c����

�� c���� c���� � �

�
�

If we consider the complex�

�d� ���C��%��o
� � %�e

� � %��e� � %��o� �

� C��%��e� � %��e
� � %��o

� � %��o� �

then we conclude the symbol is�
c���� � � �� c����

��� ���� c���� � �

�



The Atiyah�Singer Theorem 		

which isn�t right� We can adjust the sign problem for �� either by changing
one of the identi�cations with %��M� or by changing the sign of Q �which
won�t a�ect the index�� The remaining two cases are similar� The spin and
Dolbeault complexes are also similar� If we take coe�cients in an auxilary
bundle V � the symbols involved are unchanged and the same arguments
hold� This proves �b��
The proof of �c� is more complicated� We assume without loss of gener�

ality that p and q are homogeneous of degree �� Let ���� ��� u� parametrize
the �bers of T �M � �� At �� � ���

p
�� 
� � � � � 
�� �� � ���

p
�� 
� � � � � 
��

u � 
 the orientation is given by�

� dx�� � d��� � dx�� � d��� � � � �
� dx�m�

� d��m�
� dx�� � dx�� � d��� � � � � � dx�m�

� d��m�
� du�

We have omitted d��� �and changed the sign� since it points outward at this
point of the sphere to get the orientation on 1�T �M��
In matrix form we have on �V��W����V��W����V��W����V��W��

that�

1r �

�BBBBBBB�
u

�
� 



 �

� �
p� � � �� q�

��� q p� �

�

�
p� � ��� q�

�� q p� � �

�
�u
�
� 



 �

�

�CCCCCCCA �

This is not a very convenient form to work with� We de�ne

�� �

�
� 



 ��

�
and � �

�

 p�

p 


�
on V� � V� � V

�� �

�
� 



 ��

�
and � �

�

 q�

q 


�
on W� �W� � W

and compute that 1r � u�� � �� � �� IW � �� � �� We replace p and q
by homotopic symbols so that�

p�p � j��j�IV� � pp� � j��j�IV� � q�q � j��j�IW�
� qq� � j��j�IW�

�

Since f�� � ��� �� IW � �� � �g all anti�commute and are self�adjoint�

�1r�� � �u� � j��j� � j��j��I on V �W�

We parametrize 1�T �M� by S�T �M��	
�

� ��
�	 1�T �M�� in the form��

�� cos �� �� sin �� u sin �
�
�
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We compute the orientation by studying � � �
�
� �� � ��� 
� � � � � 
�� �� �

��� 
� � � � � 
�� u � 
� Since d��� � � sin � d�� the orientation is given by�

dx�� � d� � dx�� � d��� � � � �
� dx�m�

� d��m�
� dx�� � dx�� � d��� � � � � � dx�m�

� d��m�
� du�

If we identify S�T �M��	
�

� ��
�
with D��T

�M�� then this orientation is�

���m�
� ���m�

so the orientations are compatible�
In this parametrization� we compute 1r���� �� ��� u� � �sin ����� �u���

������ � �cos ������� � IW � Since 1q � u�� � ����� satis�es �1q�� �
j��j� � u�� on W � we may decompose W � *��1q�� *��1q�� Then�

1r � f�sin ���� � �cos �������g � I � 1p���� ��� I on V �*��1q�

1r � fsin������ � �cos �������g � I � 1p�������� I on V �*��1q��

Consequently�

*��1r� �


*��1p���

�� ��� *��1q�
�� 
*��1p���

������*��1q�
�

over �D�M��	 1�T �M���

If we replace �� by � in the second factor� we may replace *��1p���
������

*��1q� by *��1p���
�� ��� *��1q�� Since we have changed the orienta�

tion� we must change the sign� Therefore�Z
��T�M�

�� � �� � ch�*��1r��

�
Z
D�M�

�� � ch�*��1p�� �
Z
��T�M��

�� � ch�*��1q��

�
Z
D�M�

�� � ch�*��1p�� �
Z
��T�M��

�� � ch�*��1q���

ch�*��1q�� � ch�*��1q�� � ch�V�� does not involve the �ber coordinates
of 1�T �M�� and thus

Z
��T�M��

�� � ch�V�� � 
�

We may therefore replace �ch�*��1q�� by ch�*��1q�� in evaluating the
integral over D��M��	 1�T �M�� to complete the proof of �c��
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We prove �d� in a similar fashion� We suppose without loss of generality
that p and q are homogeneous of degree �� We parameterize S�T �M� �
S�T �M��	 &
� �

�
'	 S�T �M�� in the form ��� cos �� �� sin ��� Then

r �

�
sin � 



 � sin �

�
� p���� �

�

 �cos ��q�����

�cos ��q���� 


�
�

Again we decompose V� � *��p��*��p� so that

1r �
�
�sin ���� � �cos ��������

�
on V �*��p�

1r �
�
sin������ � �cos ��������

�
on V �*��p�

where

�� �

�
� 



 ��

�
�� �

�

 q�

q 


�
�

The remainder of the argument is exactly as before �with the appropriate
change in notation from �c�� and is therefore omitted�

We now check a speci�c example to verify some normalizing constants�

Lemma ����� Let M � S� be the unit circle� De�ne P �C��M� �
C��M� by�

P �ein�� �

�
nei�n���� for n � 

nein� for n � 


then P is an elliptic pseudo�di�erential operator with index�P � � �� Fur�
thermore� Z

��T�S��

ch�*��1p�� � ���

Proof� Let P� � �i���� and let P� � f�������g���� P� is a di�erential
operator while P� is a pseudo�di�erential operator by the results of section
���
� It is immediate that�

�L�P�� � �� P��e
in�� � nein�

�L�P�� � j�j� P��e
in�� � jnjein� �

We de�ne�

Q� �
�

�
e�i��P� � P��

�LQ� �

�
�e�i� � � 


 � � 


Q��e
in�� �

�
nei�n���� n � 


 n � 
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and

Q� �
�

�
�P� � P��

�LQ� �

�

 � � 

� � � 


Q��e
in�� �

n

 n � 

nein� n � 
�

Consequently� P � Q� �Q� is a pseudo�di�erential operator and

�LP � p �

�
�e�i� � 
 

� � � 
�

It is clear P is surjective so N�P �� � 
� Since N�P � is the space of constant
functions� N�P � is one dimensional so index�P � � �� We compute�

1p��� �� t� �

�!!!!�!!!!�

�
t �e�i�

�e�i� �t

�
if � � 
�

t �

� �t

�
if � � 
�

Since 1p does not depend on � for � � 
� we may restrict to the region
� � 
 in computing the integral� �We must smooth out the symbol to be
smooth where � � 
 but suppress these details to avoid undue technical
complications��
It is convenient to introduce the parameters�

u � t� v � � cos �� w � � sin � for u� � v� � w� � �

then this parametrizes the region of 1�T �S�� where � � 
 in a ��� fashion
except where � � 
� Since du � dv � dw � �� d� � d� � dt� S� inherits the
reversed orientation from its natural one� Let

e� �

�
� 



 ��

�
� e� �

�

 �

� 


�
� e� �

�

 i

�i 


�

so 1p�u� v� w� � ue� � ve� � we�� Then by Lemma ����� we have

�
Z
S�

ch�*��1p�� � ���� �
�
i

�

�
� Tr�e�e�e�� � ��

which completes the proof�

We can now state the Atiyah�Singer index theorem�
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Theorem ���� �The index theorem�� Let P �C��V�� � C��V��
be an elliptic pseudo�di�erential operator� Let Tdr�M� � Td�TM�C� be
the Todd class of the complexi�cation of the real tangent bundle� Then�

index�P � � ����dim M
Z
��T�M�

Tdr�M� � ch�*��1p���

We remark that the additional factor of ����dimM could have been avoided
if we changed the orientation of 1�T �M��

We begin the proof by reducing to the case dimM � m even and M
orientable� Suppose �rst that m is odd� We take Q�C��S�� � C��S��
to be the operator de�ned in Lemma ���� with index ��� We then form
the operator R with index�R� � index�P � index�Q� � index�P � de�ned
in Lemma ���� Although R is not a pseudo�di�erential operator� it can
be uniformly approximated by pseudo�di�erential operators in the natural
Fredholm topology �once the order of Q is adjusted suitably�� �This process
does not work when discussing the twisted eta invariant and will involve
us in additional technical complications in the next chapter�� Therefore�

����m��
Z
��T��M�S���

Tdr�M 	 S�� � ch�*��1r��

� ����m
Z
��T�M�

Tdr�M� � ch�*��1p�� � ����
Z
��T�S��

ch�*��1q��

� ����m
Z
��T�M�

Tdr�M� � ch�*��1p���

To show the last integral gives index�P � it su�ces to show the top integral
gives index�R� and therefore reduces the proof of Theorem ��� to the case
dimM � m even�

If M is not orientable� we let M 
 be the orientable double cover of M �
It is clear the formula on the right hand side of the equation multiplies
by two� More careful attention to the methods of the heat equation for
pseudo�di�erential operators gives a local formula for the index even in
this case as the left hand side is also multiplied by two under this double
cover�
This reduces the proof of Theorem ��� to the case dimM � m even

and M orientable� We �x an orientation on M henceforth�

Lemma ���
� Let P �C��%��� C��%�� be the operator of the signa�
ture complex� Let � � chm���*��1p�� � Hm�1�T �M��C�� Then if �M
is the orientation class of M
�a� �M � � gives the orientation of 1�T �M��
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�b� If Sm is a �ber sphere of 1�T �M�� then
R
Sm

� � �m���

Proof� Let �x�� � � � � xm� be an oriented local coordinate system on M so
that the fdxjg are orthonormal at x� �M � If � � ��� � � � � �m� are the dual
�ber coordinates for T �M�� then�

p��� �
X
j

i�j�c�dxj�� �
X
j

i�j�ext�dxj�� int��j��

gives the symbol of �d� ��� c��� denotes Cli�ord multiplication as de�ned
previously� We let ej � ic�dxj�� these are self�adjoint matrices such that
ejek � ekej � ��jk� The orientation class is de�ned by�

e� � im��c�dx�� � � � c�dxm� � ��i�m��e� � � � em�

The bundles %� are de�ned as the �� eigenspaces of e�� Consequently�

1p��� t� � te� �
X

�jej �

Therefore by Lemma ����� when Sm is given its natural orientation�Z
Sm

chm�� *��1p� � im����m�� Tr�e�e� � � � em�

� im����m�� Tr�e�i
m��e��

� ����m����m�� Tr�I� � ����m����m���m

� ����m���m���

However� Sm is in fact given the orientation induced from the orientation
on 1�T �M� and onM � At the point �x� 
� � � � � 
� �� in T �M�R the natural
orientations are�

of X� dx� � � � � � dxm�
of 1�T �M�� dx� � d�� � � � � � dxm � d�m

� ����m��dx� � � � � � dxm � d�� � � � � � d�m
of Sm� ����m��d�� � � � � � d�m�

Thus with the induced orientation� the integral becomes �m�� and the
lemma is proved�

Consequently� � provides a cohomology extension and�

Lemma ����� Let �� 1�T �M� � M where M is orientable and even
dimensional� Then
�a� ���H��M �C�� H��1�T �M��C� is injective�
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�b� If � is as de�ned in Lemma ������ then we can express any � �
H��1�T �M��C� uniquely as � � ���� � ���� � � for �i � H��M �C��

Since �� is injective� we shall drop it henceforth and regard H��M �C�
as being a subspace of H��1�T �M��C��
The Chern character gives an isomorphismK�X�C� � He�X�C�� When

we interpret Lemma ���� in K�theory� we conclude that we can decom�
pose K�1�T �M��C� � K�M �C��K�M �C�� *��1p�� ch�V � generates
He�M �C� as V ranges overK�M �C�� ThereforeK�1�T �M��C��K�M �C�
is generated as an additive module by the twisted signature complex with
coe�cients in bundles overM � *��1pV � � V �*��1p� if pV is the symbol
of the signature complex with coe�cients in V �
In Lemma ����� we interpreted the index as a map in K�theory� Since

it is linear� it su�ces to compute on the generators given by the signature
complex with coe�cients in V � This proves�

Lemma ����� AssumeM is orientable and of even dimensionm� Let PV
be the operator of the signature complex with coe�cients in V � The bun�
dles f*��1p�V gV �Vect�M� generate K�1�T �M��C��K�M �C� additively�
It su�ces to prove Theorem ����� in general by checking it on the special
case of the operators PV �

We will integrate out the �ber coordinates to reduce the integral of The�
orem ���� from 1�T �M� to M � We proceed as follows� Let W be an
oriented real vector bundle of �ber dimension k � � over M equipped
with a Riemannian inner product� Let S�W � be the unit sphere bundle
of W � Let ��S�W ��M be the natural projection map� We de�ne a map
I �C��%�S�W ���� C��%�M�� which is a C��%�M�� module homomor�
phism and which commutes with integration$i�e�� if � � C��%�S�W ���
and � � C��%�M��� we require the map � �� I ��� to be linear so that
I ���� � �� � � � I ��� and R

S�W � � �
R
M
I ����

We construct I as follows� Choose a local orthonormal frame for W to
de�ne �ber coordinates u � �u�� � � � � uk� on W � This gives a local rep�
resentation of S�W � � V 	 Sk over the coordinate patch U on M � If
� � C��%�S�W ��� has support over V � we can decompose � �

P
� �� ���

for �� � C��%�U�� and �� � C��%�Sk��� We permit the �� to have
coe�cients which depend upon x � U� This expression is� of course� not
unique� Then I ��� is necessarily de�ned by�

I ����x� �
X

��
Z
Sk

�� �x��

It is clear this is independent of the particular way we have decomposed ��
If we can show I is independent of the frame chosen� then this will de�ne
I in general using a partition of unity argument�
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Let u
i � aij�x�uj be a change of �ber coordinates� Then we compute�

du
i � aij�x� duj � daij�x�uj �

Clearly if a is a constant matrix� we are just reparamatrizing Sk so the
integral is unchanged� We �x x� and suppose a�x�� � I� Then over x��

duI � dvI �
X

jIj�jJj
cI�J � dvJ where cI�J � %jIj�jJj �M��

To integrate and get an answer di�erent from 
 over Sk� we must have
jIj � k so these error terms integrate to zero and I is invariantly de�ned�
We specialize to the case W � T �M ��� The orientation of M induces a

natural orientation of T �M � � as a bundle in such a way as to agree with
the orientation of T �M�� as a topological space� Let � � ch�*��1p��� so
I ��� � C��%�M��� If we reverse the orientation ofM � then we interchange
the roles of %� and of %�� This has the e�ect of replacing the parameter
u by �u which is equivalent to reversing the orientation of T �M � � as a
topological space� Since both orientations have been reversed� the orien�
tation of the �ber is unchanged so I ��� is invariantly de�ned independent
of any local orientation of M � It is clear from the de�nition that I ��� is a
polynomial in the jets of the metric and is invariant under changes of the
metric by a constant factor� Therefore Theorems ����� and Lemma ����
imply I ��� is a real characteristic form� By Lemma ����� we can expand
I ��� � �m�� � � � � �

We solve the equation�

fI �ch�*��1p��� � Todd�m�gm��s � ��m��s���Ls
recursively to de�ne a real characteristic class we shall call Todd�m� for
the moment� It is clear Todd�m� � � � � � � � In this equation� Ls is the
Hirzebruch genus�

Lemma ���� Let Todd�m� be the real characteristic class de�ned above�
Then if P is any elliptic pseudo�di�erential operator�

index�P � �
Z
��T�M�

Todd�m� � ch�*��1p���

Proof� By Lemma ���	 it su�ces to prove this identity if P is the oper�
ator of the twisted signature complex� By Theorem �����

index�P signature
V � �

Z
M

X
�t��s�m

cht�V ��t � Ls

�
Z
M

ch�V � � I �ch�*��1p��� � Todd�m�

�
Z
��T�M�

ch�V � � ch�*��1p�� � Todd�m�

�
Z
��T�M�

Todd�m� � ch�*��1pV ���



The Atiyah�Singer Theorem 	��

It is clear Todd�m� is uniquely determined by Lemma ����� Both the
index of an elliptic operator and the formula of Lemma ���� are multi�
plicative with respect to products by Lemma ��� so Todd�m� is a multi�
plicative characteristic form� We may therefore drop the dependence upon
the dimension m and simply refer to Todd � We complete the proof of the
Atiyah�Singer index theorem by identifying this characteristic form with
the real Todd polynomial of T �M��
We work with the Dolbeault complex instead of with the signature com�

plex since the representations involved are simpler� Let m be even� then
����m � �� Let M be a holomorphic manifold with the natural orienta�
tion� We orient the �bers of T �M using the natural orientation which arises
from the complex structure on the �bers� If � are the �ber coordinates�
this gives the orientation�

dx� � dy� � � � � � dxn � dyn � d�� � � � � � d�m where m � �n�

This gives the total space T �M an orientation which is ����n times the
simplectic orientation� Let Sm denote a �ber sphere of 1�T �M� with this
orientation and let q be the symbol of the Dolbeault complex� Then�

index� �� �
Z
��T�M�

Todd � ch�*�1q� � ����n
Z
M

Todd �I �ch�*�1q���

We de�ne the complex characteristic form

S � ����m��I �ch�*��1q���

then the Riemann�Roch formula implies that�

S � Todd�m� � Todd�TcM��

It is convenient to extend the de�nition of the characteristic form S to
arbitrary complex vector bundles V � Let W � %��V � and let q�v��V �
END�W � be de�ned by Lemma �����a� to be the symbol of  � � � 

 if
V � Tc�M�� We let ext�V � HOM�W�W � be exterior multiplication�
This is complex linear and we let int be the dual of ext� int��v� �  � int�v�
for � � C� ext is invariantly de�ned while int requires the choice of a �ber
matric� We let q � ext�v�� int�v� �where we have deleted the factor of i��
which appears in Lemma ���� for the sake of simplicity��
We regard q as a section to the bundle HOM�V�HOM�W�W ��� Fix a

Riemannian connection on V and covariantly di�erentiate q to compute
rq � C��T �M�HOM�V�HOM�W�W ���� Since the connection is Rieman�
nian� rq � 
� this is not true in general for non�Riemannian connections�

If V is trivial with #at connection� the bundles *��1q� have curvature
��d��d�� as computed in Lemma ������ If V is not #at� the curvature of
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V enters into this expression� The connection and �ber metric on V de�ne
a natural metric on T �V � We use the splitting de�ned by the connection
to decompose T �V into horizontal and vertical components� These compo�
nents are orthogonal with respect to the natural metric on V � Over V � q
becomes a section to the bundle HOM�V� V �� We let rV denote covariant
di�erentiation over V � then rV q has only vertical components in T �V and
has no horizontal components�
The calculation performed in Lemma ����� shows that in this more gen�

eral setting that the curvatures of r� are given by�

-� � ���rV �� �rV �� � ��-W ��

If we choose a frame for V and W which is covariant constant at a point
x�� then rV �� � d�� has only vertical components while ��-W has only
horizontal components� If -V is the curvature of V � then -W � %�-V ��

Instead of computing S on the form level� we work with the corresponding
invariant polynomial�

Lemma ������ Let A be an n 	 n complex skew�adjoint matrix� Let
B � %�A� acting on %�Cn� � C�n � De�ne�

S �A� �
X
�

����n
�

i

��

��
�

��

Z
S�n

Trf���d��d�� �B��g�

If xj � i�j��� are the normalized eigenvectors of A� then

S �A� �
Y
j

exj � �

xj
�

Proof� If V � V� � V� and if A � A� � A�� then the Dolbeault com�
plex decomposes as a tensor product by Lemma ���� The calculations of
Lemma ��� using the decomposition of the bundles *� shows S �A� is a
multiplicative characteristic class� To compute the generating function� it
su�ces to consider the case n � ��

If n � ��A � � so thatB �

�

 



 �

�
� if we decomposeW � %����%��� �

�� V � If x� iy give the usual coordinates on V � C� then�

q�x� y� � x

�

 �

� 


�
� y

�

 �i
i 


�
by Lemma ���� which gives the symbol of the Dolbeault complex� There�
fore�

q�x� y� u� � x

�

 �

� 


�
� y

�

 �i
i 


�
� u

�
� 



 ��

�
� xe� � ye� � ue��
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We compute�

e�e�e� � i

�
� 



 �

�
and �� d�� d�� �

i

�
�� dvol �

Since n � �� ����n � �� and�

S �A� �
X
j��

� i

�

�
i

��

�j
�

j �

Z
Tr���� dvol���B�j�

�
X
j��

� i

�

�
i

��

�j
�

�j � ���

Z
Tr���B�j�� dvol �

We calculate that�

��B �
�

�

�
� � u x� iy

x� iy �� u

��

 



 �

�
�

�

�

�

 �

 ��� u��

�

���B�j�� � ���j�j����� u�j��
�

 �

 �

�
where ��� indicates a term we are not interested in� We use this identity
and re�index the sum to express�

S �A� �
X
j��

�

��

�
i�

��

�j
�

j �
��j
Z
S�

��� u�j dvol �

We introduce the integrating factor of e�r
�

to compute�Z
R�

u�ke�r
�

dx dy du� �
Z
R

u�ke�u
�

du

�
Z �

�

r�k��e�r
�

dr �
Z
S�

u�k dvol

� ��k � ����
Z �

�

r�ke�r
�

dr �
Z
S�

u�k dvol

so that� Z
S�

u�k dvol � �����k� ���

The terms of odd order integrate to zero so�Z
S�

��� u�j dvol � ��
X�

j

�k

�
� �

�k � �
� ��

Z �

�

X�
j

�k

�
t�k dt

� ��
Z �

�

�� � t�j � ��� t�j dt

� ��
�� � t�j�� � ��� t�j��

j � �

�����
�

� �� � �j

j � �
�
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We substitute this to conclude�

S �A� �
X
j��

�
i�

��

�j
�

�j � ���
�

If we introduce x � i���� then

S �x� �
X
j��

xj

�j � ���
�

ex � �

x

which gives the generating function for S � This completes the proof of the
lemma�

We can now compute Todd � The generating function of Todd�Tc� is
x���� e�x� so that Todd � S�� � Todd�Tc� will have generating function�

x

�� e�x
� x

ex � �
�

x

�� e�x
� �x
�� ex

which is� of course� the generating function for the real Todd class� This
completes the proof� We have gone into some detail to illustrate that it is
not particularly di�cult to evaluate the integrals which arise in applying
the index theorem� If we had dealt with the signature complex instead of
the Dolbeault complex� the integrals to be evaluated would have been over
S� instead of S� but the computation would have been similar�



CHAPTER 	

GENERALIZED

INDEX THEOREMS

AND SPECIAL TOPICS

Introduction

This chapter is less detailed than the previous three as several lengthy
calculations are omitted in the interests of brevity� In sections ��� through
���� we sketch the interrelations between the Atiyah�Patodi�Singer twisted
index theorem� the Atiyah�Patodi�Singer index theorem for manifolds with
boundary� and the Lefschetz �xed point formulas�
In section ���� we discuss the absolute and relative boundary condi�

tions for the de Rham complex if the boundary is non�empty� We discuss
Poincar�e duality and the Hodge decomposition theorem in this context�
The spin� signature� and Dolbeault complexes do not admit such local
boundary conditions and the index theorem in this context looks quite dif�
ferent� In section ���� we prove the Gauss�Bonnet theorem for manifolds
with boundary and identify the invariants arising from the heat equation
with these integrands�

In section ��� we introduce the eta invariant as a measure of spectral
asymmetry and establish the regularity at s � 
� We discuss without proof
the Atiyah�Patodi�Singer index theorem for manifolds with boundary� The
eta invariant enters as a new non�local ingredient which was missing in the
Gauss�Bonnet theorem� In section ���� we review secondary characteristic
classes and sketch the proof of the Atiyah�Patodi�Singer twisted index the�
orem with coe�cients in a locally #at bundle� We discuss in some detail
explicit examples on a �dimensional lens space�

In section ���� we turn to the Lefschetz �xed point formulas� We treat
the case of isolated �xed points in complete detail in regard to the four
classical elliptic complexes� We also return to the �dimensional examples
discussed in section ��� to relate the Lefschetz �xed point formulas to the
twisted index theorem using results of Donnelly� We discuss in some detail
the Lefschetz �xed point formulas for the de Rham complex if the �xed
point set is higher dimensional� There are similar results for both the
spin and signature complexes which we have omitted for reasons of space�
In section ��� we use these formulas for the eta invariant to compute the
K�theory of spherical space forms�



	�	 Chapter �

In section ���� we turn to a completely new topic� In a lecture at M�I�T��
Singer posed the question�

Suppose P �G� is a scalar valued invariant of the metric so that P �M� �R
M
P �G� dvol is independent of the metric� Then is there a universal

constant c so P �M� � c��M��

The answer to this question �and to related questions involving form val�
ued invariants� is yes� This leads immediately to information regarding the
higher order terms in the expansion of the heat equation� In section ��	�
we use the functorial properties of the invariants to compute an�x� P � for
an arbitrary second order elliptic parital di�erential operator with lead�
ing symbol given by the metric tensor for n � 
� �� �� We list �without
proof� the corresponding formula if n � �� This leads to Patodi�s for�
mula for an�x�"

m
p � discussed in Theorem ��	��	� In section ��� we discuss

some results of Ikeda to give examples of spherical space forms which are
isospectral but not di�eomorphic� We use the eta invariant to show these
examples are not even equivariant cobordant�
The historical development of these ideas is quite complicated and in

particular the material on Lefschetz �xed point formulas is due to a number
of authors� We have included a brief historical survey at the beginning of
section ��� to discuss this material�
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In section ���� we derived a formula for the index of a strongly elliptic
boundary value problem� The de Rham complex admits suitable boundary
conditions leading to the relative and absolute cohomolgy groups� It turns
out that the other  classical elliptic complexes do not admit even a weaker
condition of ellipticity�
Let �d � ���C��%�M�� � C��%�M�� be the de Rham complex� In

the third chapter we assumed the dimension m of M to be even� but we
place no such restriction on the parity here� M is assumed to be compact
with smooth boundary dM � Near the boundary� we introduce coordinates
�y� r� where y � �y�� � � � � ym��� give local coordinates for dM and such that
M � fx � r�x� � 
 g� We further normalize the coordinates by assuming
the curves x�r� � �y�� r� are unit speed geodesics perpendicular to dM for
r � &
� ���
Near dM � we decompose any di�erential form � � %�M� as

� � �� � �� � dr where �i � %�dM�

are tangential di�erential forms� We use this decomposition to de�ne�

���� � �� � �� � dr�

� is self�adjoint and �� � �� We de�ne the absolute and relative boundary
conditions

Ba��� � �� and Br��� � ���

We let B denote either Ba or Br� then B� %�M�jdM � %�dM�� We note
that Ba can be identi�ed with orthogonal projection on the �� eigenspace
of � while Br can be identi�ed with orthogonal projection on the ��
eigenspace of �� There is a natural inclusion map i� dM �M and Br��� �
i���� is just the pull�back of �� The boundary condition Br does not de�
pend on the Riemannian metric chosen� while the boundary condition Ba

does depend on the metric�

Lemma ������ Let B � Ba or Br� then �d � �� B� is self�adjoint and
elliptic with respect to the cone C�R� �R��

Proof� We choose a local orthonormal frame fe�� � � � � em��g for T �M
near dM so that e� � dr� Let

pj � iej

act on %�M� by Cli�ord multiplication� The pj are self�adjoint and satisfy
the commutation relation�

pjpk � pkpj � ��jk�
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The symbol of �d� �� is given by�

p�x� �� � zp� �
m��X
j��

�jpj �

As in Lemma ������ we de�ne�

��y� � � �� � ip�

�m��X
j��

�jpj��
�
� �� � �� �� �
� 
� � T ��dM�	fC�R��R�g�

We de�ne the new matrices�

q� � p� and qj � ip�pj for � � j � m� �

so that�

��y� � � �� � �i�q� �
m��X
j��

�jqj �

The fqjg are self�adjoint and satisfy the commutation relations qjqk �
qkqj � ��jk� Consequently�

�y� � � ��� � �j� j� � ���I�

We have �j� j� � ��� � C�R� � 
 so we can choose �� � �j� j� � ��� with
Re��� 
 
� Then � is diagonalizable with eigenvalues �� and V���� is the
span of the eigenvectors of � corresponding to the eigenvalue ��� �We set
V � %�M� � %�T �M� to agree with the notation of section �����

We de�ned ���� � �� � dr� � �� � �� � dr� Since Cli�ord multiplication
by ej for � � j � m � � preserves %�dM�� the corresponding pj commute
with �� Since Cli�ord multiplication by dr interchanges the factors of
%�dM� � %�dM� � dr� � anti�commutes with p�� This implies � anti�
commutes with all the qj and consequently anti�commutes with � � Thus
the only common eigenvectors must belong to the eigenvalue 
� Since 
 is
not an eigenvalue�

V���� � V���� � f
g�
Since Ba and Br are just orthogonal projection on the �� eigenspaces of
�� N�Ba� and N�Br� are just the �� eigenspaces of �� Thus

B�V����� %�dM�

is injective� Since dim�V����� � dim%�dM� � �m�� � this must be an
isomorphism which proves the ellipticity� Since p� anti�commutes with ��

p��V����� V����
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so �d� �� is self�adjoint with respect to either Ba or Br by Lemma ������

By Lemma ������ there is a spectral resolution for the operator �d� ��B
in the form f�� � �g���� where �d � ��� � ��� and B� � 
� The
� � C��%�M�� and j�� j � �� We set " � �d���� � d���d and de�ne�

N��d� ��B� � f � C��%�M�� � B � �d� �� � 
 g
N��d� ��B�j � f � C��%j�M�� � B � �d� �� � 
 g

N�"B� � f � C��%�M�� � B � B�d� �� � " � 
 g
N�"B�j � f � C��%j�M�� � B � B�d� �� � " � 
 g�

Lemma ����	� Let B denote either the relative or the absolute boundary
conditions� Then
�a� N��d� ��B� � N�"B��
�b� N��d� ��B�j � N�"B�j �
�c� N��d� ��B� �

L
j N��d� ��B�j �

Proof� Let B � B�d � �� � " � 
� Since �d � ��B is self�adjoint
with respect to the boundary condition B� we can compute that " �  �
�d� �� � �d� �� � 
 so �d� �� � 
� This shows N�"B�  N��d� ��B�
and N�"B�j  N��d� ��B�j � The reverse inclusions are immediate which
proves �a� and �b�� It is also clear that N��d���B�j  N��d���B� for each
j � Conversely� let � � N��d� ��B�� We decompose � � �� � � � �� �m into
homogeneous pieces� Then "� �

P
j "�j � 
 implies "�j � 
 for each j �

Therefore we must check B�j � B�d� ���j � 
 since then �j � N�"B�j �
N��d� ��B�j which will complete the proof�
Since B preserves the grading� B�j � 
� Suppose B � Br is the relative

boundary conditions so B�������dr� � ��jdM � Then Bd � dB so B�d�
��� � dB��� � B���� � B���� � 
� Since B preserves the homogeneity�
this implies B��j � 
 for each j � We observed Bd� � dB� � 
 so Bd�j � 

for each j as well� This completes the proof in this case� If B � Ba is the
absolute boundary condition� use a similar argument based on the identity
B� � �B�

We illustrate this for m � � by considering M � &
� �'� We decompose
� � f� � f� dx to decompose C��%�M�� � C��M� � C��M� dx� It is
immediate that�

�d� ���f�� f�� � ��f 
�� f 
��
so �d���� � 
 implies � is constant� Ba corresponds to Dirichlet boundary
conditions on f� while Br corresponds to Dirichlet boundary conditions on
f�� Therefore�

H�
a �&
� �'�C� � C H�

a �&
� �'�C� � 


H�
r �&
� �'�C� � 
 H�

r �&
� �'�C� � C�
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A priori� the dimensions of the vector spaces Hj
a�M �C� and Hj

r �M �C�
depend on the metric� It is possible� however� to get a more invariant
de�nition which shows in fact they are independent of the metric� Lemma
����� shows these spaces are �nite dimensional�
Let d�C��%j� � C��%j��� be the de Rham complex� The relative

boundary conditions are independent of the metric and are d�invariant�
Let C�r �%p� � f � � C�%p � Br� � 
 g� There is a chain complex
d�C�r �%p� � C�r �%p��� � � � � � We de�ne Hp

r �M �C� � �ker d� imaged�p
on C�r �%p� to be the cohomology of this chain complex� The de Rham the�
orem for manifolds without boundary generalizes to identify these groups
with the relative simplicial cohomologyHp�M�dM �C�� If � � N��d���Br

�p
then d� � Br� � 
 so �j � Hp�M�dM �C�� The Hodge decomposition the�
orem discussed in section ��� for manifolds without boundary generalizes
to identify Hp

r �M �C� � N�"Br
�p� If we use absolute boundary conditions

and the operator � � then we can de�neHp
a �M �C� � N�"Ba

�p � Hp�M �C��
We summarize these results as follows�

Lemma ������ �Hodge decomposition theorem�� There are nat�
ural isomorphisms between the harmonic cohomology with absolute and
relative boundary conditions and the simplicial cohomology groups of M �

Hp
a �M �C� � N��d� ��Ba

�j � Hp�M �C�

and
Hp
r �M �C� � N��d� ��Br

�j � Hp�M�dM �C��

If M is oriented� we let � be the Hodge operator �� %p � %m�p � Since �
interchanges the decomposition %�T �dM��%�T �dM��dr� it anti�commutes
with � and therefore Ba��� � 
 if and only if Br���� � 
� Since d� � 

if and only if � � � � 
 and similarly �� � 
 if and only if d � � � 
� we
conclude�

Lemma ������ LetM be oriented and let � be the Hodge operator� Then
� induces a map� called Poincar�e duality�

��Hp�M �C� � Hp
a �M �C�

�� Hm�p
r �M�C� � Hm�p�M�dM �C��

We de�ne the Euler�Poincar�e characteristics by�

��M� �
X

����p dimHp�M �C�

��dM� �
X

����p dimHp�dM �C�

��M�dM� �
X

����p dimHp�M�dM �C��

The long exact sequence in cohomology�

� � �Hp�dM �C�� Hp�M �C�� Hp�M�dM �C�� Hp���dM �C� � � �
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shows that�
��M� � ��dM� � ��M�dM��

If m is even� then ��dM� � 
 as dM is an odd dimensional manifold
without boundary so ��M� � ��M�dM�� Ifm is odd and ifM is orientable�
then ��M� � ���M�dM� by Poincar�e duality� ��M� is the index of the
de Rham complex with absolute boundary conditions� ��M�dM� is the
index of the de Rham complex with relative boundary conditions� By
Lemma ����� there is a local formula for the Euler�Poincar�e characteristic�
Since ��M� � ���M�dM� if m is odd and M is orientable� by passing to
the double cover if necessary we see ��M� � ���M�dM� in general if m is
odd� This proves�

Lemma ������
�a� If m is even� ��M� � ��M�dM� and ��dM� � 
�
�b� If m is odd� ��M� � ���M�dM� � �

���dM��

In contrast to the situation of manifolds without boundary� if we pass
to the category of manifolds with boundary� there exist non�zero index
problems in all dimensions m�

In the next subsection� we will discuss the Gauss�Bonnet formula for
manifolds with boundary� We conclude this subsection with a brief dis�
cussion of the more general ellipticity conditions considered by Atiyah and
Bott� Let Q�C��V�� � C��V�� be an elliptic di�erential operator of or�
der d 
 
 on the interior$i�e�� if q�x� �� is the leading symbol of Q� then
q�x� ���V� � V� is an isomorphism for � �� 
� Let W� � V� � �d

��
dM

be
the bundle of Cauchy data� We assume dimW� is even and let W 


� be a
bundle over dM of dimension �

� �dimW��� Let B�C��W�� � C��W 

�� be

a tangential pseudo�di�erential operator� We consider the ODE

q�y� 
� � �Dr�f � 
� lim
r��

f�r� � 


and let V������� be the bundle of Cauchy data of solutions to this equation�
We say that �Q�B� is elliptic with respect to the cone f
g if for all � �� 
�
the map�

�g�B��y� ���V��������W 

�

is an isomorphism �i�e�� we can �nd a unique solution to the ODE such that
�g�B��y� ���f � f 
 is pre�assigned in W 


��� V���� is a sub�bundle of W�

and is the span of the generalized eigenvectors corresponding to eigenvalues
with positive real parts for a suitable endomorphism ���� just as in the �rst
order case� �g is the graded leading symbol as discussed in section ����
This is a much weaker condition than the one we have been considering

since the only complex value involved is � � 
� We study the pair

�Q�B��C��V��� C��V��� C��W 

���
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Under the assumption of elliptic with respect to the cone f
g� this operator
is Fredholm in a suitable sense with closed range� �nite dimensional null�
space and cokernel� We let index�Q�B� be the index of this problem� The
Atiyah�Bott theorem gives a formula for the index of this problem�
There exist elliptic complexes which do not admit boundary conditions

satisfying even this weaker notion of ellipticity� Let q�x� �� be a �rst order
symbol and expand

q�y� 
� �� z� � q�z �
m��X
j��

qj�j �

As in Lemma ����� we de�ne

� � iq���

m��X
j��

qj�j �

the ellipticity condition on the interior shows � has no purely imaginary
eigenvalues for � �� 
� We let V������� be the sub�bundle of V corresponding
to the span of the generalized eigenvectors of � corresponding to eigenvalues
with positive)negative real part� Then �Q�B� is elliptic if and only if

�g�B�����V��������W 

�

is an isomorphism for all � �� 
�
Let S�T ��dM�� � f � � T ��dM� � j� j� � � g be the unit sphere bundle

over dM � V���� de�ne sub�bundles of V over S�T ��dM��� The existence
of an elliptic boundary condition implies these sub�bundles are trivial over
the �ber spheres� We study the case in which q�q � j� j�I� In this case�
q��� � q�� � If we set pj � iq��� qj � then these are self�adjoint and satisfy
pjpk � pkpj � ��jk� If m is even� then the �ber spheres have dimension
m � � which will be even� The bundles V���� were discussed in Lemma
����� and in particular are non�trivial if

Tr�p�� � � � � pm��� �� 
�

For the spin� signature� and Dolbeault complexes� the symbol is given by
Cli�ord multiplication and p�� � � � � pm�� is multiplication by the orientation
form �modulo some normalizing factor of i�� Since the bundles involved
were de�ned by the action of the orientation form being ��� this proves�
Lemma ����
� Let Q�C��V�� � C��V�� denote either the signature�
the spin� or the Dolbeault complex� Then there does not exist a boundary
condition B so that �Q�B� is elliptic with respect to the cone f
g�
The di�culty comes� of course� in not permitting the target bundle W 


to depend upon the variable � � In the �rst order case� there is a natural
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pseudo�di�erential operator B��� with leading symbol given by projection
on V�������� This operator corresponds to global �as opposed to local�
boundary conditions and leads to a well posed boundry value problem for
the other three classical elliptic complexes� Because the boundary value
problem is non�local� there is an additional non�local term which arises in
the index theorem for these complexes� This is the eta invariant we will
discuss later�



	��� The Gauss�Bonnet Theorem

For Manifolds with Boundary�

Let B denote either the absolute or relative boundary conditions for
the operator �d � �� discussed previously� We let ��M�B be either ��M�
or ��M�dM� be the index of the de Rham complex with these bound�
ary conditions� Let "even

B and "odd
B be the Laplacian on even)odd forms

with the boundary conditions B� � B�d � ��� � 
� Let an�x� d � �� �
an�x�"

even � � an�x�"
odd� be the invariants of the heat equation de�ned

in the interior of M which were discussed in Lemma ������ On the bound�
ary dM � let an�y� d� �� B� � an�y�"

even
B �� an�y�"

odd
B � be the invariants

of the heat equation de�ned in Lemma ������ Then Lemma ���� implies�

��M�B � Trfexp��t"even
B �g � Tr expf��t"odd

B �g



�X
n��

t�n�m���
Z
M

an�x� d� �� dvol�x�

�
�X
n��

t�n�m�����
Z
dM

an�y� d� �� B� dvol�y��

The interior invariants an�x� d��� do not depend on the boundary condition
so we can apply Lemma ����	 to conclude�

an�x� d� �� � 
 if n � m or if m is odd

am�x� d� �� � Em is the Euler intergrand if m is even�

In this subsection we will prove the Gauss�Bonnet theorem for manifolds
with boundary and identify the boundary integrands an�y� d � �� B� for
n � m� ��

We let P be the algebra generated by the fgij��g variables for j�j �� 
�
We always normalize the coordinate system so gij�X�G��x�� � �ij � We
normalize the coordinate system x � �y� r� near the boundary as discussed
in section ���� this introduces some additional relations on the gij�� vari�
ables we shall discuss shortly� We let P �Y�G��y�� be the evaluation of
P � P on a metric G and relative to the given coordinate system Y on
dM � We say that P is invariant if P �Y�G��y�� � P �  Y �G��y�� for any two
such coordinate systems Y and  Y � We introduce the same notion of homo�
geneity as that discussed in the second chapter and let P b

m�n be the �nite
dimensional vector space of invariant polynomials which are homogeneous
of order n on a manifold M of dimension m� The �b� stands for boundary
and emphasizes that these are invariants only de�ned on dM � there is a
natural inclusion Pm�n � P b

m�n � by restricting the admissible coordinate
transformations we increase the space of invariants�
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Lemma ��	��� If B denotes either absolute or relative boundary condi�
tions� then an�y� d� �� B� de�nes an element of P b

m�n �

Proof� By Lemma ������ an�y� d � �� B� is given by a local formula in
the jets of the metric which is invariant� Either by examining the analytic
proof of Lemma ����� in a way similar to that used to prove Lemma �����
and ����� or by using dimensional analysis as was done in the proof of
Lemma ������ we can show that an must be homogeneous of order n and
polynomial in the jets of the metric�

Our normalizations impose some additional relations on the gij�� vari�
ables� By hypothesis� the curves �y�� r� are unit speed geodesics perpen�
dicular to dM at r � 
� This is equivalent to assuming�

rNN � 
 and gjm�y� 
� � �jm

where N � ���r is the inward unit normal� The computation of the
Christo�el symbols of section �� shows this is equivalent to assuming�

+mmj � �
� �gmj�m � gmj�m � gmm�j � � 
�

If we take j � m� this implies gmm�m � 
� Since gmm�y� 
� � �� we con�
clude gmm � � so gmm�� � 
� Thus +mmj � gmj�m � 
� As gmj �y� 
� �
�mj we conclude gmj � �mj and therefore gjm�� � 
� � � j � m�
We can further normalize the coordinate system Y on dM by assuming
gjk�l�Y�G��y�� � 
 for � � j� k� l � m � �� We eliminate all these vari�
ables from the algebra de�ning P � the remaining variables are algebraically
independent�

The only ��jets of the metric which are left are the fgjk�mg variables for
� � j� k � m � �� The �rst step in Chapter � was to choose a coordinate
system in which all the ��jets of the metric vanish� this proved to be the
critical obstruction to studying non�Kaehler holomorphic manifolds� It
turns out that the fgjk�mg variables cannot be normalized to zero� They
are tensorial and give essentially the components of the second fundamental
form or shape operator�

Let fe�� e�g be vector �elds on M which are tangent to dM along dM �
We de�ne the shape operator�

S�e�� e�� � �re�e�� N�

along dM � It is clear this expression is tensorial in e�� We compute�

�re�e�� N�� �re�e�� N� � �&e�� e�'� N��

Since e� and e� are tangent to dM along dM � &e�� e�' is tangent to dM
along dM and thus �&e�� e�'� N� � 
 along dM � This implies S�e�� e�� �
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S�e�� e�� is tensorial in e�� The shape operator de�nes a bilinear map from
T �dM�	 T �dM�� R� We compute

�r���yj ���yk� N� � +jkm � �
� �gjm�k � gkm�j � gjk�m� � ��

�gjk�m�

We can construct a number of invariants as follows� let fejg be a local
orthonormal frame for T �M� such that em � N � ���r� De�ne�

rej �
X

��k�m
�jkek for �jk � T �M and �jk � �kj � 


and
-jk � d�jk �

X
����m

�j� � ��k �

The �jm variables are tensorial as �jm �
Pm��

k�� S�ej � ek� � ek � We de�ne�

Qk�m � ck�m
X

	�i�� � � � � im���-i�i� � � � � � -i�k�� �i�k

� �i�k�� �m � � � � � �im�� �m � %m��

for

ck�m �
����k

�pk��k�p � � �  � � � ��p� �k � ��
where p �

hm
�

i
�

The sum de�ning Qk is taken over all permutations of m � � indices and
de�nes an m� � form over M � If m is even� we de�ne�

Em �
����p

f�m�pp�g
X

	�i�� � � � � im�-i�i� � � � � � -im��im

as the Euler form discussed in Chapter ��
Qk�m and Em are the SO�invariant forms on M � Em is de�ned on all of

M while Qk�m is only de�ned near the boundary� Chern noted that if m
is even�

Em � �d
�X

k

Qk�m

�
�

This can also be interpreted in terms of the transgression of Chapter �� Let
r� and r� be two Riemannian connections on TM � We de�ned an m� �
form TEm�r��r�� so that

dTEm�r��r�� � Em�r���Em�r���

Near dM � we split T �M� � T �dM��� as the orthogonal complement of the
unit normal� We project the Levi�Civita connection on this decomposition�
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and let r� be the projected connection� r� is just the sum of the Levi�
Civita connection of T �dM� and the trivial connection on � and is #at in
the normal direction� As r� is a direct sum connection� Em�r�� � 
�
r� � r� is essentially just the shape operator� TEm � �PQk�m and
dTEm � Em�r�� � Em� It is an easy exercise to work out the Qk�m using
the methods of section � and thereby compute the normalizing constants
given by Chern�
The Chern�Gauss�Bonnet theorem for manifolds with boundary in the

oriented category becomes�

��M� �
Z
M

Em �
Z
dM

X
k

Qk�m�

In the unoriented category� we regard Em dvol�x� as a measure on M andR
Qk�m dvol�y� as a measure on dM � If m is odd� of course� ��M� �

�
�
��dM� � �

�

R
dM

Em�� so there is no di�culty with the Chern�Gauss�
Bonnet theorem in this case�
We derive the Chern�Gauss�Bonnet theorem for manifolds with boundary

from the theorem for manifolds without boundary� Suppose m is even
and that the metric is product near the boundary� Let M be the double
of M then ��M� �

R
M
Em � �

R
M
Em � ���M� � ��dM� � ���M�

so ��M� �
R
M
Em� If the metric is not product near the boundary� let

M 
 � dM 	 &��� 
' �M be the manifold M with a collar sewed on� Let
G� be the restriction of the metric on M to the boundary and let G
� be
the product metric on the collar dM 	 &��� 
'� Using a partition of unity�
extend the original metric on M to a new metric which agrees with G
�
near dM 	 f��g which is the boundary of M 
� Then�

��M� � ��M 
� �
Z
M�

Em �
Z
M

Em �
Z

dM�������

d

�X
k

Qk�m

�

�
Z
M

Em �
Z
dM

X
k

Qk�m

by Stoke�s theorem� since the Qk vanish identically near dM 	 f��g there
is no contribution from this component of the boundary of the collar �we
change the sign since the orientation of dM as the boundary of M and as
the boundary of dM 	 &��� 
' are opposite��
We now study the invariants of the heat equation� We impose no restric�

tions on the dimension m� If M � S� 	M� and if � is the usual periodic
parameter on S�� then there is a natural involution on %�T �M� given by
interchanging � with d� � � for � � %�M��� This involution preserves the
boundary conditions and the associated Laplacians� but changes the parity



	�� ��	� The Gauss�Bonnet Theorem

of the factors involved� This shows an�y� d� �� B� � 
 for such a product
metric� We de�ne�

r�P b
m�n � P b

m���n

to be the dual of the map M� � S� 	M�� Then algebraically�

r�gij��� �

�

 if deg��gij��� �� 

� if deg��gij��� � 


where ��� is simply a renumbering to shift all the indices down one� �At this
stage� it is inconvenient to have used the last index to indicate the normal
direction so that the �rst index must be used to denote the #at index�
denoting the normal direction by the last index is su�ciently cannonical
that we have not attempted to adopt a di�erent convention despite the
con#ict with the notation of Chapter ��� This proves�

Lemma ��	�	� Let B denote either the relative or absolute boundary
conditions� Then an�y� d � �� B� � P b

m�n � Furthermore� r�an� � 
 where

r�P b
m�n � P b

m���n is the restriction map�

We can now begin to identify an�y� d� �� B� using the same techniques
of invariance theory applied in the second chapter�

Lemma ��	���� Let P � P b
m�n � Suppose that r�P � � 
� Then�

�a� P � 
 if n � m� ��
�b� If n � m� �� then P is a polynomial in the variables fgij�m� gij�klg for
� � i� j� k� l � m � �� Furthermore� degj�A� � � for any monomial A of P
and for � � j � m� ��

Proof� As in the proof of Theorem ������ we shall count indices� Let
P �� 
 and let A be a monomial of P � Decompose A in the form�

A � gu�v���� � � � gukvk��kgi�j��m � � � girjr�m for j�� j � ��

�We have chosen our coordinate systems so the only non�zero ��jets are
the gij�m variables�� Since r�P � � 
� deg��A� �� 
� Since P is invariant�
degj�A� 
 
 is even for � � j � m� �� This yields the inequalities�

�m� � �
X

j�m��
degj�A� and r � degm�A��

From this it follows that�

�m� � � r �
X
j

degj�A� � �r � �k �
X
�

j�� j� r � �r � �k � n�
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Since j�� j � � we conclude

�k �
X
�

j�� j � n� r�

We combine these inequalities to conclude �m���r � �n�r so n � m���
This shows P � 
 if n � m � � which proves �a�� If n � m � �� all these
inequalities must be equalities� j�� j � �� degm�A� � r� and degj�A� � �
for � � j � m � �� Since the index m only appears in A in the gij�m
variables where � � i� j � m� �� this completes the proof of �b��

Lemma ����� only used invariance under the group SO���� Since P is
invariant under the action of SO�m � ��� we apply the argument used in
the proof of Theorem ����� to choose a monomial A of P of the form�

A � g����� � � � g�k����k���kk gk���k���m � � �gm���m���m

where if k � 
 the terms of the �rst kind do not appear and if k � m� ��
the terms of the second kind do not appear� Since m � � � �k � r� it is
clear that r � m � � mod �� We denote such a monomial by Ak� Since
P �� 
 implies c�Ak� P � �� 
 for some k� we conclude the dimension of the
space of such P is at most the cardinality of fAkg �

�
m��
�

�
� This proves�

Lemma ��	��� Let r�P b
m�m�� � P b

m���m�� be the restriction map de�

�ned earlier� Then dimN�r� � �m��
�

�
�

We can now show�

Lemma ��	��� Let P � P b
m�m�� with r�P � � 
� Let i� dM � M be the

inclusion map and i�� %m���T �M� � %m�� �T ��dM�� be the dual map�
Let �m�� be the Hodge operator on the boundary so �m�� � %m���T ��dM��
� %��T ��dM��� Let  Qk�m � �m���i�Qk�m�� Then the f  Qk�mg form a basis
for N�r� so we can express P as a linear combination of the  Qk�m�

Proof� It is clear r�  Qk�m� � 
 and that these elements are linearly inde�
pendent� We have &�m�����' such elements so by Lemma ����� they must
be a basis for the kernel of r� �If we reverse the orientation we change both
the sign of � and Q so  Q is a scalar invariant��

We note that ifm is odd� then Qm���m � c�P 	�i�� � � � � im���-i�i�� � � ��
-im��im��

is not the Euler form on the boundary since we are using the
Levi�Civita connection on M and not the Levi�Civita connection on dM �
However� Em�� can be expressed in terms of the  Qk�m in this situation�

Before proceeding to discuss the heat equation� we need a uniqueness
theorem�
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Lemma ��	�
� Let P �
P

k akQk�m be a linear combination of the
fQk�mg� Suppose that P �� 
� Then there exists a manifold M and a
metric G so

R
dM

P �G��y� �� 
�

Proof� By assumption not all the ak � 
� Choose k maximal so ak �� 
�
Let n � m � �k and let M � S�k 	Dm��k with the standard metric� �If
m � �k � �� we let M � Dm and choose a metric which is product near
Sm�� �� We let indices � � i � �k index a frame for T ��S�k� and indices
�k�� � u � m index a frame for T ��Dm��k �� Since the metric is product�
-iu � �iu � 
 in this situation� Therefore Qj�m � 
 if j � k� Since aj � 

for j 
 k by assumption� we conclude

R
dM

P �G� � ak
R
dM

Qk�m�G�� so it
su�ces to show this integral is non�zero� This is immediate if n � � as
Qm���m � Em�� and m� � is even�

Let n � �� We have Qk�m�G� � E�k�G�� �Q��m��k �G��� since the metric
is product� Since Z

S�k

E�k � ��S�k� � � �� 


we must only show
R
dDn Q��n is non�zero for all n 
 �� Let � be a system

of local coordinates on the unit sphere Sn�� and let r be the usual radial
parameter� If ds�e is the Euclidean metric and ds�� is the spherical metric�
then

ds�e � r� ds�� � dr � dr�
From the description of the shape operator given previously we conclude
that S � �ds�� � Let fe�� � � � � en��g be a local oriented orthonormal frame
for T �Sn�� then �in � �ei and therefore Q��n � c � dvoln�� where c is a
non�zero constant� This completes the proof�

We combine these results in the following Theorem�

Theorem ��	��� �Gauss�Bonnet formula for manifolds with
boundary��
�a� Let the dimension m be even and let B denote either the relative or
the absolute boundary conditions� Let

Qk�m � ck�m
X

	�i�� � � � � im���-i��i� � � � � � -i�k�� �i�k

� �i�k�� �m � � � � � �im�� �m

for ck�m � ����k���m�� � k� � �k�m�� � � �  � � � �m � �k � ���� Let  Qk�m �
��Qk�mjdM� � P b

m�m�� � Then�

�i� an�x� d� �� � 
 for n � m and an�y� d� �� B� � 
 for n � m� ��
�ii� am�x� d� �� � Em is the Euler integrand�
�iii� am���y� d� �� B� �

P
k
 Qk�m�

�iv� ��M� � ��M�dM� �
R
M
Em dvol�x� �

P
k

R
dM

 Qk�m dvol�y��
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�b� Let the dimension m be odd and let Br be the relative and Ba the
absolute boundary conditions� Then�

�i� an�x� d � �� � 
 for all n and an�y� d� �� Br� � an�y� d� �� Ba� � 

for n � m� ��

�ii� am���y� d� �� Ba� �
�
�
Em�� and am���y� d� �� Br� � � �

�
Em�� �

�iii� ��M� � ���M�dM� � �
�

R
dM

Em�� dvol�y� � �
���dM��

This follows immediately from our previous computations� and Lem�
mas ����� and ������

The Atayah�Bott theorem gives a generalization of the Atiyah�Singer in�
dex theorem for index problems on manifolds with boundary� This theorem
includes the Gauss�Bonnet theorem as a special case� but does not include
the Atiyah�Patodi�Singer index theorem since the signature� spin� and Dol�
beault complexes do not admit local boundary conditions of the form we
have been discussing� We will discuss this in more detail in subsection ����



	��� The Regularity at s � 
 of the Eta Invariant�

In this section� we consider the eta invariant de�ned in section ���
�
This section will be devoted to proving eta is regular at s � 
� In the next
section we will use this result to discuss the twisted index theorem using
coe�cients in a locally #at bundle� This invariant appears as a boundary
correction term in the index theorem for manifolds with boundary�
We shall assume P �C��V � � C��V � is a self�adjoint elliptic pseudo�

di�erential operator of order d 
 
� We de�ne

��s� P � �
X
�i��

��i�
�s �

X
�i��

���i��s for Re�s�� 


and use Theorem ���
� to extend � meromorphically to the complex plane
with isolated simple poles on the real axis� We de�ne

R�P � � d � Ress�� ��s� P ��

We will show R�P � � 
 so � is regular at s � 
� The �rst step is to show�

Lemma ������ Let P and Q be self�adjoint elliptic pseudo�di�erential
operators of order d 
 
�
�a� P � �P ��v is a self�adjoint elliptic pseudo�di�erential operator for any v
and if �v � � 
 
� R�P � � R�P � �P ��v��
�b� R�P �Q� � R�P � �R�Q��
�c� There is a local formula a�x� P � in the jets of the symbol of P up to
order d so that R�P � �

R
M
a�x� P � j dvol�x�j�

�d� If Pt is a smooth ��parameter family of such operators� then R�Pt� is
independent of the parameter t�
�e� If P is positive de�nite� then R�P � � 
�
�f � R��P � � �R�P ��

Proof� We have the formal identity� ��s� P � �P ��v� � ����v � ��s� P ��
Since we normalized the residue by multiplying by the order of the opera�
tor� �a� holds� The fact that P ��P ��v is again a pseudo�di�erential operator
follows from the work of Seeley� �b� is an immediate consequence of the
de�nition� �c� and �d� were proved in Lemma ���
�� for di�erential opera�
tors� The extension to pseudo�di�erential operators again follows Seeley�s
work� If P is positive de�nite� then the zeta function and the eta function
coincide� Since zeta is regular at the origin� �e� follows by Lemma ���
���
�f� is immediate from the de�nition�

We note this lemma continues to be true if we assume the weaker condi�
tion det�p�x� ��� it� �� 
 for ��� t� �� �
� 
� � T �M 	R�
We use Lemma ���� to interpret R�P � as a map in K�theory� Let

S�T �M� be the unit sphere bundle in T �M � Let V be a smooth vector
bundle over M equipped with a �ber inner product� Let p�S�T �M� �
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END�V � be self�adjoint and elliptic� we assume p�x� �� � p��x� �� and
det p�x� �� �� 
 for �x� �� � S�T �M�� We �x the order of homogeneity
d 
 
 and let pd�x� �� be the extension of p to T �M which is homogeneous
of degree d� �In general� we must smooth out the extension near � � 

to obtain a C� extension� but we suppress such details in the interests of
notational clarity��

Lemma ����	� Let p�S�T �M� � END�V � be self�adjoint and elliptic�
Let d 
 
 and let P �C��V � � C��V � have leading symbol pd� Then
R�P � depends only on p and not on the order d nor the particular operator
P �

Proof� Let P 
 have order d with the same leading symbol pd� We form the
elliptic family Pt � tP 
� ��� t�P � By Lemma ����� R�Pt� is independent
of t so R�P 
� � R�P �� Given two di�erent orders� let �� � �v�d � d
�
Let Q � P �P ��v then R�Q� � R�P � by Lemma �����a�� The leading
symbol of Q is p�p��v� p� is positive de�nite and elliptic� We construct
the homotopy of symbols qt�x� �� � p�x� ���tp��x� �� � �� � t�j�j��� This
shows the symbol of Q restricted to S�T �M� is homotopic to the symbol
of P restricted to S�T �M� where the homotopy remains within the class
of self�adjoint elliptic symbols� Lemma ���� completes the proof�

We let r�p� � R�P � for such an operator P � Lemma �����d� shows r�p�
is a homotopy invariant of p� Let *��p� be the subspaces of V spanned by
the eigenvectors of p�x� �� corresponding to positive)negative eigenvalues�
These bundles have constant rank and de�ne smooth vector bundles over
S�T �M� so *� � *� � V � In section ��� an essential step in proving
the Atayah�Singer index theorem was to interpret the index as a map in
K�theory� To show R�P � � 
� we must �rst interpret it as a map in K�
theory� The natural space in which to work is K�S�T �M��Q� and not
K�1�T �M��Q��

Lemma ������ Let G be an abelian group and let R�P � � G be de�ned
for any self�adjoint elliptic pseudodi�erential operator� Assume R satis�es
properties �a�� �b�� �d�� �e� and �f � �but not necessarily �c�� of Lemma ����
�
Then there exists a Z�linear map r�K�S�T �M��� G so that�

�a� R�P � � r�*��p���
�b� If � �S�T �M� � M is the natural projection� then r���V � � 
 for all

V � K�M� so that

r�K�S�T �M���K�M�� G�

Remark� We shall apply this lemma in several contexts later� so state it in
somewhat greater generality than is needed here� If G � R� we can extend
r to a Q linear map

r�K�S�T �M��Q�� R�
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Proof� Let p�S�T �M� � END�V � be self�adjoint and elliptic� We de�
�ne the bundles *��p� and let ���x� �� denote orthogonal projection on
*��p��x� ��� We let p� � �� � �� and de�ne pt � tp � �� � t�p� as a
homotopy joining p and p�� It is clear that the pt are self�adjoint� Fix
�x� �� and let f�i� vig be a spectral resolution of the matrix p�x� ��� Then�

p�x� ��

�X
civi

�
�
X

�icivi

p��x� ��

�X
civi

�
�
X

sign��i�civi�

Consequently

pt

�X
civi

�
�
X

�t�i � ��� t� sign��i��civi�

Since t�i � �� � t� sign��i� �� 
 for t � &
� �'� the family pt is elliptic�
We therefore assume henceforth that p�x� ��� � I on S�T �M� and �� �
�
� ��� p��
We let k be large and choose V � Vectk�S�T

�M��� Choose W �
Vectk�S�T

�M�� so V �W � ��k � We may choose the metric on ��k so
this direct sum is orthogonal and we de�ne �� to be orthogonal projection
on V and W � We let p � �� � �� so *� � V and *� � W � We de�ne
r�V � � r�p�� We must show this is well de�ned on Vectk� W is unique up
to isomorphism but the isomorphism V �W � ��k is non�canonical� Let
u�V � V and v�W � W be isomorphisms where we regard V and W as
orthogonal complements of ��k �perhaps with another trivialization�� We
must show r�p� � r� p�� For t � &
� �' we let

V �t� � span
�
t � v � ��� t� � u�v��

v�V
� V �W � V �W � ��k � ��k � ��k �

This is a smooth ��parameter family of bundles connecting V � 
 to 
� V
in ��k � This gives a smooth ��parameter family of symbols p�t� connecting
p�����k� to ����k�� p� Thus r�p� � r�p����k� � r�p�t�� � r����k� p� �
r� p� so this is in fact a well de�ned map r� Vectk�S�T

�M�� � G� If V is
the trivial bundle� then W is the trivial bundle so p decomposes as the
direct sum of two self�adjoint matrices� The �rst is positive de�nite and
the second negative de�nite so r�p� � 
 by Lemma �����f�� It is clear
that r�V� �V�� � r�V��� r�V�� by Lemma �����b� and consequently since

r��� � 
 we conclude r extends to an additive map from eK�S�T �M��� G�
We extend r to be zero on trivial bundles and thus r�K�S�T �M��� G�

Suppose V � ��V� for V� � Vectk�M�� We choose W� � Vectk�M�
so V� �W� � ��k � Then p � p� � p� for p��S�T

�M� � END�V�� V��
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and p��S�T �M� � END�W��W��� By Lemma ����� we conclude r�p� �
r�p���r�p��� Since p� is positive de�nite� r�p�� � 
� Since p� is negative
de�nite� r�p�� � 
� Thus r�p� � 
 and r���V�� � 
�

This establishes the existence of the map r�K�S�T �M�� � G with the
desired properties� We must now check r�p� � r�*�� for general p� This
follows by de�nition if V is a trivial bundle� For more general V � we
�rst choose W so V � W � � over M � We let q � p � � on V � W �
then r�q� � r�p� � r��� � r�p�� However� q acts on a trivial bundle so
r�q� � r�*��q�� � r�*��p� � ��W � � r�*��p�� � r���W � � r�*��p��
which completes the proof�

Of course� the bundles *��p� just measure the in�nitesimal spectral
asymmetry of P so it is not surprising that the bundles they represent in
K�theory are related to the eta invariant� This construction is completely
analogous to the construction given in section �� which interpreted the
index as a map in K�theory� We will return to this construction again in
discussing the twisted index with coe�cients in a locally #at bundle�

Such operators arise naturally from considering boundary value prob�
lems� Let M be a compact oriented Riemannian manifold of dimension
m � �k � � and let N � M 	 &
� ��� we let n � &
� �� denote the normal
parameter� Let

�d� ��� �C
��%��T �N��� C��%��T �N��

be the operator of the signature complex� The leading symbol is given by
Cli�ord multiplication� We can use c�dn�� where c is Cli�ord multiplication�
to identify these two bundles over N � We express�

�d� ��� � c�dn�����n� A��

The operator A is a tangential di�erential operator on C��%��T �N��� it
is called the tangential operator of the signature complex� Since we have
c�dn� � c�dn� � ��� the symbol of A is �ic�dn�c��� for � � T ��M�� It is
immediate that the leading symbol is self�adjoint and elliptic� since A is
natural this implies A is a self�adjoint elliptic partial di�erential operator
on M �

Let fe�� � � � � emg be a local oriented orthonormal frame for T �M � De�ne�

�m � ike� � � � � � em and �m�� � ik��dn� � e� � � � � � em � �dn � �m

as the local orientations ofM and N � �m is a central element of CLIF�M��
��m � ��m�� � �� If  � %�M� de�ne ���� � � c��m�� �� This gives an
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isomorphism ��� %�M�� %��N�� We compute�

����
��f�c�dn�c���g��

� ����
��f�c�dn�c���� c�dn�c���c��dn�c��m�g

� ����
��f�c�dn�c��m�c��m�c��� � c��m�c���g

� ����
��f�c��m��� � ��c��m�c���g

� c��m�c����

If we use �� to regard A as an operator on C��%�M�� then this shows that
A is given by the diagram�

C��%�M��
r� C��T ��M � %�M��

c� C��%�M��
�� C��%�M��

where � � �m� This commutes with the operator �d� ��� A � ��d� ���

Both � and �d��� reverse the parity so we could decompose A � Aeven�
Aodd acting on smooth forms of even and odd degree� We let p � �L�A� �
ic�� � �� �

P
j �jfj � The ffjg are self�adjoint matrices satisfying the

commutation relation

fjfk � fkfj � ��jk�

We calculate�

f� � � � fm � imc��m � e� � � � � � em� � im�kc��m � �� � im�kc���

so that if we integrate over a �ber sphere with the natural �not simplectic�
orientation�

Z
Sm��

ch�*��p�� � ik�����k Tr�f� � � � fm�

� ik�����k im�k�m � ik�����k ik����k��

� ����k�� � �k�

In particular� this is non�zero� so this cohomology class provides a coho�
mology extension to the �ber�

As aH��M �Q� module� we can decomposeH��S�M��Q� � H��M �Q��
xH��M �Q� where x � ch�*��p��� If we twist the operator A by taking
coe�cients in an auxilary bundle V � then we generate xH��M �Q�� The
same argument as that given in the proof of Lemma ���	 permits us to
interpret this in K�theory�
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Lemma ������ Let M be a compact oriented Riemannian manifold of
dimension m � �k � �� Let A be the tangential operator of the signature
complex on M 	 &
� ��� If fejg is an oriented local orthonormal basis for
T �M�� let � � ike� � � � � � em be the orientation form acting by Cli�ord
multiplication on the exterior algebra� A � ��d� �� on C��%�M��� If the
symbol of A is p�

Z
Sm��

ch�*��p�� � �k����k�� �

The natural map K�M �Q�� K�S�T ��M��Q� is injective and the group
K�S�T �M��Q��K�M �Q� is generated by the bundles f*��AV �g as V runs
over K�M��

Remark� This operator can also be represented in terms of the Hodge
operator� On C��%�p� for example it is given by ik����p����d� d��� We
are using the entire tangential operator �and not just the part acting on
even or odd forms�� This will produce certain factors of � di�ering from
the formulas of Atiyah�Patodi�Singer� If M admits a SPINc structure� one
can replace A by the tangential operator of the SPINc complex� in this case
the corresponding integrand just becomes ����k�� �
We can use this representation to prove�

Lemma ������ Let dimM be odd and let P �C��V �� C��V � be a self�
adjoint elliptic pseudo�di�erential operator of order d 
 
� Then R�P � �

�i�e�� ��s� P � is regular at s � 
�

Proof� We �rst suppose M is orientable� By Lemma ����� it su�ces to
prove R�AV � � 
 since r is de�ned in K�theory and would then vanish
on the generators� However� by Lemma �����c�� the residue is given by a
local formula� The same analysis as that done for the heat equation shows
this formula must be homogeneous of order m in the jets of the metric
and of the connection on V � Therefore� it must be expressible in terms of
Pontrjagin forms of TM and Chern forms of V by Theorem ������ As m
is odd� this local formula vanishes and R�AV � � 
� If M is not orientable�
we pass to the oriented double cover� If P �C��V �� C��V � over M � we
let P 
�C��V 
� � C��V 
� be the lift to the oriented double cover� Then
R�P � � �

�R�P 
�� But R�P 
� � 
 since the double cover is oriented and
thus R�P � � 
� This completes the proof�

This result is due to Atayah� Patodi� and Singer� The trick used in
section �� to change the parity of the dimension by taking products with
a problem over the circle does not go through without change as we shall
see� Before considering the even dimensional case� we must �rst prove a
product formula�
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Lemma ����
� Let M� and M� be smooth manifolds� Let P �C��V���
C��V�� be an elliptic complex over M�� Let Q�C��V � � C��V � be a
self�adjoint elliptic operator over M�� We assume P and Q are di�erential
operators of the same order and form�

R �

�
Q P �

P �Q

�
on C��V� � V � V� � V ��

then ��s�R� � index�P � � ��s�Q��

Proof� This lemma gives the relationship between the index and the eta
invariant which we will exploit henceforth� We perform a formal computa�
tion� Let f�� � �g���� be a spectral resolution of the operator Q on C��V ��
We let " � P �P and decompose C��V�� � N�"��R�"�� We let f�j � �jg
be a spectral resolution of " restricted to N�"�� � R�"�� The �j are pos�
itive real numbers� f�j � P �j�p�j g form a spectral resolution of "
 � PP �

on N�"
�� � R�"
� � R�P ��
We decompose L��V��V � � N�"��L��V � � R�"��L��V � and L��V��

V � � N�"
��L��V � � R�"
��L��V �� In R�"��L��V � � R�"
��L��V �
we study the two�dimensional subspace that is spanned by the elements�
f�j � � � P �j�

p
�j � �g� The direct sum of these subspaces as j� � vary

is R�"� � L��V � � R�"
� � L��V �� Each subspace is invariant under the
operator R� If we decompose R relative to this basis� it is represented by
the �	 � matrix� �

��
p
�jp

�j � ��

�
�

This matrix has two eigenvalues with opposite signs� �p��� � �j � Since
�� 
 
 these eigenvalues are distinct and cancel in the sum de�ning eta�
Therefore the only contribution to eta comes from N�"� � L��V � and
N�"
��L��V �� On the �rst subspace� R is ��Q� Each eigenvalue of Q is
repeated dimN�"� times so the contribution to eta is dimN�"���s�Q��
On the second subspace� R is � � �Q and the contribution to eta is
� dimN�"���s�Q�� When we sum all these contributions� we conclude
that�

��s�R� � dimN�"���s�Q�� dimN�"
���s�Q� � index�P ���s�Q��

Although this formal cancellation makes sense even if P and Q are not
di�erential operators� R will not be a pseudo�di�erential operator if P and
Q are pseudo�di�erential operators in general� This did not matter when
we studied the index since the index was constant under approximations�
The eta invariant is a more delicate invariant� however� so we cannot use
the same trick� Since the index of any di�erential operator on the circle is
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zero� we cannot use Lemmas ���� and ���� directly to conclude R�P � � 

if m is even�
We recall the construction of the operator on C��S�� having index ��

We �x a � R as a real constant and �x a positive order d � Z� We de�ne�

Q� � �i����� Q��a� � �Q�d
� � a�����d

Q��a� �
�
� �e

�i��Q� �Q�� �Q� �Q��

Q�a� � Q��a� � �Q��a��
d�� �

The same argument as that given in the proof of Lemma ���� shows these
are pseudo�di�erential operators on C��S��� Q��a� and Q�a� are elliptic
families� If a � 
� then Q��
� agrees with the operator of Lemma ����
so index Q��
� � �� Since the index is continuous under perturbation�
indexQ��a� � � for all values of a� Q��a� is self�adjoint so its index is
zero� Consequently indexQ�a� � indexQ��a� � indexQ��a� � � for all a�
We let P �C��V �� C��V � be an elliptic self�adjoint partial di�erential

operator of order d 
 
 over a manifold M � On M 	 S� we de�ne the
operators�

Q� � �i����� Q� � �Q�d
� � P �����d

Q� � �
� �e

�i��Q� �Q�� �Q� �Q��� Q � Q� �Qd��
�

on C��V �� These are pseudo�di�erential operators over M 	 S� since
Q�d
� � P � has positive de�nite leading order symbol� We de�ne R by�

R �

�
P Q�

Q �P

�
� C��V � V �� C��V � V ��

This is a pseudo�di�erential operator of order d which is self�adjoint� We
compute�

R� �

�
P � �Q�Q 



 P � �QQ�

�
so

�L�R
����� z� �

�
p���� � q�q��� z� 



 p���� � qq���� z�

�

for � � T �M and z � T �S�� Suppose R is not elliptic so �L�R���� z�v � 

for some vector v � V � V � Then f�L�R���� z�g�v � 
� We decompose
v � v� � v�� We conclude�

�p���� � q�q��� z��v� � �p���� � qq���� z��v� � 
�
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Using the condition of self�adjointness this implies�

p���v� � q��� z�v� � p���v� � q���� z�v� � 
�

We suppose v �� 
 so not both v� and v� are zero� Since P is elliptic�
this implies � � 
� However� for � � 
� the operators Q� and Q� agree
with the operators of Lemma ���� and are elliptic� Therefore q��� z�v� �
q���� z�v� � 
 implies z � 
� Therefore the operator R is elliptic�
Lemma ���� generalizes in this situation to become�

Lemma ������ Let P � Q� R be de�ned as above� then ��s�R� � ��s� P ��

Proof� We let f�� � �g be a spectral resolution of P on C��V � over M �
This gives an orthogonal direct sum decomposition�

L��V � over M 	 S� �
M
�

L��S��� � �

Each of these spaces is invariant under both P and R� If R� denotes the
restriction of R to this subspace� then

��s�R� �
X
�

��s�R���

On L��� �� P is just multiplication by the real eigenvalue �� � If we
replace P by �� we replace Q by Q��� �� so R� becomes�

R� �

�
�� Q���� �

Q��� � � ��

�
�

We now apply the argument given to prove Lemma ���� to conclude�

��s�R�� � sign��� �j�� j�s index�Q��� ���

Since indexQ��� � � �� this shows ��s�R� � sign��� �j�� j�s and completes
the proof�

We can now generalize Lemma ���� to all dimensions�

Theorem ������ Let P �C��V � � C��V � be a self�adjoint elliptic
pseudo�di�erential operator of order d 
 
� Then R�P � � 
�i�e�� ��s� P �
is regular at s � 
�

Proof� This result follows from Lemma ���� if dimM � m is odd� If
dimM � m is even and if P is a di�erential operator� then we form the
pseudo�di�erential operator P over M 	 S� with ��s�R� � ��s� P �� Then
��s�R� is regular at s � 
 implies ��s� P � is regular at s � 
� This proves
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Theorem ���	 for di�erential operators� Of course� if P is only pseudo�
di�erential� then R need not be pseudo�di�erential so this construction does
not work� We complete the proof of Theorem ���	 by showing the partial
di�erential operators of even order generate K�S�T �M��Q��K�M �Q� if
m is even� �We already know the operators of odd order generate if m is
odd and if M is oriented��
Consider the involution � �� �� of the tangent space� This gives a nat�

ural Z� action on S�T �M�� Let ��S�T �M� � S�T �M��Z� � RP �T �M�
be the natural projection on the quotient projective bundle� Since m is
even� m�� is odd and �� de�nes an isomorphism between the cohomology
of two �bers

���H��RPm�� �Q� � Q�Q� H��Sm�� �Q� � Q�Q�

The Kunneth formula and an appropriate Meyer�Vietoris sequence imply
that

���H��RP �T �M��Q�� H��S�T �M��Q�

is an isomorphism in cohomology for the total spaces� We now use the
Chern isomorphism between cohomology and K�theory to conclude there
is an isomorphism in K�theory

���K�RP �T �M��Q� � K�S�T �M��Q��

Let S��k� be the set of all k 	 k self�adjoint matrices A such that
A� � � and Tr�A� � 
� We noted in section �	 that if k is large�eK�X� � &X� S���k�'� Thus eK�S�T �M��Q� � eK�RP �T �M��Q� is gen�
erated by maps p�S�T �M� � S���k� such that p�x� �� � p�x����� We
can approximate any even map by an even polynomial using the Stone�
Weierstrass theorem� Thus we may suppose p has the form�

p�x� �� �
X
j�j�n
j�j even

p��x��
�
��
S�T�M�

�

where the p��M � S���k� and where n is large� As � is even� we can
replace �� by ��j�jfn�j�jg�� and still have a polynomial with the same
values on S�T �M�� We may therefore assume that p is a homogeneous
even polynomial� this is the symbol of a partial di�erential operator which
completes the proof�

If m is odd and if M is orientable� we constructed speci�c examples of
operators generating K�S�T �M��Q��K�M �Q� using the tangential oper�
ator of the signature complex with coe�cients in an arbitrary coe�cient
bundle� If m is even� it is possible to construct explicit second order opra�
tors generating this K�theory group� One can then prove directly that
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eta is regular at s � 
 for these operators as they are all �natural� in a
certain suitable sense� This approach gives more information by explcitly
exhibiting the generators� as the consturction is quite long and technical
we have chosen to give an alternate argument based on K�theory and refer
to �Gilkey� The residue of the global eta function at the origin� for details�
We have given a global proof of Theorem ���	� In fact such a treatment

is necessary since in general the local formulas giving the residue at s � 

are non�zero� Let P �C��V � � C��V � be self�adjoint and elliptic� If
f�� � �g is a spectral resolution of P � we de�ne�

��s� P� x� �
X
�

sign��� �j�� j�s�� � � ��x�

so that�

��s� P � �
Z
M

��s� P� x� dvol�x��

Thus Ress�� ��s� P� x� � a�P� x� is given by a local formula�
We present the following example �Gilkey� The residue of the local eta

function at the origin� to show this local formula need not vanish identically
in general�

Example ������ Let

e� �

�
� 



 ��

�
� e� �

�

 �

� 


�
� e
 �

�

 i

�i 


�

be Cli�ord matrices acting on C�� Let Tm be the m�dimensional torus
with periodic parameters 
 � xj � � for � � j � m�
�a� Let m �  and let b�x� be a real scalar� Let P � i

P
j ej���xj � b�x�I�

Then P is self�adjoint and elliptic and a�x� P � � c"b where c �� 
 is some
universal constant�
�b� Let m � � and let b� and b� be imaginary scalar functions� Let P �
e��

���x���e��
���x����e
�

���x��x�� b�e�� b�e�� Then P is self�adjoint
and elliptic and a�x� P � � c
��b���x� � �b���x�� where c
 �� 
 is some
universal constant�
�c� By twisting this example with a non�trivial index problem and using
Lemma ����� we can construct examples on Tm so that a�x� P � does not
vanish identically for any dimension m � ��

The value of eta at the origin plays a central role in the Atiyah�Patodi�
Singer index theorem for manifolds with boundary� In section �� we dis�
cussed the transgression brie#y� Let ri be two connections on T �N�� We
de�ned TLk�r��r�� so that dTLk�r��r�� � Lk�r�� � Lk�r��� this is
a secondary characteristic class� Let r� be the Levi�Civita connection of
N and near M � dN let r� be the product connection arising from the
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product metric� As Lk�r�� � 
 we see dTLk�r��r�� � 
� This is the
analogous term which appeared in the Gauss�Bonnet theorem� it can be
computed in terms of the �rst and second fundamental forms� For example�
if dimN � �

L��R� �
��

�� � �� Tr�R � R� TL��R��� �
��

�� � 	 � �� Tr�R � ��

where R is the curvature ��form and � is the second fundamental form�

Theorem ������ �Atiyah�Patodi�Singer index theorem for
manifolds with boundary�� Let N be a �k dimensional oriented com�
pact Riemannian manifold with boundary M � Then�

signature�N� �
Z
N

Lk �
Z
M

TLk � �
�
��
� A�

where A is the tangential operator of the signature complex discussed in
Lemma ������

In fact� the eta invariant more generally is the boundary correction term
in the index theorem for manifolds with boundary� Let N be a compact
Riemannian manifold with boundary M and let P �C��V��� C��V�� be
an elliptic �rst order di�erential complex over N � We take a metric which
is product near the boundary and identify a neighborhood of M in N with
M 	 &
� ��� We suppose P decomposes in the form P � ��dn�����n� A�
on this collared neighborhood where A is a self�adjoint elliptic �rst order
operator over M � This is in fact the case for the signature� Dolbeault�
or spin compexes� Let B be the spectral projection on the non�negative
eigenvalues of A� Then�

Theorem ������� �The Atiyah�Patodi�Singer Index Theorem� �
Adopt the notation above� P with boundary condition B is an elliptic
problem and

index�P�B� �
Z
N

fan�x� P �P �� an�x� PP
��g � �

�f��
� A� � dimN�A�g�

In this expression� n � dimN and the invariants an are the invariants of
the heat equation discussed previously�

Remark� If M is empty then this is nothing but the formula for index�P �
discussed previously� If the symbol does not decompose in this product
structure near the boundary of N � there are corresponding local boundary
correction terms similar to the ones discussed previously� If one takes P
to be the operator of the signature complex� then Theorem ����
 can be
derived from this more general result by suitably interpreting index�P�B� �
signature�N�� �

� dimN�A��
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In a Locally Flat Bundle�

The eta invariant plays a crucial role in the index theorem for manifolds
with boundary� It is also possible to study the eta invariant with coe�cients
in a locally #at bundle to get a generalization of the Atiyah�Singer theorem�
Let �����M� � U�k� be a unitary representation of the fundamental

group� Let M be the universal cover of M and let m � gm for m � M
and g � ���M� be the acion of the deck group� We de�ne the bundle V�
over M by the identi�cation�

V� � M 	Ck mod �m� z� � �gm� ��g�z��

The transition functions of V� are locally constant and V� inherits a natural
unitary structure and connection r� with zero curvature� The holonomy
of r� is just the representation �� Conversely� given a unitary bundle with
locally constant transition functions� we can construct the connection r
to be unitary with zero curvature and recover � as the holonomy of the
connection� We assume � is unitary to work with self�adjoint operators�
but all the constructions can be generalized to arbitrary representations in
GL�k�C��

Let P �C��V �� C��V �� Since the transition functions of V� are locally
constant� we can de�ne P� on C��V � V�� uniquely using a partition of
unity if P is a di�erential operator� If P is only pseudo�di�erential� P� is
well de�ned modulo in�nitely smoothing terms� We de�ne�

!��P � � �
�f��P � � dimN�P �g mod Z

ind��� P � � !��P��� k!��P � mod Z�

Lemma ������ ind��� P � is a homotopy invariant of P � If we �x �� we
can interpret this as a map

ind��� ���K�S�T �M���K�M�� R mod Z

such that ind��� P � � ind���*���L�P ����

Proof� We noted previously that !� was well de�ned inR mod Z� Let P �t�

be a smooth ��parameter family of such operators and let P 
�t� �
d

dt
P �t��

In Theorem ���
��� we proved�

d

dt
!��Pt� �

Z
M

a�x� P �t�� P 
�t�� dvol�x�

was given by a local formula� Let Pk � P � �k acting on V � �k� This
corresponds to the trivial representation of ���M� in U�k�� The operators
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P� and Pk are locally isomorphic modulo � smoothing terms which don�t
a�ect the local invariant� Thus a�x� Pk�t�� P



k�t�� � a�x� P��t�� P



��t�� � 
�

This implies
d

dt
ind��� Pt� � 
 and completes the proof of homotopy invari�

ance� If the leading symbol of P is de�nite� then the value ��
� P � is given
by a local formula so ind��� �� � 
 in this case� as the two local formulas
cancel� This veri�es properties �d� and �e� of Lemma ����� properties �a��
�b� and �f� are immediate� We therefore apply Lemma ��� to regard

ind��� ���K�S�T �M���K�M�� R mod Z

which completes the proof�

In sections ��� and ��� we will adopt a slightly di�erent notation for this
invariant� Let G be a group and let R�G� be the group representation ring
generated by the unitary representations of G� Let R��G� be the ideal of
representations of virtual dimension 
� We extend !��R�G�� R mod Z to
be a Z�linear map� We let ind��� P � denote the restriction to R��G�� If
� is a representation of dimension j � then ind��� P � � ind�� � j � �� P � �
��P�� � j��P �� It is convenient to use both notations and the context
determines whether we are thinking of virtual representations of dimension

 or the projection of an actual representation to R��G�� ind��� P � is not
topological in �� as the following example shows� We will discuss K�theory
invariants arising from the � dependence in Lemma ������

Example ������ Let M � S� be the circle with periodic parameter 
 � � �
��� Let g��� � ei� be the generator of ���M� � Z� We let 	 belong to R
and de�ne�

���g� � e��i�

as a unitary representation of ���M�� The locally #at bundle V� is topo�
logically trivial since any complex bundle over S� is trivial� If we de�ne a
locally #at section to S� 	C by�

�s��� � ei��

then the holonomy de�ned by �s gives the representation �� since

�s���� � e��i��s�
��

We let P � �i���� on C��S��� Then

P� � P�� � e�i��Pe�i�� � P � 	�

The spectrum of P is fngn�Z so the spectrum of P� is fn� 	gn�Z � There�
fore�

��s� P�� �
X

n��	��
sign�n� 	�jn� 	j�s�
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We di�erentiate with respect to 	 to get�

d

d	
�s� P�� � s

X
n��	��

jn� 	j�s�� �

We evaluate at s � 
� Since the sum de�ning this shifted zeta function
ranges over all integers� the pole at s � 
 has residue � so we conclude�

d

d	
!��P�� � � � �

�
� � and ind���� P � �

Z �

�

� d	 � 	�

We note that if we replace 	 by 	� j for j � Z� then the representation is
unchanged and the spectrum of the operator P� is unchanged� Thus reduc�
tion mod Z is essential in making ind���� P � well de�ned in this context�

If V� is locally #at� then the curvature of r� is zero so ch�V�� � 
� This
implies V� is a torsion element in K�theory so V� � �n � �kn for some
integer n� We illustrate this with

Example ������ Let M � RP
 � S
�Z� � SO�� be real projective space
in dimension  so ���M� � Z�� Let ��Z� � U��� be the non�trivial
representation with ��g� � �� where g is the generator� Let L � S
 	C

and identify �x� z� � ��x��z� to de�ne a line bundle L� over RP
 with
holonomy �� We show L� is non�trivial� Suppose the contrary� then L�
is trivial over RP� as well� This shows there is a map f �S� � S� with
�f��x� � f�x�� If we restrict f to the upper hemisphere of S�� then
f �D�

� � S� satis�es f�x� � �f��x� on the boundary� Therefore f has
odd degree� Since f extends to D� � f must have zero degree� This
contradiction establishes no such f exists and L� is non�trivial�

The bundle L� � L� is S
 	 C modulo the relation �x� z� � ��x��z��
We let g�x��S
 � SU��� be the identity map�

g�x� �

�
x� � ix� � x� � ix

x� � ix
 x� � ix�

�

then g��x� � �g�x�� Thus g descends to give a global frame on L��L� so
this bundle is topologically trivial and L� represents a Z� torsion class in
K�RP
�� Since L� is a line bundle and is not topologically trivial� L� � �

is a non�zero element of eK�RP
�� This construction generalizes to de�ne
L� over RPn� We use the map g�Sn � U��k� de�ned by Cli�ord algebras

so g�x� � �g��x� to show �kL� � �k � 
 in eK�RPn� where k � &n��'� we
refer to Lemma �	�� for details�

We suppose henceforth in this section that the bundle V� is topologically
trivial and let �s be a global frame for V�� �In section ��� we will study the
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more general case�� We can take Pk � P � � relative to the frame �s so
that both Pk and P� are de�ned on the same bundle with the same leading
symbol� We form the ��parameter family tPk � ��� t�P� � P �t� �� �s � and
de�ne�

ind��� P� �s � �
Z �

�

d

dt
!��P �t� �� �s �� dt �

Z
M

a�x� �� P� �s � dvol�x�

where

a�x� �� P� �s � �
Z �

�

a�x� P �t� �� �s �� P 
�t� �� �s �� dt�

The choice of a global frame permits us to lift ind from R mod Z to
R� If we take the operator and representation of example ������ then
ind���� P� �s � � 	 and thus in particular the lift depends on the global frame
chosen �or equivalently on the particular presentation of the representation
� on a trivial bundle�� This also permits us to construct non�trivial real
valued invariants even on simply connected manifolds by choosing suitable
inequivalent global trivializations of V��

Lemma ������
�a� ind��� P� �s � �

R
M
a�x� �� P� �s � dvol�x� is given by a local formula which

depends on the connection ��form of r� relative to the global frame �s and
on the symbol of the operator P �
�b� If �st is a smooth ��parameter family of global sections� then ind��� P� �st�
is independent of the parameter t�

Proof� The �rst assertion follows from the de�nition of a�x� �� P� �s � given
above and from the results of the �rst chapter� This shows ind��� P� �st�
varies continuously with t� Since its mod Z reduction is ind��� P �� this
mod Z reduction is constant� This implies ind��� P� �st� itself is constant�

We can use ind��� P� �s � to detect inequivalent trivializations of a bundle
and thereby study the homotopy &M�U�k�' even if M is simply connected�
This is related to spectral #ow�
The secondary characteristic classes are cohomological invariants of the

representation �� They are normally R mod Z classes� but can be lifted
to R and expressed in terms of local invariants if the bundle V� is given
a �xed trivialization� We �rst recall the de�nition of the Chern character�
Let W be a smooth vector bundle with connection r� Relative to some
local frame� we let � be the connection ��form and - � d� � � � � be

the curvature� The Chern character is given by chk�r� �
�
i
��

�k �
k� Tr�-

k��
This is a closed �k form independent of the frame �s chosen� If ri are two
connections for i � 
� �� we form rt � tr� � �� � t�r�� If � � �� � ���
then � transforms like a tensor� If -t is the curvature of the connection
rt� then�

chk�r��� chk�r�� �
Z �

�

d

dt
chk�rt� dt � d�Tchk�r��r���
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where the transgression Tchk is de�ned by�

Tchk�r��r�� �

�
i

��

�k
�

�k � ���
Tr

�Z �

�

�-k��
t dt

�
�

We refer to the second chapter for further details on this construction�
We apply this construction to the case in which both r� and r� have

zero curvature� We choose a local frame so �� � 
� Then �� � � and
-� � d� � � � � � 
� Consequently�

�t � t� and -t � td� � t�� � � � �t� t��� � �

so that�

Tchk�r��r�� �

�
i

��

�k
�

�k � ���

Z �

�

�t� t��k�� dt � Tr���k�� ��

We integrate by parts to evaluate this coe�cient�

Z �

�

�t� t��k�� dt �
Z �

�

tk����� t�k�� dt �
k � �

k

Z �

�

tk��� t�k�� dt

�
�k � ���

k � �k � �� � � � ��k � ��

Z �

�

t�k�� dt

�
�k � ��� �k � ���

��k � ���
�

Therefore

Tchk�r��r�� �

�
i

��

�k
�k � ���

��k � ���
� Tr���k�� ��

We illustrate the use of secondary characteristic classes by giving another
version of the Atiyah�Singer index theorem� Let Q�C���k�� C���k� be
an elliptic complex� Let �s� be global frames on *��1q� over D��T �M� so
that �s� � qt�x� ���s� onD��T

�M��D��T �M� � S�T �M�� �The clutching
function is q� to agree with the notation adopted in the third section we
express �s� � qt�s� as we think of q being a matrix acting on column vectors
of Ck� The action on the frame is therefore the transpose action�� We
choose connections r� on *��1q� so r���s�� � 
 on D��T �M�� Then�

index�Q� � ����m
Z
��T�M�

Todd�M� � ch�r��

� ����m
Z
D��M�

Todd�M� � ch�r���
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However� on D� we have -� � 
 so we can replace ch�r�� by ch�r���
ch�r�� without changing the value of the integral� ch�r�� � ch�r�� �
dTch�r��r�� so an application of Stokes theorem �together with a careful
consideration of the orientations involved� yields�

index�Q� � ����m
Z
S�T�M�

Todd�M� � Tch�r��r���

Both connections have zero curvature near the equator S�T �M�� The �bers
over D� are glued to the �bers over D� using the clutching function q�
With the notational conventions we have established� if f� is a smooth
section relative to the frame �s� then the corresponding representation is
qf� relative to the frame �s�� Therefore r��f�� � q��dq � f� � df� and
consequently

r� �r� � � � q��dq�

�In obtaining the Maurer�Cartan form one must be careful which conven�
tion one uses$right versus left$and we confess to having used both con�
ventions in the course of this book�� We use this to compute�

Tchk�r��r�� �
X

ck Tr��q
��dq��k�� �

for

ck �

�
i

��

�k
�k � ���

��k � ���
�

Let � � g��dg be the Maurer�Cartan form and let Tch �
P
k

ck Tr��
�k�� ��

This de�nes an element of the odd cohomology of GL���C� such that
Tch�r��r�� � q��Tch�� We summarize these computations as follows�

Lemma ������ Let � � g��dg be the Maurer�Cartan form on the general
linear group� De�ne�

Tch �
X
k

�
i

��

�k
�k � ���

��k � ���
�Tr���k�� �

as an element of the odd cohomology� If Q�C����� � C���� is an elliptic
complex de�ned on the trivial bundle� let q be the symbol so q�S�T �M��
GL���C�� Then index�Q� � ����m R

S�T�M� Todd�M� � q��Tch��
We compute explicitly the �rst few terms in the expansion�

Tch �
i

��
Tr��� �

��
����

Tr��
� �
�i

��
�

Tr���� � � � � �

In this version� the Atiyah�Singer theorem generalizes to the case of dM �� �
as the Atiyah�Bott theorem� We shall discuss this in section ����
We can now state the Atiyah�Patodi�Singer twisted index theorem�
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Theorem ����
� Let P �C��V � � C��V � be an elliptic self�adjoint
pseudo�di�erential operator of order d 
 
� Let �����M� � U�k� be a
unitary representation of the fundamental group and assume the associated
bundle V� is toplogically trivial� Let �s be a global frame for V� and let
r���s � � 
 de�ne the connection r�� Let r� be the connection de�ned by
the representation � and let � � r���s � so that�

Tch�r��r�� �
X
k

�
i

��

�k
�k � ���

��k � ���
� Tr���k�� ��

Then�

ind��� P� �s � � ����m
Z
S�T�M�

Todd�M� � ch�*�p� � Tch�r��r���

S�T �M� is given the orientation induced by the simplectic orientation dx��
d�� � � � � � dxm � d�m on T �M where we use the outward pointing normal
so N � ��m�� � ��m �

We postpone the proof of Theorem ����� for the moment to return to the
examples considered previously� In example ������ we let � � e��i� on the
generator of ��S

� � Z� We let ��� denote the usual trivialization of the
bundle S� 	C so that�

r���� � �i	d� and Tch�r��r�� � 	d�����

The unit sphere bundle decomposes S�T �M� � S� 	 f�g � S� 	 f��g�
The symbol of the operator P is multiplication by the dual variable � so
ch�*�p� � � on S� 	 f�g and ch�*�p� � 
 on S� 	 f��g� The induced
orientation on S� 	 f�g is �d�� Since ����m � ��� we compute�

�
Z
S�T�M�

Todd�M� � ch�*�p� � Tch�r��r�� �
Z ��

�

	 d���� � 	�

This also gives an example in which Tch� is non�trivial�
In example ����� we took the non�trivial representation � of ���RP
� �

Z� to de�ne a non�trivial complex line bundle V� such that V� � V� � ���
The appropriate generalization of this example is to �dimensional lens
spaces and provides another application of Theorem ������

Example ����� � Let m �  and let n and q be relatively prime positive
integers� Let � � e��i�n be a primitive nth root of unity and let � �
diag��� �q� generate a cyclic subgroup + of U��� of order n� If �s��� � �s�
then f�sg��s�n parametrize the irreducible representations of +� + acts
without �xed points on the unit sphere S
� Let L�n� q� � S
�+ be the
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quotient manifold� As ���S

� � 
� we conclude ���L�n� q�� � +� Let Vs be

the line bundle corresponding to the representation �s� It is de�ned from
S
 	C by the equivalence relation �z�� z�� w� � ��z�� �

qz�� �
sw��

Exactly the same arguments �working mod n rather than mod �� used to
show V� is non�trivial over RP
 show Vs is non�trivial for 
 � s � n� In facteK�L�n� q�� � Zn as we shall see later in Corollary �����
 and the bundle
�V� � �� generates the reduced K�theory group� A bundle Vs� � � � � � Vst
is topologically trivial if and only if s� � � � �� st � 
 �n��

The bundle Vs � V�s is topologically trivial� We de�ne�

g�z�� z�� �

�
zs� zsq

�

�

 zsq
�

� � zs�

�
where qq
 � � �n��

It is immediate that�

g��z�� �
qz�� �

�
�szs� �szsq

�

�

��s zsq
�

� ���s zs�

�
� �g�z�� z��

so we can regard g as an equivariant frame to Vs � V�s� If frs � r�sg
denotes the connection induced by the locally #at structure and if r��r�

denotes the connection de�ned by the new frame� then�

� � frs �r�sg � fr� �r�g � dg � g���
Suppose �rst s � q � q
 � � so g�S
 � SU��� is the identity map�

Tr��
� is a right invariant �form and is therefore a constant multiple of
the volume element of SU���� We calculate at z � ��� 
� in C�� Let

e� �

�
� 



 ��

�
� e� �

�
i 



 i

�
� e� �

�

 �

� 


�
� e
 �

�

 i

�i 


�

so that g�z� � g�x� � x�e� � x�e� � x�e� � x
e
� At ��� 
� we have�

�dg � g���
 � f�e� dx� � e� dx� � e
 dx
�e�g
�

e� commutes with e� and anti�commutes with e� and e
 so that� as e�� � ��

�dg � g���
 � �e� dx� � e� dx� � e
 dx
��e� dx� � e� dx� � e
 dx
�	
�e� dx� � e� dx� � de
 dx
�e�

� ��e�e�e
 � e�e
e� � e�e�e
 � e�e
e� � e
e�e� � e
e�e��	
e� dx� � dx� � dx


� ��e�e�e
e� � dvol � ��
�
� 



 �

�
dvol
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so that Tr��
� � ��� � dvol� Therefore�Z
s�
Tch��r� �r�� �r� �r�� �

��

����
� volume�S
� � ��

We can study other values of �s� q� by composing with the map �z�� z�� ��
�zs�� z

sq�

� ��j�zs�� zsq
�

� j� This gives a map homotopic to the original map and
doesn�t change the integral� This is an s�q
�to�one holomorophic map so
the corresponding integral becomes s�q
� If instead of integrating over S


we integrate over L�n� q�� we must divide the integral by n so that�Z
L�n�q�

Tch��rs �r�s�r� �r�� �
s�q


n
�

Let P be the tangential operator of the signature complex� By Lemma
����� we have� Z

s�
ch�*��P �� � ���

S
 is parallelizable� The orientation of S�T �S
� is dx� � dx� � d�� � dx
 �
d�
 � �dx� � dx� � dx
 � d�� � d�
 so S�T �S
� � �S
 	 S� given the
usual orientation� Thus

����

Z
S�T�S��

Tch��rs �r�s�r� �r�� � ch�*�P �

� ������������ � � � s�q
�n � ��s�q
�n�
Consequently by Theorem ������ we conclude� since Todd�S
� � ��

ind��s � ��s� �� � ��� P � � ��s�q
�n

using the given framing�
The operator P splits into an operator on even and odd forms with equal

eta invariants and a corresponding calculation shows that ind��s � ��s�
�� � ��� Peven � � ��s�q
�n� There is an orientation preserving isometry
T �L�p� q� � L�p� q� de�ned by T �z�� z�� � � z��  z��� It is clear T inter�
changes the roles of �s and ��s so that as R mod Z�valued invariants�
ind��s� Peven � � ind���s� Peven � so that�

ind��s� P � � � ind��s� Peven � � ind��s� Peven � � ind���s� Peven �

� ��s�q
�n�
This gives a formula in R mod Z for the index of a representation which
need not be topologically trivial� We will return to this formula to dis�
cuss generalizations in Lemma ���� when discussing ind��� �� for general
spherical space forms in section ����



With Coefficients in a Locally Flat Bundle 	�

We sketch the proof of Theorem ������ We shall omit many of the details
in the interests of brevity� We refer to the papers of Atiyah� Patodi� and
Singer for complete details� An elementary proof is contained in �Gilkey�
The eta invariant and the secondary characteristic classes of locally #at
bundles�� De�ne�

ind���� P� s� � ����m
Z
S�T�M�

Todd�M� � ch�*�p� � Tch�r��r��

then Lemmas ���� and ���� generalize immediately to�

Lemma ������
�a� Let M� and M� be smooth manifolds� Let P �C��V�� � C��V�� be
an elliptic complex over M�� Let Q�C��V � � C��V � be a self�adjoint
elliptic operator over M�� We assume P and Q are di�erential operators of

the same order and form R �

�
Q P �

P �Q

�
over M � M� 	M�� Let � be

a representation of ���M��� Decompose ���M� � ���M�� � ���M�� and
extend � to act trivially on ���M��� Then we can identify V� over M with
the pull�back of V� over M�� Let s be a global trivialization of V� then�

ind���R� �s � � index�P � ind���Q��s �

ind����R� �s � � index�P � ind����Q��s ��

�b� LetM� � S� be the circle and let �R�Q� be as de�ned in Lemma ������
then�

ind���R� �s � � ind��� P� �s �

ind����R� �s � � ind���� P� �s ��

Proof� The assertions about ind follow directly from Lemmas ���� and
����� The assertions about ind� follow from Lemma ����d� and from the
Atiyah�Singer index theorem�

Lemma ����	�c� lets us reduce the proof of Theorem ����� to the case
dimM odd� Since both ind and ind� are given by local formulas� we may
assume without loss of generality thatM is also orientable� Using the same
arguments as those given in subsection ��� we can interpret both ind and
ind� as maps in K�theory once the representation � and the global frame
�s are �xed� Consequently� the same arguments as those given for the proof
of Theorem ���	 permit us to reduce the proof of Theorem ����� to the
case in which P � AV is the operator discussed in Lemma �����

ind��� P� �s � is given by a local formula� If we express everything with
respect to the global frame �s� then Pk � P � � and P� is functorially
expressible in terms of P and in terms of the connection ��form � � r��s�

ind��� P� �s � �
Z
M

a�x�G� �� dvol�x��
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The same arguments as those given in discussing the signature complex
show a�x�G� �� is homogeneous of order n in the jets of the metric and of
the connection ��form� The local invariant changes sign if the orientation
is reversed and thus a�x�G� �� dvol�x� should be regarded as an m�form
not as a measure� The additivity of � with respect to direct sums shows
a�x�G� �� � ��� � a�x�G� ��� � a�x�G� ��� when we take the direct sum
of representations� Arguments similar to those given in the second chapter
�and which are worked out elsewhere� prove�

Lemma ����� Let a�x�G� �� be an m�form valued invariant which is
de�ned on Riemannian metrics and on ��form valued tensors � so that
d� � � � � � 
� Suppose a is homogeneous of order m in the jets of the
metric and the tensor � and suppose that a�x�G� �� � ��� � a�x�G� ��� �
a�x�G� ���� Then we can decompose�

a�x�G� �� �
X
�

f� �G� � Tch� ��� �
X
�

f� �G� � c� Tr������ �

where f� �G� are real characteristic forms of T �M� of order m� �� ���

We use the same argument as that given in the proof of the Atiyah�Singer
index theorem to show there must exist a local formula for ind��� P� s� which
has the form�

ind��� P� s� �Z
S�T�M�

X
�i��j��k�m��

Td


i�m�M� � chj�*�p� � Tchk�r��r���

When the existence of such a formula is coupled with the product formula
given in Lemma ����	�a� and with the Atiyah�Singer index theorem� we
deduce that the formula must actually have the form�

ind��� P� s� �Z
S�T�M�

X
j��k�m��

�
Todd�M� � ch�*�p�

�
j
� c�k�Tchk�r��r��

where c�k� is some universal constant which remains to be determined�
If we take an Abelian representation� all the Tchk vanish for k 
 �� We

already veri�ed that the constant c��� � � by checking the operator of
example ����� on the circle� The fact that the other normalizing constants
are also � follows from a detailed consideration of the asymptotics of the
heat equation which arise� we refer to �Gilkey� The eta invariant and the
secondary characteristic classes of locally #at bundles� for further details
regarding this veri�cation� Alternatively� the Atiyah�Patodi�Singer index
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theorem for manifolds with boundary can be used to check these normal�
izing constants� we refer to �Atiyah� Patodi� Singer� Spectral asymmetry
and Riemannian geometry I�III� for details�

The Atiyah�Singer index theorem is a formula on K�1�T �M��� The
Atiyah�Patodi�Singer twisted index theorem can be regarded as a formula
on K�S�T �M�� � K��1�T �M��� These two formulas are to be regarded
as suspensions of each other and are linked by Bott periodicity in a purely
formal sense which we shall not make explicit�
If V� is not topologically trivial� there is no local formula for ind��� P �

in general� It is possible to calculate this using the Lefschetz �xed point
formulas as we will discuss later�
We conclude this section by discussing the generalization of Theorem

����� to the case of manifolds with boundary� It is a fairly straightforward
computation using the methods of section �� to show�

Lemma ����� We adopt the notation of Theorem ������ Then for any
k � 
�

ind��� P� �s � � ����m
Z
��k�T�M�

Todd�M��ch�*��1
�k�p����Tch�r��r���

Remark� This shows that we can stabilize by suspending as often as we
please� The index can be computed as an integral over 1�k�� �T �M� while
the twisted index is an integral over 1�k�T �M�� These two formulas are
at least formally speaking the suspensions of each other�

It turns out that the formula of Theorem ����� does not generalize
directly to the case of manifolds with boundary� while the formula of
Lemma ����� with k � � does generalize� Let M be a compact manifold
with boundary dM � We choose a Riemannian metric on M which is prod�
uct near dM � Let P �C��V �� C��V � be a �rst order partial di�erential
operator with leading symbol p which is formally self�adjoint� We suppose
p�x� ��� � j�j� � �V so that p is de�ned by Cli�ord matrices� If we decom�
pose p�x� �� �

P
j pj�x��j relative to a local orthonormal frame for T ��M��

then the pj are self�adjoint and satisfy the relations pjpk � pkpj � ��jk�
Near the boundary we decompose T ��M� � T ��dM�� � into tangential

and normal directions� We let � � �� � z� for � � T ��dM� re#ect this
decomposition� Decompose p�x� �� �

P
��j�m�� pj�x��j � pmz� Let t be

a real parameter and de�ne�

��x� � � t� � i � pm
� X
��j�m��

pj�x��j � it

�
as the endomorphism de�ned in Chapter �� We suppose given a self�adjoint
endomorphism q of V which anti�commutes with � � Let B denote the
orthogonal projection �

� �� � q� on the �� eigenspace of q� �P�B� is a self�
adjoint elliptic boundary value problem� The results proved for manifolds
without boundary extend to this case to become�
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Theorem ������� Let �P�B� be an elliptic �rst order boundary value
problem� We assume P is self�adjoint and �L�p�

� � j�j� � IV � We assume

B � �
� ���q� where q anti�commutes with � � i�pm

�P
��j�m�� pj�j � it

�
�

Let f��g���� denote the spectrum of the operator PB � De�ne�

��s� P�B� �
X
�

sign��� �j�� j�s�

�a� ��s� P�B� is well de�ned and holomorphic for Re�s�� 
�
�b� ��s� P�B� admits a meromorphic extension to C with isolated simple
poles at s � �n � m��� for n � 
� �� �� � � � � The residue of � at such a
simple pole is given by integrating a local formula an�x� P � over M and a
local formula an���x� P�B� over dM �
�c� The value s � 
 is a regular value�
�d� If �Pu� Bu� is a smooth 
�parameter family of such operators� then the

derivative
d

du
��
� Pu� Bu� is given by a local formula�

Remark� This theorem holds in much greater generality than we are stating
it� we restrict to operators and boundary conditions given by Cli�ord ma�
trices to simplify the discussion� The reader should consult �Gilkey�Smith�
for details on the general case�

Such boundary conditions always exist if M is orientable and m is even�
they may not exist if m is odd� For m even and M orientable� we can
take q � p� � � �pm�� � If m is odd� the obstruction is Tr�p� � � �pm� as
discussed earlier� This theorem permits us to de�ne ind��� P�B� if � is a
unitary representation of ���M� just as in the case where dM is empty�
In R mod Z� it is a homotopy invariant of �P�B�� If the bundle V� is
topologically trivial� we can de�ne

ind��� P�B� �s �

as a real�valued invariant which is given by a local formula integrated over
M and dM �
The boundary condition can be used to de�ne a homotopy of 1p to an

elliptic symbol which doesn�t depend upon the tangential �ber coordinates�

Homotopy ����

� Let �P�B� be as in Theorem �����
 with symbols given
by Cli�ord matrices� Let u be an auxilary parameter and de�ne�

��x� � � t� u� � cos
�
�
� � u

�
��x� � � t� � sin

�
�
� � u

�
q for u � &��� 
'�

It is immediate that ��x� � � t� 
� � ��x� � � t� and ��x� � � t���� � �q� As � and
q are self�adjoint and anti�commute� this is a homotopy through self�adjoint

matrices with eigenvalues �
cos� ��� � u� �j� j� � t�� � sin�
�
�
� � u

�����
�



With Coefficients in a Locally Flat Bundle 	��

Therefore ��x� � � t� u� � iz is a non�singular elliptic symbol for �� � t� z� ��
�
� 
� 
�� We have

1p�x� � � z� t� � p�x� � � z�� it � ipm � f��x� � � t�� izg
so we de�ne the homotopy

1p�x� � � z� t� u� � ipm � f��x� � � t� u�� izg for u � &��� 
'�
We identi�y a neighborhood of dM in M with dM 	 &
� ��� We sew on a

collared neighborhood dM 	 &��� 
' to de�ne fM � We use the homotopy

just de�ned to de�ne an elliptic symbol �1p�B on 1�T �fM� which does not
depend upon the tangential �ber coordinates � on the boundary dM 	
f��g� We use the collaring to construct a di�eomorophism of M and fM
to regard �1p�B on 1�T �M� where this elliptic symbol is independent of
the tangential �ber coordinates on the boundary� We call this construction
Homotopy �������

We can now state the generalization of Theorem ����� to manifolds with
boundary�

Theorem �����	� We adopt the notation of Theorem ����
� and let
�P�B� be an elliptic self�adjoint �rst order boundary value problem with
the symbols given by Cli�ord matrices� Let � be a representation of ���M��
Suppose V� is topologically trivial and let �s be a global frame� Then

ind��� P�B� �s � �

����m
Z
��k�T�M�

Todd�M� � ch�*��1
�k�� ��1p�B��� � Tch�r��r���

for any k � �� Here �1p�B is the symbol on 1�T �M� de�ned by Homo�
topy ����

 so that it is an elliptic symbol independent of the tangential
�ber variables � on the boundary�
Remark� This theorem is in fact true in much greater generality� It is
true under the much weaker assumption that P is a �rst order formally
self�adjoint elliptic di�erential operator and that �P�B� is self�adjoint and
strongly elliptic in the sense discussed in Chapter �� The relevant homotopy
is more complicated to discuss and we refer to �Gilkey�Smith� for both
details on this generalization and also for the proof of this theorem�

We conclude by stating the Atiyah�Bott formula in this framework� Let
P �C��V�� � C��V�� be a �rst order elliptic operator and let B be an
elliptic boundary value problem� The boundary value problem gives a
homotopy of 1p through self�adjoint elliptic symbols to a symbol indepen�
dent of the tangential �ber variables� We call the new symbol f1pgB � The
Atiyah�Bott formula is

index�P�B� � ����m
Z
��T�M�

Todd�M� � ch�*���1p�B���
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In section ��	� we discussed the Lefschetz �xed point formulas using heat
equation methods� In this section� we shall derive the classical Lefschetz
�xed point formulas for a non�degenerate smooth map with isolated �xed
points for the four classical elliptic complexes� We shall also discuss the
case of higher dimensional �xed point sets for the de Rham complex� The
corresponding analysis for the signature and spin complexes is much more
di�cult and is beyond the scope of this book� and we refer to �Gilkey�
Lefschetz �xed point formulas and the heat equation� for further details�
We will conclude by discussing the theorem of Donnelly relating Lefschetz
�xed point formulas to the eta invariant�
A number of authors have worked on proving these formulas� Kotake in

���� discussed the case of isolated �xed points� In ����� Lee extended the
results of Seeley to yield the results of section ��	 giving a heat equation
approach to the Lefschetz �xed point formulas in general� We also derived
these results independently not being aware of Lee�s work� Donnelly in
���� derived some of the results concerning the existence of the asymptotic
expansion if the map concerned was an isometry� In ���	 he extended his
results to manifolds with boundary�

During the period ���
 to ����� Patodi had been working on generalizing
his results concerning the index theorem to Lefschetz �xed point formulas�
but his illness and untimely death in December ���� prevented him from
publishing the details of his work on the G�signature theorem� Donnelly
completed Patodi�s work and joint papers by Patodi and Donnelly contain
these results� In ����� Kawasaki gave a proof of the G�signature theorem
in his thesis on V �manifolds� We also derived all the results of this section
independently at the same time� In a sense� the Lefschetz �xed point
formulas should have been derived by heat equation methods at the same
time as the index theorem was proved by heat equation methods in ����
and it remains a historical accident that this was not done� The problem
was long over�due for solution and it is not surprising that it was solved
simultaneously by a number of people�

We �rst assume T �M �M is an isometry�

Lemma ������ If T is an isometry� then the �xed point set of T consists
of the disjoint union of a �nite number of totally geodesic submanifolds
N�� � � � � If N is one component of the �xed point set� the normal bundle
� is the orthogonal complement of T �N� in T �M�jN � � is invariant under
dT and det�I � dT� � 
 
 so T is non�degenerate�

Proof� Let a 
 
 be the injectivity radius of M so that if dist�x� y� � a�
then there exists a unique shortest geodesic � joining x to y in M � If
T �x� � x and T �y� � y� then T� is another shortest geodesic joining x
to y so T� � � is �xed pointwise and � is contained in the �xed point
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set� This shows the �xed point set is totally geodesic� Fix T �x� � x and
decompose T �M�x � V��� where V� � f v � T �M�x � dT �x�v � v g� Since
dT �x� is orthogonal� both V� and � are invariant subspaces and dT� is an
orthogonal matrix with no eigenvalue �� Therefore det�I � dT� � 
 
� Let
� be a geodesic starting at x so �
�
� � V�� Then T� is a geodesic starting
at x with T�
�
� � dT �x��
�
� � �
�
� so T� � � pointwise and expx�V��
parametrizes the �xed point set near x� This completes the proof�

We letM be oriented and of even dimensionm � �n� Let �d����C��%��
� C��%�� be the operator of the signature complex� We let H��M �C� �
N�"�� on C��%�� so that signature�M� � dimH� � dimH�� If T is an
orientation preserving isometry� then T �d � dT � and T �� � �T � where ���
denotes the Hodge operator� Therefore T � induces maps T� onH��M �C��
We de�ne�

L�T �signature � Tr�T��� Tr�T���

Let A � dT � SO�m� at an isolated �xed point� De�ne

defect�A� signature� � fTr�%��A��� Tr�%��A��g� det�I �A�

as the contribution from Lemma ��	�� We wish to calculate this charac�
teristic polynomial� If m � �� let fe�� e�g be an oriented orthonormal basis
for T �M� � T ��M� such that

Ae� � �cos ��e� � �sin ��e� and Ae� � �cos ��e� � �sin ��e��

The representation spaces are de�ned by�

%� � spanf� � ie�e�� e� � ie�g and %� � spanf�� ie�e�� e� � ie�g

so that�

Tr�%��A�� � �� e�i� � Tr�%��A�� � �� e�i� � det�I �A� � �� � cos �

and consequently�

defect�A� signature� � ���i cos ������ � cos �� � �i cot������

More generally let m � �n and decompose A � dT into a product of mutu�
ally orthogonal and commuting rotations through angles �j corresponding
to complex eigenvalues �j � ei�j for � � j � n� The multiplicative nature
of the signature complex then yields the defect formula�

defect�A� signature� �
nY

j��

f�i cot��j���g �
nY

j��

�j � �

�j � �
�
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This is well de�ned since the condition that the �xed point be isolated is
just 
 � �j � �� or equivalently �j �� ��
There are similar characteristic polynomials for the other classical el�

liptic complexes� For the de Rham complex� we noted in Chapter � the
corresponding contribution to be �� � sign�det�I � A��� If M is spin� let
A�C��"�� � C��"�� be the spin complex� If T is an isometry which
can be lifted to a spin isometry� we can de�ne L�T �spin to be the Lefschetz
number of T relative to the spin complex� This lifts A from SO�m� to
SPIN�m�� We de�ne�

defect�A� spin� � fTr�"��A�� Tr�"��A��g� det�I �A�

and use Lemma ���� to calculate if m � � that�

defect�A� spin� � �e�i��� � ei�������� � cos ��

� �i sin��������� cos �� � � i

�
cosec�����

�
np

 ��
p
�
o
���� ��  �� �

p
����� ���

Using the multiplicative nature we get a similar product formula in general�
Finally� let M be a holomorphic manifold and let T �M � M be a

holomorphic map� Then T and  � commute� We let L�T �Dolbeault �P
q����q Tr�T � on H��q� be the Lefschetz number of the Dolbeault com�

plex� Just because T has isolated �xed points does not imply that it is
non�degenerate� the map z �� z � � de�nes a map on the Riemann sphere
S� which has a single isolated degenerate �xed point at �� We suppose
A � L�T � � U�m� � is in fact non�degenerate and de�ne

defect�A�Dolbeault� � fTr�%��even �A��� Tr�%��odd �A��g det�I �Areal ��

If m � �� it is easy to calculate

defect�A�Dolbeault� � ��� ei������ � cos �� � ��� ������ ��  ��

� ����� ��

with a similar multiplicative formula for m 
 �� We combine these result
with Lemma ��	� to derive the classical Lefschetz �xed point formulas�

Theorem ����	� Let T �M �M be a non�degenerate smooth map with
isolated �xed points at F �T � � fx�� � � � � xrg� Then
�a� L�T �de Rham �

P
j sign�det�I � dT ���xj��

�b� Suppose T is an orientation preserving isometry� De�ne�

defect�A� signature� �
Y
j

f�i � cot �jg �
Y
j

�j � �

�j � �
�
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then L�T �signature �
P

j defect�dT �xj�� signature��

�c� Suppose T is an isometry preserving a spin structure� De�ne�

defect�A� spin� �
Y
j

�
� i

�
cosec��j���

�
�
Y
j

p
�j

�j � �
�

then L�T �spin �
P

j defect�dT �xj�� spin��

�d� Suppose T is holomorphic� De�ne�

defect�A�Dolbeault� �
Y
j

�j
�j � �

�

then L�T �Dolbeault �
P

j defect�dT �xj��Dolbeault��

We proved �a� in Chapter �� �b���d� follow from the calculations we have
just given together with Lemma ��	�� In de�ning the defect� the rotation
angles of A are f�jg so Ae� � �cos ��e� � �sin ��e� and Ae� � �� sin ��e� �
�cos ��e�� The corresponding complex eigenvalues are f�j � ei�jg where
� � j � m��� The formula in �a� does not depend on the orientation� The
formula in �b� depends on the orientation� but not on a unitary structure�
The formula in �c� depends on the particular lift of A to spin� The formula
in �d� depends on the unitary structure� The formulas �b���d� are all
for even dimensional manifolds while �a� does not depend on the parity
of the dimension� There is an elliptic complex called the PINc complex
de�ned over non�orientable odd dimensional manifolds which also has an
interesting Lefschetz number relative to an orientation reversing isometry�

Using Lemmas ��	�� and ��	�� it is possible to get a local formula for the
Lefschetz number concentrated on the �xed pont set even if T has higher
dimensional �xed point sets� A careful analysis of this situation leads to the
G�signature theorem in full generality� We refer to the appropriate papers
of �Gilkey� Kawasaki� and Donnelly� for details regarding the signature and
spin complexes� We shall discuss the case of the de Rham complex in some
detail�
The interesting thing about the Dolbeault complex is that Theorem �����

does not generalize to yield a corresponding formula in the case of higher
dimensional �xed point sets in terms of characteristic classes� So far� it
has not proven possible to identify the invariants of the heat equation
with generalized cohomology classes in this case� The Atiyah�Singer index
theorem in its full generality also does not yield such a formula� If one
assumes that T is an isometry of a Kaehler metric� then the desired result
follows by passing �rst to the SPINc complex as was done in Chapter �
However� in the general case� no heat equation proof of a suitable general�
ization is yet known� We remark that Toledo and Tong do have a formula
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for L�T �Dolbeault in this case in terms of characteristic classes� but their
method of proof is quite di�erent�

Before proceeding to discuss the de Rham complex in some detail� we
pause to give another example�

Example ������ Let T� be the ��dimensional torus S� 	 S� with usual
periodic parameters 
 � x� y � �� Let T �x� y� � ��y� x� be a rotation
through �
�� Then
�a� L�T �de Rham � ��
�b� L�T �signature � �i�

�c� L�T �spin � �i�
p
��

�d� L�T �Dolbeault � �� i�

Proof� We use Theorem ����� and notice that there are two �xed points
at �
� 
� and ����� ����� We could also compute directly using the indi�
cated action on the cohomology groups� This shows that although the
signature of a manifold is always zero if m � � ���� there do exist non�
trivial L�T �signature in these dimensions� Of course� there are many other
examples�

We now consider the Lefschetz �xed point formula for the de Rham com�
plex if the �xed point set is higher dimensional� Let T �M �M be smooth
and non�degenerate� We assume for the sake of simplicity for the moment
that the �xed point set of T has only a single component N of dimension
n� The general case will be derived by summing over the components of
the �xed point set� Let � be the sub�bundle of T �M�jN spanned by the
generalized eigenvectors of dT corresponding to eigenvalues other than ��
We choose the metric on M so the decomposition T �M�jN � T �N�� � is
orthogonal� We further normalize the choice of metric by assuming that N
is a totally goedesic submanifold�
Let ak�x� T�"p� denote the invariants of the heat equation discussed in

Lemma ��	�� so that

Tr�T �e�t	p � 

�X
k��

t�k�n���
Z
N

ak�x� T�"p� dvol�x��

Let ak�x� T �de Rham �
P

����pak�x� T�"p�� then Lemma ��	�� implies�

L�T �de Rham 

�X
k��

t�k�n���
Z
N

ak�x� T �de Rham dvol�x��

Thus�Z
N

ak�x� T �de Rham dvol�x� �

�

 if k �� dimN
L�T �de Rham if k � dimN�
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We choose coordinates x � �x�� � � � � xn� on N � We extend these co�
ordinates to a system of coordinates z � �x� y� for M near N where
y � �y�� � � � � ym�n�� We adopt the notational convention�

indices � � i� j� k � m index a frame for T �M�jN
� � a� b� c � n index a frame for T �N�

n � u� v� w � m index a frame for ��

If � is a multi�index� we deompose � � ��N � �� � into tangential and normal
components�
We let gij�� denote the jets of the metric tensor� Let T � �T�� � � � � Tm�

denote the components of the map T relative to the coordinate system Z �
Let Ti�� denote the jets of the map T � the Ti�j variables are tensorial and
are just the components of the Jacobian� De�ne�

ord�gij��� � j�j� ord�Ti��� � j�j � �� degv�Ti��� � �i�v � ��v��

Let T be the polynomial algebra in the formal variables fgij��� Ti��g for

j�j 
 
� j�j 
 � with coe�cients c�gij � Ti�j�j det�I � dT� �j�� where the
c�gij � Ti�j� are smooth in the gij and Ti�j variables� The results of section
��	 imply ak�x� T �de Rham � T � If Z is a coordinate system� if G is a
metric� and if T is the germ of a non�degenerate smooth map we can
evaluate p�Z� T�G��x� for p � T and x � N � p is said to be invariant if
p�Z� T�G��x� � p�Z 
� T�G��x� for any two coordinate systems Z � Z 
 of this
form� We let Tm�n be the sub�algebra of T of all invariant polynomials
and we let Tm�n�k be the sub�space of all invariant polynomials which are
homogeneous of degree k using the grading de�ned above� It is not di�cult
to show there is a direct sum decomposition Tm�n �

L
k Tm�n�k as a graded

algebra�

Lemma ������ ak�x� T �de Rham � Tm�n�k �

Proof� The polynomial dependence upon the jets involved together with
the form of the coe�cients follows from Lemma ��	��� Since ak�x� T �deRham
does not depend upon the coordinate system chosen� it is invariant� We
check the homogeneity using dimensional analysis as per usual� If we re�
place the metric by a new metric c�G� then ak becomes c�kak� We replace
the coordinate system Z by Z 
 � cZ to replace gij�� by c�j�jgij�� and Ti��
by c�j�j��Ti�� � This completes the proof� The only feature di�erent from
the analysis of section ��� is the transformation rule for the variables Ti�� �

The invariants ak are multiplicative�

Lemma ������ Let T 
�M 
 � M 
 be non�degenerate with �xed subman�
ifold N 
� De�ne M � S� 	M 
� N � S� 	 N 
� and T � I 	 T 
� Then
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T �M � M is non�degenerate with �xed submanifold N � We give M the
product metric� Then ak�x� T �de Rham � 
�

Proof� We may decompose

%p�M� � %��S���%p�M 
� � %��S���%p���M 
� � %p�M 
��%p���M 
��

This decomposition is preserved by the map T � Under this decomposition�
the Laplacian "M

p splits into "

p � "



p � The natural bundle isomorphism

identi�es "


p � "


p�� � Since ak�x� T�"
M
p � � ak�x� T�"



p� � ak�x� T�"




p� �

ak�x� T�"


p��ak�x� T�"



p���� the alternating sum de�ning ak�x� T �de Rham

yields zero in this example which completes the proof�

We normalize the coordinate system Z by requiring that gij�x�� � �ij �
There are further normalizations we shall discuss shortly� There is a natural
restriction map r� Tm�n�k � Tm���n���k de�ned algebraically by�

r�gij��� �

�

 if deg��gij��� �� 

g
ij�� if deg��gij��� � 


r�Ti��� �

�

 if deg��Ti��� �� 

T 
i�� if deg��Ti��� � 
�

In this expression� we let g
 and T 
 denote the renumbered indices to refer
to a manifold of one lower dimension� �It is inconvenient to have used the
last m�n indices for the normal bundle at this point� but again this is the
cannonical convention which we have chosen not to change�� In particular
we note that Lemma ����� implies r�ak�x� T �de Rham � � 
� Theorem �����
generalizes to this setting as�

Lemma ����
� Let p � Tm�n�k be such that r�p� � 
�
�a� If k is odd or if k � n then p � 
�
�b� If k � n is even we let En be the Euler form of the metric on N �
Then an�x� T �de Rham � j det�I � dT� �j��f�dT� �En for some GL�m � n�
invariant smooth function f����

We postpone the proof of this lemma for the moment to complete our
discussion of the Lefschetz �xed point formula for the de Rham complex�

Theorem ������ Let T �M � M be non�degenerate with �xed point
set consisting of the disjoint union of the submanifolds N�� N�� � � � � Nr�
Let N denote one component of the �xed point set of dimension n and let
ak�x� T �de Rham be the invariant of the heat equation� Then�
�a� ak�x� T �de Rham � 
 for k � n or if k is odd�
�b� If k � n is even� then an�x� T �de Rham � sign�det�I � dT� ��En�
�c� L�T �de Rham �

P
� sign�det�I � dT ����N� � �Classical Lefschetz �xed

point formula��

Proof� �a� follows directly from Lemmas ������������ We also conclude
that if k � n is even� then an�x� T �de Rham � h�dT� �En for some invariant
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function h� We know h�dT� � � sign�det�I � dT �� if n � m by Theorem
��	��� The multiplicative nature of the de Rham complex with respect to
products establishes this formula in general which proves �b�� Since

L�T �de Rham �
X
�

sign�det�I � dT� ��
Z
N�

En� dvol�x��

by Theorem ��	��� �c� follows from the Gauss�Bonnet theorem already es�
tablished� This completes the proof of Theorem ������

Before beginning the proof of Lemma ������ we must further normalize
the coordinates being considered� We have assumed that the metric cho�
sen makes N a totally geodesic submanifold� �In fact� this assumption is
inessential� and the theorem is true in greater generality� The proof� how�
ever� is more complicated in this case�� This implies that we can normalize
the coordinate system chosen so that gij�k�x�� � 
 for � � i� j� k � m� �If
the submanifold is not totally geodesic� then the second fundamental form
enters in exactly the same manner as it did for the Gauss�Bonnet theorem
for manifolds with boundary��
By hypothesis� we decomposed T �M�jN � T �N� � � and decomposed

dT � I � dT� � This implies that the Jacobian matrix Ti�j satis�es�

Ta�b � �a�b� Ta�u � Tu�a � 
 along N�

Consequently�

Ta��N�� � 
 for j�� j � � and Tu��N�� � 
 for j�� j � 
�

Consequently� for the non�zero Ti�� variables�X
a�n

dega�Ti��� � ord�Ti��� � j�j � ��

Let p satisfy the hypothesis of Lemma ������ Let p �� 
 and let A be a
monomial of p� We decompose�

A � f�dT� � �A� �A� where

�
A� � gi�j���� � � � girjr��r for j�� j � �
A� � Ak���� � � �Aks��s for j�� j � ��

Since r�p� � 
� deg� A �� 
� Since p is invariant under orientation reversing
changes of coordinates on N � deg� A must be even� Since p is invariant
under coordinate permutations on N � dega A � � for � � a � n� We now
count indices�

�n �
X

��a�n
dega�A� �

X
��a�n

dega�A�� �
X

��a�n
dega�A��

� �r � ord�A�� � ord�A�� � � ord�A�� � � ord�A�� � � ord�A��
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This shows p � 
 if ord�A� � n�

We now study the limiting case ord�A� � n� All these inequalities must
have been equalities� This implies in particular that ord�A�� � � ord�A�� so
ord�A�� � 
 and A� does not appear� Furthermore� �r � ord�A�� implies
A� is a polynomial in the ��jets of the metric� Finally�

P
��a�n dega�A�� �

�r implies that A� only depends upon the fgab�cdg variables� Since p �� 

implies n � �r� we conclude p � 
 if k � n is odd� This completes the
proof of �a��

To prove �b�� we know that p is a polynomial in the fgab�cdg variables
with coe�cients which depend on the fTu�vg � dT� variables� Exactly the
same arguments as used in section ��� to prove Theorem ����� now show
that p has the desired form� This completes the proof� the normal and
tangential indices decouple completely�

The Lefschetz �xed point formulas have been generalized by �Donnelly�
The eta invariant of G�spaces� to the case of manifolds with boundary� We
brie#y summarize his work� Let N be a compact Riemannian manifold
with boundary M � We assume the metric is product near the boundary so
a neighborhood of M in N has the form M 	 &
� 	�� Let n be the normal
parameter� Let G be a �nite group acting on N by isometries� G must
preserve M as a set� We suppose G has no �xed points on M and only
isolated �xed points in the interior of N for g �� I� Let F �g� denote the
set of �xed points for g �� I� Let M � M�G be the resulting quotient
manifold� It bounds a V �manifold in the sense of Kawasaki� but does not
necessarily bound a smooth manifold as N�G need not be a manifold�

Let P �C��V��� C��V�� be an elliptic �rst order di�erential complex
over N � Near the boundary� we assume P has the form P � p�dn�����n�
A� where A is a self�adjoint elliptic �rst order di�erential operator over
M whose coe�cients are independent of the normal parameter� We also
assume the G action on N extends to an action on this elliptic complex�
Then gA � Ag for all g � G� Decompose L��V�jM � �

L
� E��� into the

�nite dimensional eigenspaces of A� Then g induces a representation on
each E��� and we de�ne�

��s� A� g� �
X
�

sign��� � j�j�s Tr�g on E����

as the equivariant version of the eta invariant� This series converges abso�
lutely for Re�s�� 
 and has a meromorphic extension to C� It is easy to
see using the methods previously developed that this extension is regular
for all values of s since g has no �xed points on M for g �� I� If g � I� this
is just the eta invariant previously de�ned�

Let B be orthonormal projection on the non�negative spectrum of A�
This de�nes a non�local elliptic boundary value problem for the operator
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P � Since g commutes with the operator A� it commutes with the bound�
ary conditions� Let L�P�B� g� be the Lefschetz number of this problem�
Theorems ����� and ��	� generalize to this setting to become�

Theorem ����� �Donnelly�� Let N be a compact Riemannian man�
ifold with boundary M � Let the metric on N be product near M � Let
P �C��V�� � C��V�� be a �rst order elliptic di�erential complex over
N � Assume near M that P has the form P � p�dn�����n� A� where A
is a self�adjoint elliptic tangential operator on C��V�� over the boundary
M � Let L��V�jM � �

L
� E��� be a spectral resolution of A and let B be

orthonormal projection on the non�negative spectrum of A� �P�B� is an
elliptic boundary value problem� Assume given an isometry g�N � N
with isolated �xed points x�� � � � � xr in the interior of N � Assume given an
action g on Vi so gP � Pg� Then gA � Ag as well� De�ne�

��s� A� g� �
X
�

sign���j�j�s � Tr�g on E�����

This converges for Re�s� � 
 and extends to an entire function of s� Let
L�P�B� g� denote the Lefschetz number of g on this elliptic complex and
let

defect�P� g��xi� � f�Tr�g on V��� Tr�g on V���� det�I � dT �g�xi�
then�

L�P�B� g� �

�X
i

defect�P�G��xi�

�
� �

�



��
� A� g� � Tr�g on N�A��

�
�

Remark� Donnelly�s theorem holds in greater generality as one does not
need to assume the �xed points are isolated and we refer to �Donnelly� The
eta invariant of G�spaces� for details�

We use this theorem to compute the eta invariant on the quotient mani�
fold M � M�G� Equivariant eigensections for A over M correspond to the
eigensections of  A over M � Then�

!��  A� �
�

�
f��
�  A� � dimN�  A�g

�
�

jGj �
�

�
�
X
g�G

f��
� A� g� � Tr�g on N�A��g

�
�

jGj
X
g�G

f�L�P�B� g�g� �

jGj
Z
N

�an�x� P
�P �� an�x� PP

��� dx

�
�

jGj
X
g�G
g 	�I

X
x�F �g�

defect�P� g��x��
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The �rst sum over the group gives the equivariant index of P with the
given boundary condition� This is an integer and vanishes in R mod Z�
The second contribution arises from Theorem ����� for g � I� The �nal
contribution arises from Theorem ����	 for g �� I and we sum over the �xed
points of g �which may be di�erent for di�erent group elements��
If we suppose dimM is even� then dimN is odd so an�x� P

�P � �
an�x� PP

�� � 
� This gives a formula for ��  A� over M in terms of the
�xed point data on N � By replacing Vi by Vi � �k and letting G act by a
representation � of G in U�k�� we obtain a formula for ��  A���

If dimM is odd and dimN is even� the local interior formula for
index�P�B� given by the heat equation need not vanish identically� If
we twist by a virtual representation �� we alter the defect formulas by
multiplying by Tr���g��� The contribution from Theorem ����� is mul�
tiplied by Tr������ � dim�� Consequently this term disappears if � is a
representation of virtual dimension 
� This proves�

Theorem ����� Let N be a compact Riemannian manifold with bound�
aryM � Let the metric onN be product nearM � Let P �C��V��� C��V��
be a �rst order elliptic di�erential complex over N � Assume nearM that P
has the form P � p�dn������A�where A is a self�adjoint elliptic tangential
operator on C��V�� over M � Let G be a �nite group acting by isometries
on N � Assume for g �� I that g has only isolated �xed points in the interior
of N � and let F �g� denote the �xed point set� Assume given an action on
Vi so gP � Pg and gA � Ag� Let M � M�G be the quotient manifold
and  A the induced self�adjoint elliptic operator on C��  V� � V��G� over
M � Let � � R�G� be a virtual representation� If dimM is odd� we assume
dim � � 
� Then�

!��  A�� �
�

jGj
X
g�G
g 	�I

X
s�F �g�

Tr���g�� defect�P� g��x� mod Z

for

defect�P� g��x� � f�Tr�g on V��� Tr�g on V���� det�I � dg�g�x��

We shall use this result in the next section and also in section ��� to
discuss the eta invariant for sherical space forms�



	��� The Eta Invariant and the K�Theory of

Spherical Space Forms�

So far� we have used K�theory as a tool to prove theorems in analysis�
K�theory and the Chern isomorphism have played an important role in our
discussion of both the index and the twisted index theorems as well as in
the regularity of eta at the origin� We now reverse the process and will use
analysis as a tool to compute K�theory� We shall discuss the K�theory of
spherical space forms using the eta invariant to detect the relevant torsion�
In section ���� Corollary ������ we discussed the equivariant computation

of the eta invariant� We apply this to spherical space forms as follows� Let
G be a �nite group and let � �G� U�l� be a �xed point free representation�
We suppose det�I���g�� �� 
 for g �� I� Such a representation is necessarily
faithful� the existence of such a representation places severe restrictions on
the group G� In particular� all the Sylow subgroups for odd primes must be
cyclic and the Sylow subgroup for the prime � is either cyclic or generalized
quaternionic� These groups have all been classi�ed by �Wolf� Spaces of
Constant Curvature� and we refer to this work for further details on the
subject�
��G� acts without �xed points on the unit sphere S�l�� in Cl� Let M �

M��� � S�l�����G�� We suppose l 
 � so� since S�l�� is simply connected�
� induces an isomorphism between G and ���M�� M inherits a natural
orientation and Riemannian metric� It also inherits a natural Cauchy�
Riemann and SPINc structure� �M is not necessarily a spin manifold�� The
metric has constant positive sectional curvature� Such a manifold is called
a spherical space form� all odd dimensional compact manifolds without
boundary admitting metrics of constant positive sectional curvature arise
in this way� The only even dimensional spherical space forms are the sphere
S�l and the projective space RP �l� We concentrate for the moment on the
odd dimensional case� we will return to consider RP �l later in this section�
We have the geometrical argument�

T �S�l�� �� � � T �R�l�jS�l�� � S�l�� 	 R�l � S�l�� 	Cl

is the trivial complex bundle of dimension l� The de�ning representation
� is unitary and acts naturally on this bundle� If V is the locally #at
complex bundle over M��� de�ned by the representation of ���M���� � G�
then this argument shows

�V�real � T �M����� ��

this is� of course� the Cauchy�Riemann structure refered to previously� In
particular V admits a nowhere vanishing section so we can split V � V���
where V� is an orthogonal complement of the trivial bundle corresponding
to the invariant normal section of T �R�l�jS�l�� � ThereforeX
�

�����%� �V� �
X
�

�����%� �V���� �
X
�

�����f%� �V���%��� �V��g � 
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in K�M�� This bundle corresponds to the virtual representation � �P
� �����%� ��� � R��G�� This proves�

Lemma ��
��� Let � be a �xed point free representation of a �nite group
G in U�l� and let M��� � S�l�����G�� Let � �

P
� �����%� ��� � R��G��

Then�

T �M����� � � �V�real and V� � 
 in eK�M�����

The sphere bounds a disk D�l in Cl� The metric is not product near
the boundary of course� By making a radial change of metric� we can put
a metric on D�l agreeing with the standard metric at the origin and with
a product metric near the boundary so that the action of O��l� continues
to be an action by isometries� The transition functions of V are unitary
so T �M���� inherits a natural SPINc structure� Let � � signature or Dol�
beault and let A� be the tangential operator of the appropriate elliptic
complex over the disk� ��G� acts on D�l and the action extends to an ac�
tion on both the signature and Dolbeault complexes� There is a single �xed
point at the origin of the disk� Let defect���g�� �� denote the appropriate
term from the Lefschetz �xed point formulas� Let f��g denote the com�
plex eigenvalues of ��g�� and let ��g�r denote the corresponding element of
SO��l�� It follows from section ��� that�

defect���g�� signature� �
Y
�

�� � �

�� � �
�

defect���g��Dolbeault� �
det���g��

det���g�� I�
�
Y
�

��
�� � �

�

We apply Corollary ����� to this situation to compute�

��
�	� Let � �G � U�l� be a �xed point free representation of a �nite
group� Let M��� � S�l�����G� be a spherical space form� Let � � signa�
ture or Dolbeault and let A� be the tangential operator of the appropriate
elliptic complex� Let � � R��G� be a virtual representation of dimension

� Then�

!���A���� �
�

jGj
X
g�G
g 	�I

Tr���g�� defect���g�� �� in R mod Z�

Remark� A priori� this identity is in R mod Z� It is not di�cult to show
that this generalized Dedekind sum is always Q mod Z valued and that
jGjl!� � Z so one has good control on the denominators involved�

The perhaps somewhat surprising fact is that this invariant is polyno�
mial� Suppose G � Zn is cyclic� Let x � �x�� � � � � xl� be a collection of
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indeterminates� Let Td and L be the Todd and Hirzebruch polynomials
discussed previously� We de�ne�

Td���x� � � L���x� � �

Td���x� �
�

�

X
xj L���x� � 


Td���x� �
�

��

�X
j�k

xjxk �

�X
j

xj

���
L���x� �

�



X
x�i

where we have renumbered the Lk polynomials to be homogeneous of degree
k� Let s be another parameter which represents the �rst Chern class of a
line bundle� The integrands of the index formula are given by�

Pl�s��x� signature� �
X

j�k�l

sjLk��x��
j�j �

Pl�s��x� Dolbeault� �
X

j�k�l

sj Tdk��x��j � �

Let ��l� denote the least common denominator of these rational polynomi�
als�
We identify Zn with the group of nth roots of unity in C� Let �s��� �

�s for 
 � s � n parameterize the irreducible representations� If �q �
�q�� � � � � ql� is a collection of integers coprime to n� let � � �q� � � � � � �ql
so ���� � diag��q� � � � � � �ql�� This is a �xed pont free representation� up to
unitary equivalence any �xed point free representation has this form� Let
L�n� �q � � M��� � S�l�����Zn� be the corresponding spherical space form�
this is called a lens space�

Lemma ��
��� Let M � L�n� �q � be a lens space of dimension �l� �� Let
e � Z satisfy eq� � � � ql � � mod n ���l�� Let � � signature or Dolbeault and
let A� be the tangential operator of the corresponding elliptic complex� Let
Pl�s�x� �� denote the corresponding rational polynomial as de�ned above�
Then

ind��s � ��� A�� � � e

n



Pl�s�n� �q� ��� Pl�
�n� �q� ��

�
mod Z�

Remark� If M admits a spin structure� there is a corresponding formula
for the tangential operator of the spin complex� This illustrates the close
relationship between the Lefschetz �xed point formulas� the Atiyah�Singer
index theorem� and the eta invariant� as it ties together all these elements�
If l � � so M � L�n� �� q� then

ind��s � ��� Asignature � � �q



n
� ��s�� � �

�
� �q
 � �s�

n
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which is the formula obatined previously in section ����

Proof� We refer to �Gilkey� The eta invariant and the K�theory of odd
dimensional spherical space forms� for the proof� it is a simple residue
calculation using the results of Hirzebruch�Zagier�

This is a very computable invariant and can be calculated using a com�
puter from either Lemma ����� or Lemma ����� Although Lemma ���� at
�rst sight only applies to cyclic groups� it is not di�cult to use the Brauer
induction formula and some elementary results concerning these groups to
obtain similar formulas for arbitrary �nite groups admitting �xed point
free representations�

LetM be a compact manifold without boundary with fundamental group
G� If � is a unitary representation of G and if P is a self�adjoint elliptic
di�erential operator� we have de�ned the invariant !��P�� as an R mod Z
valued invariant� �In fact this invariant can be de�ned for arbitrary repre�
sentations and for elliptic pseudo�di�erential operators with leading symbol
having no purely imaginary eigenvalues on S�T �M� and most of what we
will say will go over to this more general case� As we are only interested in
�nite groups it su�ces to work in this more restricted category��
Let R�G� be the group representation ring of unitary virtual representa�

tions of G and let R��G� be the ideal of virtual representations of virtual
dimension 
� The map � �� V� de�nes a ring homomorphism from R�G� to

K�M� and R��G� to eK�M�� We shall denote the images by K�at �M� andeK�at �M�� these are the rings generated by virtual bundles admitting locally
#at structures� or equivalently by virtual bundles with constant transition
functions� Let P be a self�adjoint and elliptic di�erential oprator� The
map � �� !��A�� is additive with respect to direct sums and extends to a
map R�G� � R mod Z as already noted� We let ind��� P � be the map
form R��G� to R mod Z� This involves a slight change of notation from
section ���� if � is a representation of G� then

ind��� dim��� � �� P �

denotes the invariant previously de�ned by ind��� P �� This invariant is con�
stant under deformations of P within this class� the Atiyah�Patodi�Singer
index theorem for manifolds with boundary �Theorem ������ implies it is
also an equivariant cobordism invariant� We summarize its relevant prop�
erties�

Lemma ��
��� Let M be a compact smooth manifold without boundary�
Let P be a self�adjoint elliptic di�erential operator over M and let � �
R�����M���
�a� Let P �a� be a smooth 
�parameter family of such operators� then
ind��� P �a�� is independent of a in R mod Z� If G is �nite� this is Q mod Z
valued�
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�b� Let P be a �rst order operator� Suppose there exists a compact mani�
fold N with dN � M � Suppose there is an elliptic complex Q�C��V���
C��V�� overN so P is the tangential part of Q� Suppose the virtual bundle
V� can be extended as a locally �at bundle over N � Then ind��� P � � 
�

Proof� The �rst assertion of �a� follows from Lemma ������ The locally
#at bundle V� is rationally trivial so by multipying by a suitable integer
we can actually assume V� corresponds to a #at structure on the di�erence
of trivial bundles� The index is therefore given by a local formula� If we
lift to the universal cover� we multiply this local formula by jGj� On the
universal cover� the index vanishes identically as �� � 
� Thus an integer
multiple of the index is 
 in R�Z so the index is in Q�Z which proves
�a�� To prove �b� we take the operator Q with coe�cients in V�� The
local formula of the heat equation is just multiplied by the scaling constant
dim��� � 
 since V� is locally #at over N � Therefore Theorem �����
yields the identity index�Q�B� coe� in V�� � 
� ind��� P �� As the index is
always an integer� this proves �b�� We will use �b� in section ��� to discuss
isospectral manifolds which are not di�eomorphic�

Examle ����� shows the index is not an invariant in K�theory� We get
K�theory invariants as follows�

Lemma ��
��� Let M be a compact manifold without boundary� Let P
be an elliptic self�adjoint pseudo�di�erential operator� Let �� � R�����M��
and de�ne the associative symmetric bilinear form on R� �R� by�

ind���� ��� P � � ind��� � ��� P ��

This takes values in Q mod Z and extends to an associative symmetric

bilinear form ind��� �� P �� eK�at�M�� eK�at�M�� Q mod Z� If we consider
the dependence upon P � then we get a trilinear map

ind� eK�at �M�� eK�at �M��K�S�T �M���K�M�� Q mod Z�

Proof� The interpretation of the dependence in P as a map in K�theory
follows from ��� and is therefore omitted� Any virtual bundle admitting
a locally #at structure has vanishing rational Chern character and must
be a torsion class� Once we have proved the map extends to K�theory� it
will follow it must be Q mod Z valued� We suppose given representations
��� ���� �� and a bundle isomorphism V�� � V��� � Let j � dim���� and
k � dim����� If we can show

ind���� � j�� ��� � k�� P � � ind����� � j�� ��� � k�� P �

then the form will extend to eK�at �M�� eK�at �M� and the lemma will be
proved�
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We calculate that�

ind���� � j�� ��� � k�� P �

� !��P����� � � j � k � !��P �� j � !��P�� �� k � !��P�� �
� !�f�P�� ���g � k � !��P�� �� j � f!��P�� �� k � !��P �g
� ind���� P�� �� j � ind���� P ��

By hypothesis the bundles de�ned by �� and ��� are isomorphic� Thus
the two operators P�� and P��� are homotopic since they have the same
leading symbol� Therefore ind���� P�� � � ind���� P��� � which completes the
proof� We remark that this bilinear form is also associative with respect to
multiplication by R�G� and K�at �M��

We will use this lemma to study the K�theory of spherical space forms�

Lemma ��
�
� Let � be a �xed point free representation of a �nite group
G� De�ne

ind���� ��� �
�

jGj
X
g�G
g 	�I

Tr��� � ����g�
det���g��

det���g�� I�
�

Let � �
P

� �����%� ��� � R��G�� Let �� � R��G� and suppose ind���� ���
� 
 in Q mod Z for all �� � R��G�� Then �� � �R�G��

Proof� The virtual representation � is given by the de�ning relation that
Tr���g�� � det�I � ��g��� det��� de�nes a ��dimensional representation
of G� as this is an invertible element of R�G� we see that the hypothesis
implies

�

jGj
X
g�G
g 	�I

Tr��� � ���� det�I � ��g�� � Z for all �� � R��G��

If f and !f are any two class functions on G� we de�ne the symmetric inner
product �f� !f� � �

jGj
P

g�G f�g� !f�g�� The orthogonality relations show that

f is a virtual character if and only if �f�Tr���� � Z for all � � R�Z�� We
de�ne�

f�g� � Tr����g��� det�I � ��g�� for g �� I

f�g� � �
X
h�G
h 	�I

Tr����h��� det�I � ��h�� if g � I�

Then �f� �� � 
 by de�nition� As �f� ��� � Z by hypothesis for �� � R��G�
we see �f� ��� � Z for all �� � R�G� so f is a virtual character� We let
Tr����g� � f�g�� The de�ning equation implies�

Tr��� ���g� � Tr����g�� for all g � G�
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This implies �� � �� � and completes the proof�

We can now compute the K�theory of odd dimensional spherical space
forms�

Theorem ��
��� Let � �G� U�l� be a �xed point free representation of a
�nite group G� LetM��� � S�l�����G� be a spherical space form� Suppose

l 
 �� Let � �
P

� �����%� ��� � R��G�� Then eK�at �M� � R��G���R�G�
and

ind��� �� ADolbeault �� eK�at �M�� eK�at �M�� Q mod Z

is a non�singular bilinear form�

Remark� It is a well known topological fact that for such spaces eK � eK�at

so we are actually computing the reduced K�theory of odd dimensional
spherical space forms �which was �rst computed by Atiyah�� This particu�
lar proof gives much more information than just the isomorphism and we
will draw some corollaries of the proof�

Proof� We have a surjective map R��G� � eK�at �M�� By Lemma �����
we have � �� 
 so �R�G� is in the kernel of the natural map� Conversely�

suppose V� � 
 in eK� By Lemma ����� we have ind��� ��� ADolbeault � � 
 for
all �� � R��G�� Lemma ����� lets us identify this invariant with ind��� ����
Lemma ����� lets us conclude � � �R�G�� This shows the kernel of this
map is precisely �R�G� which gives the desired isomorphism� Furthermore�
� � ker�ind��� ��� if and only if � � �R�G� if and only if V� � 
 so the

bilinear form is non�singular on eK�

It is possible to prove a number of other results about the K�theory ring
using purely group theoretic methods� the existence of such a non�singular
associative symmetric Q mod Z form is an essential ingredient�

Corollary ��
��� Adopt the notation of Theorem ������

�a� eK�M� only depends on �G� l� as a ring and not upon the particular �
chosen�

�b� The index of nilpotency for this ring is at most l�i�e�� if �� � R��G�

then
Q

����l �� � �R��G� so the product of l virtual bundles of eK�M�

always gives 
 in eK�M��

�c� Let V � eK�M�� Then V � 
 if and only if ���V � � 
 for all possible
covering projections ��L�n��q ��M by lens spaces�

There is� of course� a great deal known concerning these rings and we refer
to �N� Mahammed� K�theorie des formes spheriques� for further details�

If G � Z�� then the resulting space is RP �l�� which is projective space�
There are two inequivalent unitary irreducible representations ��� �� of
G� Let x � �� � �� generate R��Z�� � Z� the ring structure is given by
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x� � ��x� Let A be the tangential operator of the Dolbeault complex�

ind�x�A� �
�

�
Tr�x����� � det��Il�� det���I�l � Il�

� ���l

using Lemma ������ Therefore ind�x� x�A� � ��l�� which implies thateK�RP �l�� � � Z��l��Z� Let L � V�� be the tautological bundle over
RP �l�� � It is S�l�� 	 C modulo the relation�x� z� � ��x��z�� Using
Cli�ord matrices we can construct a map e�S�l�� � U��l��� such that

e��x� � �e�x�� This gives an equivariant trivialization of S�l�� 	 C�l��

which descends to give a trivialization of �l�� � L� This shows explicitly
that �l���L � �� � 
 in K�RP �l�� �� the eta invariant is used to show no
lower power su�ces� This proves�

Corollary ��
�� Let M � RP �l�� then eK�M� � Z��l��Z where the
ring structure is x� � ��x�
Let l � � and let G � Zn be cyclic� Lemma ���� shows

ind��s � ��� ADolbeault � �
�q

n
� s

�

�
�

Let x � �� � �� so x� � �� � �� � ���� � ��� and

ind�x� x�ADolbeault � �
�q

n
� �� �

�

is a generator of Z& �n ' mod Z� As x� � 
 in eK and as x �R�G� � R��G� we
see�

Corollary ��
���� Let M � L�n� �� q� be a lens space of dimension ��eK�M� � Zn with trivial ring structure�

We have computed the K�theory for the odd dimensional spherical space

forms� eK�S�l� � Z and we gave a generator in terms of Cli�ord algebras
in Chapter � To complete the discussion� it su�ces to consider even di�

mensional real projective space M � RP �l� As eHeven �M �Q� � 
� eK is
pure torsion by the Chern isomorphism� Again� it is known that the #at
and regular K�theory coincide� Let x � L � � � V�� � V�� � This is the

restriction of an element of eK�RP �l�� � so �lx � 
 by Corollary ������ It

is immediate that x� � ��x� We show eK�RP �l�� � � Z��lZ by giving a
surjective map to a group of order �l�
We construct an elliptic complex Q over the disk D�l�� � Let fe�� � � � � e�lg

be a collection of �l	�l skew�adjoint matrices so ejek�ekej � ���jk� Up to
unitary equivalence� the only invariant of such a collection is Tr�e� � � � e�l� �
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���i�l� There are two inequivalent collections� the other is obtained by
taking f�e�� � � � ��e�lg� Let Q be the operator

P
j ej���xj acting to map

Q�C��V�� � C��V�� where Vi are trivial bundles of dimension �l over
the disk� Let g�x� � �x be the antipodal map� Let g act by �� on V�
and by �� on V�� then gQ � Qg so this is an equivariant action� Let A
be the tangential operator of this complex on S�l and  A the corresponding
operator on S�l�Z� � M �  A is a self�adjoint elliptic �rst order operator on

C����
l

�� If we replace Q by �Q� the tangential operator is unchanged so
 A is invariantly de�ned independent of the choice of the fejg� �In fact�  A
is the tangential operator of the PINc complex��
The dimension is even so we can apply Corollary ����� to conclude

!��  A� �
�

�
� det�I�l�� � ��I�l�� ����f�l � ���l�g � ��l�� �

If we interchange the roles of V� and V�� we change the sign of the eta
invariant� This is equivalent to taking coe�cients in the bundle L � V�� �
Let x � L� � then ind��� � ���  A� � ���l�� � ��l�� � ���l�
The even dimensional rational cohomology of S�T �M� is generated by

H� and thus K�S�T �M���K�M��Q � 
� Suppose �l�� �x � 
 in eK�M��
Then there would exist a local formula for �l�� ind��� � ��� �� so we could
lift this invariant from Q mod Z to Q� As this invariant is de�ned on the
torsion groupK�S�T �M���K�M� it would have to vanish� As �l�� ind����
���  A� � ��

� does not vanish� we conclude �l�� � x is non�zero in K�theory
as desired� This proves�

Corollary ��
���� eK�RP �l� � Z��lZ� If x � L� � is the generator�
then x� � ��x�

We can squeeze a bit more out of this construction to compute the
K�theory of the unit sphere bundle K�S�T �M�� where M is a spherical
space form� First suppose dimM � �l�� is odd soM � S�l�����G� where
� is a unitary representation� Then M has a Cauchy�Riemann structure
and we can decompose T ��M� � ��V where V admits a complex structure�
T �M� � � � �V�real � Thus S�T �M� has a non�vanishing section and the
exact sequence 
 � K�M� � K�S�T �M�� � K�S�T �M���K�M� � 

splits� The usual clutching function construction permits us to identify
K�S�T �M���K�M� with K�V �� As V admits a complex structure� the
Thom isomorphism identi�es K�V � � x �K�M� where x is the Thom class�
This gives the structure K�S�T �M�� � K�M� � xK�M�� The bundle x
over S�T �M� can be taken to be *��p� where p is the symbol of the tan�
gential operator of the Dolbeault complex� The index form can be regarded

as a pairing eK�M�� x � eK�M�� Q mod Z which is non�degenerate�
It is more di�cult to analyse the even dimensional case� We wish to

compute K�S�T �RP �l��� �l ind��� � ��� �� is given by a local formula
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since �lx � 
� Thus this invariant must be zero as K�S�T �M���K�M� is
torsion� We have constructed an operator  A so ind�������  A� � ���l and
thus ind��� � ��� ���K�S�T �M���K�M�� Z&��l'�Z is surjective with the
given range� This is a cyclic group of order �l so equivalently

ind��� � ��� ���K�S�T �M���K�M�� Z��lZ� 
�

Victor Snaith �private communication� has shown us that the existence of
such a sequence together with the Hirzebruch spectral sequence inK�theory
shows


� K�M�� K�S�T �M�� is exact and jK�S�T �M���K�M�j � �l

so that index��� � ��� �� becomes part of a short exact sequence�


� K�M�� K�S�T �M��� Z��lZ� 
�

To compute the structure of K�S�T �M�� � Z � eK�S�T �M��� we must
determine the group extension�

Let x � L � � � V�� � V�� generate eK�M�� Let y � *���L  A�� �
�l�� � �� then this exact sequence together with the computation ind��� �
���  A� � ��l shows eK�S�T �M�� is generated by x and y� We know �lx �


 and that j eK�S�T �M��j � �l� to determine the additive structure of
the group� we must �nd the order of y� Consider the de Rham complex
�d� ���C��%even �D��� C��%odd �D�� over the disk� The antipodal map
acts by �� on %e and by �� on %o� Let  A� be the tangential operator
of this complex� We decompose �d � �� into �l operators each of which
is isomorphic to �Q� This indeterminacy does not a�ect the tangential
operator and thus  A� � �l  A�
The symbol of  A� on %even �D� is �ic�dn�c��� for � � T ��M�� Let

�f�even ��oddg � �even �c�dn��odd provide an isomorphism between %�M�
and %even �DjM �� We may regard  A� as an operator on C��%�M�� with
symbol  a� given by�

 a��x� ����even � �odd �� f��� � �ic�dn�c��� � �gf�even � �oddg
� f��� � �ic�dn�c���gf�even � c�dn��oddg
� ���f�ic�dn�c����even � ic����oddg
� �ic���f�even � �oddg

so that  A� � ��d � �� on C��%�M��� Let 	��odd � � �odd � ic����odd
provide an isomorphism between %odd �M� and *�� a��� This shows�

�l � y � %odd �M�� ��l�� � ��
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Let ��W � � W � dim�W � � � be the natural projection of K�M� oneK�M�� We wish to compute ��%odd�M��� As complex vector bundles we
have T ��M� � � � ��l � �� � L so that we have the relation %j�T �M� �
%j���T �M� �

�
�l��
j

� � Lj � This yields the identities�

��%j�T �M�� � ��%j���T �M�� � 
 if j is even

��%j�T �M�� � ��%j���T �M�� �

�
�l � �

j

�
� ��L� if j is odd�

Thus ��%j�T �M�� � ��%j���T �M�� �
�
�l��
j

�
��L� if j is odd� This leads

to the identity�

��%�j���T �M�� �
n�

�l��
�j��

�
�
�
�l��
�j��

�
� � � �� ��l��

�

�o � ��L�
��%odd �T �M�� �

n
l
�
�l��
�

�
� �l � ��

�
�l��



�
� � � �� ��l���l��

�o � ��L��
We complete this calculation by evaluating this coe�cient� Let

f�t� �
�

�

�
�t� ���l�� � �t� ���l��

�
� t�l

�
�l��
�

�
� t�l��

�
�l��



�
� � � �� t�

�
�l��
�l��

�
� ��

f 
�t� �
�

�
��l� ��

�
�t� ���l � �t� ���l

�
� � �

n
t�l�� � l � ��l��� �� t�l�
 � �l � �� � ��l��
 �� � � �� t � � � ��l���l��

�o
�

We evaluate at t � � to conclude�

l
�
�l��
�

�
� �l� ��

�
�l��



�
� � � �� ��l���l��

�
� �

�f

��� � �

� ��l � ����l � ��l � ���l�� �

Therefore�
�l � y � ��l � �� � �l���L� ���

If l � �� this gives the relation �y � x � x so eK�S�T �M�� � Z��
In fact� S�T �M� � S
�Z� is a lens space so this calculation agrees with
Corollary �����
� If l 
 �� then �l j �l�� so �l � y � 
� From this it followseK�S�T �M�� � Z��lZ�Z��lZ and the short exact sequence actually splits
in this case� This proves�

Theorem ��
��	 �V� Snaith�� Let X � S�T ��RP �l�� be the unit
tangent bundle over even dimenional real projective space� If l � � then
K�X� � Z � Z�� Otherwise K�X� � Z � Z��lZ � Z��lZ� The map
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ind��� �� gives a perfect pairing K�RP �l��K�X��K�RP �l�� Q mod Z�
The generators of K�X� are f�� x� yg for x � L� � and y � �*�� a��

Remark� This gives the additive structure� We have x� � ��x� We can
calculate x � y geometrically� Let p�u� � i

P
vj � ej � We regard p� �v � Lv

for v � �l over RP�l� Let  aL � a � I on Lv� Then paLp �  aL so
*�� a�� L � *�� a�� Therefore�

�L� ���
�
*�� a�� ��

l��
�
� ��l���L� �� � �L� *�� a��*�� a��

� �l���L� �� � *�� a�� *�� a�

� �l���L� �� � *�� a� � *�� a�� �*�� a�

� �l�� � x� �y

so that x � y � �l�� � x� �y� This gives at least part of the ring structure�
we do not know a similar simple geometric argument to compute y � y�



	�� Singer�s Conjecture for the Euler Form�

In this section� we will study a partial converse to the Gauss�Bonnet
theorem as well as other index theorems� This will lead to information
regarding the higher order terms which appear in the heat equation� In a
lecture at M�I�T�� I� M� Singer proposed the following question�

Suppose that P �G� is a scalar valued invariant of the metric such that
P �M� �

R
M
P �G� dvol is independent of the metric� Then is there

some universal constant c so that P �M� � c��M��

Put another way� the Gauss�Bonnet theorem gives a local formula for a
topological invariant �the Euler characteristic�� Is this the only theorem
of its kind2 The answer to this question is yes and the result is due to
E� Miller who settled the conjecture using topological means� We also
settled the question in the a�rmative using local geometry independently
and we would like to present at least some the the ideas involved� If the
invariant is allowed to depend upon the orientation of the manifold� then
the characteristic numbers also enter as we shall see later�

We let P �gij��� be a polynomial invariant of the metric� real analytic
or smooth invariants can be handled similarly� We suppose P �M� �R
M
P �G� dvol is independent of the particular metric chosen on M �

Lemma ������ Let P be a polynomial invariant of the metric tensor with
coe�cients which depend smoothly on the gij variables� Suppose P �M� is
independent of the metric chosen� We decompose P �

P
Pn for Pn � Pm�n

homogeneous of order n in the metric� Then Pn�M� is independent of the
metric chosen separately for each n	 Pn�M� � 
 for n �� m�

Proof� This lets us reduce the questions involved to the homogeneous
case� If we replace the metric G by c�G then Pn�c

�G� � c�nPn�G�
by Lemma ������ Therefore

R
M
P �c�G� dvol�c�G� �

P
n c

m�n R
M
Pn�G��

Since this is independent of the constant c� Pn�M� � 
 for n � m and
Pm�M� � P �M� which completes the proof�

If Q is ��form valued� we let P � divQ be scalar valued� It is clear thatR
M

divQ�G� dvol�G� � 
 so P �M� � 
 in this case� The following gives a
partial converse�

Lemma ����	� Let P � Pm�n for n �� m satisfy P �M� �
R
M
P �G� dvol

is independent of the metric G� Then there exists Q � Pm�n���� so that
P � divQ�

Proof� Since n �� m� P �M� � 
� Let f�x� be a real valued function
on M and let Gt be the metric etf�x�G� If n � 
� then P is constant so
P � 
 and the lemma is immediate� We assume n 
 
 henceforth� We let
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P �t� � P �etf�x�G� and compute�

d

dt

�
P �etf�x�G� dvol�etf�x�G�

�
�

d

dt

�
P �etf�x�G�etmf�x���

�
dvol�G�

� Q�G� f� dvol�G��

Q�f�G� is a certain expression which is linear in the derivatives of the
scaling function f � We let f�i� ���ip denote the multiple covariant derivatives
of f and let f�i� ���ip denote the symmetrized covariant derivatives of f � We
can express

Q�f�G� �
X

Qi� ���ipf�i� ���ip

where the sum ranges over symmetric tensors of length less than n� We
formally integrate by parts to express�

Q�f�G� � divR�f�G� �
X

����pQi� ���ip�i� ���ip f�

By integrating over the structure group O�m� we can ensure that this
process is invariantly de�ned� If S�G� �

P
����pQi� ���ip�i� ���ip then the

identity�


 �
Z
M

Q�f�G� dvol�G� �
Z
M

S�G�f dvol�G�

is true for every real valued function f � This implies S�G� � 
 so Q�f�G� �
divR�f�G�� We set f � �� Since

etm��P �etG� � e�m�n�t��P �G��

we conclude Q��� G� � m�n
� P �G� so P �G� � �

m�n divR��� G� which com�
pletes the proof�

There is a corresponding lemma for form valued invariants� The proof is
somewhat more complicated and we refer to �Gilkey� Smooth invariants of
a Riemannian manifold� for further details�

Lemma ������
�a� Let P � Pm�n�p � We assume n �� p and dP � 
� If p � m� we
assume

R
M
P �G� is independent of G for every G on M � Then there exists

Q � Pm�n���p�� so that dQ � P �
�b� Let P � Pm�n�p � We assume n �� m � p and �P � 
� If p � 
 we
assume

R
M
P �G� dvol is independent of G for every G in M � Then there

exists Q � Pm�n���p�� so that �Q � P �

Remark� �a� and �b� are in a sense dual if one works with SO�m� invariance
and not just O�m� invariance� We can use this Lemma together with the
results of Chapter � to answer the generalized Singer�s conjecture�
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Theorem ������

�a� Let P be a scalar valued invariant so that P �M� �
R
M
P �G� dvol is

independent of the particular metric chosen� Then we can decompose P �
c �Em �divQ where Em is the Euler form and where Q is a 
�form valued
invariant� This implies P �M� � c��M��

�b� Let P be a p�form valued invariant so that dP � 
� If p � m� we
assume P �M� �

R
M
P �G� is independent of the particular metric chosen�

Then we can decompose P � R � dQ� Q is p� � form valued and R is a
Pontrjagin form�

Proof� We decompose P �
P

Pj into terms which are homogeneous of
order j � Then each Pj satis�es the hypothesis of Theorem ����� separately
so we may assume without loss of generality that P is homogeneous of order
n� Let P be as in �a�� If n �� m� then P � divQ be Lemma ������ If n � m�
we let P� � r�P � � Pm���m � It is immediate

R
M�

P��G�� dvol�G�� �
�
��

R
S��M�

P �� 	 G�� is independent of the metric G� so P� satis�es the

hypothesis of �a� as well� Since m � � �� m we conclude P� � divQ� for
Q� � Pm���m���� � Since r is surjective� we can choose Q � Pm�m���� so
r�Q� � Q�� Therefore r�P�divQ� � P��divQ� � 
 so by Theorem ������
P �divQ � cEm for some constant c which completes the proof� �The fact
that r � Pm�n�p � Pm���n�p � 
 is� of course� a consequence of H� Weyl�s
theorem so we are using the full force of this theorem at this point for the
�rst time��

If P is p�form valued� the proof is even easier� We decompose P into ho�
mogeneous terms and observe each term satis�es the hypothesis separately�
If P is homogeneous of degree n �� p then P � dQ be Lemma ����� If P
is homogeneous of degree n � p� then P is a Pontrjagin form by Lemma
����� which completes the proof in this case�

The situation in the complex catagory is not as satisfactory�

Theorem ������ LetM be a holomorphic manifold and let P be a scalar
valued invariant of the metric� Assume P �M� �

R
M
P �G� dvol is indepen�

dent of the metric G� Then we can express P � R � divQ � E � Q is a
��form valued invariant and P � �R
 where R
 is a Chern form� The ad�
ditional error term E satis�es the conditions� r�E � � 
 and E vanishes for
Kaehler metric� Therefore P �M� is a characteristic number if M admits a
Kaehler metric�

The additional error term arises because the axiomatic characterization
of the Chern forms given in Chapter  were only valid for Kaehler metrics�
E in general involves the torsion of the holomorphic connection and to show
divQ
 � E for some Q
 is an open problem� Using the work of E� Miller�
it does follow that

R E dvol � 
 but the situation is not yet completely
resolved�
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We can use these results to obtain further information regarding the
higher terms in the heat expansion�

Theorem ����
�
�a� Let an�x� d � �� denote the invariants of the heat equation for the
de Rham complex� Then

�i� an�x� d� �� � 
 if m or n is odd or if n � m�
�ii� am�x� d� �� � Em is the Euler form�
�iii� If m is even and if n 
 m� then an�x� d� �� �� 
 in general� However�

there does exist a ��form valued invariant qm�n so an � div qm�n and
r�qm�n� � 
�

�b� Let asignn �x� V � be the invariants of the heat equation for the signature
complex with coe�cients in a bundle V � Then

�i� asignn �x� V � � 
 for n � m or n odd�
�ii� asignm �x� V � is the integrand of the Atiyah�Singer index theorem�
�iii� asignn �x� V � � 
 for n even and n � m� However� there exists an m� �

form valued invariant qsignm�n�x� V � so that asignn � d�qsignm�n��

A similar result holds for the invariants of the spin complex�

�c� Let aDolbeaultn �x� V � denote the invariants of the heat equation for the
Dolbeault complex with coe�cients in V � We do not assume that the
metric in question is Kaehler� Then�

�i� aDolbeaultn �x� V � � divQm�n where Qm�n is a ��form valued invariant
for n �� m�

�ii� aDolbeaultm �x� V � � divQm�n� the integrand of the Riemann�Roch the�
orem�

The proof of all these results relies heavily on Lemma ���� and �����
and will be omitted� The results for the Dolbeault complex are somewhat
more di�cult to obtain and involve a use of the SPINc complex�

We return to the study of the de Rham complex� These arguments are
due to L� Willis� Let m � �n and let am�� �x� d��� be the next term above
the Euler form� Then am�� � divQm�� where Qm�� � Pm�m���� satis�es
r�Qm�� � � 
� We wish to compute am�� � The �rst step is�

Lemma ������ Let m be even and let Q � Pm�m���� be ��form valued�
Suppose r�Q� � 
� Then Q is a linear combination of dEm and 3m de�ned
by�

3m �
X
k���

sign��� sign��� �
n
��	��m��

�m
�
� �
�
�
o��

	R�����������k�k R��
������
���� � � �R��m�����m��m����m� e
��� � %�

where fe�� � � � � emg are a local orthonormal frame for T �M �
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Proof� We let Aek be a monomial of P � We express A in the form�

A � gi�j���� � � �girjr��r �

By Lemma ������ we could choose a monomial B of P with degk�B� � 

for k 
 ���A� � �r� Since r�Q� � 
� we conclude �r � m� On the other
hand� �r �P j�� j � m� � so we see

m � �r � m� ��

Sincem is even� we conclude �r � m� This implies one of the j�� j �  while
all the other j�� j � �� We choose the notation so j��j �  and j�� j � � for
� 
 �� By Lemma ������ we may choose A in the form�

A � gij����gi�j��k� l� � � � girjr�krlr �

We �rst suppose deg��A� � � This implies A appears in the expression
Ae� in P so degj�A� � � is even for j 
 �� We estimate �m � � �
�r � � �

P
j degj�A� �  �

P
j�� degj�A� �  � ��m � �� � �m � � to

show degj�A� � � for j 
 �� If m � �� then A � g������ which shows
dimN�r� � � and Q is a multiple of dE�� We therefore assume m 
 ��
Since degj�A� � � for j 
 �� we can apply the arguments used to prove
Theorem ����� to the indices j 
 � to show that

g������g

��� � � �gm���mm e�

is a monomial of P �
Next we suppose deg��A� 
 � If deg��A� is odd� then degj�A� � � is

even for j � � implies �m�� � �r�� �
P

j degj�A� � ����m��� � �m�

which is false� Therefore deg��A� is even� We choose the notation in this
case so Ae� appears in P and therefore deg��A� is odd and degj�A� � � for
j 
 �� This implies �m� � � �r� � � degj�A� � �� ��

P
j�� degj�A� �

� � ��m � �� � �m � �� Since all the inequalities must be equalities we
conclude

deg��A� � �� deg��A� � �� deg
�A� � � for j 
 ��

We apply the arguments of the second chapter to choose A of this form
so that every index j 
 � which does not touch either the index � or the
index � touches itself� We choose A so the number of indices which touch
themselves in A is maximal� Suppose the index � touches some other index
than the index �� If the index � touches the index � then the index 
cannot touch itself in A� An argument using the fact deg��A� � � and
using the arguments of the second chapter shows this would contradict the
maximality of A and thus the index � must touch the index � in A� We use
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non�linear changes of coordinates to show g������ cannot divide A� Using
non�linear changes of coordinates to raplace g����� by g����� if necessary�
we conclude A has the form

A � g

����g�����g����� � � � gm���m���mm �

This shows that if m � �� then dimN�r�Pm�m���� � Pm���m���� � � ��
Since these two invariants are linearly independent form � � this completes
the proof of the lemma�

We apply the lemma and decompose

am�� �x� d� �� � c��m��Em��kk � c��m� div3m�

The c��m� and c��m� are universal constants defending only on the dimen�
sion m� We consider a product manifold of the form M � S� 	Mm�� to
de�ne a map�

r��� �Pm�n�� �
M
q�n

Pm���q�� �

This restriction map does not preserve the grading since by throwing deriva�
tives to the metric over S�� we can lower the order of the invariant involved�

Let x� � S� and x� �Mm�� � The multiplicative nature of the de Rham
complex implies�

an�x� d� �� �
X

j�k�m

aj�x�� d� ��S� ak�x�� d� ��Mm�� �

However� aj�x�� d� �� is a constant since S� is a homogeneous space� The
relations

R
S� aj�x�� d� �� � ��j�� implies therefore

an�x� d� �� �
�

��
an���x�� d� ��

so that

r���a
m
m�� �

�

��
am��m �

Since r��� �Em��kk � �
�� �Em����kk and r��� div3m � �

�� div3m�� � we con�
clude that in fact the universal constants c� and c� do not depend upon m�
�If m � �� these two invariants are not linearly independent so we adjust
c���� � c� and c���� � c��� It is not di�cult to use Theorem ��	��� which
will be discussed in the next section to compute that if m � �� then�

a��x� d� �� �
�

��
�Em��kk � �

�
div3m�

We omit the details of the veri�cation� This proves�
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Theorem ������ Let m be even and let am�� �x� d � �� denote the in�
variant of the Heat equation for the de Rham complex� Then�

am�� �
�

��
�Em��kk � �

�
div3m�

We gave a di�erent proof of this result in �Gilkey� Curvature and the heat
equation for the de Rham complex�� This proof� due to Willis� is somewhat
simpler in that it uses Singer�s conjecture to simplify the invariance theory
involved�
There are many other results concerning the invariants which appear in

the heat equation for the de Rham complex� Gunther and Schimming have
given various shu4e formulas which generalize the alternating sum de�ned
previously� The combinatorial complexities are somewhat involved so we
shall simply give an example of the formulas which can be derived�

Theorem ����� Let m be odd� ThenX
����p�m� p�an�x�"

m
p � �

�

 if n � m� �
Em�� if n � m� ��

Proof� We remark that there are similar formulas giving the various
Killing curvatures Ek for k � m in all dimensions� Since r�Pm�n � Pm���n
for n � m is an isomorphism� it su�ces to prove this formula under restric�
tion� Since r�an�x�"

m
p �� � an�x�"

m��
p � � an�x�"

m��
p�� � we must studyX

����p�m� p��an�x�"
m��
p � � an�x�"

m��
p�� �� � ����pan�x�"m��

p �

and apply Theorem ����	�

We remark that all the shu4e formulas of Gunther and Schimming �in�
cluding Theorem ������ have natural analogues for the Dolbeault complex
for a Kaehler metric and the proofs are essentially the same and rely on
Theorem ���� and ����
�
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Of the Heat Equation�

In this subsection� we will compute an�x�"
m
p � for n � 
� �� �� In princi�

ple� the combinatorial formulas from the �rst chapter could be used in this
calculation� In practice� however� these formulas rapidly become much too
complicated for practical use so we shall use instead some of the functorial
properties of the invariants involved�

Let P �C��V �� C��V � be a second order elliptic operator with leading
symbol given by the metric tensor� This means we can express�

P � �
�X

i�j

gij����xi�xj �
X
k

Ak���xk � B

�
where the Ak� B are endomorphisms of the bundle V and where the lead�
ing term is scalar� This category of di�erential operators includes all the
Laplacians we have been considering previously� Our �rst task is to get a
more invariant formulation for such an operator�
Let r be a connection on V and let E � C��END�V �� be an endomor�

phism of V � We use the Levi�Civita connection on M and the connection
r on V to extend r to tensors of all orders� We de�ne the di�erential
operator Pr by the diagram�

Pr�C��V �
r� C��T �M � V �

r� C��T �M � T �M � V �
�g������ C��V ��

Relative to a local orthonormal frame for T �M � we can express

Pr�f� � �f�ii
so this is the trace of second covariant di�erentiation� We de�ne

P �r� E� � Pr � E

and our �rst result is�

Lemma ������ Let P �C��V � � C��V � be a second order operator
with leading symbol given by the metric tensor� There exists a unique
connection on V and a unique endomorphism so P � P �r� E��

Proof� We let indices i� j � k index a coordinate frame for T �M�� We
shall not introduce indices to index a frame for V but shall always use
matrix notation� The Christo�el symbols +ij

k � �+ikj of the Levi�Civita
connection are given by�

+ij
k � �

�g
kl�gil�j � gjl�i � gij�l�

r���xi ����xj� � +ij
k����xk�

r���xi �dxj� � +i
j
k�dxk�
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where we sum over repeated indices� We let �s be a local frame for V and
let �i be the components of the connection ��form � so that�

r�f � �s � � dxi � ��f��xi � �i�f�� � �s�

With this notational convention� the curvature is given by�

-ij � �j�i � �i�j � �i�j � �j�i �- � d� � � � ���

We now compute�

r��f � �s � � dxj � dxi����f��xi�xj � �j�f��xi � +j
k
i�f��xk

� �i�f��xj � �i�jf � �j�if � +j
k
i�kf� � �s

from which it follows that�

Pr�f � �s � �� fgij�f��xi�xj � ��gij�i � gjk+jk
i��f��xi

� �gij�i�j � gij�i�j � gij+ij
k�k�fg � �s

We use this identity to compute�

�P � Pr��f � �s � � �f�Ai � �gij�j � gjk+jk
i��f��xi � ���fg � �s

where we have omitted the 
th order terms� Therefore �P � Pr� is a 
th

order operator if and only if

Ai � �gij�j � gjk+jk
i � 
 or equivalently �i �

�
� �gijAj � gijg

kl+kl
j��

This shows that the f�ig are uniquely determined by the condition that
�P �Pr� is a 
th order operator and speci�cies the connection r uniquely�

We de�ne�

E � Pr � P so E � B � gij�i�j � gij�i�j � gij�k+ij
k�

We �x this connection r and endomorphism E determined by P � We
summarize these formulas as follows�

Corollary ����	� If �r� E� are determined by the second order opera�
tor P � ��gij��f��xi�xj �Ai�j��xi �Bf� � �s� then

�i �
�
� �gijAj � gijg

kl+kl
j�

E � B � gij�i�j � gij�i�j � gij�k+ij
k�

We digress brie#y to express the Laplacian "p in this form� If r is the
Levi�Civita connection acting on p�forms� it is clear that "p�Pr is a �rst
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order operator whose leading symbol is linear in the ��jets of the metric�
Since it is invariant� the leading symbol vanishes so "p�Pr is a 
th order
and the Levi�Civita connection is in fact the connection determined by the
operator "p� We must now compute the curvature term� The operator
�d� �� is de�ned by Cli�ord multiplication�

�d� ���C��%�T �M��� C��T �M � %�T �M��

Cli�ord multiplication����������������� C��%�T �M���

If we expand � � fI dxI and r� � dxi � ��fI��xi � +iI
J fI� dxJ then it is

immediate that if ��� denotes Cli�ord multiplication�

�d� ���fI dxI � � �fI�i dxi � dxI� � �fI+iIJ dxi � dxJ �
"�fIdxI� � �fI�ij dxj � dxi � dxI� � �fI+iIJ�j dxj � dxi � dxJ � � � � �

where we have omitted terms involving the ��jets of the metric� Similary�
we compute�

Pr�fI dxI� � �gijfI�ij dxI � gij+iIJ�jfI dxJ � � � � �

We now �x a point x� of M and let X be a system of geodesic polar
coordinates centered at x�� Then +iIJ�i � 
 and +iIJ�j � �

�RjiIJ gives the
curvature tensor at x�� Using the identities dxi � dxj � dxj � dxi � ���ij
we see fI�ij dxj � dxi � �fI�ii and consequently�

�Pr�"��fI dxI� � ��
�RijIJfI dxi �dxj �dxJ �

X
i�j

RijIJfI dxj �dxi �dxJ �

This identity holds true at x� in geodesic polar coordinates� Since both
sides are tensorial� it holds in general which proves�

Lemma ������ Let "p be the Laplacian acting on p�forms and let RijIJ

be the curvature tensor of the Levi�Civita connection� Then

�Pr �"p��fI dxI� �
X
i�j

RijIJfI dxj � dxi � dxJ �

We now return to the problem of computing the invariants an�x� P ��

Lemma ������ Let P be an operator as in Lemma ����
� Then a��x� P � �
�����m�� dimV �

Proof� We �rst consider the operator P � ������� on the unit circle
&
� ��'� The eigenvalues of P are fn�gn�Z � Since a� is homogeneous of
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order 
 in the jets of the symbol� a���� P � � a��P �� vol�M� is constant�
We compute�X

n

e�tn
� 
 t����

Z
M

a���� P � d� � t��������a���� P ��

However� the Riemann sums approximating the integral show that

p
� �

Z �

��
e�tx

�

dx � lim
t��

X
n

e��
p
t n��

p
t

from which it follows immediately that a���� P � �
p
������ � �������� �

More generally� by taking the direct sum of these operators acting on
C��S� 	 Ck� we conclude a���� P � � �������� dimV which completes
the proof if m � ��
More generally� a��x� P � is homogeneous of order 
 in the jets of the

symbol so a��x� P � is a constant which only depends on the dimension of
the manifold and the dimension of the vector bundle� Using the additivity
of Lemma ������ we conclude a��x� P � must have the form�

a��x� P � � c�m� � dimV�

We now letM � S�	 � � �	S�� the #atm�torus� and let " � �P� �
������ �

The product formula of Lemma ������b� implies that�

a��x�"� �
Y
�

a���� ��������� � � �����m��

which completes the proof of the lemma�

The functorial properties of Lemma ����� were essential to the proof of
Lemma ��	��� We will continue to exploit this functoriality in computing
a� and a�� �In principal one could also compute a� in this way� but the
calculations become of formidable di�culty and will be omitted��
It is convenient to work with more tensorial objects than with the jets

of the symbol of P � We let dimV � k and dimM � m� We introduce
formal variables fRi�i�i�i� ���� � -i�i� ���� � E���� g for the covariant derivatives
of the curvature tensor of the Levi�Civita connection� of the curvature
tensor of r� and of the covariant derivatives of the endomorphism E�
We let S be the non�commutative algebra generated by these variables�
Since there are relations among these variables� S isn�t free� If S � S
and if e is a local orthonormal frame for T ��M�� we de�ne S�P ��e��x� �
S�G�r� E��e��x��END�V �� by evaluation� We say S is invariant if S�P � �
S�P ��a� is independent of the orthonormal frame e chosen for T �M�� We
de�ne�

ord�Ri�i�i�i� �i	 ���ik � � k � �

ord�-i�i� �i� ���ik � � k

ord�E�i� ���ik � � k � �
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to be the degree of homogeneity in the jets of the symbol of P � and let
Sm�n�k be the �nite dimensional subspace of S consisting of the invariant
polynomials which are homogeneous of order n�

If we apply H� Weyl�s theorem to this situation and apply the symmetries
involved� it is not di�cult to show�

Lemma ������

�a� Sm���k is spanned by the two polynomials RijijI� E�

�b� Sm���k is spanned by the eight polynomials

Rijij �kkI� RijijRklklI� RijikRljlkI� RijklRijklI�

E�� E�ii� RijijE� -ij-ij �

We omit the proof in the interests of brevity� the corresponding spanning
set for Sm���k involves �� polynomials�

The spaces Sm�n�k are related to the invariants an�x� P � of the heat equa�
tion as follows�

Lemma ����
� Let �m�n� k� be given and let P satisfy the hypothesis
of Lemma ����
� Then there exists Sm�n�k � Sm�n�k so that an�x� P � �
Tr�Sm�n�k ��

Proof� We �x a point x� � M � We choose geodesic polar coordinates
centred at x�� In such a coordinate system� all the jets of the metric
at x� can be computed in terms of the Ri�i�i�i� � ��� variables� We �x a
frame s� for the �ber V� over x� and extend s� by parallel translation
along all the geodesic rays from x� to get a frame near x�� Then all the
derivatives of the connection ��form at x� can be expressed in terms of the
R��� and -��� variables at x�� We can solve the relations of Corollary ��	��
to express the jets of the symbol of P in terms of the jets of the metric�
the jets of the connection ��form� and the jets of the endomorphism E�
These jets can all be expressed in terms of the variables in S at x� so
any invariant endomorphism which is homogeneous of order n belongs to
Sm�n�k � In Lemma ������ we showed that an�x� P � � Tr�en�x� P �� was the
trace of an invariant endomorphism and this completes the proof� we set
Sm�n�k � en�x� P ��

We use Lemmas ��	�� and ��	�� to expand an�x� P �� We regard scalar in�
variants of the metric as acting on V by scalar multiplication� alternatively�
such an invariant Rijij could be replaced by RijijIV �

Lemma ������ Let m � dimM and let k � dimV � Then there exist
universal constants ci�m� k� so that if P is as in Lemma ����
�

�a� a��x� P � � �����m�� Tr�c��m� k�Rijij � c��m� k�E��
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�b�

a��x� P � � �����m�� Tr�c
�m� k�Rijij �kk � c��m� k�RijijRklkl

� c��m� k�RijikRljlk � c��m� k�RijklRijkl

� c��m� k�E�ii � c��m� k�E�

� c��m� k�ERijij � c���m� k�-ij-ij��

This is an important simpli�cation because it shows in particular that terms
such as Tr�E�� do not appear in a��

The �rst observation we shall need is the following�

Lemma ������ The constants ci�m� k� of Lemma ����� can be chosen to
be independent of the dimension m and the �ber dimension k�

Proof� The leading symbol of P is scalar� The analysis of Chapter � in
this case immediately leads to a combinatorial formula for the coe�cients in

terms of certain trignometric integrals
R
��e�j�j

�

d� and the �ber dimension
does not enter� Alternatively� we could use the additivity of en�x� P��P�� �
en�x� P���en�x� P�� of Lemma ����� to conclude the formulas involved must
be independent of the dimension k� We may therefore write ci�m� k� �
ci�m��

There is a natural restriction map r�Sm�n�k � Sm���n�k de�ned by re�
stricting to operators of the form P � P� � � � IV � ��������� over
M � M�	S�� Algebraically� we simply set to zero any variables involving
the last index� The multiplicative property of Lemma ����� implies

r�Sm�n�k � �
X

p�q�n

Sm���p�k �P��� S��q������������

Since all the jets of the symbol of ������� vanish for q 
 
� S��q�� � 


for q 
 
 and a� � �������� by Lemma ��	��� Therefore

r�Sm�n�k � � ��������Sm���n�k �

Since we have included the normalizing constant �����m�� in our de�nition�
the constants are independent of the dimensionm form � �� Ifm � �� �� �
then the invariants of Lemma ��	�� are not linearly independent so we
choose the constants to agree with ci�m� k� in these cases�

We remark that if P is a higher order operator with leading symbol given
by a power of the metric tensor� then there a similar theory expressing
an in terms of invariant tensorial expressions� However� in this case� the
coe�cients depend upon the dimension m in a much more fundamental
way than simply �����m�� and we refer to �Gilkey� the spectral geometry
of the higher order Laplacian� for further details�
Since the coe�cients do not depend on �m� k�� we drop the somewhat

cumbersome notation Sm�n�k and return to the notation en�x� P � discussed
in the �rst chapter so Tr�en�x� P �� � an�x� P �� We use the properties of
the exponential function to compute�
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Lemma ����� Using the notation of Lemma ������

c� � �� c� �
�

�
� c� � c��

Proof� Let P be as in Lemma ��	�� and let a be a real constant� We con�
struct the operator Pa � P �a� The metric and connection are unchanged�
we must replace E by E � a� Since e�t�P�a� � e�tP eta we conclude�

en�x� P � a� �
X

p�q�n

ep�x� P �aq�q�

by comparing terms in the asymptotic expansion� We shall ignore factors
of �����m�� henceforth for notational convenience� Then�

e��x� P � a� � e��x� P � � c�a � e��x� P � � e��x� P �a � e��x� P � � a�

This implies that c� � � as claimed� Next� we have

e��x� P � a� � e��x� P � � c�a
� � �c�aE � c�aRijij

� e��x� P � � e��x� P �a� e��x� P �a���

� e��x� P � � �c�Rijij � c�E�a� a���

which implies c� � ��� and c� � c� as claimed�

We now use some recursion relations derived in �Gilkey� Recursion rela�
tions and the asymptotic behavior of the eigenvalues of the Laplacian�� To
illustrate these� we �rst suppose m � �� We consider two operators�

A � ���x� b� A� � ����x� b

where b is a real scalar function� This gives rise to operators�

P� � A�A � ������x� � �b
 � b���

P� � AA� � ������x� � ��b
 � b���

acting on C��S��� The metric and connection de�ned by these operators
is #at� E�P�� � b
 � b� and E�P�� � �b
 � b��

Lemma �������

�n� ��
�
en�x� P��� en�x� P��

�
� ���xf���x� �bgen���x� P���

Proof� Let f�� � ��g be a complete spectral resolution of P�� We ignore
any possible zero spectrum since it won�t contribute to the series we shall
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be constructing� Then f�� � A���
p
�� g is a complete spectral resolution of

P�� We compute�

d

dt
fK�t� x� x� P���K�t� x� x� P��g

�
X

e�t�� f������� � A��A��g

�
X

e�t�� f�P��� � �� � A��A��g

�
X

e�t�� f�

��� � �b
 � b����� � �
��


� � �b�
��� � b����g

�
X

e�t��
�
�
�
���x

�
����x� �b�f���g

� �
�
���x����x� �b�K�t� x� x� P���

We equate terms in the asymptotic expansions

X
t�n�
���

n� �

�
�en�x� P��� en�x� P���


 �

�

X
t�n����� ���x����x� �b�en�x� P��

to complete the proof of the lemma�

We apply this lemma to compute the coe�cient c�� If n � �� then we
conclude�

e��x� P�� � c��b

 � b��

 � c��b


 � b��� � c�b



 � lower order terms

e��x� P�� � c���b
 � b��

 � c���b
 � b��� � �c�b


 � lower order terms

e��x� P�� � b
 � b�

so that�

�e��x� P��� e��x� P���� �c�b



 � lower order terms

���x����x� �b��b
 � b�� � b


 � lower order terms

from which it follows that c� � ���� It is also convenient at this stage to
obtain information about e�� If we let e� � cE



� lower order terms then
we express�

e��x� P��� e��x� P��� �cb���

���x����x� �b��e�� � c�b
���

from which it follows that the constant c is �������� �c���
 � ����������
�
We summarize these results as follows�
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Lemma ������� We can expand an in the form�

�a� a��x� P � � �����m�� Tr�c�Rijij � E��

�b�

a��x� P � � �����m�� Tr�c
Rijij �kk � c�RijijRklkl � c�RijikRljlk

� c�RijklRijkl � E�kk�� �E���

� c�RijijE � c��-ij-ij��

�c�

a��x� P � � �����m�� Tr�E�kkll��


� c��Rijij �kkll � lower order terms��

Proof� �a� and �b� follow immediately from the computations previ�
ously performed� To prove �c� we argue as in the proof of ��	�� to show
a��x� P � � �����m�� Tr�cE�kk � c��Rijij �kk� lower order terms� and then
use the evaluation of c given above�

We can use a similar recursion relation if m � � to obtain further in�
formation regarding these coe�cients� We consider the de Rham complex�
then�

Lemma �����	� If m � � and "p is the Laplacian on C��%p�T �M���
then�

�n� ��

�
fan�x�"��� an�x�"�� � an�x�"��g � an���x�"���kk �

Proof� This recursion relationship is due to McKean and Singer� Since
the invariants are local� we may assume M is orientable and an�x�"�� �
an�x�"��� Let f�� � ��g be a spectral resolution for the non�zero spectrum
of "� then f�� � ���g is a spectral resolution for the non�zero spectrum of
"� and f�� � d���

p
�� � � ����

p
��g is a spectral resolution for the non�zero

spectrum of "�� Therefore�

d

dt

�
K�t� x� x�"���K�t� x� x�"�� �K�t� x� x�"��

�
�
X

e�t�� ��������� � d�� � d�� � � � �� � � � �� �

�
X

e�t�� ���"��� � �� � �d�� � d�� � � K�t� x� x�"���kk

from which the desired identity follows�

Before using this identity� we must obtain some additional information
about "��
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Lemma ������� Let m be arbitrary and let �ij � �Rijik be the Ricci
tensor� Then "� � ���kk � ���� for � � C��%�� and where ����i � �ij�j �
Thus E�"�� � ���
Proof� We apply Lemma ��	� to conclude

E��� �
�

�
Rabij�ieb � ea � ej

from which the desired result follows using the Bianchi identities�

We can now check at least some of these formulas� If m � �� then
E�"�� � R����I and E�"�� � E�"�� � 
� Therefore�

a��x�"��� a��x�"�� � a��x�"�� � ������f��� � � ��c�Rijij � �R����g
� �R�������

which is� in fact� the integrand of the Gauss�Bonnet theorem� Next� we
compute� supressing the factor of �������

a��x�"��� a��x�"�� � a��x�"��

� �c
Rijij �kk � c�RijijRklkl � c�RijikRljlk

� c�RijklRijkl���� � � ��

�
�

�
�����R�����kk �� �

�
R����R����

� �c�R����R���� � c�� Tr�-ij-ij�

� ��


�R�����kk �� �� � �c� � �c����R���� �

�

a��x�"���kk � �c�R�����kk

so that Lemma ������ applied to the case n � � implies�

a��x�"��� a��x�"�� � a��x�"�� � a��x�"���kk

from which we derive the identities�

c� � ��

�
and � � �c� � �c�� � 


from which it follows that c�� � ����� We also consider a� and Lemma
��	����c�

a��x�"��� a��x�"�� � a��x�"�� � c��Rijij �kkll��� � � ��� �

�

R�����kkll

� lower order terms

a��x�"���kk � �c
R�����jjkk � lower order terms
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so Lemma ������ implies that ������
� � �c
 so that c
 � ���
�
This leaves only the constants c�� c�� and c� undetermined� We let

M � M� 	M� be the product manifold with "� � "�
� � "�

�� Then the
product formulas of Lemma ����� imply�

a��"�� x� � a��"
�
�� x�� � a��"

�
�� x�� � a��"

�
�� x��a��"

�
�� x���

The only term in the expression for a� giving rise to cross terms involving
derivatives of both metrics is c�RijijRklkl� Consequently� �c� � c�� � ���
so c� � ����� We summarize these computations as follows�

Lemma ������� We can expand �n in the form�
�a� a��x� P � � �����m�� Tr��Rkjkj � �E����
�b�

a��x� P � �
�����m��

�

Tr����Rijij �kk � �RijijRklkl � c�RijikRljlk

� c�RijklRijkl � �
ERijij � �	
E� � �
E�kk � 
-ij-ij��

We have changed the notation slightly to introduce the common denomi�
nator �
�

We must compute the universal constants c� and c� to complete our
determination of the formula a�� We generalize the recursion relations of
Lemmas ��	��
 and ��	��� to arbitrary dimensions as follows� Let M � Tm
be the m�dimensional torus with usual periodic parameters 
 � xi � � for
i � �� � � � �m� We let feig be a collection of Cli�ord matrices so eiej�ejei �
��ij � Let h�x� be a real�valued function on Tm and let the metric be given
by�

ds� � e�h�dx�� � � � �� dx�m�� dvol � e�hm��dx� � � �dxm�

We let the operator A and A� be de�ned by�

A � emh��
X

ej
�

�xj
e���m�h��

A� � e���m�h��
X

ej
�

�xj
e�mh��

and de�ne�

P� � A�A � �e���m�h��
X
j

��

�x�j
e���m�h��

� �eh
�X ��

�x�j
�

�

�
���m�h�j

�

�xj

�
�

��
�����m�h�jj � ���m��h�jh�j�

�
P� � AA� � emh��

X
j

ej
�

�xj
eh
X
k

ek
�

�xk
e�mh�� �
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Lemma ������� With the notation given above�

�n�m�fan�x� P��� an�x� P��g � ehm�� ��

�x�k
eh���m��� an���x� P ��

Proof� We let P� be the scalar operator

�e���m�h��
X
j

��

�x�j
e���m�h�� �

If the representation space on which the ej act has dimension u� then
P� � P� � Iu� We let vs be a basis for this representation space� Let
f�� � ��g be a spectral resolution for the operator P� then f�� � �� � vsg is
a spectral resolution of P�� We compute�

d

dt

�
TrK�t� x� x� P��� Tr�t� x� x� P��

�
�
X
��s

e�t�� f��P��� � us� �� � us� � �A�� � us� A�� � us�g

where � � � denotes the natural inner product �us� us�� � �s�s� � The ej are
self�adjoint matrices� We use the identity �ejus� ekus� � �jk to compute�

�
X
�

v � e�t�� eh
�
���kk�� �

�

�
���m�h�k���k�� �

�

�
���m�h�kk����

�
�

��
���m��h�kh�k���� � ���k���k �

�

�
���m�h�k���k��

�
�

��
���m��h�kh�k����

�
�
X
�

v � e�t�� ehm�� �

�

X
j

��

�x�j
eh���m��� ����� �

�
�

�
ehm��

X
j

��

�x�j
eh���m��� TrK�t� x� x� P���

We compare coe�cients of t in the two asymptotic expansions to complete
the proof of the lemma�

We apply Lemma ��	��� to the special case n � m � �� This implies
that X

j

��

�x�j
e��ha��x� P�� � 
�

Since ax�x� P�� is a formal polynomial in the jets of h with coe�cients
which are smooth functions of h� and since a� is homogeneous of order ��
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this identity for all h implies a��x� P�� � 
� This implies a��x� P�� �
�
v a��x� P�� � 
�
Using the formulas of lemmas ��	�� and ��	�� it is an easy exercise to

calculate Rijkl � 
 if all � indices are distinct� The non�zero curvatures
are given by�

Riji
k � ��

� ��h�jk � h�jh�k� if j �� k �don�t sum over i�

Riji
j � ��

� ��h�ii � �h�jj �
X

k 	�i�k 	�j
h�kh�k �don�t sum over i� j�

-ij � 


E�P�� � eh
X
k

��h�kk � h�kh�k��

When we contract the curvature tensor to form scalar invariants� we must
include the metric tensor since it is not diagonal� This implies�

� �
X
i�j

giiRiji
j � eh

X
k

���h�kk � �h�kh�k� � �E�P��

which implies the helpful identities�

�����kk � �
E�kk � 
 and �RijijRklkl � �
RijijE � �	
E� � �E�

so that we conclude�

�E� � c�RijikRljlk � c�RijklRijkl � 
�

We expand�

RijikRljlk � e�h
�
��
� h���h��� � 	h���h��� � other terms

�
RijklRijkl � e�h

�
�h���h��� � 	h���h��� � other terms

�
E� � e�h

�
h���h��� � 
 � h���h��� � other terms

�
so we conclude �nally�

��c� � �
c� � �
 � 
 and c� � c� � 
�

We solve these equations to conclude c� � �� and c� � � which proves
�nally�

Theorem �����
� Let P be a second order di�erential operator with
leading symbol given by the metric tensor� Let P � Pr�E be decomposed
as in ����
� Let an�x� P � be the invariants of the heat equation discussed
in Chapter 
�
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�a� a��x� P � � �����m�� Tr�I��

�b� a��x� P � � �����m�� Tr��Rijij � �E����

�c�

a��x� P � �
�����m��

�

	

Tr����Rijij �kk � �RijijRklkl � �RijikRljlk � �RijklRijkl

� �
RijijE � �	
E� � �
E�kk � 
-ij-ij��

�d�

a��x� P � � �����m��	

Tr

�
�

��

���	Rijij �kkll � ��Rijij �kRulul�k � �Rijik�lRujuk�l

� �Rijik�lRujul�k � �Rijku�lRijku�l � �	RijijRkuku�ll

� 	RijikRujuk�ll � ��RijikRujul�kl � ��RijklRijkl�uu

�
�

�

� � ��
���RijijRklklRpqpq � ��RijijRklkpRqlqp

� ��RijijRklpqRklpq � �
	RijikRjuluRkplp

� ���RijikRuplpRjukl � �	RijikRjulpRkulp

� ��RijkuRijlpRkulp � 	
RijkuRilkpRjlup

�
�

�

�


�
	-ij �k-ij �k � �-ij �j-ik�k � ��-ij-ij �kk � ��-ij-jk-ki

� �Rijkl-ij-kl � �Rijik-jl-kl � �Rijij-kl-kl

�
�

�

�


�
�E�iijj � �
EE�ii � 
E�iE�i � �
E
 � 
E-ij-ij

� �
RijijE�kk � �RijikE�jk � ��Rijij �kE�k � 
RijijE
�

� ��Rijij �kkE � �RijijRklklE

� �RijikRijklE � �RijklRijklE
�
�

�

Proof� We have derived �a���c� explicitly� We refer to �Gilkey� The
spectral geometry of a Riemannian manifold� for the proof of �d� as it
is quite long and complicated� We remark that our sign convention is that
R���� � �� on the sphere of radius � in R
�

We now begin our computation of an�x�"
m
p � for n � 
� �� ��
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Lemma ������� Let m � �� and let "p be the Laplacian on p�forms�
Decompose

a��x�"p� � ������ � c��p� �Rijij��

a��x�"p� � ������fc��p�Rijij �kk � c��p�RijijRklkl

c
�p�RijikRljlk � c��p�RijklRijklg��
�
Then the ci are given by the following table�

c� c� c� c
 c�

p � 
 �� ��� � �� �

p � � � �� ��
 ��� ���
p � � � �	 �
 ��� ��

p �  � �� ��
 ��� ���
p � � �� ��� � �� �P
����p 
 
 �	
 ���
 �	


Proof� By Poincare duality� an�x�"p� � an�x�"��p� so we need only
check the �rst three rows as the corresponding formulas for "
 and "� will
follow� In dimension � the formula for the Euler form is �������RijijRklkl�
�RijikRljlk�RijklRijkl��� so that the last line follows from Theorem ����	�

If p � 
� then E � - � 
 so the �rst line follows from Theorem ��	����
If p � �� then E � ��ij � Rikij is the Ricci tensor by Lemma ��	���
Therefore�

Tr����Rijij �kk � �
E�kk� � ��	Rijij �kk � �
Rijij �kk

� ��Rijij �kk

Tr��RijijRklkl � �
RijijE� � �
RijijRklkl � �
RijijRklkl

� ��
RijijRklkl

Tr���RijikRlklk � �	
E�� � �	RijikRljlk � �	
RijikRljlk

� ���RijikRljlk

Tr��RijklRijkl � 
-ij-ij� � 	RijklRijkl � 
RijklRijkl

� ���RijklRijkl

which completes the proof of the second line� Thus the only unknown is
ck���� This is computed from the alternating sum and completes the proof�

More generally� we let m 
 �� Let M � M� 	 Tm�� be a product
manifold� then this de�nes a restriction map rm�� �Pm�n � P��n which is
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an isomorphism for n � �� Using the multiplication properties given in
Lemma ������ it follows�

an�x�"
m
p � �

X
i�j�n

p��p��p

ai�x�"
�
p�
�aj�x�"

m��
p�

��

On the #at torus� all the invariants vanish for j 
 
� By Lemma ��	��
a��x�"

m��
p�

� � �����m��
�
m��
p�

�
so that�

an�x�"
�
u� �

X
u�v�p

�����m�����
�
m� �

v

�
an�x�"

�
u� for n � �

where an�x�"
�
u� is given by Lemma ��	���� If we expand this as a polyno�

mial in m for small values of u we conclude�

a��x�"
m
� � �

�����m��

�
���m�Rijij

a��x�"
m
� � �

�����m��

�

f��
� ��m�Rijij �kk � ��m� �
�RijijRklkl

� ��	
� �m�RijikRljlk � ��m� 
�RijklRijklg
and similarly for a��x�"

m
� � and a��x�"

m
� �� In this form� the formulas also

hold true for m � �� � We summarize our conclusions in the following
theorem�

Theorem ������� Let "m
p denote the Laplacian acting on the space of

smooth p�forms on an m�dimensional manifold� We let Rijkl denote the
curvature tensor with the sign convention that R���� � �� on the sphere
of radius � in R
� Then�
�a� a��x�"

m
p � � �����m��

�
m
p

�
�

�b� a��x�"
m
p � �

�����m��

�

n�
m��
p��
�
�
�
m��
p

�� �
�
m��
p��
�o

��Rijij��

�c� Let

a��x�"
m
p � �

�����m��

�


�
c��m� p�Rijij �kk � c��m� p�RijijRklkl

� c
�m� p�RijikRljlk � c��m� p�RijklRijkl

�
�

Then for m � � the coe�cients are�

c��m� p� � ���
h�

m��
p

�
�
�
m��
p��
�i

� ��
h�
m��
p��
�
�
�
m��
p�

�i

� �	
�
m��
p��
�

c��m� p� � �
h�

m��
p

�
�
�
m��
p��
�i� �


h�
m��
p��
�
�
�
m��
p�

�i

� �

�
m��
p��
�

c
�m� p� � ��
h�

m��
p

�
�
�
m��
p��
�i

� ���
h�
m��
p��
�
�
�
m��
p�

�i� ��

�
m��
p��
�

c��m� p� � �
h�

m��
p

�
�
�
m��
p��
�i� ��

h�
m��
p��
�
�
�
m��
p�

�i

� ��
�
m��
p��
�
�
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�d�

a��x�"
m
� � � �����m��

a��x�"
m
� � �

�����m��

�
��Rijij�

a��x�"
m
� � �

�����m��

�

����Rijij �kk � �RijijRklkl � �RijikRljlk

� �RijklRijkl�

�e�

a��x�"
m
� � � �����m��

a��x�"
m
� � �

�����m��

�
���m�Rijij

a��x�"
m
� � �

�����m��

�

f��
� ��m�Rijij �kk � ��m� �
�RijijRklkl

� ��	
� �m�RijikRljlk

� ��m� 
�RijklRijkl�g

�f �

a��x�"
m
� � �

�����m��

�
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These results are� of course� not new� They were �rst derived by Patodi�
We could apply similar calculations to determine a�� a�� and a� for any op�
erator which is natural in the sense of Epstein and Stredder� In particular�
the Dirac operator can be handled in this way�

In principal� we could also use these formulas to compute a�� but the
lower order terms become extremely complicated� It is not too terribly
di�cult� however� to use these formulas to compute the terms in a� which
involve the � jets of the metric and which are bilinear in the � and � jets
of the metric� This would complete the proof of the result concerning a� if
m � � discussed in section ����



	��� Spectral Geometry�

Let M be a compact Riemannian manifold without boundary and let
spec�M�"� denote the spectrum of the scalar Laplacian where each eigen�
value is repeated according to its multiplicity� Two manifolds M and M
are said to be isospectral if spec�M�"� � spec�M�"�� The leading term in
the asymptotic expansion of the heat equation is �����m�� �vol�M� � t�m��

so that if M and M are isospectral�

dimM � dimM and volume�M� � volume�M�

so these two quantitites are spectral invariants� If P � Pm�n�� is an invariant
polynomial� we de�ne P �M� �

R
M
P �G�j dvol j� �This depends on the

metric in general�� Theorem ��	��	 then implies that Rijij�M� is a spectral
invasriant since this appears with a non�zero coe�cient in the asymptotic
expansion of the heat equation�
The scalar Laplacian is not the only natural di�erential operator to study�

�We use the word �natural� in the technical sense of Epstein and Stredder
in this context�� Two Riemannian manifolds M and M are said to be
strongly isospectral if spec�M�P � � spec�M�P � for all natural operators
P � Many of the global geometry properties of the manifold are re#ected
by their spectral geometry� Patodi� for example� proved�

Theorem ���� �Patodi�� Let spec�M�"p� � spec�M�"p� for p �

� �� �� Then�
�a�

dimM � dimM� volume�M� � volume�M��

Rijij�M� � Rijij�M�� RijijRklkl�M� � RijijRklkl�M��

RijikRljlk�M� � RijikRljlk�M�� RijklRijkl�M� � RijklRijkl�M��

�b� If M has constant scalar curvature c� then so does M �

�c� If M is Einstein� then so is M �

�d� If M has constant sectional curvature c� then so does M �

Proof� The �rst three identities of �a� have already been derived� If
m � �� the remaining  integral invariants are independent� We know�

a��"
m
p � � c��m� p�RijijRklkl � c
�m� p�RijikRljlk�M�

� c��m� p�RijklRijkl�M��

As p � 
� �� � the coe�cients form a  	  matrix� If we can show the
matrix has rank � we can solve for the integral invariants in terms of the
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spectral invariants to prove �a�� Let � � m � � and c � �������� � then
our computations in section ��	 show

cj�m� 
� � c � cj��� 
�
cj�m� �� � c � � � cj��� 
� � c � cj��� ��
cj�m� �� � c � � � �� � ���� � cj��� 
� � c � � � cj��� �� � c � cj��� ��

so that the matrix for m 
 � is obtained from the matrix for m � � by
elementary row operations� Thus it su�ces to consider the case m � ��
By ��	���� the matrix there �modulo a non�zero normalizing constant� is��B� � �� �

��
 ��� ���
�
 ��� ��

�CA �

The determinant of this matrix is non�zero from which �a� follows� The
case m � � and m �  can be checked directly using ��	��	�

To prove �b�� we note that M has constant scalar curvature c if and only
if ��c � Rijij�

��M� � 
 which by �a� is a spectral invariant� �c� and �d�
are similar�

From �d� follows immediately the corollary�

Corollary ���	� Let M and M be strongly isospectral� If M is iso�
metric to the standard sphere of radius r� then so is M �

Proof� If M is a compact manifold with sectional curvature ��r� then
the universal cover of M is the sphere of radius r� If vol�M� and vol�S�r��
agree� then M and the sphere are isometric�

There are a number of results which link the spectral and the global
geometry of a manifold� We list two of these results below�

Theorem ����� LetM andM be strongly isospectral manifolds� Then�
�a� If M is a local symmetric space �i�e�� rR � 
�� then so is M �
�b� If the Ricci tensor of M is parallel �i�e�� r� � 
�� then the Ricci tensor
of M is parallel� In this instance� the eigenvalues of � do not depend upon
the particular point of the manifold and they are the same for M and M �

Although we have chosen to work in the real category� there are also
isospectral results available in the holomorphic category�

Theorem ����� Let M and M be holomorphic manifolds and suppose
spec�M�"p�q� � spec�M�"p�q� for all �p� q��

�a� If M is Kaehler� then so is M �
�b� If M is CPn� then so is M �

At this stage� the natural question to ask is whether or not the spectral
geometry completely determines M � This question was phrased by Kac in
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the form� Can you hear the shape of a drum� It is clear that if there ex�
ists an isometry between two manifolds� then they are strongly isospectral�
That the converse need not hold was shown by Milnor� who gave exam�
ples of isospectral tori which were not isometric� In ���	 Vigneras gave
examples of isospectral manifolds of constant negative curvature which are
not isometric� �One doesn�t know yet if they are strongly isospectral�� If
the dimension is at least � then the manifolds have di�erent fundamental
groups� so are not homotopic� The fundamental groups in question are all
in�nite and the calculations involve some fairly deep results in quaternion
algebras�
In ��	 Ikeda constructed examples of spherical space forms which were

strongly isospectral but not isometric� As de Rham had shown that di�eo�
morphic spherical space forms are isometric� these examples are not di�eo�
morphic� Unlike Vigneras� examples� Ikeda�s examples involve �nite fun�
damental groups and are rather easily studied� In the remainder of this
section� we will present an example in dimension � due to Ikeda illustrat�
ing this phenomenon� These examples occur much more generally� but this
example is particularly easy to study� We refer to �Gilkey� On spherical
space forms with meta�cyclic fundamental group which are isospectral but
not equivariant cobordant� for more details�

Let G be the group of order ��� generated by two elements A� B subject
to the relations�

A�� � B�� � � and BAB�� � A
�

We note that � � � mod ��� This group is the semi�direct product
Z��  Z�� � The center of G is generated by B� and the subgroup generated
by A is a normal subgroup� We have short exact sequences�


� Z�� � G� Z�� � 
 and 
� Z�� � G� Z� � 
�

We can obtain an explicit realization of G as a subgroup of U��� as follows�
Let � � e��i��� and � � e��i��� be primitive roots of unity� Let fejg be
the standard basis for C� and let � � U��� be the permutation matrix
��ej� � ej�� where the index j is regarded as de�ned mod �� De�ne a
representation�

�k�A� � diag��� �
� ��� ��� ��� and �k�B� � �k � ��

It is immediate that �k�A�
�� � �k�B��� � � and it is an easy computation

that �k�B��k�A��k�B��� � �k�A�

 so this extends to a representation

of G for k � �� �� � �� �If H is the subgroup generated by fA�B�g� we
let ��A� � � and ��B�� � ��k be a unitary representation of H� The
representation �k � �G is the induced representation��

In fact these representations are �xed point free�
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Lemma ����� Let G be the group of order ��� generated by fA�Bg
with the relations A�� � B�� � � and BAB�� � A
� The center of G is
generated by B�	 the subgroup generated by A is normal� Let � � e��i���

and � � e��i��� be primitive roots of unity� De�ne representations of G in
U��� for � � k � � by� �k�A� � diag��� �
� ��� ��� ��� and �k�B� � �k � �
where � is the permutation matrix de�ned by ��ei� � ei�� �
�a� Enumerate the elements of G in the form AaBb for 
 � a � �� and

 � b � ��� If ��� b� � �� then AaBb is conjugate to Bb�

�b� The representations �k are �xed point free�

�c� The eigenvalues of �k�A
aBb� and ���A

aBkb� are the same so these two
matrices are conjugate in U����

Proof� A�jBbAj � Aj�
b���Bb� If ��� b� � �� then b � � is coprime to
�� so we can solve the congruence j�b � �� � a mod �� to prove �a��
Suppose ��� b� � � so the eigenvalues of �k�A

aBb� and �k�B
b� coincide�

Let f	�� � � � � 	�g be the �th roots of unity� these are the eigenvalues of �
and of �b� Thus the eigenvalues of �k�B

b� are f�kb	�� � � � � �kb	�g and are
primitive ��th roots of unity� Thus det��k�B

b� � I� �� 
 and �k�B
b� has

the same eigenvalues as ���B
kb�� To complete the proof� we conside an ele�

ment AaB�b� �k is diagonal with eigenvalues ��kbf�a� �
a� ��a� ��a� ��ag�
If �a� ��� � � and �b� �� � � these are all primitive ��th roots of unity�
if �a� ��� � � and �b� �� � � these are all primitive ��th roots of unity�
if �a� ��� � �� and �b� �� � � these are all primitive �th roots of unity�
This shows �k�A

aB�b� is �xed point free and has the same eigenvalues as
���A

aB�kb� which completes the proof�

We form the manifolds Mk � S���k�G� with fundamental group G�
These are all spherical space forms which inherit a natural orientation and
metric from S� as discussed previously�

Lemma ���
� Adopt the notation of Lemma ������ Let M � S���k�G�
be spherical space forms� Then M�� M�� M
 and M� are all strongly
isospectral�

Proof� Let P be a self�adjoint elliptic di�erential operator which is nat�
ural in the category of oriented Riemannian manifolds� Let P� denote this
operator on S�� and let Pk denote the corresponding operator on Mk� �For
example� we could take P to be the Laplacian on p�forms or to be the
tangential operator of the signature complex�� Let � � R and let E����
and Ek��� denote the eigenspaces of P� and Pk� We must show dimEk���
is independent of k for � � k � �� The unitary group acts on S� by orien�
tation preserving isometries� The assumption of naturality lets us extend
this to an action we shall denote by e���� on E����� Again� the assumption
of naturality implies the eigenspace Ek��� is just the subspace of E���� in�
variant under the action of e������k�G��� We can calculate the dimension
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of this invariant subspace by�

dim ek��� �
�

jGj
X
g�G

Trfe������k�g�g

�
�

���

X
a�b

Trfe������k�AaBb�g�

We apply Lemma ����� to conclude �k�A
aBb� is conjugate to ���A

aBkb�
in U��� so the two traces are the same and

dim ek��� �
�

���

X
a�b

Trfe�������AaBkb�g

�
�

���

X
a�b

Trfe�������AaBb�g � dim e����

since we are just reparameterizing the group� This completes the proof�

Let � � R��Z��� We regard � � R��G� by de�ning ��AaBb� � ��b�� This
is nothing but the pull�back of � using the natural map 
 � Z�� � G �
Z� � 
�

Lemma ����� Let � � R��Z�� and let G be as in Lemma ������ Let
��G� G be a group automorphism� Then � �� � � so this representation
of G is independent of the marking chosen�

Proof� The Sylow ���subgroup is normal and hence unique� Thus ��A�
� Aa for some �a� ��� � � as A generates the Sylow ���subgroup� Let
��B� � AcBd and compute�

��A
� � A
a � ��B���A���B��� � AcBdAaB�dA�c � Aa�
d �

Since �a� ��� � �� d � � ����� This implies d � � ���� Therefore
��AuBv� � A�Bdv so that ���AuBv� � ��dv� � ��v� as � � R��Z��
which completes the proof�

These representations are canonical� they do not depend on the marking
of the fundamental group� This de�nes a virtual locally #at bundle V�
over each of the Mk� Let P be the tangential operator of the signature
complex� ind��� signature�Mk� is an oriented di�emorphism of Mk� In fact
more is true� There is a canonical Z� bundle over Mk corresponding to
the sequence G � Z� � 
 which by Lemma ����� is independent of the
particular isomorphism of ���Mk� with G chosen� Lemma ������b� shows
this is a Z��cobordism invariant� We apply Lemma ���� and calculate for
� � R��Z�� that�

ind��� signature�Mk� �
�

���
�
X


a�b

Tr���b�� � defect��k�AaBb�� signature��
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 denotes the sum over 
 � a � ��� 
 � b � ��� �a� b� �� �
� 
�� Since this
is an element of R��Z��� we may suppose ��� b� � �� As AaBb is conjugate
to Bb by ������ we can group the �� equal terms together to see

ind��� signature�Mk� �
�

��

X


b

Tr���b�� � defect��k�Bb�� signature�

where we sum over 
 � b � �� and ��� b� � ��
If ��� b� � �� then the eigenvalues of �k�B

b� are f�bk	�� � � � � �bk	�g� Thus

defect��k�B
b�� signature� �

Y
�

�bk	� � �

�bk	� � �

�
��bk � �

��bk � �

since the product ranges over the primitive �th roots of unity� Let � �
�� � e��i�� � then we conclude

ind��� signature�Mk� �
�

��
�
X


b

Tr���b�� � �
kb � �

�kb � �

�
�

�
�
X

��b��

Tr���b�� � �
kb � �

�kb � �
�

if we group equal terms together�
We now calculate for the speci�c example � � �� � ���

ind��� � ��� signature�Mk� �
�

�

�X
b��

��b � �� � �
kb � �

�kb � �

�
�

�

�X
b��

��b
k � �� � �

b � �

�b � �

if we let k k � � ���� We perform the indicated division� �x
k � ����x� �� �

x
k�� � � � �� � so we obtain

�
�

�

�X
b��

��b
k�b � �b

k��b � � � �� ����b � ���

This expression is well de�ned even if b � 
� If we sum over the entire
group� we get an integer by the orthogonality relations� The value at 
 is
�� k�� and therefore ind��� � ��� signature�Mk� � �� k�� mod Z�

We choose the orientation arising from the given orientation on S�� If
we reverse the orientation� we change the sign of the tangential operator
of the signature complex which changes the sign of this invariant�
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Theorem ����� LetMk � S���k�G� with the notation of Lemma ������
These four manifolds are all strongly isospectral for k � �� �� � �� There
is a natural Z� bundle over each Mk� ind��� � ��� signature�Mk� � �� k��
mod Z where k k � � ���� As these � values are all di�erent� these �
manifolds are not Z� oriented equivariant cobordant� Thus in particular
there is no orientation preserving di�eomorphism between any two of these
manifolds� M� � �M� and M� � �M
� There is no di�eomorphism
between M� and M� so these are di�erent topological types�

Proof� If we replace � by  � we replace �k by ���k up to unitary equiv�
alence� The map z ��  z reverses the orientation of C� and thus Mk �
�M��k as oriented Riemannian manifolds� This change just alters the sign
of ind��� signature� ��� Thus the given calculation shows M� �� �M�� The
statement about oriented equivariant cobordism follows from section ����
�In particular� these manifolds are not oriented G�cobordant either�� This
gives an example of strongly isospectral manifolds which are of di�erent
topological types�

Remark� These examples� of course� generalize� we have chosen to work
with a particular example in dimension � to simplify the calculations in�
volved�
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