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TOPOLOGICAL MANIFOLDS * 

by L. C. SIEBENMANN 

0. Introduction. 

Homeomorphisms - topological isomorphisms - have repeatedly turned up in 
theorems of a strikingly conceptual character. For example : 

(1) (lgth century). There are continuously many non-isomorphic compact 
Riemann surfaces, but, up to  homeomorphism, only one of each genus. 

(2) (B. Mazur 1959). Every smoothly embedded (n - l)-sphere in euclidean 
n-space R" bounds a topological a-ball. 

(3) (R. Thom and J. Mather, recent work). Among smooth maps of one compact 
smooth manifold to  another the topologically staMe ones form a dense open set. 

In these examples and many others, homeomorphisms serve t o  reveal basic rela- 
tionships by conveniently erasing some finer distinctions. 

In this important role, PL (= piecewise-linear)(") homeomorphisms of simplicial 
complexes have until recently been favored because homeomorphisms in general 
seemed intractable. However, PL homwmorphisms have limitations, some of them 
obvious ; to illustrate, the smooth, non-singular self-homeomoqhism f : R + R 

1 
of the line given by f(x) = X + - 4 exp (- l/x2) sin (1lx)can in no way be regarded 

as a PL self-homeomorphism since it has infinitely many isolated futed points near 
the origin. 

Lkvelopments that have intervened since 1966 fortunately have vastly increased 
our understanding of homeomorphisms and of their natural home, the category 
of (finite dimensional) topological manifolds("'). I will describe just a few of them 
below. One can expect that mathematicians will consequently come to use freely 
the notions of homeomorphism and topological manifold untroubled by the fruo 
trating difficulties that worried their early history. 

(*) This report is based on theorems concerning homeomorphisms and topological mani- 
folds [44] [45] 1461 [46 A] developed with R.C. Kirby as a sequel to [42]. I have reviewed 
some contiguous matexial and included a collection of examples related to my observation 
that n,(TOP/PL) # 0. My oral report was largely devoted to results now adequately descri- 
bed in [S]], [82]. 

(**) A continuous map f : X + Y of (locally fiite) simplic'i complexes is called PL if 
there exists a simplicial complex X' and a homeomorphisn s : X' + X  such that s and 
fs each map each simplex of X' (affine) linearly into some simplex. 

(***) In some situations one can comfortably go beyond manifolds [82]. Also, there has been 
dramatic progress with infinite dimensional topological manifolds (see 148 1). 
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Of fundamental importance to TOP manifolds were Eemavskii's proof in 1968 
that the homeomorphism group of a compact manifold is locally contractible 
1101 [ l  l], and Kirby's proof in 1968 of the stable homeomorphism conjecture with 
the help of surgery [42]. Key geometric techniques were involved - a meshing idea 
in the fonner, a particularly artful torus furling and unfurling idea(') in the latter. 
The disproof of the Hauptvennutung and the triangulation conjecture i sketch 
below 'uses neither, but was conceived using both (See [44] [44 B] [46 A] for 
alternatives). 

2. Failure of the Ha~tvermutung and the triangulation c o n j e ~ t * ~ ~ .  

section presents the most elementary disproof I know. 1 constructed it 
for the Arbeitstagung, Bonn, 1969. 

In this &scuss*n = [- 1 , 11" 6 Rn is the standard PL ball ; and the sphere 
1 = a ~ n  is the boundary of B". = /Zn is the standard PL torus,the n-fold 

product of circles. The closed interval [O , 1) is denoted 1. 

starting material we take a certain PL automorphism a of X Tn ,  n > 3 
fixing boundary that is constructed to have two special properties (1  and (2) be- 
low. The existance of a was established by Wall, Hsiang and Shaneson, and 
in 1968 using sophisticated surgical techniques of Wall (see [35] [95]). A rather naive 
construction is given in [80, fj 51, which manages to avoid surgery obstruction groups 
entirely. To establish ( l )  and (2) it requires only the S-cobordism theorem and 
some unobstructed surgery with boundary, that works from the affine locus 
e4 : z: + zi + z: = 1 h c3. This e4 coincides with Milnof s E, plumbing of 

dimension 4 ; it has signature 8 and a collar neighborhood of infinity X R, 
where hf3 = S0(3)/A, is Poincare's homology %sphere, cf. [61, 8 9.81. 

(1) The automorphism P induced by a on the quotient T2+" of B2 X Tn(obtai- 
ned by identifying opposite sides of the square B') has mapping torus 

T ( P )  = I X T ~ + ~ I { ( O  , X )  = (1 , ~ ( X ) ) I  

not PL isomorphic to T3+" ; indeed there exists(")a PL cobordism (W ; T " + ~ ,  ,(P)) 
and a homotopy equivalence of  W to { I  X T J  # Q U =I X Tn  extending the staw 
dard eqw'valences T"" 2: 0 X T3 X Tn  and T(B) 2: 1 X T 3  X Tn.  The symbol # in- 
dicates (interior) connected sum [4 1 ]. 

(2) For any standard covering map p : B2 X Tn -* B2 X T n  the coveringautomor- 
phism a, of  a fixing boundary is PL pseudo-isotopic to a fiing boundary. (a- 
vering means that p&, = ap). In other words, there exists a PL automorphism Hof 
( I ; 0 , 1 ) x B 2  X Tn  fixing Z x  aB2 X Tnsuch that HIOxB2 X Tn = O x a  and 
H J l x ~ ~ x T ~ = l x c u ~ .  

- - - - - - - - - - - m - - -  

(*) N~vikov fmt exploited a torus furling idea in 1965 to prove the topo[o@l inva- 
riance of rational Pontdagin classes 1671. And this led to S~llivan'~ partial proof of the 
Hauptvermutung WI. Kirby's unfitrling of the toms was a fresh idea that proved revo- 
lutionary. 

c**$ T h ~ s  is the key property. It explains the exoticity of T@) - (see end of argument), 
and the property (2) - (almost, see (80, 8 51). 
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In (2)  choose p to be the 2"-fold covering derived from scalar multiplication 
by 2 in R". (Any integer > 1 would do as well as 2.) Let a,(= a ) ,  a,, a;, . . . 
be the sequence o f  automorphimi, o f  B' X T" fixing boundary such that a,+, 
covers a,, i.e. pmk+, = &p. SirnC-~ly define H,(= H ) ,  H,, H,, . . . and note that 
H, is a PL concordance fixing boundary from a, to ak+, . Next defme a PL auto- 
morphism H' o f  [O , 1 )  X B' X Tn by making H1l[ak, a,+ ,] X R' X T",  where 

1 
a, = l - --, correspond to H, under the (oriented) linear map o f  [a,, a,+, ] 

2 
onto [0 , l ]  = I. We extend H'by the identity to [ O ,  1) X R ,  X Tn.  Defineanother 
self-homeomorphism H" o f  [ 0 ,  I )  X B' X T" by H" = cpH'9-l where 

Finally extend H" by the identity to a bijection 

It is also continuous, hence a homeomorphism. To prove this, consider a sequence 
ql , q, , . . . of  points converging to q = ( to ,  X,, y,) in I X B' X T'! Convergence 
H"(qI) + HU(q) is evident except when to = 1 , X ,  = 0. In the latter case it is 
easy to check that p1 H1'(qI) + p, H1'(q) = 1 and p, Hn(qi) + p, H1'(q) = 0 as 
i + W, where p,, i = 1 , 2 , 3  is projection to the i-th factor o f  l X B' X T". It is 
not as obvious that p3H"(qI) + xJft(q) = y,. To see this, let 

be the universal covering o f  H, fixing I X aB2 X R". Now 

is finite, being realized on the compactum I X B' X I". And, as gk is clearly 
1 

~;'H,B,,  where O,(t, x , y)  = ( t  , x ,2"y), we have D, = - D  . Now D, is 
2, O 

2 the maximum distance o f  p3Hk from p,, for the quotient metric on T" = R"/Zn ; 
so D, -+ 0 implies p, H1'(qi ) + p, H1'(q) = y,, as i -+ W. 

As the homeomorphism H" is the identity on I X aB2 X T" it yields a self- 
homeomorphisrn g o f  the quotient I X T' X T" = I X TZ+". And as 

g10 X T"" = 0 X 0 , 

and g l 1 X T2+" = identity, g gives a homeomorphism h o f  T(P) onto 

T(id) =' 2' 1 
~ 2 + n  = ~ 3 + n  

by the rule sending points ( t  , z )  ii, g-1 ( t  , z) - hence ( 0 ,  z )  to ( 0 ,  F' (2) )  and 
( 1  , z )  to ( 1  , z )  

The homeomoiphism h : T ~ + "  = T(P) beIies the Hauptvermutung. Further, 
( 1 )  offers a certain PL cobordism (W ; T3+", T(P)). Identifying T3+" in W to T(P) 
under h we get a closed topological manifold 

TOPOLOGICAL MANIFOLDS 

(= indicating homotopy equivalence). 

I f  it had a PL manifold structure the fibering theorem of Farrell [l91 (or the 
author's thesis) would produce a PL 4-manifold x4 with W, (x4) = w2(X4) = 0 
and signature a ( x 4 )  o(S1 X T' # Q  U W) aa(Q U W)= 8 mod. 16, cf. [go, g S]. 
Rohlin's theorem [7 1 ] [40] cf. 5 13 shows this X4 doesn't exist. Hence X4+" has no 
PL manifold structure. 

Let us reflect a little on the generation o f  the homeomorphism h : T(P) m T3+". 
The behaviour o f  H" is described in figure 2-a (which is accurate forB1 in place of 
B2 and for n = 1 )  by partitioning the fundamental domain I X BZ X I" according 
to the behavior o f  H". The letter a indicates codimension 1 cubes on which H" 
is a conjugate o f  a. 

L 1  

Figure 2a 

Observe the infinite ramification (2"-fold) into smaller and smaller domains 
converging to all o f  1 X 0 X T". In the terminology o f  Thom [92, figure 71 this 
reveals the failure o f  the Hauptvermutung to be a generalized catastrophe ! 

Remark 2.1. - Inspection shows that h : T(P) T ~ + "  is a Lipschitz homeo- 
morphism and hence x4+" is a Lipschitz manifold as defmed by Whitehead [98] 
for the pseudogroup of Lipschitz homeomorphisms - see $4. A proof that 
T(P) m T3+" (as given in [U]) using local contractibility o f  a homeomorphism 
group would not reveal this as no such theorem is known for Lipschitz homeo- 
morphisms. Recall that a theorem of Rademacher [69] says that every Lipschitz 
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homeomorphism of one open subset of R" to another is almost everywhere 
differentiable. 

3. The unrestricted triangulation conjecture. 

When a topological manifold admits no PL manifold structure we know it is 
not homeomorphic to  a simplicial complex which is a combinatorial manifold 
[37]. But it may be homeomorphic to some (less regular) simplicial complex 
- i.e. triangulable in an unrestricted sense, cf. 179). For example Q U W (from $2) 
is triangulable and Milnor (Seattle 1963) asked if (Q U W) X S' is a topological 
manifold eyen though Q U obviously is not one. If so, the manifold x4+" of 
8 2 is easily triangulated. 

If all TOP manifolds be triangulable, why not conjecture that that every locally 
triangulable metric space is triangulable ? 

Here is a construction for a compactum X that is ZocaZIy triangulable but is 
non-triangulable. Let L , ,  L, be closed PL inanifolds and 

an invertible(*) PL cobordism that is not a product cobordism. Such a W exists for 
instance if +,L,= Z,, and L, 2; L,, compare [78]. It can cover an inver- 
tible cobordism (W', L, X S', L, X S')  [77, 41. To the Alexandroff compac- 
tification W U of W adjoin {(L, X R) U W )  X [0 , l ]  identifying each point 
(X , 1) in the latter to the point X in W U W. The resulting space is X. See Figure 3-a. 
The properties of X and of related examples will be demonstrated in [83]. They 
complement Milnor's examples [S71 of homeomorphic complexes that are PL (corn- 
binatorially) distinct, which disproved an unrestricted Hauptvermutung. 

(*) This means that W can be expressed as a union W = C, U C,, where C, is a closed 
collar neighborhood of L, X R in W. 

TOPOLOGICAL MANIFOLDS U m u  

4. Structures on topological manifolds. 

Given a TOP manifold Mm (without boundary) and a pseudugroup G of homeo- 
morphisms(*) of one open subset of R"' to  another, the problem is to find and 
classify G-structures on Mm. These are maximal "G-compatible" atlases {U, , fa) 
of charts (= open embeddings) f, : U, -+ Rm so that each fa fi' is in G. (Cf. [29] 
or 1481.) 

One reduction of this problem to homotopy theoretic form has been given 
recently by Haefliger [28] [29]. Let G (Mm) be the (polyhedral quasi-) space (**) 
of Gstructures on M. A map of a compact polyhedron P to G (M) is by definition 
a G-foliation 5 on P X M transverse to  the projection p, : P X M + P (i.e. its de- 
f ~ g  submersions are transverse t o  p,  )(***). Thus, for each t E P, B restricts to  a 
Gstructure on t X M and, on each leaf of 8, p, is an open embedding. Also note 
that I gives a G,-structure on P X M where G, is the pseudagroup of homeornor- 
phisms of open subsets of P X R'" locally of the form (t , X )  + ( t  ,g(x)) with 
g E G. If G consists of PL or DIFF homeomorphisms and P = [0, l], then 
8 gives (a fortiori) what is cailed a sliced concordance of PL or DIFF structures 
on M (see I451 W]) .  

We would like to analyse G(Mm) using Milnor's tangent R'"-microbundle 7 (M)of 
M, which consists of total space E(rM) = M X M, projection p, : M X M -+ M, and 
(diagonal) section 6 : M -* M X M ,  6 (X) = (X , X). Now if Em is any R m  micm 
bundle over a space X we can consider GL(t) the space of Gfoliations of E(E) 
transverse to the fibers. A map P -+ G'(€) is a Gfoliation 8 defined on an open 
neighborhood of the section P X X in the total space E (P X E) = P X E (E) that is 
transverse t o  the projection to P X X. Notice that there is a natural map 

which we call the differential. To a Gfoliation I of P X M transverse to  p , ,  it 
assigns the Gfoliation db on P X M X M = E (P X ?(M)) obtained from $ X M 

(') e.g. the PL isomorphisms, or Lipschitz or DIFF or analytic isomorphisms. Do notcon- 
fuse G with the stable monoid G = U C, of 8 5.5. 

(") Formally such a space X is a wntravariant functor X : P + [P, X] from the category 
of PL maps of compact polyhedra (denoted P, Q etc.) to the category of sets, which carries 
union to fiber product. Intuitively X is a space of which we need (or want or can) only 
know the maps of polyhedra to it. 

(" ') A G-foliation on a space X is a maximal Gcompatible atlas {V,,  g,) of topological sub- 
mersion~ g, : Vs + Rm. (See articles of Bott and Wall in these proceedings.) A map g : V + W 
IS a ropological submerswn if it is locally a projection in the sense that for each X in V there 
exists an open neighborhood W, of g(%) in W a space F, and an oFen embedding onto a 
neighborhood of X ,  called a product chart about X ,  9 : F, X W, + V such that grp is projec- 
tion p, : F, X W, + W, C W. One says that g is transverse toanothersubmersiong': V+W1 
if for each X ,  9 can be chosen so that F, = W: X F: and g'9 is projection to W: an open subset 
of W'. This says roughly that the leaves (= fibers) off  and g intersect in general position. 
Above they intersect in points. 
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4. Structures on topological manifolds. 
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by interchanging the factors M. If P is a point, the leaves of dS are simply 

Clearly d 5  is transverse to  the projection P X p ,  to  P X M. 

THEOREM 4.1. CLASSII:ICATION BY FOLIATED MICROBUNDLES. - The differential 

is a weak homotopy equivalence for each open (metrizable) m-manifold Mm with no 
compact components. 

Haefliger deduces this result (or a t  least the bijection of components) from the 
topological version of the Phillips-Gromov transversality theorem classifying maps 
of M transverse to a TOP foliation. (See 1291 and J.C. Hausmann's appendix). 

As formulated here, 4.1 invites a direct proof using Gromov's distillation of im- 
mersion theory [25] [26]. This does not seem to have been pointed out before,and 
it seems a worthwhile observation, for I believe the transversality result adequate 
for 4.1 requires noticeably more geometric technicalities. In order to apply 
Gromov's distillation, there are two key points to  check. For any C C Mm, let 
GM(C) = inj lim {G (U) I C C U open in M). 

(1) For any pair A C B of compacta in M, the restriction map n : GM(B) %(A) 
is micro-gibki - i.e., given a homotopy f : P X I -+ GM(A) and F, : P X 0 -+ &,(B) 
with nFO = f l P X 0 there exists E > 0 and F : P X [0 , E] -+ GM(B) so that 
r F  = f l P X [O , E]. Chasing definitions one fmds that this follows quickly from 
the TOP isotopy extension theorem (many-parameter version) or the relative local 
contractibility theorem of [ 101 [ l  71 

(2) d is a weak homotopy equivalence for Mm = Rm. Indeed, one has a commu- 
tative square of weak homotopy equivalences 

in which the verticals are restrictions and the bottom comes from identifying 
the fiber of rRm 10 to R"', cf. [27]. 

Gromov's analysis applies (1) and (2) and more obvious properties of G, G' to  
establish 4.1. Unfortunately, M doesn't always have a handle decomposition over 
which to induct ; one has to proceed more painfully chart by chart. 

We can now pass quickly from a bundie theoretic to  a homotopy classification 
of G-structures. Notice that if f : J' -t X is any map and is a R m  microbundle 
over X equipped with a G-folitation 8, transverse to fibers, defined on an open 
neighborhood of the zero section X, then f Y over X' is similarly equipped with 
a pulled-back foliation f*%. This means that equipped bundles behave much like 
bundles. One can use Haefliger's notion of "gamma structure" as in [29] to  deduce 
for numerable equipped bundles the existence of a universal one (G ,lc ) over a 
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base space There is a map B,(,) + B,,,(,) classifing as an Rm - 
microbundle ; we make it a fibration. Call the fiber TOP(m)/r(G). One finds that 
there is a weak homotopy equivalence G' (5) - Lift (f to B,(,)), to the space of 
liftings to B,,(,) of a fixed classifying map f : X 4 B,,,(,) for tm. Hence one 
gets 

THFDREM 4.2. -For any open topological m-manifold Mm, there is a weak h e  
motopy equivalence G (M) -- Lift ( r  to  B,(,,) from the space of Gstructures G (M) 
on M to the space of liftings to B,(,) ofa B e d  classifying map map T : M -+ BTo,(m) 
for 7 (M ). 

Heafliger and Milnor observe that for G = CATm the pseudo-group of CAT 
isomorphisms of open subsets of Rm - CAT meaning DIFF (= smooth C'), 
or PL (= piecewise linear) or TOP (= topological) - one has 

Indeed for CAT = TOP, 4.2 shows this amounts t o  the obvious fact that 
=,(G (S' X R"-~)) = 0. Analogues of 4.2 with DIFF or PL in place of TOP can 
be proved analogously (") and give the other cases of (4.3). Hence one has 

THEOREM 4.4. - For any open topological manifold Mm, there is a natural bi- 
jectioi noCATm(Mm) I noLift (T to  B,,(,)). 

This result wmes from [44] for m > 5. Lashof [SO] gave the first proof that was 
valid for m = 4. A stronge~: and technically more difficult result is sketched in 
[63] [45]. It asserts a weak homotopy equivalence of a "sliced concordance" 
variant of CATm(Mm) with Lift (7 to  B,,,(,)). This is valid without the openness 
restriction if m # 4. For open Mm (any m), it too can be given a proof involving a 
micro-gibki property and Gromov's procedure. 

5. The product structure theorem. 

THFDREM 5.1 (Product structure theorem). - Let Mm be a TOP manifold, C a  
closed subset of M and U, a CAT (= DIFF o r  PL) structure on a neighborhood of 
C in M. Let B be a CAT structure on M X R' equal a, X RS near C X R'. Provide' 
that m > 5 and aM C C. 

Then M has a CAT structure a equal U, near C And there exists a TOP isotopy 
(as small as we please) h, : M, X R'-+ (M X R'), , 0 =G t 1, of h, = identity , 
fiing a neighborhood of C X RS, to a CAT isomorphism h,. 

It will appear presently that this result is the key t o  TOP handlebody theory and 
transversality. The idea behind such applications is to  reduce TOP lemmas t o  their 
DIFF analogues 

(*) Alternatively, for our purpose, B,(,) can be the ordered simplicial complex having 
one d-simplex for each equipped bundle over the standard d-simplex that has total space in 
some R" C R^. 

(**) The forgetful map 9 : Br(pLm) -+ BPL(m) is more delicate to define. One can make 

Br(PL'") a simplicial complex, then define 9 simplex by simplex. 
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I t  seems highly desirable, thereisre, to  prove S. 1 as much as possible by pure gec- 
metry, without passing through a haze of formalism like that in 8 4. This is done 
in [46]. Here is a quick sketch of proof intended t o  advertise [46]. 

First, one uses the CAT S-cobordism theorem (no surgery !) and the handle- 
straightening method of (441 to prove - without meeting obstructions - 

THE OR^ 5.2 (Concordance implies isotopy). - Given M and C as in 5.1, con- 
sider a CAT structure I' on M X Z equal a, X I nenr C X I, and let r I M X 0 be cal- 
led o X 0. (F is called a concordance of o re1 C). 

There exists a TOP isotopy (as small as we please) h, : M, X Z -t (M X I),, 
0 G t G 1, of  h, = identity, fwing M X 0 and a neighborhood of C X I, to a CAT 
isomorphism h, . 

Granting this result, the Product Structure Theorem is deduced as follows. 

In view of the relative form of 5.2 we can assume M = R'". Also we can assume 
S = 1 (induct on S !). Thirdly, it suffices to  build a concordance I' (= structure on 
M X R' X I )  from o X R' to C re1 C X R'.  or, applying 5.2 t o  the concordance r 
we get the wanted isotopy. What re nains to  be proved can be accomplished quite 
elegantly. Consider Figure) S-a. 

00s hotchtng inLEotes Wmcidence 
wth  Z. Double vatlenl @chins m 
dicatca when the sbwctm is a 
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We want a concordance re1 C X R from Z to  o X R .  First note it suffices to  
build Z, with the properties indicated. Indeed C, admits standard (sliced) concor- 
dances re1 C X R to o X R and to Z. The one to o X R comes from sliding R over 
itself onto ( 0 ,  m). The region of coincidence with o X R becomes total by a sort 
of window-blind effect. The concordance to B comes from sliding R over itself 
onto (- W , -  1). (Hint : The structure picked up from Z, at the end of the slide 
is the same as that picked up from Z). 

It remains to construct B,. Since M X R = R,+', we can find a concordance 
(not re1 C X R) from B to the standard structure, using the STABLE homeomor- 
phism theorem(') [42]. Now 5.2 applied to  the concordance gives C,, which is 
still standard near M X [0 , m). Finally an application of 5.2 to B, ( N  X [- 1 ,0], 
where N is a small neighborhood of C, yields 2,. The change in Z, IM X 0 (which 
is standard) on N X 0 offered by 5.2 is extended productwise over M X [0 , W). 
This completes the sketch. 

It  is convenient t o  recall here for later use one of the central results of [44]. 
Recall that TOP,/PL, is the fiber of the forgetful map B,,(,) +B,,(,). And 
TOPIPL is the fiber the similar map of stable classifying spaces B,, + B,,,. Si- 
milarly one defines TOP,/DIFF, r TOPm/Om and TOPIDIFF E TOPIO. 

THEOREM 5.3(**) (Structure theorem).- TOP/PL z K (Z, , 3 )  and 

for k < m and m > 5. Here CAT = PL or DIFF. 
Since ~ ~ ( 0 , )  = r,(O) for k < m, we deduce that r,(TOP , TOP,) = 0 for 

k < m > S, a weak stability for TOP,. 
Consider the second statement of 5.3 first. Theorem 4.4 says that 

for k < m > 5. Secondly, 5.1 implies SF = SF" = S:+' = . . - 9 m > k. Hence 
U, (TOP,/CAT,) = U, (TOPICAT). 

We now know that n,(TOP/PL) is the set of isotopy classes of PL structures on 
sk if k > 5. The latter is zero by the PL Poincari theorem of Smale [84], combined 
with the stable homeomorphism theorem [42] and the Alexander isotopy. Simi- 
larly one gets r,(TOP/DIFF) = 0, for k > 5. Recall 0, = 0, = 0 [41]. 

The equality n,(TOP/PL) = r,(TOP/DIFF) = *,(K (Z,, 3)) for k G 5 can be 
deduced with ease from local contractibility of homeomorphism groups and the 
surgical classification [3S] [9S], by H ~ ( T '  ; ZZ), of homotopy S-ton. See [43] 
[46 A] for details. 

Combining the above with 4.4 one has a result of [44]. 

- - - m - - - - - - - - -  

(*) Without this we get only a theorem about compatible CAT structures on STABLE 
manifolds (of Brown and Gluck [g]). 

(**) For a sharper result see [63] [4S], and references therein. 
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CLASSIFICATION THEOREM 5.4. - For m 2 5 a TOP manifold Mm (without boun- 
dary) admits a PL manifold structure iff an obstruction A(M) in H 4 ( ~ ; z 2 )  
vanishes. When a PL structure B on M is given, others are classified (up to concor- 
dance or trotopy) by elements of H 3  (M ; Z,). 

Complement. - Since rk (TOP/DIFF) = U, (TOP/PL) for k < 7 (see above calcu- 
lation), the same holds for DIFF in low dimensions. 

Finally we have a look at low dimensional homotopy groups involving 

where G, is the space of degreekl maps~"- '  + S"-'. Recall that r, G = r,+,sk, 
k large. G/CAT is the fiber of a forgetful map B,,, + B G ,  where B, is a stable 
classifying space for spherical fibrations (see [15], [29]). 

The left hand commutative diagram of natural maps is determined on the right. 
Only n3TOP is unknown('). So the exactness properties evident on the left 
leave no choice. Also a must map a generator of n4G/TOP = Z to (12, l )  in 
Z @ 2/22 = n3TOP. 

The calculation with PL in place of 0 is the same (and follows since n,(PL/O) = 
r, = 0 for i 6). 

6. Simple homotopy theory 1441 [46 A]. 

The main point is that every compact TOP manifold M (with boundary aM) 
has a preferred simple homotopy type and that two plausible ways to  define 
it are equivalent. Specifically, a handle decomposition of M or  a combinatorial 
triangulation of a normal disc-bundle to  M give the same simple type. 

The second definition is alwayq available. Simply embed M in R", n large, 
with normal closed disc-bundle E [31]. Theorem 5.1 then provides a small h e  
meomorphism of R" so that h (aE), and hence h (E), is a PL submanifold. 

(*) That n,G/TOP is Z (not Z @ Z,) is best proved by keeping track of some normal 
invariants in disproving the Hauptvermutung, see [46A]. Alternatively, see 13.4 below. 
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Working with either of these definitions, one can see that the preferred simple 
type of M and that of the boundary aM make of (M, aM) a finite Poincarc? 
duality space in the sense of Wall [95], a fact vital for TOP surgery. 

The Product structure theorem 5.1 makes quite unnecessary the bundletheoretic 
nonsense used in [44] (cf. [63]) to establish preferred simple types. 

7. Handlebody theory (statements in [44 C] [45], proofs in [46 A]). 

7.1. The main result is that handle decompositions exist in dimension > 6. 
Here is the idea of proof for a closed manifold Mm, m 2 6. Cover Mm by finitely 
many compacta A , ,  . . . , A , ,  each A, contained in a ceordinate chart U, = Rm. 
Suppose for an inductive construction that we have built a handlebody H C M 
containing A,  U . . . U A,,, , i 2 0. The Product Structure Theorem shows that 
H n U, can be a PL (or DIFF) m-submanifold of Oi after we adjust the PL 
(or DIFF) structure on U,. Then we can successively add finitely many handles 
onto H in U, to  get a handiebody H' containing A, U . . . U A,. After k steps we have 
a handle decomposition ofM. 

A TOP Morse hnction on Mm implies a TOP handle decomposition (the corr 
verse is trivial) ; to see this one uses the TOP isotopy extension theorem to prove 
that a TOP Morse function without critical points is a bundle projection. (See 
[l21 [82, 6.141 for proof in detail). 

Topological handlebody theory as conceived of by Smale now works on the modef 
of the PL or DIFF theory (either). For the sake of those familiar with either, 1 des- 
cribe simple ways of obtaining transversality and separation (by Whitney's method) 
of attaching spheres and dual spheres in a level surface. 

LEMMA 7.2. (Transversality). - Let g : R"' + Rm, m 2 5, be a STABLE ho- 
meomorphism In Rm, consider RP X 0 and 0 X Rq, p + q = m, with 'ideal' 
transverse intersection at the origin There exists an eisotopy of  g to h : Rm + Rm 
such that h (RP X 0) is transverse to 0 X Rq is the following strong sense. Near 
each point x E h-'(0 X Rq) n RP X 0, h differs fi-om a translation by at most a 
homeomorphism of Rm respecting both RP X 0 and 0 X Rq. 

Furthermore, if C is a given closed subset of  Rm and g satisfies the strong t ram 
versality condition on h above for points x of Rm near C, then h can equal g near 
c. 

Proof of  7.2 - For the Fist statement €12 isotop g to diffeomorphism g' using 
Ed Connell's theorem l141 (or the Concordanc~irnpliesepsilon-isotopy theorem 
5.2), then €12 isotop g' using standard DIFF techniques to a homeomorphism h' 
which will serve as h if C = @. 

The further statement is deduced from the fmt  using the flexibility of homeo- 
morphisms Find a closed neighborhood C' of C near which g is still transverse 
such that the frontier k' misses g-l(O X RP) n (RP X 0) - which near C is a 
discrete collection of  points. Next, find a closed neighborhood D of C' also missing 
g - ' ( ~ x ~ 9 ) n ( ~ P ~ 0 ) ,  and 6 : R m + ( O , - )  so that d ( g x , O x R q ) < S ( x )  for 
x In D n (RP X 0). If E : Rm + ( 0 ,  m) is sufficiently small, and h' in the first pa- 
ragraph is built for E, Cernavskii's local contractibility theorem [ l  l ]  (also [ 171 
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and [82 ,6.3]) says that there exists a homeomorphism h equal g on C' and equal 
h' outside C' U D so that d ( h l , g )  < 6. This is the wanted h. 

7.3. THE WHlTNEY LEMMA. 

The TOP case of the Whitney process for eliminating pairs of isolated transverse 
intersection points (say of MP and Nq) can be reduced to the PL case [99] [37]. 
The Whitney 2-disc is easily embedded and a neighborhood of it is a copy of 
Rm , m = p + q. We can arrange that either manifold, say MP, is PL in R"', and(*) 
N. is PL near W in R*. Since 5 d m = p + q, we can assume q m/2 ; so NQ 
can now be pushed to be PL in R* by a method of T. Homma, or by one of R.T. 
Miller [54 A], or again by the method of [44], applied pairwise 144 A] (details in 
[73]). Now appiy the PL Whitney lemma [37]. On can similarly reduce to the ori- 
ginal DIFF Whitnev lemma [99]. 

7.4. CONCLUSION. 

The s-cobordism theorem [37] [39], the boundary theorem of [76], and the 
splitting principle of Farrell and Hsiang [20]. can now be proved in TOP with the 
usual dimension restrictions. 

8. Transversality (statements in [44 C] [451, proofs in [46 AI). 

If f : Mm + R" is a continuous map of a TOP manifold without boundary to 
R" and m - n > 5, we can homotop f to  be transverse to  the origin 0 E R". Here 
is the idea One works from chart to  chart in M to spread the transversality, 
much as in buiiding handlebodies. In each chart one uses the product structure 
theorem 5.1 to  prepare for an application of the relative DIFF transversality 
theorem of Thom. 

Looking more closely one gets a relative transversality theorem for maps 
f : Mm + E ( t n )  with target any TOP R"-microbundle E" over any space. It  is 
parallel to  Wiltiamson's PL theorem [loo], but is proved only for m # 4 # m - n. 
It is indispensible for surgery and cobordism theory. 

9. Surgery. 

Surgery of compact manifolds of dimension > 5 as formulated by Wall [95] 
can be carried out for TOP manifolds using the tools of TOP handlebody theory. 
The chief technical problem is to  make the self-intersections of a framed TOP 
immersion f : Sk X R' +MZk  of S*, k > 3, transverse (use Lemma 7.2 repeatedly), 
and then apply the Whitney lemma t o  frnd a regular homotopy o f f  to  an embed- 
ding when WalI's self-intersection coefficient is zero. 

In the simply connected case one can adapt ideas of Browder and Hirsch [4]. 

Of course TOP surgery constantly makes use of TOP transversality, TOP simple 
homotopy type and the TOP scobardism theorem. 

(*) Use of the strong transversality of 7.2 makes this trivial in practice. 

10. Cobordism theory : generalities 

Let [respectively 51:T0P] be the group of [oriented] cobordism classes 
of [oriented] closed n-dimensional TOP manifolds. Thom's analysis yields a h e  
momorphism 

8, : + R, (MTOP) = liz v,+, (MTOP (k)) . 
k 

Here MTOP(k) is the Thom space of the universal TOP R~-bundle riOP over 
B,,,(,) - obtained, for example, by compactifying each fiber with a point 
(cf. [49]) and crushing these points to  one. The Pontjagin Thom definition of 
8, uses a stable relative existence theorem for normal bundles in euclidean space - 
say as provided by Hirsch [30] and the Kister-Mazur Theorem [49]. 

Similarly one gets Thom maps 

8, : 5tFop + n, (MSTOP), and 0, : 51TfNToP + r,,(MSPfNTOP) , 

and more produced by the usual recipe for cobordism of manifolds with'a given, 
special, stable structure on the normal bundle [86, Chap. 111. 

THEOREM 10.1. - In each case above the Thom map 0, : 51, + ~r, (M) is surjec 
tive for n f 4, and irpiectipte for n # 3. 

This follows immediately from the transversality theorem. 

PROPOSITION 10.2. - BSO g Q - B,,, @ Q, where Q denotes the rational num- 
bers. 

Proof. - T, (STOP/SO) = n, (TOP/O) is finite for all i by [40] 1441 cf. 5 5, 
STOP/SO being fiber of 4, -*BsTo,. (See 5 15 or [go] for definition of @ Q). 

PROPOSITION 10.3. - n,MSO Q z,MSTOP @ Q. 

Proof. - From 10.2 and the Thom isomorphism we have 

Now use the Hurewicz isomorphism (Sene's from [75]). 

P R O ~ O N  10.4. - G!? Q g Q each being therefore the polyne 
mid algebra freely generated by CP,, , n k 1. 

Roof of 10.4. - The uncertainty about dimensions 3 and 4 in 10.1 cannot pre- 
vent this following from 10.2. Indeed, i2"JTOp 4 a,MSTOP is injective because 
every TOP 3-manifold is smoothable (by Moise et al., cf. [80, 5 S]). And 

is rationally onto because G!y+ r,MSTOP is rationally onto. 

Since r,(STOP/SPL) = n,(TOP/PL) is Zz for i = 3 and zero for i # 3 the above 
three propositions can be repeated with SPL in place of SO and dyadic rationals 
Z [ i ]  in place of Q. The third becomes : 
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PROPOSITION 10.5. - SlrL @ B[$] @ Z [ f ]  . 
Next we recall 

* zs mnjective. PROPOSITION 10.6. - (S.P. Novikov). + L?ST0P ' ' 

This is so because every element o f  is detected by its Stiefel-Whitney 
numbers (homotopy invariants) and its Pont jagin numbers (which are topological 
invariants by 10.2). 

In view o f  10.2 we have canonical Pontjagin characteristic classes p, in 

and the related Hinebruch clasys L, = L,(p,, . . . ,p,) E H4,. H i n e b ~ c h  sho- 
wed that L, : @ Q + Q sending a 4k-manifold M4k to its characteristic num- 
ber L, (M~,)  = L,(T (M4,)) [M4,] E Q is the signature (index) homomorphism. 
From 10.2 and 10.4, it follows that the same holds for STOP in placeof SO.Hence 
we have 

PROPOSITION 10.7. - For any closed oriented TOP 4k-manifold M4, the signa- 
ture a (M 4 k )  of the rational cohomology cup product pairing H'" @ H" + H4, = Q 
is given by a (M 4k) = L,(? M4,) [M 4k]  E Z. 

11 .  Oriented cobordism. 

The first few cobordism groups are fun to compute geometrically - by elemen- 
tary surgical methods, and the next few pages are devoted to this. 

THEOREM 11.1.  - = 51r (B R, for n < 7 ,  and we have R, = 0 for n G 3 , 
R4 < Z Z , R 5  = 0 ,  R6 = Z 2 ,  R 7 < Z 2 .  

Proof of 11. l .  - For n = 1 , 2 ,  3 , &2iTOP = = 0 is seen by smoothing. 

For n = 4, f i t  observe that Z = + f2FoP maps Z to a summand because 
the signature o f  a generator CP, is 1 which is indivisible. Next consider the Z, 
characteristic number o f  the first stable obstruction A E H4(BsToP ; Z,) to smoo- 
thing. It gives a homomorphism ayoP + Z4 killing G!?. I f  

then, by 5.3, M4 X R has a DIFF structure 8. Push the projection ( M ~  X R)= + R 
to be transversal over 0 E R at a DIFF submanifold M' and behold a TOP oriented 
cobordism M to M'. Thus R, G 0. 

For n 2 5 note that any oriented TOP manifold M" is oriented cobordant to a 
simply connected one M' by a finite sequence o f  0 and l-dimensional surgeries. 
~ u t ,  for n = 5, H4(M' ; z,) H ,  (M' ; Z,) = 0 soM' is smoothable. Hence R,  = 0 . 

For n = 6 we prove 

PROPOSITION 11.2. - The characteristic number Aw, : C2FoP+ Z2 is an iso- 
morphism. 
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Proof. - It is clearly non-zero on any non-smoothable manifold M6 = CP,, 
since w2(M6) = wZ(CP3) # 0, and we will show that such a M6 exists in 15.7 
below. 

Since Sl? = 0 it remains to prove that Aw, is injective. Suppose Aw2(M6) = 0 
for oriented M6. As we have observed, we can assume M is simply connected 
Consider the Poincark dual DA o f  A = A(rM) in 

and observe that it can be represented by a locally flatly embedded Zsphere S C M6. 
(Hints : Use [24], or find an immersion of  S' X [52] and use the ideaof Lemma 
7.1). 

Note that A I (M - S )  = A (M - S )  is zero because A [X] = x DA (the Z,  in- 
tersection number) for all x € H,(M ; Z,). Thus M - S is smoothable. 

A neighborhood o f  S is smoothed, there being no obstruction to this ; and S 
is made a DIFF submanifold o f  it. Let N be an open DIFF tubularneighboIhood 
of  S. Now 0 = Aw2[M] = w,[DA] = w2[S1 means that w2(rM)1S is zero. Hence 
N = s2 X R ~ .  Killing S by surgery we produce M', oriented cobordant to M, so 
that, writing M, = M - S' X j4 ,  we have M' = M, + B, X (union with boun- 
daries identified). Now M' is smoothable since M, is and there is no further obstruc- 
tion. As = 0, Proposition 1 1.2, is established. 

PROPOSITION 11.3. - The characteristic number (PA) W ,  : 51ToP + Z2 is injec 
tive, where 0 = Sql.  

Proof of 11.3. - We show the (PA) W ,  [M] = 0 implies is a boundary. Just as 
for 1 1.2, we can assume M is simply connected. Then r,M = H, (M ; Z )  and we can 
kill any element o f  the kernel o f  W ,  : H,(M ; Z )  + Z,, by surgery on Zspheres in 
M. Killing the entire kernel we arrange that W ,  is injective. 

We have 0 = (PA)w2[M] = w,[DPA]. So the Poincark dual DPA o f  PA is 
zero as W ,  is injective. 

Now PA = 0 means A is reduced integral ; indeed P is the Bockstein 

(both isomorphisms by reduction). Thus PA = 0 implies SA = 0, which means 
A is reduced integral. Hence DA is reduced integral. Since the Hurewicz map 
r,M + H,(M ; Z )  is onto, DA is represented by an embedded 3-sphere S. Fo lb  
wing the argument for dimension 6 and recalling r,O = 0, we can do surgery onS 
to obtain a smoothable manifold. 
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12. Unoriented cobordism (*). 

Recalling calculations of Sl: and Sly from Thom [91] we get the following 
table 

The only non zereentry for 0 < i < 4 would be @ = Z,. 
To deduce the last row from the first three, use the related long exact sequences 

(from Dold [ 161) 

If transversality fails %.(M ?) should replace G?: in the TOP sequence. (See 
[93, 8 61, [3] for explanatmn). 

All the maps are forgetful maps except those marked j and ( a ,  d). The map 
j kills the second summand, and is n~ultiplication by 2 on the first summand (which 
is also the target of j). 

At the level of representatives, a maps M' to a submanifold M'- dual to  W, (M'), 
and d maps M' to M'-' C M'-' dual to w1(M')IMi-' 

The map d is onto with left inverse cp defined by associating to M'-' the RP' 
bundle associated to  X @ e2 over M'- ', where X is the line bundle with 

w,(h) = W,(M'-~) 
and E' is trivial. 

The diagram (12.1) gives us the following generators for S, m S?,:0p/a7 

S, < Z,: Any M4 with A(M) # 0 - -  - if it exists. 

S, = Z,: ~n~ M' detected by AW,. 

S, = Z, @ Z,  : Non-smoothable M: 2: CP,, detected by Aw, ; 

M: -- RP, X (Q U W) 

(*) Added in proof : A complete calculation of SZToPhasjust been ~ M O U I X ~ ~  byBrumfiel, 
Madsen and Milgram (Bull. AMS to appear). 

detected by AW:. M: X R can be RP, x 9, where 3 is the universal covering 
of a manifold constructed in [80, 8 51. 

S, = 22, @ R, : M: = cpM: detected by Aw: ; M; is detected by Aw,w,, 
M: = T(p), the mapping torus of an orientation reversing homeomorphism of 
M: = CP, homotopic to complex conjugation in CP,. Such a p exists because con- 
jugation doesn't shift the normal invariant for M: -- CP, in [CP,, G/TOP]. Finally 
M: a generator of R, detected by (BA) W, (if it exists). 

13. Spin cobordism. 

The stable classifying space BSPINTOP is the fiber of W, : B,, + K(Z,, 2) . 
So ?r,BsmTOp is 0 for i < 3 and equals I~,B,,, for i > 3. Topological spin cobor- 
dism is defined like smooth spin cobordism but using TOP manifolds. Thus 

Ct;tsP'NTOP is the cobordism ring for compact TOP manifolds M equipped with 
a spin structure - i.e. a lifting to BspINTo, of a ciassifying map M + B,,, for ?(M) 
- or equivalently for the normal bundle v(M). 

THEOREM 13.1. - For n < 7 ,  is isomorphic to C t y ,  which for 
n = 0 ,  1 , . . . , 8  has the values Z ,  Z,, Z,, 0 ,  Z ,  0 , 0 , 0 , Z @ Z [S91 [86]. The 
image of the forgetful map Z = atPrN + = Z is the kernel o f  the stable 
triangulation obsmtction A : S2tP'NT0P + Z2. 

The question whether A is zero or not is the question whether or not Rohlin's 
congruence for signature a (M4) E 0 mod 16 holds for all topological spin mani- 
folds M 4. Indeed o (M4) E 8 A(M4) mod 16, A(M4) being 0 or 1. 

Proof of 13.1. - The isomorphism for n < 3 comes fmm 
smoothing. 

Postponing dimension 4 to the last, we next show Sl:mNTOP/~:mN = 0 for 
n = 5 , 6 ,  7. Note first that a smoothing and a topological spin structure determine 
a unique smooth spin structure. The argument of 8 11 shows that the only obstruc- 
tion to  performing oriented surgery on M" to obtain a smooth manifold is a charac- 
teristic number, viz. 0 ,  Aw,, (PA)w, for n = 5 , 6  ,7 respectively. But w,(Mn) = 0 
for any spin top~logical manifold. It remains to show that the surgeries can be 
performed so that each one, say from M to M', thought of as an elementary CO- 

bordism (Wn+' ;Mn,  M'"), can be given a topological spin structure extending that 
of M. The only obstruction to  this occurs in H'(w ,  M ; Z,), which is zero except 
if the surgery is on a l-sphere. And in that case we can obviously find a possibly 
different surgery on it (by spinning the normal bundle !) for which the obstruction 
is zero. 

Finally we deal with dimension 4. If A ( M ~ )  = 0 for any spin 4-manifold, then 
is spin cobordant to a smooth spin manifold by the proof of 11.1. Next sup  

pose M4 is a topological spin manifold such that the characteristic number A(M,) 
is not zero. If we can show that a(M4) 8 A ( M ~ )  mod 16 the rest of 13.1 will 
follow, including the fact that Ct~p'NTOP p Z rather than Z @ Z,. We can assume 
M4 connected (by surgery). 
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LEMMA 13.2. - For any closed connected topological spin 4-manifold M ~ ,  there 
exists a (stable) TOP bundle f over s4 and a degree 1 map M -+ s4 covered by a 
TOP bundle map v(M) -r E. This E is necessarily fiber homotopically trivial A 
similar result (sirtrilarly proved) holds for smooth spin manifolds. 

hoof  of 13.2 - Since any map M, M - (point) + BspmTop is contractible, 

v(M) [M, is trivial, and so v(Ai) -r E exists as claimed. Now E is fiberhomotopically 
trivial since it is - like v(M) - reducible, hence a Spivak normal bundle for 9. 
(Cf. proof in [40].) 

LEMMA 13.3. - A fiber homotopically trivialized TOP bundle f over the 4-sphere 

1 
Proof of 13.3. - Consider the homomorphism - 3 p,  : n4 G/TOP + Z given by 

1 
associating the integer - p, (E) [ s4]  t o  a such a bundle E over s4. The composed 3 

1 
map - p, : a4G/0 -* Z sends a generator q to  f 16 E Z. Indeed, by Lemma 13.2 , 

3 * 

DIFF transversality, and the Hinebruch index theorem, 3 p, (q) is the least index 

of a closed smooth spin 4-manifold, which is 2 16 by Rohlin's theorem [40]. The 
lemma follows if we grant that r4G/TOP = Z(not Z @ 2,). 

Now we complete 13.1. In 2/16 Z we have 

the third equality coming from the last lemma. 
n4G/TOP = Z is used in 13.3 and in all following sections. So we X 2 prove it as 

PROPOSIT~ON 13.4. - The forgetful map ~r, G/O + n, GITOP is Z -+ Z. 

Proof of 13.4. - (cf. na'ive proof in [46A]). Since the cokernel is n,TOP/O = 
1 

n,TOP/PL = Z,, it suffices to show that - p I  3 : n4G/TOP + Z in the proof of 13.3 

sends some element 5. to  + 8 E Z. 

Such a 5 is constructed as follows. In 82,  we constructed a closed TOP mani- 
fold X4+" with wI(X) = w2(X) = 0 and a homotopy equivalence f :  N4 X Tn I. X4+", 
where N4 is a certain homology manifold (with one singularity) having o(N4) = + 8. 
Imitating the proof of 13.2 with N4 and v' = f*v(x4+")I fl in place of and 

v ( M ~ )  we construct f over 9 and v' + f over the degree 1 map N4 + S4.  This 
f is fiber homotopically trivial because v(X),fCv(X) and v' are Spivak normal 
bundles. Let represent 5 in r4G/TOP. 

1 
It remains to  show - p ,  (f) = f 8. First we reduce n t o  1 in f :  N4 X Tn I. X4+" 3 

by using repeatedly a splitting principle valid in dimension > 6. (eg. use the TOP 
version of (761, or just the PL or DIFF version as in the latter part of 5.4 (a) 

TOPOLOGICAL MANIFOLDS 

in 1801). Consider the infinite cyclic covering 

Splitting as above, we find that CP, X * Ya X R for some 8-manifoM Ya. Thus using the index theorem 10.7, and the multiplicativity of index and L- 
classes we have 

+8=o(N4)= o(cP2 XN) = o(ya)  = L,(Y') = Ll (cP,) L, (F5) [CP, X N] = 

I I 1 L, (2') [PI = - L, (V') IN'] = - 7 p ,  (v') [N4] = - ? p l  ( t )  [S4] = - 7 p,  ({I. 

(We have suppressed some natural (co)homology isomorphisms). 

14. The periodicity of Casson and Sullivan. 

A geometric construction of a "periodicity" map 

n : G/PL + CI~G/PL 

was discovered by h l. Casson in early 1967 (unpublished) (*). 

He showed that the fiber of n is K (Z2, 31, and used this fact with the idear of 
Novikov's proof of topological invariance of the rational Ponfrjagh classes to  esta- 
blish the Hauptvermutung for closed simply connected PL mmifolds Mm, m 2 5, 
with H'(M'", L,) = 0. (Sullivan had a slightly stronger result 188 1). 

Now precisely the same construction produces a periodicity map r' in a ho- 
motopy commutative square 

The construction uses TOP versions of simply connected surgery and transver- 
sality. Recalling that the fiber of ip is K(Z,, 3) we see that C14p is a homotopy equi- 
valence. Hence n' must be a homotopy equivalence. Thus (nl)-l Q (C14ip) gives a h e  
motopy identification of n to p ; and an identification of the fiber of r to the f ibn 
TOP/PL of p. Thus TOP/PL had been found (but not identified) in 1967 ! 

The perfect periodicity n' : GITOP = C I 4 ( ~ / ~ 0 p )  is surely an attractive feature 
of TOP. I t  suggests that topological manifolds bear the shplest possible elation 
to their underlying homotopy types. This is a broad statement worth testlng. 
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15. Hauptvermutung and triangulation for normal invariants ; Sullivan's thesis('). 

Since TOPJPLL G / P L ~  G / T O P ~  K(Z,, 4) is a fibration sequence of H- 
spaces see 15.5 we have an exact sequence for any complex X 

Examining the kernel and cokernel of cp using Sullivan's analysis of G/PL)(, ,(**l 
we will obtain 

'J~EOREM 15.1. - For any countable finite dimensional complex X there is an 
exact sequence of abelian groups : 

H3(x  ; Z,)/Image H 3 ( x  ; z)& [X,  G/PL] [X ,  G/TOP] 2 {Image (H4(x ; Z) 

+ sqZH2(x ;Z,)) 

The right hand member is a subgroup of H4(x  ; Z,), and j* comes from 

K (Z, ,3)  2: T O P / P L L  G/PL 

In 1966-67, Sullivan showed that cp, is injective provided that the left hand group 
vanishes. Geometrically interpreted, this implies that a homeomorphism h : M' + M 
of closed simply connected PL manifolds of dimension > 5 is homotopic to a PL 
homeomorphism if H ~ ( ~ H  ; Z,)/lmage H ~ ( M  ; Z )  = 0, or equivalently ifH4(M ; Z) 
has no 2-torsion [88]. Here [M, G/PL] is geometrically interpreted as a group of 
normal invariants, represented by suitably equipped degree 1 maps f : M' -+ M 
of PL manifolds to M, cf. [95]. The relevant theorem of SuIlivan is : 

1 ] is .Z with ; f o r d  odd primes p adjoined. This b 

one of the chief results of Sullivan's thesis 1966 1871. For expositions of it see 
~721  [l31 v41  [W. 

- - - - - - - - v - - - -  

(*) Section 15 (indeed § § 10-16) discusses corollaries of r, (TOP/PL) = Z, collected in 
spring 1969. For further information along these lines, the reader should see work of 
Hollingsworth and Morgan (1970) and S. Morita (197 1) (added in proof). 

(**) The localisation at 2, A(,) = A @ Z(,) of a space A will occur below, only for countable 
H-spaces A such that, for countabk finite dimensional complexes X, [X, A] is an abelian 
group (usually a group of some sort ci stable bundles under Whitney sum). Thus E.H. Brown's 
representation theorem offersa space A(,) and map A +A( , )  so that [X, A] 8 Z(,, = [X, A,,,]. 
For a more comprehensive treatmeat of localisation see [89]. The space A Qisdefined 
similarly. 

TOPOLOGICAL MANIFOLDS 

Sullivan's argument adapts to prove 

(15.3) The Postnikov K-invariants of G/TOP are all odd ; Hence 

Indeed his argument needs only the facts that (1) TOP surgery works, (2) the 
signature map Z = r,,(G/TOP) + Z is X 8 (even for k = 1, by 13.4), and (3) the 
Arf invariant map Z, = r,,+,(G/TOP) + Z, is an isomorphism. 

Alternatively (15.2) * (15.3) if we use JZ'(G/PL) = G/TOP from 514. 

Remark 15.4. 

It is easy to see directly that the 4-stage of GITOP must be K (Zz ,2 )  X K(Z ,4). 
For the only other possiility is the 4 stage of G/PL with K-invariant 6sqZ in 
H'(K(z,, 2 ) ,  Z)=Z,. Then the fibration K(Z2,3) = TOPIPL + GL/PL-+ G/TOP 
would be impossible. (Hint : Look at the induced map of 4 stages and consider the 
transgression onto 6SqZ). This remark suffices for many caicculations in dimension 

6. On the other hand it is not clear to me that (15.2) * (15.3) without geometry 
in TOP. 

Roof that Kernel cp Y- H' (X ; Z,)/image H3  (X ; Z). 

This amounts to showing that for the natural fibration 

JZGITOP -+ TOPIPL -+ GIPL 
the image of [X ,  L!G/TOP] in [X, TOPIPL] = H3(x  ; Z,), consists of the reduced 
integral cohomology classes. Clearly this is the image of [X , L! (G/TOP)(,)] under 

4 2 )  S1 (G/TOp)(,) 4 (TOP/PL)(,) = TOPIPL. Now j(,) is integral reduction on the 
factor K (Z(,), 3) of G? (G/TOP)(,) because r,(G/TOP) + n, (TOPIPL) is onto, 
and it is clearly zero on other factors. The result follows. The argument comes 
from 1131 [72]. 

Proof that Coker(9) = {Image H4(X ; Z) + SqZH2 (X ; Z,)). 

The following lemma is needed. Its proof is postponed to the end. 

LEMMA 15.5. - The triangulation obstruction A : B,,, + K (Z,, 4) is an H-map. 

Write 9 : A + B for q : G/PL + GITOP and let 9, : A, -+ B, bethe induced map 
of Postnikov 4-stages, which have inherited H-space structure. Consider the fibra- 

94 A4 
tion A, * B, -+ K (Z,, 4). 

Assertion (1). - (A,),[X , B,] = {Image H4(X ; Z)  + sqZHZ (X ; ZZ )). 

Proof of (l). - Since B, = K (Z,, 2) X K (Z ,4)  and 

[X ,  B,] = H 2 ( x  ;ZZ) H,(X ;z)  

what we have to show is that the class of A, in 

is (SqZ, p) where p is reduction mod 2. 
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- - - - - - - - v - - - -  
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Sullivan's argument adapts to prove 
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94 A4 
tion A, * B, -+ K (Z,, 4). 
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The second component of A, is A,IK(Z, 4) which is indeed p since 

The first component A, I K(Z2, 2) can be Sq2 or 0 a priori, but it cannot be 0 
as that would imply A, 2 K (Z,, 2) X K (Z ,4).  This establishes Assertion (l).  

Assertion (2). - (A,), [X , B,] = A, [X ,B]  by the projection B + B,. 

Proof of (2). - In view of 15.5, localising B, and B at 2 does not change the 
left and right hand sides. But after localization, we have equality since BC,) is the 
product (1 5.3). 

The theorem follows quickly 

[X ,A]/cp, [X ,A] = A,[X ,B] = (A,), [X,  B,] = {ImageH4(X ,Z) + (X ; Z2 1) 

The three equalities come from I emma 15.5 and (1) and (2) respectively. 

It remains now t o  give 

Proof of Lemma 15.5 (S. Morita'spplacing something more geometrical). 

We must establish homotopy commutativity of the square 

where o represents Whitney sum and or represents addition in cohomology. 

Now ci o(A X A) represents A X 1 + 1 X A in H4(BTOp X hop ; Z2 ). Also 
A o certainly represents something of the form A X 1 + 1 X A + X, where 
X is a sum of products X X y with x , y each in on9 of Hi (hOp ; Z,) = H'(BpL ; Z2 1, 
for i = 1,2 or 3. Since A restricted to Bp, X Bp, is zero, Z must be zero. 

Theorem 15.1 is very convenient for calculations. Let M be a closed PL 
manifold, m-manifold m B 5, and write 8,,,(M), CAT = PL or TOP, for the 
set of h-cobordism classes of closed CAT m-manifolds M' equipped with a home 
topy equivalence f : M' +M. (See [95] for details). 

There is an exact sequence of pointed sets (extending to the left) : 

...+ [ ~ M , G / C A T ] + L , + , ( U , ~ , ) + ~ ~ ~ ~ ( M ) ~ [ ~ , G / C A ~ ] + L ~ ( ~ , W ~ )  - 

It  is due to Sullivan and W d  [95]. The map v equips each f : M' -+ M(above)as 
a CAT normal invariant. Exactness at '8,, (M) isrelative to  an action of L,+,(n , W, ) 

on it. Here L,(r , W ,) is the surgery group of Wall in dimension k for fundamental 
group U = n, M and for orientation map W, = W, (M) ; n + Z2 . There is a generali- 
sation for manifolds with boundary. Since the PL sequence maps naturally t o  the 
TOP sequence, our knowledge of the kernel and cokernel of 

[M, GJPLI -, [M,  GITOPI 
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will give a lot of information about S,, (M) + STOp(M ). Roughly speaking failure 
of triangulability in 8*,(M) is detected by non triangulability of the TOP normal 
invariant ; and failure of Hauptvermutung in SPL(M) cannot be less than its failure 
for the corresponding PL normal invariants. 

In case n, M = 0, one has '8,, (M) n SuT(M0) [M,, GICAT] where M, is 

M with an open m-simplex deleted, and so Theorem 15.1 here gives complete 
information. 

Example 15.6. - The exotic PL structure Z on s3 X S",  n > 2, from 

admits a PL isomorphism ( s 3  X S")= s3 X Sn homotopic (not TOP isotopic) to 
the identity. 

Example 15.7. - For M = CP, (= complex projective space), n > 3, the map 
[M,, GIPL] + [M,, GITOP] is injective with cokernel Z2 = H4(M0.2,). This means 
that 'half' of all manifolds M' r CP,, , n B 3, have PL structure. Such a PL structure 
is unique up to isotopy, since H3 (CP, , Z2) = 0. 

16. Manifolds homotopy equivalent t o  real projective space P". 

After sketching the general situation, we will have a look at an explicit example 
of failure of the Hauptvermutung in dimension 5. 

From [54] [94] we recall that, for n > 4, 

This follows easily from (15.2). For G/TOP the calculation is only simpler. 
One gets 

Calculation of S,(Pn) =In is non-trivial [54] [94]. One gets (for i B l )  

(16.3) I,,+, = I,,+, = [p4', G/PL] = 141+2 @l Z ;Z4i+4 = Z4i+2 @ 
. 

The result for ;13,,,(Pn) is similar, when one uses TOP surgery. Then 

is described as the direct sum of an isomorphism with the map 

which sends 2, onto 2, = n, GITOP. 

Remark 16.4. - When two distinct elements of 8,,(Pn) , n P 5, are topologically 
the same, we know already from 15.1 that their PL normal invariants are distinct 
since H3(Pn ;Z,) is not reduced integral. This facilitates detection of examples. 
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Consider the fixed point free involution T on the Brieskom-Pham sphere in 
p+ l 

Eirn-' : 2: + + 2: + . . . 2; = 0 , 1 2 1 = 1  , 

given by T (2, , z, , . . . , 2,) = (z, , - z, , . . . , - 2,). Here d and m must be odd 
positive integers, m > 3, in order that z:~-' really be topologically a sphere 
I611. 

As T is a fixed point free involution the orbit space nirn-' /T is a 

DIFF manifold. And using obstruction theory one finds there is just one oriented 
equivalence nim-' + P'"'-' (Recall P" = K (Z,, 1)). Its class in 8CAT(~2m-1)  
clearly determines the involution up to equivariant CAT isomorphism and con- 
versely. 

THEOREM 16.5. - The manifolds l$, d odd, fall into four diffeomorphism classes 
according as d 1 , 3  , 5  , 7  mod 8, and into two homeomorphism classes accor- 
ding as d = +- 1 , 5 3 mod 8. H: is diffeomorphic to P S .  

hemark 16.6. - With Whitehead C' triangulations, the manifolds n: have a 
PL isomorphism classification that coincides with the DIFF classification ($5 ,  
[9] 1641). Hence we have here rather explicit counterexamples to  the Hauptver- 
mutung. One can check that they don't depend on Sullivan's complete analysis of 
(G/PL)(21. The easily calculated 4-stage suffices. Nor do they depend on topological 
surgery. 

PROBLEM. - Give an explicit homeomorphism P' = n:. 
Remark 16.7. - Giffen states [23] that (with Whitehead C' triangulations) the 

manifolds Ilim-' , m = 5 , 7 , 9 , . . . fall into just four PL isomorphism classes 
d E 1 , 3 , 5 , 7 mod 8. In view of theorem 16.4., these classes are already distin- 
guished by the restriction of the normal invariant to  P S  (which is that of n i l .  
So Giffen's statement implies that the homeomorphism classification is d I + l , 
% 3 mod 8. 

Proof of 16.5. (**) 

The fnst means of detecting exotic involutions on s s ,  was found by Hisch 
and Milnor 1963 [32]. They constructed explicit(*) involutions (M;?-, ,P,), r an 
integer > 0, on Milnor's original homotopy 7-spheres, and found invariant spheres 
M:,-, 3 M:,-, 3 M:,-, . They observed that the class of M:,-, in l?,, /2r2,  is 
an invariant of the DIFF involution (M:,-, , P , )  - (consider the suspension opera- 
tion to retrieve , @) and use r, = 0). Now the class of M:,-, in Z2, = F, is 
r ( r  - 1)/2 according to Eells and Kuiper [18], which is odd iff r 2 or 3 mod 4. 
So this argument shows (M:,-;, 0,) is an exotic involution if r m 2 or 3 mod 4 .  

Fortunately the involution (M:,-, , P , )  has been identified with the involution 
(z:r+', 7-1. 

- - - - - - - - - 
(*) 8, is the antipodal map on the fibers of the orthogonal 3-sphere bundle M:,-, . 
(**) See major correction added on pg. 337. 

TOPOLOGICAL MANIFOLDS 

There were two steps. In 1963 certain examples (X' , a,) of involutions were 
given by Bredon, which Yang [l011 explicitly identified with (M:,-, , 6,). Bredon's 
involutions extend to Of3) actions, ol, being the antipodal invohtion in O(3). And 
for any reflection a in O(3) , a has fixed point set diffeomorphic to 
~ ~ ( 2 r  + I , l )  : zZb+' + Z: + Z; = 0 ; ]Z I = 1. This property is clearIy shared 
by (z:,,, , T ) ,  and Hirzebmch used this fact to identify (X:,,, , T) to (X,%) 
[33, 541 [34]. The Airsch-Milnor information now says that ni is DIFF exotic 
if d 5,7 mod 8 .  

Next we give a TOP invariant for nd in Z 2 .  Consider the normal invariant 
v, of IId in [P~,c/o] = Zq. Its restriction vd1P2 to P2 is a TOP invariant because 
[P2, G/O] = [P2, GITOP] = Z2 . 

Now Giffen [221 shows that v d ~ ~ 2  is the Arf invariant in Z2 of the framed fiber 
of the torus knot zz + zt = 0 ,  I z , ( ~  + )z1I2 1 in S3 C C'. This turns out to 
be 0 for d E + 1 mod 8 and 1 for d + 3 mod 8, (Levine [53], cf. f61, 5 81). 

We have now shown that the diffeomorphism and homeomorphism classifica- 
tions of the manifolds are at least as fine as asserted. But there can be at most 
the four diffeomorphism classes named, in view of 16.3. (Recall that the PL and 
DIFF classifications coincide since r i  = .rr,(PL/O) = 0, i G 5). Hence, by Remark 
16.4, there are exactly four - two in each homeomorphism class. 
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Correction to proof o f  16.5 : Glen Bredon has informed me that 
[ 10 1 1 is incorrect, and that in fact (X5 , ar) can be identified to 
(M:,+ ,Br+ ) . Thus, a different argument is required to show that 
the DIFF manifolds l$ , d E 1 ,3 ,  5 ,  7 mod 8 , respectively, occupy 
the four distinct diffeomorphism classes of DIFF 5-manifolds 
homotopy equivalent to P5 . The only proof of this available in 1975 
is the one provided by M. F. Atiyah in the note reproduced overleaf. 
So many mistakes, small and large, have been committed with these 
involutions that it would perhaps be wise to seek several proofs. 
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Correction to proof o f  16.5 : Glen Bredon has informed me that 
[ 10 1 1 is incorrect, and that in fact (X5 , ar) can be identified to 
(M:,+ ,Br+ ) . Thus, a different argument is required to show that 
the DIFF manifolds l$ , d E 1 ,3 ,  5 ,  7 mod 8 , respectively, occupy 
the four distinct diffeomorphism classes of DIFF 5-manifolds 
homotopy equivalent to P5 . The only proof of this available in 1975 
is the one provided by M. F. Atiyah in the note reproduced overleaf. 
So many mistakes, small and large, have been committed with these 
involutions that it would perhaps be wise to seek several proofs. 




