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Generalisations and applications of block bundles

By A. J. Casson

Introduction

Rourke and Sanderson [10] introduced the idea of a block bundle. They
used block bundles in the PL (piecewise linear) category as a substitute for the
normal bundles of differential topology. Their block bundles had fibre Iq (the unit
cube in q-dimensional space).

We generalise the idea to allow any compact PL manifold F as fibre. Chapter
I sets up the theory; in particular, it is shown that there is a classifying space
BP̃LF for block bundles with fibre F .

In Chapter II we compare block bundles with Hurewicz fibrations. Let F
be a compact PL manifold with boundary ∂F , and let BGF classify Hurewicz
fibrations with fibre (F, ∂F ). We produce a map χ : BP̃LF−−→BGF , arising from
a natural transformation of bundle functors.

We wish to obtain information about BP̃LF ; in fact we can study BGF
(which is purely homotopy theoretic) and the fibre GF /P̃LF of χ. In Chapter III
we construct a map θ : GF /P̃LF−−→(G/PL)F , where G/PL is the space studied
in Sullivan’s thesis under the name F/PL, and (G/PL)F is the space of all unbased
maps from F to G/PL. Theorems 5,6 show that, under suitable conditions, θ is
almost a homotopy equivalence. For these results it is essential to work with block
bundles rather than fibre bundles.

Sullivan shows in his thesis (see [13] for a summary) that G/PL is closely
related to the problem of classifying PL manifolds homotopy equivalent to a given
manifold. Therefore it is important to have information about the homotopy type
of G/PL. In Chapter IV we apply Theorem 5 to show that Ω4(G/PL) is homotopy
equivalent to Ω8(G/PL); it is almost true that G/PL is homotopy equivalent to
Ω4(G/PL).

In Chapter V (which is almost independent of the earlier chapters) we show
that, with certain restrictions on the base-space, a block bundle with fibre Rq
which is topologically trivial is necessarily piecewise linearly trivial. It follows
from this (again using the results of [13]) that the Hauptvermutung is true for
closed 1-connected PL manifolds M with dimM ≥ 5 and H3(M ;Z2) = 0.

I should like to thank Professor C.T.C.Wall for suggesting the study of gener-
alized block bundles and for much encouragement. I am also very grateful to Dr.
D.P.Sullivan for several conversations during the summer of 1966.
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Origins of the ideas

Chapter I is based on §1 of [10]; the definitions and technical details are new,
but the general plan is similar. The use of block bundles with arbitrary fibres was
suggested to me by Professor Wall.

Chapter II is mainly technical, and new as far as I know.

Chapter III generalizes results in Sullivan’s thesis (but the proofs are based
on the references given rather than on Sullivan’s work).

The result and method of proof in Chapter IV is new, as far as I know.

I believe that Sullivan∗ has a stronger result than Theorem 8 of Chapter V,
but have not seen his proofs. I proved Theorem 8 before hearing of Sullivan’s
latest result. My proof is an extension of the idea of [16].

Summer, 1967

∗ See D.P.Sullivan, On the Hauptvermutung for manifolds, Bull. Amer.
Math. Soc. 73 (1967) 598-600. The theorem announced there includes ours, but
the proof seems somewhat different.
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I. Block Bundles

A polyhedron is a topological space together with a maximal family of PL
related locally finite triangulations. A cell complex B is a collection of cells PL
embedded in a polyhedron X such that :

(1) B is a locally finite covering of X,
(2) if β, γ ∈ B then ∂β, β ∩ γ are unions of cells of B,
(3) if β, γ are distinct cells of B, then Int β ∩ Int γ = ∅.

We write |B| forX and do not distinguish between a cell β ofB and the subcomplex
it determines. A cell complex B′ is a subdivision of B if |B′| = |B| and every
cell of B is a union of cells of B′. A based polyhedron is a polyhedron with
a preferred base-point; a based cell complex is a cell complex with a preferred
vertex. All base-points will be denoted by ‘bpt’.

Let F be a polyhedron and let B be a based cell complex. A block bundle
ξ over B with fibre F consists of a polyhedron E(ξ) (the total space of ξ)
with a closed sub-polyhedron Eβ(ξ) for each β ∈ B and a PL homeomorphism
b(ξ) : F−−→Ebpt(ξ), such that :

(1) {Eβ(ξ)|β ∈ B} is a locally finite covering of E(ξ),
(2) if β, γ ∈ B then

Eβ(ξ) ∩Eγ(ξ) =
⋃

δ⊂β∩γ
Eδ(ξ) ,

(3) if β ∈ B, there is a PL homeomorphism h : F × β−−→Eβ(ξ) such that

h(F × γ) = Eγ(ξ) (γ ⊂ ∂β) .

If ξ is a block bundle over B and B0 is a subcomplex of B, the restriction
ξ|B0 is defined by

E(ξ|B0) =
⋃

β∈B0∪{bpt.}
Eβ(ξ) ,

Eβ(ξ|B0) = Eβ(ξ) , b(ξ|B0) = b(ξ) .

Note that ξ|B0 is a block bundle over B0 ∪ {bpt.}, not necessarily over B0 itself.

If ξ, η are block bundles over B, an isomorphism h : ξ−−→η is a PL homeo-
morphism h : E(ξ)−−→E(η) such that

hEβ(ξ) = Eβ(η) (β ∈ B) , hb(ξ) = b(η) .

A particular block bundle ε over B is obtained by setting

E(ε) = F ×B , Eβ(ε) = F × β ,
b(ε) = 1× bpt : F −−→ F × bpt .
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A trivial block bundle is one isomorphic to ε; an isomorphism h : ε−−→ξ is a
trivialisation of ξ. It follows from condition (3) that ξ|β is trivial for each β ∈ B.

Let B,C be based cell complexes and let ξ be a block bundle over B. Define
a block bundle ξ ×C over B × C by

E(ξ ×C) = E(ξ)×C , Eβ×γ(ξ × C) = Eβ(ξ)× γ
(for cells β ∈ B, γ ∈ C) and b(ξ ×C) = b(ξ)× bpt.

Lemma 1. Suppose |B| = β, where β is an n-cell of β, and let γ be an (n− 1)-
cell over B. If ξ and η are block bundles over B, any isomorphism h : ξ|(∂β −
γ)−−→η|(∂β − γ) can be extended to an isomorphism h : ξ−−→η.

Proof. Since ξ = ξ|β, η = η|β, ξ and η are both trivial. Let k and l be trivialisa-
tions of ξ, η, respectively. Then a PL homeomorphism

l−1hk : F × (∂β − γ) −−→ F × (∂β − γ)

is defined.
Choose a PL homeomorphism

f : (∂β − γ)× I −−→ B

such that f0 : (∂β − γ)−−→B is the inclusion, and let

g = 1× f : F × (∂β − γ)× I −−→ F × β.
The required extension of f is given by

h = lg(l−1hk × I)g−1k−1 : E(ξ) −−→ E(η) .

Lemma 2. Let B be a based cell complex and take bpt×0 as base-point for B×I.
If ξ, η are block bundles over B × I, then any isomorphism

h : η|(B × 0) ∪ (bpt× I) −−→ η|(B × 0) ∪ (bpt× I)

can be extended to an isomorphism h : ξ−−→η.

Proof. Write Br for the r-skeleton of B, and let Cr = (B × 0) ∪ (Br × I).
Suppose inductively that h can be extended to an isomorphism h : ξ|Cr−−→η|Cr;
the induction starts trivially with r = 0. Let β be an (r+ 1)-cell of B. By Lemma
1,

h : η|(β × 0) ∪ (∂β × I) −−→ η|(β × 0) ∪ (∂β × I)

can be extended to an isomorphism h : ξ|(β × I)−−→η|(β × I). Thus we have
defined an isomorphism

h : ξ|Cr ∪ (β × I) −−→ η|Cr ∪ (β × I) .

Do this for all r-cells of B to obtain

h : ξ|Cr+1 −−→ η|Cr+1
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extending the given isomorphism. The Lemma now follows by induction.

Let ξ be a block bundle over B and let B′ be a subdivision of B. A block
bundle ξ′ over B′ is a subdivision of ξ if E(ξ′) = E(ξ), Eβ′(ξ′) ⊂ Eβ(ξ) (for all
cells β′ ∈ B′, β ∈ B with β′ ⊂ β) and b(ξ′) = b(ξ).

Theorem 1. Let B′ be a subdivision of a cell complex B. Any block bundle over
B′ is a subdivision of some block bundle over B. Any block bundle ξ over B has a
subdivision over B′, and any two subdivisions of ξ over B′ are isomorphic.

Proof. First we prove the following propositions together by induction on n.

Pn : If |B| is homeomorphic to an n-cell, then any block bundle over B is
trivial.

Qn : Let dimB ≤ n and let B0 be a subcomplex of B. Let B′ be a subdivision
of B, inducing subdivision B′0 of B0. Let ξ be a block bundle over B and let ξ′0
be a subdivision of ξ|B0 over B′0. Then there is a subdivision ξ′ of ξ over B′ such
that ξ′0 = ξ′|B′0.

Observe that P0 and Q0 are both true. We shall prove that Qn =⇒ Pn and
Pn &Qn =⇒ Qn+1.

Proof that Qn =⇒ Pn. Suppose |B| is homeomorphic to an n-cell, and let ξ be
a block bundle over B. Since |B| is collapsible, there is a simplicial subdivision B′

of B which collapses simplicially to the base point [19]. Assuming Qn, there is a
subdivision ξ′ of ξ over B′. It is enough to prove that ξ′ is trivial.

Let

B′ = Kk ↘s Kk−1 ↘s . . . ↘s K0 = {bpt.}

be a sequence of elementary simplicial collapses. Suppose inductively that ξ′|Kr

is trivial; the induction starts with r = 0. Write

Kr+1 = Kr ∪4 , Kr ∩4 = Λ ,

where 4 is a simplex of Kr+1 and Λ is the complement of a principal simplex in
∂4. Let h : F×Kr−−→E(ξ′|Kr) be a trivialisation of ξ′|Kr. By Lemma 1, h|F×Λ
extends to a trivialisation of ξ|4. Thus we obtain a trivialisation of ξ′′|Kr+1. By
induction, ξ′ is trivial, as required.

Proof that Pn &Qn =⇒ Qn+1. Suppose B,B0, B
′, ξ, ξ′0 satisfy the hypotheses of

Qn+1. If A is any subcomplex of B, we write A′ for the subdivision of A induced
by B′. Let B1 = B0 ∪Bn, assuming Qn there is a subdivision ξ′1 of ξ|B1 over B′1
such that ξ′0|(B0∩Bn)′ = ξ′1|(B0∩Bn)′. Let β be an (n+1)-cell of B−B0, and let
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γ be an n-cell of B contained in ∂β. Since |∂β − γ| is homeomorphic to an n-cell,
ξ′1|(∂β − γ)′ is trivial by Pn. Let h be a trivialisation of ξ′1|(∂β − γ)′; a fortiori, h
is a trivialisation of ξ|(∂β − γ).

By Lemma 1, h extends to a trivialisation of ξ|β. Let C be the cell complex
consisting of β, γ and the cells of (∂β − γ)′. Define a block bundle η over C by

Eβ(η) = Eβ(ξ) , Eγ(η) = Eγ(ξ)

and Eδ′(η) = Eδ′(ξ′1) for each cell δ′ of (∂β − γ)′. Then k is a trivialisation of η,
so η satisfies condition (3) in the definition of block bundle.

Let δ′ be an n-cell of (∂β − γ)′, so |∂β′ − δ′| is homeomorphic to an n-cell.
Assuming Pn, ξ

′
1|(∂β′ − δ′) is trivial; let h′ be a trivialisation. A fortiori, h′ is a

trivialisation of η|(∂β′ − δ′).

By Lemma 1, h′ extends to a trivialisation k′ of η. In fact, k′|F × ∂β′ is a
trivialisation of ξ′1|∂β′, because k′ extends h′ and k′(F × δ′) = Eδ′(ξ′1). To extend
ξ′1|∂β′ to a subdivision ξ′|β′ of ξ|β, we define Eα′(ξ′) = k′(F ×α′) for each cell α′

of β′.

Do this for all (n+ 1)-cells of B−B0, and define ξ′|β = ξ′0|β for each (n+ 1)-
cell β of B0. We obtain a subdivision ξ′ of ξ over B′ such that ξ′0 = ξ′|B′0, as
required.

By induction, Pn and Qn are true for all n. Let B be any based cell complex
and let B′ be a subdivision of B.

Let ξ′ be a block bundle over B′. We define a block bundle ξ over B with
E(ξ) = E(ξ′) by setting Eβ(ξ) = E(ξ′|β′) (where β′ is the subdivision of β induced
by B′) for each cell β of B. This clearly satisfies conditions (1),(2) in the definition
of block bundle. By Pn, ξ′|β′ is trivial, so ξ also satisfies condition (3). Clearly, ξ′

is a subdivision of ξ.

If ξ is a block bundle over B, it follows from Qn (by induction on the skeleton
of B) that ξ has a subdivision over B′. Let ξ′0, ξ

′
1 be two such subdivisions. Recall

that η = ξ× I is a block bundle over B× I. Define a block bundle η′0 over B′×∂I
by ξ′t = η′0|B′ × {t}, (t = 0, 1). Again it follows from Qn that η has a subdivision
η′ over B′× I such that η′0 = η′|B′×∂I. Observe that η′|bpt× I = ξ′0× I|bpt× I.
By Lemma 2, the identity isomorphism

η′|(B × 0) ∪ (bpt× I) −−→ ξ′0 × I|(B × 0) ∪ (bpt× I)

extends to an isomorphism η′−−→ξ′0 × I; it follows that ξ′1 ∼= ξ′0. This completes
the proof of Theorem 1.
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Let X be a polyhedron and let B,C be cell complexes with |B| = |C| = X;
suppose all three have the same base-point. Let ξ, η be block bundles over B,C
respectively. We call ξ, η equivalent if, for some common subdivision D of B,C,
the subdivision ξ over D is isomorphic to the subdivision of η over D. This relation
is clearly reflexive and symmetric; by Theorem 1 it is also transitive.

Let IF (X) be the set of equivalence classes of block bundles over cell complexes
B with |B| = X. It is easily checked that, if |B| = X, then each member of IF (X)
is represented by a unique isomorphism class of block bundles over B.

Suppose X, Y are polyhedra and let y ∈ IF (Y ). Let B,C be cell complexes
with |B| = X, |C| = Y , and let η be a block bundle over C representing y. If
p2 : X × Y−−→Y is the projection, let p∗2(y) ∈ IF (X × Y ) be the equivalence class
of B × η.

If i : X−−→Y is a closed based PL embedding, let C′ be a subdivision of
C with a subcomplex D′ such that |D′| = i(X). Let η′ be a subdivision of η
over C′, and let ξ′ = η′|D′. It follows from Theorem 1 that the equivalence class
x′ ∈ IF (i(X)) of ξ′ depends only on y. Let i∗(y) ∈ IF (X) correspond to x′ via
the PL homeomorphism i : X−−→i(X). The next lemma will enable us to define
f∗ : IF (Y )−−→IF (X) for any based PL map f : X−−→Y .

Lemma 3. Let X, Y, V,W be polyhedra and let i : X−−→V × Y , j : X−−→W × Y
be closed based PL embeddings such that p2i = p2j : X−−→Y . Then

i∗p∗2 = j∗p∗2 : IF (Y ) −−→ IF (X) .

Proof. Let k : X−−→V ×W × Y be defined by

p13k = i : X −−→ V × Y ,

p23k = j : X −−→ W × Y .

In the diagram

IF (V × Y )
[
[
[
[
[[̂

i∗

u
p∗13

*'
'
'
'
''

p∗2

(1) IF (X) u k∗ IF (V ×W × Y ) u
p∗3 IF (Y )

IF (W × Y )

��
��

���
j∗

u

p∗23

QN
N
N
N
NNp∗2

the right-hand triangles are clearly commutative. We prove that the bottom left-
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hand triangle commutes. There is a contractible polyhedron Z and a closed based
PL embedding l : V−−→Z. Consider the diagram

IF (X) u k∗ IF (V ×W × Y )

IF (Z ×W × Y )

��
��

��
(bpt× j)∗

N
N
N
NNP(l × 1)∗

IF (W × Y )

�
�

�
�

�
�

�
�

��

j∗ u

p∗23

4
4
4
4
4
4
4
4
46

p∗23

The bottom two triangles clearly commute. Since Z is contractible to its base-
point, p1(l × 1)k ' p1(bpt× j). But p23(l × 1)k = j = p23(bpt× j), so there is a
closed based PL isotopy between (l× 1)k and (bpt× j). It follows from Lemma 2
that ((l× 1)k)∗ = (bpt× j)∗. Clearly k∗(l× 1)∗ = ((l× 1)k)∗, so the top triangle
commutes. Therefore the bottom left-hand triangle in diagram (1) commutes, so
the Lemma is proved.

Let X and Y be based polyhedra and let f : X−−→Y be a based PL map.
There is a polyhedron V and a factorization f = p2i, where i : X−−→V × Y is a
closed based PL embedding. For example, we can take V = X and i = 1× f . By
Lemma 3, the map i∗p∗2 : IF (Y )−−→IF (X) depends only on f ; we define f∗ = i∗p∗2.

Lemma 4. IF is a contravariant functor from the category of based polyhedra and
based PL maps to the category of based sets.

Proof. The base-point of IF (X) is the class of the trivial bundle. For any poly-
hedron X, 1∗X is the identity map. Let X, Y, Z be polyhedra, and let f : X−−→Y ,
g : Y−−→Z be based PL maps. Let V,W be polyhedra and let i : X−−→V × Y ,
j : Y−−→W × Z be closed based PL embeddings such that f = p2i, g = p2j.
Consider the diagram
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IF (X)

IF (V × Y )

u

i∗

IF (V ×W × Z)
�
�
���(1× j)∗

IF (Y )

u

p∗2

IF (W × Z)

u

p∗23[
[

[[̂
p∗23

IF (Z)

u

p∗2

This clearly commutes; the right route defines f∗g∗ and the left route defines
(gf)∗. This proves that IF is a contravariant functor.

Theorem 2. If F is compact, then there is a based polyhedron BP̃LF and an
element wI ∈ IF (BP̃LF ) such that f 7→ f∗(wI) defines a natural equivalence
[ , BP̃LF ]−−→IF .

Proof. First we show that IF satisfies the following axioms :
(1) If X, Y are based polyhedra and f0 ' f1 : X−−→Y by a based PL homotopy,

then f∗0 = f∗1 : IF (Y )−−→IF (X).
(2) If Xi is a based polyhedron (i ∈ I) and uj : Xj−−→

∨
i∈I Xi is the inclusion,

then Πi∈Iu
∗
i : IF (

∨
i∈I Xi)−−→Πi∈IIF (Xi) is an isomorphism.

(3) Suppose that X,X0, X1, X2 are polyhedra with X = X1∪X2, X0 = X1∩X2,
and that the inclusions ui : X0−−→Xi, vi : Xi−−→X are based maps. If
xi ∈ IF (Xi), (i = 1, 2) satisfy u∗1(x1) = u∗2(x2), then there exists x ∈ IF (X)
with xi = v∗i (x), (i = 1, 2).

(4) IF (S0) is a single point and IF (Sn) is countable where Sn denotes the bound-
ary of an (n+ 1)-cell.

Proof of (1). This follows from Lemma 2 and a short argument about base-points.

Proof of (2). Let Bi be a cell complex with |Bi| = Xi. Let x ∈ Πi∈IXi and
let ξj be a block bundle over Bj representing pj(x). Let A = ∪i∈IE(ξi), A0 =
∪i∈IEbpt(ξi), b = ∪i∈Ib(ξ)−1 : A0−−→F and define E(η) = A∪b F . If β is a cell of
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i∈I Bi, then β is a cell of some Bj , so we can define Eβ(η) = Eβ(ξj) ⊂ E(η). Let

b(η) = b(ξj) : F−−→Ebpt(η), which is independent of j. Then η is a block bundle
over

∨
i∈I Bi; let y ∈ IF (

∨
i∈I Xi) be the class of η. Then x 7→ y defines an inverse

to Πi∈Iu
∗
i , so (2) is proved.

Proof of (3). Let B be a cell complex with |B| = X and with subcomplexes
B0, B1, B2 such that |Bi| = Xi (i = 0, 1, 2). Let ξi be a block bundle over Bi
representing xi (i = 1, 2). Since u∗1(x1) = u∗2(x2), there is an isomorphism h :
ξ1|B0−−→ξ2|B0. Let E(ξ) = E(ξ1) ∪h E(ξ2), let Eβ(ξ) = Eβ(ξi) if β ∈ Bi and
let b(ξ) = b(ξ1) = b(ξ2) : F−−→Ebpt(ξ). Then the class x of ξ has the required
properties.

Proof of (4). Clearly IF (S0) is a single point. Let B be a cell complex such that
Sn = |B|, and let β be an n-cell of B. Any element x ∈ IF (Sn) can be represented
by a block bundle ξ over B. Let k, l be trivialisations of ξ|β, ξ|B − β, and let
h = k−1l : F × ∂β−−→F × ∂β.

Since F is compact, there are finite simplicial complexes K,L with |K| =
F × β, |L| = F × (B − β) and such that h is simplicial. Clearly the simplicial
isomorphism class of the triple (K, L, h) determines x completely. But there are
only countably many such classes (of triples), so IF (Sn) is countable.

Now we can apply Brown’s Theorem on representable functors [4] to IF . We
deduce that there is a countable based CW complex W and a natural equivalence
R : [ ,W ]−−→IF . By a theorem of J. H. C. Whitehead [18], there is a polyhe-
dron BP̃LF and a homotopy equivalence φ : BP̃LF−−→W . Let wI = R(φ) ∈
IF (BP̃LF ); then the pair (BP̃LF , wI) has the required properties.

Remark. The compactness of F was only required to make the classifying space
BP̃LF a polyhedron. If F were an infinite discrete space (for example), then the
space W constructed above would have uncountable fundamental group.

Our main concern is with block bundles having a compact PL manifold F as
fibre. If ξ is such a bundle over a cell complex B, we can define a block bundle ∂ξ
over B with fibre ∂F as follows.

Let β be a cell of B, let k, l be trivialisations of ξ|B and let h = k−1l :
F × β−−→F × β. Since h(F × γ) for each γ ⊂ ∂β, h(F × ∂β) = F × ∂β. Therefore

h(∂F × β) = h(∂(F × β)− F × ∂β) = ∂F × β ;

it follows that k(∂F × β) = l(∂F × β). Define

Eβ(∂ξ) = k(∂F × β) ,
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where k is any trivialisation of ξ|β, and define

E(∂ξ) =
⋃
β∈B

Eβ(∂ξ) , b(∂ξ) = b(ξ)|∂F .

Then ∂ξ is a block bundle over B with fibre ∂F .

Lemma 5. Suppose that |B|, F are compact PL manifolds, that ∂β contains the
base-point of B and let ξ be a block bundle over B with fibre F . Then E(ξ) is a
compact PL manifold and ∂E(ξ) = E(∂ξ)∪ E(ξ|∂B).

Proof. Let B′ be a simplicial division of B and ξ′ be a subdivision of ξ over B′.
Clearly ∂ξ′ is then a subdivision of ∂ξ. If p ∈ E(ξ), then

p ∈ P , where P = E(ξ′|St(q, B′))− E(ξ′|Lk(q, B′))

for some vertex q of B′; we can choose q ∈ IntB unless p ∈ E(ξ|∂B). Let

Q = St(q, B′)− Lk(q, B′) ,

so Q is an open ball if p /∈ E(ξ|∂B), and a half-open ball if p ∈ E(ξ|∂B).

A trivialisation k of ξ′|St(q, B′) defines a homeomorphism k : F × Q−−→P
such that k(∂F × Q) = P ∩ E(∂ξ). Let N be an open ball neighbourhood of
p1k
−1(p) in F if p /∈ E(∂ξ), or a half-open ball neighbourhood if p ∈ E(∂ξ).

If p /∈ E(∂ξ)∪E(ξ|∂B), then k(N ×Q) is an open ball neighbourhood of p in
E(ξ). If p ∈ E(∂ξ) ∪ E(ξ|∂B), then k(N ×Q) is a half-open ball neighbourhood
of p, and p ∈ k(∂(N × Q)). This proves that E(ξ) is a PL manifold (obviously
compact) with boundary E(∂ξ)∪ E(ξ|∂B).

II. Homotopy Properties of Block Bundles

Let ξ be a block bundle over B with fibre F . A block fibration for ξ is a
PL map π : E(ξ)−−→|B| such that Eβ(ξ) = π−1(β) for each β ∈ B. A block
homotopy for ξ is a PL map H : E(ξ) × I−−→|B| such that, for all t ∈ I,
Ht : E(ξ)−−→|B| is a block fibration for ξ.

Lemma 6. Any block bundle ξ has a block fibration, and any two block fibrations
for ξ are block homotopic.

Proof. Write Br for the r-skeleton of B. There is a unique block fibration π :
E(ξ|B0)−−→|B0|. Suppose inductively that π can be extended to a block fibration
π : E(ξ|Br)−−→|Br|, and let β be an (r + 1)-cell of B. Then π : E(ξ|∂β)−−→|∂β|
can be extended to a PL map π : E(ξ|β)−−→|β| such that π−1(|∂β|) = E(ξ|∂β).
Do this for all (r+1)-cells of B to obtain a block fibration π : E(ξ|Br+1)−−→|Br+1|
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extending the given block fibration. By induction, ξ has a block fibration; it is
obvious that any two block fibrations for ξ are block homotopic.

Let ξ be a block bundle over B with fibre F , and let π be a block fibration
for ξ. Let

E = {(x, ψ) : x ∈ E,ψ : I−−→|B| such that π(x) = ψ(0)} ,

with the compact open topology. Define i : E(ξ)−−→E , p : E−−→|B| by i(x) =
(x, constant) and p(x, ψ) = ψ(1). Then i is a homotopy equivalence and p is a
Hurewicz fibre map. Let F = p−1(bpt) be the fibre of p.

Theorem 3. The map ib(ξ) : F−−→F is a homotopy equivalence.

Proof. By [9], F has the homotopy type of a CW complex. Choose a component
F1 of F ; F1 lies in some component E0 of E . Let E0 be the corresponding compo-
nent of E(ξ), and let B0 be the component of B containing the base-point. It is
easy to see that π|E0−−→B0 must be surjective, so F0 = E0∩Ebpt(ξ) is non-empty.
Choose a base-point for F0 = E0 ∩ F .

If n ≥ 1, there is a commutative diagram

πn(E0, F0) w
i∗

�
�
���π∗

πn(E0,F0)
N
N
NNQ
p∗

πn(|B0|, bpt)

Since p : E0−−→|B0| is a Hurewicz fibration, p∗ is an isomorphism. Using the fact
that π : E0−−→|B0| is a block fibration, we shall prove that π∗ is an isomorphism.
It will follow that i∗ is an isomorphism; hence there is a unique component F1

of F0 with i(F1) ⊂ F1. An application of the Five Lemma will show that i∗ :
πr(F1)−−→πr(F1) is an isomorphism for all r ≥ 1, and the Theorem will follow by
the Whitehead theorem.

To prove that π∗ is surjective, consider an element α ∈ πn(|B0|, bpt). By
subdividing, we may assume that B0 is a simplicial complex (note that subdivision
does not alter the homotopy class of π : E0, F0−−→|B0|, bpt). Let Dn be a standard
n-cell. There is a triangulation of Dn such that Dn ↘s bpt ∈ Sn−1 and α is
represented by a simplicial map f : Dn, Sn−1−−→B0, bpt. Let

Dn = Kk ↘s Kk−1 ↘s . . .↘s K0 = bpt

be a sequence of elementary simplicial collapses.
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Suppose inductively that there is a map g : Kr−−→E0 such that, for all x ∈
|Kr|, πg(x) is in the closed carrier of f(x) in B0. We can write Kr+1 = Kr ∪∆,
Kr ∩∆ = Λ for some simplex ∆ ∈ Kr+1. Let ∆1 = ∆− Λ, so ∆1 is a principal
simplex of ∂∆. Let β = f(∆), β1 = f(∆1) be the image simplices in B0. Then

g : Λ, ∂Λ −−→ Eβ(ξ), Eβ1(ξ)

is defined. Since Eβ1(ξ) is a deformation retract of Eβ(ξ), g can be extended to a
map

g : ∆,∆1 −−→ Eβ(ξ), Eβ1(ξ) .

Thus we obtain an extension of g to g : Kr+1−−→E0 such that, for all x ∈ |Kr+1|,
πg(x) is in the closed carrier of f(x) in B0.

Now we have completed our induction and have obtained a map g : Dn−−→E0

such that for all x ∈ Dn, πg(x) is in the closed carrier of f(x) in B0. In particular,
g(Sn−1) ⊂ F0, so g represents an element β ∈ πn(E0, F0). Clearly π∗β = α, so
π∗ is injective as asserted. A similar argument shows that π∗ is injective, and the
Theorem is proved.

We now restrict F to be a compact PL manifold with boundary ∂F . Let X be
a based polyhedron; a Hurewicz fibration over X with fibre (F, ∂F ) consists of
a pair of topological spaces (E , ∂E), a map p : E−−→X and a homotopy equivalence
of pairs

b : F, ∂F −−→ p−1(bpt), p−1(bpt) ∩ ∂E
such that;

(1) For all x ∈ X, (p−1(x), p−1(x) ∩ ∂E) ' (F, ∂F ),
(2) Given a pair of topological spaces A, ∂A, a map f : A, ∂A−−→E , ∂E and a

homotopy G : A × I−−→X such that G0 = pf , then there exists a homotopy
H : A× I, ∂A× I−−→E , ∂E with H0 = f , G = pH.

Two Hurewicz fibrations (E , ∂E , p, b), (E ′, ∂E ′, p′, b′) are fibre homotopy
equivalent if there are maps

h : E , ∂E −−→ E ′, ∂E ′ , h′ : E ′, ∂E ′ −−→ E , ∂E

and homotopies H : h′h ' 1, H ′ : hh′ ' 1 such that, for all t ∈ I,

pHt = p , Htb = b , p′H ′t = p′ , H ′tb
′ = b′ .

We write HF (X) for the set of fibre homotopy equivalence classes of Hurewicz
fibrations over X with fibre (F, ∂F ). The well-known construction for induced
fibrations makes HF into a contravariant functor from the category of based poly-
hedra and based PL maps to the category of based sets. A proof that HF is
representable is indicated in [4]; the step which is given without proof can be dealt
with by the methods of Theorem 3 above. We summarise the conclusion as follows.
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Proposition. If F is a compact PL manifold, then there is a based polyhedron
BGF and an element wH ∈ HF (BGF ) such that f 7→ f∗(wH) defines a natural
equivalence [ , BGF ]−−→HF .

Lemma 7. There is a natural transformation S : IF−−→HF .

Construction of S. Let X be a based polyhedron and let x ∈ IF (X). Let B be a
cell complex with |B| = X, and let ξ be a block bundle over B representing x. By
Lemma 6, ξ has a block fibration π : E(ξ)−−→X. Construct p : E−−→X as above,
and let ∂E = {(x, ψ) ∈ E : x ∈ E(∂ξ)}. It is easily proved that p : E , ∂E−−→X
satisfies part (2) of the definition of Hurewicz fibration. By Theorem 3, part (1)
is also satisfied, and

ib(ξ) : F, ∂F −−→ p−1(bpt), p−1(bpt) ∩ ∂E

is a homotopy equivalence. Therefore (E , ∂E , p, ib(ξ)) defines an element S(ξ, π) ∈
HF (X).

Let π′ be another block fibration for ξ. Construct (E ′, ∂E ′, p′, i′) from π′ as
above. Define j′ : E ′, ∂E ′−−→E(ξ), E(∂ξ) by j′(x, ψ) = x; then j′ is a homotopy
inverse to i′. Thus ij′ : E ′, ∂E ′−−→E , ∂E is a homotopy equivalence of pairs and p′ '
p.ij′ via a homotopy H with Ht.i

′b(ξ) = ib(ξ). It follows from Theorem 6.1 of [5]
(modified to take account of base-points and pairs of fibres) that (E ′, ∂E ′, p′, i′b(ξ))
is fibre homotopy equivalent to (E , ∂E , p, ib(ξ)). Therefore S(ξ, π) depends only
on ξ.

If ξ′ is a subdivision of ξ, then S(ξ, π) = S(ξ, π′) = S(ξ′, π′) for any block
fibrations π, π′ of ξ, ξ′. Therefore S(ξ, π) depends only on the equivalence class x
of ξ; we write S(x) = S(ξ, π).

Naturality of S. It is enough to prove that S is natural
(1) with respect to projections p2 : Y ×X−−→X,
(2) with respect to closed based PL embeddings j : Y−−→X.

Proof of (1). Let B, C be cell complexes with |B| = X, |C| = Y . Let ξ be a block
bundle over B representing x ∈ IF (X), and let π be a block fibration for ξ. Then
π× 1 : E(ξ)×Y−−→X ×Y is a block fibration for ξ×C (which represents p∗2(x)).
Construct (E , ∂E , p, ib(ξ)) representing S(x). Let Y I be the space of unbased
maps ψ : I−−→Y and define e1 : Y I−−→Y by e1(ψ) = ψ(1). Then

(E × Y I , ∂E × Y I , p× e1, (i× bpt)b(ξ))

represents S(p∗2(x)). But this fibration is equivalent to

(E × Y, ∂E × Y, p× 1, (i× bpt)b(ξ)) ,

which represents p∗2(S(x)).
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Proof of (2). Let B be a cell complex with |B| = X and with a subcomplex C
such that |C| = j(Y ). Let ξ be a block bundle over B representing x ∈ IF (X),
and let π be a block fibration for ξ. then π|E(ξ|C)−−→|C| is a block fibration for
ξ|C (which represents j∗(x)). Construct (E , ∂E , p, ib(ξ)) representing S(x). Write
i′ for the restriction

i| : E(ξ|C), E(∂ξ|C) −−→ p−1|C|, p−1|C| ∩ ∂E ;

clearly π|E(ξ|C) = pi′.

Identify F with b(ξ)F and write F for p−1(bpt). Consider the commutative
diagram

πn(E(ξ|C), F ) w
i′∗

�
�
���π∗

πn(p−1|C|,F)
N
N
NNQ
p∗

πn(|C|, bpt)

As in Theorem 3, π∗ is an isomorphism; since p∗ is an isomorphism, i′∗ is also an
isomorphism. Therefore i′ : E(ξ|C)−−→p−1|C| is a homotopy equivalence. Simi-
larly i′ : E(∂ξ|C)−−→p−1|C| ∩ ∂E is a homotopy equivalence, so i′ is a homotopy
equivalence of pairs. It follows from Theorem 6.1 of [5] that

(p−1|C|, p−1|C| ∩ ∂E , p|p−1|C|, ib(ξ))
represents S(j∗x), so j∗S(x) = S(j∗x). This completes the proof of Lemma 7.

Recall that wI ∈ IF (BP̃LF ), wH ∈ HF (BGF ) are the universal elements.
There is a based map χ : BP̃LF−−→BGF such that S(wI) = χ∗(wH). This
defines the based homotopy class of χ uniquely.

Consider the topological space L = {(x, ψ)} of pairs with x ∈ BP̃LF , ψ :
I−−→BGF such that χ(x) = ψ(0), ψ(1) = bpt, with (bpt,constant) as base-point.
There is a based map χ′ : L−−→BP̃LF defined by χ′(x, ψ) = x. By theorems of
Milnor [9] and J. H. C. Whitehead [18], there is a based polyhedron GF /P̃LF and
a homotopy equivalence i : GF /P̃LF−−→L. Define χ1 = χ′i : GF /P̃LF−−→BP̃LF .

Let B be a based cell complex and let F be a compact PL manifold. A
GF /P̃LF -bundle over B consists of a block bundle ξ over B with fibre F and a
PL map

t : E(ξ), E(∂ξ) −−→ F, ∂F

such that tb(ξ) = 1. Two GF /P̃LF -bundles (ξ, t) and (η, u) over B are isomor-
phic if there is an isomorphism h : ξ−−→η such that uh ' t (rel b(ξ)(F )). Define
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the equivalence of GF /P̃LF -bundles over a polyhedron X as in Chapter I, and
let JF (X) be the set of equivalence classes.

Lemma 8. Let (ξ, t) be a GF /P̃LF -bundle over B and let π : E(ξ)−−→|B| be a
block fibration for ξ. Then

t× π : E(ξ), E(∂ξ) −−→ F × |B|, ∂F × |B|
is a homotopy equivalence of pairs.

Proof. Apply Theorem 3 as in the proof of Lemma 7.

We make JF into a contravariant functor as follows. Let f : X−−→Y be a
based PL map, and suppose f = p2j, where j : X−−→V × Y is a closed based PL
embedding. Let B, C, D be cell complexes with

|B| = X , |C| = Y , |D| = Z ,

and let (η, u) be a GF /P̃LF -bundle over C representing y ∈ JF (Y ). Let (D×C)′

be a subdivision of D × C with j(B) as a subcomplex, and let (D × η)′ be a
subdivision of D × η over (D ×C)′. Then f∗(y) is represented by

((C × η)′|j(B) , up2|E((C × η)′|j(B))) .

The proof of Lemma 3 shows that f∗ : JF (Y )−−→JF (X) is well-defined, and that
JF is a contravariant functor.

Theorem 4. If F is a compact PL manifold, then there is an element wJ ∈
JF (GF /P̃LF ) such that f 7→ f∗(wJ ) defines a natural equivalence [ , GF /P̃LF ]−−→
JF .

Proof. Let CI , CJ , CH be cell complexes with

|CI | = BP̃LF , |CJ | = GF /P̃LF and |CH | = BGF .

Let ηI be a block bundle over CI representing wI , and let ηH be a Hurewicz
fibration over |CH | representing wH . Let ηJ be a block bundle over CJ representing
χ∗1(wI), and let πI , πJ be block fibrations for ηI , ηJ .

Recall that S(wI) = χ∗(wH); let h : S(ηI , πI)−−→χ∗(ηH) be a fibre homotopy
equivalence. The proof of naturality of S (Lemma 7) provides a fibre homotopy
equivalence

S(ηJ , πJ) −−→ χ∗1S(ηI , πI) .

Compose this with

χ∗1h : χ∗1S(ηI , πI) −−→ χ∗1χ
∗(ηH)

to obtain a fibre homotopy equivalence

h1 : S(ηJ , πJ) −−→ χ∗1χ
∗(ηH) .
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Now χχ1 = χχ′i, where χ′ : L−−→BGF sends (x, ψ) to x. There is an obvious
null-homotopy H : L× I−−→BGF of χχ′, so H ′ = H(i× 1) is a null-homotopy of
χχ1. Let h′ : χ∗1χ∗(ηH)−−→ε be the trivialisation defined by H ′. The composite

E(ηJ)
i
−−→ S(ηJ , πJ)

h1−−→ χ∗1χ
∗(ηH)

h′

−−→ ε
p1
−−→ F

defines a map

uJ : E(ηJ), E(∂ηJ) −−→ F, ∂F

such that uJb(ηJ ) = 1. Let wJ be the equivalence class of (ηJ , uJ) in JF (GF /P̃LF ).

Clearly f 7→ f∗(wJ ) defines a natural transformation from [ , GF /P̃LF ] to
JF . Let B be a cell complex and let (ξ, t) be a GF /P̃LF -bundle over B; we have
to prove that the equivalence class of (ξ, t) corresponds to a unique element of
[|B|, GF/P̃LF ]. Let π be a block fibration for ξ.

There is a map g : |B|−−→BP̃LF such that ξ represents g∗(wI); g is unique
up to homotopy. The proof of naturality of S (Lemma 7) provides a fibre ho-
motopy equivalence S(ξ, π)−−→g∗S(ηI , πI). Compose this with g∗h : g∗S(ηI , πI)
−−→g∗χ∗(ηH) to obtain a fibre homotopy equivalence k : S(ξ, π)−−→g∗χ∗(ηH).

Now tk−1 : g∗χ∗(ηH)−−→F defines a fibre homotopy trivialisation of g∗χ∗(ηH),
unique up to fibre homotopy. Let K : |B| × I−−→BGF be the corresponding null-
homotopy of χg : |B|−−→BGF . Then (g,K) defines the unique homotopy class of
maps f : |B|−−→GF /P̃LF such that (η, t) represents f∗(wJ ). This completes the
proof of Theorem 4.

III. Tangential Properties of Block Bundles

Let In denote the product of n copies of the unit interval; we writeGn/P̃Ln for
GIn/P̃LIn . The obvious natural transformation JIn−−→JIn+1 (multiply the fibre

of each bundle by I) defines a homotopy class of maps Gn/P̃Ln
in−−→Gn+1/P̃Ln+1.

Write G/PL for the direct limit of the sequence
in−1

−−→ Gn/P̃Ln
in−−→ Gn+1/P̃Ln+1

in+1

−−→ . . . .

More precisely, for n = 1, 2, 3, . . . replace Gn+1/P̃Ln+1 by a homotopy equivalent
polyhedron in such a way that in is an injection, and identify Gn/P̃Ln with
in(Gn/P̃Ln). Now define G/PL to be the nested union of the Gn/P̃Ln; it can be
shown that the homotopy type of G/PL is independent of the choices made (see
Lemma 1.7 of [3]).

G/PL was studied by Sullivan in his thesis (but he called it F/PL). The
aim of this chapter is to obtain a map θ : GF /P̃LF−−→(G/PL)F , where (G/PL)F
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is the space of all unbased maps from F into G/PL (with the compact open
topology). Let C be the category of based, compact, stably parallelizable PL
manifolds and based PL maps. Our first step is to define a natural transformation

T : [ , GF /P̃LF ] −−→ [ , (G/PL)F ] ,

where the functors are defined on C.

Let N be an object of C, with boundary ∂N , and let B be a cell complex
with |B| = N . Let β be a principal cell of B with the base-point as one vertex.
Let x ∈ [N,GF /P̃LF ] be represented by a GF /P̃LF -bundle (ξ, t) over B. Extend
b(ξ)p1 : F × bpt−−→E(ξ|bpt) to a homeomorphism b : F × β−−→E(ξ|β). Change
t by a homotopy (rel b(ξ)(F )) until tb = p1 : F × β−−→F .

We write E = E(ξ), so E is a PL manifold with ∂E = E(∂ξ)∪E(ξ|∂B). We
write W for F ×β and identify W with b(W ). Let π : E−−→N be a block fibration
such that π|F ×β = p2. Let Q = F ×N , so by Lemma 8, t×π : E, ∂E−−→Q, ∂Q is
a homotopy equivalence of pairs. Note that t× π|W = 1 and (t× π)−1(W ) = W .
Let g : Q, ∂Q−−→E, ∂E be a homotopy inverse to t × π such that g|W = 1 and
g−1(W ) = W .

Let k be large, and choose embeddings

e : E, ∂E −−→ Dk, Sk−1 , q : Q, ∂Q −−→ Dk, Sk−1

such that e|W = q|W . By [6], there exists normal bundles νQ, νE of Q, E in
Dk. Choose νQ, νE so that νQ|W = νE |W (using the uniqueness theorem of [6]
and regular neighbourhood theory). Let Qν , Eν , W ν be Thom spaces for νQ, νE ,
νQ|W , and let

γ : Qν/∂Qν −−→ W ν/∂W ν , γ : Eν/∂Eν −−→ W ν/∂W ν

be the collapsing maps. Let ν̄Q = g∗(νE) have Thom space Qν̄ and collapsing map

γ̄ : Qν̄/∂Qν̄ −−→ W ν̄/∂W ν̄ = W ν/∂W ν .

There is a homotopy equivalence h̄ : Eν/∂Eν−−→Qν̄/∂Qν̄ covering t×π : E−−→Q
and such that γ̄h̄ = γ.

There is a map Dk−−→Qν/∂Qν which collapses

Sk−1 ∪ (complement of total space of νQ)

to a point. If we identify Sk with Dk/Sk−1, we obtain a map φ : Sk−−→Qν/∂Qν ;
let ψ : Sk−−→Eν/∂Eν be defined similarly. Let φ̄ = h̄ψ : Sk−−→Qν̄/∂Qν̄ ; then
γ̄φ̄ = γφ = γψ.

By theorems of Atiyah [1] and Wall [15, Th 3.5] there is a fibre homotopy
equivalence f̄ : ν̄Q−−→νQ such that f̄ φ̄ ' φ. It follows from Wall’s theorem that f̄
is unique up to fibre homotopy. Consider f̃ = f̄ |(ν̄Q|W )−−→(νQ|W ); this has the
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property that

γφ ' γf̄φ̄ = f̃(γ̄φ̄) = f̃(γφ) .

By the uniqueness clause in Wall’s theorem, f̃ is fibre homotopic to the identity.
Therefore we can alter f̄ by a fibre homotopy until it is the identity on ν̄Q|W .

Let G be defined as in [8] (this agrees with the definition used in [15]), so G
is an H-space. Since W is a retract of Q, the map [Q/W,G]−−→[Q,G] is injective.
It follows that two fibre equivalences f̄0, f̄1 : ν̄Q−−→νQ which are the identity
on ν̄Q|W are fibre homotopic (rel ν̄Q|W ) if and only if they are fibre homotopic.
Therefore the fibre homotopy equivalence f̄ : ν̄Q−−→νQ obtained above is unique
up to fibre homotopy (rel ν̄Q|W ).

Let τQ be the tangent bundle on Q, and choose a fixed trivialisation κ :
τQ ⊕ νQ−−→ε. Then

f = κ(1⊕ f̄) : τQ ⊕ ν̄Q −−→ ε

is a fibre homotopy equivalence, which agrees with κ on τQ ⊕ ν̄Q|W . The pair
(τQ ⊕ ν̄Q, f) represents an element

T (x) ∈ [Q/W,G/PL] ∼= [N, (G/PL)F ] .

Since the normal invariants φ, ψ are unique up to homotopy and PL bundle
automorphisms, T (x) depends only on x. Thus we have defined a map

T : [N,GF /P̃LF ] −−→ [N, (G/PL)F ] .

Lemma 9. T is a natural transformation (between functors from C to the category
of based sets).

Proof. Let f : M−−→N be a based PL map. Express f as a composite

M
×0
−−→ M ×Dr

u
−−→ N ×Ds

p1
−−→ N ,

where u is a codimension 0 embedding. We prove that T is natural

(1) with respect to ×0 and p1,
(2) with respect to codimension 0 embeddings.

Proof of 1. Consider p1 : N ×Ds−−→N ; let B be a cell complex with |B| = N .
Let (ξ, t) be a GF /P̃LF -bundle over B representing x ∈ [N,GF /P̃LF ], so that
(ξ ×Ds, tp1) represents p∗1(x). Let

Q , W , νQ , ν̄Q , φ : Sk −−→ Qν/∂Qν , φ̄ : Sk −−→ Qν̄/∂Qν̄
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be defined for (ξ, t) as above. The corresponding objects for (ξ ×Ds, tp1) are

Qs = Q×Ds , Ws = W ×Ds ,

νQs = νQ ×Ds , ν̄Qs = ν̄Q ×Ds ,

Ssφ : Ss+k −−→ Qνs/∂Q
ν
s , S

sφ̄ : Sk −−→ Qν̄s/∂Q
ν̄
s

(note that Qνs/∂Qνs ∼= Ss(Qν/∂Qν), Qν̄s/∂Qν̄s ∼= Ss(Qν̄/∂Qν̄)).

Let f̄ : ν̄Q−−→νQ be a fibre homotopy equivalence such that f̄ φ̄ ' φ and f̄
is the identity on ν̄Q|W . Then f̄s = f̄ × 1 : ν̄Qs−−→νQs is the identity on ν̄Qs |W ,
and f̄s(Ssφ̄) ' Ssφ. Therefore (τQs ⊕ ν̄Qs , 1⊕ f̄s) represents T (p∗1(x)). It follows
that T (p∗1(x)) = p∗1(T (x)), as required. Since ×0 : N−−→N × Ds is a homotopy
inverse to p1, T is also natural with respect to ×0.

Proof of 2. Let u : M−−→N be a codimension 0 embedding. Let B be a cell
complex with |B| = N and with a subcomplex A such that |A| = u(M). Choose
β to be a cell of A containing the base-point, as above. Let (ξ, t) be a GF /P̃LF -
bundle over B representing x ∈ [N,GF /P̃LF ]; then (ξ|A, t|E(ξ|A)) represents
u∗(x). Let

E = E(ξ) , D = D(ξ|A) , Q = F ×N , P = F ×M .

Identify W with b(W ) ⊂ D ⊂ E, as above. Let

g : Q,P, ∂Q, ∂P −−→ E,D, ∂E, ∂D

be a homotopy inverse to t× π such that g|W is the identity.

Choose embeddings

g : Q, ∂Q −−→ Dk, Sk−1 , e : E, ∂E −−→ Dk, Sk−1

agreeing on W , as above. Let νQ, νE be normal bundles with νQ|W = νE |W , and
let νP = νQ|P , νD = νE |D. We obtain collapsing maps

η : Qν/∂Qν −−→ P ν/∂P ν , η : Eν/∂Eν −−→ Dν/∂Dν .

Let ν̄Q = g∗(νE), let ν̄P = ν̄Q|P and let h̄ : Eν/∂Eν−−→Qν̄/∂Qν̄ be a homotopy
equivalence covering t× π : E−−→Q, such that γ̄h̄ = γ (where γ, γ̄ are as above).

If

φ : Sk −−→ Qν/∂Qν , ψ : Sk −−→ Eν/∂Eν

are collapsing maps for Q, E, then ηφ, ηψ are collapsing maps for P , D. Let
φ̄ = h̄ψ : Sk−−→Qν̄/∂Qν̄; the corresponding map for P is h̄ηψ : Sk−−→P ν̄/∂P ν̄ .
Let f̄ : ν̄Q−−→νQ be a fibre homotopy equivalence such that f̄ is the identity on
ν̄Q|W and f̄ φ̄ ' φ.

Now f̃ = f̄ |ν̄P−−→νP is a fibre homotopy such that

f̃(h̄ηψ) = f̃(ηφ̄) = ηf̄ φ̄ ' ηφ
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and f̃ is the identity on ν̄P |W . Therefore T (x), T (u∗(x)) are represented by
(τQ⊕ ν̄Q, 1⊕ f̄), (τP ⊕ ν̄P , 1⊕ f̃) respectively. It follows that T (u∗(x)) = u∗(T (x)),
as required. This proves the Lemma.

Since GF /P̃LF and (G/PL)F have the homotopy type of countable CW com-
plexes, it follows from Lemma 1.7 of [3] that there is a map θ : GF /P̃LF−−→(G/PL)F

such that T = θ∗. Unfortunately, the homotopy class of θ is not uniquely deter-
mined by this condition.

Theorem 5. Let Fn be a closed 1-connected PL manifold with n ≥ 4. Let
F ∗ = F −Dn, and let ρ : (G/PL)F−−→(G/PL)F

∗
be the restriction map. Then

the composite ρθ induces isomorphisms

(ρθ)∗ : πr(GF /P̃LF ) −−→ πr((G/PL)F
∗
)

for r ≥ 1.

Remark. For any based space X let X0 be the component of X containing
the base-point. Then (GF /P̃LF )0 is homotopy equivalent to ((G/PL)F

∗
)0, but

(G/PL)F
∗

usually has more components than GF /P̃LF .

Proof. First we prove that (ρθ)∗ is surjective; we defer the case n = 4, r = 1
until after Theorem 7. Let B be a cell complex with |B| = Sr, and let β be
a principal cell of B. Let f : Sr, β−−→(G/PL)F

∗
, bpt represent an element of

x ∈ πr((G/PL)F
∗
). Let

g : F ∗ × Sr, F ∗ × β −−→ (G/PL), bpt

be the adjoint map. Extend g over (F ∗×Sr)∪(F ×β) by defining g(F ×β) = bpt.
Let Q = F×Sr, W = F×β and let Q∗ be obtained from Q by deleting the interior
of an (n+r)-disc in Q−W . Then Q∗ deformation retracts onto (F ∗×Sr)∪(F×β),
so g defines a homotopy class of maps h : Q∗,W−−→G/PL, bpt.

Let k be large, identify Dk with the northern hemisphere of Sk and identify
2Dk with the closed region to the north of the Antarctic circle. Let q : Q−−→Sk
be an embedding such that q−1(Dk) = W , q−1(2Dk) = Q∗. Let νQ be a normal
bundle of Q in Sk such that νQ|W , νQ|Q∗ are normal bundles of W , Q∗ in Dk,
2Dk respectively. Let φ∗ : Sk−−→Q∗ν/∂Q∗ν be the collapsing map.

Choose a piecewise linear bundle ν̄Q∗ over Q∗ and a fibre homotopy equiva-
lence f̄ : ν̄Q∗−−→νQ∗ such that ν̄Q∗ |W = νQ∗ |W , f̄ is the identity on ν̄Q∗ |W and
(τQ∗ ⊕ ν̄Q∗ , 1⊕ f̄) represents h. By the theorem of Wall quoted above, there is a
map φ̄ : Sk−−→Q∗ν̄/∂Q∗ν̄ such that f̄ φ̄ ' φ∗. Let η : Q∗ν̄−−→Q∗ν̄/∂Q∗ν̄ be the col-
lapsing map; if k is large enough then there is a map ψ′ : 2Dk, 2Sk−1−−→Q∗ν̄/∂Q∗ν̄
such that ηψ′ and φ̄ represent the same element of πk(Q∗ν̄/∂Q∗ν̄).
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Adjust ψ′ by a homotopy until ψ′|Dk = φ|Dk, and ψ′ is transverse regu-
lar on Q∗ ⊂ Q∗ν̄ ; let E′ = ψ′−1(Q∗), so W ⊂ E′. We shall modify E′, ∂E′ by
surgery (keeping W fixed), attempting to make ψ′| : E′, ∂E′−−→Q∗, ∂Q∗ a homo-
topy equivalence of pairs.

Since the inclusion induces an isomorphism π1(∂Q∗)−−→π1(Q∗ −W ) (in fact
both groups are zero) and n+r ≥ 6, we can use Theorem 3.3 of [17] to the manifold
E′ −W . This has two boundary components, namely ∂W and ∂E′; we wish to
do surgery on Int(E′ −W ) and ∂E′, but not on ∂W .

We obtain a map ψ∗ : 2Dk, 2Sk−1−−→Q∗ν̄ , ∂Q∗ν̄, which is transverse regular
on Q∗ and is homotopic to ψ′ (rel Dk), with the following property. Let

E∗ = ψ∗−1(Q∗) ;

then

ψ∗| : E′ −W, ∂E∗ −−→ Q∗ −W, ∂Q∗

is a homotopy equivalence of pairs. It follows that ψ∗| : E∗, ∂E∗−−→Q∗, ∂Q∗ is a
homotopy equivalence of pairs.

Since ∂Q∗ ∼= Sn+r−1 and n + r − 1 ≥ 5, ∂E∗ is homeomorphic to Sn+r−1.
Let E = E∗ ∪∂E∗ Dn+r, and extend the embedding E∗ ⊂ 2Dk to an embedding
E ⊂ Sk. Let νE be a normal bundle of E in Sk such that νE |W , νE|E∗ are
normal bundles of W , E∗ in Dk, 2Dk respectively. Extend ψ∗ : 2Dk−−→Q∗ν̄ to a
map ψ : Sk−−→Qν̄ , transverse regular on Q ⊂ Qν̄ and with E = ψ−1(Q). Then
ψ|E−−→Q is a homotopy equivalence, and ψ|W is the identity.

Recall that B is a cell complex with |B| = Sr, and β is a principal cell of
B. Let γ be an (r − 1)-cell of B contained in ∂β. Choose a PL homeomorphism
k : |∂β − γ| × I−−→|B− β| such that k0 is the inclusion. Recall that Q = F × |B|.
Since n+ r ≥ 6, we can use the relative h-cobordism theorem [12] to extend

ψ−1(1× k)| : F × |∂β − γ| × 0 −−→ ∂E −W

to a homeomorphism H : F × |∂β − γ| × I−−→E −W .

Define a block bundle ξ over B with E(ξ) = E by Eβ(ξ) = W and, for each
cell δ in (B − β), Eδ(ξ) = H(1× k−1)(F × δ). Then ξ satisfies the local triviality
condition in the definition of a block bundle. Let

b(ξ) = 1× bpt : F −−→ F × bpt = Ebpt(ξ) .

Let t = p1ψ : E−−→F ; then (ξ, t) is a GF /P̃LF -bundle over Sr, representing an
element y ∈ πr(GF /P̃LF ). It is easily checked that p∗(T (y)) ∈ πr((G/PL)F

∗
) is

represented by (τQ∗ ⊕ ν̄Q∗ , 1 ⊕ f̄) so p∗(T (y)) = x. Therefore (ρθ)∗(y) = x, so
(ρθ)∗ is surjective, as required (provided n+ r ≥ 6).
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Similar arguments prove that (ρθ)∗ is injective; we have to consider GF /P̃LF -
bundles (ξ0, t0), (ξ1, t1) over Sr×0, Sr×1. We prove that they are isomorphic by
extending them to a GF /P̃LF -bundle (ξ, t) over Sr×I. Since n+dim(Sr×I) ≥ 6,
we can always carry out surgery and use the h-cobordism theorem. Thus the
Theorem is established, except for surjectivity of (ρθ)∗ when n = 4, r = 1.

Theorem 6. Let Fn be a compact PL manifold with π1(∂F ) isomorphic to π1(F )
by inclusion and n ≥ 6. Then θ induces isomorphisms

θ∗ : πr(GF /P̃LF ) −−→ πr((G/PL)F )

for r ≥ 1.

Proof. Since the proof is essentially the same as the proof of Theorem 5, we
shall not give the details. To prove that θ∗ is surjective, let B, β, ξ, Q, W be
as above. Since Q has a boundary ∂Q such that π1(∂Q)−−→π1(Q−W ) is an
isomorphism, it is unnecessary to cut out a disc from Q. We can use Theorem 3.3
of [17] to construct a manifold E ⊃W with boundary ∂E and a simple homotopy
equivalence ψ : E, ∂E−−→Q, ∂Q with ψ|W equal to the identity.

In the construction of the block bundle ξ above, we used the h-cobordism
theorem to construct a homeomorphism F × |B − β|−−→E −W . Here we can use
the s-cobordism theorem [7] twice (first for ∂F × |B − β|, then for F × |B − β|),
since ψ is a simple homotopy equivalence and dim(∂F × |B− β|) ≥ 6. The rest of
the proof proceeds as above.

IV. Periodicity of G/PL

In his thesis, Sullivan interpreted [M,G/PL] in terms of PL structures on
manifolds homotopy equivalent to M . Thus it is useful to have information about
G/PL which facilitates computation of [M,G/PL]. It has been known for some
time that πr(G/PL) ∼= Z , 0,Z 2, 0 according as r ≡ 0, 1, 2, 3 (mod 4); in particular,
πr(G/PL) ∼= πr+4(G/PL).

Theorem 7. There is a map λ : G/PL−−→Ω4(G/PL) such that λ∗ : πr(G/PL)−−→
πr+4(G/PL) is an isomorphism if r 6= 0, 4 and a monomorphism onto a subgroup
of index 2 if r = 4.

Proof. Let Fn be a closed 1-connected PL manifold with n ≥ 4. If X is a based
space we write X0 for the component of X containing the base-point. Consider
the diagram
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(1) (GF /P̃LF )0

h
h
hhk

θ

4
4
446
ρθ

Ωn(G/PL)0 w
α (G/PL)F0 w

ρ
(G/PL)F

∗

0

where α is induced by a map F−−→Sn of degree 1.

Suppose first that n ≥ 5. Then ρθ is a homotopy equivalence by Theorem 5
(we are not using the unproved case!). Let γ′ be a homotopy inverse to ρθ. Let
γ = θγ′, so ργ ' 1 : (G/PL)F

∗

0 −−→(G/PL)F
∗

0 .

The Whitney sum construction gives a multiplication map µ : G/PL ×
G/PL−−→G/PL. If K is a finite CW complex, µ defines Abelian group struc-
tures on

[K,Ωn(G/PL)0] , [K, (G/PL)F0 ] , [K, (G/PL)F
∗

0 ]

such that α∗, ρ∗ are homeomorphisms. Let x ∈ [K, (G/PL)F0 ] and let y = (1 −
γ∗ρ∗)(x), so ρ∗(y) = 0. Therefore y = α∗(z) for some z ∈ [K,Ωn(G/PL)0]. Since
ρ has a right homotopy inverse, α∗ is injective and z is unique. Define a natural
transformation

S : [ , (G/PL)F0 ] −−→ [ ,Ωn(G/PL)0]

on finite CW complexes by S(x) = z. By Lemma 1.7 of [3], there is a map

σ : (G/PL)F0 −−→ Ωn(G/PL)0

with S = σ∗. Observe that

α∗σ∗α∗ = α∗ − γ∗ρ∗α∗ = α∗ ,

since ρα ' bpt. Since α∗ is injective, σ∗α∗ = 1.

Let r ≥ 1 and consider the homomorphism

σ : πr((G/PL)F ) −−→ πn+r(G/PL) .

This is an epimorphism (with right inverse α∗). Let x ∈ πr((G/PL)F ) be repre-
sented by

g : F × Sr, F × β −−→ G/PL, bpt

(where β is a cell of Sr containing the base-point). Let Q = F × Sr, W = F × β,
as above.

Let k be large and identify Dk with the northern hemisphere of Sk. Let
q : Q−−→Sk be an embedding such that q−1(Dk) = W . Let νQ be a normal bundle
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of Q in Sk such that νQ|W is a normal bundle of W in Dk. Let φ : Sk−−→Qν be
the collapsing map.

Choose a piecewise linear bundle ν̄Q over Q and a fibre homotopy equivalence
f̄ : ν̄Q−−→νQ such that ν̄Q|W = νQ|W , f̄ is the identity on ν̄Q|W and (τQ ⊕
ν̄Q, 1 ⊕ f̄) represents g. As in Chapter III, there is a map ψ′ : Sk−−→Qν̄ such
that f̄ψ′ ' φ. Adjust ψ′ by a homotopy until ψ′|Dk = φ|Dk and ψ′ is transverse
regular on Q ⊂ Qν̄ ; let E′ = ψ′−1(Q), so W ⊂ E′. We attempt to modify E′ by
surgery (keeping W fixed), to make ψ′|E′−−→Q a homotopy equivalence.

We seek a map ψ : Sk−−→Qν̄ which is transverse regular on Q and is ho-
motopic to ψ′( rel Dk), and with the following property. Let E = ψ−1(Q);
then ψ|E−−→Q is a homotopy equivalence. Let Pr = Z , 0,Z 2, 0 according as
r ≡ 0, 1, 2, 3 (mod 4) (as in [8]). By [14,§4], since Q is 1-connected and dimQ ≥ 5,
there is an obstruction σ̄(x) ∈ Pn+r to performing the surgery. Note that σ̄(x)
depends only on x.

Using the homotopy group addition in πr((G/PL)F ) (not the H-structure on
G/PL) and the interpretation of σ̄(x) as a signature or Arf invariant, we see that
σ̄ : πr((G/PL)F )−−→Pn+r is a homomorphism. Consider the homomorphism σ̄α∗ :
πn+r(G/PL)−−→Pn+r. This coincides with the canonical homomorphism obtained
in [13], and is therefore an isomorphism. It follows that σ̄ is an epimorphism.

If x ∈ πr((G/PL)F ), then γ∗ρ∗(x) is represented by ḡ : Q,W−−→G/PL, bpt,
where ḡ agrees with g on Q∗ = Q−Dn+r, and ḡ|Dn+r is chosen so that σ̄(ḡ) = 0
(because the surgery problem for γ∗ρ∗(x) ∈ im(θ∗) is clearly soluble). Since σ̄α∗ is
a monomorphism, these conditions characterise the homotopy class of ḡ. Therefore
x = γ∗ρ∗(x) if and only if σ̄(x) = 0, so kerσ∗ = ker σ̄. If we identify πn+r(G/PL)
with Pn+r via the canonical isomorphism, we see that σ̄(x) = σ∗(x).

Let ε : G/PL−−→(G/PL)F be induced by the map F−−→point, and let λF

denote the composite

G/PL
ε
−−→ (G/PL)F

σ
−−→ Ωn(G/PL) .

If dimF = n = 4, this construction fails as

(ρθ)∗ : π1(GF /P̃LF ) −−→ π1((G/PL)F
∗
)

is not yet known to be surjective. However, we can construct a map λ̄F : Ω4(G/PL)0

−−→Ωn+4(G/PL)0; simply apply the functor Ω4 to diagram (1) and argue as above.

Let x ∈ πr(G/PL) be represented by g : Sr−−→G/PL. Then ε∗(x) is repre-
sented by gp2 : F × Sr−−→G/PL. Note that x = σ̄(x) and

σ̄(ε∗(x)) = σ∗ε∗(x) = λF∗ (x) .
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Now σ̄(x) is the obstruction to making a certain map ψ′| : V ′−−→Sr a homo-
topy equivalence by surgery (where V ′ is a certain framed r-manifold). Similarly
σ̄(ε∗(x)) is the obstruction to making 1 × ψ′| : F × V ′−−→F × Sr a homotopy
equivalence.

Take F = CP 2 × CP 2. Suppose r ≡ 0 (mod 4); then by [14], σ̄(x) =
1
8 (signature of V ′) if r ≥ 8; but σ̄(x) = 1

16 (signature of V ′) if r = 4. Similarly,

σ̄(ε∗(x)) = 1
8
(signature of F × V ′ − signature of F × Sr)

= 1
8 (signature of V ′) for all r.

Thus σ̄(ε∗(x)) = σ̄(x) unless r = 4, when σ̄(ε∗(x)) = 2σ̄(x).

If r ≡ 2(mod 4), then it follows from Theorem 9.9 of [17] that σ̄(x) = σ̄(ε∗(x)).
(The theorem is stated for r ≥ 5, but the argument seems to work when r =
2.) Since πr(G/PL) = πr+8(G/PL) = 0 if r is odd, we have proved that λF∗ :
πr(G/PL)−−→πr+8(G/PL) is an isomorphism if r 6= 0, 4, and a monomorphism
onto a subgroup of index 2 if r = 4.

Similar arguments show that, if F = CP 2 and r ≥ 1, then λ̄F∗ : πr+4(G/PL)
−−→πr+8(G/PL) is an isomorphism. Therefore λ̄F : Ω4(G/PL)0−−→Ω8(G/PL)0

is a homotopy equivalence. Let λ : G/PL−−→Ω4(G/PL) be the composite of
λCP

2×C P 2
with a homotopy inverse to λ̄CP

2
; then λ has the desired properties.

Now we can complete the proof of Theorem 5 by showing that, if dimF = 4,
then

(ρθ)∗ : π1(GF /P̃LF ) −−→ π1((G/PL)F
∗
)

is surjective. Consider the following diagram :

π1((G/PL)F ) w
ρ∗

u
λ∗

π1((G/PL)F
∗
) w

∂

u
λ∗

π0(Ω4(G/PL))

u
λ∗

π1((Ω4(G/PL))F ) w
ρ∗ π1((Ω4(G/PL))F

∗
) w
∂ π0(Ω8(G/PL)) .

The rows are taken from the homotopy exact sequences of the Hurewicz fibrations

(G/PL)F −−→ (G/PL)F
∗
, (Ω4(G/PL))F −−→ (Ω4(G/PL))F

∗
.

The proof of Theorem 7 shows that, in the bottom row, ρ∗ is surjective so
∂ = 0. But

λ∗ : π0(Ω4(G/PL)) −−→ π0(Ω8(G/PL))
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is injective, so ∂ = 0 in the top row. Therefore

ρ∗ : π1((G/PL)F ) −−→ π1((G/PL)F
∗
)

is surjective.

Let x ∈ π1((G/PL)F
∗
), and choose an element

x̄ ∈ π1((G/PL)F )

such that ρ∗(x̄) = x. Let β be an interval in S1 containing the base-point, let
Q = F ×S1, W = F ×β. Let νQ, ψ′ be as in the proof of Theorem 7. Since σ̄(x) ∈
P5 = 0, we can do surgery to find a map ψ : Sk−−→Qν̄ which is transverse regular
to ψ′ (rel Dk), with the following property. Let E = ψ−1(Q); then ψ| : E−−→Q is
a homotopy equivalence.

Let b0, b1 be the end-points of β, and letB be the cell complex {b0, b1, β, S1 − β}.
Then E −W is an h-cobordism between F × b0 and F × b1, and the PL home-
omorphism 1 × b1 : F × b0−−→F × b1 is in the preferred homotopy class. By
Barden’s h-cobordism theorem for 5-manifolds [2], there is a PL homeomorphism
H : F × |B − β|−−→E −W with H(F × bi) = F × bi. Now we can define a
block bundle ξ over B with E(ξ) = E, and a map t : E−−→F , as in the proof of
Theorem 5. We obtain a GF /P̃LF -bundle (ξ, t) over B, representing an element
y ∈ π1(GF /P̃LF ) such that θ∗(y) = x̄. Therefore x = (ρθ)∗(y), so

(ρθ)∗ : π1(GF /P̃LF ) −−→ π1((G/PL)F
∗
)

is surjective. This completes the proof of Theorem 5.

V. Topologically Trivial Block Bundles

Let ξ be a block bundle over B with fibre F . A proper trivialisation of ξ
is a proper map

h : E(ξ) −−→ F × |B|
such that

h(Eβ(ξ)) ⊂ F × β for each β ∈ B
(base-points will be irrelevant in this chapter). Two proper trivialisations h0, h1

of ξ are properly homotopic if there is a proper map

H : E(ξ)× I −−→ F × |B|
such that

H(Eβ(ξ)× I) ⊂ F × β
for each β ∈ B and Ht = ht (t = 0, 1). A topological trivialisation of ξ is a
proper trivialisation which is a topological homeomorphism; a PL trivialisation
is defined similarly.
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Theorem 8. Let ξ be a block bundle over B with fibre R q (q ≥ 3). Let h :
E(ξ)−−→R q × |B| be a topological trivialisation of ξ. Then there is an obstruction
w ∈ H3(B;Z 2) which vanishes if and only if h is properly homotopic to a PL
trivialisation of ξ.

Proof. Let V , W be PL manifolds and let N be a compact submanifold of W
with ∂N = N ∩ ∂W . A map φ : V−−→W is h-regular on N if it is transverse
regular on N and φ| : φ−1(N)−−→N is a homotopy equivalence. Let Q denote
C P 2 ×C P 2. Our first objective is to construct the following :

(1) A proper map f : E(ξ)×Q−−→R q × |B| ×Q such that, for each β ∈ B,

f | : Eβ(ξ)×Q −−→ R q × β ×Q
is h-regular on 0× β ×Q.

(2) A proper homotopy F from h× 1 to f such that, for each β ∈ B,

F (Eβ(ξ)×Q× I) ⊂ R q × β ×Q .

We shall eventually use f and F to construct a PL trivialisation of ξ. The factor
Q is introduced to avoid difficulties with low-dimensional manifolds.

Let T = ∂∆2 and write T r for the product of r copies of T . Note that
the universal covering space T̃ r of T is PL homeomorphic to R r. Choose a PL
embedding R ×T q−1 ⊂ R q and a PL homeomorphism R q−−→R × T̃ q−1 such that
the composite

e : R q −−→ R × T̃ q−1 −−→ R × T q−1 ⊂ R q

is the identity on a neighbourhood of the origin.

Let A be a subcomplex of B. Let WA,r denote R r × T q−r × |A| ×Q and let
NA,r = 0×T q−r×A×Q ⊂WA,r. We have an embedding WA,1 ⊂ R q×A×Q and
there is a covering map p : WA,r−−→WA,r−1. Define VA,1 = (h× 1)−1(WA,1) and
let gA,1 = h × 1| : VA,1−−→WA,1. Define VB,r, gB,r (r ≥ 2) inductively as follows.
Let p : VB,r−−→VB,r−1 be the covering map induced from p : WB,r−−→WB,r−1 by
the homeomorphism gB,r−1 : VB,r−1−−→WB,r−1. Let gB,r : VB,r−−→WB,r be a
homeomorphism such that pgB,r = gB,r−1p. Finally let VA,r = p−1(VA,r−1) and
let gA,r = gB,r|VA,r. We write Wn

r , Nn
r , V nr , gnr for WBn,r, NBn,r, VBn,r, gBn,r

respectively, and abbreviate WB,r, NB,r, VB,r, gB,r to Wr, Nr, Vr, gr.

Suppose inductively that we have constructed the following, for some integer
n :

(1) A proper map fn−1
1 : V n−1

1 −−→Wn−1
1 such that, for each β ∈ Bn−1, fn−1

1 |Vβ,1
−−→Wβ,1 is h-regular on Nβ,1.

(2) A proper homotopy Fn−1
1 from gn−1

1 to fn−1
1 such that, for each β ∈ Bn−1,

Fn−1
1 (Vβ,1 × I) ⊂Wβ,1.
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Suppose also that fn−1
1 , Fn−1

1 are extensions of fn−2
1 , Fn−2

1 .

Now let β ∈ Bn−Bn−1. Let f∂β,1 = fn−1
1 |V∂β,1 and let F∂β,1 = Fn−1

1 |V∂β,1×
I. The inductive hypothesis ensures that f∂β,1 is transverse regular onN∂β,1. Thus
M∂β,1 = f−1

∂β,1(N∂β,1) is a submanifold of V∂β,1 of codimension 1.

Lemma 10. f∂β,1 is h-regular on N∂β,1.

Proof. Let B be a cell complex. A blocked space E over B consists of a
topological space E and, for each β ∈ B, a subspace Eβ of E such that the
following conditions are satisfied :

(1) {Eβ : β ∈ B} is a locally finite covering of E.
(2) If β, γ ∈ B, then Eβ ∩ Eγ =

⋃
δ⊂β∩γ Eδ.

(3) If β is a face of γ ∈ B, then the inclusion Eβ ⊂ Eγ is a homotopy equivalence.
(4) If β ∈ B and E∂β =

⋃
γ⊂∂β Eγ, then the pair (Eβ, E∂β) has the absolute

extension property.

If E(1), E(2) are blocked spaces overB, a blocked equivalence φ : E(1)−−→E(2)

is a continuous map such that φ(E(1)
β ) ⊂ E(2)

β and φ| : E(1)
β −−→E

(2)
β is a homotopy

equivalence for each β ∈ B. Observe that M∂β,1 and N∂β,1 are blocked spaces
over ∂β, and f∂β,1| : M∂β,1−−→N∂β,1 is a blocked equivalence.

Suppose inductively that, if E(1), E(2) are blocked spaces over Bs−1, then
any blocked equivalence φ : E(1)−−→E(2) is a homotopy equivalence. Now let
φ : E(1)−−→E(2) be a blocked equivalence over Bs.

Let C(i) =
⋃
β∈Bs−1 E

(i)
β and let D(i), ∂D(i) be the disjoint unions of

{E(i)
β : β ∈ Bs −Bs−1}, {E(i)

∂β : β ∈ Bs −Bs−1}.

Then ∂D(i) ⊂ D(i) and there are maps λ(i) : ∂D(i)−−→C(i) such that E(i) =
C(i) ∪λ(i) D(i). By induction, φ : C(1)−−→C(2) is a homotopy equivalence.

Now φ defines a homotopy equivalence ψ : D(1)−−→D(2) such that φλ(1) =
λ(2)ψ|∂D(1). By induction, ψ|∂D(1)−−→∂D(2) is a homotopy equivalence. The
pairs (D(i), ∂D(i)) satisfy the absolute extension condition; using a result in ho-
motopy theory we deduce that φ : E(1)−−→E(2) is a homotopy equivalence. By
induction, any blocked equivalence over a finite-dimensional complex is a homo-
topy equivalence, and the Lemma follows.

Now the PL manifold Vβ,1 has two tame ends (for definition see [11]) with free
Abelian fundamental groups. Since M∂β,1 ⊂ V∂β,1 is a homotopy equivalence (by
Lemma 10), M∂β,1 bounds collars of the ends of V∂β,1. Since dimVβ,1 ≥ 8, we can
apply Siebenmann’s theorem [11,§5] to construct a compact submanifold Mβ,1 of
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Vβ,1 with boundary M∂β,1 and such that Mβ,1 ⊂ Vβ,1 is a homotopy equivalence.
As in [16], we can extend f∂β,1 to fβ,1 : Vβ,1−−→Wβ,1, transverse regular on Nβ,1
and with Mβ,1 = f−1

β,1(Nβ,1). We can also extend F∂β,1 to a proper homotopy Fβ,1
from gβ,1 to fβ,1.

Do this for all n-cells β of B to obtain extensions fn1 , Fn1 of fn−1
1 , Fn−1

1

satisfying the inductive hypotheses. This completes our induction on n; we have
defined the following :

(1) A proper map f1 : V1−−→W1 such that for each β ∈ B, f1| : Vβ,1−−→Wβ,1 is
h-regular on Nβ,1.

(2) A proper homotopy F1 from g1 to f1 such that, for each β ∈ B, F1(Vβ,1×I) ⊂
Wβ,1.

Suppose inductively that we have defined the following, for some integer r ≥
1 :

(1) A proper map fr : Vr−−→Wr such that for each β ∈ B, fr| : Vβ,r−−→Wβ,r is
h-regular on Nβ,r.

(2) A proper homotopy Fr from gr to fr such that, for each β ∈ B, Fr(Vβ,r×I) ⊂
Wβ,r.

Let

Ñr = 0× R × T q−r−1 × |B| ×Q ⊂Wr+1 .

If p : Wr+1−−→Wr is the covering map then Ñr = p−1(Nr). Lift F r to a proper
homotopy F̃r from gr+1 to a map f̃r : Vr+1−−→Wr+1. Let M̃r = f̃−1

r (Ñr) and
let Mr = f−1

r (Nr). Since p| : M̃r−−→Mr is a covering map and fr : Mr−−→Nr
is a homotopy equivalence, f̃r| : M̃r−−→Ñr is a proper homotopy equivalence.
Let A be a subcomplex of B. Let W̃A,r = p−1(NA,r), f̃A,r = f̃r|VA,r+1, F̃A,r =
F̃r|VA,r+1 × I, M̃A,r = M̃r ∩ VA,r+1 and MA,r = Mr ∩ VA,r.

We construct the following :
(1) A proper map φr : M̃r−−→Ñr such that for each β ∈ B, φr| : M̃β,r−−→Ñβ,r

is h-regular on Nβ,r+1.
(2) A proper homotopy Φr from f̃r|M̃r to φr such that, for each β ∈ B, Φr(M̃β,r×

I) ⊂ Ñβ,r.

The construction is exactly the same as the one given above for f1 and F1. We
apply Siebenmann’s theorem to M̃β,r instead of Vβ,1; the details will be omitted.

Using the product structure on a neighbourhood of M̃r in Vr+1, we can con-
struct the following :
(1) A proper map fr+1 : Vr+1−−→Wr+1 such that for each β ∈ B, fr+1| :

Vβ,r+1−−→Wβ,r+1 is h-regular on Nβ,r+1.
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(2) A proper homotopy Fr+1 from gr+1 to fr+1 such that, for each β ∈ B,
Fr+1(Vβ,r+1 × I) ⊂Wβ,r+1.

This completes the induction on r. When r = q we obtain a proper map fq :
Vq−−→Wq = R q × |B| ×Q and a proper homotopy Fq from gq to fq, satisfying the
inductive hypotheses.

Consider the commutative diagram :

Vq w
gq

u
ε

Wq

u
ε

Rq × |B| ×Q

u
e× 1

E(ξ)×Q w
h× 1 Rq × |B| ×Q Rq × |B| ×Q

where ε denotes a covering map followed by an inclusion. Recall that e : R q−−→R q

is the identity on an open disc neighbourhood U of the origin.

Let A be a subcomplex of B, let XA denote

h−1(U × |A|)×Q− h−1(0× |A|)×Q ⊂ E(ξ)×Q ,

and let X = XB, Xn = XBn . Suppose inductively that we have constructed the
following, for some integer n.
(1) A subset Y n−1 of Xn−1 such that, for each β ∈ Bn−1, Yβ = Y n−1 ∩Xβ is a

compact submanifold of Xβ of codimension one and Yβ ⊂ Xβ is a homotopy
equivalence. Then E(ξ|Bn−1) × Q − Y n−1 has two components; let Zn−1

be the closure of the bounded component. Let (Z′)n−1 be the component of
ε−1(Zn−1) which lies in g−1

q (U × |Bn−1| ×Q), and let (Y ′)n−1 = (Z′)n−1 ∩
εn−1(Y n−1).

(2) PL homeomorphisms

γn−1 : Y n−1 × [0,∞) −−→ E(ξ|Bn−1)×Q− Zn−1 ,

(γ′)n−1 : (Y ′)n−1 × [0,∞) −−→ V n−1
q − (Z′)n−1

such that γn−1
0 , (γ′)n−1

0 are the inclusions.

Suppose further that γn−1, (γ′)n−1 are extensions of γn−2, (γ′)n−2.

Now let β ∈ Bn −Bn−1. Let

Y∂β = Y n−1 ∩X∂β ,

γ∂β = γn−1|Y∂β × [0,∞) ,

γ′∂β = (γ′)n−1|Y ′∂β × [0,∞) .

Then Y∂β bounds a collar of the end of E(ξ|∂β)×Q. It follows that Y∂β ⊂ X∂β

is a homotopy equivalence; since dimX∂β ≥ 8, Y∂β bounds a collar of the ends of
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X∂β.

Since the ends of Xβ are tame and have trivial fundamental groups, Sieben-
mann’s theorem shows that there is a compact submanifold Yβ of Xβ with bound-
ary Y∂β and such that Yβ ⊂ Xβ is a homotopy equivalence. It follows that Yβ
bounds a collar of the end of E(ξ|β)×Q. Let

γβ : Yβ × [0,∞) −−→ E(ξ|β)×Q− Zβ
be a PL homeomorphism such that (γβ)0 is the inclusion and γβ|Y∂β × [0,∞) =
γ∂β. Do this for all n-cells β of B to obtain Y n, γn satisfying the inductive
hypotheses.

Define (Z′)n, (Y ′)n as in (1) above, and note that ε : (Z′)n−−→Zn is a PL
homeomorphism. Then, for each β ∈ Bn − Bn−1, Y ′β ⊂ Vβ,q − Z′β is a homotopy
equivalence, so Y ′β bounds a collar of the end of Vβ,q. Let

γ′β : Y ′β × [0,∞) −−→ Vβ,q − Z′β
be a PL homeomorphism such that (γ′β)0 is the inclusion and γ′β|Y ′∂β × [0,∞) =
γ′∂β. Then the γ′β fit together to define an extension (γ′)n of (γ′)n−1 satisfying the
inductive hypotheses. This completes the induction on n.

Let

Y =
∞⋃
n=1

Y n , Z =
∞⋃
n=1

Zn , γ =
∞⋃
n=1

γn , γ′ =
∞⋃
n=1

(γ′)n .

Define a PL homeomorphism ψ : E(ξ) × Q−−→Vq by ψ = ε−1 on Z and ψ =
γ−1(ε−1×1)γ elsewhere. Define a proper homotopy Ψ from gqψ to h×1 as follows.
If x ∈ R q, y ∈ |B|, z ∈ Q and t ∈ [0, 1), let gqψ(h−1(tx, y), z) = (x′, y′, z′), and
define

Ψ(h−1(x, y), z, t) = (t−1x′, y′, z′) .

Define

Ψ(h−1(x, y), z, 0) = (x, y, z) ;

this makes Ψ continuous since (x′, y′, z′) = (tx, y, z) provided t is sufficiently small.

Now we can define the proper map f : E(ξ)×Q−−→R × |B| ×Q and proper
homotopy F from h × 1 to f , as promised at the beginning of the proof. Let
f = fqψ and let F = Ψ ∗ (Fqψ) be defined by

F (x, t) =
{

Ψ(x, 2t) 0 ≤ t ≤ 1
2

Fqψ(x, 2t− 1) 1
2 ≤ t ≤ 1 .

Then f and F have the required properties (1) and (2).

Suppose inductively that we have constructed the following, for some integer
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n.

(1) A proper trivialisation jn−1 : E(ξ|Bn−1)−−→R q × |Bn−1.
(2) A proper homotopy Jn−1 from hn−1 to jn−1.
(3) A proper homotopy Ln−1 from fn−1 to jn−1×1 such that, for each β ∈ Bn−1,

Ln−1|E(ξ|β)×Q is h-regular on 0× β ×Q.
(4) A proper homotopy Ln−1 from F̄n−1 ∗ (Jn−1×1) to Ln−1 (rel R q×|Bn−1|×

Q× ∂I).

Suppose further that jn−1, Jn−1, Ln−1, Ln−1 are extensions of jn−2, Jn−2, Ln−2,
Ln−2 respectively.

Let β ∈ Bn −Bn−1. If A is a subcomplex of Bn−1, then jA, JA, LA, LA will
have the usual meanings. As in Lemma 10 we see that

L∂β : E(ξ|∂β)×Q× I −−→ R q × ∂β ×Q
is h-regular on 0 × ∂β × Q. Note that L∂β is a proper homotopy from f∂β to
j∂β × 1. Extend L∂β to a proper homotopy Kβ from fβ to a proper map kβ :
Eβ(ξ)×Q−−→R q × β ×Q. We can arrange for Kβ to be h-regular on 0× β ×Q.

Now J∂β is a proper homotopy from h∂β to j∂β. Extend J∂β to a proper
map Iβ from hβ to a proper map iβ : Eβ(ξ)−−→R × β. Using the homotopies
(Iβ×1)∗Fβ∗Kβ and L∂β, we see that iβ×1 is properly homotopic (rel R q×∂β×Q)
to kβ.

The obstruction to deforming iβ properly (rel E(ξ|∂β)) to a PL homeomor-
phism j′β : Eβ(ξ)−−→R q×β is an element x ∈ πn(G/PL). Let λ∗ : πn(G/PL)−−→
πn+8(G/PL) be the periodicity homomorphism discussed in Chapter IV. Then
λ∗(x) is the obstruction to deforming iβ × 1 properly (rel E(ξ|∂β) × Q) to a
map k′β which is h-regular on 0 × β × Q. The previous paragraph shows that
λ∗(x) = 0; since λ∗ is a monomorphism, x = 0. Choose a PL homeomorphism
j′β : Eβ(ξ)−−→R × β and a proper homotopy J ′β from hβ to j′β extending J∂β .

Now L∂β is a proper homotopy from F̄∂β ∗ (J∂β ×1) to L∂β. Extend L∂β to a
proper homotopy Gβ (rel Eβ(ξ)×Q×∂I) from F̄β ∗ (J ′β×1) to a proper homotopy
Gβ between fβ and j′β × 1. Let y ∈ πn+9(G/PL) be the obstruction to deforming
Gβ properly (rel ∂(R q × β × Q × I)) to a homotopy G′β which is h-regular on
0× β ×Q.

If we vary (j′β, J
′
β) by an element z ∈ πn+1(G/PL), we replace y by y+λ∗(z).

If n 6= 3 then λ∗ is surjective, so we can choose z so that y + λ∗(z) = 0. In other
words, we can replace (j′β , J

′
β) by a pair (jβ , Jβ) for which y vanishes. Then there

is a proper homotopy Lβ from fβ to jβ × 1 which is h-regular on 0× β×Q, and a
proper homotopy Lβ (rel R q × β ×Q× ∂I) from F̄β ∗ (Jβ × 1) to Lβ ; Lβ and Lβ
are extensions of L∂β and L∂β respectively.
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Do this for all n-cells β of B to obtain jn, Jn, Ln, Ln satisfying conditions
(1)–(4). This completes the induction provided n 6= 3. In case β is a 3-cell of B,
let c(β) ∈ Z 2 be the mod 2 reduction of y ∈ π12(G/PL) = Z . This defines a
cochain c ∈ C3(B;Z 2). The above argument enables us to construct j3, J3, L3,
L3 provided c = 0.

We consider the effect of varying L2. Suppose j1, J1, L1, L1, j2, J2, L2, L2

are constructed, and let β be a 3-cell in B. Observe that, if the cells α ⊂ ∂β are
oriented suitably, then ∂β =

∑
α⊂∂β α ∈ C2(B;Z ). If we vary Lα by an element

uα ∈ π12(G/PL) = Z , it can be seen that c(β) is replaced by c(β)+(
∑
α⊂∂β uα)2.

Let u ∈ C2(B;Z 2) be the cochain defined by u(α) = uα; then we have replaced c
by c+ δu.

Now let γ be a 4-cell of B, so ∂γ =
∑
β⊂∂γ β ∈ C3(B;Z ). For each 3-cell

β ⊂ ∂γ, define j′β , J ′β as above, and define

J ′∂γ : E(ξ|∂γ)× I −−→ R q × ∂γ

by J ′∂γ |E(ξ|β) × I = J ′β . It is easy to adjust (j′β, J
′
β) on one cell β ⊂ ∂γ until

J ′∂γ extends to a proper homotopy J ′γ from hγ to a PL homeomorphism j′γ :
E(ξ|∂γ)−−→R q × ∂γ.

Define

G∂γ : E(ξ|∂γ)×Q× I −−→ R q × ∂γ ×Q

by G∂γ |E(ξ|β) × Q × I = Gβ . Let vγ ∈ π12(G/PL) = Z be the obstruction to
deforming G∂γ properly (rel E(ξ|∂γ)×Q×∂I) to a proper homotopy G′ which is h-
regular on 0×∂γ×Q. Then it can be seen that vγ =

∑
β⊂∂γ yβ, so (δc)(γ) = c(∂γ)

is equal to the mod 2 reduction of vγ .

On the other hand, vγ is the obstruction to deforming F̄∂γ ∗(J ′∂γ×1) properly
(rel E(ξ|∂γ)×Q×∂I) to a proper homotopy G′∂γ which is h-regular on 0×∂γ×Q.
But F̄∂γ ∗ (J ′∂γ × 1) extends to a proper homotopy F̄γ ∗ (J ′γ × 1) from fγ to j′γ × 1,
both of which are h-regular on 0 × γ × Q. Now it follows from Wall’s surgery
theorem [14] that vγ = 0. Therefore (δc)(γ) = 0, so c is a cocycle.

Let w ∈ H3(B;Z 2) be the cohomology class of c; we have shown that our
construction can be carried out if w = 0. Assume now that w = 0, and let
j =

⋃∞
n=1 j

n, J =
⋃∞
n=1 J

n. Then j is a PL trivialisation of ξ and J is a proper
homotopy from h to j, as required. It is not hard to see that w = 0 whenever h is
properly homotopic to a PL trivialisation, so Theorem 8 is proved.

Theorem 8 implies a result on the Hauptvermutung by fairly well-known ar-
guments, given in Sullivan’s thesis.
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Corollary. Let Mn, Nn be closed, 1-connected PL manifolds with n ≥ 5 and
let h : M−−→N be a topological homeomorphism. If H3(M ;Z 2) = 0, then h is
homotopic to a PL homeomorphism.
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