A note on characteristic classes:
 Euler, Stiefel-Whitney, Chern and Pontrjagin

by Andrew Ranicki

February 25, 2016

1 Introduction

For any n-dimensional complex vector bundle $\beta: X \rightarrow B U(n)$ the Chern classes $c_{i}(\beta) \in$ $H^{2 i}(X)$ have mod 2 reductions the even-dimensional Stiefel-Whitney classes $w_{2 i}\left(\beta^{\mathbb{R}}\right) \in$ $H^{2 i}\left(X ; \mathbb{Z}_{2}\right)$ of the underlying $2 n$-dimensional real vector bundle $\beta^{\mathbb{R}}: X \rightarrow B O(2 n)$. This is well-known, being Problem 14-B in Milnor and Stasheff's book Characteristic classes (Princeton, 1974). I have written out an explicit proof in the notes below, using the nice derivation of the Stiefel-Whitney and Chern classes from the Euler class in Chapter 17 of Kreck's book Differential algebraic topology (AMS, 2011).

2 The Thom class

An n-dimensional real vector bundle

$$
\mathbb{R}^{n} \longrightarrow E(\alpha) \xrightarrow{p} X
$$

is classified by a map $\alpha: X \rightarrow B O(n)$. The Thom space of α is the one-point compactification

$$
T(\alpha)=E(\alpha)^{\infty}
$$

(assuming that X is compact). The mod 2 Thom class

$$
U_{2}(\alpha) \in \dot{H}^{n}\left(T(\alpha) ; \mathbb{Z}_{2}\right)(\dot{H}=\text { reduced })
$$

is characterized by the property that for any $x \in X$ the inclusion

$$
i_{x}: p^{-1}(x)^{\infty}=S^{n} \rightarrow T(\alpha)
$$

is such that

$$
\left(i_{x}\right)^{*}\left(U_{2}(\alpha)\right)=1 \in \dot{H}^{n}\left(S^{n} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} .
$$

An oriented n-dimensional real vector bundle $\alpha: X \rightarrow B S O(n)$ has an integral Thom class $U(\alpha) \in \dot{H}^{n}(T(\alpha))$ such that

$$
\left(i_{x}\right)^{*}(U(\alpha))=1 \in \dot{H}^{n}\left(S^{n}\right)=\mathbb{Z} .
$$

3 The Euler class

Given an n-dimensional real vector bundle $\alpha: X \rightarrow B O(n)$ let $z: X \rightarrow T(\alpha)$ be the zero section, with $z(x)=0 \in p^{-1}(x)$. The mod 2 Euler class $e_{2}(\alpha) \in H^{n}\left(X ; \mathbb{Z}_{2}\right)$ is

$$
e_{2}(\alpha)=z^{*} U_{2}(\alpha) \in H^{n}\left(X ; \mathbb{Z}_{2}\right)
$$

Product formula: the Whitney sum of real vector bundles $\alpha_{1}: X \rightarrow B O\left(n_{1}\right), \alpha_{2}: X \rightarrow$ $B O\left(n_{2}\right)$ is a vector bundle $\alpha_{1} \oplus \alpha_{2}: X \rightarrow B O\left(n_{1}+n_{2}\right)$ with mod 2 Euler class the cup product

$$
e_{2}\left(\alpha_{1} \oplus \alpha_{2}\right)=e_{2}\left(\alpha_{1}\right) \cup e_{2}\left(\alpha_{2}\right) \in H^{n_{1}+n_{2}}\left(X ; \mathbb{Z}_{2}\right) .
$$

The Euler class of an oriented n-dimensional real vector bundle $\alpha: X \rightarrow B S O(n)$ is

$$
e(\alpha)=z^{*} U(\alpha) \in H^{n}(X)
$$

with mod 2 reduction

$$
[e(\alpha)]_{2}=e_{2}(\alpha) \in \dot{H}^{n}\left(T(\alpha) ; \mathbb{Z}_{2}\right)
$$

The Whitney sum of oriented real vector bundles α_{1}, α_{2} is an oriented real vector bundle $\alpha_{1} \oplus \alpha_{2}$ with Euler class

$$
e\left(\alpha_{1} \oplus \alpha_{2}\right)=e\left(\alpha_{1}\right) \cup e\left(\alpha_{2}\right) \in H^{n_{1}+n_{2}}(X) .
$$

Given an n-dimensional complex vector bundle $\beta: X \rightarrow B U(n)$ let $\beta^{\mathbb{R}}: X \rightarrow$ $B S O(2 n)$ be the underlying oriented $2 n$-dimensional real vector bundle. The Euler class of β is defined to be the Euler class of $\beta^{\mathbb{R}}$

$$
e(\beta)=e\left(\beta^{\mathbb{R}}\right) \in H^{2 n}(X)
$$

4 The Chern classes

Use the complex mutiplication action $S^{1} \times \mathbb{C} \rightarrow \mathbb{C}$ and the free S^{1}-action on S^{∞} to construct the universal complex line bundle $L_{\mathbb{C}}$

$$
\mathbb{C} \rightarrow E\left(L_{\mathbb{C}}\right)=\mathbb{C} \times_{S^{1}} S^{\infty} \rightarrow S^{\infty} / S^{1}=\mathbb{C} \mathbb{P}^{\infty}
$$

with classifying map

$$
L_{\mathbb{C}}=1: \mathbb{C} \mathbb{P}^{\infty}=B U(1) \rightarrow B U(1) .
$$

The cohomology of $\mathbb{C} \mathbb{P}^{\infty}$ is the polynomial algebra $H^{*}\left(\mathbb{C} \mathbb{P}^{\infty}\right)=\mathbb{Z}[x]$ with generator the Euler class of $L_{\mathbb{C}}$

$$
x=e\left(L_{\mathbb{C}}\right)=1 \in H^{2}\left(\mathbb{C} \mathbb{P}^{\infty}\right)=\mathbb{Z} .
$$

The external tensor product of an n-dimensional complex vector bundle $\beta: X \rightarrow B U(n)$ and $L_{\mathbb{C}}$ is an n-dimensional complex vector bundle

$$
\beta \otimes_{\mathbb{C}} L_{\mathbb{C}}: X \times \mathbb{C} \mathbb{P}^{\infty} \rightarrow B U(n) .
$$

The Euler class of $\beta \otimes_{\mathbb{C}} L_{\mathbb{C}}$ determines the Chern classes $c_{i}(\beta) \in H^{2 i}(X)$ by

$$
e\left(\beta \otimes_{\mathbb{C}} L_{\mathbb{C}}\right)=\sum_{i=0}^{n} c_{i}(\beta) x^{n-i} \in H^{2 n}\left(X \times \mathbb{C} \mathbb{P}^{\infty}\right)=\sum_{i=0}^{n} H^{2 i}(X) \otimes_{\mathbb{Z}} H^{2(n-i)}\left(\mathbb{C} \mathbb{P}^{\infty}\right)
$$

5 The Pontrjagin classes

The complexification of an n-dimensional real vector bundle $\alpha: X \rightarrow B O(n)$ is the n-dimensional complex vector bundle $\alpha \otimes \mathbb{C}: X \rightarrow B U(n)$ with

$$
E(\alpha \otimes \mathbb{C})=\bigcup_{x \in X} E_{x}(\alpha) \otimes_{\mathbb{R}} \mathbb{C}\left(E_{x}(\alpha)=\text { fibre of } \alpha \text { over } x \in X\right)
$$

giving a map $B O(n) \rightarrow B U(n)$. As in Chapter 15 of Milnor and Stasheff, define the Pontrjagin classes of α to be the Chern classes of $\alpha \otimes \mathbb{C}$ (up to sign)

$$
p_{i}(\alpha)=(-1)^{i} c_{2 i}(\alpha \otimes \mathbb{C}) \in H^{4 i}(X)
$$

6 The Stiefel-Whitney classes

The universal real line bundle $L_{\mathbb{R}}$ is constructed by

$$
\mathbb{R} \rightarrow E\left(L_{\mathbb{R}}\right)=\mathbb{R} \times_{\mathbb{Z}_{2}} S^{\infty} \rightarrow S^{\infty} / \mathbb{Z}_{2}=\mathbb{R} \mathbb{P}^{\infty}
$$

with \mathbb{Z}_{2} acting by the antipodal action $x \mapsto-x$ on both \mathbb{R} and S^{∞}, with classifying map

$$
L_{\mathbb{R}}=1: \mathbb{R} \mathbb{P}^{\infty}=B O(1) \rightarrow B O(1)
$$

The $\bmod 2$ cohomology of $\mathbb{R} \mathbb{P}^{\infty}$ is the polynomial algebra $H^{*}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)=\mathbb{Z}[y]$ with generator the $\bmod 2$ Euler class of $L_{\mathbb{R}}$

$$
y=e\left(L_{\mathbb{R}}\right)=1 \in H^{1}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

The Stiefel-Whitney classes $w_{j}(\alpha) \in H^{j}\left(X ; \mathbb{Z}_{2}\right)$ of an n-dimensional real vector bundle $\alpha: X \rightarrow B O(n)$ are determined by the mod 2 Euler class of the external tensor product of α and $L_{\mathbb{R}}$

$$
\alpha \otimes_{\mathbb{R}} L_{\mathbb{R}}: X \times \mathbb{R} \mathbb{P}^{\infty} \rightarrow B O(n)
$$

by

$$
e_{2}\left(\alpha \otimes_{\mathbb{R}} L_{\mathbb{R}}\right)=\sum_{j=0}^{n} w_{j}(\alpha) y^{n-j} \in H^{j}\left(X ; \mathbb{Z}_{2}\right) \otimes_{\mathbb{Z}_{2}} H^{n-j}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)
$$

For any base point $y \in \mathbb{R} \mathbb{P}^{\infty}$ define the inclusion

$$
i_{y}: X \rightarrow X \times \mathbb{R} \mathbb{P}^{\infty} ; x \mapsto(x, y)
$$

Now

$$
\begin{aligned}
& i_{y}^{*}\left(\alpha \otimes_{\mathbb{R}} L_{\mathbb{R}}\right)=\alpha: X \rightarrow B O(n) \\
& i_{y}^{*}=\text { projection }: H^{n}\left(X \times \mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right) \rightarrow H^{n}\left(X ; \mathbb{Z}_{2}\right),
\end{aligned}
$$

so that

$$
e_{2}(\alpha)=i_{y}^{*} e_{2}\left(\alpha \otimes_{\mathbb{R}} L_{\mathbb{R}}\right)=w_{n}(\alpha) \in H^{n}\left(X ; \mathbb{Z}_{2}\right)
$$

so the top Stiefel-Whitney class is the mod 2 Euler class (Milnor-Stasheff, 9.5).
[Background. A real n-dimensional real vector bundle $\alpha: X \rightarrow B O(n)$ is orientable if and only if

$$
w_{1}(\alpha)=0 \in H^{1}\left(X ; \mathbb{Z}_{2}\right)
$$

In particular, $L_{\mathbb{R}}$ is nonorientable, with nonzero first mod 2 Stiefel-Whitney class

$$
w_{1}\left(L_{\mathbb{R}}\right)=y \in H^{1}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

For any $\alpha: X \rightarrow B O(n)$ the vector bundle $\alpha \otimes_{\mathbb{R}} L_{\mathbb{R}}: X \times \mathbb{R} \mathbb{P}^{\infty} \rightarrow B O(n)$ is nonorientable, since

$$
\begin{aligned}
& w_{1}\left(\alpha \otimes_{\mathbb{R}} L_{\mathbb{R}}\right)=\left(w_{1}(\alpha) \otimes 1,1 \otimes y\right) \neq 0 \\
& \in H^{1}\left(X \times \mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)=H^{1}\left(X ; \mathbb{Z}_{2}\right) \otimes_{\mathbb{Z}_{2}} H^{0}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right) \oplus H^{0}\left(X ; \mathbb{Z}_{2}\right) \otimes_{\mathbb{Z}_{2}} H^{1}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

It can be shown that for oriented $\alpha: X \rightarrow B S O(n)$

$$
w_{2 k+1}(\alpha)=0 \in H^{2 k+1}\left(X ; \mathbb{Z}_{2}\right) \quad(k \geqslant 0)
$$

and to define integral lifts $w_{2 k}(\alpha) \in H^{2 k}(X)$ of the Stiefel-Whitney classes.

7 The relation between the Chern and the Stiefel-Whitney classes

Proposition (Problem 14-B in Milnor-Stasheff) The Chern classes $c_{i}(\beta) \in H^{2 i}(X)$ of an n-dimensional complex vector bundle $\beta: X \rightarrow B U(n)$ are integral lifts of the StiefelWhitney classes $w_{2 i}\left(\beta^{\mathbb{R}}\right) \in H^{2 i}\left(X ; \mathbb{Z}_{2}\right)$ of the underlying oriented $2 n$-dimensional real vector bundle $\beta^{\mathbb{R}}: X \rightarrow B S O(2 n)$, that is

$$
\left[c_{i}(\beta)\right]_{2}=w_{2 i}\left(\beta^{\mathbb{R}}\right) \in H^{2 i}\left(X ; \mathbb{Z}_{2}\right)
$$

Proof Let $j: \mathbb{R} \mathbb{P}^{\infty} \subset \mathbb{C} \mathbb{P}^{\infty}$ be the inclusion. The restriction of $L_{\mathbb{C}}$ to $\mathbb{R} \mathbb{P}^{\infty}$ is a complex line bundle such that the underlying oriented 2 -dimensional real vector bundle splits as a sum of two copies of the universal real line bundle

$$
\left(j^{*} L_{\mathbb{C}}\right)^{\mathbb{R}}=L_{\mathbb{R}} \oplus \mathrm{Ł}_{\mathbb{R}}: \mathbb{R} \mathbb{P}^{\infty} \rightarrow B O(2)
$$

The induced morphism $j^{*}: H^{2 i}\left(\mathbb{C} \mathbb{P}^{\infty}\right) \rightarrow H^{2 i}\left(\mathbb{R} \mathbb{P}^{\infty}\right)$ is an isomorphism sending the generator

$$
e\left(\oplus_{i}^{\oplus} L_{\mathbb{C}}\right)=x^{i}=1 \in H^{2 i}\left(\mathbb{C} \mathbb{P}^{\infty}\right)=\mathbb{Z}
$$

to an integral lift of the generator

$$
e_{2}\left(\underset{2 i}{\oplus} L_{\mathbb{R}}\right)=y^{2 i}=1 \in H^{2 i}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

by a double application of the product formula for the Euler class of a Whitney sum. It now follows from

$$
\beta^{\mathbb{R}} \otimes_{\mathbb{R}} L_{\mathbb{R}}: X \times \mathbb{R} \mathbb{P}^{\infty} \xrightarrow{1 \times j} X \times \mathbb{C} \mathbb{P}^{\infty} \xrightarrow{\beta \otimes_{\mathbb{C}} L_{\mathbb{C}}} B U(n) \longrightarrow B S O(2 g)
$$

that $(1 \times j)^{*}: H^{2 n}\left(X \times \mathbb{C} \mathbb{P}^{\infty}\right) \rightarrow H^{2 n}\left(X \times \mathbb{R} \mathbb{P}^{\infty}\right)$ sends the integral Euler class

$$
\begin{aligned}
& e\left(\left(\beta \otimes_{\mathbb{C}} L_{\mathbb{C}}\right)^{\mathbb{R}}\right)=\sum_{i=0}^{n} c_{i}(\beta) x^{n-i} \\
& \quad \in H^{2 n}\left(X \times \mathbb{C} \mathbb{P}^{\infty}\right)=\sum_{i=0}^{n} H^{2 i}(X) \otimes_{\mathbb{Z}} H^{2(n-i)}\left(\mathbb{C} \mathbb{P}^{\infty}\right)
\end{aligned}
$$

to an integral lift of

$$
\begin{aligned}
& e_{2}\left(\beta^{\mathbb{R}} \otimes_{\mathbb{R}} L_{\mathbb{R}}\right)=\sum_{i=0}^{n} w_{2 i}\left(\beta^{\mathbb{R}}\right) y^{2(n-i)} \\
& \quad \in H^{2 n}\left(X \times \mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)=\sum_{j=0}^{2 n} H^{j}\left(X ; \mathbb{Z}_{2}\right) \otimes_{\mathbb{Z}_{2}} H^{2 n-j}\left(\mathbb{R} \mathbb{P}^{\infty} ; \mathbb{Z}_{2}\right)
\end{aligned}
$$

and hence that $c_{i}(\beta) \in H^{2 i}(X)$ is an integral lift of $w_{2 i}\left(\beta^{\mathbb{R}}\right) \in H^{2 i}\left(X ; \mathbb{Z}_{2}\right)$.

