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know of any further misprints/errors by e-mail to a.ranicki@ed.ac.uk
The current electronic edition of the book is at
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A.A.R. 23.4.2017

p. V The following statement of Frank Adams makes the dedication of the book
to him even more appropriate: Of course, from the point of view of the rest
of mathematics, knots in higher-dimensional space deserve just as much
attention as knots in 3-space (Article on topology, in ’Use of Mathematical
Literature’ (Butterworths (1977)).

p. XVIII l. 8 Remove “that of”.

p. XXI l. 9 for a homology framed knot

p. XXIV l. –3 π1(X)

p. XXV l. –2 C4∗+1, C4∗+3

p. XXVI l. 10 π1(F ) = {1}

p. XXVIII l. 2 chain complex

p. 9 l. 8 i.e. f∗ : π1(X) → π1(X) is an isomorphism and

π1(T (f)) = {gzj | j ∈ Z}

with z−1gz = f∗(g)

p. 10 l. –7 (f(x), n+ 1, 0)

p. 16 l. –15 If X has a finite 2-skeleton

p. 29 l. –10 for

p. 31 l. 11 Bass [13, XII.7.4]

p. 34 l. 6 4.5, 5.5 (i)

p. 34 l. 19 As for 5.10

p. 35 l. –12 Nil0(A)

p. 47 l. –6 z−N+
2 b2

p. 47 l. –2 N+ =
r∑

j=1

N+
j
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p. 49 ll. 1,2 Replace by

dE(

N−
r∑

j=−N+
r

zjFr) ⊆
N−

r−1∑
j=−N+

r−1

zjFr−1 (r = n, n− 1, . . . , 0)

for some integers N+
r , N−

r ≥ 0 (starting with N+
n = N−

n = 0, for example).

p. 73 l. 17 Replace [297, 9.14] by [297, 7.9]

p. 77 Example 9.15 As before, let A = B[z], and let Σ be the set of B-invertible square
matrices in A, with A → B; z → 0. The identity

Σ−1A = (1 + zB[z])−1B[z]

is correct for commutative B. For noncommutative B it should be replaced
by the direct limit

Σ−1A = limnRn

with R0, R1, R2, . . . the rings defined inductively by

R0 = B[z] , p0 : R0 → B ; z → 0 ,

Rn = (1 + ker(pn−1))
−1Rn−1 , pn : Rn → B ; z → 0 .

(In particular, R1 = (1+zB[z])−1B[z].) Given an n×n matrix b = (bij) in
B let b′ = (b′ij) be the (n− 1)× (n− 1) matrix in R1 defined by the matrix
equation

1 0 . . . zb1n(1− zbnn)
−1

0 1 . . . zb2n(1− zbnn)
−1

...
...

. . .
...

0 0 . . . 1



1− zb11 −zb12 . . . −zb1n
−zb21 1− zb22 . . . −zb2n

...
...

. . .
...

−zbn1 −zbn2 . . . 1− zbnn



=


1− zb′11 −zb′12 . . . 0
−zb′21 1− zb′22 . . . 0

...
...

. . .
...

−zbn1 −zbn2 . . . 1− zbnn

 .

Assuming inductively that it is possible to invert 1− zb′ in Rn−1 it is now
possible to invert 1− zb in Rn. The inclusion B[z] → B[[z]] factors as

B[z] → Σ−1B[z] → B[[z]]

so that B[z] → Σ−1B[z] is injective. The morphism Σ−1B[z] → B[[z]] is
an injection for commutative B, but it is not known if it is an injection also
in the noncommutative case.

p. 82 l. 4 Remove “the A[z−1]-module subcomplex of”.
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p. 83 l. 3 “A[z]-module morphisms”.

p. 84 l. 7 Proposition 10.9. For noncommutative A the right hand side of the identity

Ω̃−1
+ A[z] = (1 + zA[z])−1A[z]

should be corrected as for Example 9.15 above.

p. 90 l. 12 Replace ”[240, Chap. 8]” by ”[244, Chap. 8]”

p. 92 l. 12 τ(1− f + zf : Π−1P [z, z−1] → Π−1P [z, z−1])

p. 99 l. –1 ∈ A[z]

p. 102 l. –8 [5, 1.10]

p. 102 l. –4 Replace “If the additive group of A is torsion-free . . . ” by “If Q ⊆ A . . . ”

p. 111 l. 8 Remove “(P, f) is”

p. 120 l. –8 Replace 13.2 by 13.1

p. 121 l. 2 n−m > 1

p. 121 l. 5, l. 10 Ω−1A[z, z−1]

p. 121 l. –3 A[z, z−1]-module

p. 123 l. –12 P−1A[z, z−1] = Π−1A[z, z−1]

p. 125 l. -13 Should read ”(P, h) + (P ′, h′) = (P ⊕ P ′,

(
g h
0 g′

)
)”

p. 135 Chapter 14 The group Ŵ (A)ab should be replaced by the image of Ŵ (A) in
K1(A[[z]]), since the kernel of the morphism

∆̃+ : Ŵ (A) → K1(A[[z]]) ;

(a1, a2, . . . ) 7→ τ(1 +
∞∑
j=1

ajz
j : A[[z]] → A[[z]])

is in general larger than [Ŵ (A), Ŵ (A)]. See the paper
A.Pajitnov and A.Ranicki, The Whitehead group of the Novikov ring
http://arXiv.org/abs/math.AT.0012031, K-theory 21, 325–365 (2000).

Similarly,W (A)ab should be replaced by the image ofW (A) inK1(Ω̃
−1
+ A[z]),

since the kernel of the morphism

∆̃+ : W (A) → K1(Ω̃
−1
+ A[z]) ;

(a1, a2, . . . ) 7→ τ(1 +
∞∑
j=1

ajz
j : Ω̃−1

+ A[z] → Ω̃−1
+ A[z])

is in general larger than [W (A),W (A)].
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p. 136 l. –7 Replace by “If A is a commutative ring such that Q ⊆ A”.
The isomorphism inverse to

∞∏
1
A → Ŵ (A) ;

(a1, a2, a3, . . . ) 7→ exp

(∫ z

0
(a1 − a2s+ a3s

2 − . . . )ds

)
= exp

(
a1z − a2z

2

2 + a3z
3

3 − . . .

)
is given by

Ŵ (A) →
∞∏
1
A ; q(z) = 1 + b1z + b2z

2 + . . . 7→

q′(z)

q(z)
=

b1 + 2b2z + 3b3z
2 + . . .

1 + b1z + b2z2 + . . .
= a1 − a2z + a3z

2 − · · · → (a1, a2, a3, . . . )

([5, 6.13]). The reverse characteristic polynomial of an endomorphism f :
P → P of a f.g. projective A-module P

c̃hz(P, f) = det(1− zf : P [z] → P [z]) = exp

(
−

∞∑
i=1

tr(fi)
i zi

)
∈ 1 + zA[z] ⊂ W (A) ⊂ Ŵ (A)

(cf. Example 19.16) has image (−tr(f), tr(f2),−tr(f3), . . . ) ∈
∞∏
1
A. For

any polynomial of the type

p(z) = 1 +
d∑

i=1

biz
i ∈ 1 + zA[z] ⊂ W (A)

the image (a1, a2, a3, . . . ) ∈
∞∏
1
A has components

ai = (−)itr(f i) ∈ A

with

f = z : P = A[z]/(zdp(z−1)) → P = A[z]/(zdp(z−1))

such that c̃hz(P, f) = p(z).

p. 136 l. –1 2.2.5

p. 141 l. –8 For noncommutative A the right hand side of the identity

Ω̃−1
+ A[z] = (1 + zA[z])−1A[z]

should be corrected as for Example 9.15 above.
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p. 142 l. 16 This ζ-function agrees with the ζ-function of Geoghegan and Nicas (Trace
and torsion in the theory of flows, Topology 33, 683–719 (1994)).

p. 153 l. –3 [244, Chap.20]

p. 160 l. 17 structure ϕB on B ⊗A C.

p. 172 l. 3 D[z, z−1] → D[z, z−1]

p. 173 l. 13 for each P−1Er

p. 175 l. –5 the reduced chain complexes

p. 207 l. 5 dCn−∗ = (−)r(dC)
∗

p. 211 l. 5 A cobordism of ϵ-symmetric Poincaré complexes (C, ϕ), (C ′, ϕ′) is an ϵ-
symmetric Poincaré pair ((f f ′) : C ⊕ C ′ → D, (δϕ, ϕ⊕−ϕ′)).

p. 223 l. 12,13 f is i-connected, ∂0f, ∂1f are (i− 1)-connected

p. 241 l. –6 Szczarba

p. 248 l. –7 i-connected

p. 249 l. 14 i-connected

p. 258 l. –6 g × 1

p. 261 l. 2 A-finitely dominated

p. 269 Proposition 25.4 The stated exact sequence in the ϵ-symmetric case

. . . → Ln
jU (A, ϵ)

i
→ Ln

∂−1U (Σ
−1A, ϵ)

∂
→ Ln

U (A,Σ, ϵ)
j
→ Ln−1

jU (A, ϵ) → . . .

should be replaced in general by the exact sequence

. . . → Ln
jU (A, ϵ)

i
→ Γn

∂−1U (A → Σ−1A, ϵ)
∂
→ Ln

U (A,Σ, ϵ)
j
→ Ln−1

jU (A, ϵ) → . . . .

See the paper
Noncommutative localization and chain complexes I. Algebraic K- and L-
theory by A.Neeman and A.Ranicki, http://arXiv.org/abs/math.RA.0109118
for the proof that the natural map of ϵ-symmetric groups

Γn
∂−1U (A → Σ−1A, ϵ) → Ln

∂−1U (Σ
−1A)

is an isomorphism if TorA∗ (Σ
−1A,Σ−1A) = 0 for ∗ ≥ 1 (e.g. if Σ−1A is a

flat A-module, as is the case for a two-sided Ore localization). There is no
problem in the ϵ-quadratic case, by virtue of Vogel [296], [297], with the
natural maps

Γ∂−1U
n (A → Σ−1A, ϵ) → L∂−1U

n (Σ−1A)

isomorphisms, and with an exact sequence

. . . → LjU
n (A, ϵ)

i
→ L∂−1U

n (Σ−1A, ϵ)
∂
→ LU

n (A,Σ, ϵ)
j
→ LjU

n−1(A, ϵ) → . . . .
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p. 275 l. –13 1 + Tϵ : L
U
n (A[s], ϵ) → Ln

U (A[s], ϵ)

p. 287 l. 3 Replace “will” by “we shall”

p. 290 l. –11,12 Replace conditions (a),(b) by the single condition ‘λ(x, y) = 0 for all
x, y ∈ K’.

p. 291 l. –5 Should read ”[235, Chap. 9]”

p. 303 l. 4 to describe

p. 312 l. 14 i-connected

p. 313 l. 8 i-connected

p. 313 l. 10 (i+ 1)-connected

p. 314 l. 5 (Zℓ, λ)

p. 314 l. 16 Cyclic branched covers

p. 340 l. 15 Replace ”28.15” by ”28.17”

p. 342 l. –6 Replace “band” by “complex”

p. 344 l. 8 Replace the text of Example 28.31 by
“The 0-dimensional asymmetric L-group LAsy0q(A) (q = s, h, p) is the Witt
group of nonsingular asymmetric forms (L, λ) over A, with λ : L → L∗ an
isomorphism. Such a form is metabolic if there exists a lagrangian, i.e. a
direct summand K ⊂ L such that K = K⊥, with

K⊥ = {x ∈ L |λ(x)(K) = 0} ,

in which case
(L, λ) = 0 ∈ LAsy0q(A) .

A nonsingular asymmetric form (L, λ) is such that (L, λ) = 0 ∈ LAsy0q(A)
if and only if it is stably metabolic, i.e. there exists an isomorphism

(L, λ)⊕ (M,µ) ∼= (M ′, µ′)

for some metabolic (M,µ), (M ′, µ′). A 0-dimensional asymmetric Poincaré
complex (C, λ) is the same as a nonsingular asymmetric form (L, λ) with
L = C0. For a 1-dimensional asymmetric Poincaré pair (f : C → D, (δλ, λ))
with Dr = 0 for r ̸= 0 there is defined an exact sequence

0 → D0 f∗
// C0 fλ // D0 → 0

so that K = im(f∗ : D0 → C0) ⊂ L = C0 is a lagrangian of (C0, λ),
and the pair is the same as a nonsingular asymmetric form together with
a lagrangian. More generally, suppose given a 1-dimensional asymmetric
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Poincaré pair (f : C → D, (δλ, λ)). The mapping cone of the chain equiva-
lence

(
δλ fλ

)
: C(f)1−∗ → D is an exact sequence

0 → D0 g // C0 ⊕D1 ⊕D1
h // D0 → 0

with

g =

f∗

d∗

δλ

 : D0 → C0 ⊕D1 ⊕D1 ,

h =
(
fλ δλ d

)
: C0 ⊕D1 ⊕D1 → D0 .

However (as pointed out by Joerg Sixt), in general

h ̸= g∗

λ 0 0
0 0 1
0 1 0

 : C0 ⊕D1 ⊕D1 → D0

so that g is not the inclusion of a lagrangian in (C0, λ)⊕(D1⊕D1,

(
0 1
1 0

)
).

To repair this, proceed as follows. Use the chain equivalences(
δλ
λf∗

)
: D1−∗ → C(f) ,

(
δλ fλ

)
: C(f)1−∗ → D

to define a chain equivalence

i = T

(
δλ
λf∗

)(
δλ fλ

)−1
: D → D .

In order to prove that (C0, λ) is stably metabolic, it is convenient to replace
D by a chain equivalent complex for which i is (chain homotopic to) an
isomorphism. The exact sequence

0 → D1

d
i1


// D0 ⊕D1

(
i0 −d

)
// D0 → 0

splits, so there exists an A-module morphism
(
α β

)
: D0⊕D1 → D1 such

that (
α β

)(d
i1

)
= αd+ βi1 = 1 : D1 → D1 .

The 1-dimensional A-module chain complex D′ defined by

d′ =

(
d 0
0 1

)
: D′

1 = D1 ⊕D1 → D′
0 = D0 ⊕D1
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is such that the inclusion D → D′ and the projection D′ → D are inverse
chain equivalences. The chain isomorphism i′ : D′ → D′ defined by

i′0 =

(
i0 −d
α β

)
: D′

0 = D0 ⊕D1 → D′
0 = D0 ⊕D1 ,

i′1 =

(
i1 −1
αd β

)
=

(
0 −1
1 β

)(
1 0

−i1 1

)
: D′

1 = D1 ⊕D1 → D′
1 = D1 ⊕D1

is such that

i : D → D′ i′ // D′ → D .

Replacing D by D′ and reverting to the previous notation, it may thus be
assumed that i : D → D is an isomorphism. Choose a chain homotopy

(
j k

)
: i
(
δλ fλ

)
≃ T

(
δλ
λf∗

)
: C(f)1−∗ → D .

The nonsingular asymmetric form defined by

(M,µ) = (C0 ⊕D1 ⊕D1,

λ k∗ 0
0 j∗ 1
0 i∗1 0

)

is such that
h = g∗µ : M = C0 ⊕D1 ⊕D1 → D0

so that g : D0 → M is the inclusion of a lagrangian and (M,µ) is metabolic.
The A-module morphism

C0 ⊕D1 → C0 ⊕M = C0 ⊕ C0 ⊕D1 ⊕D1 ; (x, y) 7→ (x, x, 0, y)

is the inclusion of a lagrangian in (C0, λ)⊕(M,−µ), so that (C0, λ) is stably
metabolic.”

p. 346 l. 16 Replace 25.11 by 26.11

pp. 347–348 The construction of (C ′, λ′) and (C ′′, λ′′) is not correct in general; these
complexes should be replaced by the following (i−1)-connected n-dimensional
asymmetric Poincaré complex (C ′, λ′) cobordant to the given n-dimensional
asymmetric Poincaré complex (C, λ) with n = 2i or 2i+1. Choose a chain
homotopy inverse µ : C → Cn−∗ for λ : Cn−∗ → C and a chain homotopy
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ν : µλ ≃ 1 : Cn−∗ → Cn−∗, and set

dC′ =



(
dC (−)r−1λ

0 d∗C

)
: C ′

r = Cr ⊕ Cn−r+1 → C ′
r−1 = Cr−1 ⊕ Cn−r+2

if r ≤ i− 1(
dC (−)i−1λ 0

0 d∗C 0

)
: C ′

r = Ci ⊕ Ci+1 ⊕ Ci+1 → C ′
r−1 = Ci−1 ⊕ Ci+2

if n = 2i and r = i dC 0

0 0

(−)iλ∗µ dC

 : C ′
r = Ci+1 ⊕ Ci+2 → C ′

r−1 = Ci ⊕ Ci+1 ⊕ Ci+1

if n = 2i and r = i+ 1(
dC 0

0 0

)
: C ′

r = Ci+1 ⊕ Ci+2 → C ′
r−1 = Ci ⊕ Ci+2

if n = 2i+ 1 and r = i+ 1(
dC 0

(−)r−1λ∗µ dC

)
: C ′

r = Cr ⊕ Cr+1 → C ′
r−1 = Cr−1 ⊕ Cr

otherwise,

λ′ =



(
λ 0

0 µ∗λ

)
: C ′n−r = Cn−r ⊕ Cn−r+1 → C ′

r = Cr ⊕ Cn−r+1

if r ≤ i− 1 λ 0 0

0 0 µ∗λ

λ∗ν 1 0

 :

C ′n−r = Ci ⊕ Ci+1 ⊕ Ci+1 → C ′
r = Ci ⊕ Ci+1 ⊕ Ci+1

if n = 2i and r = i(
λ 0

λ∗ν 1

)
: C ′n−r = Cn−r ⊕ Cr+1 → C ′

r = Cr ⊕ Cr+1

otherwise.

p. 355 ll. –1,–11,–12 F ∪∂ −N , T (h) ∪∂ −(N × S1)

p. 357 ll. 4,12 F ∪ −F

p. 364 l. –13 (i+ 1)-connected

p. 369 l. 12 S3 ×D4 ∪h1 −(S3 ×D4)
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p. 369 l. –1 framed codimension 2

p. 372 l. 3 replace ”reverse” by ”reduced”

p. 374 l. 8 ”twisted double bordism groups”

p. 382 l. 17

βs =

(
χs (−)sϕs

(−)n−r−1ϕs (−)n−r+sTϵϕs−1

)
:

Bn−r+s = Cn−r+s ⊕ Cn−r+s−1 → Br = Cr ⊕ Cr−1 .

p. 411 l. 10 Ω−1
+ A[s]/A[s] = F (s)/F [s]

p. 421 l. 8 Terminology: the covering ϵ-symmetric complex in the sense of Defini-
tion 32.7 (i) is the ϵ-symmetrization of the ultraquadratic complex of Ran-
icki[237, p.820].

p. 422 l. 9 Proof of 32.8 (ii): Since E is A-contractible the A[z, z−1]-module chain
map 1− z : E → E is a chain equivalence. Define a homotopy equivalence
(E, θ) ≃ U(Γ) by(

1⊕ (1 + Tϵ)
)
(1− z)−1 : E → C(g − zh) ,

with (1− z)−1 : E → E any chain homotopy inverse of 1− z : E → E.

p. 437 l. –2 In the proof of (ii) insert :
The natural A[s]-module morphisms

A[s, s−1, (1− s)−1] → Q−1
A A[s] , Q−1

A,minA[s] → Q−1
A A[s]

are inclusions of submodules. For any elements

r(s)

sj(1− s)k
∈ A[s, s−1, (1− s)−1] ,

p(s)

q(s)
∈ Q−1

A,minA[s]

such that
r(s)

sj(1− s)k
=

p(s)

q(s)
∈ Q−1

A A[s]

it follows from the minimality of q(s) and the identity

p(s)sj(1− s)k = q(s)r(s) ∈ A[s]

that sj(1− s)k divides r(s), and hence that

A[s, s−1, (1− s)−1] ∩Q−1
A,minA[s] = A[s] ⊂ Q−1

A A[s] .

p. 438 l. –1 – –9 Remove. (χs,min is no longer required).
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p. 439 l. 12 The statement of Proposition 32.45 (i) is false as stated, and should be
replaced by :
“The Blanchfield form is such that for any x, y ∈ L the composite

P−1
A A[z, z−1]/A[z, z−1]

→ P−1
F [z, z−1]/F [z, z−1] = Q−1

F,min[s]/F [s] = F [s](s,1−s)/F [s]

→ F ((s))/F [s] = s−1F [[s−1]]

sends µ(i(x), i(y)) ∈ P−1
A A[z, z−1]/A[z, z−1] to

µ(i(x), i(y)) =
−1∑

j=−∞
(λ+ϵλ∗)(x, f−j−1(y))sj ∈ s−1A[[s−1]] ⊂ s−1F [[s−1]] ,

where i : L → M is the natural A-module morphism. In particular, µ
determines λ by

λ : L× L
i×si
→ M ×M

µ
→ P−1

A A[z, z−1]/A[z, z−1] → F ((s))/F [s]
χs
→ F

with s = (1− z)−1 : M → M and χs = coefficient of s−1 (31.20).”

Here is an explicit counterexample to the original statement of 32.45 (i).
Let A = Z, and for any m ∈ Z consider the skew-symmetric Seifert form
over Z defined in Example 42.2

(L, λ) = (Z⊕ Z,
(
m 0
−1 1

)
)

with

f = (λ− λ∗)−1λ =

(
1 −1
m 0

)
: L = Z⊕ Z → L = Z⊕ Z

and Alexander polynomial

∆(z) = det(1− f + zf) = m(1− z)2 + z .

The corresponding symmetric Blanchfield form (M,µ) is given by

M = coker(1− f + zf) = Z[z, z−1]/∆(z) ,

µ(x, y) = (1−z)2xy
∆(z) ∈ P−1Z[z, z−1]/Z[z, z−1] .

In terms of s = (1− z)−1

µ(x, y) =
xy

m+ s(1− s)
∈ Q−1Z[s]/Z[s] .

If m ̸= 0 then

µ(1, 1) =
1

m+ s(1− s)
/∈ Q−1

minZ[s]/Z[s] ,

since s2∆(1− s−1) = m+ s(1− s) ∈ Z[s] is not minimal.
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p. 439 l. 12 omit “the natural A[s]-module morphism”

p. 440 Replace the proof of 32.45 (i) by :
“Work in the completion A[[s−1]] to obtain

µ(i(x), i(y)) = (1− z)(λ+ ϵλ∗)(x, (1− f + zf)−1(y))

= s−1(λ+ ϵλ∗)(x, (1− s−1f)−1y)

=
−1∑

j=−∞
(λ+ ϵλ∗)(x, f−j−1(y))sj ∈ A[[s−1]]

so that
χs(µ(i(x), i(y))) = (λ+ ϵλ∗)(x, y) ,

χs(µ(i(x), si(y))) = λ(x, y) ∈ A ⊂ F .”

p. 450 l. –1 1 ≤ r ≤ n

p. 456 l. –2 δϕ ∈ HomZ[Z2](W,C ⊗A C)n+1

p. 457 l. 13 Q∗(D,−ϵ) = Q∗
end(D

!, ξ, ϵ)

p. 467 l. 11 delete one “will”

p. 475 l. –8 “LAutnp (A, ϵ) = Ln
p (A, ϵ)⊕ LÃut

n

p (A, ϵ)”

p. 478 l. 11 26.11 (iii) instead of 25.11 (iii)

p. 479 l. 14 26.11 instead of 25.11

p. 485 l. –12 In 36.3 and 41.19

p. 487 l. 2 By 25.11 and 26.11

p. 488 l. –10 Replace form by

(
ϕ0 + ϕ1d

∗ d
(−)id∗ 0

)
p. 492 ll. 15,16 Replace char(F ) by |F |

p. 493 l. –9 Should read ‘Let s0 be the number of conjugate pairs of non-real roots
ω ∈ C of p(x) with σω(F0) ⊂ R and σω(a) < 0, so that σω : F → C− is a
morphism of rings with involution.’

p. 495 l. –4 L0(Z4) = Z8

p. 497 l. 7 Replace quadratic by ϵ-symmetric

p. 508 l. 5 L−1(A, ϵ)

p. 508 l. –11 Should read

dimensionL0(A, ϵ) = dimensionL0(F, ϵ) = r1 ,

with r1 the number of real roots of p0(y) such that ρξ : F0 = Q[y]/(p0(y)) →
R; y → ξ has ρξ(a) < 0. Both L0(A, ϵ) and L0(F, ϵ) are of the form Zr1 ⊕
8-torsion.
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p. 535 l. 14 ϕ0 = θ,−zf∗θ, ϕ1 = θ.

p. 546 l. –1 identification of 28.33

p. 547 l. 2 from 39.26

p. 547 l. 12 36.3 (i)

p. 547 l. –4 as in 39.20

p. 548 l. –11 Combine 39.20, 39.26

p. 564 l. 17 ζ : X → X is a generating covering translation.

p. 567 l. –3 λ− ωλ∗

p. 571 l. 16 Replace [129, 5.6] by [121]

p. 573 l. 10 Replace ‘26.10’ by ‘27.10’.

p. 574 l. –5 Replace ‘k even’ by ‘j even’.

p. 575 l. –12 The exact sequence should read

0 → LÃut
2j+1

p (A) → L2j+2
h (A) → LAsy2j+2

h (A) → LÃut
2j

p (A) → L2j+1
h (A) → 0

p. 575 l. –11 Insert ‘and LAsy2j+1(C) = 0 (Proposition 39.20 (iii))’ after ‘These identi-
fications’

p. 598 l. –1 n = 2i in the braid

p. 616 Replace V × 1 in the figure caption by V × I

p. 617 l. –8 – –5 Replace “Indeed . . . etc.” by
“Indeed, the boundary of a Bing 3-disk D3, which we assume contains the
connected binding N in its interior, also bounds a 3-disk in the complement
of D3, because M3\N is fibered and thus covered by R3, etc.”

p. 622 Replace W × 1 in the figure caption by W × I

p. 623 l. 11 Replace ”(Jänich, Karras et. al. [117])” by ”(Jänich, Karras et. al. [117],
Neumann [211])”

p. 629 l. –11 [70] M. Epple, Die Entstehung der Knotenthorie, Vieweg (1999)

p. 633 l. 12 [161] J. Levine and K. Orr, A survey of surgery and knot theory,
in Surveys on Surgery Theory, Volume 1, Annals of Maths. Studies 145,
345–364 (2000)

p. 633 l. –17 [174] W. Lück, The universal functorial Lefschetz invariant, Fund.
Math. 161, 167–215 (1999)
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