Errata for High-dimensional Knot Theory by Andrew Ranicki Springer Mathematical Monograph (1998)

This list contains corrections of misprints/errors in the book. Please let me know of any further misprints/errors by e-mail to a.ranicki@ed.ac.uk The current electronic edition of the book is at http://www.maths.ed.ac.uk/aar/books/knot.pdt
A.A.R. 23.4.2017
p. V The following statement of Frank Adams makes the dedication of the book to him even more appropriate: Of course, from the point of view of the rest of mathematics, knots in higher-dimensional space deserve just as much attention as knots in 3-space (Article on topology, in 'Use of Mathematical Literature' (Butterworths (1977)).
p. XVIII l. 8 Remove "that of".
p. XXI l. 9 for a homology framed knot
p. XXIV 1. $-3 \pi_{1}(X)$
p. XXV 1. $-2 C_{4 *+1}, C_{4 *+3}$
p. XXVI l. $10 \pi_{1}(F)=\{1\}$
p. XXVIII l. 2 chain complex
p. 9 l. 8 i.e. $f_{*}: \pi_{1}(X) \rightarrow \pi_{1}(X)$ is an isomorphism and

$$
\pi_{1}(T(f))=\left\{g z^{j} \mid j \in \mathbb{Z}\right\}
$$

with $z^{-1} g z=f_{*}(g)$
p. 10 l. $-7 \quad(f(x), n+1,0)$
p. 16 l. -15 If X has a finite 2 -skeleton
p. 29 l. -10 for
p. 31 l. 11 Bass [13, XII.7.4]
p. 34 l. 6 4.5, 5.5 (i)
p. 34 l. 19 As for 5.10
p. 35 l. $-12 \operatorname{Nil}_{0}(A)$
p. 47 l. $-6 \quad z^{-N_{2}^{+}} b_{2}$
p. 47 l. $-2 \quad N^{+}=\sum_{j=1}^{r} N_{j}^{+}$
p. 49 ll. 1,2 Replace by

$$
d_{E}\left(\sum_{j=-N_{r}^{+}}^{N_{r}^{-}} z^{j} F_{r}\right) \subseteq \sum_{j=-N_{r-1}^{+}}^{N_{r-1}^{-}} z^{j} F_{r-1} \quad(r=n, n-1, \ldots, 0)
$$

for some integers $N_{r}^{+}, N_{r}^{-} \geq 0$ (starting with $N_{n}^{+}=N_{n}^{-}=0$, for example).
p. 73 1. 17 Replace $[297,9.14]$ by [297, 7.9]
p. 77 Example 9.15 As before, let $A=B[z]$, and let Σ be the set of B-invertible square matrices in A, with $A \rightarrow B ; z \rightarrow 0$. The identity

$$
\Sigma^{-1} A=(1+z B[z])^{-1} B[z]
$$

is correct for commutative B. For noncommutative B it should be replaced by the direct limit

$$
\Sigma^{-1} A=\lim n R_{n}
$$

with $R_{0}, R_{1}, R_{2}, \ldots$ the rings defined inductively by

$$
\begin{aligned}
& R_{0}=B[z], p_{0}: R_{0} \rightarrow B ; z \rightarrow 0 \\
& R_{n}=\left(1+\operatorname{ker}\left(p_{n-1}\right)\right)^{-1} R_{n-1}, p_{n}: R_{n} \rightarrow B ; z \rightarrow 0
\end{aligned}
$$

(In particular, $R_{1}=(1+z B[z])^{-1} B[z]$.) Given an $n \times n$ matrix $b=\left(b_{i j}\right)$ in B let $b^{\prime}=\left(b_{i j}^{\prime}\right)$ be the $(n-1) \times(n-1)$ matrix in R_{1} defined by the matrix equation

$$
\begin{aligned}
&\left(\begin{array}{cccc}
1 & 0 & \ldots & z b_{1 n}\left(1-z b_{n n}\right)^{-1} \\
0 & 1 & \ldots & z b_{2 n}\left(1-z b_{n n}\right)^{-1} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right)\left(\begin{array}{ccccc}
1-z b_{11} & -z b_{12} & \ldots & -z b_{1 n} \\
-z b_{21} & 1-z b_{22} & \ldots & -z b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
-z b_{n 1} & -z b_{n 2} & \ldots & 1-z b_{n n}
\end{array}\right) \\
&=\left(\begin{array}{cccc}
1-z b_{11}^{\prime} & -z b_{12}^{\prime} & \ldots & 0 \\
-z b_{21}^{\prime} & 1-z b_{22}^{\prime} & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
-z b_{n 1} & -z b_{n 2} & \ldots & 1-z b_{n n}
\end{array}\right)
\end{aligned}
$$

Assuming inductively that it is possible to invert $1-z b^{\prime}$ in R_{n-1} it is now possible to invert $1-z b$ in R_{n}. The inclusion $B[z] \rightarrow B[[z]]$ factors as

$$
B[z] \rightarrow \Sigma^{-1} B[z] \rightarrow B[[z]]
$$

so that $B[z] \rightarrow \Sigma^{-1} B[z]$ is injective. The morphism $\Sigma^{-1} B[z] \rightarrow B[[z]]$ is an injection for commutative B, but it is not known if it is an injection also in the noncommutative case.
p. 82 l. 4 Remove "the $A\left[z^{-1}\right]$-module subcomplex of".
p. 83 l. 3 " $A[z]$-module morphisms".
p. 84 l. $7 \quad$ Proposition 10.9. For noncommutative A the right hand side of the identity

$$
\widetilde{\Omega}_{+}^{-1} A[z]=(1+z A[z])^{-1} A[z]
$$

should be corrected as for Example 9.15 above.
p. 90 l. 12 Replace "[240, Chap. 8]" by "[244, Chap. 8]"
p. 92 l. $12 \quad \tau\left(1-f+z f: \Pi^{-1} P\left[z, z^{-1}\right] \rightarrow \Pi^{-1} P\left[z, z^{-1}\right]\right)$
p. 99 l. $-1 \in A[z]$
p. 102 l. -8 [5, 1.10]
p. 102 l. -4 Replace "If the additive group of A is torsion-free ..." by "If $\mathbb{Q} \subseteq A \ldots$ "
p. 111 l. 8 Remove " (P, f) is"
p. 120 l. -8 Replace 13.2 by 13.1
p. 121 l. $2 \quad n-m \geqslant 1$
p. 121 l. 5, l. $10 \Omega^{-1} A\left[z, z^{-1}\right]$
p. 121 l. $-3 \quad A\left[z, z^{-1}\right]$-module
p. 123 l. $-12 P^{-1} A\left[z, z^{-1}\right]=\Pi^{-1} A\left[z, z^{-1}\right]$
p. 125 l. -13 Should read " $(P, h)+\left(P^{\prime}, h^{\prime}\right)=\left(P \oplus P^{\prime},\left(\begin{array}{ll}g & h \\ 0 & g^{\prime}\end{array}\right)\right)$ "
p. 135 Chapter 14 The group $\widehat{W}(A)^{a b}$ should be replaced by the image of $\widehat{W}(A)$ in $K_{1}(A[[z]])$, since the kernel of the morphism

$$
\begin{aligned}
& \widetilde{\Delta}_{+}: \widehat{W}(A) \rightarrow K_{1}(A[[z]]) ; \\
& \quad\left(a_{1}, a_{2}, \ldots\right) \mapsto \tau\left(1+\sum_{j=1}^{\infty} a_{j} z^{j}: A[[z]] \rightarrow A[[z]]\right)
\end{aligned}
$$

is in general larger than $[\widehat{W}(A), \widehat{W}(A)]$. See the paper A.Pajitnov and A.Ranicki, The Whitehead group of the Novikov ring http://arXiv.org/abs/math.AT.0012031, K-theory 21, 325-365 (2000). Similarly, $W(A)^{a b}$ should be replaced by the image of $W(A)$ in $K_{1}\left(\widetilde{\Omega}_{+}^{-1} A[z]\right)$, since the kernel of the morphism

$$
\begin{aligned}
& \widetilde{\Delta}_{+}: W(A) \rightarrow K_{1}\left(\widetilde{\Omega}_{+}^{-1} A[z]\right) ; \\
& \quad\left(a_{1}, a_{2}, \ldots\right) \mapsto \tau\left(1+\sum_{j=1}^{\infty} a_{j} z^{j}: \widetilde{\Omega}_{+}^{-1} A[z] \rightarrow \widetilde{\Omega}_{+}^{-1} A[z]\right)
\end{aligned}
$$

is in general larger than $[W(A), W(A)]$.
p. $1361 .-7$ Replace by "If A is a commutative ring such that $\mathbb{Q} \subseteq A$ ".

The isomorphism inverse to

$$
\begin{aligned}
& \prod_{1}^{\infty} A \rightarrow \widehat{W}(A) ; \\
& \begin{aligned}
&\left(a_{1}, a_{2}, a_{3}, \ldots\right) \mapsto \exp \left(\int_{0}^{z}\left(a_{1}-a_{2} s+a_{3} s^{2}-\ldots\right) d s\right) \\
&=\exp \left(a_{1} z-\frac{a_{2} z^{2}}{2}+\frac{a_{3} z^{3}}{3}-\ldots\right)
\end{aligned}
\end{aligned}
$$

is given by

$$
\begin{aligned}
& \widehat{W}(A) \rightarrow \prod_{1}^{\infty} A ; q(z)=1+b_{1} z+b_{2} z^{2}+\ldots \mapsto \\
& \frac{q^{\prime}(z)}{q(z)}=\frac{b_{1}+2 b_{2} z+3 b_{3} z^{2}+\ldots}{1+b_{1} z+b_{2} z^{2}+\ldots}=a_{1}-a_{2} z+a_{3} z^{2}-\cdots \rightarrow\left(a_{1}, a_{2}, a_{3}, \ldots\right)
\end{aligned}
$$

$([5,6.13])$. The reverse characteristic polynomial of an endomorphism f : $P \rightarrow P$ of a f.g. projective A-module P

$$
\begin{aligned}
\widetilde{\operatorname{ch}}_{z}(P, f) & =\operatorname{det}(1-z f: P[z] \rightarrow P[z])=\exp \left(-\sum_{i=1}^{\infty} \frac{\operatorname{tr}\left(f^{i}\right)}{i} z^{i}\right) \\
& \in 1+z A[z] \subset W(A) \subset \widehat{W}(A)
\end{aligned}
$$

(cf. Example 19.16) has image $\left(-\operatorname{tr}(f), \operatorname{tr}\left(f^{2}\right),-\operatorname{tr}\left(f^{3}\right), \ldots\right) \in \prod_{1}^{\infty} A$. For any polynomial of the type

$$
p(z)=1+\sum_{i=1}^{d} b_{i} z^{i} \in 1+z A[z] \subset W(A)
$$

the image $\left(a_{1}, a_{2}, a_{3}, \ldots\right) \in \prod_{1}^{\infty} A$ has components

$$
a_{i}=(-)^{i} \operatorname{tr}\left(f^{i}\right) \in A
$$

with

$$
f=z: P=A[z] /\left(z^{d} p\left(z^{-1}\right)\right) \rightarrow P=A[z] /\left(z^{d} p\left(z^{-1}\right)\right)
$$

such that $\widetilde{\operatorname{ch}}_{z}(P, f)=p(z)$.
p. 136 l. -1 2.2.5
p. 141 l. -8 For noncommutative A the right hand side of the identity

$$
\widetilde{\Omega}_{+}^{-1} A[z]=(1+z A[z])^{-1} A[z]
$$

should be corrected as for Example 9.15 above.
p. 142 l. 16 This ζ-function agrees with the ζ-function of Geoghegan and Nicas (Trace and torsion in the theory of flows, Topology 33, 683-719 (1994)).
p. 153 l. -3 [244, Chap.20]
p. 160 l .17 structure ϕ_{B} on $B \otimes_{A} C$.
p. 172 l. $3 \quad D\left[z, z^{-1}\right] \rightarrow D\left[z, z^{-1}\right]$
p. 173 l. 13 for each $P^{-1} E_{r}$
p. 175 l. -5 the reduced chain complexes
p. 207 l. $5 \quad d_{C^{n-*}}=(-)^{r}\left(d_{C}\right)^{*}$
p. 211 l. 5 A cobordism of ϵ-symmetric Poincaré complexes $(C, \phi),\left(C^{\prime}, \phi^{\prime}\right)$ is an ϵ symmetric Poincaré pair $\left(\left(f f^{\prime}\right): C \oplus C^{\prime} \rightarrow D,\left(\delta \phi, \phi \oplus-\phi^{\prime}\right)\right)$.
p. 223 l. $12,13 f$ is i-connected, $\partial_{0} f, \partial_{1} f$ are $(i-1)$-connected
p. 241 l. -6 Szczarba
p. 248 l. -7 -connected
p. 249 l. 14 i-connected
p. 258 l. $-6 g \times 1$
p. 261 l. $2 \quad A$-finitely dominated
p. 269 Proposition 25.4 The stated exact sequence in the ϵ-symmetric case

$$
\ldots \rightarrow L_{j U}^{n}(A, \epsilon) \xrightarrow{i} L_{\partial^{-1} U}^{n}\left(\Sigma^{-1} A, \epsilon\right) \xrightarrow{\partial} L_{U}^{n}(A, \Sigma, \epsilon) \xrightarrow{j} L_{j U}^{n-1}(A, \epsilon) \rightarrow \ldots
$$

should be replaced in general by the exact sequence

$$
\ldots \rightarrow L_{j U}^{n}(A, \epsilon) \xrightarrow{i} \Gamma_{\partial^{-1} U}^{n}\left(A \rightarrow \Sigma^{-1} A, \epsilon\right) \xrightarrow{\partial} L_{U}^{n}(A, \Sigma, \epsilon) \xrightarrow{j} L_{j U}^{n-1}(A, \epsilon) \rightarrow \ldots
$$

See the paper
Noncommutative localization and chain complexes I. Algebraic K- and Ltheory by A.Neeman and A.Ranicki, http://arXiv.org/abs/math.RA. 0109118 for the proof that the natural map of ϵ-symmetric groups

$$
\Gamma_{\partial^{-1} U}^{n}\left(A \rightarrow \Sigma^{-1} A, \epsilon\right) \rightarrow L_{\partial^{-1} U}^{n}\left(\Sigma^{-1} A\right)
$$

is an isomorphism if $\operatorname{Tor}_{*}^{A}\left(\Sigma^{-1} A, \Sigma^{-1} A\right)=0$ for $* \geq 1$ (e.g. if $\Sigma^{-1} A$ is a flat A-module, as is the case for a two-sided Ore localization). There is no problem in the ϵ-quadratic case, by virtue of Vogel [296], [297], with the natural maps

$$
\Gamma_{n}^{\partial^{-1} U}\left(A \rightarrow \Sigma^{-1} A, \epsilon\right) \rightarrow L_{n}^{\partial^{-1} U}\left(\Sigma^{-1} A\right)
$$

isomorphisms, and with an exact sequence

$$
\ldots \rightarrow L_{n}^{j U}(A, \epsilon) \xrightarrow{i} L_{n}^{\partial^{-1} U}\left(\Sigma^{-1} A, \epsilon\right) \stackrel{\partial}{\rightarrow} L_{n}^{U}(A, \Sigma, \epsilon) \xrightarrow{j} L_{n-1}^{j U}(A, \epsilon) \rightarrow \ldots .
$$

p. 275 l. $-131+T_{\epsilon}: L_{n}^{U}(A[s], \epsilon) \rightarrow L_{U}^{n}(A[s], \epsilon)$
p. 287 l. 3 Replace "will" by "we shall"
p. 290 l. $-11,12$ Replace conditions (a),(b) by the single condition ' $\lambda(x, y)=0$ for all $x, y \in K^{\prime}$.
p. 291 l. -5 Should read "[235, Chap. 9]"
p. 303 l. 4 to describe
p. 312 l. $14 i$-connected
p. 313 l. $8 \quad i$-connected
p. 313 l. $10(i+1)$-connected
p. $3141.5 \quad\left(\mathbb{Z}^{\ell}, \lambda\right)$
p. 314 l. 16 Cyclic branched covers
p. 340 l. 15 Replace " 28.15 " by " 28.17 "
p. 342 l. -6 Replace "band" by "complex"
p. 344 l. 8 Replace the text of Example 28.31 by
"The 0-dimensional asymmetric L-group $L \operatorname{Asy}_{q}^{0}(A)(q=s, h, p)$ is the Witt group of nonsingular asymmetric forms (L, λ) over A, with $\lambda: L \rightarrow L^{*}$ an isomorphism. Such a form is metabolic if there exists a lagrangian, i.e. a direct summand $K \subset L$ such that $K=K^{\perp}$, with

$$
K^{\perp}=\{x \in L \mid \lambda(x)(K)=0\}
$$

in which case

$$
(L, \lambda)=0 \in L \operatorname{Asy}_{q}^{0}(A)
$$

A nonsingular asymmetric form (L, λ) is such that $(L, \lambda)=0 \in L \operatorname{Asy}_{q}^{0}(A)$ if and only if it is stably metabolic, i.e. there exists an isomorphism

$$
(L, \lambda) \oplus(M, \mu) \cong\left(M^{\prime}, \mu^{\prime}\right)
$$

for some metabolic $(M, \mu),\left(M^{\prime}, \mu^{\prime}\right)$. A 0-dimensional asymmetric Poincaré complex (C, λ) is the same as a nonsingular asymmetric form (L, λ) with $L=C^{0}$. For a 1-dimensional asymmetric Poincaré pair $(f: C \rightarrow D,(\delta \lambda, \lambda))$ with $D_{r}=0$ for $r \neq 0$ there is defined an exact sequence

$$
0 \rightarrow D^{0} \xrightarrow{f^{*}} C^{0} \xrightarrow{f \lambda} D_{0} \rightarrow 0
$$

so that $K=\operatorname{im}\left(f^{*}: D^{0} \rightarrow C^{0}\right) \subset L=C^{0}$ is a lagrangian of $\left(C^{0}, \lambda\right)$, and the pair is the same as a nonsingular asymmetric form together with a lagrangian. More generally, suppose given a 1-dimensional asymmetric

Poincaré pair $(f: C \rightarrow D,(\delta \lambda, \lambda))$. The mapping cone of the chain equivalence $\left(\begin{array}{ll}\delta \lambda & f \lambda\end{array}\right): \mathcal{C}(f)^{1-*} \rightarrow D$ is an exact sequence

$$
0 \rightarrow D^{0} \xrightarrow{g} C^{0} \oplus D^{1} \oplus D_{1} \xrightarrow{h} D_{0} \rightarrow 0
$$

with

$$
\begin{aligned}
& g=\left(\begin{array}{l}
f^{*} \\
d^{*} \\
\delta \lambda
\end{array}\right): D^{0} \rightarrow C^{0} \oplus D^{1} \oplus D_{1} \\
& h=\left(\begin{array}{lll}
f \lambda & \delta \lambda & d
\end{array}\right): C^{0} \oplus D^{1} \oplus D_{1} \rightarrow D_{0}
\end{aligned}
$$

However (as pointed out by Joerg Sixt), in general

$$
h \neq g^{*}\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right) \quad: \quad C^{0} \oplus D^{1} \oplus D_{1} \rightarrow D_{0}
$$

so that g is not the inclusion of a lagrangian in $\left(C^{0}, \lambda\right) \oplus\left(D^{1} \oplus D_{1},\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$. To repair this, proceed as follows. Use the chain equivalences

$$
\binom{\delta \lambda}{\lambda f^{*}}: D^{1-*} \rightarrow \mathcal{C}(f), \quad\left(\begin{array}{ll}
\delta \lambda & f \lambda
\end{array}\right): \mathcal{C}(f)^{1-*} \rightarrow D
$$

to define a chain equivalence

$$
i=T\binom{\delta \lambda}{\lambda f^{*}}\left(\begin{array}{ll}
\delta \lambda & f \lambda
\end{array}\right)^{-1} \quad: D \rightarrow D
$$

In order to prove that $\left(C^{0}, \lambda\right)$ is stably metabolic, it is convenient to replace D by a chain equivalent complex for which i is (chain homotopic to) an isomorphism. The exact sequence

$$
\left.0 \rightarrow D_{1} \xrightarrow{\binom{d}{i_{1}}} D_{0} \oplus D_{1} \xrightarrow{\left(i_{0}\right.} \begin{array}{l}
-d
\end{array}\right) D_{0} \rightarrow 0
$$

splits, so there exists an A-module morphism $\left(\begin{array}{ll}\alpha & \beta\end{array}\right): D_{0} \oplus D_{1} \rightarrow D_{1}$ such that

$$
\left(\begin{array}{ll}
\alpha & \beta
\end{array}\right)\binom{d}{i_{1}}=\alpha d+\beta i_{1}=1: D_{1} \rightarrow D_{1}
$$

The 1-dimensional A-module chain complex D^{\prime} defined by

$$
d^{\prime}=\left(\begin{array}{ll}
d & 0 \\
0 & 1
\end{array}\right): D_{1}^{\prime}=D_{1} \oplus D_{1} \rightarrow D_{0}^{\prime}=D_{0} \oplus D_{1}
$$

is such that the inclusion $D \rightarrow D^{\prime}$ and the projection $D^{\prime} \rightarrow D$ are inverse chain equivalences. The chain isomorphism $i^{\prime}: D^{\prime} \rightarrow D^{\prime}$ defined by

$$
\begin{aligned}
i_{0}^{\prime}=\left(\begin{array}{cc}
i_{0} & -d \\
\alpha & \beta
\end{array}\right) & : D_{0}^{\prime}=D_{0} \oplus D_{1} \rightarrow D_{0}^{\prime}=D_{0} \oplus D_{1}, \\
i_{1}^{\prime}=\left(\begin{array}{cc}
i_{1} & -1 \\
\alpha d & \beta
\end{array}\right) & =\left(\begin{array}{cc}
0 & -1 \\
1 & \beta
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-i_{1} & 1
\end{array}\right) \\
: & D_{1}^{\prime}=D_{1} \oplus D_{1} \rightarrow D_{1}^{\prime}=D_{1} \oplus D_{1}
\end{aligned}
$$

is such that

$$
i: D \rightarrow D^{\prime} \xrightarrow{i^{\prime}} D^{\prime} \rightarrow D .
$$

Replacing D by D^{\prime} and reverting to the previous notation, it may thus be assumed that $i: D \rightarrow D$ is an isomorphism. Choose a chain homotopy

$$
\left(\begin{array}{ll}
j & k
\end{array}\right): i\left(\begin{array}{ll}
\delta \lambda & f \lambda
\end{array}\right) \simeq T\binom{\delta \lambda}{\lambda f^{*}}: \mathcal{C}(f)^{1-*} \rightarrow D
$$

The nonsingular asymmetric form defined by

$$
(M, \mu)=\left(C^{0} \oplus D^{1} \oplus D_{1},\left(\begin{array}{ccc}
\lambda & k^{*} & 0 \\
0 & j^{*} & 1 \\
0 & i_{1}^{*} & 0
\end{array}\right)\right)
$$

is such that

$$
h=g^{*} \mu: M=C^{0} \oplus D^{1} \oplus D_{1} \rightarrow D_{0}
$$

so that $g: D^{0} \rightarrow M$ is the inclusion of a lagrangian and (M, μ) is metabolic. The A-module morphism

$$
C^{0} \oplus D_{1} \rightarrow C^{0} \oplus M=C^{0} \oplus C^{0} \oplus D^{1} \oplus D_{1} ;(x, y) \mapsto(x, x, 0, y)
$$

is the inclusion of a lagrangian in $\left(C^{0}, \lambda\right) \oplus(M,-\mu)$, so that $\left(C^{0}, \lambda\right)$ is stably metabolic."
p. 346 1. 16 Replace 25.11 by 26.11
pp. 347-348 The construction of $\left(C^{\prime}, \lambda^{\prime}\right)$ and $\left(C^{\prime \prime}, \lambda^{\prime \prime}\right)$ is not correct in general; these complexes should be replaced by the following $(i-1)$-connected n-dimensional asymmetric Poincaré complex $\left(C^{\prime}, \lambda^{\prime}\right)$ cobordant to the given n-dimensional asymmetric Poincaré complex (C, λ) with $n=2 i$ or $2 i+1$. Choose a chain homotopy inverse $\mu: C \rightarrow C^{n-*}$ for $\lambda: C^{n-*} \rightarrow C$ and a chain homotopy
$\nu: \mu \lambda \simeq 1: C^{n-*} \rightarrow C^{n-*}$, and set

$$
\begin{aligned}
& \lambda^{\prime}=\left\{\begin{array}{c}
\left(\begin{array}{cc}
\lambda & 0 \\
0 & \mu^{*} \lambda
\end{array}\right): C^{\prime n-r}=C^{n-r} \oplus C^{n-r+1} \rightarrow C_{r}^{\prime}=C_{r} \oplus C^{n-r+1} \\
\text { if } r \leq i-1 \\
\left(\begin{array}{ccc}
\lambda & 0 & 0 \\
0 & 0 & \mu^{*} \lambda \\
\lambda^{*} \nu & 1 & 0
\end{array}\right): \\
\\
C^{\prime n-r}=C^{i} \oplus C_{i+1} \oplus C^{i+1} \rightarrow C_{r}^{\prime}=C_{i} \oplus C^{i+1} \oplus C_{i+1} \\
\text { if } n=2 i \text { and } r=i \\
\left(\begin{array}{cc}
\lambda & 0 \\
\lambda^{*} \nu & 1
\end{array}\right): \quad \begin{array}{l}
C^{\prime n-r}=C^{n-r} \oplus C_{r+1} \rightarrow C_{r}^{\prime}=C_{r} \oplus C_{r+1} \\
\text { otherwise. }
\end{array}
\end{array}\right.
\end{aligned}
$$

p. 355 11. $-1,-11,-12 F \cup_{\partial}-N, T(h) \cup_{\partial}-\left(N \times S^{1}\right)$
p. 357 ll. 4,12 $F \cup-F$
p. 364 l. $-13(i+1)$-connected
p. 369 l. $12 S^{3} \times D^{4} \cup_{h_{1}}-\left(S^{3} \times D^{4}\right)$
p. 369 l. -1 framed codimension 2
p. 372 l. 3 replace "reverse" by "reduced"
p. 374 l. 8 "twisted double bordism groups"
p. 382 l. 17

$$
\begin{aligned}
\beta_{s}= & \left(\begin{array}{cc}
\chi_{s} & (-)^{s} \phi_{s} \\
(-)^{n-r-1} \phi_{s} & (-)^{n-r+s} T_{\epsilon} \phi_{s-1}
\end{array}\right): \\
& B^{n-r+s}=C^{n-r+s} \oplus C^{n-r+s-1} \rightarrow B_{r}=C_{r} \oplus C_{r-1}
\end{aligned}
$$

p. 411 l. $10 \Omega_{+}^{-1} A[s] / A[s]=F(s) / F[s]$
p. 421 l. 8 Terminology: the covering ϵ-symmetric complex in the sense of Definition 32.7 (i) is the ϵ-symmetrization of the ultraquadratic complex of Ranicki[237, p.820].
p. 422 l. 9 Proof of 32.8 (ii): Since E is A-contractible the $A\left[z, z^{-1}\right]$-module chain $\operatorname{map} 1-z: E \rightarrow E$ is a chain equivalence. Define a homotopy equivalence $(E, \theta) \simeq U(\Gamma)$ by

$$
\left(1 \oplus\left(1+T_{\epsilon}\right)\right)(1-z)^{-1}: E \rightarrow \mathcal{C}(g-z h)
$$

with $(1-z)^{-1}: E \rightarrow E$ any chain homotopy inverse of $1-z: E \rightarrow E$.
p. 437 l. -2 In the proof of (ii) insert :

The natural $A[s]$-module morphisms

$$
A\left[s, s^{-1},(1-s)^{-1}\right] \rightarrow Q_{A}^{-1} A[s], Q_{A, \text { min }}^{-1} A[s] \rightarrow Q_{A}^{-1} A[s]
$$

are inclusions of submodules. For any elements

$$
\frac{r(s)}{s^{j}(1-s)^{k}} \in A\left[s, s^{-1},(1-s)^{-1}\right], \frac{p(s)}{q(s)} \in Q_{A, \text { min }}^{-1} A[s]
$$

such that

$$
\frac{r(s)}{s^{j}(1-s)^{k}}=\frac{p(s)}{q(s)} \in Q_{A}^{-1} A[s]
$$

it follows from the minimality of $q(s)$ and the identity

$$
p(s) s^{j}(1-s)^{k}=q(s) r(s) \in A[s]
$$

that $s^{j}(1-s)^{k}$ divides $r(s)$, and hence that

$$
A\left[s, s^{-1},(1-s)^{-1}\right] \cap Q_{A, \text { min }}^{-1} A[s]=A[s] \subset Q_{A}^{-1} A[s]
$$

p. 438 l. $-1--9$ Remove. $\left(\chi_{s, \min }\right.$ is no longer required).
p. 439 l. 12 The statement of Proposition 32.45 (i) is false as stated, and should be replaced by :
"The Blanchfield form is such that for any $x, y \in L$ the composite

$$
\begin{aligned}
& P_{A}^{-1} A\left[z, z^{-1}\right] / A\left[z, z^{-1}\right] \\
& \rightarrow P_{F}^{-1}\left[z, z^{-1}\right] / F\left[z, z^{-1}\right]=Q_{F, \text { min }}^{-1}[s] / F[s]=F[s]_{(s, 1-s)} / F[s] \\
& \rightarrow F((s)) / F[s]=s^{-1} F\left[\left[s^{-1}\right]\right]
\end{aligned}
$$

sends $\mu(i(x), i(y)) \in P_{A}^{-1} A\left[z, z^{-1}\right] / A\left[z, z^{-1}\right]$ to
$\mu(i(x), i(y))=\sum_{j=-\infty}^{-1}\left(\lambda+\epsilon \lambda^{*}\right)\left(x, f^{-j-1}(y)\right) s^{j} \in s^{-1} A\left[\left[s^{-1}\right]\right] \subset s^{-1} F\left[\left[s^{-1}\right]\right]$,
where $i: L \rightarrow M$ is the natural A-module morphism. In particular, μ determines λ by

$$
\lambda: L \times L \xrightarrow{i \times s i} M \times M \xrightarrow{\mu} P_{A}^{-1} A\left[z, z^{-1}\right] / A\left[z, z^{-1}\right] \rightarrow F((s)) / F[s] \xrightarrow{\chi_{s}} F
$$

with $s=(1-z)^{-1}: M \rightarrow M$ and $\chi_{s}=$ coefficient of s^{-1} (31.20)."
Here is an explicit counterexample to the original statement of 32.45 (i). Let $A=\mathbb{Z}$, and for any $m \in \mathbb{Z}$ consider the skew-symmetric Seifert form over \mathbb{Z} defined in Example 42.2

$$
(L, \lambda)=\left(\mathbb{Z} \oplus \mathbb{Z},\left(\begin{array}{cc}
m & 0 \\
-1 & 1
\end{array}\right)\right)
$$

with

$$
f=\left(\lambda-\lambda^{*}\right)^{-1} \lambda=\left(\begin{array}{cc}
1 & -1 \\
m & 0
\end{array}\right): L=\mathbb{Z} \oplus \mathbb{Z} \rightarrow L=\mathbb{Z} \oplus \mathbb{Z}
$$

and Alexander polynomial

$$
\Delta(z)=\operatorname{det}(1-f+z f)=m(1-z)^{2}+z
$$

The corresponding symmetric Blanchfield form (M, μ) is given by

$$
\begin{aligned}
& M=\operatorname{coker}(1-f+z f)=\mathbb{Z}\left[z, z^{-1}\right] / \Delta(z) \\
& \mu(x, y)=\frac{(1-z)^{2} x y}{\Delta(z)} \in P^{-1} \mathbb{Z}\left[z, z^{-1}\right] / \mathbb{Z}\left[z, z^{-1}\right]
\end{aligned}
$$

In terms of $s=(1-z)^{-1}$

$$
\mu(x, y)=\frac{x y}{m+s(1-s)} \in Q^{-1} \mathbb{Z}[s] / \mathbb{Z}[s]
$$

If $m \neq 0$ then

$$
\mu(1,1)=\frac{1}{m+s(1-s)} \notin Q_{\min }^{-1} \mathbb{Z}[s] / \mathbb{Z}[s]
$$

since $s^{2} \Delta\left(1-s^{-1}\right)=m+s(1-s) \in \mathbb{Z}[s]$ is not minimal.
p. 439 l. 12 omit "the natural $A[s]$-module morphism"
p. 440 Replace the proof of 32.45 (i) by :
"Work in the completion $A\left[\left[s^{-1}\right]\right]$ to obtain

$$
\begin{aligned}
\mu(i(x), i(y)) & =(1-z)\left(\lambda+\epsilon \lambda^{*}\right)\left(x,(1-f+z f)^{-1}(y)\right) \\
& =s^{-1}\left(\lambda+\epsilon \lambda^{*}\right)\left(x,\left(1-s^{-1} f\right)^{-1} y\right) \\
& =\sum_{j=-\infty}^{-1}\left(\lambda+\epsilon \lambda^{*}\right)\left(x, f^{-j-1}(y)\right) s^{j} \in A\left[\left[s^{-1}\right]\right]
\end{aligned}
$$

so that

$$
\begin{aligned}
& \chi_{s}(\mu(i(x), i(y)))=\left(\lambda+\epsilon \lambda^{*}\right)(x, y) \\
& \chi_{s}(\mu(i(x), s i(y)))=\lambda(x, y) \in A \subset F . "
\end{aligned}
$$

p. 450 l. $-1 \quad 1 \leq r \leq n$
p. 456 l. $-2 \quad \delta \phi \in \operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, C \otimes_{A} C\right)_{n+1}$
p. $4571.13 Q^{*}(D,-\epsilon)=Q_{e n d}^{*}\left(D^{!}, \xi, \epsilon\right)$
p. 467 l. 11 delete one "will"
p. 475 l. $-8 \quad{ }^{\prime} \operatorname{LAut}_{p}^{n}(A, \epsilon)=L_{p}^{n}(A, \epsilon) \oplus L{\widetilde{\operatorname{Aut}_{p}}}_{p}^{n}(A, \epsilon) "$
p. 478 l. 1126.11 (iii) instead of 25.11 (iii)
p. 479 l. 1426.11 instead of 25.11
p. 485 l. -12 In 36.3 and 41.19
p. 487 l. 2 By 25.11 and 26.11
p. 488 l. -10 Replace form by $\left(\begin{array}{cc}\phi_{0}+\phi_{1} d^{*} & d \\ (-)^{i} d^{*} & 0\end{array}\right)$
p. 492 ll. 15,16 Replace $\operatorname{char}(F)$ by $|F|$
p. 493 l. -9 Should read 'Let s_{0} be the number of conjugate pairs of non-real roots $\omega \in \mathbb{C}$ of $p(x)$ with $\sigma_{\omega}\left(F_{0}\right) \subset \mathbb{R}$ and $\sigma_{\omega}(a)<0$, so that $\sigma_{\omega}: F \rightarrow \mathbb{C}^{-}$is a morphism of rings with involution.'
p. 495 l. $-4 \quad L^{0}\left(\mathbb{Z}_{4}\right)=\mathbb{Z}_{8}$
p. 497 l. 7 Replace quadratic by ϵ-symmetric
p. 508 l. $5 \quad L^{-1}(A, \epsilon)$
p. 508 1. -11 Should read

$$
\operatorname{dimension} L^{0}(A, \epsilon)=\operatorname{dimension} L^{0}(F, \epsilon)=r_{1}
$$

with r_{1} the number of real roots of $p_{0}(y)$ such that $\rho_{\xi}: F_{0}=\mathbb{Q}[y] /\left(p_{0}(y)\right) \rightarrow$ $\mathbb{R} ; y \rightarrow \xi$ has $\rho_{\xi}(a)<0$. Both $L^{0}(A, \epsilon)$ and $L^{0}(F, \epsilon)$ are of the form $\mathbb{Z}^{r_{1}} \oplus$ 8-torsion.
p. 535 l. $14 \phi_{0}=\theta,-z f^{*} \theta, \phi_{1}=\theta$.
p. 546 l. -1 identification of 28.33
p. 547 l. 2 from 39.26
p. 547 l. 1236.3 (i)
p. 547 l. -4 as in 39.20
p. 548 l. -11 Combine 39.20, 39.26
p. 564 1. $17 \zeta: \bar{X} \rightarrow \bar{X}$ is a generating covering translation.
p. 567 1. $-3 \lambda-\omega \lambda^{*}$
p. 571 1. 16 Replace $[129,5.6]$ by [121]
p. 573 l. 10 Replace ' 26.10 ' by ' 27.10 '.
p. 574 l. -5 Replace ' k even' by ' j even'.
p. 575 l. -12 The exact sequence should read

$$
0 \rightarrow L \widetilde{\operatorname{Aut}}_{p}^{2 j+1}(A) \rightarrow L_{h}^{2 j+2}(A) \rightarrow L \operatorname{Asy}_{h}^{2 j+2}(A) \rightarrow L \widetilde{\operatorname{Aut}}_{p}^{2 j}(A) \rightarrow L_{h}^{2 j+1}(A) \rightarrow 0
$$

p. 575 l. -11 Insert 'and L Asy $^{2 j+1}(\mathbb{C})=0$ (Proposition 39.20 (iii))' after 'These identifications'
p. 598 l. $-1 \quad n=2 i$ in the braid
p. $616 \quad$ Replace $V \times 1$ in the figure caption by $V \times I$
p. 617 l. $-8--5$ Replace "Indeed ... etc." by
"Indeed, the boundary of a Bing 3 -disk D^{3}, which we assume contains the connected binding N in its interior, also bounds a 3 -disk in the complement of D^{3}, because $M^{3} \backslash N$ is fibered and thus covered by \mathbb{R}^{3}, etc."
p. $622 \quad$ Replace $W \times 1$ in the figure caption by $W \times I$
p. 623 l. 11 Replace "(Jänich, Karras et. al. [117])" by "(Jänich, Karras et. al. [117], Neumann [211])"
p. 629 l. -11 [70] M. Epple, Die Entstehung der Knotenthorie, Vieweg (1999)
p. 633 l. 12 [161] J. Levine and K. Orr, A survey of surgery and knot theory, in Surveys on Surgery Theory, Volume 1, Annals of Maths. Studies 145, 345-364 (2000)
p. 633 l. -17 [174] W. Lück, The universal functorial Lefschetz invariant, Fund. Math. 161, 167-215 (1999)

