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Errata for High-dimensional Knot Theory
by Andrew Ranicki
Springer Mathematical Monograph (1998)

This list contains corrections of misprints/errors in the book. Please let me
know of any further misprints/errors by e-mail to aranicki@ed acnk
The current electronic edition of the book is at
http://www.maths.ed.ac.uk/ aar/books/knot.pdf
AAR. 234.2017

Y The following statement of Frank Adams makes the dedication of the book
to him even more appropriate: Of course, from the point of view of the rest
of mathematics, knots in higher-dimensional space deserve just as much
attention as knots in 3-space (Article on topology, in "Use of Mathematical
Literature’ (Butterworths (1977)).

. XVIII I. 8 Remove “that of”.

. XXI1. 9 for a homology framed knot

XXIV 1. -3 m(X)
XXV 1 -2 04*+1, 04*+3
XXVIL 10 m(F) = {1}
. XXVIII 1. 2 chain complex
91 8 ie. fo:m(X)— m(X) is an isomorphism and

m(T(f)) = {92’ |j € Z}
with z~1gz = £,(g)
101 -7 (f(z),n+1,0)
16 1. -15 If X has a finite 2-skeleton
29 1. 10 for
311 11 Bass [13, XIL.7.4]
3416 45,55 (1)
341.19 As for 5.10
35 1. -12 Nilp(A)

+

471 -6 27N by

471 -2 Nt =Y Nj
j=1

J


mailto:a.ranicki@ed.ac.uk
http://www.maths.ed.ac.uk/~aar/books/knot.pdf

p- 49 11. 1,2 Replace by

N,~ Ny
dp( Z ZF,) C Z ZFE_, (r=nn-1,...,0)
j=—N} J==N},

for some integers N,F, N~ > 0 (starting with N, = N, = 0, for example).
p. 73 1. 17 Replace [297, 9.14] by [297, 7.9]

p. 77 Example 9.15 As before, let A = BJz], and let ¥ be the set of B-invertible square
matrices in A, with A — B;z — 0. The identity

Y 'A = (14 2B[z]) " 'B[¢]

is correct for commutative B. For noncommutative B it should be replaced
by the direct limit
Y !4 = limnR,

with Ry, Ry, Ro, ... the rings defined inductively by
ROZB[Z],])()IR()*)B;Z%O,
R,=(1+ker(pp_1)) 'Ru_1 , Pn : Rn—=B; 2—0.

(In particular, Ry = (1+2zB[z]) "' B[z].) Given an n x n matrix b = (b;;) in
Blet b' = (b};) be the (n—1) x (n — 1) matrix in R; defined by the matrix

equation
1 0 ... Zb1n(1 — ann)_l 1— zb11 —zbio . —zb1p
0 1 Zbgn(l — ann)_l —zbo1 1—2byy ... —zboy,
0 0 ... 1 —2zb,1 —2zbps ... 1 —2zb,,
1—2by, —zbly ... 0
—zbh; 1 —2zby, ... 0
_anl —ang Ce 1-— ann

Assuming inductively that it is possible to invert 1 — zb’ in R,,_1 it is now
possible to invert 1 — zb in R,,. The inclusion B[z] — B][z]] factors as

B[z] = ©7'B[z] — B][2]]

so that B[z] — Y 7!B[z] is injective. The morphism L~ !B[z] — B[[z]] is
an injection for commutative B, but it is not known if it is an injection also
in the noncommutative case.

p. 821 4 Remove “the A[z~!]-module subcomplex of”.
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.831.3  “Alz]-module morphisms”.

.84 1.7 Proposition 10.9. For noncommutative A the right hand side of the identity

Q7 A[Z] = (14 24[2]) 7 Al

should be corrected as for Example 9.15 above.

.90 1. 12 Replace 7[240, Chap. 8]” by ”[244, Chap. 8]”
292112 7(1—f4z2f 1Pz, 27 - T P[z, 271))

991 -1 € A[7]

102 1. -8 [5, 1.10]

102 1. -4 Replace “If the additive group of A is torsion-free ...” by “If Q C A ...”
111 1. 8 Remove “(P, f) is”

120 1. -8 Replace 13.2 by 13.1

1211.2 n—-—m=>1

121 1. 5,1. 10 Q71 A[z, 271

121 1. -3 A[z, 2z~ !]-module

123 1. -12 P71A[z, 27 =T Az, 271

0 ¢

. 125 1. -13 Should read ”(P,h) + (P',I') = (P& P, <g h))”

. 135 Chapter 14 The group W(A)“b should be replaced by the image of W(A) in

K1 (A[[2]]), since the kernel of the morphism

~ —

AL W(A) = Ki(A[[2]])

(ar,az,...) = 7(1 +]§ a;27 ¢ Allz] = AJl2]])

is in general larger than [W(A)7 W(A)] See the paper

A.Pajitnov and A.Ranicki, The Whitehead group of the Novikov ring
http://arXiv.org/abs/math.AT.0012031, K-theory 21, 325-365 (2000).
Similarly, W (A)® should be replaced by the image of W (A) in K (Q;lA[z]),
since the kernel of the morphism

A, 2 W(A) = K (97 AZ) ;

(a1, az,...) = 7(1 + i a;2 07 A - O71AL)
Z

is in general larger than [W(A), W(A)].



p- 136 1. =7 Replace by “If A is a commutative ring such that Q C A”.
The isomorphism inverse to

[1A—W(A);
1
(a1,az,a3,...)— exp(foz(al — ags + ass® — ... )ds)

2 3
— __ a2z aszz _
= exp (alz 5— + 73 .. >

is given by

WA) S T[A; q(z) = 1+biz+bo22+...—
1

q’(z) . b1 + 2b2z + 3b322 + ...
q(z) 14 biz+boz?+...

2
= a1 —asz+azz” — - = (a1,a9,a3,...)

([5, 6.13]). The reverse characteristic polynomial of an endomorphism f :
P — P of a f.g. projective A-module P

cho(P,f) = det(l—zf: P[z] - P[z]) = exp(— 3 "gf’”zi)
=1
€1+ zA[z] € W(A) c W(A)
(cf. Example 19.16) has image (—tr(f),tr(f?), —tr(f3),...) € IO_O[A. For
1

any polynomial of the type

d
p(z) = 1+ Zbizi €1+ zA[z] CW(A)

i=1

oo
the image (a1, as,as,...) € [[ A has components
1

a; = () tr(fHeA

with

such that ch, (P, f) = p(2).
p.- 136 1. -1 2.2.5

p. 141 1. -8 For noncommutative A the right hand side of the identity
Q;lA[z] = (14 zA[z])"tAl2]

should be corrected as for Example 9.15 above.
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153 1.
160 1.
172 1.
173 1.
175 1.
207 1.
211 L

223 1.
241 1.
248 1.
249 1.
258 L.

2611

16 This ¢-function agrees with the (-function of Geoghegan and Nicas (Trace
and torsion in the theory of flows, Topology 33, 683-719 (1994)).

-3 [244, Chap.20]

17 structure ¢g on B®4 C.

3 Dlz,z7'] = D[z, 271

13 for each P~'E,

—5 the reduced chain complexes
5 don-r = ()" (do)"

5 A cobordism of e-symmetric Poincaré complexes (C,¢), (C’,¢') is an e-
symmetric Poincaré pair ((f f/): C® C' — D,(0¢, ¢ ® —¢')).

12,13 f is é-connected, dy f, 01 f are (i — 1)-connected
—6 Szczarba

—7 1-connected

14 i-connected

-6 gx1

. 2 A-finitely dominated

. 269 Proposition 25.4 The stated exact sequence in the e-symmetric case

. ) .
o Lg(A) S L (57 Ae) 5 (A S, 0) 5 L5 (Ae) — ...

should be replaced in general by the exact sequence

7 o j
= Llp(Ae) S Thop (A= S 4,0) S LE(A S, 6) 5 L5 (Ave) — ...

See the paper

Noncommutative localization and chain complexes I. Algebraic K- and L-
theory by A.Neeman and A.Ranicki, http://arXiv.org/abs/math.RA.0109118
for the proof that the natural map of e-symmetric groups

I (A= S A e) = L (271 A)

is an isomorphism if Tor? (8714, 2 714) =0 for + > 1 (e.g. if 2 'Ais a
flat A-module, as is the case for a two-sided Ore localization). There is no
problem in the e-quadratic case, by virtue of Vogel [296], [297], with the
natural maps

I97'V(A - S A,6) » L2 U (D1A)

isomorphisms, and with an exact sequence

. 7 _ o j .
S LUAe) S LU (R A ) S LU(A S, ) S LY (Ae) — ... .
n n n n—1



T

T o T T T o T T o

. 275 1.
. 287 1.
. 290 1.

2291 1
. 303 1.
312 1
313 L
313 L
. 314 1.
314 1.
. 340 1.
. 342 1.
. 344 1.

13 1+ T, : LY(Als],e) = L1 (Als],€)

3

Replace “will” by “we shall”

—11,12 Replace conditions (a),(b) by the single condition ‘A(z,y) = 0 for all

)
4
14
8
10
5)
16
15

x,y € K.

Should read ”[235, Chap. 9]”
to describe

i-connected

i-connected

(i 4+ 1)-connected

(24, 0)

Cyclic branched covers
Replace 728.15” by ”728.17"
Replace “band” by “complex”

Replace the text of Example 28.31 by

“The 0-dimensional asymmetric L-group LAsyg (A) (¢ = s, h,p) is the Witt
group of nonsingular asymmetric forms (L, A) over A, with A : L — L* an
isomorphism. Such a form is metabolic if there exists a lagrangian, i.e. a
direct summand K C L such that K = K+, with

K' = {2 € L|A@)(K) =0} ,

in which case
(L,\) = 0€ LAsy,(A) .

A nonsingular asymmetric form (L, A) is such that (L,A\) =0 € LAsyg(A)
if and only if it is stably metabolic, i.e. there exists an isomorphism

(LA @ (M, p) = (M, ')

for some metabolic (M, u), (M', 1'). A 0-dimensional asymmetric Poincaré
complex (C, ) is the same as a nonsingular asymmetric form (L, A) with
L = C°. For a 1-dimensional asymmetric Poincaré pair (f : C — D, (0A, \))
with D, = 0 for r # 0 there is defined an exact sequence

I JA

0— D° c° Dy — 0

so that K = im(f* : D° — C% c L = C° is a lagrangian of (C?,)\),
and the pair is the same as a nonsingular asymmetric form together with
a lagrangian. More generally, suppose given a 1-dimensional asymmetric



Poincaré pair (f : C — D, (6A,\)). The mapping cone of the chain equiva-
lence (0A fA):C(f)'™* — D is an exact sequence

050" 4. c®ep'ep, L~ Dy—0
with
f*
g = |d* : D C'eD'e D, ,
oA
h = (fA 6x d) : C°@D'® Dy — Dy .

However (as pointed out by Joerg Sixt), in general

A0 0
h#gl0 0 1] : C°@»D'® D, - D,
010

so that g is not the inclusion of a lagrangian in (C°, \)&® (D@ Dy, ((1) (1)) ).

To repair this, proceed as follows. Use the chain equivalences
2N LD self), (BA fA) et D
N , :

to define a chain equivalence

i = T(f}) (6A fA) :D=D.

In order to prove that (C?, \) is stably metabolic, it is convenient to replace
D by a chain equivalent complex for which ¢ is (chain homotopic to) an
isomorphism. The exact sequence

splits, so there exists an A-module morphism (a ﬁ) : Do@® D1 — D1 such
that

(Ol B)({Z) :Oéd+ﬁi1:11D1—>D1.

The 1-dimensional A-module chain complex D’ defined by

d = (g (1)) D/l :D1€BD1—>D6 = Do@Dl



p. 346 1. 16
pp. 347-348

is such that the inclusion D — D’ and the projection D’ — D are inverse
chain equivalences. The chain isomorphism i’ : D’ — D’ defined by

i = Zo‘jfﬂd . D) = Dy@ Dy — D} = Do Dy ,

i i -1\ (0 -1 1 0
L~ \ad B)  \1 pB —i; 1
DllleEBDl—)D/lle@Dl
is such that
./
i: DD —~ D D.

Replacing D by D’ and reverting to the previous notation, it may thus be
assumed that ¢ : D — D is an isomorphism. Choose a chain homotopy

G k) :i(r fA) = T(ff‘) ()T D .

The nonsingular asymmetric form defined by

A k¥ 0
(M,p) = (C°@D @D, [0 55 1))
0 i 0

is such that
h=gu:M=C"®D'®D, - Dy

so that g : DY — M is the inclusion of a lagrangian and (M, i) is metabolic.
The A-module morphism

C'eoD —-C'aM = C'eC°@ D' @D ; (z,y) — (z,2,0,y)

is the inclusion of a lagrangian in (C°, \)@® (M, —u), so that (C, \) is stably
metabolic.”

Replace 25.11 by 26.11

The construction of (C’,\) and (C”,\"”) is not correct in general; these
complexes should be replaced by the following (i—1)-connected n-dimensional
asymmetric Poincaré complex (C’; \’) cobordant to the given n-dimensional
asymmetric Poincaré complex (C, \) with n = 2i or 2i + 1. Choose a chain
homotopy inverse u: C — C™™* for A : C"™* — C and a chain homotopy



vipA~1:

der =

N =

C"* — C™*, and set

d —)r—1x
(00 ( )d* > 0L = CraCmt 501 = G @02
c

ifr<i-—1
Z 1)‘ 0 / 41 / 42
0 O = CieC't @ Ciy1 —C)_, = CiiC
ifn=2iand r =1
( : C{n = i+1@ci+2—)c7{71 = CZ-GBCHJ@OZ'JA
A" dc

fn=2tandr=17+1

0
fn=2i+1landr=4i+1

de _
( ) Cl = Cipt ®Cipp > Cl_y = C; @O
( L = C,®Cy Oy = Co @,

r— 1>\*H dC)
otherwise,

<>‘ 0 ) . QM = Cn—r@cn—r-i-l —>C7/‘ — CTEBCn—r-i-l

ifr<i-—1
A 0 0
0 0 p*X
Nv o1 0

cmT o= Ol Cit1 ® citl - C; =C; & Ctlo Cit1

fn=2iandr =1

A
< O) O = O Cryp =2 CL = Cr@Crgg
N o1

otherwise.

p. 355 1. -1,-11,-12 F Uy —N, T'(h) Uy —(N x S1)

p. 357 1. 4,12 FU—F

p. 364 1. 13 (i + 1)-connected

p. 369 1. 12 3 x D* U, —(S3 x D*)



. 369 1. -1 framed codimension 2

.3721. 3 replace "reverse” by "reduced”
.3741. 8 "twisted double bordism groups”
. 382117

/3 = ( XS (_)S¢S )
: (=) s ()T T
Brrts = gnmrtsgponrtsl L, B = C.aCoq .

p. 411 1. 10 Q7' A[s]/A[s] = F(s)/F|s]

p- 421 1. 8 Terminology: the covering e-symmetric complex in the sense of Defini-
tion 32.7 (i) is the e-symmetrization of the ultraquadratic complex of Ran-
icki[237, p.820].

p. 422 1.9 Proof of 32.8 (ii): Since E is A-contractible the A[z, 27!]-module chain
map 1 — z: E — F is a chain equivalence. Define a homotopy equivalence
(£,0) ~U(T) by

(1e(1+T))(1-2)"":+ E = C(g—zh),
with (1 — 2)~!: E — E any chain homotopy inverse of 1 —z: E — E.

p. 437 1. =2 In the proof of (ii) insert :
The natural A[s]-module morphisms

Als,s7H (1= 5)71 = Q1  Als] . QlninAls] = Q4" Als]

are inclusions of submodules. For any elements

sj(z(i)s)k € Als,s, (1 -5, 253 € QZ}mmA[S]

such that

S = b e Qi

it follows from the minimality of ¢(s) and the identity
p(s)s’ (1 —8)" = q(s)r(s) € Als]
that s/(1 — s)* divides r(s), and hence that

Als, s (1= 5) 71N QuninAlsl = Als] € Q4 Als] .

p. 438 1. -1 — -9 Remove. (Xsmin is 10 longer required).

10



p. 439 1. 12 The statement of Proposition 32.45 (i) is false as stated, and should be
replaced by :
“The Blanchfield form is such that for any x,y € L the composite

Pt Az, 27V /A2, 27
= Ppile, 27 /Fl2,27Y] = Qpiinlsl/Fls] = Fls]s1-5)/Fls]
— F((s))/Fls] = s7'F[[s™"]]

sends p(i(z),i(y)) € Py Az, 271 /A[z,271] to

pli(x),i(y)) = i A+eX) (@, 77 (y)s? € s A[[s™ ] € s F[[s71]]

j=—00
where ¢ : L — M is the natural A-module morphism. In particular, p
determines A by
N DxL o Mx MY PU AR =AY = F((s)/Fls) S F
with s = (1 —2)71: M — M and ;s = coefficient of s~1 (31.20).”

Here is an explicit counterexample to the original statement of 32.45 (i).
Let A = Z, and for any m € Z consider the skew-symmetric Seifert form
over Z defined in Example 42.2

(LN = (ZaZ, <7_”1 (1)>)
with

f=o-nt= (o

):L:ZEBZ—>L:ZEBZ
m 0

and Alexander polynomial
A(z) = det(l1—f+z2f) = m(1-2)*+2.
The corresponding symmetric Blanchfield form (M, p) is given by

M = coker(1— f+2f) = Z[z,271/A(2)
plz,y) = (1;2();)” € P Zz, 271/ Z[z,271] .

In terms of s = (1 — 2)~*

Yy -1
@, y) = mts(l—s) € Q7 Z[s|/Z[s] -
If m # 0 then
1 _
w(1,1) = M s(l—s) ¢ QrinZls/Z[s] ,

since s?A(1 — s71) =m + s(1 — s) € Z[s] is not minimal.

11



p.- 439 1. 12 omit “the natural A[s]-module morphism”

p. 440 Replace the proof of 32.45 (i) by :
“Work in the completion A[[s™!]] to obtain

pi(e), i) = (1= )+, (L= [ +20)7 (1)
= 5O+ (=57 ) )

> A+ eXN) (@, f77Hy)s? € Alls™]]

j=—o0

so that
Xs(u(i(@),i(y)) = (A+eX)(z,y),

Xs(p(i(z), si(y))) = AMw,y) e ACFE 7
4501 -1 1<r<n
456 1. -2 d¢ € Homgjz,)(W,C ®4 C)ny1
457113 Q*(D,—€) = Q,4(D', & ¢)

467 1. 11 delete one “will”

4751 -8 “LAut?(A,e) = LI(A,€) ® LAut, (A, ¢)”
478 1. 11 26.11 (iii) instead of 25.11 (iii)

479 1. 14 26.11 instead of 25.11

485 1. -12 In 36.3 and 41.19

487 1. 2 By 25.11 and 26.11

S~ R~ e e - = B~ B

kel

. 488 1. =10 Replace form by <¢O(j)?dl*d g)

. 492 11. 15,16 Replace char(F') by |F|

el

. 493 1. 9 Should read ‘Let sy be the number of conjugate pairs of non-real roots
w € C of p(z) with o,(Fy) C R and o,(a) <0, so that 0, : F - C~ is a
morphism of rings with involution.’

L4951, -4 LO(Zy) = Zs

hel

.4971. 7 Replace quadratic by e-symmetric
.508 1.5 L71(Ae)
. 508 1. =11 Should read

kol ol o B}

dimension L°(A,¢) = dimension L°(F,e) = r; ,

with 1 the number of real roots of po(y) such that pe : Fo = Qy]/(po(y)) —
R;y — & has pe(a) < 0. Both L°(A,€) and L°(F,€) are of the form Z™ &
8-torsion.

12
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. 535 L.

546 1.
547 1.
547 1.
547 1.
548 1.
564 1.
567 1.
571 1.
573 1.
574 1.

.75 1

.75 1

. 598 1.
. 616
. 617 1.

. 622
. 623 1.

. 629 1.
. 633 L.

. 633 1.

14 ¢o=0,—2f*0, p1 = 0.
-1 identification of 28.33
2 from 39.26
12 36.3 (i)
—4 as in 39.20
—11 Combine 39.20, 39.26
17 ¢: X — X is a generating covering translation.
-3 A—w\*
16 Replace [129,5.6] by [121]
10 Replace ‘26.10° by ‘27.10’.
-5 Replace ‘k even’ by ‘j even’.
—12 The exact sequence should read
0= LAt " (A) = L¥V2(4) - LAsy? T2 (4) — LAut, (A) — LI (4) = 0
~11 Insert ‘and LAsy® ™ (C) = 0 (Proposition 39.20 (iii))’ after ‘These identi-
fications’
—1 n = 2¢ in the braid
Replace V' x 1 in the figure caption by V' x I

-8 — =5 Replace “Indeed ... etc.” by
“Indeed, the boundary of a Bing 3-disk D3, which we assume contains the
connected binding N in its interior, also bounds a 3-disk in the complement
of D3, because M3\N is fibered and thus covered by R?, etc.”

Replace W x 1 in the figure caption by W x I

11 Replace ”(Jénich, Karras et. al. [117])” by ”(Jénich, Karras et. al. [117],
Neumann [211])”

—11 [70] M. Epple, Die Entstehung der Knotenthorie, Vieweg (1999)

12 [161] J. Levine and K. Orr, A survey of surgery and knot theory,
in Surveys on Surgery Theory, Volume 1, Annals of Maths. Studies 145,
345-364 (2000)

—17 [174] W. Liick, The universal functorial Lefschetz invariant, Fund.
Math. 161, 167-215 (1999)
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