EXACT SEQUENCES IN THE ALGEBRATC THEORY OF SURGERY

by

ANDREW RANICKI

Princeton University Press and

University of Tokyo Press

```
    Copyright (c) }1981\mathrm{ by Princeton University Press
                                    All Rights Reserved
            Published in Japan Exclusively
                by University of Tokyo Press
                in other parts of the world by
                Princeton University Press
    Printed in the United States of America
by Princeton University Press, Princeton, New Jersey
```

Library of Congress Cataloging in Publication Data will
be found on the last printed page of this book
for Carla

10
Introduction iii
S1. Absolute L-theory 1
1.1 Q-groups 2
1.2 L -groups 17
1.3 Triad Q-groups 40
1.4 Algebraic Wu classes 50
1.5 Algebraic surgery 56
1.6 Forms and formations 60
1.7 Algebraic glueing 77
1.8 Unified L-theory 92
1.9 Products 98
1.10 Change of K -theory 102
§2. Relative L-theory 107
2.1 Algebraic Poincaré triads 113
2.2 Change of rings 120
2.3 Change of categories 133
2.4 「-groups 144
2.5 Change of K -theory 166
§3. Localization 169
3.1 Localization and completion 177
3.2 The localization exact sequence ($n \geqslant 0$) 205
3.3 Linking Wu classes 215
3.4 Linking forms 222
3.5 Linking formations 278
3.6 The localization exact sequence ($n \in \mathbb{Z}$) 366
3.7 Change of K -theory 381
§4. Arithmetic L-theory 391
4.1 Dedekind algebra 394
4.2 Dedekind rings 408
4.3 Integral and rational L-theory 418
55. Polynomial extensions $(\bar{x}=x)$ 425
5.1 L-theory of polynomial extensions 431
5.2 Change of k-theory 463
§6. Mayer-Vietoris sequences 471
6.1 Triad L-groups 480
6.2 Change of K -theory 495
6.3 Cartesian L-theory 506
6.4 Ideal L-theory 528
§7. The algebraic theory of codimension g surgery 535
7.1 The total surgery obstruction 537
7.2 The geometric theory of codimension q surgery 562
7.3 The spectral quadratic construction 588
7.4 Geometric Poincaré splitting 615
7.5 Algebraic Poincaré splitting 640
7.6 The algebraic theory of codimension 1 surgery 660
7.7 Surgery with coefficients 746
7.8 The algebraic theory of codimension 2 surgery 767
7.9 The algebraic theory of knot cobordism 822
References 843
Index of Propositions 862

Introduction

An n-dimensional algebraic Poincaré complex over a ring with involution A is an n-dimensional A-module chain complex C together with a self-dual chain equivalence

$$
C^{*}=\operatorname{Hom}_{A}(C, A) \longrightarrow C_{n-\star},
$$

so that there are induced abstract Poincaré duality A-module isomorphisms

$$
H^{*}(C) \longrightarrow H_{n-*}(C)
$$

A O-dimensional algebraic Poincaré complex over A is the same as a non-singular quadratic form over A. If M is a compact n-dimensional topological manifold and \widetilde{M} is a covering of M with group of covering translations π the $\mathbb{Z}[\pi]$-module chain complex $C(\widetilde{M})$ has the structure of an n-dimensional algebraic Poincaré complex over $\mathbb{Z}[\pi]$, on account of the classic Poincaré duality $H^{*}(\tilde{M}) \cong H_{n-*}(\tilde{M})$. The Poincaré-Lefschetz duality $H^{*}(\widetilde{M}) \cong H_{n-*}(\widetilde{M}, \widetilde{\partial M})$ of a compact n-dimensional manifold with boundary ($M, \partial M$) motivates the notion of an n-dimensional algebraic Poincaré pair over A, as a pair of chain complexes (C, JC) together with a self-dual chain equivalence $C^{*} \xrightarrow{\sim}(C / \partial C)_{n-*}$. There is thus an abstract cobordism theory, with n-dimensional algebraic Poincaré complexes C, C cobordant if $C \oplus-C^{\prime}=\partial D$ is the boundary of an ($n+1$)-dimensional algebraic Poincaré pair (D,3D).

In Parts I and II of a paper entitled "The algebraic theory of surgery" (Ranicki [9],[10], henceforth to be denoted I., II.) the cobordism of algebraic Poincaré complexes with a $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ structure was used to define a sequence of
covariant functors

$$
\left\{\begin{array}{l}
L^{n} \\
L_{n}
\end{array}:\{\text { rings with involution }\} \longrightarrow\{\text { abelian groups }\} \quad(n \in \mathbb{Z})\right.
$$

and to study their applications to the geometric theory of surgery on compact manifolds. In effect, this is Part III of the sequence, in which there are established various exact sequences in the algebraic L-groups, and some further application to geometric surgery are developed.

The D-dimensional $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-group $\left\{\begin{array}{l}L^{O}(A) \\ L_{O}(A)\end{array}\right.$ is the witt group of non-singular $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ forms over A. The quadratic L-groups are 4-periodic

$$
L_{n}(A)=L_{n+4}(A) \quad(n \in \mathbb{Z})
$$

and are in fact the surgery obstruction groups of wall [4]. The higher symmetric L-groups $L^{n}(A)(n \geqslant 0)$ are the algebraic Poincaré cobordism groups of Mishchenko [1]; they are not in general 4-periodic, $L^{n}(A) \neq L^{n+4}(A)$. The lower symmetric L-groups $L^{n}(A)(n \leqslant-1)$ are defined to be such that

$$
L^{n}(A)=L_{n}(A) \quad(n \leqslant-3)
$$

with an ad hoc definition for $L^{-1}(A)$ and $L^{-2}(A)$. The symmetric L-groups are related to the quadratic L-groups by symmetrization maps

$$
1+T: I_{n}(A) \longrightarrow L^{n}(A) \quad(n \in \mathbb{Z})
$$

which are isomorphisms modulo 8-torsion for any A, and actually isomorphisms if 2 is a unit in A.

The principal algebraic aim here is to establish exact sequences in L-theory substantiating the assertion made in the introduction to I. that the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{n}(A) \\ L_{n}(A)\end{array}\right.$ (n $\left.\in \mathbb{Z}\right)$ are to the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ witt group $\left\{\begin{array}{l}L^{O}(A) \\ L_{0}(A)\end{array}\right.$ what the algebraic K-groups $K_{n}(A)(n \in \mathbb{Z})$ are to the projective class group $K_{0}(A)$. It will be recalled that algebraic $K-t h e o r y$ has to determine whether a finitely generated projective A-module is free, and if so in how many ways; similarly, algebraic L-theory has to determine whether a $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ form is hyperbolic (= admits a maximally isotropic "lagrangian" direct summand), and if so in how many ways. The actual L-theory exact sequences obtained are listed further below, following a brief discussion of their K-theory antecedents.

The principal geometric aim is to extend the applications of algebraic surgery to topology made in II. beyond the general surgery obstruction theory for manifolds of Part 1 of Wall (41 to the theory of Part 2 arising in the classification of topological (sub) manifold structures on geametric poincaré (sub) complexes, that is codimension q surgery obstruction theor: Exact sequences play an important role in this classification, notably the fundamental "surgery exact sequence" of the Browder-Novikov-Sullivan-Wall theory

$$
L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \longrightarrow S^{T O P}(x) \longrightarrow(x, G / T O P] \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right)
$$

for the set $g^{T O P}(x)$ of topological manifold structures on an
n-dimensional geometric Poincaré complex $x(n \geqslant 5)$ with a topological reduction $\tilde{\mathrm{v}}_{\mathrm{X}}: \mathrm{X} \longrightarrow$ BTOP of the Spivak normal fibration $\nu_{X}: X \longrightarrow B G$. It will be recalled that an n-dimensional geometric Poincaré complex X is a finite $C W$ complex with the poincaré duality $H^{*}(\widetilde{X})=H_{n-*}(\widetilde{X})$ of a compact $n-d i m e n s i o n a l$ topological manifold, but which is not required to be locally homeomorphic to Euclidean n-space \mathbf{R}^{n}, Surgery theory has to determine whether a geometric Poincaré complex is homotopy equivalent to a manifold, and if so in how many ways. The theory was first developed for smooth (= differentiable) manifolds, but it has since turned out to work just as well for topological manifolds. Moreover, the topological category has better algebraic properties, such as the homotopy-theoretic 4 -periodicity of the classifying space

$$
\Omega^{4}(G / T O P)=L_{O}(Z) \times G / T O P
$$

The total surgery obstruction theory of Ranicki [7] was a tentative first step towards a purely algebraic account of the homotopy theory of compact n-dimensional topological manifolds, at least for $n \geqslant 5$, including an algebraic expression for the surgery exact sequence.

In an effort at making this book self-contained $\$ 1$ recapitulates the main definitions and results of I. and II., particularly the definition of the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{*}(A) \\ L_{\star}(A)\end{array}\right.$ and of the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ signature $\left\{\begin{array}{l}\sigma *(X) \in I_{1}{ }^{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \\ \sigma_{*}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)\end{array}\right.$ of an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré complex } X \\ \text { normal map }(f, b): M \longrightarrow X\end{array}\right.$, along with the
identification of the quadratic signature with the wall surgery obstruction. The algebraic L-theory exact sequences are developed in $\$ \$ 2-6$, and the algebraic theory of codimension q surgery is developed in $\$ 7$. It should be noted that while the material of $552-6$ is in its definitive form, 57 is only a preliminary account of the applications to topology, on the level of exposition of the total surgery obstruction theory of Ranicki [7] which it extends. The full account will be spread out over the next two instalments of the series, Ranicki [11],[12].

In dealing with the algebraic k-theory motivating the algebraic L-theory it will be assumed that the reader is familiar with the definitions and basic properties of the classical algebraic K-groups $K_{O}(A)$ and $K_{1}(A)$, and their appearance in topology via the wall finiteness obstruction and the whitehead torsion. The algebraic K-groups $K_{n}(A)$ defined for $n \leqslant-1$ by Bass, for $n=2$ by Milnor, and for $n \geqslant 3$ by Quillen are invoked only for the way in which they extend for fail to extend) the exact sequences of classical algebraic k-theory. In particular, the algebraic K -groups
$K_{n}(A)=K_{n}$ (exact category of f.g. projective A-modules) ($n \in \mathbb{Z}$)
are such that for a ring morphism $f: A \longrightarrow B$ there are defined relative K-groups $K_{n}(f)(n \in \mathbb{Z}$) with a change of rings exact sequence

$$
\ldots \longrightarrow K_{n}(A) \longrightarrow K_{n}(B) \longrightarrow K_{n}(f) \longrightarrow K_{n-1}(A) \longrightarrow \ldots(n \in \mathbb{Z})
$$

Given a multiplicątive subset $S \in A$ of non-zero-divisors there is defined a $r i n g S^{-1} A$ inverting S, and there are defined algebraic K -groups

$$
\begin{aligned}
K_{n}(A, s)= & K_{n-1} \text { (exart category of } S \text {-torsion A-modules } \\
& \text { of homological dimension } 1) \quad(n \in \mathbb{Z})
\end{aligned}
$$

such that the relative K-groups $K_{\star}(f)$ of the localization map $f: A \longrightarrow S^{-1} A$ can be identified with $K_{*}(A, S)$

$$
K_{n}\left(f: A \longrightarrow S^{-1} A\right)=K_{n}(A, S) \quad(n \in \mathbb{Z})
$$

The consequent expression for the change of r ings exact sequenc

$$
\ldots \longrightarrow K_{n}(A) \longrightarrow K_{n}\left(S^{-1} A\right) \longrightarrow K_{n}(A, S) \longrightarrow K_{n-1}(A) \longrightarrow \ldots
$$

is the "localization exact sequence of algebraic K-theory". For a Dedekind $r i n g{ }^{R}$ with quotient field $F=(R-\{0\})^{-1} R$ a devissage argument identifies

$$
K_{n}(R, R-\{0\})=\oplus_{\rho} K_{n-1}(R / \rho) \quad(n \in \mathbb{Z})
$$

with 3 ranging over all the maximal ideals of R, so that the localization exact sequence for $R \longrightarrow F$ can be written as

$$
\left.\ldots \longrightarrow K_{n}(R) \longrightarrow K_{n}(F) \longrightarrow{\underset{\rho}{P} K_{n-1}}^{\oplus} / \beta / \rho\right) \longrightarrow K_{n-1}(R) \longrightarrow \ldots
$$

(r
An application of the localization exact sequence to the multiplicative subset $x=\left\{x^{k} \mid k \geqslant 0\right\} \subset A[x]$ proves the "fundamental theorem of algebraic k-theory", relating the K-groups of the polynomial extension rings $A[x], A\left[x, x^{-1}\right]$ in a central indeterminate x over $A(a x=x a, a \in \Lambda)$ by naturalls split exact sequences

$$
\begin{aligned}
\left.0 \longrightarrow K_{n}(A) \longrightarrow K_{n}(A[x]) \oplus K_{n}\left(A \mid x^{-1}\right]\right) & \longrightarrow K_{n}\left(A\left[x, x^{-1}\right]\right) \\
& \longrightarrow K_{n-1}(A) \longrightarrow 0
\end{aligned}
$$

This can be generalized to the algebraic K-groups of twisted polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ (ax $=x \alpha(a)$ for some automorphism $\alpha: A \longrightarrow A)$, since the exact sequence for the localization $A_{\alpha}|x| \longrightarrow X^{-1} A_{\alpha}|x|=A_{\alpha}\left[x, x^{-1}\right]$ can be expressed as

$$
\begin{aligned}
\ldots \longrightarrow K_{n}\left(A_{\alpha}[x]\right) \longrightarrow & K_{n}\left(A_{\alpha}\left[x, x^{-1}\right]\right) \longrightarrow K_{n-1}(A) \oplus \widetilde{N i l}_{n}(A, \alpha) \\
& \longrightarrow \quad(n \in \mathbb{Z})
\end{aligned}
$$

with the $\overparen{N i l}$-groups such that

$$
\begin{aligned}
K_{n}\left(A_{\alpha}[x]\right)= & K_{n}(\text { exact category of } f . g \text {. projective } A \text {-modules } \\
& \text { with an } \alpha \text {-twisted nilpotent map } v: P \longrightarrow P) \\
= & K_{n}(A) \oplus \widetilde{N i l}_{n}(A, \alpha-1) \quad(n \in \mathbb{Z}) .
\end{aligned}
$$

Given a cartesian square of rings

such that $B \longrightarrow A^{\prime}$ (or $B^{\prime} \longrightarrow A^{\prime}$) is onto there is defined a Mayer-vietoris exact sequence of the classical algebraic K-groups

$$
\begin{aligned}
& K_{1}(A) \longrightarrow K_{1}(B) \oplus K_{1}\left(B^{\prime}\right) \longrightarrow K_{1}\left(A^{\prime}\right) \longrightarrow K_{0}(A) \longrightarrow K_{0}(B) \oplus K_{0}\left(B^{\prime}\right. \\
&\left.\longrightarrow K_{-1}(A) \longrightarrow A^{\prime}\right) \longrightarrow K_{0} \longrightarrow
\end{aligned}
$$

which extends on the right to the lower K-groups, but which does not in general extend to the higher K-groups on the left. However, if $S \subset A$ is a multiplicative subset of non-zero-diviso and

$$
\hat{A}=\frac{\operatorname{Lim}_{s \in S}}{} A / S A
$$

is the S-adic completion of A then there is defined a cartesia square of rings

for which there is defined a Mayer-Vietoris exact sequence in all the K -groups

$$
\begin{aligned}
\ldots \longrightarrow K_{n}(A) \longrightarrow K_{n}(\hat{A}) \oplus K_{n}\left(S^{-1} A\right) \longrightarrow K_{n}\left(\hat{S}^{-1} \hat{A}\right) \longrightarrow K_{n-1}(A) \longrightarrow \ldots \\
(n \in \mathbb{Z})
\end{aligned}
$$

It is these exact sequences of algebraic k-theory which serve as models for L-theory. The individual introductions to $\$ \$ 2-6$ and $\$ 7.6$ contain some further background material concerning algebraic k-theory, such as references.

In summarizing below the algebraic L-theory exact sequences obtained in $\$ 52-6$ the terminology will be simplified by writing $\left\{\begin{array}{l}L_{*}(A) \\ L_{*}(A)\end{array}\right.$ for all the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-qroups, even though the groups that actually occur are the "intermediate

$$
\left\{\begin{array} { l }
{ \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { L-groups" } \left\{\begin{array}{l}
L_{X}^{\star}(A, \varepsilon) \\
L_{\star}^{X}(A, E)
\end{array} \text { with } x \subseteq \widetilde{K}_{m}(A) \quad(m=0 \text { or } 1)\right.\right.
$$

some subgroup which is invariant under the involution of $\tilde{K}_{m}(A)$ determined by the involution ${ }^{-}: A \longrightarrow A ; a \longmapsto \bar{a}$ of the ring A, and $\varepsilon \in A$ a central unit such that $\bar{E}=\varepsilon^{-1} \in A$.

Following the discussion in $\$ 1$ of the absolute $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{n}(A) \\ L_{n}(A)\end{array}(n \in \mathbb{Z})\right.$ of a ring with involution A there will be defined in $\$ 2$ the relative $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$-groups $\left\{\begin{array}{l}L^{n}(f) \\ L_{n}(f)\end{array}\right.$ ($n \in \mathbb{Z}$) of a morphism of rings with involution $f: A \longrightarrow B$, with a change of rings exact sequence

$$
\left\{\begin{array}{l}
\ldots \longrightarrow L^{n}(A) \longrightarrow \xrightarrow{f} L^{n}(B) \longrightarrow L^{n}(f) \longrightarrow L^{n-1}(A) \longrightarrow L_{n}(A) \longrightarrow L_{n}(B) \longrightarrow L_{n-1}(A) \longrightarrow(n \in \mathbb{Z}) \\
\ldots \longrightarrow
\end{array}\right.
$$

In 53 the relative $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L_{*}^{*}(f) \\ L_{*}(f)\end{array}\right.$ of the localization map $f: A \longrightarrow S^{-1} A$ inverting a multiplicative subset $S \subset A$ of non-zero-divisors invariant under the involution will be identified with the cobordism groups $\left\{\begin{array}{l}L_{*}(A, S) \\ L_{*}(A, S)\end{array}\right.$ of $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ Poincaré complexes over A which become acyclic over the localization $S^{-1} A$

$$
\left\{\begin{array}{l}
L^{n}\left(f: A \longrightarrow S^{-1} A\right)=L^{n}(A, S) \\
L_{n}\left(f: A \longrightarrow S^{-1} A\right)=L_{n}(A, S)
\end{array} \quad(n \in \mathbb{Z}),\right.
$$

thus obtaining the "localization exact sequence of $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-theory"

$$
\left\{\begin{array}{l}
\left.\cdots \longrightarrow L^{n}(A) \longrightarrow L^{n}\left(S^{-1} A\right) \longrightarrow L_{n}^{n}(A, S) \longrightarrow L^{n}(A) \longrightarrow L^{n-1}(A) \longrightarrow S^{-1} A\right) \longrightarrow L_{n}(A, S) \longrightarrow L_{n-1}(A) \longrightarrow \\
\cdots \longrightarrow
\end{array}\right.
$$

In particular, $\left\{\begin{array}{l}L^{O}(A, S) \\ L_{O}(A, S)\end{array}\right.$ is the witt group of non-singular S^{-1} A/A-valued $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ linking forms on h.d. 1 s-torsion
A-modules. (See Ranicki [6] for a preliminary account of localization in quadratic L-theory). In $\$ 4$ it is shown that for a ring with involution A which is an algebra over a Dedekind ring $R(e . q$. a group ring $A=\mathbb{Z}[\pi]$ with $R=\mathbb{Z}$)
the relative terms in the localization exact sequence for $S=R-\{0\} \subset A$ have natural direct sum decompositions

$$
\left\{\begin{array}{l}
L_{1}^{n}(A, S)=\bigoplus_{\rho}^{n}\left(A, \rho^{\infty}\right) \\
L_{n}(A, S)=\bigoplus_{\rho}^{\oplus} L_{n}\left(A, \rho^{\infty}\right)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

with 3 ranging over all the maximal ideals of R invariant under the involution, and $\left\{\begin{array}{l}L^{\star}\left(A, \rho^{\infty}\right) \\ L_{\star}\left(A, \rho^{\infty}\right)\end{array}\right.$ defined in the same way as $\left\{\begin{array}{l}L^{*}(A, S) \\ L_{\star}(A, S)\end{array}\right.$ but using only A-module chain complexes with P-primary S-torsion homology A-modules. Furthermore, in the case $A=R$ a symmetric L-theory devissage argument identifies

$$
L^{n}(R, S)={\underset{\rho}{\rho}}^{(P}(R / \rho) \quad(n \geqslant 0)
$$

In general, there is no devissage in quadratic L-theory, and an example is constructed for which

$$
L_{n}(R, S) \neq \underset{\rho}{\oplus} L_{n}(R / \rho)
$$

In $\$ 5$ the localization exact sequence of $\$ 3$ is applied to obtain splitting theorems for the L-groups of the α-twisted polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ of a ring with involution A, with $\alpha: A \longrightarrow A$ a ring automorphism such that $\overline{\alpha(a)}=\alpha^{-1}(\bar{a}) \in A(a \in A)$ and x an indeterminate over A such thal

$$
\bar{x}=x, \quad a x=x \alpha(a)
$$

It will be shown that the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-theory exact sequence for the localization inverting $x=\left\{x^{k} \mid k \geqslant 0\right\} \subset A_{\alpha}[x]$

$$
A_{\alpha}[x] \longrightarrow x^{-1} A_{\alpha}[x]=A_{\alpha}\left[x, x^{-1}\right]
$$

consists of naturally split short exact sequences of the type
and hence that there are defined naturally split exact sequenc of the type

where A^{α} is the ring A with involution $a \longmapsto \alpha(\bar{a})$.
This "fundamental theorem of $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-theory" is surprisif
in the twisted case $\alpha \neq$ id., since the corresponding localization exact sequence in algebraic K-theory

$$
\ldots \longrightarrow K_{n}\left(A_{\alpha}[x]\right) \longrightarrow K_{n}\left(A_{\alpha}\left[x, x^{-1}\right]\right) \longrightarrow K_{n}\left(A_{\alpha}[x], x\right)
$$

need not break up into short exact sequences if $\alpha \neq i d$., that is $\dot{f} \neq 0$ in general. (In $\$ 7.6$ the fundamental theorem of quad: L-theory for a group ring $A=\mathbb{Z}\{\pi\}$ will be given a geometric interpretation in terms of the Browder-Livesay-Wall obstructic theory for surgery on one-sided codimension 1 submanifolds.) In $\$ 6$ it will be shown that for a cartesian square of rings with involution

with $B \longrightarrow A^{\prime}$ (or $B^{\prime} \longrightarrow A^{\prime}$) onto there is defined a Mayer-Vietoris exact sequence of quadratic L-groups

In general, there is no such exact sequence in the symmetric L-groups, and an example is constructed to illustrate this failure of excision. For a localization-completion cartesian square

there will be obtained a Mayer-Vietoris exact sequence in quadratic L-theory

$$
\begin{aligned}
\cdots \longrightarrow L_{n}(A) \longrightarrow L_{n}(\hat{A}) \oplus L_{n}\left(S^{-1} A\right) \longrightarrow L_{n}\left(\hat{S}^{-1} \hat{A}\right) \longrightarrow L_{n-1}(A) \longrightarrow \ldots \\
(n \in \mathbb{Z}),
\end{aligned}
$$

and if 2 is a unit in $\hat{\mathrm{S}}^{-1} \hat{\mathrm{~A}}$ there will also be obtained such a sequence in symmetric L-theory

$$
\ldots \longrightarrow L^{n}(A) \longrightarrow L^{n}(\hat{A}) \oplus L^{n}\left(S^{-1} A\right) \longrightarrow L^{n}\left(\hat{S}^{-1} \hat{A}\right) \longrightarrow L^{n-1}(A) \longrightarrow \ldots
$$

$$
(n \in \mathbb{Z})
$$

In particular, for any group π there is a Mayer-vietoris exact sequence in both the symmetric and the quadratic L-groups of the classical localization-completion "arithmetic square" of group rings

the study of which plays such an important role in the computation of the surgery obstruction groups $L_{*}(\pi) \equiv L_{*}(\mathbb{Z}[\pi])$ of finite groups π and allied trades.

Codimension q surgery theory deals with the problem of doing surgery on a codimension q submanifold $N^{n-q} \subset M^{n}$ inside M, that is "ambient surgery" as opposed to "abstract surgery" on N without regard to M. For $q \geqslant 3$ the ambient and abstract surgery obstructions coincide. Besides the abstract surgery obstruction groups $L_{*}(\pi)$ Wall $[4, \leqslant 11]$ also introduced the codimension q surgery obstruction groups $L S_{*}(\Phi)(q=1$ or 2$)$, by formalizing the idea due to Browder of first doing abstract surgery on the submanifold N ard then fitting the result back into the supermanifold M. Given an n-dimensional geometric Poincaré complex X, a codimension q Poincaré subcomplex $Y \subset X$ with normal fibration $\xi=v_{V \subset X}: Y \longrightarrow B G(q)(q=1$ or 2$)$, and a homotopy equivalence $f: M \longrightarrow X$ from an n-dimensional manifold M there is defined an obstruction
to deforming f by a homotopy to a map transuerse at $Y \subset X$ with both the restrictions $f\left|: N=f^{-1}(Y) \longrightarrow Y, f\right|: M-N=f^{-1}(X-Y) \longrightarrow X-Y$ homotopy equivalences, i.e. to "splitting f along $y \subset x$ ".

The LS-groups are defined geometrically to fit into the exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow L_{n+1}\left(\pi_{1}(X-Y) \longrightarrow \pi_{1}(X)\right) \longrightarrow L_{n-q}(\Phi) \\
& \longrightarrow L_{n-q}\left(\pi_{1}(Y)\right) \xrightarrow{\xi!} L_{n_{1}}\left(\pi_{1}(X-Y) \longrightarrow \pi_{1}(X)\right)
\end{aligned}
$$

the map $L S_{n-q}(\Phi) \longrightarrow L_{n-q}\left(\pi_{1}(Y)\right)$ sending the ambient surgery obstruction $s(f, Y)$ to the abstract surgery obstruction $\sigma_{*}(f)$:

The expression in 1 . of the surgery obstruction groups $L_{*}(\pi)$ in terms of quadratic Poincaré complexes and the choin homotopy invariant expression in II. of the surgery obstructi are extended in $\$ 7$ to the LS-groups $L S_{\star}(\Phi)$ and the codimensiol splitting obstruction. Many authors have used geometric techniques to prove splitting theorems for manifolds, which are equivalent to vanishing theorems for the LS-groups and hence to the existence of Mayer-vietoris exact sequences in the surgery obstruction groups. For example, the codimension splitting theorem of Cappell implies that there exists such a sequence for many free products with amalgamation $\pi_{1}{ }^{\circ}{ }_{\rho} \pi_{2}$

$$
\ldots \longrightarrow I_{n}(\rho) \longrightarrow L_{n}\left(\pi_{1}\right) \oplus L_{n}\left(\pi_{2}\right) \longrightarrow L_{n}\left(\pi_{1} \star_{\rho} \pi_{2}\right) \longrightarrow L_{n-1}(\rho) \longrightarrow
$$

and for many HNN extensions $\pi_{\rho}\{t\}$

$$
\ldots \longrightarrow L_{n}(\rho) \longrightarrow L_{n}(\pi) \longrightarrow L_{n}\left(\pi *_{\rho}\{t\}\right) \longrightarrow L_{n-1}(\rho) \longrightarrow
$$

The next instalment of the series (Ranicki [1l]) will be devo to carrying out the programme put forward in $\$ 7.5$ for an algebraic derivation of codimension q splitting theorems, using an alqebraic theory of codimension q transversality. This should also apply to the symmetric L-groups $I_{1} *(\pi)$, even the example of Proposition 7.6 .8 shows that they are not in general geometrically realizable.

This is principally a research monograph, presenting work done over a period of ten years. I should like to thank for their support the various institutions with which I have been associated in that time:

Trinity College, Cambridge (1972-1977)
Institute des Hautes Études Scientifiques,
Bures sur Yvette (1973-1974)
Princeton University (*) (1977-1981)
Princeton,
March, 1981
(*) Including partial support from NSF Grants

\$1. Absolute L-theory

In $\$ 1$ we reiterate all the concepts of I. and II. which we shall be using here, particularly the definition of the n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{n}(A, \varepsilon) \\ L_{n}(A, \varepsilon)\end{array}\right.$ ($n \in \mathbb{Z}$) of a ring with involution A as the cobordism groups of n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ background of the L-groups is recalled: this is important even in a purely algebraic context, since algebraic Poincaré cobordism has all the formal properties of the cobordism of manifolds (as indeed does geometric Poincaré cobordism). For example, there are cobordism exact sequences both in the geometry and in the algebra, and the relative L-groups will be defined in $\$ 2$ as relative algebraic Poincaré cobordism groups.
§l also contains some new material, specifically the triad Q-groups of $\$ 1.3$, the glueing of forms and formations of $\$ 1.7$ and the \mathcal{L}-categories of $\$ 1.8$.

1.1 Q-groups

Let A be a ring with involution, that is an associative ring with 1 , together with a function

$$
\overline{-}: A \longrightarrow \bar{A} ; a \longmapsto \bar{a}
$$

such that
$(\bar{a}+\bar{b})=\bar{a}+\bar{b},(\overline{a b})=\bar{b} \cdot \bar{a}, \overline{\bar{a}}=a, \bar{l}=1 \in A(a, b \in A)$.
Given a left A-module M let M^{t} be the right A-module
defined by additive group of M with A acting by

$$
M^{t} \times A \longrightarrow M^{t} ;(x, a) \longmapsto \bar{a} x .
$$

Except where a right A-module structure is specified "A-module" refers to a left A-module structure.

Given A-modules M, N let $\operatorname{Hom}_{A}(M, N)$ be the abelian group of A-module morphisms

$$
f: M \longrightarrow N .
$$

The dual of an A-module M is the A-module

$$
M^{\star}=\operatorname{Hom}_{A}(M, A)
$$

with A acting by

$$
A \times M^{*} \longrightarrow M^{*} ;(a, f) \longmapsto(x \longmapsto \ldots f(x), \bar{a}) \quad(x \in M) .
$$

The dual of an A-module morphism $f \in \operatorname{Hom}_{A}(M, N)$ is the A-module morphism $f^{*} \in \operatorname{Hom}_{A}\left(N^{*}, M^{*}\right)$ defined by

$$
f^{*}: N^{*} \longrightarrow M^{*} ; g \longmapsto(x \longmapsto g(f(x))) \text {. }
$$

If M is a f.g. ($=$ finitely generated) projective A-module then so is M^{*}, and there is defined a natural A-module isomorphism

$$
M \longrightarrow M^{* *} ; x \longmapsto(h \longmapsto \overline{h(x)}) \quad\left(h \in M^{*}\right)
$$

which we shall use to identify $M^{* *}=M$.

An A-module chain complex C is a sequence of A-modules and A -module morphisms

$$
\mathrm{C}: \ldots \longrightarrow \mathrm{C}_{\mathrm{r}+1} \xrightarrow{\mathrm{~d}} \mathrm{C}_{\mathrm{r}} \xrightarrow{\mathrm{~d}} \mathrm{C}_{\mathrm{r}-1} \longrightarrow \longrightarrow \quad(\mathrm{r} \in \mathbb{Z})
$$

such that

$$
a^{2}=0 \in \operatorname{Hom}_{A}\left(C_{r}, C_{r-2}\right) \quad(r \in \mathbb{Z})
$$

The $\left\{\begin{array}{l}\text { homology } \\ \text { cohomology }\end{array}\right.$ A-modules of c are defined (as usual) by

$$
\left\{\begin{array}{l}
H_{r}(C)=\operatorname{ker}\left(d: C_{r} \longrightarrow C_{r-1} / i m\left(d: C_{r+1} \longrightarrow C_{r}\right)\right. \\
H^{r}(C)=\operatorname{ker}\left(d^{*}: c^{r} \longrightarrow C^{r+1}\right) / \operatorname{im}\left(d^{*}: c^{r-1} \longrightarrow C^{r}\right)
\end{array} \quad\left(r \in \mathbb{Z}, c^{r}=c_{r}^{*}\right) .\right.
$$

A chain map of A-module chain complexes

$$
\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D}
$$

is a collection of A-module morphisms $\left\{f \in \operatorname{Hom}_{A}\left(C_{r}, D_{r}\right) \mid r \in \mathbb{Z}\right\}$ such that

$$
d_{D} f=f d_{C} \in \operatorname{Hom}_{A}\left(C_{r}, D_{r-1}\right) \quad(r \in \mathbb{Z})
$$

A chain homotopy of chain maps

$$
\mathrm{g}: \mathrm{f} \simeq \mathrm{f}^{\prime}: \mathrm{C} \longrightarrow \mathrm{D}
$$

is a collection of A-module morphisms $\left\{g \in \operatorname{Hom}_{A}\left(C_{r}, D_{r+1}\right) \mid r \in \mathbb{Z}\right\}$ such that

$$
f^{\prime}-f=d_{D} g+g d_{C} \in \operatorname{Hom}_{A}\left(C_{r}, D_{r}\right) \quad(r \in \mathbb{Z})
$$

A chain equivalence is a chain map $f: C \longrightarrow D$ which admits a chain homotopy inverse, i.e. a chain map f ': $D \longrightarrow C$ for which there exist chain homotopies $g: f^{\prime} f \simeq 1: C \longrightarrow C, g^{\prime}: f f \prime \simeq 1: D \longrightarrow D$.

A chain complex C is chain contractible if it is chain equivalent to O; a chain homotopy $\mathrm{r}: \mathrm{I} \simeq 0: \mathrm{C} \longrightarrow \mathrm{C}$ is a chain contraction of C

An A-module chain map $f: C \longrightarrow D$ induces A-module morphisms in $\left\{\begin{array}{l}\text { homology } \\ \text { cohomology }\end{array}\right.$
which depend only on the chain homotopy class of f, and are isomorphisms if f is a chain equivalence. The algebraic mapping cone $C(f)$ of f is the A-module chain complex defined by

$$
d_{C(f)}=\left(\begin{array}{cc}
d_{D} & (-)^{r-1} f \\
0 & d_{C}
\end{array}\right): C(f)_{r}=D_{r}^{\oplus C} C_{r-1} \longrightarrow C(f)_{r-1}=D_{r-1} \oplus C C_{r-2}
$$

The relative $\left\{\begin{array}{l}\text { homology } \\ \text { cohomology }\end{array}\right.$ A-modules of f are defined by

$$
\left\{\begin{array}{l}
H_{r}(f)=H_{r}(C(f)) \\
H^{r}(f)=H^{r}(C(f))
\end{array} \quad(r \in Z)\right.
$$

and are such that there are defined exact sequences of A-module:

In A-module chain complex is n-dimensional if it is a finite complex of f.g. projective A-modules which is chain equivalent to a f.g. projective complex of the type

For $n \leqslant-1 n$-dimensional = chain contractible, by convention. A finite-dimensional chain complex C is n-dimensional if and only if $H_{r}(C)=0$ for $r<0$ and $H^{r}(C)=O$ for $r>n$. A chain map $f: C \rightarrow D$ of finite-dimensional chain complexes is a chain equivalence if and only if. $H_{*}(f)=0$, or equivalently if $C(f)$ is chain contractible.

Given A-module chain complexes $C, D \operatorname{let} C^{t}{\underset{A}{A}}^{D}$, $\operatorname{Hom}_{A}(C, D)$ be the \mathbb{Z}-module chain complexes defined by

$$
\begin{aligned}
& d_{C}{ }^{t} \otimes_{A} D:\left(C^{t} \otimes_{A} D\right)_{n}=\sum_{p+q=n} C_{p}^{t} \otimes_{A} D_{q} \longrightarrow\left(C^{t} \otimes_{A} D\right)_{n-1} ; \\
& x \otimes y \longmapsto x \otimes d_{D}(y)+(-)^{q} d_{C}(x) \otimes y, \\
& d_{\operatorname{Hom}_{A}(C, D)}: \operatorname{Hom}_{A}(C, D)_{n}=\sum_{q-p=n} \operatorname{Hom}_{A}\left(C_{p}, D_{q}\right) \longrightarrow \operatorname{Hom}_{A}(C, D)_{n-1} ; \\
& f \longmapsto d_{D} f+(-)^{q} \mathrm{fd}_{\mathrm{C}} \quad .
\end{aligned}
$$

Let $C *$ be the A-module chain complex defined by

$$
d_{C *}=\left(d_{C}\right)^{\star}:\left(C^{\star}\right)_{r}=C^{-r} \longrightarrow\left(C^{\star}\right)_{r-1}=C^{-r+1}
$$

and let $c^{n-\star}(n \in \mathbb{Z})$ be the A-module chain complex defined by

$$
d_{C^{n-*}}=(-)^{r}\left(d_{C}\right)^{*}:\left(C^{n-*}\right)_{r}=c^{n-r} \longrightarrow\left(C^{n-k}\right)_{r-1}=c^{n-r+1}
$$

The sign conventions are such that an element $f \in H_{n}\left(\operatorname{Hom}_{A}\left(C^{*}, D\right)\right)$ is the same as a chain homotopy class of chain maps

$$
\mathrm{f}: \mathrm{c}^{n^{-*}} \longrightarrow \mathrm{D}
$$

Let $\varepsilon \in A$ be a central unit such that

$$
\bar{\varepsilon}=\varepsilon^{-1} \in A
$$

(e.g. $\varepsilon= \pm l \in A)$. Given a finite-dimensional A-module chain complex C let the generator $T \in \mathbb{Z}_{2}$ act on $\operatorname{Hom}_{A}\left(C^{*}, C\right)$ by the e-duality involution

$$
\begin{aligned}
T & : \operatorname{Hom}_{A}\left(C^{P}, C_{q}\right) \longrightarrow \operatorname{Hom}_{A}\left(C^{q}, C_{p}\right) ; f \longmapsto \& f^{\star} \\
& \left(\varepsilon f^{\star}(y)(x)=\varepsilon \cdot \overline{f(y)(x)} \in A, x \in C^{p}, y \in C^{q}\right)
\end{aligned}
$$

$\left\{\begin{array}{l}\mathbb{Z}_{2} \text {-hypercohomology } \\ \mathbb{Z}_{2} \text {-hyperhomology groups } \\ \text { Tate } \mathbb{Z}_{2} \text {-hypercohomology }\end{array}\right.$

$$
\left\{\begin{array}{l}
Q^{n}(C, \varepsilon)=H_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{A}\left(C^{*}, C\right)\right)\right) \\
Q_{n}(C, \varepsilon)=H_{n}\left(W \otimes_{\left.\mathbb{Z}\left[\mathbb{Z}_{2}\right]^{\operatorname{Hom}_{A}}\left(C^{*}, C\right)\right)}\right. \\
\hat{Q}^{n}(C, \varepsilon)=H_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\hat{W}, \operatorname{Hom}_{A}\left(C^{*}, C\right)\right)\right)
\end{array}\right.
$$

with W the standard free $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-resolution of \mathbb{Z}

$$
\begin{aligned}
\mathrm{W}: \ldots \longrightarrow \mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1-T} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{\underline{1+T}} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \\
\xrightarrow{1-T} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \longrightarrow 0
\end{aligned}
$$

and \hat{W} the standard complete free $\mathbb{Z}\left\{\mathbb{Z}_{2}\right)$-resolucion of \mathbb{Z}

$$
\begin{aligned}
\hat{\mathrm{w}}: \ldots \longrightarrow \\
\mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1-T} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{\underline{1+T}} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \\
\xrightarrow{\text { 1-T }} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \xrightarrow{1+T} \mathbb{Z}\left[\mathbb{Z}_{2}\right] \rightarrow \ldots
\end{aligned}
$$

An element $\left\{\begin{array}{l}\phi \in Q^{n}(C, \varepsilon) \\ \psi \in Q_{n}(C, \varepsilon) \text { is an equivalence class of collections of } \\ \theta \in \hat{Q}^{n}(C, \varepsilon)\end{array}\right.$
chains of $\operatorname{Hom}_{A}(C *, C)$

$$
\left\{\begin{array}{l}
\left\{\phi_{s} \in \operatorname{Hom}_{A}\left(C^{n-r+s}, C_{r}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right\} \\
\left\{\psi_{s} \in \operatorname{Hom}_{A}\left(C^{n-r-s}, C_{r}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right\} \\
\left\{\theta_{s} \in \operatorname{Hom}_{A}\left(C^{n-r+s}, C_{r}\right) \mid r \in \mathbb{Z}, s \in \mathbb{Z}\right\}
\end{array}\right.
$$

such that

A chain map of finite-dimensional A-module chain complex

$$
\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D}
$$

induces a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map
and hence also morphisms in the Q-groups

An A-module chain homotopy $\mathrm{g}: \mathrm{f} \simeq \mathrm{f}^{\prime}: \mathrm{C} \longrightarrow \mathrm{D}$ does not in genera determine a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$ module chain homotopy

$$
\operatorname{Hom}_{A}(f *, f) \simeq \operatorname{Hom}_{A}\left(f^{\prime} \star, f^{\prime}\right): \operatorname{Hom}_{A}\left(C^{*}, C\right) \longrightarrow \operatorname{Hom}_{A}\left(D^{*}, D\right) .
$$

Nevertheless the Q-group morphisms induced by an A-module chait map f depend only on the chain homotopy class of f (cf. Propos 1.1.1 below). In order to account for the chain homotopy invar of the Q-groups we define (as in $\S 1.1$) the $" \mathbb{Z}_{2}$-isovariant category" with objects $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complexes, as follo

$$
\because \quad(
$$

A \mathbb{Z}_{2}-isovariant chain map of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain compl
$\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D}$
is a collection of Z - module morphisms

$$
f=\left\{f_{s} \in \operatorname{Hom}_{\mathbb{Z}}\left(C_{r}, D_{r+s}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right\}
$$

such that

$$
\begin{aligned}
& d_{D} f_{s}+(-)^{s-1} f_{s} d_{C}+(-)^{s-1}\left(f_{s-1}+(-)^{s} T_{D} f_{s-1} T_{C}\right)=0 \\
&: C_{r} \longrightarrow D_{r+s-1} \quad\left(s \geqslant 0, f_{-1}=\right.
\end{aligned}
$$

Thus $f_{O}: C \longrightarrow D$ is a Z-module chain map, $f_{1}: f_{O} \simeq T_{D} f_{O} T_{C}: C \longrightarrow$ is a \mathbb{Z}-module chain homotopy, and f_{2}, f_{3}, \ldots are higher \mathbb{Z}-module chain homotopies. A \underline{Z}_{2}-isovariant chain homotopy of \mathbb{Z}_{2}-isovariant chain maps

$$
g: f \simeq f^{\prime}: C \longrightarrow D
$$

is a collection of \mathbb{Z}-module morphisms

$$
g=\left\{g_{s} \in \operatorname{Hom}_{\mathbb{Z}}\left(C_{r}, D_{r+s+1}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right\}
$$

such that

$$
\begin{array}{r}
f_{s}^{\prime}-f_{s}=d_{D} g_{s}+(-)^{s} g_{s} d_{C}+(-)^{s}\left(g_{s-1}+(-)^{s-1} T_{D} g_{s-1} T_{C}\right)=1 \\
: C_{r} \longrightarrow D_{r+s}\left(s \geqslant 0, g_{-1}=1\right.
\end{array}
$$

In particular, a \mathbb{Z}_{2}-isovariant chain map $f: C \longrightarrow D$ with $f_{s}=0(s \geqslant 1)$ is the same as a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map $\mathrm{f}_{\mathrm{O}}: \mathrm{C} \longrightarrow \mathrm{D}$, and a \mathbb{Z}_{2}-isovariant chain homotopy $g: f \simeq f^{\prime}: C \longrightarrow D$ of such chain maps with $g_{s}=0(s \geqslant 1)$ is the same as a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain homotopy $g_{0}: f_{0} \simeq f_{0}: C$ The \mathbb{Z}_{2}-isovariant category is the category with objects $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complexes and morphisms the \mathbb{Z}_{2}-isovaria chain homotopy classes of \mathbb{Z}_{2}-isovariant chain maps.

A morphism is thus an element $f \in H_{o}\left(\operatorname{Hom}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]\left(W, \operatorname{Hom}_{\mathbb{Z}}(C, D)\right)\right)$, with $T \in \mathbb{Z}_{2}$ acting on $\operatorname{Hom}_{\mathbb{Z}}(C, D)$ by the involution

$$
T: \operatorname{Hom}_{\mathbb{Z}}(C, D) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(C, D) ; h \longmapsto T_{D} h_{C} T_{C}
$$

The composite of the \mathbb{Z}_{2}-isovariant morphisms $f: C \longrightarrow D$, $g: D \longrightarrow E$ is the \mathbb{Z}_{2}-isovariant morphism $g f: C \longrightarrow E$ defined by

$$
(g f)_{s}=\sum_{r=0}^{s}(-)^{r(s-r)}\left(T^{r} g_{s-r}\right) f_{r}: C_{t} \longrightarrow E_{s+t}(s \geqslant 0, t \in Z)
$$

which is the image of $f \otimes g$ under the pairing

$$
\begin{aligned}
& H_{O}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right)}\left(W, \operatorname{Hom}_{\mathbb{Z}}(C, D)\right)\right) \otimes_{\mathbb{Z}} H_{O}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{\mathbb{Z}}(D, E)\right)\right) \\
& \xrightarrow{\Delta^{*}} H_{O}\left(\operatorname{Hom}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]\left(W, \operatorname{Hom}_{\mathbb{Z}}(\mathrm{C}, \mathrm{D}) \otimes_{\mathbb{Z}} \operatorname{Hom}_{\mathbb{Z}}(\mathrm{D}, \mathrm{E})\right)\right) \\
& \xrightarrow{c^{\star}} H_{0}\left(\operatorname{Hom}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]\left(W, \operatorname{Hom}_{\mathbb{Z}}(C, E)\right)\right)
\end{aligned}
$$

defined by the composite of the product induced by the diagonal $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map $\Delta: W \longrightarrow W \mathbb{Q}_{\mathbb{Z}} W$ given by

$$
\Delta: W_{S} \longrightarrow\left(W \otimes_{Z} W_{s}=\sum_{r=0}^{S} W_{r} \otimes_{\mathbb{Z}} W_{s-r} ; 1_{s} \longmapsto \sum_{r=0}^{S} 1_{r} \otimes_{T_{s-r}}^{r}(s \geqslant 0)\right.
$$

and the composition pairing induced by

$$
c: \operatorname{Hom}_{\mathbb{Z}}(C, D) \otimes_{\mathbb{Z}}{ }^{H \circ m_{\mathbb{Z}}}(D, E) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}(C, E) ; h \otimes k \longmapsto
$$

$A \mathbb{Z}_{2}$-isovariant morphism $f: C \longrightarrow D$ induces morphisms in the $\left\{\begin{array}{l}\mathbb{Z}_{2} \text {-hypercohomology } \\ \mathbb{Z}_{2} \text {-hyperhomology } \\ \text { Tate } \mathbb{Z}_{2} \text {-hypercohomology }\end{array}\right.$

$$
\begin{aligned}
& \int f^{\mathcal{Z}}: H_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}(W, C)\right) \longrightarrow H_{n}\left(\operatorname{Hom}_{\left.\mathbb{Z} \mid \mathbb{Z}_{2}\right]}(W, D)\right) ; \\
& \phi=\left\{\phi_{s} \in C_{n+s} \mid s \geqslant 0\right\} \mapsto f^{q} \phi=\left\{\sum_{r=0}^{S}(-)^{r(s-r)}\left(T^{r} f_{s-r}\right) \phi_{r} \in D_{n+s} \mid s \geqslant 0\right) \\
& f_{q}: H_{n}\left(W \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} C\right) \longrightarrow H_{n}\left(W \otimes_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]{ }^{D}\right) ; \\
& \psi=\left\{\psi_{s} \in C_{n-s} \mid s \geqslant 0\right\} \longmapsto f_{q} \psi=\left\{\sum_{r=0}^{\infty}(-)^{r(s-r)}\left(T^{r} f_{r-s}\right) \psi_{r} \in D_{n-s} \mid s>0\right\} \\
& \hat{\mathrm{f}}^{\hat{q}}: \mathrm{H}_{\mathrm{n}}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}(\hat{\mathrm{W}}, \mathrm{C})\right) \longrightarrow \mathrm{H}_{\mathrm{n}}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}(\hat{\mathrm{W}}, \mathrm{D})\right) ; \\
& \theta=\left\{\theta_{s} \in C_{n+s} \mid s \neq 0\right\} \longmapsto \hat{f}^{\ell} \theta=\left\{\sum_{r=-\infty}^{\infty}(-)^{r(s-r)}\left(T^{r} f_{s-r}\right) \theta_{r} \in D_{n+s} \mid s \in \mathbb{Z}\right\},
\end{aligned}
$$

 the natural pairings

$$
\begin{aligned}
& \begin{array}{r}
\mathrm{H}_{\mathrm{O}}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\mathrm{W,} \mathrm{\operatorname{Hom}}_{\mathbb{Z}}(\mathrm{C}, \mathrm{D})\right)\right) \otimes_{\mathbb{Z}} \mathrm{H}_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}(\mathrm{W}, \mathrm{C})\right) \\
\longrightarrow \mathrm{H}_{\mathrm{n}}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}(\mathrm{W}, \mathrm{D})\right)
\end{array} \\
& H_{0}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{\mathbb{Z}}(C, D)\right) \otimes_{\mathbb{Z}}{ }^{H_{n}}\left(W \otimes_{\left.\mathbb{Z} \mid \mathbb{Z}_{2}\right]} C\right)\right. \\
& \longrightarrow H_{n}\left(W \otimes _ { \mathbb { Z } } \left[\mathbb{Z}_{2} \mid\right.\right. \text { D) } \\
& \mathrm{H}_{\mathrm{O}}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\mathrm{W}, \mathrm{Hom}_{\mathbb{Z}}(\mathrm{C}, \mathrm{D})\right) \otimes_{\mathbb{Z}} \mathrm{H}_{\mathrm{n}}\left(\mathrm{Hom}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right](\hat{W}, \mathrm{C})\right)\right. \\
& \longrightarrow H_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}(\hat{W}, \mathrm{D})\right)
\end{aligned}
$$

Proposition 1.1.1 The Q-group morphisms induced by a chain map $\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D}$ of finite-dimensional A-module chain complexes $\left\{\begin{array}{l}\mathrm{f}^{g}: Q^{\star}(C, \varepsilon) \longrightarrow Q^{\star}(D, \varepsilon) \\ f_{g}: Q_{\star}(C, E) \longrightarrow Q_{\star}(D, \varepsilon) \text { depend oniy on the chain homotopy clas: } \\ \hat{f}^{\hat{g}}: \hat{Q}^{*}(C, \varepsilon) \longrightarrow \hat{Q}^{\star}(D, \varepsilon)\end{array}\right.$ of f. In particular, they are isomorphisms if f is a chain equivalence.

Proof: An A-module chain homotopy

$$
\mathrm{g}: \mathrm{f} \simeq \mathrm{f},: \mathrm{C} \longrightarrow \mathrm{D}
$$

determines the \boldsymbol{Z}_{2}-isovariant chain homotopy

$$
\begin{aligned}
& \operatorname{Hom}_{A}\left(g^{\star}, g\right): \operatorname{Hom}_{A}\left(f^{\star}, f\right) \simeq \operatorname{Hom}_{A}\left(f^{\prime \star}, f^{\prime}\right): \\
& \operatorname{Hom}_{A}\left(C^{\star}, C\right) \longrightarrow \operatorname{Hom}_{A}\left(D^{\star}, D\right)
\end{aligned}
$$

defined by

$$
\begin{align*}
\operatorname{Hom}_{A}\left(g^{*}, g\right)_{S}: \operatorname{Hom}_{A}\left(C^{*}, C\right)_{r}= & \sum_{p+q=r} \operatorname{Hom}_{A}\left(C^{p}, C_{q}\right) \\
\longrightarrow & \begin{cases}g \phi f^{*}+(-)^{q_{f}} \phi g^{*} & \text { if } s: \\
(-)^{q+1} g \phi g^{*} & \text { if } s: \\
0 & \text { if } s:\end{cases}
\end{align*}
$$

The various Q-groups of a finite-dimensional A-module chain complex C are related to each other by the abelian group morphisms

$$
\begin{aligned}
& 1+T_{\varepsilon}: Q_{n}(C, \varepsilon) \longrightarrow Q^{n}(C, \varepsilon): \psi \longmapsto\left(\left(\left(1+T_{\varepsilon}\right) \psi\right)_{s}= \begin{cases}\left(1+T_{\varepsilon}\right) \psi_{O} \text { if } \\
0 & \text { if }\end{cases} \right. \\
& J: Q^{n}(C, \varepsilon) \longrightarrow Q^{n}(C, \varepsilon) ; \phi \longmapsto \longrightarrow(J \phi)_{s}=\left\{\begin{array}{ll}
\phi_{S} & \text { if } s \geqslant 0 \\
0 & \text { if } s \leqslant-1
\end{array}\right\} \\
& H: \hat{Q}^{n}(C, \varepsilon) \longrightarrow Q_{n-1}(C, \varepsilon) ; \theta \longmapsto \longrightarrow\left((H \theta)_{s}=\theta_{-s-1} \mid s \geqslant 0\right\} .
\end{aligned}
$$

Proposition 1.1.2 The Q-group sequence
$\ldots \longrightarrow \hat{Q}^{n+1}(C, E) \xrightarrow{H} Q_{n}(C, \varepsilon) \xrightarrow{1+T} \mathrm{E}_{\mathrm{E}} Q^{n}(C, \varepsilon)$ $\xrightarrow{J} \hat{Q}^{n}(C, \varepsilon) \xrightarrow{H} Q_{n-1}(C, \varepsilon) \longrightarrow \cdots$
is exact.
Proof: See Proposition I.l.2.

$$
\text { The }\left\{\begin{array}{l}
\text { suspension } S C \\
\text { desuspension } \Omega C
\end{array} \text { of an A-module chain complex } C\right. \text { is }
$$

the A-module chain complex defined by

$$
\left\{\begin{array}{l}
d_{S C}=d_{C}:(S C)_{r}=C_{r-1} \longrightarrow(S C)_{r-1}=c_{r-2} \\
d_{\Omega C}=d_{C}:(\Omega C)_{r}=c_{r+1} \longrightarrow(\Omega C)_{r-1}=c_{r}
\end{array}\right.
$$

so that $S \Omega C=\Omega S C=C$ and

$$
\left\{\begin{array}{l}
H_{r}(S C)=H_{r-1}(C) \\
H_{r}(\Omega C)=H_{r+1}(C)
\end{array}, \quad\left\{\begin{array}{l}
H^{r}(S C)=H^{r-1}(C) \\
H^{r}(\Omega C)=H^{r+1}(C)
\end{array}\right.\right.
$$

Given a finite-dimensional A-module chain complex C define the suspension maps in the $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ Q-groups

$$
\left\{\begin{array}{l}
s: Q^{n}(C, \varepsilon) \longrightarrow Q^{n+1}(S C, \varepsilon): \phi \longmapsto Q_{n+1}(S C, \varepsilon) ; \psi \longmapsto \\
S: Q_{n}(C, \varepsilon) \longrightarrow S \psi
\end{array} \quad(n \in \mathbb{Z})\right.
$$

by

$$
\left\{\begin{array}{c}
(S \phi)_{s}=\phi_{S-1}:(S C)^{n-r+s+1}=c^{n-r+s} \longrightarrow(S C)_{r}=c_{r-1} \\
(S \psi)_{s}=\psi_{S+1}:(S C)^{n-r-s+1}=c^{n-r-s} \longrightarrow(S C)_{r}=c_{r-1} \\
\left(r \in \mathbb{Z}, s \geqslant 0, \phi_{-1}=0\right) \quad
\end{array}\right.
$$

For each $p \geqslant 0$ define the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex $W[0, p]$ to be the subcomplex of W with

$$
w(0, p]_{s}= \begin{cases}W_{s}\left(=Z_{2}\left[Z_{2}\right]\right) & \text { if } 0 \leqslant s \leqslant p \\ 0 & \text { otherwise }\end{cases}
$$

Define the unstable ε-quadratic Q-groups $Q_{*}^{[O, P]}(C, \varepsilon)$ of a finite-dimensional A-module chain complex C by

$$
\left.Q_{n}^{[O, p]}(C, \varepsilon)=H_{n}\left(W[O, p] \mathbb{Q}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]\right]_{A}^{\operatorname{Hom}_{A}}\left(C^{\star}, C\right)\right) \quad(n \in \mathbb{Z})
$$

In particular, passing to the limit as $p \infty$ we have

$$
W[0, \infty]=W, Q_{*}^{[0, \infty]}(C, \varepsilon)=Q_{\star}(C, \varepsilon) .
$$

In the applications of the Q-groups to the algebraic theory of surgery it is useful to have available the following unstable analogue of the exact sequence of Proposition 1.1.2. For example, the unstable ε-quadratic Q-groups $Q_{*}^{[O, O]}(C, E)=H_{*}\left(\operatorname{Hom}_{A}\left(C^{*}, C\right)\right)$ appear in the algebraic theory of codimension 2 surgery outlined in $\$ 7.8$ below.

Proposition 1.1.3 Given a finite-dimensional A-module chain complex C there is defined an exact sequence of Q-groups

$$
\begin{aligned}
\ldots \longrightarrow Q^{n+p+1}\left(S^{p} C, \varepsilon\right) & \longrightarrow Q_{n}^{(0, p-1]}(C, \varepsilon) \\
& \longrightarrow Q^{n}(C, \varepsilon) \xrightarrow{s^{p}} 0^{n+p}\left(S^{p} C, \varepsilon\right) \longrightarrow \ldots(n \in Z)
\end{aligned}
$$

for any $p \geqslant 1$. If C is n-dimensional and $p \geqslant n+1$ then

$$
Q_{*}^{[0, P-1]}(C, \varepsilon)=Q_{*}^{[O, \infty]}(C, E)=Q_{*}(C, \varepsilon), Q^{*+P}\left(S^{\rho} C, \varepsilon\right)=\hat{Q}^{*}(C, \varepsilon)
$$

and the sequence coincides with the exact sequence of Proposition 1.1.2

$$
\ldots \longrightarrow \hat{Q}^{n+1}(C, \varepsilon) \xrightarrow{H} Q_{n}(C, \varepsilon) \xrightarrow{1+T} \varepsilon Q^{n}(C, \varepsilon) \xrightarrow{J} \hat{Q}^{n}(C, \varepsilon) \longrightarrow \ldots .
$$

Proof: See Proposition I.1.3.

Define the relative $\left\{\begin{array}{l}\frac{\varepsilon-q u a d r a t i c}{\varepsilon-s y m m e t r i c ~} \\ \frac{\varepsilon-h y p e r q u a d r a t i c ~}{Q-g r o u p s}\end{array}\left\{\begin{array}{l}Q^{*}(f, \varepsilon) \\ Q_{\star}(f, \epsilon) \\ \hat{Q}^{*}(f, \varepsilon)\end{array}\right.\right.$
of a chain map $f: C \longrightarrow D$ of f inite-dimensional A-module chain complexes by

$$
\left\{\begin{array}{l}
Q^{n+1}(f, \varepsilon)=H_{n+1}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, C\left(\operatorname{Hom}_{A}(f *, f)\right)\right)\right. \\
Q_{n+1}(f, E)=H_{n+1}\left(W \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]^{\left.C\left(\operatorname{Hom}_{A}\left(f^{*}, f\right)\right)\right)}}^{Q^{n+1}(f, E)=H_{n+1}{ }^{\left(\operatorname{Hom}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]\right.}{ }^{\left(\hat{W}, C\left(\operatorname{Hom}_{A}(f *, f)\right)\right)}} \quad\{n \in \mathbb{Z})\right.
\end{array}\right.
$$

where $C\left(\operatorname{Hom}_{A}(f *, f)\right)$ is the algebraic mapping cone of the induced $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
\operatorname{Hom}_{A}\left(f^{*}, f\right): \operatorname{Hom}_{A}\left(C^{*}, C\right) \longrightarrow \operatorname{Hom}_{A}\left(D^{*}, D\right) ; \phi \longmapsto f\left(\begin{array}{l}
\text { f }
\end{array}\right.
$$

$$
\begin{aligned}
& \text { An element }\left\{\begin{array}{l}
(\delta \phi, \phi) \in Q^{n+1}(f, \varepsilon) \\
(\delta \psi, \psi) \in Q_{n+1}(f, \varepsilon) \text { is an equivalence class of } \\
(\delta \theta, \theta) \in \hat{Q}^{n+1}(f, \varepsilon)
\end{array}\right. \\
& \text { collections of chains }
\end{aligned}
$$

$$
\begin{aligned}
& \text { such that }
\end{aligned}
$$

Proposition 1.1.4 The relative Q-groups of a chain map $\mathrm{f}: \mathrm{C}$ depend only on the chain homotopy class of f, and fit into the exact sequences

$$
\left\{\begin{array}{l}
\cdots \longrightarrow Q^{n+1}(C, \varepsilon) \longrightarrow \hat{f}^{q} \\
\left.Q^{n+1}(D, \varepsilon) \longrightarrow Q_{n+1}(C, \varepsilon) \longrightarrow Q^{n+1}(f, \varepsilon) \longrightarrow Q_{n+1}(D, \varepsilon) \longrightarrow Q_{n+1}^{n}(C, \varepsilon)-\varepsilon\right) \longrightarrow Q_{n}(C, \varepsilon)- \\
\cdots \longrightarrow \hat{Q}^{n+1}(C, \varepsilon) \xrightarrow{\hat{E}^{q}} \hat{Q}^{n} \hat{Q}^{n+1}(D, \varepsilon) \longrightarrow \hat{Q}^{n+1}(f, \varepsilon) \longrightarrow \hat{Q}^{n}(C, \varepsilon)-
\end{array}\right.
$$

1.2 L-groups

Let A, E be as in $\$ 1.1$ above.
An n-dimensional $\left\{\begin{array}{l}\frac{\varepsilon \text {-symmetric }}{\varepsilon-\text {-quadratic }}\end{array}\right.$ complex over $A\left\{\begin{array}{ll}(C, \phi) \\ (C, \psi)\end{array}\right.$ is an
n-dimensional A-module chain complex C together with an element $\left\{\begin{array}{l}\phi \in Q^{n}(C, \varepsilon) \\ \psi \in Q_{n}(C, \varepsilon)\end{array}\right.$. Such a complex is Poincaré if $\left\{\begin{array}{l}\phi_{O} \in H_{n}\left(\operatorname{Hom}_{A}\left(C^{\star}, C\right)\right) \\ \left(1+T_{\varepsilon}\right) \psi_{O} \epsilon_{H_{n}}\left(\operatorname{Hom}_{A}\left(C^{*}, C\right)\right)\end{array}\right.$ is a chain homotopy class of chain
equivalences

$$
\left\{\begin{array}{l}
\phi_{O}: c^{n-*} \longrightarrow C \\
\left(1+T_{E}\right) \psi_{O}: c^{n-*} \longrightarrow C
\end{array}\right.
$$

The ε-symmetrization of an n-dimensional e-quadratic complex over $A(C, \psi)$ is the n-dimensional ε-symmetric complex over A

$$
\left(1+T_{E}\right)(C, \psi)=\left(C,\left(1+T_{\epsilon}\right) \psi\right)
$$

A map (resp. homotopy equivalence) of n-dimensional
$\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes over A

$$
\left\{\begin{array}{l}
\mathrm{f}:(\mathrm{C}, \phi) \longrightarrow\left(\mathrm{C}^{\prime}, \phi^{\prime}\right) \\
\mathrm{f}:(\mathrm{C}, \psi) \longrightarrow\left(\mathrm{C}^{\prime}, \psi^{\prime}\right)
\end{array}\right.
$$

is an A-module chain map (resp. chain equivalence) $f: C \longrightarrow C$ ' such that

$$
\left\{\begin{array}{l}
f^{\ell}(\phi)=\phi^{\prime} \in Q^{n}\left(C^{\prime}, \varepsilon\right) \\
f_{8}(\psi)=\psi^{\prime} \in Q_{n}\left(C^{\prime}, \varepsilon\right)
\end{array}\right.
$$

$\left\{\begin{array}{l}(f: C \longrightarrow D,(\delta \phi, \phi)) \\ (f: C \longrightarrow D,(\delta \psi, \psi))\end{array}\right.$ is a chain map $f: C \longrightarrow D$ from an n-dimensional
A-module chain complex C to an ($n+1$)-dimensional A-module chain complex D together with an element $\left\{\begin{array}{l}(\delta \phi, \phi) \in Q^{n+1}(f, \varepsilon) \\ (\delta \psi, \psi) \in Q_{n+1}(f, \varepsilon)\end{array}\right.$. Such a pair is Poincaré if the A-module chain map $D^{n+1-*} \longrightarrow C$ (f) defined (up to chain homotopy) by

$$
\left\{\begin{array}{l}
\binom{\delta \phi_{O}}{\phi_{O} f^{\star}}: D^{n+1-r} \longrightarrow C(f)_{r}=D_{r} \oplus C r-1 \\
\binom{\left(1+T_{\varepsilon}\right) \delta \psi_{O}}{\left(1+T_{\varepsilon}\right) \psi_{O} f^{\star}}: D^{n+1-r} \longrightarrow C(f)_{r}=D_{r} \oplus C_{r-1}
\end{array}\right.
$$

is a chain equivalence, in which case the boundary n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex $\left\{\begin{array}{l}\left(C, \phi \in Q^{n}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{n}(C, E)\right)\end{array}\right.$ is Poincaré.

A cobordism of n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes over $A\left\{\begin{array}{l}(C, \phi),\left(C^{\prime}, \Phi^{\prime}\right) \\ (C, \psi),\left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ is an $(n+1)$-dimensional

$$
\begin{aligned}
& \left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \\
& \left\{\begin{array}{l}
\left.\left(\left(f f^{\prime}\right): C \oplus C^{\prime} \longrightarrow D,\left(\delta \phi, \phi \oplus-\phi^{\prime}\right) \in Q^{n+1}\left(\left(f f^{\prime}\right)\right), \varepsilon\right)\right) \\
\left.\left(\left(f f^{\prime}\right): C \oplus C^{\prime} \longrightarrow D,\left(\delta \psi, \phi^{\oplus-\psi^{\prime}}\right) \in Q_{n+1}\left(\left(f f^{\prime}\right)\right), \varepsilon\right)\right)
\end{array}\right.
\end{aligned}
$$

with boundary $\left\{\begin{array}{l}\left(C \oplus C^{\prime}, \phi \oplus-\phi^{\prime}\right) \\ \left(C \oplus C^{\prime}, \psi \oplus-\psi^{\prime}\right)\end{array}\right.$.

Proposition 1.2.1 Cobordism is an equivalence relation on the set of n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes over A, such that homotopy equivalent Poincaré complexes are cobordant. The cobordism classes define an abelian group, the n-dimensiona

$$
\left\{\begin{array} { l }
{ \frac { \varepsilon \text { -symmetric } } { \varepsilon \text { -quadratic } } }
\end{array} \text { L-group of } A \left\{\begin{array}{l}
L^{n}(A, E) \\
L_{n}(A, \varepsilon)
\end{array}(n \geqslant 0),\right.\right. \text { with addition and }
$$

inverses by

$$
\left\{\begin{array}{l}
(C, \phi)+\left(C^{\prime}, \phi^{\prime}\right)=\left(C \oplus C^{\prime}, \phi \oplus \phi^{\prime}\right),-(C, \phi)=(C,-\phi) \in L^{n}(A, \varepsilon) \\
(C, \psi)+\left(C,, \psi^{\prime}\right)=\left(C \oplus C^{\prime}, \psi \oplus \psi^{\prime}\right),-(C, \psi)=(C,-\psi) \in L_{n}(A, \varepsilon)
\end{array}\right.
$$

Proof: See Proposition I.3.2.

For $\varepsilon=1 \in A$ the terminology is abbreviated:

$$
\left\{\begin{array}{l}
1 \text {-symmetric }=\text { symmetric }, \\
1 \text {-quadratic }=\text { quadratic }
\end{array},\left\{\begin{array}{l}
Q^{n}(C, 1)=Q^{n}(C) \\
Q_{n}(C, 1)=Q_{n}(C)
\end{array},\left\{\begin{array}{l}
L^{n}(A, 1)=L^{n}(A) \\
L_{n}(A, 1)=L_{n}(A)
\end{array}\right.\right.\right.
$$

The $\underline{\varepsilon}$-symmetrization maps

$$
1+T \varepsilon: L_{n}(A, \varepsilon) \longrightarrow L^{\Pi}(A, \varepsilon) ;(C, \psi) \longmapsto\left(C,\left(1+T_{\varepsilon}\right) \psi\right)(n \geqslant 0)
$$

are isomorphisms modulo 8 -torsion for any ring with involution (Proposition I. 8, 2), and are actually isomorphisms if $1 / 2 \in A$ (I

Define the intersection pairing of an n-dimensional
ε-symmetric complex over $A\left(C, \phi \in Q^{n}(C, E)\right)$

$$
\phi_{O}: H^{r}(C) \times H^{n-r}(C) \longrightarrow A ;(x, y) \longmapsto \phi_{O}(x)(y)
$$

satisfying

$$
\begin{aligned}
& \phi_{O}\left(x, y+y^{\prime}\right)=\phi_{O}(x, y)+\phi_{O}\left(x, y^{\prime}\right) \\
& \phi_{O}(x, a y)=a \cdot \phi_{O}(x, y) \quad\left(x \in H^{r}(C), y, y^{\prime} \in H^{n-r}(C),\right. \\
& \phi_{O}(y, x)=(-)^{r(n-r)} E \cdot \phi_{O}(x, y)
\end{aligned}
$$

We shall now recall from II. some of the ways in which algebraic Poincaré complexes arise in topology. (See II. for further details).

Let π be a group.
A H-space X is a pointed topological space with a basepoint-preserving action $\pi \times x \longrightarrow X$. The reduced singular chain complex $\dot{C}(x)=C(x, p t$.$) is then a \mathbb{Z}[\pi]$-module chain complex. Let $T \in \mathbb{Z}_{2}$ act on $\dot{C}(X) \theta_{\mathbb{Z}} \dot{C}(X)$ by the transposition involution
 Acyclic model theory equips $\dot{C}(X)$ with a canonical chain homotopy class of functorial $Z[\pi]$-module chain maps ("diagonal approximations")

$$
\dot{\Delta}_{x}: \dot{C}(x) \longrightarrow \operatorname{Hom}_{\mathbb{Z}\left\{\mathbb{Z}_{2} \mid\right.}\left(W, \dot{C}(X) \otimes_{Z} \dot{C}(x)\right)
$$

with $\mathbb{Z}[\pi]$ acting on $\dot{C}(X) \theta_{\mathbb{Z}} \dot{C}(X)$ by

$$
g(x \odot y)=g x \otimes g y \quad(x, y \in \dot{C}(x), g \in \pi) \quad .
$$

We shall only be concerned with π-spaces x which are C complexes with the basepoint a O-cell, such that π acts free by permutation on the cells of $x-\{p t$.$\} with the quotient$ \{1\}-space x / π a finitely dominated $C W$ complex - X is a "finitely dominated CWm-complex" in the terminology of SII.: For such X the chain complex $\dot{C}(X)$ can be replaced by a chair equivalent finite-dimensional $Z \mathbb{Z}[\pi]$-module chain complex, al: to be denoted $\dot{C}(X)$. (If X / π is a finite $C W$ complex $C(X)$ can be taken to be the reduced cellular chain complex of x, which is a finite f.g. free $\vec{R}[n]$-module chain complex.)

Given a map $w: \pi \longrightarrow \mathbb{Z}_{2}=\{ \pm 1\}$ (i.e. a group morphism) let $\mathbb{Z}[\pi]$ have the w-twisted involution

$$
\cdots: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi] ; \sum_{g \in \pi} n_{g} g \longmapsto \sum_{q \in \pi} w(g) n_{g} g^{-1} \quad\left(n_{g} \in \mathbb{Z}\right)
$$

Let \mathbb{Z}^{W} denote the additive group \mathbb{Z} with the right $\mathbb{Z}[\pi]$-module structure defined by

$$
\mathbb{Z}^{w} \times \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}^{w}:\left(m, \sum_{g \in \pi} n_{g} g\right) \longmapsto m\left(\sum_{g \in \pi} w(g) n_{g}\right)
$$

Given a π-space x define the reduced homology groups of x / π with w-twisted coefficients

$$
\dot{H}_{\star}(x / \pi, w)=H_{*}\left(\mathbb{Z}^{w} \otimes_{\mathbb{Z}[\pi]} \dot{\mathrm{C}}(\mathrm{x})\right) .
$$

We shall write these groups as $\dot{H}_{*}(x / \pi)$, the contribution of w being understood. (For $w=1$ these are just the usual reduced homology groups of X / π, anyway). As $\dot{C}(X)$ is a finite-dimensional $\mathbb{Z}[\pi]$-module chain complex the slant product chain map

$$
\begin{aligned}
& \mathbb{Z}^{W} \mathbb{X}_{\mathbb{Z}[\pi]}\left(\dot{C}(x) \otimes_{\mathbb{Z}} \dot{C}(x)\right)=\dot{C}(x)^{t} \otimes_{\mathbb{Z}[\pi]} \dot{C}(x) \\
& \longrightarrow \text { Hom }_{\mathbb{Z}[\pi]}(\dot{C}(x) *, \dot{C}(x)) ; x \otimes y \longmapsto(E \longmapsto \bar{f}(x) y)
\end{aligned}
$$

is an isomorphism of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complexes, with $T \in \mathbb{Z}_{2}$ acting on $\dot{C}(x)^{t} \otimes_{\mathbb{Z}[\pi]} \dot{C}(x)$ by the transposition involution and on $\operatorname{Hom}_{\mathbb{Z}[\pi]}(\dot{C}(x) *, \dot{C}(x))$ by the duality involution $(E=1)$. Using this isomorphism as an identification and applying $\mathbb{Z}^{W} \otimes_{\mathbb{Z}[\pi]}$ - to the functorial $\mathbb{Z}[\pi]$-module chain map $\dot{\Delta}_{X}$ there is obtained a functorial π-module chain map

$$
\dot{\phi}_{x}=1 \otimes \dot{\Delta}_{x}: \mathbb{Z}^{w} \otimes_{\mathbb{Z}[\pi]} \dot{C}(x) \longrightarrow \operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(w, \operatorname{Hom}_{\mathbb{Z}[\pi]}(\dot{C}(x) *, \dot{C}(x))\right)
$$

The induced morphisms in the homology groups

$$
\dot{\phi}_{x}: \dot{H}_{n}(x / \pi) \longrightarrow 0^{n}(\dot{C}(x)) \quad(n \geqslant 0)
$$

are the symmetric construction on X of §II.l.
If X is a finitely dominated CW complex and $\tilde{\mathrm{X}}$ is a (regular)
Covering of x with group of covering translations π then the disjoint union $\tilde{\mathrm{X}}_{+}=\widetilde{\mathrm{x}} \sqcup\{p \mathrm{p}$.$\} is a finitely dominated CW$-complex. The symmetric construction on \tilde{x}_{+}is written as

$$
\phi_{\tilde{x}}=\dot{\phi}_{\tilde{X}_{+}}: H_{n}(x)=\dot{H}_{n}\left(X_{+}\right) \longrightarrow Q^{n}(C(\tilde{x}))=Q^{n}\left(\dot{C}\left(\tilde{X}_{+}\right)\right)
$$

with $C(\widetilde{X})=\dot{C}\left(\tilde{X}_{+}\right)$the cellular chain complex of \widetilde{x} (up to chain equivalence), a finite-dimensional $\mathbb{Z}[\pi]$-module chain complex. The homology $\mathbb{Z}[\pi]$-modules $H_{\star}(C(\tilde{X}))$ are the usual homology groups $H_{*}(\tilde{X})$ with the induced $\left.\mathbb{Z} \mid \pi\right]$-action; the cohomology $\mathbb{Z}[\pi]$-modules $H^{*}(C(\widetilde{X}))$ will be written as $H^{*}(\widetilde{X})$, even though for infinite π the underlying abelian groups need not be the singular cohomology of $\widetilde{\mathrm{X}}\left(\mathrm{e} . \mathrm{g}\right.$. for $\left.\widetilde{\mathrm{S}}^{1}=\mathbf{R}\right)$. Again, we have suppressed the choice of orientation map $w: \pi \rightarrow \mathbb{Z}_{2}$.

An n-dimensional geometric Poincaré complex x (in the sense of Wall [3]) is a finitely dominated CW complex X with an orientation map $w(X): \pi_{1}(X) \longrightarrow Z_{2}$ and a fundamental class $[x] \in H_{n}(X)$ (defined using $w(X)$-twisted coefficients) such that the $\mathbb{Z}\left[\pi_{1}(X)\right]$-module chain map defined by the evaluation of the cap product on any cycle representative of $[x]$

$$
[x] \cap-: c(\tilde{x})^{n-k} \longrightarrow c(\tilde{x})
$$

is a chain equivalence, with $\overline{\mathrm{x}}$ the universal cover of x . The symmetric, complex of X

$$
\sigma^{*}(x)=\left\{C(\tilde{x}), \phi \tilde{x}([x]) \in Q^{n}(C(\tilde{x}))\right)
$$

is an n-dimensional symmetric poincaré complex over $\left.\not \mathbb{Z}\left[\pi_{1}(X)\right]\right)$ such that $\phi_{X}([X])_{O}=\left\{X \mid \cap-: C(\tilde{X})^{n-*} \longrightarrow C(\widetilde{X})\right.$. More generally, the construction applies to any oriented covering \bar{X} of x, that is one for which the group of covering translations π is equipped with a map $w: \pi \longrightarrow \mathbb{Z}_{2}$ such that $w(X)$ factors as

$$
w(X): \pi_{1}(X) \longrightarrow \pi \longrightarrow \xrightarrow{w} \mathbb{Z}_{2}
$$

so that there is induced a morphism of rings with involution $\mathbb{Z}\left[\pi_{I}(X)\right] \longrightarrow \mathbb{Z}[\pi]$. The corresponding $n-d i m e n s i o n a l$ symmetric Poincaré complex over $\mathbb{Z}[\pi]$ is given by $\mathbb{Z}[\pi] \mathbb{B}_{Z}\left[\pi_{1}(X)\right]^{\sigma^{*}(X)}$, and is also denoted by $\sigma^{*}(X)$. The corresponding chain equivalence $[X] \cap-: C(\widetilde{X})^{n-\star} \longrightarrow C(\tilde{X})$ induces poincaré duality $\mathbb{Z}[\pi]$-module isomorphisms

$$
[x] \cap: H^{n-\star}(\widetilde{x}) \longrightarrow \longrightarrow H_{\star}(\widetilde{x})
$$

An n-dimensional symmetric complex over $A(C, \phi)$ is finite if C is a finite chain complex of f.g. Eree A-modules. A symmetric complex (C, Φ) is homotopy equivalent to a finite one if and only if has vanishing reduced projective class, that is

$$
[C] \equiv \sum_{r=-\infty}^{\infty}(-)^{r}\left[C_{r}\right]=0 \in \tilde{K}_{O}(A)
$$

Similarly for quadratic complexes.
An n-dimensional symmetric Poincaré complex over $A(C, \phi)$ is simple if C is a finite chain complex of based f.g. free A-modules and

$$
\begin{aligned}
& \text { either } \tau\left(\Phi_{O}: C^{n-\star} \longrightarrow C\right)=0 \in \widetilde{\mathrm{~K}}_{1}(A) \\
& \text { or } \quad A=\mathbb{Z}[\pi] \text { and } \tau\left(\phi_{O}\right)=0 \in \mathrm{~Wh}(\pi)=\widetilde{R}_{1}(\mathbb{Z}[\pi]) /\{\pi\} .
\end{aligned}
$$

Similarly for quadratic Poincaré complexes. In dealing with the algebraic Poincare complexes arisinq in topology the Whitehead
group variant is understood.
A geometric Poincaré complex X is finite if X is a finit CW complex; x is simple if it is finite and

$$
\tau\left([x] \cap-: C(\tilde{x})^{n-*} \longrightarrow C(\tilde{x})\right)=0 \in \operatorname{Wh}\left(\pi_{1}(x)\right) .
$$

A geometric poincaré complex x is homotopy equivalent to a fir one if and only if $\sigma^{*}(X)$ is homotopy equivalent to a finite symetric Poincaré complex (since $\left\{C(\tilde{x}) \mid \in \tilde{K}_{O}\left(Z\left\{\pi_{1}(x)\right]\right)\right.$ is the Wall finiteness obstruction); a finite geometric Poincaré complex X is simple if and only if $\sigma^{\star}(X)$ is a simple symmetric Poincaré complex over $\mathbb{Z}\left[\pi_{1}(X)\right]$, by definition.

A compact n-dimensional topological manifold M has the structure of a simple n-dimensional geometric poincaré complex. The intersection pairing of $\sigma^{*}(M)$

$$
\Phi_{\tilde{M}}([M])_{O}: H^{n-*}(\tilde{M}) \times H^{*}(\tilde{M}) \longrightarrow \mathbb{Z}\left[\pi_{1}(M)\right]
$$

agrees via the Poincare duality isomorphisms
$[M] \cap-: H^{n-\star}(\tilde{M}) \longrightarrow H_{\star}(\tilde{M})$ with the pairing

$$
H_{\star}(\tilde{M}) \times H_{n-\star}(\widetilde{M}) \longrightarrow \mathbb{Z}\left\{\pi_{1}(M)\right]
$$

defined by the geometric intersection numbers of homology clas
In dealing with the L-theoretic invariants of finitely-dominated (resp. finite, simple) geometric Poincaré complexes it is natural to consider the version of L-theory defined using f.g. projective (resp. finite, simple) algebraic Poincaré complexes. The projective theory is of greatest inter in algebra, being the most general. On the other hand, the sim L-theory is of greatest interest in topology, being the one closest to the classification theory of compact manifolds.

We continue working with the projective L-theory. We shall not spell out the analogous properties of the free and simple L-theories, except that in $\$ 1.10$ the three types of L-groups are compared to each other.

An $(n+1)$-dimensional geometric Poincaré pair (Y, X) is finitely dominated $C W$ pair (Y, X) with an orientation map $w(Y): \pi_{1}(Y) \longrightarrow \mathbb{Z}_{2}$ and a fundamental class $[Y] \in H_{n+1}(Y, X)$ such that
i) the $\mathbb{Z}\left[\pi_{1}(Y)\right]$-module chain map

$$
[Y] \cap-C(\tilde{Y}, \tilde{X})^{n+1-*} \longrightarrow C(\tilde{Y})
$$

is a chain equivalence, inducing Poincaré-Lefschetz duality isomorphisms $[Y] \cap \sim H^{n+1-*}(\tilde{Y}, \tilde{X}) \xrightarrow{\sim} H_{*}(\tilde{Y})$, with \tilde{Y} the universal cover of Y and \tilde{X} the induced cover of X
ii) X is an n-dimensional geometric Poincaré complex (the boundary of (Y, X)) with orientation map

$$
w(X): \pi_{1}(X) \longrightarrow \pi_{1}(Y) \xrightarrow{w(Y)} \mathbb{Z}_{2}
$$

and fundamental class

$$
[X]=\partial[Y] \in H_{n}(X) .
$$

For example, a compact ($\mathrm{n}+\mathrm{l}$)-dimensional manifold with boundary ($M, 3 M$) has the structure of such a pair.

The symmetric pair of an ($n+1$)-dimensional geometric Poincaré pair (Y, X) with respect to an oriented covering ($\widetilde{Y}, \widetilde{X}$) with group of covering translations π and orientation map $w: \pi \longrightarrow \mathbb{Z}_{2}$ is the $(n+1)$-dimensional symmetric Poincaré pair over $\mathbb{Z}[\pi]$ with the w-twisted involution

$$
\sigma^{\star}(Y, X)=\left(f: C(\widetilde{X}) \longrightarrow C(\widetilde{Y}), \phi_{\widetilde{Y}}, \widetilde{X}([Y]) \in Q^{n+1}(C(f))\right.
$$

defined using the relative symmetric construction of §II.6, with $\mathrm{f}: \mathrm{C}(\widetilde{\mathrm{X}}) \longrightarrow \mathrm{C}(\widetilde{\mathrm{Y}})$ the inclusion chain map. The boundary of $\sigma^{*}(Y, X)$ is the symmetric complex $\sigma^{*}(X)$ of X.

The symmetric signature of an n-dimensional geometric Poincaré complex x with respect to an oriented covering \widetilde{x} with group of covering translations π is the cobordism class of the symmetric complex of X with respect to \widetilde{X}

$$
\sigma^{\star}(x)=\left(C(\widetilde{x}), \phi_{\bar{X}}([x])\right) \in L^{n}(\mathbb{Z}[\pi])
$$

This invariant was introduced by Mishchenko [1]. If X is the boundary of an ($n+1$)-dimensional geometric Poincaré pair (Y, X) and \tilde{X} extends to an oriented covering \widetilde{Y} of Y then

$$
\sigma^{*}(X)=0 \in L^{n}(\mathbb{Z}[\pi]) .
$$

A degree 1 map of n-dimensional geometric Poincaré complexes

$$
f: M \longrightarrow X
$$

is a continuous map such that

$$
\begin{aligned}
& \text { i) } w(M): \pi_{1}(M) \xrightarrow{f_{*}} \pi_{1}(X) \xrightarrow{w(X)} \mathbb{Z}_{2} \\
& \text { ii) } f_{*}([M])=[X] \in H_{n}(X) \text {. }
\end{aligned}
$$

The symmetric kernel of a degree 1 map $f: M \longrightarrow X$ of n-dimensional geometric Poincaré complexes with respect to an oriented cover \tilde{X} of X with group of covering translations n is the n-dimensional symmetric Poincaré complex over $\mathbb{Z}[\pi]$

$$
a^{*}(f)=\left(C\left(f^{!}\right), e^{8} \phi_{M}([M]) \in Q^{n}(C(f!))\right)
$$

with $C(f!)$ the algebraic mapping cone of the $\mathbb{Z}[\pi]$-module Umkehr chain map

$$
\mathbf{f}^{!}: C(\tilde{X}) \xrightarrow{([X] \underset{\sim}{n}-)^{-1}} C(\tilde{X})^{n-*} \xrightarrow{\widetilde{f}^{*}} C(\tilde{M})^{n-*} \xrightarrow{([M] n-1} C(\tilde{M})
$$

with \widetilde{M} the induced oriented cover of $M, \widetilde{f}: \widetilde{M} \longrightarrow \widetilde{X}$ a r-equivariant
lift of f and $e: C(M) \longrightarrow C(f!$, the inclusion. The chain equivalnc

$$
\binom{\mathrm{e}}{\tilde{f}}: c(\widetilde{M}) \longrightarrow C\left(f^{!}\right) \oplus C(\widetilde{x})
$$

defines a homotopy equivalence of symmetric Poincaré complexes over $\mathbb{Z}[\pi]$

$$
\binom{e}{\widetilde{f}}: \sigma^{*}(M) \longrightarrow \simeq \sigma^{*}(f) \oplus \sigma^{*}(X)
$$

The $\left\{\begin{array}{l}\text { homology } \\ \text { cohomology }\end{array}\right.$ modules of $C\left(f^{!}\right)$are the $\left\{\begin{array}{l}\text { homology } \\ \text { cohomology }\end{array}\right.$ kernels of

$$
\left\{\begin{array}{l}
K_{\star}(M)=H_{\star}\left(C\left(f^{!}\right)\right)=\operatorname{ker}\left(\tilde{f}_{\star}: H_{\star}(\widetilde{M}) \longrightarrow H_{\star}(\tilde{X})\right) \\
K^{*}(M)=H^{*}\left(C\left(f^{!}\right)\right)=\operatorname{ker}\left(f^{!}: H^{\star}(\widetilde{M}) \longrightarrow H^{*}(\widetilde{X})\right)
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
H^{\star}(\tilde{M})=K^{\star}(M) \oplus H^{\star}(\tilde{X}) \\
H_{\star}(\tilde{M})=K_{\star}(M) \oplus H_{\star}(\tilde{X})
\end{array} \quad, \quad K^{\star}(M)=K_{n-\star}(M)\right.
$$

(up to isomorphism). If M and X are finite (resp. simple) geometric Poincaré complexes then $\sigma^{*}(f)$ is a finite (resp. simple) symmetric poincaré complex. On the L-group level

$$
\sigma^{*}(f)=\sigma^{*}(M)-\sigma^{*}(X) \in I^{n}(\mathbb{Z}[\pi])
$$

The suspension of a π-space X is the π-space

$$
\Sigma X=X \wedge S^{1}
$$

with π acting by

$$
\pi \times \Sigma x \longrightarrow \Sigma x:(g, x \wedge s)+\longrightarrow g x \wedge s
$$

$$
\begin{aligned}
& \text { A } \quad \text {-map of } \pi \text {-spaces } X, Y \\
& \mathrm{f}: \mathrm{X} \longrightarrow \mathrm{Y}
\end{aligned}
$$

is a π-equivariant basepoint-preserving map. A π-homotopy of $\pi-$ maps $f, f^{\prime}: X \longrightarrow Y$

$$
H: f \simeq f^{\prime}: X \longrightarrow Y
$$

is a π-equivariant map

$$
H: X \times I \longrightarrow Y \quad(I=\{0,1 \mid\}
$$

such that

$$
H(x, 0)=f(x), H(x, 1)=f^{\prime}(x), H\left(p t \cdot X^{\prime}, t\right)=p t_{Y} \in Y(x \in)
$$

Let $[X, Y]_{\pi}$ denote the set of π-homotopy classes of π-maps $f: \lambda$ and let $\{X, Y\}_{\pi}$ denote the abelian group of stable π-homotopy classes of stable π-maps

$$
\{X, Y\}_{\pi}=\operatorname{Lim}_{p \rightarrow \infty}\left[\Sigma^{D} X, \Sigma^{P} Y\right]_{\pi}
$$

For $\pi=\{1\}$ the terminology is contracted in the usual mannes to $[X, Y],\{X, Y\}$.

The quadratic construction $\dot{\psi}_{F}$ of $\subseteq I I .1$ associates to a stable π-map $F: \Sigma^{P} X \longrightarrow \Sigma^{P_{Y}}(P \geqslant 0)$ natural maps

$$
\dot{\psi}_{F}: \dot{H}_{k}(X / \pi) \longrightarrow Q_{k}(\dot{C}(Y))
$$

such that

$$
(1+T) \dot{\psi}_{F}=\dot{\phi}_{Y} F_{*}-F^{q} \dot{\phi}_{X}: \dot{H}_{*}(X / \pi) \longrightarrow Q^{*}(\dot{C}(Y)),
$$

with $f: \dot{C}(X)=\Omega^{P_{C}}\left(\Sigma^{P} X\right) \longrightarrow \Omega^{\dot{C}}\left(\Sigma^{P} P_{Y}\right)=\dot{C}(Y)$ the $\mathbb{Z}[\pi]-\bmod$ chain map induced by F (up to chain homotopy). The homology groups $\dot{H}_{*}(X / \pi)$ are defined using w-twisted coefficients for some map $w: \pi \longrightarrow \mathbb{Z}_{2}$, and $\mathbb{Z}[\pi]$ is given the w-twisted involuti exactly as for the symmetric construction $\dot{\phi}_{X}$. There are two (equivalent) ways of obtaining ψ_{F}, as follows.

Firstly, note that the symmetric construction $\dot{\phi}_{\Sigma x}$ on t suspension ΣX of a π-space X is the algebraic suspension \dot{S}_{X} (in the sense of $£ 1.1$) of the symmetric construction $\dot{\phi}_{x}$ on x

$$
\begin{aligned}
\dot{\Phi}_{\Sigma X}: \dot{H}_{*}(\Sigma X / \pi)=\dot{H}_{*-1}(X / \pi) \xrightarrow{\dot{\Phi}_{X}} Q^{*-1} \dot{(\dot{C}(X))} \\
\xrightarrow[S]{S}(\dot{S C}(X))=Q^{*}(\dot{C}(\Sigma X)),
\end{aligned}
$$

identifying $\dot{C}(\Sigma X)=\dot{S C}(X)$. In fact, acyclic model theory gives a functorial \mathbb{Z}-module chain homotopy

$$
\begin{aligned}
& h_{X}: \dot{\phi}_{\Sigma X} \simeq \dot{\Phi}_{X}: \dot{C}(\Sigma X / \pi)= \\
& \dot{\operatorname{Hom}}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right] \\
&\left(W, \operatorname{Hom}_{\mathbb{Z}[\pi]}(\dot{S C}(X) *, \operatorname{SC}(X))\right)
\end{aligned}
$$

As $f: \dot{C}(X) \longrightarrow \dot{C}(Y)$ is induced by a $\pi-\operatorname{map} F: \Sigma^{p_{X} \longrightarrow \sum_{Y}}$

$$
\begin{aligned}
& \dot{\phi}_{\Sigma} p_{Y} f-f^{\&} \dot{\phi}_{\Sigma} p_{X}=0: \dot{C}\left(\sum^{p} p_{X / \pi}\right)=S^{p} \dot{C}(X / \pi) \\
& \longrightarrow \operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\mathrm{W}, \operatorname{Hom}_{\mathbb{Z}[\pi]}{ }^{\left.\left(\mathrm{S}^{\mathrm{P}} \dot{C}(\mathrm{X}) *, S^{\mathrm{P}} \dot{\mathrm{C}}(\mathrm{x})\right)\right),}\right.
\end{aligned}
$$

by the naturality of the symmetric construction. The composite functorial \mathbb{Z}-module chain map

$$
\begin{aligned}
& s^{p}\left(\dot{\phi}_{Y} f-f^{g} \dot{\phi}_{X}\right)= \\
& \dot{C}(X / \pi)-\underline{\Phi}_{Y} f-f^{q} \dot{\phi}_{X} \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]\left(W_{,} \operatorname{Hom}_{\mathbb{Z}[\pi]}(\dot{C}(Y) *, \dot{C}(Y))\right) \\
& \xrightarrow{S^{\mathrm{p}}} \operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{\left.\mathbb{Z}[\pi]^{\left(S^{\mathrm{P}}\right.}{ }^{\left.\left.\dot{C}(Y) *, S^{\mathrm{P}} \mathrm{C}(Y)\right)\right)}\right)}\right.
\end{aligned}
$$

is thus equipped with a functorial \mathbb{Z}-module chain homotopy $\dot{\psi}_{F}: S^{p}\left(\dot{\phi}_{Y}-f^{8} \dot{\phi}_{X}\right) \simeq 0$. The chain level argument underlying the exact sequence of Proposition 1.1.3 interprets this as a functorial \mathbb{Z}-module chain map

$$
\left.\dot{\psi}_{F}: \dot{\mathrm{C}}(\mathrm{X} / \pi) \longrightarrow W[0, \mathrm{p}-1] \otimes_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}{ }^{H \circ m_{\mathbb{Z}}[\pi]}{ }_{(\dot{\mathrm{C}}(\mathrm{Y})}{ }^{*}, \dot{\mathrm{C}}(\mathrm{Y})\right)
$$

inducing the unstable quadratic construction in homology

$$
\dot{\psi}_{F}: \dot{\mathrm{H}}_{\star}(\mathrm{x} / \pi) \longrightarrow Q_{\star}^{[0, \mathrm{p}-1]}(\dot{\mathrm{C}}(\mathrm{Y})) .
$$

Composition with the natural maps $Q_{*}^{[0, p-1]}(\dot{C}(Y)) \longrightarrow Q_{*}(\dot{C}(Y))$ (which are isomorphisms for $p>$ dimension of $\dot{C}(Y)$) gives the stable quadratic construction
$\dot{\psi}_{F}: \dot{H}_{\star}(X / \pi) \longrightarrow Q_{\star}(\dot{C}(Y))$.
(Incidentally, the definition of $\dot{\psi}_{F}$ in Proposition II.l.5 contains a technical error in that it made use of a mythical functorial chain homotopy inverse $\Sigma_{Y}^{-1}: \dot{C}(\Sigma Y) \longrightarrow \dot{S}(Y)$ of the suspension chain map $\Sigma_{Y}: \dot{S C}(Y) \longrightarrow \dot{C}(\Sigma Y)$ in the reduced singular chain complexes of a π-space Y and its suspension ΣY. We shall give now a new definition of $\dot{\psi}_{F}$ which avoids this embarrassment. The suspension ε_{Y} is defined to be the composite $\mathbb{Z}[\pi]$-module chain map

$$
\begin{aligned}
& \Sigma_{Y}: \dot{S C}(Y)=S Z \otimes_{\mathbb{Z}} \dot{C}(Y) \xrightarrow{i \otimes 1} \dot{C}\left(S^{1}\right) \otimes_{Z} \dot{C}(Y) \\
& \xrightarrow{\mathrm{E}} \dot{\mathrm{C}}\left(\mathrm{~S}^{1} \times Y\right) / \dot{C}\left(S^{1} \times p t . u p t . \times Y\right) \xrightarrow{j} \dot{C}\left(S^{1} \times Y / S^{1} \times p t . \text { upt. } \times Y\right) \\
& =\dot{C}(\Sigma Y) \text {, }
\end{aligned}
$$

with $i: S \mathbb{Z} \longrightarrow \dot{C}\left(S^{l}\right)$ any \mathbb{Z}-module chain equivalence, E a functorial $\mathbb{Z}[\pi$ • module chain equivalence given by the relative Eilenberg-zilber theorem, and j the $Z[\pi]$-module chain map induced by the projection $S^{1} \times Y \longrightarrow Y Y$. In general j is not $a \mathbb{Z}[\pi]$-module chain equivalence, and even if it were there might not exist a functorial $\mathbb{Z}[\pi]$-module chain homotopy inverse; a fortiori for Σ_{Y}, Let now $\ddot{C}(x)$ be the algebraic mapping cone of the $\mathbb{Z}[\pi]$-module chain map

$$
\left(F \Sigma_{X}^{p_{i}} \Sigma_{Y}^{p}\right): \Omega \dot{C}(X) \oplus \Omega \dot{C}(Y) \longrightarrow \Omega^{p+1} \dot{C}\left(\Sigma^{P_{Y}}\right)
$$

The base point of Y is non-degenerate (by hypothesis), so that the p-fold suspension chain map $\Sigma_{Y}^{P}: S^{P} \dot{C}(Y) \longrightarrow \dot{C}\left(\Sigma^{P} Y_{Y}\right)$ induces isomorphisms in homology, and hence so does
 the projection $\ddot{C}(x) \longrightarrow \dot{C}(x)$ is also a homology equivalence, and that $\varepsilon_{Y}^{P}: \dot{C}(Y) \longrightarrow \Omega^{P} \dot{C}\left(\sum_{Y} P_{Y}\right)$ induces isomorphisms in the Q-grc Using the terminology of $p .204$ of II. define a \mathbb{Z}-module chain n
by

$$
\begin{aligned}
& \dot{\psi}_{F}(x, Y, z)=\left(\Sigma_{Y}^{P \delta} \dot{\Delta}_{Y}(y)-F^{z} \Sigma_{X}^{p} \dot{\Delta}_{X}(x), F^{q} \Sigma_{X}^{p}(x)-\Sigma_{Y}^{p}(y)-\dot{\Delta}_{\Sigma} p_{Y}(z)\right) \\
& \operatorname{EC}\left(S^{p}\right)_{n}=\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \Omega^{p_{C}}\left(\Sigma^{P_{Y}}\right)^{t} \mathcal{X}_{\mathbb{Z}[\pi]} \Omega^{\left.P_{C}\left(\Sigma \sum_{Y}\right)\right)_{n}}\right.
\end{aligned}
$$

The chain map $\dot{\psi}_{F}$ induces the quadratic construction

$$
\left.\dot{\psi}_{\mathrm{F}}: \dot{H}_{\star}(\mathrm{X} / \pi)=\mathrm{H}_{\star}\left(\mathbb{Z}^{W} Q_{Z[\pi]} \dot{\mathrm{C}}(\mathrm{X})\right) \longrightarrow Q_{\star}\left(\Omega^{\mathrm{p}^{\dot{C}}}\left(\Sigma^{\mathrm{p}} \mathrm{Y}\right)\right)=Q_{*} \dot{\mathrm{C}}(\mathrm{Y})\right)
$$

on passing to the homology groups.)
Alternatively, for connected Y the quadratic construction ψ_{F} on a stable π-map $F: \Sigma^{\infty} X \longrightarrow \Sigma^{\infty} Y$ (i.e. $F: \Sigma^{P_{X}} \longrightarrow \Sigma^{P_{Y}}$ for some F may be obtained from the adjoint π-map adj(F) : X $\longrightarrow \Omega^{\infty} \Sigma^{\infty} Y$ by appealing to the approximation theorem underlying infinite loop space theory

$$
\Omega^{\infty} \Sigma^{\infty} Y=\bigcup_{k>1} E \Sigma_{k}{ }^{x} \Sigma_{k}\left(\prod_{k} Y\right) / \sim
$$

with Σ_{k} the permutation group on k letters, and setting

$$
\begin{aligned}
\dot{\psi}_{F}: \dot{H}_{*}(X / \pi) \xrightarrow{(\operatorname{adj}(F) / \pi)_{\star}} \dot{H}_{\star}\left(\Omega^{\infty} \sum_{Y / \pi}^{\infty}\right) & =\sum_{k=1}^{\infty} \dot{H}_{*}\left(E \Sigma_{k} \sum_{k}\left(\mathcal{N}_{k} Y\right) / \pi\right. \\
\xrightarrow{\text { projection }} \dot{H}_{\star}\left(E \Sigma_{2} K_{\Sigma_{2}}\left(Y \wedge_{\pi} Y\right)\right) & =Q_{*}(\dot{C}(Y)) \quad\left(C\left(E \Sigma_{2}\right)=\right.
\end{aligned}
$$

For disconnected π-spaces Y of type $Y=Z_{+}$(for some space $Z \mathrm{w}$ π-action, with the added point as base) $\Omega^{\infty} \sum^{\infty} Y$ is approximated the group completion of a topological monoid

$$
\Omega^{\infty} \Sigma^{\infty} Y=\Omega B\left(\varliminf_{k \geqslant 0} E \Sigma_{k} \times \Sigma_{k}\left(\prod_{k} z\right)\right),
$$

and the quadratic construction ψ_{F} is given by

$$
\begin{align*}
& \dot{\psi}_{F}: \dot{H}_{*}(X / \pi) \xrightarrow{(\operatorname{adj}(F) / \pi)}{ }^{\left(\dot{H}_{*}\right.}\left(\Omega^{\infty} \Sigma^{\infty} Y / \pi\right) \\
& =\mathbb{Z}[\mathbb{Z}] \otimes_{\mathbb{Z} \mid \mathbf{I N}]}\left(\sum _ { k = 1 } ^ { \infty } H _ { * } \left(E \Sigma_{k}{ }^{\times} \Sigma_{k}\left(\prod_{k} Z\right)\right.\right. \\
& \text { projection } \\
& \left.(C(Z))=Q_{*} \dot{C}(Y)\right) \tag{C}
\end{align*}
$$

Similarly for the unstable quadratic construction, using the unstable approximation theorems.

The stable (resp. unstable) quadratic construction $\dot{\psi}_{F}$ on a 1 -map $F: \Sigma^{P_{X}} \longrightarrow \sum^{P_{Y}}$ depends only on the stable (resp. unstable) π-homotopy class of F, and $\dot{\psi}_{F}=0$ if this class contains $\Sigma \mathrm{P}_{\mathrm{F}_{\mathrm{O}}}$ for some π-map $\mathrm{F}_{\mathrm{O}}: \mathrm{X} \longrightarrow Y$.

The quadratic construction on a stable π-map $F: \Sigma^{\infty} X_{+} \longrightarrow \Sigma^{\infty} Y_{+}$(for some spaces with π-action X, Y) is writer

$$
\left.\psi_{F}=\dot{\psi}_{F}: H_{*}(X / \pi)=\dot{H}_{*}\left(X_{+} / \pi\right) \longrightarrow Q_{\star}(C(Y))=Q_{*} \dot{C}\left(Y_{+}\right)\right)
$$

Given a spherical fibration $v: X \longrightarrow B G(k)$ over a space X

$$
\left(D^{k}, s^{k-1}\right) \longrightarrow(E(v), S(v)) \longrightarrow x
$$

and a covering \tilde{x} of x with group of covering translations π define the Thom π-space of $v T \pi(v)$ to be the Thom space of the pullback $\widetilde{v}: \widetilde{\mathrm{x}} \longrightarrow \mathrm{X} \xrightarrow{U} \mathrm{BG}(\mathrm{k})$ with the induced π-action

$$
T \pi(v)=T(\widetilde{v}) \quad(=E(\widetilde{v}) / S(\tilde{v}))
$$

The quotient $\{1\}$-space $T \pi(v) / \pi=T(v)$ is just the usual Thom space of v. If X is a finitely dominated (resp. finite) CW complex then $T \pi(v)$ is a finitely dominated (resp. finite) $C W \pi-c o m p l e x . ~ A ~ m a p ~ o f ~ s p h e r i c a l ~ f i b r a t i o n s ~ b: v \longrightarrow v^{\prime}$ induces a π-map of Thom π-spaces

$$
T \pi(b): T \pi(v) \longrightarrow T \pi\left(v^{\prime}\right) .
$$

An n-dimensional geometric Poincare complex x has a

Spivak normal structure

$$
\left(v_{X}: x \longrightarrow B G(k), \rho_{X}: S^{n+k} \longrightarrow T\left(v_{X}\right)\right)
$$

which is unique up to stable equivalence, with v_{x} the Spivak normal fibration, such that $w(X)=w_{1}\left(v_{X}\right): \pi_{1}(X) \longrightarrow \mathbb{Z}_{2}$
 the Hurewicz map and $U_{v_{X}} \in \dot{H}^{k}\left(T\left(v_{X}\right)\right)$ the $w(X)$-twisted Thom class of v_{X}. For f inite x a Spivak normal structure (ν_{X}, ρ_{X}) may be obtained from a closed regular neighbourhood $E\left(\nu_{x}\right)$ of an embedding $x \in S^{n+k}$ (k large), with $S\left(v_{X}\right)=\partial E\left(v_{X}\right)$ and

$$
\rho_{X}: s^{n+k} \xrightarrow{\text { collapse }} s^{n+k} / \overline{S^{n+k}-E\left(v_{X}\right)}=E\left(\nu_{X}\right) / S\left(v_{X}\right)=T\left(v_{X}\right) .
$$

(Similarly for finitely dominated x, using the fact that $X \times S^{1}$ has the homotopy type of a finite complex). We shall consider geometric Poincaré complexes x to be equipped with a particular choice of Spivak normal structure $\left(v_{x}, \rho_{x}\right)$. Given a covering
\tilde{X} of X (which need not be oriented) with group of covering translations π use the diagonal \{1\}-map

$$
\begin{aligned}
\Delta: T\left(v_{X}\right)= & \left(E\left(\tilde{v}_{X}\right) / S\left(\tilde{v}_{X}\right)\right) / \pi \\
\longrightarrow & \\
\longrightarrow \widetilde{x}_{+} \wedge \pi^{T \pi\left(v_{X}\right)=} & \left(\left(E\left(\tilde{v}_{X}\right) \times E\left(\tilde{v}_{X}\right)\right) /\left(E\left(\tilde{v}_{X}\right) \times S\left(\tilde{v}_{X}\right)\right)\right) / \pi ; \\
& {[x] \mapsto }
\end{aligned}
$$

to define the fundamental $S \pi$-duality map of X

$$
\alpha_{X}: s^{n+k} \xrightarrow{\rho_{X}} T\left(v_{X}\right) \xrightarrow{\Delta} \tilde{x}_{+} \wedge_{\pi}^{T \pi}\left(\widetilde{v}_{X}\right),
$$

which determines an $S \pi$-duality between the π-spaces $\widetilde{X}_{+}, T \pi\left(v_{X}\right)$ in the sense of the equivariant S-duality theory of SII.3. (For $\pi=\{l\}$ this is the classical Spanier-Whitehead S-duality theory for $\{1\}$-spaces). The $S \pi$-duality is characterized by the property that for any $\frac{\pi \text {-spectrum }}{M}=\left\{M_{j}, \Sigma M_{j} \longrightarrow M_{j+1} \mid j \geqslant 0\right\}$ of π-spaces and π-maps the slant products

$$
\begin{aligned}
& \alpha_{X}: \dot{\dot{H}}^{q}\left(T \pi\left(v_{X}\right) ; \underline{M}\right)=\underset{p}{\operatorname{Lim}}\left\{\Sigma^{p_{T}} \pi\left(v_{X}\right), M_{p+q}\right] \pi \\
& \longrightarrow H_{n+k-q}(X ; \underline{M})=\underset{p}{L i m}\left[S^{n+k+p}, \widetilde{X}_{+} \wedge_{\pi}^{M}{ }_{p+q}\right] ; \\
& \left(F: \Sigma^{P} T \pi\left(v_{X}\right) \longrightarrow M_{p+q}\right)
\end{aligned}
$$

are isomorphisms of abelian groups.
A normal map of n-dimensional qeometric Poincaré complexes $(f, b): M \longrightarrow X$
is a degree 1 map $f: M \longrightarrow X$ together with a map of the Spivak normal fibrations $b: v_{M} \longrightarrow v_{X}$ covering f such that

$$
T(b)_{\star}\left(\rho_{M}\right)=\rho_{X} \in \pi_{n+k}\left(T\left(\nu_{X}\right)\right)
$$

Given an oriented covering \bar{X} of x with group of covering translations π let \bar{M} be the induced oriented covering of M
and let $\tilde{\mathrm{f}}: \tilde{\mathrm{M}} \rightarrow \widetilde{\mathrm{X}}$ be a π-equivariant lift of f . A qeometric Umkehr map F of (f, b) is a stable π-map $F: \Sigma^{\infty} \mathbb{X}_{+} \longrightarrow \sum^{\infty} \tilde{M}_{+}$in the stable π-homotopy class $F \in\left\{\widetilde{\mathrm{X}}_{+}, \widetilde{\mathrm{M}}_{+}\right\}_{\pi}$ such that $\left(\Sigma^{\infty} \tilde{f}_{+}\right) F=1 \in\left\{\tilde{X}_{+}, \tilde{X}_{+}\right\}_{\pi}$ to which the composite isomorphism $\left\{T \pi\left(v_{M}\right), T \pi\left(v_{X}\right)\right\} \xrightarrow{\alpha_{M}}\left\{S^{n+k}, \tilde{M}_{+} \wedge_{\pi} T \pi\left(v_{X}\right)\right\} \xrightarrow{\alpha_{X}^{-1}}\left\{\tilde{X}_{+}, \tilde{M}_{+}\right\}$ sends $T \pi(b) \in\left\{T \pi\left(v_{M}\right), T \pi\left(v_{X}\right)\right\}$. A geometric Umkehr map F induce the Umkehr chain map $f^{!}: C(\widetilde{X}) \approx C(\widetilde{X})^{n-*} \xrightarrow{\widetilde{f}^{*}} C(\widetilde{M})^{n-*} \simeq C(\widetilde{M})$. The quadratic kernel of (f,b) is the n-dimensional quadratic Poincaré complex over $\mathbb{Z}[\pi]$

$$
\sigma_{\star}(f, b)=\left(C\left(f^{!}\right), e_{\&} \psi_{F}([x]) \in o_{n}\left(c\left(f^{!}\right)\right)\right)
$$

defined using the quadratic construction $\psi_{F}: H_{n}(X) \longrightarrow Q_{n}(C(\tilde{M}))$ with $e=$ inclusion $: C(\widetilde{M}) \longrightarrow C\left(f^{l}\right)$. The symmetrization of the quadratic kernel is the symmetric kernel

$$
(1+T) \sigma_{\star}(f, b)=\sigma^{*}(f)=\left(C\left(f^{!}\right), e^{q} \phi_{\widetilde{M}}([M]) \in Q^{n}\left(C\left(f^{!}\right)\right)\right)
$$

The quadratic signature of (f,b) is the cobordism class

$$
\sigma_{\star}(f, b) \in L_{n}(\mathbb{Z}[\pi])
$$

with symmetrization
$\left.(1+T) \sigma_{\star}(f, b)=\sigma^{*}(f)=\sigma^{*}(M)-\sigma^{*}(X) \in L^{n}(\mathbb{Z} \mid \pi]\right)$.
A topological normal structure on an n-dimensional geometric Poincaré complex x is a pair

$$
\left(\tilde{v}_{X}: x \cdots \operatorname{BTOP}(k), \rho_{X}: s^{n+k} \longrightarrow T\left(\widetilde{v}_{X}\right)\right)
$$

such that $\left(J \bar{v}_{X}: X \longrightarrow B G(k), \rho_{X}\right)$ is the prescribed Spivak normal structure, i.e. it is a reduction of the Spivak normal fibration v_{X} to a topological block bundle \bar{v}_{X}. A compact n-dimensional topoloqical manifold M has a canonical topological normal structure $\left(v_{M}, \rho_{M}\right)$ (unique up to stable equivalence) with $v_{M}: M \longrightarrow \operatorname{BTOf}(k)$ the normal bunde of an

embedding $M \subset s^{n+k}$ with

$$
\rho_{M}: s^{n+k} \longrightarrow s^{n+k} \overline{S^{n+k}-E\left(\nu_{M}\right)}=E\left(\nu_{M}\right) / S\left(\nu_{M}\right)=T\left(\nu_{M}\right)
$$

the collapsing map.
An n-dimensional topological normal map

$$
(f, b): M \longrightarrow x
$$

is a degree 1 map $f: M \longrightarrow X$ from a compact n-dimensional topological manifold M to an n-dimensional geometric Poincat complex X with a topological normal structure (\tilde{v}_{X}, ρ_{X}), togel with a map of bundles $b: v_{M} \longrightarrow \widetilde{v}_{X}$ covering f such that

$$
T(b)_{\star}\left(\rho_{M}\right)=\rho_{X} \in \pi_{n+k}\left(T\left(\nu_{X}\right)\right)
$$

This is a normal map in the sense of Browder [6] and Wall [، In fact, (\breve{v}_{X}, ρ_{X}) determines (f, b) up to normal bordism by the Browder-Novikov construction: make $\rho_{X}: S^{n+k} \longrightarrow T\left(v_{X}\right)$ topologically transverse at the zero section $X T\left(v_{X}\right)$ with respect to \tilde{v}_{X} and set

$$
\left(f=\rho_{X} \mid, b\right): M=o_{X}^{-1}(x) \longrightarrow x
$$

(See Ranicki [7] and $\$ 7.1$ below for an algebraic treatment topological normal maps). The surgery obstruction of a topological normal map (f, b) is defined to be the quadratic signature of the underlying normal map $(f, J b): M \longrightarrow X$ of geometric Poincaré complexes

$$
\left.\sigma_{\star}(f, b)=\sigma_{\star}(f, J b) \in L_{n}(\mathbb{Z} \mid \pi]\right)
$$

Proposition 1.2.2 The quadratic L-groups $L_{\star}(\mathbb{Z}[\pi])$ agree wit the surgery obstruction groups $L_{*}(\pi)$ of Wall [4], and the surqery obstruction $\sigma_{*}(f, b) \in L_{n}(\mathbb{Z}[\pi])$ of a topological norm map $(f, b): M \longrightarrow X$ agrees with the surgery obstruction $\theta(f, b$ Proof: See II. (Some of the details are recalled in Sl. 10 b
(For a topological normal map $(f, b): M \longrightarrow X$ with X finite it is possible to obtain the geometric Umkehr map $F: \Sigma^{\infty} \tilde{X}_{+} \longrightarrow \Sigma^{\infty} \tilde{M}_{+}$used to define the quadratic kernel

$$
\sigma_{\star}(f, b)=\sigma_{\star}(f, J b)=\left(C\left(f^{!}\right), e_{8} \psi_{F}([X]) \in Q_{n}\left(C\left(f^{!}\right)\right)\right)
$$

directly, without appealing to the equivariant S-duality theory of SII. 3, as follows. For $p>0$ sufficiently large there exists a compact $(n+p)$-dimensional manifold with boundary $(W, j W)$ homotopy equivalent to $\left(X \times D^{p}, X \times S^{p-1}\right.$) such that (f,b) is approximated by a codimension 0 embedding

$$
M^{n} \times D^{p} c \rightarrow \text { interior of } w^{n+p} .
$$

Pass to the covers and define F using the Pontrjagin-Thom construction by

$$
\begin{aligned}
F: & \Sigma^{p_{\tilde{X}}^{+}} \\
& =\left(\widetilde{X} \times D^{p}\right) /\left(\widetilde{X} \times S^{p-1}\right)=\widetilde{W} / \widetilde{W} \\
& \left.\left.\xrightarrow{\text { collapse }} \widetilde{W} /\left(\widetilde{W}-\widetilde{M} \times D^{p}\right)\right)=\left(\widetilde{M} \times D^{p}\right) /\left(\widetilde{M} \times S^{p-1}\right)=\Sigma^{p} \tilde{M}_{+}\right)
\end{aligned}
$$

The skew-suspension of an n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ (Poincaré) complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q^{n}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{n}(C, \varepsilon)\right)\end{array}\right.$ is the $(n+2)$-dimensional $\left\{\begin{array}{l}(-\varepsilon)-\text { symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ (Poincaré) complex over A

$$
\left\{\begin{array}{l}
\bar{S}(C, \phi)=\left(S C, \bar{S} \phi \in Q^{n+2}(S C,-\varepsilon)\right) \\
\bar{S}(C, \psi)=\left(S C, \bar{S} \psi \in Q_{n+2}(S C,-\varepsilon)\right)
\end{array}\right.
$$

defined using the Q-group isomorphism

$$
\left\{\begin{array}{l}
\bar{S}: Q^{n}(C, \varepsilon) \longrightarrow Q^{n+2}(S C,-\varepsilon) \\
\bar{S}: Q_{n}(C, \varepsilon) \longrightarrow Q_{n+2}(S C,-\varepsilon)
\end{array}\right.
$$

induced by the isomorphism of $\mathbb{Z}\left[\mathbb{Z}_{2}\right\}$-module chain complexes $\overline{\mathrm{S}}: \operatorname{Hom}_{A}\left(\mathrm{C}^{\star}, \mathrm{C}\right) \xrightarrow{\sim} \Omega^{2} \operatorname{Hom}_{A}(\mathrm{SC}, \mathrm{SC}) ; f \longmapsto \longrightarrow(-)^{p_{f}} \quad\left(f \in \operatorname{Hom}_{A}\left(C^{p}, C_{q}\right)\right)$, with $T \in \mathbb{Z}_{2}$ acting on $\operatorname{Hom}_{A}\left(C^{*}, C\right)$ by the ε-duality involution T_{E} and on $\operatorname{Hom}_{A}(S C *, S C)$ by the $(-\varepsilon)$-duality involution $T_{-\varepsilon}$. For example, the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ kernel of an (i-1)-connected n-dimensional $\left\{\begin{array}{l}\text { degree } 1 \\ \text { normal. }\end{array}\right.$ map $\left\{\begin{array}{l}f: M \longrightarrow x \\ (f, b): M \longrightarrow x\end{array}\right.$ (i.e. one such that $K_{r}(M)=0$ for $r \leqslant i-1$, with $\left.2 i \leqslant n\right)$ is the i-fold skew-suspension of an (n-2i)-dimensional $\left\{\begin{array}{l}(-)^{i} \text {-symmetric } \\ (-)^{i} \text {-quadratic }\end{array}\right.$ Poincaré complex $\left\{\begin{array}{l}\sigma^{i}(f) \\ \sigma_{i}(f)\end{array}\right.$

$$
\left\{\begin{array}{l}
\sigma^{*}(f)=\bar{S}_{\sigma^{i}}^{i}(f) \\
\sigma_{\star}(f)=\bar{S}_{\sigma_{i}}(f)
\end{array}\right.
$$

The ring A is m-dimensional if every f.g. A-module M has a f.g. projective A-module resolution of length m

$$
0 \longrightarrow P_{m} \longrightarrow P_{m-1} \longrightarrow \ldots P_{1} \longrightarrow P_{0} \longrightarrow M \longrightarrow 0 .
$$

Equivalently, A is noetherian of global dimension m.
Proposition 1.2.3 i) $\left\{\begin{array}{l}\text { If } \hat{H}^{l}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \equiv\{a \in A \mid a+\varepsilon \bar{a}=0\} /\{b-\varepsilon \bar{b} \mid b \in A\}=0 \\ \text { For all } A, \varepsilon\end{array}\right.$
the skew-suspension maps in the $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{lll}
\bar{S}: L^{n}(A, \varepsilon) \longrightarrow L^{n+2}(A,-\varepsilon) ;(C, \phi) \longmapsto & \longrightarrow \bar{S}(C, \phi) \\
\bar{S}: L_{n}(A, \varepsilon) \longrightarrow & (n \geqslant 0)
\end{array}\right.
$$

are isomorphisms.
ii) If A is m-dimensional the skew-suspension map

$$
\vec{S}: L^{n}(A, \varepsilon) \longrightarrow L^{n+2}(A,-E)
$$

is an isomorphism for $n \geqslant \max (2 m-2,0)$, and a monomorphism for $n=2 m-3($ if $m \geqslant 2)$.
iii) If A is O-dimensional (i.e. if A is semisimple)

$$
\left\{\begin{array}{l}
L^{2 k+1}(A, \varepsilon)=0 \\
L_{2 k+1}(A, \varepsilon)=0
\end{array} \quad(k \geqslant 0)\right.
$$

Proof: See Propositions 1.4.3,1.4.5. (The proofs use the algebraic surgery technique summarized in 51.5 below).

In particular, Proposition 1.2 .3 i) shows that there are natural identifications

$$
L_{n}(A, E)=L_{n+2}(A,-\varepsilon)=L_{n+4}(A, E) \quad(n \geqslant 0)
$$

The periodicity of the ε-quadratic L-groups

$$
L_{\star}(A, E)=L_{*+4}(A, E)
$$

is a generalization of the periodicity in the surgery obstructio groups of Wall $[4,59]$

$$
L_{\star}(\pi)=L_{\star+4}(\pi)
$$

The ε-symmetric L-groups are not in general periodic,

$$
L^{\star}(A, \varepsilon) \neq L^{\star+4}(A, \varepsilon)
$$

and in $\$ I .10$ some non-periodic examples were constructed. Carlsson [l] has given an algebraic analysis of the failure of periodicity in the ε-symmetric L-groups in terms of invariants generalizing the e-symmetric Wu classes of SI.l (which are recalled in $\$ 1.4$ below).

1.3 Triad Q-groups

Triads are needed for the relative L-theory of $\mathbf{5 2 . 2}$.
A triad Γ of A-module chain complexes

consists of A-module chain maps
$\mathbf{f}: \mathrm{C} \longrightarrow \mathrm{D}^{\prime}, \mathrm{f}^{\prime}: \mathrm{C}^{\prime} \longrightarrow \mathrm{D}^{\prime}, \mathrm{g}: \mathrm{C} \longrightarrow \mathrm{C}^{\prime}, \mathrm{h}: \mathrm{D} \longrightarrow \mathrm{D}^{\prime}$
and an A-module chain homotopy

$$
k: h f \simeq f^{\prime} g: C \longrightarrow D^{\prime}
$$

The homology A-modules $H_{k}(\Gamma)$ of Γ are defined by

$$
H_{n}(\Gamma)=H_{n}(C(\Gamma)) \quad(n \in \mathbb{Z})
$$

where $C(I)$ is the A-module chain complex given by

$$
\begin{aligned}
& d_{C(\Gamma)}=\left(\begin{array}{cccc}
d_{D},(-)^{r-1} \\
0 & d_{D} & 0 & (-)^{r_{f}}, \\
k \\
0 & 0 & d_{C}{ }^{r_{f}} & (-)^{r_{g}} \\
0 & 0 & 0 & d_{C}
\end{array}\right) \\
& : C(\Gamma)_{r}=D_{r}^{\prime} \oplus D_{r-1} \oplus C_{r-1}^{\prime} \oplus C_{r-2} \\
& \longrightarrow C(\Gamma)_{r-1}=D_{r-1}^{\prime}{ }^{\oplus D_{r-2}}{ }^{\oplus C}{ }_{r-2}{ }^{\oplus C} C_{r-3} .
\end{aligned}
$$

Propositicn 1.3.1 The triad homology modules $H_{*}(\Gamma)$ fit into a commutative diagram with exact rows and columns

Let Γ be a triad of finite-dimensional A-module chain complexes

The \mathbb{Z}_{2}-isovariant chain map of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complexes

$$
\left.\left.\begin{array}{rl}
(g, r ; k): C\left(\operatorname{Hom}_{A}\left(f^{*}, f\right): \operatorname{Hom}_{A}\left(C^{*}, C\right)\right. & \left.\longrightarrow \operatorname{Hom}_{A}\left(D^{*}, D\right)\right) \\
& \longrightarrow C\left(\operatorname { H o m } _ { A } \left(f^{\prime *}, f\right.\right.
\end{array}\right): \operatorname{Hom}_{A}\left(C^{\prime *}, C^{\prime}\right) \longrightarrow \operatorname{Hom}_{A}\left(D^{\prime *}, D^{\prime}\right)\right), ~ l
$$

defined by

$$
\begin{aligned}
& (g, h ; k)_{s}: \\
& C\left(\operatorname{Hom}_{A}(f *, f)\right)_{r}=\operatorname{Hom}_{A}\left(D^{\star}, D\right)_{r}{ }^{\oplus H o m_{A}}\left(C^{\star}, C\right)_{r-1} \\
& \longrightarrow C\left(\operatorname{Hom}_{A}\left(f^{\prime *}, f^{\prime}\right)\right)_{r+s}=\operatorname{Hom}_{A}\left(D^{\prime *}, D^{\prime}\right)_{r+s}{ }^{\oplus \operatorname{Hom}_{A}}\left(C^{\prime *}, C^{\prime}\right)_{r+s-1} ; \\
& (\theta, \phi) \longmapsto \begin{cases}\left(h \theta h^{*}+(-)^{r} k \phi f h^{\star}+(-)^{p+1} f^{\prime} g \phi k *, g \phi g^{*}\right) & s=0 \\
\left((-)^{p} k_{k} k^{*}, 0\right) & s=1 \\
0 & s \geqslant 2\end{cases} \\
& \left((\theta, \phi) \in \sum_{p+q=r} \operatorname{Hom}_{A}\left(D^{p}, D_{q}\right) \oplus \operatorname{Hom}_{A}\left(C^{p}, c_{q-1}\right)\right)
\end{aligned}
$$

gives rise to a \mathbb{Z}-module chain map

inducing morphisms in the relative $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Q-qroups

$$
\left\{\begin{array}{l}
(g, h ; k)^{z}: Q^{\star}(f, \varepsilon) \longrightarrow Q^{\star}\left(f^{\prime}, \varepsilon\right) \\
(g, h ; k)_{8}: Q_{\star}(f, \varepsilon) \longrightarrow Q_{\star}\left(f^{\prime}, \varepsilon\right)
\end{array}\right.
$$

 triad Γ of finite-dimensional A-module chain complexes to be the relative homology groups

$$
\left\{\begin{array}{l}
Q^{\star}(\Gamma, \varepsilon)=H_{\star}\left((g, h ; k)^{\delta}\right) \\
Q_{\star}(\Gamma, \varepsilon)=H_{\star}\left((g, h ; k)_{g}\right)
\end{array}\right.
$$

of the \mathbb{Z}-module chain map $\left\{\begin{array}{l}(g, h ; k)^{8} \\ (g, h ; k)_{8}\end{array}\right.$ defined above. An element $\left\{\begin{array}{l}\left(\delta \phi^{\prime}, \phi^{\prime}, \delta \phi, \phi\right) \in Q^{n+2}(\Gamma, \varepsilon) \\ \left(\delta \psi^{\prime}, \psi^{\prime}, \delta \psi, \psi\right) \in Q_{n+2}(\Gamma, \varepsilon)\end{array}\right.$ is an equivalence class of collection of chains
such that

$$
\begin{aligned}
& +(-)^{s-r+1} k \phi_{s-1} k^{*}, d \phi_{s}^{\prime}+(-)^{r} \phi_{s}^{\prime} d^{\star}+(-)^{n+s}\left(\phi_{s-1}^{\prime}+(-)^{s} T_{E} \phi_{s-1}^{\prime}\right. \\
& +(-)^{n} g \phi_{s} g^{\star}, d \delta \phi_{S}+(-)^{r} \delta \phi_{s} d^{*}+(-)^{n+s}\left(\delta \phi_{s-1}+(-)^{s_{T}}{ }_{\varepsilon} \delta \phi_{s-1}\right) \\
& \left.+(-)^{n} f \phi_{S} f *, d \phi_{S}+(-)^{r} \phi_{S} d^{\star}+(-)^{n+s-1}\left(\phi_{S-1}+(-)^{s} T_{\varepsilon} \phi_{S-1}\right)\right) \\
& =0 \in \operatorname{Hom}_{A}\left(D^{\prime *}, D^{\prime}\right)_{n+s+1}{ }^{\oplus \operatorname{Hom}_{A}}\left(C^{\prime *}, C^{\prime}\right)_{n+s}{ }^{\oplus \operatorname{Hom}_{A}}\left(D^{*}, D\right)_{n+s}{ }^{\oplus \operatorname{Hom}_{A}}\left(C^{*}\right. \\
& =\sum_{r=-\infty}^{\infty} \operatorname{Hom}_{A}\left(D^{\prime n-r+s+1}, D_{r}^{\prime}\right) \oplus \operatorname{Hom}_{A}\left(C^{n-r+s}, C_{r}^{\prime}\right) \oplus \operatorname{Hom}_{A}\left(D^{n-r+s}, D_{r}\right) \\
& \left(s \geqslant 0,\left(\delta \phi^{\prime}, \phi, \delta \phi, \phi\right)_{-1}=0\right) \\
& \oplus \operatorname{Hom}_{A}\left(C^{n-r+s-1} \cdot C_{r}\right)
\end{aligned}
$$

$$
\begin{aligned}
& d\left(\delta \psi^{\prime}, \psi^{\prime}, \delta \psi, \psi\right)_{s}
\end{aligned}
$$

$$
\begin{aligned}
& \notin \operatorname{Hom}_{A}\left(C^{*}, C\right)_{n-s-1} \\
& =\sum_{r=-\infty}^{\infty} \operatorname{Hom}_{A}\left(D^{, n-r-s+1}, D_{r}^{\prime}\right) \oplus \operatorname{Hom}_{A}\left(C^{n-r-s}, C_{r}^{1}\right) \\
& \oplus \operatorname{Hom}_{A}\left(D^{n-r-s}, D_{r}\right) \oplus \operatorname{Hom}_{A}\left(C^{n-r-s-1}, C_{r}\right)
\end{aligned}
$$

Proposition 1.3.2 The triad ε-symmetric Q-groups $Q^{*}(\Gamma, \varepsilon)$ fit into a commutative diagram with exact rows and columns

Similarly for the ε-quadratic groups $Q_{\star}(\Gamma, \varepsilon)$.
Proof: This is a special case of Proposition l.3.1.

A homotopy equivalence of $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ pairs over A

$$
\left\{\begin{aligned}
&(g, h ; k):\left(f: C \longrightarrow D,(\delta \phi, \phi) \in Q^{n+1}(f, \varepsilon)\right) \\
& \longrightarrow\left(f^{\prime}: C^{\prime} \longrightarrow D^{\prime},\left(\delta \psi^{\prime}, \psi^{\prime}\right) \in Q^{n+1}\left(f^{\prime}, \varepsilon\right)\right) \\
&(g, h ; k):\left(f: C \longrightarrow D,(\delta \psi, \psi) \in Q_{n+1}(f, \varepsilon)\right) \\
&\left(f^{\prime}: C^{\prime} \longrightarrow D^{\prime},\left(\delta \psi^{\prime}, \psi^{\prime}\right) \in Q_{n+1}\left(f^{\prime}, \varepsilon\right)\right)
\end{aligned}\right.
$$

is a chain complex triad of the type

such that the chain maps $g: C \longrightarrow C^{\prime}$ and $h: D \longrightarrow D^{\prime}$ are chain equivalences and

$$
\begin{aligned}
& \left\{\begin{array}{l}
(q, h ; k)^{\ell}(\delta \phi, \phi)=\left(\delta \phi^{\prime}, \phi^{\prime}\right) \in Q^{n+1}(f,, \varepsilon) \\
(g, h ; k)_{g}(\delta \psi, \psi)=\left(\delta \psi^{\prime}, \psi^{\prime}\right) \in Q_{n+1}\left(f^{\prime}, \varepsilon\right)
\end{array}\right. \\
& \text { An } n \text {-dimensional }\left\{\begin{array} { l }
{ \varepsilon - \text { symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { complex over } A \left\{\begin{array}{l}
\left(C, \phi \in Q^{n}(C, \varepsilon)\right) \\
\left(C, \psi \in Q_{n}(C, \varepsilon)\right)
\end{array}\right.\right.
\end{aligned}
$$

is connected (resp. contractible) if

$$
\left\{\begin{array}{l}
H_{O}\left(\psi_{O}: C^{n-\star} \longrightarrow C\right)=0 \\
H_{O}\left(\left(1+T_{E}\right) \Psi_{O}: C^{n-\star} \longrightarrow C\right)=0
\end{array} \quad\left(\text { resp } \cdot H_{\star}(C)=0\right)\right.
$$

A complex is contractible if and only if it is homotopy equivalent to 0 .

The algebraic Thom complex of an n-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over $A\left\{\begin{array}{l}\left(f: C \longrightarrow D,(\delta \phi, \phi) \in Q^{n}(f, \epsilon)\right) \\ \left(f: C \longrightarrow D,(\delta \psi, \psi) \in Q_{n}(f, \epsilon)\right)\end{array}\right.$ is the connected n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over A

$$
\left\{\begin{array}{l}
\left.\left(C(f), \delta \phi / \phi \in Q^{n}(C(f), \varepsilon)\right)\right) \\
\left.\left(C(f), \delta \psi / \psi \in Q_{n}(C(f), E)\right)\right)
\end{array}\right.
$$

defined by

$$
\begin{aligned}
& : C(f)^{n-r+s}=D^{n-r+s} \oplus C^{n-r+s-1} \\
& \longrightarrow C(f)_{r}=D_{r} \oplus C_{r-1} \quad\left(s \geqslant 0, \phi_{-1}=0\right) \\
& \begin{aligned}
(\delta \psi / \psi)_{s} & =\left(\begin{array}{cc}
\delta \psi_{s} & 0 \\
(-)^{n-r-1} \psi_{s} f^{*} & (-)^{n-r-s-1} T_{\varepsilon} \psi_{s+1}
\end{array}\right) \\
& : C(f)^{n-r-s}=D^{n-r-s_{\oplus C}} \begin{aligned}
n-r-s-1
\end{aligned}
\end{aligned} \\
& C(f)_{r}=D_{r} \oplus C_{r-1} \quad(s \geqslant 0)
\end{aligned}
$$

For example, if $v: X \longrightarrow B G(k)$ is a $(k-1)$-spherical fibration over an ($n-k$)-dimensional qeometric Poincaré complex X, and \widetilde{x} is a covering of X with group of covering translations π, the algebraic Thom complex of the n-dimensional symmetric Poincaré pair over $Z[\pi]$ associated to $(E(v), S(v))$

$$
\begin{array}{r}
\sigma^{*}(E(v), S(v))=\left(\mathrm{i}: \mathrm{C}(S(v)) \longrightarrow \mathrm{C}(E(v)),(\delta \phi, \phi) \in Q^{\mathrm{n}}(\mathrm{i})\right) \\
(\mathrm{i}=\text { inclusion })
\end{array}
$$

is the connected n-dimensional symmetric complex over $Z \mathbb{Z l}]$ associated to the Thom π-space $T \pi(v)=F(\bar{v}) / S(\bar{v})$

$$
\left.\dot{(C}(T \pi(v)), \dot{\Phi}_{T \pi}(v) U_{v} \cap(x)\right) \in Q^{n}(\dot{C}(T \pi(v)))
$$

up to homotopy equivalence.
The algebraic Poincare thickening of a connected n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q^{n}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{n}(C, \varepsilon)\right)\end{array}\right.$ is the n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincare pair over A

$$
\left\{\begin{array}{l}
\left(i_{C}: \ni C \longrightarrow C^{n-\star},(0, \exists \phi) \in Q^{n}\left(i_{c}, \varepsilon\right)\right) \\
\left(i_{C}: \partial c \longrightarrow C^{n-*},(0, \exists \psi) \in Q_{n}\left(i_{c}, \varepsilon\right)\right)
\end{array}\right.
$$

defined by

$$
\begin{aligned}
& d_{\partial C}=\left\{\begin{array}{l}
\left(\begin{array}{ll}
d & (-)^{r} \phi_{O} \\
0 & (-)^{r} d^{\star}
\end{array}\right) \\
\left(\begin{array}{cc}
d & (-)^{r}\left(1+T_{\varepsilon}\right) \psi_{O} \\
0 & (-)^{r} d^{\star}
\end{array}\right)
\end{array}\right. \\
& : 3 C_{r}=C_{r+1} \oplus C^{n-r} \longrightarrow \partial C_{r-1}=C_{r} \oplus C^{n-r+1} \\
& { }^{i_{C}}=(101): \partial C_{r}=C_{r+1} \oplus C^{n-r} \\
& \longrightarrow c^{n-r} \\
& \left\{\begin{array}{l}
i \phi_{O}=\left(\begin{array}{cc}
(-)^{n-r-1} T_{\varepsilon} \phi_{1} & (-)^{\mathrm{r}(\mathrm{n}-\mathrm{r}-1)} \varepsilon \\
1 & 0
\end{array}\right) \\
\partial \psi_{0}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{array}\right. \\
& : \partial c^{n-\dot{r}-1}=C^{n-r} \oplus C_{r+1} \longrightarrow \partial C_{r}=c_{r+1} \oplus C^{n-r+1}
\end{aligned}
$$

The $(n-1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ quadratic Poincaré complex
over A

$$
\left\{\begin{array}{l}
\partial(C, \phi)=\left(\partial C, \partial \phi \in Q^{n-1}(\partial C, \varepsilon)\right) \\
\partial(C, \psi)=\left(\partial C, \partial \psi \in Q_{n-1}(\partial C, \varepsilon)\right)
\end{array}\right.
$$

is the boundary of $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$. For example, if $(X, \partial x)$ is an n-dimensional geometric Poincaré pair, and $(\tilde{X}, \vec{\partial})$ is a coveri of ($X, \partial X$) with group of covering translations π, the n-dimens symmetric Poincaré pair over $\mathbb{Z}[\pi]$ associated to ($\mathrm{X}, \jmath \mathrm{x}$)

$$
0^{*}(x, \partial x)=\left(i=\text { inclusion }: c(\widetilde{x}) \longrightarrow C(\widetilde{x}),(\phi, a \phi) \in 0^{n}(i)\right)
$$

is the algebraic Poincaré thickening of the connected
n-dimensional symmetric complex over $\mathbb{Z}[\pi]$ associated to $X / 3 x$

$$
\left.\left(\dot{C}(\tilde{x} / \partial \widetilde{x}), \dot{\phi} \tilde{x} / \partial \widetilde{\partial}^{\left(j_{*}\right.}[x]\right) \in Q^{n}(\dot{C}(\tilde{x} / j \tilde{x}))\right)
$$

up to homotopy equivalence, with

$$
j_{*}=\text { projection }: H_{n}(x, a x) \longrightarrow \dot{H}_{n}(x / a x)
$$

Proposition 1.3.3 i) The algebraic Thom complex and algebraic Poincaré thickening operations are inverse to each other up to homotopy equivalence, defining a natural one-one correspondence between the homotopy equivalence classes of n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pairs over A and the homotopy equivalence classes of connected n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes over A. The correspondence preserves boundaries; algebraic Poincaré pairs with contractible boundary correspond to algebraic Poincaré complexes. ii) A connected n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex is Poincaré if and only if its boundary is a contractible ($n-1$)-dimensional $\left\{\begin{array}{l}\text { e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex.
iii) An n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ Poincaré complex is null-cobordant if and only if it is homotopy equivalent to the boundary of a connected $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \sim \text { symmetric } \\ \varepsilon \sim \text { quadratic }\end{array}\right.$ complex. Proof: See Proposition I.3.4.

1.4 Algebraic Wu classes

The Wu classes of an algebraic Poincaré complex over A (C, ϕ) are functions
$v(\phi): H^{*}(C) \longrightarrow$ (subquotient groups of A)
which are homotopy invariants of (C, ϕ), whose definition we shall now recall. We refer to $\$ \S I I .1,5,9$ for the relations between the algebraic Wu classes and the Wu classes arising in topology.

Given A, ε as in 51.1 let $T \in \mathbb{Z}_{2}$ act on A by the involution

$$
T_{\varepsilon}: A \longrightarrow A ; a \longmapsto \varepsilon \bar{a}
$$

and define the $\left\{\begin{array}{l}\underline{Z}_{2} \text {-cohomology } \\ \mathbb{Z}_{2} \text {-homology } \\ \text { Tate } \mathbb{Z}_{2} \text {-cohomology }\end{array}\right.$ groups of $(A, \varepsilon)\left\{\begin{array}{l}H *\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \\ H_{*}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \\ \hat{H}_{*}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\end{array}\right.$ by

$$
\begin{aligned}
& H^{r}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)= \begin{cases}\operatorname{ker}\left(1-T_{\varepsilon} ; A \longrightarrow A\right) & r=0 \\
\hat{H}^{r}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) & r \geqslant 1 \\
0 & r \leqslant-1\end{cases} \\
& H_{r}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)= \begin{cases}\operatorname{coker}(1-T, A \longrightarrow A) & r=0 \\
\hat{H}^{r+1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) & r \geqslant 1 \\
0 & r \leqslant-1\end{cases} \\
& \hat{H}^{r}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)=\operatorname{ker}\left(1-(-)^{r} T_{E} ; A \longrightarrow A\right) / i m\left(1+(-)^{r} T_{\varepsilon}: A \longrightarrow A\right) r \in \mathbb{Z} .
\end{aligned}
$$

For $m \in Z$ let $S^{m_{A}}$ be the A-module chain complex defined by

$$
\left(S^{m} A\right)_{r}=\left\{\begin{array}{lll}
A & \text { if } r=m \\
0 & \text { if } r \neq m
\end{array}\right.
$$

The cohomology classes $f \in H^{m}(C)=H_{O}\left(H m_{A}\left(C, S^{m} A\right)\right.$ of an A-module chain complex C are the chain homotopy classes of chain maps $\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{s}^{\mathrm{m}} \mathrm{A}$.

Let C be a finite-dimensional A-module chain complex.
The $\underline{r t h}\left\{\begin{array}{l}\frac{\varepsilon \text {-symmetric }}{\varepsilon-q u a d r a t i c} \\ \underline{\varepsilon-h y p e r q u a d r a t i c ~}\end{array}\right.$ Wu class of an element $\left\{\begin{array}{l}\phi \in Q^{n}(C, \varepsilon \\ \psi \in Q_{n}(C, \varepsilon \\ \theta \in \hat{Q}^{n}(C, \varepsilon\end{array}\right.$
is the function

$$
\begin{aligned}
& \left\{\begin{array}{l}
v_{r}(\phi): H^{n-r}(C) \longrightarrow Q^{n}\left(S^{n-r} A, \varepsilon\right)=H^{n-2 r}\left(\mathbb{Z}_{2} ; A,(-)^{n-r} \varepsilon\right) ; f \longmapsto f \phi_{n-2 r} f \\
v^{r}(\psi): H^{n-r}(C) \longrightarrow Q_{n}\left(S^{n-r} A, \varepsilon\right)=H_{2 r-n}\left(\mathbb{Z}_{2} ; A,(-)^{n-r} \varepsilon\right) ; f \longmapsto f \psi_{2 r-n^{\prime}} \\
\hat{v}_{r}(\theta): H^{n-r}(C) \longrightarrow \hat{Q}^{n}\left(S^{n-r} A, \varepsilon\right)=\hat{H}^{r}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; f \longmapsto f \theta_{n-2 r} f \bullet
\end{array}\right. \\
& \left(f: C_{n-r} \longrightarrow A, \phi_{n-2 r}, \psi_{2 r-n^{\prime} \theta_{n-2 r} \in \operatorname{Hom}_{A}\left(C^{n-r}, C_{n-r}\right), H O m_{A}(A *, A)=A}\right.
\end{aligned}
$$

The Wu classes v are quadratic functions, in the sense that

$$
v(a f)=a \cdot v(f) \cdot a \quad\left(a \in A, f \in H^{*}(C)\right) .
$$

Proposition 1.4.1 i) The various wu classes are related to each other by

$$
\begin{aligned}
& \hat{v}_{r}(J \phi): H^{n-r}(C) \xrightarrow{v_{r}(\phi)} H^{n-2 r}\left(\mathbb{Z}_{2} ; A,(-)^{n-r} E\right) \xrightarrow{J} \hat{H}^{r}\left(\mathbb{Z}_{2} ; A, E\right) \\
& v_{r}\left(\left(1+T_{\varepsilon}\right) \psi\right): H^{n-r}(C) \xrightarrow{v^{r}(\psi)} H_{2 r-n}\left(Z_{2} ; A,(-)^{n-r} \varepsilon\right) \\
& \xrightarrow{1+T_{\varepsilon}} H^{n-2 r}\left(\mathbb{Z}_{2} ; A,(-)^{\left.n-r_{\varepsilon}\right)}\right. \\
& \begin{aligned}
v^{r}(H \theta): H^{n-r-1}(C) \xrightarrow{\hat{v}_{r+1}(\theta)} \\
\xrightarrow{H} \hat{H}^{r+1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \\
H_{2 r-n+1}\left(Z_{2} ; A,(-)^{n-r+1} \varepsilon\right)
\end{aligned} \\
& \left(\phi \in Q^{n}(C, \varepsilon), \psi \in Q_{n}(C, \varepsilon), \theta \in \hat{Q}^{n}(C, \varepsilon), J \phi \in \hat{Q}^{n}(C, \varepsilon),(1+T \varepsilon) \psi \in Q^{n}(C, \varepsilon),\right. \\
& \left.H \in \in_{Q_{n-1}}(C, \varepsilon)\right) \text {. }
\end{aligned}
$$

ii) The wu classes satisfy the sum formulae

$$
\begin{aligned}
& v_{r}(\phi)(f+g)-v_{r}(\phi)(f)-v_{r}(\phi)(g) \\
& =\left\{\begin{array} { l }
{ (1 + T (-) ^ { r } \epsilon ^ { \prime } (g _ { O } f ^ { * }) \in H ^ { O } (\mathbb { Z } _ { 2 } ; A , (-) ^ { r } \varepsilon) } \\
{ O \in \hat { H } ^ { O } (\mathbb { Z } _ { 2 } ; A , (-) _ { \varepsilon }) }
\end{array} \text { if } \left\{\begin{array}{l}
n=2 r \\
n \neq 2 r
\end{array}\right.\right. \\
& v^{r}(\psi)(f+g)-v^{r}(\psi)(f)-v^{r}(\psi)(g) \\
& =\left\{\begin{array} { l }
{ g ((l + T _ { E }) \psi _ { O }) f * \in H _ { O } (\mathbb { Z } _ { 2 } ; A , (-) _ { E }) } \\
{ O \in \hat { H } ^ { O } (\mathbb { Z } _ { 2 } ; A _ { H } (-) ^ { r + 1 } \varepsilon) }
\end{array} \quad \text { if } \left\{\begin{array}{l}
n=2 r \\
n \neq 2 r
\end{array}\right.\right. \\
& \hat{v}_{r}(\theta)(f+g)-\hat{v}_{r}(\theta)(f)-\hat{v}_{r}(\theta)(g)=0 \in \hat{H}^{O}\left(\mathbb{Z}_{2} ; A,(-)^{r} E\right) \\
& \text { (} f, g \in H^{n-r}(C) \text {). }
\end{aligned}
$$

[]
The middle-dimensional intersection pairing of a $2 r$-dimensional ε-symmetric complex over $A\left(C, \phi \in Q^{2 r}(C, \varepsilon)\right)$

$$
\lambda=\phi_{O}: H^{r}(C) \times H^{r}(C) \longrightarrow A ;(f, q) \longmapsto g \phi_{O} f *
$$

is such that

$$
\begin{aligned}
& \lambda\left(f, g_{1}+g_{2}\right)=\lambda\left(f, g_{1}\right)+\lambda\left(f, g_{2}\right) \\
& \lambda(f, a g)=a \lambda(f, g) \\
& \lambda(g, f)=(-)^{r} \varepsilon \cdot \overline{\lambda(f, g) \in A} \quad\left(f, g, g_{1}, g_{2} \in H^{r}(C), a \in A\right),
\end{aligned}
$$

with the rth E~symmetric Wu class given by

$$
v_{r}(\psi): H^{r}(C) \longrightarrow H^{O}\left(\mathbb{Z}_{2} ; A,(-) r_{E}\right) ; E \longmapsto \longrightarrow(f, f)
$$

The rth Wu class of a 2 r -dimensional e-quadratic complex over $A\left(C, \psi \epsilon Q_{2 r}(C, E)\right)$ is a function

$$
\mu=v^{r}(\psi): H^{r}(C) \longrightarrow H_{O}\left(\mathbb{Z}_{2} ; A,(-)^{r} E\right)
$$

such that

$$
\begin{aligned}
& \mu(a f)=a \mu(f) \bar{a} \\
& \mu(f+g)-\mu(f)-\mu(g)= \lambda(f, g) \in H_{0}\left(\mathbb{Z}_{2} ; A,(-)^{\left.r_{E}\right)}\right. \\
& \lambda(f, f)=\mu(f)+\varepsilon \overline{(f)} \in H^{O}\left(\mathbb{Z}_{2} ; A,(-)_{E}\right) \\
& \quad\left(f, g \in H^{r}(C), a \in A\right)
\end{aligned}
$$

where $\lambda=\left(1+T \epsilon_{E}\right) \psi_{O}: H^{r}(C) \times H^{r}(C) \longrightarrow A$ is the intersection pairing of the ε-symmetrization $\left(C,\left(1+T_{\varepsilon}\right) \psi \in Q^{2 r}(C, \varepsilon)\right)$. In particular, if (f, b) $: M \longrightarrow X$ is an $(r-l)$-connected 2 r -dimensional normal map the quadratic kernel

$$
\sigma_{\star}(f, b)=\left(C(f), \psi \in Q_{2 r}\left(C\left(f^{l}\right)\right)\right)
$$

is a 2 r -dimensional quadratic Poincaré complex over $\mathbb{Z}\left[\pi_{1}(X)\right]$ with

$$
H^{r}\left(C\left(f^{!}\right)\right)=H_{r}\left(C\left(f^{!}\right)\right)=K_{r}(M)=\operatorname{ker}\left(\tilde{f}_{*}: H_{r}(\tilde{M}) \longrightarrow H_{r}(\tilde{X})\right)
$$

(up to isomorphism), and in this case the triple

$$
\begin{aligned}
\left(K_{r}(M), \lambda\right. & =(1+T) \Psi_{O}: K_{r}(M) \times K_{r}(M) \longrightarrow \mathbb{Z}\left[\pi_{1}(X)\right], \\
\mu & \left.=v^{r}(\psi): K_{r}(M) \longrightarrow H_{O}\left(\mathbb{Z}_{2} ; \mathbb{Z}\left[\pi_{1}(X)\right],(-)^{r}\right)\right)
\end{aligned}
$$

is the $(-)^{r}$-quadratic form $\left(K_{r}(M), \lambda, \mu\right)$ used by wall $[4,55]$ to define the surgery obstruction $\sigma_{\star}(f, b) \in L_{2 r}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right)$, with λ (resp. μ) the geometrically defined intersection (resp, self-intersection) form, cf. Proposition II.5.4.

We shall recall the precise relationship between

$$
\left\{\begin{array} { l }
{ \varepsilon - \text { symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { complexes and } \left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { forms in } \$ 1.6\right.\right. \text { below. }
$$

Define the even E-symmetric Q-groups $Q\left\langle v_{0}\right\rangle^{*}(C, \varepsilon)$ of a finite-dimensional A-module chain complex C by

$$
Q\left\langle v_{0}\right\rangle^{n}(C, \varepsilon)=\operatorname{ker}\left(\hat{v}_{O}: Q^{n}(C, \varepsilon) \longrightarrow \operatorname{Hom}_{A}\left(H^{n}(C), \hat{H}^{O}\left(Z_{2} ; A, \varepsilon\right)\right)\right)(n \geqslant 0) .
$$

An n-dimensional ε-symmetric complex over $A\left(C, \psi \in Q^{n}(C, E)\right)$ is even if

$$
\phi \in Q\left\langle v_{0}\right\rangle^{n}(C, \varepsilon) \subseteq Q^{n}(C, \varepsilon)
$$

For example, the esymmetrization ($C,(1+T E) \psi \in Q^{n}(C, E)$) of an ε-quadratic complex ($\left.C, \psi \in Q_{n}(C, \varepsilon)\right)$ is even. The relative even
$\underline{\varepsilon-s y m m e t r i c ~} Q$-groups $Q\left\langle v_{O}\right\rangle *(f, E)$ of a chain map $f: C \longrightarrow D$ of finite-dimensional A-module chain complexes

$$
Q\left(v_{0}\right\rangle^{n+1}(f, \varepsilon)=\operatorname{ker}\left(\hat{v}_{O}: Q^{n+1}(f, \varepsilon) \longrightarrow \operatorname{Hom}_{A}\left(H^{n+1}(f), \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)\right)(n \geqslant 0 \text { : }
$$

where the relative wu class \hat{v}_{O} of $(\delta \phi, \phi) \in Q^{n+1}(f, \varepsilon)$ is given by

$$
\begin{aligned}
& \hat{v}_{0}(\delta \phi, \phi): H^{n+1}(f) \longrightarrow \hat{H}^{0}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; \\
& (g, h) \longmapsto g\left(\delta \phi_{n+1}\right) g^{*}+(-)^{n} h\left(\phi_{n}\right) h^{*} \\
& \left(\left(\delta \phi_{n+1}, \phi_{n}\right) \in \operatorname{Hom}_{A}\left(D^{n+1}, D_{n+1}\right) \oplus \operatorname{Hom}_{A}\left(C^{n}, C_{n}\right),(g, h) \in D^{n+1} \oplus C^{n}\right) .
\end{aligned}
$$

An $(\mathrm{n}+1)$-dimensional e-symmetric pair $(\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D},(\delta \phi, \phi))$ is even if

$$
(\delta \phi, \phi) \in Q\left\langle v_{O}\right\rangle^{n+1}(f, \varepsilon) \subseteq Q^{n+1}(f, \varepsilon)
$$

The n-dimensional even ε-symmetric L-group of $A L\left\langle v_{0}\right\rangle^{n}(A, \varepsilon)$ $(n \geqslant 0)$ is the cobordism group of n-dimensional even e-symmetric Poincaré complexes over A, where the cobordism are the ($\mathrm{n}+1$)-dimensional even e-symmetric Poincaré pairs over A. By analogy with Proposition 1.2.3 il, ii) we have:

Proposition 1.4.2 The skew-suspension maps

$$
\bar{S}: L^{n}(A, \varepsilon) \longrightarrow L\left\langle V_{0}\right\rangle^{n+2}(A,-E) ;(C, \phi) \longmapsto(S C, \bar{S} \phi) \quad(n \geqslant 0)
$$

are isomorphisms.
Proof: See Proposition 1.4.4.

The e-symmetrization map in the L -groups factors through the even e-symmetric L-groups

$$
1+T_{\varepsilon}: L_{p}(A, \varepsilon) \longrightarrow L\left\langle v_{O}\right\rangle^{n}(A, \varepsilon) \longrightarrow L^{n}(A, \varepsilon) \quad(n \geqslant 0)
$$

In $\$ 1.8$ below we shall recall from $\$ 1.6$ the way in which the even ε-symmetric L-groups $L^{L}\left\langle V_{0}\right\rangle^{n}(A, \varepsilon)$ for $n=0,1$ bridge the gap between the e-quadratic and the e-symmetric L-groups, defining a unified L-theory containing all three types of L-grs

Proposition 1.2 .2 iii) also extends to the even E-symmeti L-groups, with $L\left\langle v_{0}\right\rangle^{l}(A, C)=0$ for a 0 -dimensional ring with involution A (cf. the proof of Proposition 1.4.5). Proposition 1.4.3 If A, E are such that $\hat{H}^{\star}\left(\mathbb{Z}_{2} ; A, C\right)=0$ the natural maps

$$
I+T_{E}: L_{n}(A, E) \longrightarrow L\left\langle v_{O}\right\rangle^{n}(A, E), L\left\langle v_{O}\right\rangle^{n}(A, E) \longrightarrow L^{n}(A, E)
$$

are isomorphisms. In particular, this is the case if there exists a central element $a \in A$ such that $a+\bar{a}=1 \in A$ (egg. $a=\frac{1}{2}$ Proof: See Proposition 1.3.3.

Indeed, if $\hat{H}^{*}\left(\mathbb{Z}_{2} ; A, E\right)=0$ there are natural identificat: of categories

$$
\begin{aligned}
\{\varepsilon \text {-quadratic } & \text { complexes over } A\} \\
& =\{\text { even } \varepsilon \text {-symmetric complexes over } A\} \\
& =\{\varepsilon \text {-symmetric complexes over } A\}
\end{aligned}
$$

with

$$
Q_{\star}(C, E)=Q\left\langle v_{O}\right\rangle^{*}(C, \varepsilon)=Q^{*}(C, \varepsilon)
$$

for any finite-dimensional A-module chain complex C.

1.5 Algebraic surgery

$$
\begin{aligned}
& \text { An }(n+1) \text {-dimensional }\left\{\begin{array}{l}
\text { E-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { pair over } A\right. \\
& \left\{\begin{array}{l}
\left(f: C \longrightarrow D,(\delta \phi, \phi) \in Q^{n+1}(E, \epsilon)\right) \\
\left(f: C \longrightarrow D,(\delta \psi, \psi) \in Q_{n+1}(f, \varepsilon)\right)
\end{array}\right. \text { is connected if } \\
& \left\{\begin{array}{l}
\left.{ }_{H_{O}}\binom{\delta \phi_{O}}{\phi_{O} f^{*}}: D^{n+1-\star} \longrightarrow C(f)\right)=0 \\
H_{O}\left(\binom{\left(1+T_{E}\right) \delta \psi_{O}}{\left(1+T_{E}\right\rangle \psi_{O^{\prime}}}: D^{n+1-*} \longrightarrow C(f)\right)=0
\end{array}\right.
\end{aligned}
$$

Define as follows the connected n-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symme } \\ \varepsilon \text {-quadr }\end{array}\right.$ complex over $A\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime} \in Q^{n}\left(C^{\prime}, \varepsilon\right)\right) \\ \left(C^{\prime}, \psi^{\prime} \in Q_{n}\left(C^{\prime}, \varepsilon\right)\right)\end{array}\right.$ obtained from a connected n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q^{n}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{n}(C, \varepsilon)\right)\end{array} k\right.$ surgery on a connected $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ pair $\left\{\begin{array}{l}\left(f: C \longrightarrow D,(\delta \phi, \phi) \in Q^{n+1}(f, \varepsilon)\right) \\ \left(f: C \longrightarrow D,(\delta \psi, \psi) \in Q_{n+1}(f, \varepsilon)\right)\end{array}\right.$. (This is an algebraic surge "killing im(f*: $\left.\left.\mathrm{H}^{*}(\mathrm{D}) \longrightarrow \mathrm{H}^{*}(\mathrm{C})\right)^{\prime}\right)$.

In the ε-symmetric case let

$$
\longrightarrow C_{r}^{\prime}=C_{r} \oplus D_{r+1} \oplus D^{n-r+1}
$$

In the ε-quadratic case let

$$
\begin{aligned}
d_{C^{\prime}}= & \left(\begin{array}{ccc}
d_{C} & 0 & (-)^{n+1}\left(1+T_{\varepsilon}\right) \psi_{O} f^{*} \\
(-)^{r} r_{r} & d_{D} & (-)^{r}\left(1+T_{\varepsilon}\right) \delta \psi_{O} \\
0 & 0 & (-)^{r} d_{D}^{*}
\end{array}\right) \\
& : C_{r}^{\prime}=C_{r}^{\oplus D_{r+1} \oplus D^{n-r+1}} \longrightarrow C_{r-1}^{\prime}=C_{r-1} \oplus D_{r}^{\oplus D^{n-r+2}} \\
\psi_{O}^{\prime}= & \left(\begin{array}{lll}
\psi_{O} & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \\
& : C^{\prime n-r}=C^{n-r} \oplus D^{n-r+1} \oplus D_{r+1} \longrightarrow C_{r}^{\prime}=C_{r}^{\oplus D_{r+1} \oplus D^{n-r+1}}
\end{aligned}
$$

$$
\begin{align*}
& d_{C^{\prime}}=\left(\begin{array}{ccc}
d_{C} & 0 & (-)^{n+1} \phi_{O^{f}} f^{\star} \\
(-)^{r} f & d_{D} & (-)^{r} \phi_{O} \\
0 & 0 & (-)^{r} d_{D}^{\star}
\end{array}\right) \\
& : C_{r}^{\prime}=C_{r} \oplus D_{r+1} \oplus D^{n-r+1} \longrightarrow C_{r-1}^{\prime}=C_{r-1} \oplus D_{r} \oplus D^{n-r+2} \\
& \phi_{O}^{\prime}=\left(\begin{array}{ccc}
\phi_{O} & 0 & 0 \\
(-)^{n-r} \mathrm{fT}_{\epsilon} \phi_{1} & (-)^{n-r_{T}}{ }_{\varepsilon} \delta \phi_{1} & 0 \\
0 & 1 & 0
\end{array}\right) \\
& : c^{\prime n-r}=C^{n-r} \oplus D^{n-r+1} \oplus D_{r+1} \longrightarrow C_{r}^{\prime}=c_{r} \oplus D_{r+1} \oplus D^{n-r+1} \\
& \phi_{S}^{\prime}=\left(\begin{array}{ccc}
\phi_{S} & 0 & 0 \\
(-)^{n-r_{f}}{ }_{E} \phi_{S} & (-)^{n-r+S_{T}}{ }_{E} \delta \phi_{S+1} & 0 \\
0 & 0 & 0
\end{array}\right) \\
& : C^{n-r+s}=C^{n-r+s} \oplus D^{n-r+s+1} \oplus D_{r-s+1}
\end{align*}
$$

$$
\begin{aligned}
& \psi_{S}^{\prime}=\left(\begin{array}{ccc}
\psi_{S} & (-)^{r+s} \mathrm{~T}_{\boldsymbol{\varepsilon}} \psi_{\mathrm{S}-1} \mathrm{f}^{\star} & 0 \\
0 & (-)^{n-r-s+1} \mathrm{~T}_{\varepsilon} \delta \psi_{\mathrm{S}-1} & 0 \\
0 & 0 & 0
\end{array}\right) \\
& : C^{n-r-s}=C^{n-r-s} \oplus D^{n-r-s+1} \oplus D_{r+s+1} \\
& \longrightarrow C_{r}^{\prime}=C_{r} \oplus D_{r+1} \oplus D^{n-r+1} \quad(s \geqslant 1) .
\end{aligned}
$$

In §II. 7 it was shown that for a $\left\{\begin{array}{l}\text { degree } 1 \\ \text { normal map }\end{array}\right.$

$$
\left\{\begin{array}{l}
f: M \longrightarrow X \\
(f, b): M \longrightarrow X
\end{array} \text { from an } n \text {-dimensional manifold } M\right. \text { to an }
$$

n-dimensional geometric Poincaré complex x the effect on the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ kernel $\left\{\begin{array}{l}\sigma^{*}(f)=(C, \phi) \\ \sigma_{\star}(f, b)=(C, \psi)\end{array}\right.$ of an $\left\{\begin{array}{l}\text { oriented } \\ \text { framed }\end{array}\right.$ surgery on a framed embedding $S^{r} C M^{n}$ with a null-homotopy of $S^{r} \longrightarrow M \xrightarrow{f} X$ (replacing $\left\{\begin{array}{l}f: M \longrightarrow X \\ (f, b): M \longrightarrow X\end{array}\right.$ by $\left\{\begin{array}{l}f^{\prime}: M^{\prime} \longrightarrow X \\ \left(f^{\prime}, b^{\prime}\right): M^{\prime} \longrightarrow X\end{array}\right.$ with $M^{\prime}=M \backslash S^{r} \times D^{n-r} U D^{r+1} \times S^{n-r-1}$, is that of algebraic surgery
 determined by the commutative diagram of maps

with $g^{*}(1) \in H^{n-r}(C)=H_{r}(C)=K_{r}(M)=H_{r+1}(\bar{f})$ the Hurewicz image of $F \in \pi_{r+1}(f)=\pi_{r+1}(\tilde{f})$.

Proposition 1.5 .1 i) Algebraic surgery preserves the homotopy type of the boundary. In particular, surgery on an algebraic Poincaré complex results in an algebraic poincaré complex. ii) Algebraic Poincaré complexes x, y are cobordant if and only if x is homotopy equivalent to a complex obtained from y by surgery.

Proof: See Proposition I.4.1.

Proposition 1.5.2 The skew-suspension map $\left\{\begin{array}{l}\bar{S}: L^{n}(A, E) \longrightarrow L^{n+2}(A,-\varepsilon) \\ \bar{S}: L_{n}(A, \varepsilon) \longrightarrow L_{n+2}(A,-\varepsilon)\end{array}\right.$ (for some $n \geqslant 0$) is onto (resp. one-one) if for every connected ($n+2$) - (resp. ($n+3$) -) dimensio $\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ complex over $A x$ with a boundary ∂x which is contractible (resp. a skew-suspension) it is possible to do $\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ surgery on x to obtain a skew-suspension.
Proof: See Proposition I.4.2.

The criterion of Proposition 1.5 .2 for the skew-suspension map to be an isomorphism is always satisfied in the e-quadratic ca cf. Proposition 1.2.2 i). It is not in general satisfied in th e-symmetric case, cf. Proposition 1.2 .2 ii) and the examples o non-periodic ε-symmetric L-groups of SI. 10.

1.6 Forms and formations

Next, we recall the correspondence between n-dimensior algebraic Poincaré complexes for $n=0$ (resp. 1) and quadrat forms (resp. formations), and the correspondence between the L-groups and the Witt groups.

Given a f.g. projective A-module M define the e-dualit involution

$$
\begin{aligned}
& T_{\varepsilon}: \operatorname{Hom}_{A}\left(M, M^{*}\right) \longrightarrow \operatorname{Hom}_{A}\left(M, M^{*}\right) \\
& ; \\
&\left(\varepsilon \phi^{*}: x \longmapsto(Y \longmapsto \varepsilon(Y)(x))\right)
\end{aligned}
$$

This is just the e-duality involution T_{E} on $\operatorname{Hom}_{A}\left(C^{*}, C\right)$ with the O-dimensional A-module chain complex defined by

$$
\begin{aligned}
& C_{r}= \begin{cases}M^{*} & \text { if } r=0 \\
0 & \text { if } r \neq 0 .\end{cases} \\
& \text { Define the }\left\{\begin{array} { l }
{ \frac { \varepsilon \text { -symmetric } } { \text { even } \varepsilon \text { -symmetric } } } \\
{ \frac { \varepsilon \text { -quadratic } } { \text { split } \varepsilon \text { -quadratic } } }
\end{array} \quad \text { Q-group of } M \quad \left\{\begin{array}{l}
Q^{\varepsilon}(M) \\
Q\left\langle v_{O}\right\rangle^{\varepsilon}(M) \\
Q_{\varepsilon}(M) \\
Q_{\varepsilon}(M)
\end{array}\right.\right. \text { by } \\
& \left\{\begin{array}{l}
Q^{\varepsilon}(M)=Q^{O}(C, \varepsilon)=\operatorname{ker}\left(1-T_{\varepsilon}: \operatorname{Hom}_{A}\left(M, M^{*}\right) \longrightarrow \operatorname{Hom}_{A}\left(M, M^{*}\right)\right) \\
Q\left\langle v_{O}\right\rangle^{\varepsilon}(M)=Q\left\langle v_{O}\right\rangle(C, \varepsilon)=\operatorname{im}\left(1+T_{E}: \operatorname{Hom}_{A}\left(M, M^{*}\right) \longrightarrow \operatorname{Hom}_{A}(M, I\right. \\
Q_{E}(M)=Q_{O}(C, \varepsilon)=\operatorname{coker}\left(1-T_{E}: \operatorname{Hom}_{A}\left(M, M^{*}\right) \longrightarrow \operatorname{Hom}_{A}\left(M, M^{*}\right)\right) \\
\widetilde{Q}_{E}(M)=H_{O}\left(\operatorname{Hom}_{A}\left(C^{*}, C\right)\right)=\operatorname{Hom}_{A}\left(M, M^{*}\right) .
\end{array}\right.
\end{aligned}
$$

The various Q-groups are related by a sequence of forgetful

$$
\widetilde{Q}_{\varepsilon}(M) \longrightarrow Q_{\varepsilon}(M) \xrightarrow{1+T} Q\left\langle v_{O}\right\rangle \varepsilon(M) \longrightarrow Q^{\varepsilon}(M)
$$

with $\tilde{Q}_{\varepsilon}(M) \longrightarrow Q_{\epsilon}(M)$ and $1+T_{\varepsilon}: Q_{\varepsilon}(M) \longrightarrow Q^{\varepsilon}(M)$ onto, and $Q\left\langle v_{0}\right\rangle^{\varepsilon}(M) \longrightarrow Q^{\varepsilon}(M)$ one-one.

$$
A n\left\{\begin{array} { l }
{ \frac { \text { e-symmetric } } { \text { e-quadratic } } }
\end{array} \text { formover } A \left\{\begin{array}{l}
(M, \phi) \\
(M, \psi)
\end{array}\right.\right. \text { is a f.g. projective }
$$

A-module M together with an element $\left\{\begin{array}{l}\phi \in Q^{\varepsilon}(M) \\ \psi \in Q_{\varepsilon}(M)\end{array}\right.$. Such a form is non-singular if $\left\{\begin{array}{l}\phi \in \operatorname{Hom}_{A}\left(M, M^{*}\right) \\ \left(\psi+\varepsilon \psi^{*}\right) \in \operatorname{Hom}_{A}\left(M, M^{*}\right)\end{array}\right.$ is an isomorphism. A morphism (resp. isomorphism) of $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A

$$
\left\{\begin{array}{l}
f:(M, \phi) \longrightarrow\left(M^{\prime}, \phi^{\prime}\right) \\
f:(M, \psi) \longrightarrow\left(M^{\prime}, \psi^{\prime}\right)
\end{array}\right.
$$

is an A-module morphism (resp. isomorphism) feHom $A_{A}\left(M, M^{\prime}\right)$ such that

$$
\left\{\begin{array}{l}
f * \phi^{\prime} f=\phi \in Q^{\varepsilon}(M) \\
f * \psi^{\prime} f=\psi \in Q_{\varepsilon}(M)
\end{array}\right.
$$

An even e-symmetric form over $A(M, \phi)$ is an e-symmetric form such that

$$
\left.\phi \in Q^{\left\langle v_{0}\right.}\right\rangle^{\varepsilon}(M) \subseteq Q^{\varepsilon}(M) .
$$

A split ε-quadratic form over $A(M, \psi)$ is a f.g. projective A-module M together with an element $\psi \in \tilde{Q}_{E}(M)$. A morphism (resp. isomorphism) of split ε-quadratic forms over A

$$
(f, \chi):(M, \psi) \longrightarrow\left(M^{\prime}, \psi^{\prime}\right)
$$

is an A-module morphism (resp. isomorphism) $f \in \operatorname{Hom}_{A}\left(M, M^{\prime}\right)$ together with a $(-\varepsilon)$-quadratic form over $A\left(M, X \in Q_{-\varepsilon}(M)\right)$, the hessian of (f, x), such that

$$
f^{\star} \psi^{\prime} f-\psi=X-\varepsilon X^{\star} \in{\underset{Q}{Q}}_{E}(M) .
$$

An e-symmetric form over $A\left(M, \phi \in Q^{\varepsilon}(M)\right)$ is the same as a f.g. projective A-module M together with a pairing

$$
\lambda: M \times M \longrightarrow A ;(x, y) \longmapsto \quad \downarrow(x, y) \equiv \phi(x)(y)
$$

such that

$$
\begin{aligned}
& \lambda(x, a y)=a \lambda(x, y) \\
& \lambda\left(x, y+y^{\prime}\right)=\lambda(x, y)+\lambda\left(x, y^{\prime}\right)
\end{aligned}
$$

$$
\lambda(y, x)=\varepsilon \bar{\lambda}(x, y) \in A \quad\left(x, y, y^{\prime} \in M, a \in A\right)
$$

The form (M, ϕ) is even if for every $x \in M$ there exits a $\in A$ such that

$$
\lambda(x, x)=a+\varepsilon \bar{a} \in A .
$$

An ε-quadratic form over $A\left(M, \psi \in Q_{E}(M)\right)$ is the same (up to isomorphism) as a triple (M, λ, μ) consisting of a f.g. projective A-module M, an ε-symmetric pairing $\lambda: M \times M \longrightarrow A$ as above and a function

$$
\mu: M \longrightarrow Q_{E}(A) \equiv A /\{a-\varepsilon \bar{a} \mid a \in A\}
$$

such that

$$
\begin{aligned}
& \mu(a x) \in a \mu(x) \vec{a} \\
& \mu(x+y)-\mu(x)-\mu(y)=\lambda(x, y) \in Q_{\varepsilon}(A) \\
& \lambda(x, x)=\mu(x)+\varepsilon \overline{\mu(x)} \in A \quad\left(x, y, y^{\prime} \in M, a \in A\right),
\end{aligned}
$$

i.e. an ε-quadratic form in the sense of Wall $[4,55]$, the
correspondence $(M, \psi) \longmapsto(M, \lambda, \mu)$ being given by

$$
\begin{aligned}
& \lambda(x, y)=\left(\psi^{+E} \psi^{\star}\right)(x)(y) \in A \\
& \mu(x)=\psi(x)(x) \in Q_{E}(A) \quad(x, y \in M)
\end{aligned}
$$

The e-symmetrization functor
$1+T_{\varepsilon}:\{\varepsilon$-quadratic forms over $A\} \longrightarrow$ \{e-symmetric forms over $\left.A\right\} ;$ $(M, \psi) \longmapsto\left(M,\left(1+T_{\varepsilon}\right) \psi\right)$
is an isomorphism of categories if $1 / 2 \in A$, in which case the
ε-symmetric pairing $\lambda: M \times M \longrightarrow A ;(x, y) \longmapsto\left(1+T{ }_{\epsilon}\right) \psi(x)(y)$ determi the E-quadratic function $\mu: M \longrightarrow Q_{E}(A) ; x \longrightarrow \psi(x)(x)$ by

$$
\mu(x)=\frac{1}{2} \lambda(x, x) \in Q_{\varepsilon}(A) \quad(x \in M) .
$$

If A is commutative ring with the identity involution $\overline{\mathbf{a}}=\mathbf{a} \boldsymbol{E} A$ ($a \in A$) a quadratic form over $A\left(M, \psi \in Q_{+1}(M)\right)(E=+1 \in A)$ is thus essentrally the same as a f.g. projective A-module M together with a function

$$
\mu: M \longrightarrow Q_{+1}(A)=A
$$

such that
i) μ is quadratic

$$
\mu(a x)=a^{2} \mu(x) \in A \quad(a \in A, x \in M)
$$

ii) the function

$$
\lambda: M \times M \longrightarrow A:(x, y) \longrightarrow(\mu(x+y)-\mu(x)-\mu(y))
$$

is bilinear,
which is the classical definition of a quadratic form over a commutative ring. For any ring with involution A the forgetful functor
\{split ε-quadratic forms over $A\}$

$$
\begin{aligned}
& \longrightarrow\{\varepsilon \text {-quadratic forms over } A\} ; \\
& \left(M, \psi \in \tilde{Q}_{\varepsilon}(M)\right) \longmapsto\left(M,[\psi] \in Q_{\varepsilon}(M)\right)
\end{aligned}
$$

defines a one-one correspondence of isomorphism classes; the hessian forms appearing in the morphisms of split e-quadratic forms are necessary for the definition of theven-dimensional relative ε-quadratic L-groups (in $\$ 2$ below).

$$
\text { If }\left\{\begin{array} { l }
{ (C , \phi) } \\
{ (C , \psi) }
\end{array} \text { is a o-dimensional } \left\{\begin{array}{l}
(\text { even }) ~ \varepsilon-s y m m e t r i c ~ \\
\varepsilon \text {-quadratic }
\end{array}\right.\right. \text { complex }
$$

over A there are natural identifications

$$
\left\{\begin{array}{l}
Q^{O}(C, \varepsilon)=Q^{\varepsilon}\left(H^{O}(C)\right) \quad\left(Q\left\langle v_{O}\right\rangle^{O}(C, \varepsilon)=Q\left\langle v_{O}\right\rangle^{\varepsilon}\left(H^{O}(C)\right)\right) \\
Q_{0}(C, \varepsilon)=Q_{\varepsilon}\left(H^{O}(C)\right),
\end{array}\right.
$$

so that $\left\{\begin{array}{l}\left(\mathrm{H}^{\mathrm{O}}(\mathrm{C}), \phi\right) \\ \left(\mathrm{H}^{\mathrm{O}}(\mathrm{C}), \psi\right)\end{array}\right.$ is an $\left\{\begin{array}{l}(\text { even }) ~ E-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A such that the oth $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ wu class of $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is given by

$$
\left\{\begin{array}{l}
v_{0}(\phi): H^{0}(C) \longrightarrow H^{0}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; x \longmapsto \phi_{O}(x)(x)=\lambda(x, x) \\
\left(\hat{v}_{0}(\phi)=0\right) \\
v^{0}(\psi): H^{0}(C) \longrightarrow H_{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ; x \longrightarrow \psi_{O}(x)(x)=\mu(x) .
\end{array}\right.
$$

Proposition 1.6.1 There is a natural one-one correspondence between the homotopy equivalence classes of 0 -dimensional $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes over A and the isomorphism classes of $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A. Poincaré complexe correspond to non-singular forms.

Proof: See Proposition 1.5.1.

$$
\text { A sublagrangian of an }\left\{\begin{array} { l }
{ \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { form over } \Lambda \left\{\begin{array}{l}
(M, \phi) \\
(M, \phi)
\end{array}\right.\right.
$$

is a direct summand L of M such that the inclusion $j \in H_{A}(L, A$ defines a morphism of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms

$$
\left\{\begin{array}{l}
j:(L, O) \longrightarrow(M, \phi) \\
j:(L, O) \longrightarrow(M, \psi)
\end{array}\right.
$$

such that $\left\{\begin{array}{l}j^{\star} \phi \in \operatorname{Hom}_{A}\left(M, L^{*}\right) \\ j \star\left(\psi+\varepsilon \psi^{\star}\right) \in \operatorname{Hom}_{A}\left(M, L^{\star}\right)\end{array}\right.$ is onto. The anninilator of L

$$
\left\{\begin{array}{l}
L^{\perp}=\operatorname{ker}\left(j^{\star} \phi: M \longrightarrow L^{\star}\right) \\
L^{\perp}=\operatorname{ker}\left(j^{\star}\left(\psi+\varepsilon \psi^{\star}\right): M \longrightarrow L^{\star}\right)
\end{array}\right.
$$

is a direct summand of M containing L as a direct summand

$$
\mathrm{L} \subseteq \mathrm{~L}^{\mathbf{1}}
$$

A lagrangian is a sublagrangian which is its own annihilator

$$
L^{1}=L,
$$

i.e. such that there is defined an exact sequence

A (sub) lagrangian (L, λ) of a split ε-quadratic form over A ($M, \tilde{\psi} \in \tilde{Q}_{\varepsilon}(M)$) is a (sub) lagrangian L of the associated E-quadratic form $\left(M,[\widetilde{\psi}] \in \widetilde{Q}_{E}(M)\right)$, together with a hessian $(-\varepsilon)$-quadratic form ($L, \lambda \in Q_{-\varepsilon}(L)$) such that

$$
j \star \tilde{\psi}_{j}=\lambda-\varepsilon \lambda * \in \tilde{Q}_{\varepsilon}(L),
$$

i.e. such that there is defined a morphism of split e-quadratic forms over A

$$
(j, \lambda):(L, O) \longrightarrow(M, \tilde{\psi}) .
$$

A non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ (\text { split }) ~ \\ \text {-quadratic }\end{array}\right.$ form is hyperbolic if it admits a lagrangian.

The various hyperbolic forms are related to each other by

$$
\left(1+T_{\epsilon}\right) H_{\epsilon}(L)=H^{\epsilon}(L)=H^{\varepsilon}\left(L^{*}, 0\right),
$$

with $\widetilde{H}_{\varepsilon}(L)$ a split ε-quadratic refinement of $H_{\varepsilon}(L)$. If $\left(L^{\star}, \phi \in Q\left\langle v_{0}\right)^{E}\left(L^{\star}\right)\right)$ is an even ε-symmetric form then $\phi=\psi+\varepsilon \psi^{*} \in Q\left\langle v_{O}\right\rangle^{\varepsilon}\left(L^{*}\right)$ for some split ε-quadratic form ($\left.M, \psi \in \hat{Q}_{\varepsilon}\left(L^{\star}\right)\right)$ and there is defined an isomorphism of (even) e-symmetric forms

$$
\begin{gathered}
\left(\begin{array}{ll}
1 & \psi^{*} \\
0 & 1
\end{array}\right): H^{\varepsilon}\left(L^{*}, \phi\right)=\left(L \oplus L^{*},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \phi
\end{array}\right)\right) \\
\cdots H^{\varepsilon}(L)=\left(L \oplus L^{\star},\left(\begin{array}{ll}
O & 1 \\
\varepsilon & 0
\end{array}\right)\right)
\end{gathered}
$$

Proposition 1.6.2 The morphism of forms

$$
\left\{\begin{array}{l}
j:(L, O) \longrightarrow(M, \phi) \\
j:(L, O) \longrightarrow(M, \phi) \\
j:(L, O) \longrightarrow(M, \psi) \\
(j, \lambda):(L, O) \longrightarrow \longrightarrow(M, \tilde{\psi})
\end{array}\right.
$$ defined by the inclusion $j \in \operatorname{Hom}_{A}(L, M)$ of a sublagrangian L in ; $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array} \quad\left\{\begin{array}{l}\left(M, \phi \in Q^{\varepsilon}(M)\right) \\ \left(M, \phi \in Q\left\langle V_{O}\right\rangle^{\varepsilon}(M)\right) \\ \left(M, \psi \in Q_{\varepsilon}(M)\right) \\ \left(M, \Psi \in \widehat{Q}_{\varepsilon}(M)\right)\end{array}\right.\right.$ extends to an isomorphism of forms

$$
\left\{\begin{array}{l}
f: H^{\varepsilon}\left(L^{\star}, \eta\right) \oplus(L \perp / L, \phi \perp / \phi) \longrightarrow(M, \phi) \\
f: H^{\varepsilon}(L) \oplus\left(L^{\perp} / L, \phi \perp / \phi\right) \longrightarrow \sim(M, \phi) \\
f: H_{\varepsilon}(L) \oplus(L \perp / L, \psi \perp / \psi) \longrightarrow \sim \\
(f, X): \widetilde{H}_{\epsilon}(L) \oplus\left(L^{\perp} / L, \tilde{\psi} \perp / \widetilde{\psi}\right) \longrightarrow \sim
\end{array}\right.
$$

Proof: See Proposition I. 2.2.

In particular, Proposition 1.6 .2 shows that the form $\left(L^{\perp} / L, \phi^{\perp / \phi}\right)$ is non-singular if and only if (M, ϕ) is non-singuli and similarly in the other cases.

$$
A n\left\{\begin{array} { l }
{ \frac { \varepsilon \text { -symmetric } } { \varepsilon \text { -quadratic } } }
\end{array} \text { formation over } A \left\{\begin{array}{l}
(M, \phi ; F, G) \\
(M, \psi ; F, G)
\end{array}\right.\right. \text { is a }
$$

non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ form over $A\left\{\begin{array}{l}\left(M, \phi \in Q^{E}(M)\right) \\ \left(M, \psi \in Q_{\varepsilon}(M)\right)\end{array}\right.$ together with a lagrangian F and a sublagrangian G. Such a formation is non-singular if G is a lagrangian. An isomorphism of formations

$$
\left\{\begin{array}{l}
f:(M, \phi ; F, G) \longrightarrow\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \\
f:(M, \psi ; F, G) \longrightarrow\left(M^{\prime}, \psi^{\prime} ; F^{\prime}, G^{\prime}\right)
\end{array}\right.
$$

is an isomorphism of forms

$$
\left\{\begin{array}{l}
f:(M, \phi) \longrightarrow\left(M^{\prime}, \phi^{\prime}\right) \\
f:(M, \psi) \longrightarrow\left(M^{\prime}, \psi^{\prime}\right)
\end{array}\right.
$$

such that

$$
f(F)=F^{\prime}, f(G)=G^{\prime} .
$$

A stable isomorphism of formations

$$
\left\{\begin{array}{l}
{[f]:(M, \phi ; F, G) \longrightarrow\left(M^{\prime} ; \phi^{\prime} ; F^{\prime}, G^{\prime}\right)} \\
{[f]:(M, \psi ; F, G) \longrightarrow\left(M^{\prime}, \psi^{\prime} ; F^{\prime}, G^{\prime}\right)}
\end{array}\right.
$$

is an isomorphism of the type

$$
\left\{\begin{array}{l}
f:(M, \phi ; F, G) \oplus\left(H^{\varepsilon}(P) ; P, P^{*}\right) \longrightarrow \sim\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \oplus\left(H^{\varepsilon}\left(P^{\prime}\right) ; F^{\prime},\right. \\
f:(M, \psi ; F, G) \oplus\left(H_{\varepsilon}(P) ; P, P^{\star}\right) \longrightarrow\left(M^{\prime}, \psi^{\prime} ; F^{\prime}, G^{\prime}\right) \oplus\left(H_{\varepsilon}\left(P^{\prime}\right) ; P^{\prime} .\right.
\end{array}\right.
$$

for some f.g. projective A-modules P, P^{\prime}.
An even e-symmetric formation ($M, \phi ; F, G$) is an $\varepsilon-s y m m e{ }^{1}$ form such that (M, ϕ) is an even ε-symmetric form.

A split ε-quadratic formation over A

$$
\left.(F, G)=\left(F,\binom{\gamma}{\mu}, \theta\right) G\right)
$$

is an ε-quadratic formation over $A\left(H_{\varepsilon}(F) ; F, G\right)$ (with $\binom{\gamma}{\mu}: G \longrightarrow F \oplus F^{*}$ the inclusion), together with a hessian $(-\varepsilon)$-quadratic form over $A\left(G, \theta \in Q_{-\epsilon}(G)\right)$ such that

$$
\gamma^{*} \mu=\theta-\varepsilon \theta^{\star} \in \operatorname{Hom}_{A}\left(G, G^{\star}\right)
$$

so that there is defined a morphism of split ε-quadratic forms over A

$$
\left.\binom{Y}{\mu}, \theta\right):(G, 0) \longrightarrow \tilde{H}_{E}(F)=\left(F \oplus F^{\star},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)
$$

and (G, θ) is a sublagrangian of $\tilde{H}_{\varepsilon}(F)$. The formation (F, G) is non-singular if the sequence

is exact, ie. if the underlying e-quadratic formation ($\left.H_{\varepsilon}(F) ; F, G\right)$ is non-singular. An isomorphism of split ε-quadratic formations

$$
(\alpha, B, \psi):(F, G) \longrightarrow \sim\left(F^{\prime}, G^{\prime}\right)
$$

is a triple consisting of A-module isomorphisms $\alpha \in \operatorname{Hom}_{A}\left(F, F^{\prime}\right)$, $\beta \in \operatorname{Hom}_{A}\left(G, G^{\prime}\right)$ and $a(-\varepsilon)$-quadratic form ($F^{*}, \psi \in Q_{-\varepsilon}\left(F^{*}\right)$) such that

$$
\begin{aligned}
& \text { i) } \alpha \gamma+\alpha\left(\psi-\varepsilon \psi^{*}\right)^{\star} \mu=\gamma^{\prime} \beta \in \operatorname{Hom}_{A}\left(G, F^{\prime}\right) \\
& \text { ii) } \alpha^{\star^{-1}} \mu=\mu^{\prime} \beta \in \operatorname{Hom}_{A}\left(G, F^{\prime \star}\right) \\
& \text { iii) } \theta+\mu^{\star} \psi \mu=\beta^{\star} \theta^{\prime} \beta \in Q_{-\varepsilon}(G)
\end{aligned}
$$

Such an isomorphism determines a commutative diagram

with

$$
\mathbf{f}=\left(\begin{array}{cc}
\alpha & \alpha\left(\psi-\varepsilon \psi^{\star}\right)^{\star} \\
0 & \alpha \star-1
\end{array}\right): F \oplus F^{\star} \longrightarrow \quad \imath \quad F^{\prime} \oplus F^{\prime \star}
$$

and hence there is defined an isomorphism of the underlying ε-quadratic formations

$$
f:\left(H_{\varepsilon}(F) ; F, G\right) \longrightarrow \simeq\left(H_{\varepsilon}\left(F^{\prime}\right) ; F^{\prime}, G^{\prime}\right) .
$$

A stable isomorphism of split ε-quadratic formations

$$
[\alpha, \beta, \psi]:(F, G) \longrightarrow\left(F^{\prime}, G^{\prime}\right)
$$

is an isomorphism of the type

$$
(\alpha, \beta, \psi):(F, G) \oplus\left(P, P^{*}\right) \longrightarrow \sim\left(F^{\prime}, G^{\prime}\right) \oplus\left(P^{\prime}, P^{\prime} *\right)
$$

for some f.g. projective A-modules $\mathrm{P}^{\prime} \mathrm{P}^{\prime}$, with

$$
\left.(P, P *)=\left(P,\binom{0}{1}, 0\right) P^{*}\right)
$$

Proposition l.6.3 i) Every e-quadratic formation is isomorphic to one of the type $\left(H_{E}(F) ; F, G\right)$.
ii) Every e-quadratic formation of the type ($\left.H_{\varepsilon}(F) ; F, G\right)$ admits a (non-unique) split ε-quadratic refinement (F, G).
iii) Every isomorphism of e-quadratic formations of the type

$$
f:\left(H_{\varepsilon}(F) ; F, G\right) \longrightarrow\left(H_{\varepsilon}\left(F^{\prime}\right) ; F^{\prime}, G^{\prime}\right)
$$

can be refined to a (non-unique) isomorphism of split ε-quadratic formations

$$
(\alpha, \beta, \psi):(F, G) \longrightarrow\left(F^{\prime}, G^{\prime}\right) .
$$

Similarly for stable isomorphisms.
Proof: See Proposition 1.2.4.
$\left\{\begin{array}{l}\text { An e-quadratic } \\ \text { A split e-quadratic }\end{array}\right.$ homotopy equivalence of l-dimensional ε-quadratic complexes over A

$$
f:(C, \psi) \longrightarrow\left(C^{\prime}, \psi^{\prime}\right)
$$

is a chain equivalence $f: C \longrightarrow C$ ' such that

$$
\left\{\begin{array}{l}
f_{q}(\psi)-\psi^{\prime}=H(\theta) \in Q_{1}\left(C^{\prime}, \varepsilon\right) \\
f_{q}(\psi)-\psi^{\prime}=0 \in Q_{1}\left(C^{\prime}, \varepsilon\right)
\end{array}\right.
$$

for some Tate \mathbb{Z}_{2}-hypercohomology class $\theta \in \hat{Q}^{2}\left(C^{\prime}, \varepsilon\right)$ with vanishing lst Wu class

$$
\begin{aligned}
\hat{v}_{1}(\theta)=0: H^{1}\left(C^{\prime}\right) \longrightarrow \hat{H}^{1}\left(Z_{2} ; A, \varepsilon\right) & x \longmapsto \longrightarrow \theta_{0}(x)(x) \\
& \left(\theta_{0} \in \operatorname{Hom}_{A}\left(C^{1}, C j\right)\right) .
\end{aligned}
$$

(A split ϵ-quadratic homotopy equivalence is the same as a homotopy equivalence\}.

Let C be a l-dimensional A-module chain complex of the type

A $\left\{\begin{array}{l}\mathbb{Z}_{2} \text {-hypercohomology } \\ \mathbb{Z}_{2} \text {-hyperhomology }\end{array}\right.$ class $\left\{\begin{array}{l}\phi \in Q^{1}(C, \varepsilon) \\ \psi \in Q_{1}(C, \varepsilon)\end{array}\right.$ is represented by
A-module morphisms

$$
\left\{\begin{array}{l}
\phi_{0}: c^{0} \longrightarrow c_{1}, \tilde{\phi}_{0}: c^{1} \longrightarrow c_{0}, \phi_{1}: c^{1} \longrightarrow c_{1} \\
\psi_{0}: c^{0} \longrightarrow c_{1}, \tilde{\psi}_{0}: c^{1} \longrightarrow c_{0}, \psi_{1}: c^{0} \longrightarrow c_{0}
\end{array}\right.
$$

such that

$$
\left\{\begin{array}{l}
\mathrm{d}_{\mathrm{O}}+\tilde{\phi}_{O} \mathrm{~d}^{\star}=0: c^{0} \longrightarrow c_{O}, d \phi_{1}-\tilde{\phi}_{\mathrm{O}}+\varepsilon \phi_{0}^{\star}=0: c^{1} \longrightarrow c_{O} \\
\phi_{1}-\varepsilon \phi_{1}^{\star}=0: c^{1} \longrightarrow c_{1} \\
d \psi_{O}+\tilde{\psi}_{O} d^{\star}+\psi_{1}-\varepsilon \psi_{1}^{\star}=0: c^{0} \longrightarrow c_{O}
\end{array}\right.
$$

A connected l-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex $\left\{\begin{array}{l}\left(C, \phi \in Q^{1}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{1}(C, \varepsilon)\right)\end{array}\right.$ determines the $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ formation

Proposition 1.6.4 There is a natural one-one correspondence between the $\left\{\begin{array}{ll} & - \\ (s p l i t) & \varepsilon \text {-quadratic }\end{array}\right.$ homotopy equivalence classes of connected 1 -dimensional $\left\{\begin{array}{l}(e v e n) \varepsilon \text {-symmetric } \\ (s p l i t) \epsilon \text {-quadratic }\end{array}\right.$ complexes over. and the stable isomorphism classes of $\left\{\begin{array}{l}(\text { even }) ~ \varepsilon-s y m m e t r i c ~ \\ (s p l i t) ~ \varepsilon-q u a d r a t i c ~\end{array}\right.$ formations over A. Poincaré complexes correspond to non-singula formations.

Proof: See Propositions I.2.3,1.2.5.

The boundary $\left\{\begin{array}{l}\partial(M, \phi ; F, G) \\ \partial(M, \psi ; F, G)\end{array}\right.$ of an $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ format
over $A\left\{\begin{array}{l}(M, \phi ; F, G) \\ (M, \psi ; F, G)\end{array}\right.$ is the non-sinqular $\left\{\begin{array}{l}(\text { even }) \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form
over A

$$
\left\{\begin{array}{l}
\partial(M, \phi ; F, G)=\left(G^{1} / G, \phi^{1} / \phi\right) \\
\partial(M, \psi ; F, G)=\left(G^{1} / G, \phi^{1} / \psi\right) .
\end{array}\right.
$$

Proposition 1.6.2 shows that the boundary form is stably hyperbolic, with an isomorphism

$$
\left\{\begin{array}{l}
\partial(M, \phi ; F, G) \oplus H^{\varepsilon}\left(G^{*}, \zeta\right) \longrightarrow H^{\varepsilon}\left(F^{*}, U\right) \\
\partial(M, \psi ; F, G) \oplus H_{\varepsilon}(G) \longrightarrow H_{\epsilon}(F)
\end{array}\right.
$$

for some ε-symmetric forms (F^{*}, ζ), $\left(\mathrm{G}^{*}, v\right)$ (with $\zeta=0, v=0$ if (M, $\varnothing ; F, G$) is even).

The boundary $\partial(F, G)$ of a split ε-quadratic formation (F, G) is the boundary $\partial\left(H_{E}(F) ; F, G\right)$ of the underlying E-quadratic formation ($\left.H_{E}(F) ; F, G\right)$.

formation over A

$$
\left\{\begin{array}{l}
\partial(M, \phi)=\left(H^{-\varepsilon}(M) ; M, \Gamma(M, \phi)\right) \\
\partial(M, \phi)=\left(H_{-\epsilon}(M) ; M, \Gamma(M, \phi)\right) \\
\left.\partial(M, \psi)=\left(M,\binom{1}{\psi^{+} \in \psi^{\star}}, \psi\right) M\right)
\end{array}\right.
$$

where

$$
r_{(M, \phi)}=\left\{(x, \phi(x)) \in M \oplus M^{\star} \mid x \in M\right\} \subseteq M \oplus M^{\star}
$$

is the graph lagrangian of (M, ϕ) in $H^{-\varepsilon}(M)$ (in $H_{-\varepsilon}(M)$ if (M, ϕ) is even).

is the abelian group of equivalence classes of non-singular
$\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric forms over } A \text { subject to the relation } \\ \text { e-quadratic }\end{array}\right.$
$(M, \phi) \sim\left(M^{\prime}, \phi^{\prime}\right)$ if there exists an isomorphism

$$
(M, \phi) \oplus(H, \theta) \longrightarrow\left(M^{\prime}, \phi^{\prime}\right) \oplus\left(H^{\prime}, \theta^{\prime}\right)
$$

for some hyperbolic forms (H, θ), ($\mathrm{H}^{\prime}, \theta^{\prime}$).
Addition and inverses are by
$(M, \phi)+\left(M^{\prime}, \phi^{\prime}\right)=\left(M \oplus M^{\prime}, \phi \oplus \phi^{\prime}\right),-(M, \phi)=(M,-\phi)$.
The Witt group of $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c}{\text { even } \varepsilon-s y m m e t r i c ~ f o r m a t i o n s ~ o v e r ~ A ~} \\ \frac{\varepsilon \text {-guadratic }}{}\end{array}\right.$
$\left\{\begin{array}{l}M^{\varepsilon}(A) \\ M\left\langle v_{O}\right\rangle^{\varepsilon}(A) \text { is the abelian group of equivalence classes of } \\ M_{E}(A)\end{array}\right.$
non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric formations over } A \text { subject to } \\ \varepsilon \text {-quadratic }\end{array}\right.$
the relation

$$
(M, \phi ; F, G) \sim\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \text { if there exists a stable isomorphism }
$$

of the type
$[f]:(M, \phi ; F, G) \oplus(N, v ; H, K) \oplus(N, V ; K, L) \oplus\left(N^{\prime}, V^{\prime} ; H^{\prime}, L^{\prime}\right)$

$$
\longrightarrow\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \oplus\left(N^{\prime}, v^{\prime} ; H^{\prime}, K^{\prime}\right) \oplus\left(N^{\prime}, v^{\prime} ; K^{\prime}, L^{\prime}\right) \oplus(N, V ; H, L) .
$$

Addition and inverses are by

$$
\begin{aligned}
& (M, \phi ; F, G)+\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right)=\left(M \oplus M^{\prime}, \phi \oplus \phi^{\prime} ; F \oplus F^{\prime}, G \oplus G^{\prime}\right) \\
& -(M, \phi ; F, G)=(M, \phi ; G, F)(=(M,-\phi ; F, G))
\end{aligned}
$$

Proposition 1.6.5 i) For $n=0,1$ the n-dimensional L-groups have natural expressions as witt groups of forms and formations

$$
\left\{\begin{array} { l }
{ L ^ { O } (A , E) = L ^ { \varepsilon } (A) } \\
{ L \langle v _ { O } \rangle ^ { O } (A , E) = L \langle v _ { O } \rangle ^ { \varepsilon } (A) } \\
{ L _ { O } (A , E) = L _ { \varepsilon } (A) }
\end{array} \quad \left\{\begin{array}{l}
L^{1}(A, E)=M^{\varepsilon}(A) \\
L\left\langle v_{O}\right\rangle^{1}(A, \varepsilon)=M\left\langle v_{O}\right\rangle^{\varepsilon}(A) \\
L_{1}(A, \varepsilon)=M_{\varepsilon}(A)
\end{array}\right.\right.
$$

ii) An $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric form is non-singular if and only if its } \\ \text { e-quadratic }\end{array}\right.$
boundary formation is stably isomorphic to 0 , in which case the form represents O in the Witt group $\left\{\begin{array}{l}L^{E}(A) \\ L^{\prime}\left\langle v_{O}\right\rangle^{\epsilon}(A) \text { if and only if } \\ L_{E}(A)\end{array}\right.$ it is isomorphic to the boundary of a formation.
iii) An $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric formation is non-singular if and only } \\ \text { e-quadratic }\end{array}\right.$
its boundary form is 0. A non-singular $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { e-quadratic } \\ \text { split e-quadratic }\end{array}\right.$
formation represents 0 in the witt group $\left\{\begin{array}{l}M^{\varepsilon}(A) \\ M_{V}\left(V_{O}\right)^{\varepsilon}(A) \text { if and only } \\ M_{\varepsilon}(A)\end{array}\right.$
if it is stably isomorphic to the boundary of a form.
Proof: See Propositions I.5.1, I.5.2, I.5.4.

The periodicity $L_{n}(A)=L_{n+2}(A,-1)=L_{n+4}(A)(n \geqslant 0)$ of Proposition 1.2 .3 i) combined with the expressions of Proposition 1.6 .5 i) identifies the quadratic L-groups $L_{n}(A)(n \geqslant 0)$ defined using quadratic poincaré complexes with the quadratic $L-g r o u p s L_{n}(A)(n(\bmod 4))$ defined by wall [4] using forms and formations.

$$
\text { An } n \text {-dimensional }\left\{\begin{array} { l }
{ \varepsilon - s y m m e t r i c } \\
{ \varepsilon - q u a d r a t i c }
\end{array} \text { complex } \left\{\begin{array}{l}
\left(C, \phi \in Q^{n}(C, E)\right) \\
\left(C, \psi \in Q_{n}(C, E)\right)
\end{array}\right.\right. \text { is }
$$

highly-connected if

$$
\begin{aligned}
& \text { for } n=2 i: H_{r}(C)=H^{r}(C)=0(r \neq i) \\
& \text { for } n=2 i+1: H_{r}(C)=H^{r}(C)=0(r \neq i, i+1) \text { and } \\
&\left\{\begin{array}{l}
H_{i}\left(\phi_{O}: C^{2 i+1-*} \longrightarrow C\right)=0 \\
H_{i}\left(\left(1+T_{E}\right) \psi_{O}: C^{2 i+1-*} \longrightarrow C\right)=0
\end{array}\right.
\end{aligned}
$$

A highly-connected complex is connected; the boundary of a highly-connected complex is a highly-connected Poincaré comple Proposition 1.6.6 For $n=2 i$ (resp. $n=2 i+1$) the homotopy equivalence classes of highly-connected n-dimensional

$$
\left\{\begin{array}{l}
\varepsilon-\text { symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right.
$$

correspondence with the isomorphism (resp. stable isomorphism)
classes of $\left\{\begin{array}{l}(-)^{i} \varepsilon \text {-symmetric } \\ (-)^{i} \varepsilon \text {-quadratic }\end{array}\right.$ forms (resp. $\left\{\begin{array}{l}(-)^{i} \varepsilon \text {-symmetric } \\ \text { split }(-)^{i} \varepsilon \text {-quadrati }\end{array}\right.$
formations) over A. Poincaré complexes correspond to non-singu
forms (resp. formations). The boundary operation on highly-connected complexes corresponds to the boundary operation on forms (resp. formations).

Proof: See Proposition I.5.3.

1.7 Algebraic glueing

Geometric Poincaré cobordisms ($\mathrm{Y} ; \mathrm{X}, \mathrm{X}^{\prime}$), ($\mathrm{Y}^{\prime} ; \mathrm{X}^{\prime}, \mathrm{X}^{\prime \prime}$) can be glued together to define a geometric Poincaré cobordism (Y": X, X") with

$$
Y^{\prime \prime}=Y U_{X} Y^{\prime} .
$$

We shall now recall from $\mathbb{S} .3$ the analogue of this glueing operation for algebraic Poincaré cobordisms.

The union of adjoining $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \epsilon \text {-quadratic }\end{array}\right.$ Poincaré cobordisms
is the $(n+1)$-dimensional $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { E-quadratic }\end{array}\right.$ Poincaré cobordism
$\left\{\begin{array}{l}\left.c \cup c^{\prime}=\left(\left(f_{C}^{\prime \prime} f_{C^{\prime \prime}}^{\prime \prime}\right): C \oplus C^{\prime \prime} \longrightarrow D^{\prime \prime},\left(\delta \phi^{\prime \prime}, \phi \oplus-\phi^{\prime \prime}\right) \in Q^{n+1}\left(\left(£_{C}^{\prime \prime} f_{C}^{\prime \prime}{ }^{\prime \prime}\right), \varepsilon\right)\right)\right) \\ \left.C \cup C^{\prime}=\left(\left(f_{C}^{\prime \prime} f_{C}^{\prime \prime}\right): C \oplus C^{\prime \prime} \longrightarrow D^{\prime \prime},\left(\delta \psi^{\prime \prime}, \psi \oplus-\psi "\right) \in Q_{n+1}\left(\left(f_{C}^{\prime \prime} f_{C}^{\prime \prime}\right), \varepsilon\right)\right)\right)\end{array}\right.$
defined by

$$
d_{D^{\prime \prime}}=\left(\begin{array}{ccc}
d_{D} & (-)^{r-1} f_{C^{\prime}} & 0 \\
0 & d_{C^{\prime}} & 0 \\
0 & (-)^{r-1} \mathbf{f}_{C^{\prime}}^{\prime} & d_{D^{\prime}}
\end{array}\right)
$$

$$
: D_{r}^{\prime \prime}=D_{r} \oplus C_{r-1} \oplus D_{r}^{\prime} \longrightarrow D_{r-1}^{\prime \prime}=D_{r-1} \oplus C_{r-2}^{\prime} \oplus D_{r-1}^{\prime}
$$

$$
f_{C}^{\prime \prime}=\left(\begin{array}{l}
f_{C} \\
0 \\
0
\end{array}\right): C_{r} \longrightarrow D_{r}^{\prime \prime}=D_{r} \oplus C_{r-1}^{\prime} \oplus D_{r}^{\prime}
$$

$$
f_{C_{n}^{\prime \prime}}^{\prime \prime}=\left(\begin{array}{l}
0 \\
0 \\
f_{C^{\prime \prime}}^{\prime}
\end{array}\right): C_{r}^{\prime \prime} \longrightarrow D_{r}^{\prime \prime}=D_{r} \oplus C_{r-1}^{\prime} \oplus D_{r}^{\prime}
$$

$$
\delta \phi_{S}^{\prime \prime}=\left(\begin{array}{ccc}
\delta \phi_{S} & 0 & 0 \\
(-)^{n-r} \phi_{S}^{\prime} f_{C}^{*} & (-)^{n-r+S+1} T_{\epsilon} \phi_{S-1}^{\prime} & 0 \\
0 & (-)^{s} f_{C}^{\prime}, \phi_{S}^{\prime} & \delta \phi_{S}^{\prime}
\end{array}\right)
$$

$$
: D^{n} n-r+s+1=D^{n-r+s+1} \oplus C^{n-r+s} \oplus D^{n-r+s+1}
$$

$$
\longrightarrow D_{r}^{\prime \prime}=D_{r} \oplus C_{r-1}^{\prime} \oplus D_{r}^{\prime} \quad\left(s \geqslant 0, \phi_{-1}^{\prime}=0\right)
$$

$$
: D^{n-r-s+1}=D^{n-r-s+1} \oplus C \cdot n-r-s D_{D}, n-r+s
$$

$$
\longrightarrow D_{\mathbf{r}}^{\prime \prime}=D_{\mathbf{r}} \oplus C_{r-1}^{\prime} \oplus D_{r}^{\prime} \quad(s \geqslant 0) .
$$

We shall write

$$
D^{\prime \prime}=D \cup_{C}, D^{\prime},\left\{\begin{array}{l}
\delta \phi^{\prime \prime}=\delta \phi U_{\phi^{\prime}}, \delta \phi^{\prime} \\
\delta \psi^{\prime \prime}=\delta \psi U_{\psi^{\prime}}, \delta \psi^{\prime} .
\end{array}\right.
$$

The union operation for algebraic Poincaré cobordisms ha a particularly simple expression (up to homotopy equivalence) in the special case when all the chain maps involved are defir by inclusions of direct summands, as follows.

$$
\text { An }\left\{\begin{array} { l }
{ \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { pair } \left\{\begin{array}{l}
(f: C \longrightarrow D,(\delta \phi, \phi)) \\
(f: C \longrightarrow D,(\delta \psi, \psi))
\end{array}\right.\right. \text { is direct if }
$$

each $f \in \operatorname{Hom}_{A}\left(C_{r}, D_{r}\right)(r \in \mathbb{Z})$ is a split monomorphism, i.e. the inclusion of a direct summand.

The direct union of adjoining direct $(n+1)$-dimensional $\left\{\begin{array}{l}\text { e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré cobordisms

$$
\begin{aligned}
& \left\{\begin{array}{l}
c=\left(\left(f_{C} f_{C},\right): C \oplus C\right. \\
c=\left(\left(f_{C} f_{C},\right): C \oplus C^{\prime} \longrightarrow D,\left(\delta \phi, \phi \oplus-\phi^{\prime}\right) \in Q^{n+1}\left(\left(f_{C} f_{C},\right), \varepsilon\right)\right) \\
\left.D,\left(\delta \psi, \psi \oplus-\psi^{\prime}\right) \in Q_{n+1}\left(\left(f_{C} f_{C},\right), \varepsilon\right)\right)
\end{array}\right.
\end{aligned}
$$

is the direct cobordism
defined by

$$
\begin{aligned}
& \overline{\mathbf{f}}_{\mathrm{C}}^{\prime \prime}=\binom{1}{0}: \mathrm{C}_{\mathbf{r}} \longrightarrow \overline{\mathrm{D}}_{\mathbf{r}}^{\prime \prime}, \overline{\mathrm{I}}_{\mathrm{C}}^{\prime \prime \prime}=\binom{0}{1}: \mathrm{C}_{\mathbf{r}}^{\prime \prime} \longrightarrow \overline{\mathrm{D}}_{\mathbf{r}}^{\prime \prime} \\
& \left\{\begin{array}{l}
{\left[\overline{\delta \phi^{\prime \prime}}\right]=\left[\delta \phi \oplus \delta \phi^{\prime}\right]} \\
{\left[\overline{\delta \psi^{\prime \prime}}\right]=\left[\delta \psi \oplus \delta \psi^{\prime}\right] .}
\end{array}\right. \\
& \text { Every }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { Poincaré cobordism } \\
& \left\{\begin{array}{l}
C=\left(\left(f \mathrm{E}^{\prime}\right): C \oplus C^{\prime} \longrightarrow D,\left(\delta \phi, \phi \oplus-\phi^{\prime}\right)\right) \\
c=\left(\left(f \mathrm{f}^{\prime}\right): C \oplus C^{\prime} \longrightarrow \mathrm{D},\left(\delta \psi, \psi \oplus-\psi^{\prime}\right)\right)
\end{array}\right. \text { is homotopy equivalent } \\
& \text { to a direct cobordism }\left\{\begin{array}{l}
\bar{c}=\left(\left(\bar{f} \bar{f}^{\prime}\right): C \oplus C\right. \\
\left.\bar{c}=\left(\left(\bar{f} \bar{f}^{\prime}\right): C \oplus C^{\prime} \longrightarrow \bar{D},\left(\overline{\delta \phi}, \phi \oplus-\phi^{\prime}\right)\right), \bar{D},\left(\overline{\delta \psi}, \psi \oplus-\psi^{\prime}\right)\right),
\end{array},\right. \\
& \text { with } \bar{D}=M\left(f f^{\prime}\right) \text { the algebraic mapping cylinder of the chai } \\
& \left(f f^{\prime}\right): C \oplus C^{\prime} \longrightarrow D \text {. } \\
& \text { (The algebraic mapping cylinder } M(f) \text { of an A-module chain } m \\
& \mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D}
\end{aligned}
$$

is the A-module chain complex defined by

$$
\begin{aligned}
d_{M(f)} & =\left(\begin{array}{ccc}
d_{D} & (-)^{r-1} f & 0 \\
0 & d_{C} & 0 \\
0 & (-)^{r} & d_{C}
\end{array}\right) \\
& : M(f)_{r}=D_{r} \oplus C_{r-1} \oplus C_{r} \longrightarrow M(f)_{r-1}=D_{r-1} \oplus C_{r-2^{\oplus C}} \longrightarrow C_{r-1}
\end{aligned}
$$

The A-module chain maps

$$
\bar{f}: C \longrightarrow M(f), g: D \longrightarrow M(f)
$$

defined by

$$
\begin{aligned}
& \bar{f}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right): C_{r} \longrightarrow M(f)_{r}=D_{r} \oplus C_{r-1} \oplus C_{r} \\
& g=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right): D_{r} \longrightarrow M(f)_{r}=D_{r} \oplus C_{r-1} \oplus C_{r}
\end{aligned}
$$

are such that each $\bar{f} \in \operatorname{Hom}_{A}\left(C_{r}, M(f)_{r}\right)(r \in \mathbb{Z})$ is the inclusion of a direct summand, and $g: D \longrightarrow M(f)$ is a chain equivalence, with a chain homotopy commutative diagram

).
Furthermore, if c, c^{\prime} are adjoining algebraic Poincaré cobordisms there is defined a homotopy equivalence

$$
c \cup_{c^{\prime}} \longrightarrow c \bar{U}_{c^{\prime}}
$$

from the union defined previously to the direct union.
The direct union is more obviously related to the glueing operation on geometric Poincaré cobordisms. For example, if (Y; X, X^{\prime}), ($\left.Y^{\prime} ; X^{\prime}, X^{\prime \prime}\right)$ are adjoining geometric Poincaré cobordisms then

$$
\begin{aligned}
\sigma^{*}\left(Y \cup_{X} Y^{\prime} ; X, X^{\prime \prime}\right)= & \sigma \star\left(Y ; X, X^{\prime}\right) \bar{U}_{\sigma *}\left(X^{\prime}\right)^{\sigma *}\left(Y^{\prime} ; X^{\prime}, X^{\prime \prime}\right) \\
(= & \sigma *\left(Y ; X, X^{\prime}\right) \cup_{\sigma *}\left(X^{\prime}\right)^{\sigma *}\left(Y^{\prime} ; X^{\prime}, X^{\prime \prime}\right) \\
& \text { up to homotopy equivalence }) .
\end{aligned}
$$

Similar considerations apply to the quadratic kernels of adjoining bordisms of normal maps.

The correspondence of Proposition 1.3 .3 i) shows that up to homotopy equivalence the cobordisms of n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes over A may be considered as quadruples

$$
\left\{\begin{array}{l}
c=\left((D, \zeta),(C, \phi),\left(C^{\prime}, \phi^{\prime}\right),\left(f f^{\prime}\right)\right) \\
c=\left((D, \xi),(C, \psi),\left(C^{\prime}, \psi^{\prime}\right),\left(f f^{\prime}\right)\right)
\end{array}\right.
$$

consisting of a connected $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex $\left\{\begin{array}{l}(D, \zeta) \\ (D, \zeta)\end{array}\right.$, n-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array},\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)^{\prime},\end{array}\right.\right.$ and a homotopy equivalence

$$
\left\{\begin{array}{l}
\left(f f^{\prime}\right):(C, \phi) \oplus\left(C^{\prime},-\phi^{\prime}\right) \longrightarrow 3(D, \zeta) \\
\left(f f^{\prime}\right):(C, \psi) \oplus\left(C^{\prime},-\psi^{\prime}\right) \longrightarrow \partial(D, \xi),
\end{array}\right.
$$

which we shall also called cobordisms. The union operation $\left(c, c^{\prime}\right) \longmapsto c u C^{\prime}$ defined above can be written in the ε-symmetric case as

$$
\begin{gathered}
\left((D, \zeta),(C, \phi),\left(C^{\prime}, \phi^{\prime}\right),\left(f f^{\prime}\right)\right) \cup\left(\left(D^{\prime}, \zeta^{\prime}\right),\left(C^{\prime}, \phi^{\prime}\right),\left(C^{\prime \prime}, \phi^{\prime}\right),\left(\tilde{f} f^{\prime \prime}\right)\right) \\
=\left(\left(D \cup_{C} D^{\prime}, \zeta U_{\phi}, \zeta^{\prime}\right),(C, \phi),\left(C^{\prime \prime}, \phi^{\prime \prime}\right),\left(\tilde{f} \tilde{f}^{\prime \prime}\right)\right)
\end{gathered}
$$

with

$$
D \cup_{C} D^{\prime}=C\left(\binom{\mathbf{f}^{\prime}}{\tilde{f}^{\prime}}: C^{\prime} \longrightarrow D^{\prime} \longrightarrow D^{\prime}\right)
$$

and similarly in the ε-quadratic case. In particular, given connected $(n+1)$-dimensional ε-symmetric compleyes $(D, \zeta),\left(D^{\prime}, \zeta^{\prime}\right)$ and a homotopy équivalence of the boundary n-dimensional e-symmetric Poincaré complexes

$$
g: \partial(D, \zeta) \xrightarrow{\sim} \partial\left(D^{\prime},-\zeta^{\prime}\right)
$$

we can glue (D, ζ) to ($\left.D^{\prime}, \zeta^{\prime}\right)$ by g, obtaining the $(n+1)$-dimens: ε-symmetric Poincaré complex

$$
(D, \zeta) \cup_{g}\left(D^{\prime}, \zeta^{\prime}\right)
$$

appearing in the union cobordism

$$
\begin{aligned}
((D, \zeta), 0, \partial(D,-\zeta),(01)) \cup & \left(\left(D^{\prime}, \zeta^{\prime}\right), \partial(D,-\zeta), 0,(90)\right) \\
= & \left((D, \zeta) \cup_{g}\left(D^{\prime}, \zeta^{\prime}\right), 0,0,(00)\right)
\end{aligned}
$$

$(D, \zeta) \cup_{g}\left(D^{\prime}, \zeta^{\prime}\right)$
and similarly in the ε-quadratic case.

The formulation of the union operation entirely in teri of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes (i.e. dispensing with pairs) has tl advantage that in the low-dimensional cases $n=0,1$ it trans directly into the language of forms and formations, using the correspondences of Propositions 1.6.1,1.6.4,1.6.6. We shall now give an explicit description of the union opera for $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms and formations. In the applications (in 52 below) it is only necessary to glue along all the boundary, so that only this case will be considered. See Ranicki [5] for further details concerning the glueing of forms and formations, at least in the ε-quadratic case.

$$
\text { Given }\left\{\begin{array} { l }
{ E - \text { symmetric } } \\
{ E \text { -quadratic } }
\end{array} \text { formations } \left\{\begin{array}{l}
(M, \phi ; F, G) \\
(M, \psi ; F, G)
\end{array},\left\{\begin{array}{l}
\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G\right. \\
\left(M^{\prime}, \psi^{\prime} ; F^{\prime}, G\right.
\end{array}\right.\right.\right.
$$

and an isomorphism of boundary non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ form $\left\{\begin{array}{l}\mathbf{f}: \partial(M, \phi ; F, G)=\left(G^{\perp} / G, \phi+\phi\right) \longrightarrow \partial\left(M^{\prime},-\phi^{\prime} ; F^{\prime}, G^{\prime}\right)=\left(G^{\prime 1} / G^{\prime},-\phi\right. \\ \mathbf{f}: \partial(M, \psi ; F, G)=\left(G^{1} / G, \psi^{\perp} / \psi\right) \longrightarrow \partial\left(M^{\prime},-\psi^{\prime} ; F^{\prime}, G^{\prime}\right)=\left(G^{\prime 1} / G^{\prime},-\psi\right.\end{array}\right.$ define the union non-singular $\left\{\begin{array}{l}\epsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ formation

$$
\left\{\begin{array}{l}
(M, \phi ; F, G) U_{f}\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \\
=\left(M \oplus M^{\prime}, \phi \oplus \Phi^{\prime} ; F \oplus F^{\prime}, G \oplus i m\left(\binom{j}{j^{\prime} f} ; G^{\perp} / G \longrightarrow M \oplus M^{\prime}\right) \oplus G^{\prime}\right) \\
(M, \psi ; F, G) \cup_{f}\left(M^{\prime}, \psi^{\prime} ; F^{\prime}, G^{\prime}\right) \\
=\left(M \oplus M^{\prime}, \psi \oplus \psi^{\prime} ; F \oplus F^{\prime}, G \oplus i m\left(\binom{j}{j^{\prime} f}: G^{1} / G \longrightarrow M \oplus M^{\prime}\right) \oplus G^{\prime}\right)
\end{array}\right.
$$

with $j \in \operatorname{Hom}_{A}\left(G^{+} / G, M\right), j^{\prime} \in \operatorname{Hom}_{A}\left(G^{\prime \prime} / G^{\prime}, M^{\prime}\right)$ the A-module morph
appearing in any of the isomorphisms of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms extending the inclusions of the sublagrangians given by Proposition 1.6.2

$$
\left\{\begin{aligned}
(i \quad j): H^{\varepsilon}\left(G^{*}, \zeta\right) \oplus\left(G^{\perp} / G, \phi^{\perp} / \phi\right) \longrightarrow(M, \phi) \\
\left(i^{\prime} j^{\prime}\right): H^{\varepsilon}\left(G^{\prime *}, \zeta^{\prime}\right) \oplus\left(G^{\left.\prime \perp / G^{\prime}, \phi^{\prime} \perp / \phi^{\prime}\right) \longrightarrow\left(M^{\prime}, \phi^{\prime}\right)}\right. \\
(i \quad j): H_{\varepsilon}(G) \oplus\left(G^{\perp} / G, \psi+/ \psi\right) \longrightarrow(M, \psi), \\
\left(i^{\prime} j^{\prime}\right): H_{\varepsilon}\left(G^{\prime}\right) \oplus\left(G^{\prime \perp} / G^{\prime}, \psi^{\left.\prime \perp / \psi^{\prime}\right) \longrightarrow\left(M^{\prime}, \psi^{\prime}\right)} \longrightarrow\right.
\end{aligned}\right.
$$

$$
\text { The union of }\left\{\begin{array} { l }
{ \varepsilon - \text { symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { forms } \left\{\begin{array}{l}
(M, \phi) \\
(M, \psi)
\end{array},\left\{\begin{array}{l}
\left(M^{\prime}, \phi^{\prime}\right) \\
\left(M^{\prime}, \psi^{\prime}\right)
\end{array}\right. \text { along a }\right.\right.
$$

stable isomorphism of boundary non-singular $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formations

$$
\left\{\begin{aligned}
& {[f]: \partial(M, \phi)=\left(H^{-\varepsilon}(M) ; M, \Gamma_{(M, \phi)}\right) } \\
& \longrightarrow \partial\left(M^{\prime},-\phi^{\prime}\right)=\left(H^{-\varepsilon}\left(M^{\prime}\right) ; M^{\prime}, \Gamma_{\left(M^{\prime},-\phi^{\prime}\right)}\right) \\
& {[\alpha, \beta, \sigma]: \partial(M, \psi)=\left(M,\left(\binom{1}{\psi+E \psi^{\star}}, \psi\right) M\right) } \\
& \longrightarrow \partial\left(M^{\prime},-\psi^{\prime}\right)\left.=\left(M^{\prime},\binom{1}{-\left(\psi^{\prime}+\varepsilon \psi^{\prime}{ }^{\prime}\right)},-\psi^{\prime}\right) M^{\prime}\right)
\end{aligned}\right.
$$

is the non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form

$$
\left\{\begin{array}{l}
\left(M^{\prime \prime}, \phi^{\prime \prime}\right)=(M, \phi) \cup_{[f]}\left(M^{\prime}, \phi^{\prime}\right) \\
\left(M^{\prime \prime}, \psi^{\prime \prime}\right)=(M, \psi) U_{[\alpha, \beta, \sigma]}\left(M^{\prime}, \psi^{\prime}\right)
\end{array}\right.
$$

defined further below. The union operation is characterized
(up to isomorphism) by the property that $\left\{\begin{array}{l}(M, \phi) \\ (M, \psi)\end{array}\right.$ and $\left\{\begin{array}{l}\left(M^{\prime}, \phi^{\prime}\right) \\ \left(M^{\prime}, \psi^{\prime}\right)\end{array}\right.$
are included in the union $\left\{\begin{array}{l}\left(M^{\prime \prime}, \phi^{\prime \prime}\right) \\ \left(M^{\prime \prime}, \psi^{\prime \prime}\right)\end{array}\right.$ as maximally orthogonal subforms, that is there are defined morphisms of forms

$$
\left\{\begin{array}{l}
j:(M, \phi) \longrightarrow\left(M^{\prime \prime}, \phi^{\prime \prime}\right) \\
j:(M, \psi) \longrightarrow\left(M^{\prime \prime}, \psi^{\prime \prime}\right)
\end{array},\left\{\begin{array}{l}
j \prime:\left(M^{\prime}, \phi^{\prime}\right) \longrightarrow\left(M^{\prime \prime}, \phi^{\prime \prime}\right) \\
j \cdot:\left(M^{\prime}, \psi^{\prime}\right) \longrightarrow\left(M^{\prime \prime}, \psi^{\prime \prime}\right)
\end{array}\right.\right.
$$

with $j \in \operatorname{Hom}_{A}\left(M, M^{\prime \prime}\right), j^{\prime} \in \operatorname{Hom}_{A}\left(M^{\prime}, M^{\prime \prime}\right)$ split monomorphisms, such that the A-module sequence

is exact, and such that the stable isomorphism of formations

$$
\left\{\begin{array}{l}
\partial(M, \phi) \longrightarrow \partial\left(M^{\prime},-\phi^{\prime}\right) \\
\partial(M, \psi) \longrightarrow \partial\left(M^{\prime},-\psi^{\prime}\right)
\end{array}\right.
$$

naturally associated to such inclusions is equivalent to $\left\{\begin{array}{l}{[f]} \\ (\alpha, \beta, \sigma \mid\end{array}\right.$ under the relation on stable isomorphisms corresponding (via Proposition 1.6 .4) to the chain homotopy of homotopy equivalences of l-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complexes. In particular, if the forms $\left\{\begin{array}{l}(M, \phi) \\ (M, \psi)\end{array},\left\{\begin{array}{l}\left(M^{\prime}, \phi^{\prime}\right) \\ \left(M^{\prime}, \psi^{\prime}\right)\end{array}\right.\right.$ are non-singular the union is just the direct sum

$$
\left\{\begin{array}{l}
\left(M^{\prime \prime}, \phi^{\prime \prime}\right)=(M, \phi) \oplus\left(M^{\prime}, \phi^{\prime}\right) \\
\left(M^{\prime \prime}, \psi^{\prime \prime}\right)=(M, \psi) \oplus\left(M^{\prime}, \psi^{\prime}\right),
\end{array}\right.
$$

with j and j the canonical inclusions.

The union operation for forms is defined as follows. In the e-symmetric case let

$$
[f]: \partial(M, \phi) \longrightarrow \partial\left(M^{\prime},-\phi^{\prime}\right)
$$

be the stable isomorphism of even $(-\varepsilon)$-symmetric formations given by the isomorphism

$$
\begin{aligned}
& f:\left(H^{-\varepsilon}(M) ; M, \Gamma(M, \phi)\right) \oplus\left(H^{-\varepsilon}(P) ; P, P^{*}\right) \\
& \longrightarrow\left(H^{-\varepsilon}\left(M^{\prime}\right) ; M^{\prime}, \Gamma_{\left(M^{\prime},-\phi^{\prime}\right)}\right) \oplus\left(H^{-\varepsilon}\left(P^{\prime}\right) ;\right.
\end{aligned}
$$

for some f.g. projective A-modules P, ${ }^{\prime}$. Write the restricti of f to the lagrangians as

$$
\begin{aligned}
& \alpha=\left(\begin{array}{ll}
a & a_{1} \\
a_{2} & a_{3}
\end{array}\right): M \oplus P \longrightarrow M^{\prime} \oplus b^{\prime} \\
& B=\left(\begin{array}{ll}
b & b_{1} \\
b_{2} & b_{3}
\end{array}\right): M \oplus P^{\star} \longrightarrow M^{\prime} \oplus P^{\prime} *
\end{aligned}
$$

and let

$$
B^{-1}=\left(\begin{array}{ll}
b^{\prime} & b_{1}^{\prime} \\
b_{2}^{\prime} & b_{3}^{\prime}
\end{array}\right): M^{\prime} \oplus P^{\prime *} \longrightarrow M \oplus P^{*}
$$

Let $\left(M^{*} \oplus P^{\star}, \tau \in Q^{E}\left(M^{\star} \oplus P *\right)\right)$ be the unique \in-symmetric form such that there is defined a commutative square
and let

$$
\alpha \tau \alpha^{*}=\left(\begin{array}{cc}
t^{\prime} & t_{1}^{\prime} \\
t_{2}^{\prime} & t_{3}^{\prime}
\end{array}\right): M^{\prime *} \oplus P^{\prime} \star \longrightarrow M^{\prime} \oplus P^{\prime}
$$

The union e-symmetric form is given by

$$
\left(M^{\prime \prime}, \phi^{\prime \prime} \in Q^{\epsilon}\left(M^{\prime \prime}\right)\right)=\left(M \oplus M^{\prime *},\left(\begin{array}{cc}
\phi & a^{\star} \\
\epsilon a & t^{\prime}
\end{array}\right)\right),
$$

with the canonical inclusions defined by

$$
\begin{aligned}
& j=\binom{1}{0}:(M, \phi) \longrightarrow\left(M^{\prime \prime}, \phi^{\prime \prime}\right) \\
& j^{\prime}=\binom{b^{\prime}}{\phi^{\prime}}:\left(M^{\prime}, \phi^{\prime}\right) \longrightarrow\left(M^{\prime \prime}, \phi^{\prime \prime}\right) .
\end{aligned}
$$

In the ε-quadratic case let $\{\alpha, \beta, \alpha\}$ by the isomorphis split ε-quadratic formations

$$
\begin{gathered}
(a, B, \sigma)=\left(\left(\begin{array}{cc}
a & a_{1} \\
a_{2} & a_{3}
\end{array}\right),\left(\begin{array}{ll}
b & b_{1} \\
b_{2} & b_{3}
\end{array}\right),\left(\begin{array}{ll}
s & s_{1} \\
s_{2} & s_{3}
\end{array}\right)\right) \\
:\left(M \oplus P,\left(\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\right.\right. \\
\left.\left.\left(\begin{array}{cc}
\psi+\varepsilon \psi^{*} & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\psi & 0 \\
0 & 0
\end{array}\right)\right) M \oplus P^{*}\right)
\end{gathered}
$$

$$
\longrightarrow\left(M^{\prime} \oplus P^{\prime},\left(\left(\begin{array}{cc}
1 & 0 \\
0 & 0
\end{array}\right)\right),\left(\begin{array}{cc}
-\psi^{\prime} & 0 \\
0 & 0
\end{array}\right)\right) M^{\prime} \oplus P
$$

for some f.g. projective A-modules P, P'. Let

$$
\alpha \sigma \alpha^{\star}=\left(\begin{array}{ll}
s^{\prime} & s^{\prime} \\
s_{2}^{\prime} & s_{3}^{\prime}
\end{array}\right): M^{\prime *} \oplus P^{\prime \star} \longrightarrow M^{\prime} \oplus P^{\prime \star}
$$

$$
B^{-1}=\left(\begin{array}{ll}
b^{\prime} & b_{1}^{\prime} \\
b_{2}^{\prime} & b_{3}^{\prime}
\end{array}\right): M^{\prime} \oplus P^{\prime *} \longrightarrow M \oplus P^{*}
$$

The union ε-quadratic form is given by

$$
\left(M^{\prime \prime}, \psi^{\prime \prime} \in Q_{\varepsilon}\left(M^{\prime \prime}\right)\right)=\left(M \oplus M^{\prime *},\left(\begin{array}{cc}
\psi & 0 \\
\varepsilon a & s^{\prime}
\end{array}\right)\right)
$$

with the canonical inclusions defined by

$$
\begin{aligned}
& j=\binom{1}{0}:(M, \psi) \longrightarrow\left(M^{\prime \prime}, \psi^{\prime \prime}\right) \\
& j^{\prime}=\binom{b}{\psi^{\prime}+\varepsilon \psi^{\prime} *}:\left(M^{\prime}, \psi^{\prime}\right) \longrightarrow\left(M^{\prime \prime}, \psi^{\prime \prime}\right)
\end{aligned}
$$

See Ranicki $\{1,4,3],[5]$ and Wall [8],[12] for some applications of the union of forms. Here is another:

$$
\text { The }\left\{\begin{array} { l }
{ (\text { even }) \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { forms over } A \left\{\begin{array}{l}
(M, \phi) \\
(M, \psi)
\end{array},\left\{\begin{array}{l}
\left(M^{\prime}, \phi^{\prime}\right) \\
\left(M^{\prime}, \psi^{\prime}\right)
\end{array}\right.\right.\right.
$$

are ∂-equivalent if there exists an isomorphism

$$
\left\{\begin{array}{l}
f:(M, \phi) \oplus(N, \theta) \longrightarrow\left(M^{\prime}, \phi^{\prime}\right) \oplus\left(N^{\prime}, \theta^{\prime}\right) \\
f:(M, \psi) \oplus(N, x) \longrightarrow\left(M^{\prime}, \psi^{\prime}\right) \oplus\left(N^{\prime}, x^{\prime}\right)
\end{array}\right.
$$

for some non-singular $\left\{\begin{array}{l}(\text { even }) ~ \\ \varepsilon-\text {-symmetric } \\ \varepsilon-q u a d r a t i c\end{array}\right.$ forms $\left\{\begin{array}{l}(N, \theta) \\ (N, X)\end{array},\left\{\begin{array}{l}\left(N^{\prime}, \theta^{\prime}\right) \\ \left(N^{\prime}, X^{\prime}\right)^{\prime}\end{array}\right.\right.$,
in which case there is induced a stable isomorphism of the boundary $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric }((-\varepsilon) \text {-quadratic }) \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formations

$$
\left\{\begin{array}{l}
{[i f]: \partial(M, \phi) \xrightarrow{\sim} \partial\left(M^{\prime}, \phi^{\prime}\right)} \\
{[j f]: 亏(M, \psi) \longrightarrow\left(M^{\prime}, \psi^{\prime}\right)}
\end{array}\right.
$$

In particular, if $L \subset M$ is a sublagranqian of an $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \text { E-quadratic }\end{array}\right.$ form $\left\{\begin{array}{l}(M, \phi) \\ (M, \psi)\end{array}\right.$ then $\left\{\begin{array}{l}\left(M^{\prime}, \phi^{\prime}\right)=\left(L^{\perp} / L, \phi^{\perp} / \phi\right) \\ \left(M^{\prime}, \psi^{\prime}\right)=\left(L^{\perp} / L, \psi^{\perp} / \psi\right)\end{array}\right.$ is a-equivalent to $\left\{\begin{array}{l}(M, \phi) \\ (M, \psi)\end{array}\right.$.

Proposition 1.7.1 The boundary operations $\mathfrak{7}:\{$ forms $\} \longrightarrow\{f o r m a t i o n s\}$ define natural one-one correspondences
$\dot{\partial}: \quad\left\{\right.$ - -equivalence classes of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric forms over } A\} \\ \varepsilon \text {-quadratic }\end{array}\right.$
\longrightarrow ~ (stable isomorphism classes of null-cobordant

$$
\left\{\begin{array}{l}
\text { even }(-\varepsilon) \text {-symmetric } \\
(-\varepsilon) \text {-quadratic formations over } A\} \\
\text { split }(-\varepsilon) \text {-quadratic }
\end{array}\right. \text { f }
$$

Proof: It is sufficient to consider the e-symmetric case, the others being entirely similar.

By Proposition 1.6.5 iii) every null-cobordant even (- - -symmetric formation is stably isomorphic to the boundary $\partial(M, \phi)$ of an e-symmetric form (M, ϕ). Thus it remains to show that if $(M, \phi),\left(M^{\prime}, \phi^{\prime}\right)$ are ε-symmetric forms which are related by a stable isomorphism of the boundaries

$$
[f]: \partial(M, \phi) \longrightarrow \sim \partial\left(M^{\prime}, \phi^{\prime}\right)
$$

then they are j-equivalent. Write the union non-singular e-symmetric form as

$$
\left(N^{\prime}, \theta^{\prime}\right)=(M, \phi) \cup_{[f]}\left(M^{\prime},-\phi^{\prime}\right),
$$

and let

$$
j^{\prime}:\left(M^{\prime},-\phi^{\prime}\right) \longrightarrow\left(N^{\prime}, \theta^{\prime}\right)
$$

be the canonical inclusion. Then the submodule

$$
L=\left\{\left(x, j^{\prime}(x)\right) \in M^{\prime} \oplus N^{\prime} \mid x \in M^{\prime}\right\} \subseteq M^{\prime} \oplus N^{\prime}
$$

defines a sublagrangian of $\left(M^{\prime}, \phi^{\prime}\right) \oplus\left(N^{\prime}, \theta^{\prime}\right)$ such that

$$
\left(L^{\perp} / L,\left(\phi^{\prime} \oplus \theta^{\prime}\right) \perp /\left(\phi^{\prime} \oplus \theta^{\prime}\right)\right)=(M, \phi)
$$

Applying Proposition 1.6.2 there is obtained an isomorphism

$$
\begin{aligned}
& \qquad f:(M, \phi) \oplus(N, \theta) \xrightarrow{\sim}\left(M^{\prime}, \phi^{\prime}\right) \oplus\left(N^{\prime}, \theta^{\prime}\right) \\
& \text { with }(N, \theta)=H^{\varepsilon}\left(M^{\prime}, \phi^{\prime}\right) \text { non-singular. Thus }(M, \phi) \text { and }\left(M^{\prime}, \phi^{\prime}\right) \\
& \text { are } \partial \text {-equivalent. }
\end{aligned}
$$

Proposition 1.7 .1 is a generalization of the familiar result (cf. Kneser and Puppe 11]. Wall [10] and Durfee [2]) that if $(M, \psi),\left(M^{\prime}, \psi^{\prime}\right)$ are quadratic forms over $Z \quad$ which become non-singular over 0 then they are $\hat{0}$-equivalent if and only if the boundaries $\partial(M, \psi), \lambda\left(M^{\prime}, \psi^{\prime}\right)$ are isomorphic as "non-singular quadratic linking forms over $(\mathbb{Z}, \mathbb{Z}-\{0\})^{\prime \prime}$ see S3.4 below for the expression of $\partial(M, \psi)$ for $\operatorname{such}(M, \psi)$ as a non-singular quadratic linking form

$$
\left(M^{*} / M, \lambda: M^{\#} / M \times M^{\#} / M \longrightarrow Q / \mathbb{Z}, \mu: M^{*} / M \longrightarrow Q / 2 \mathbb{Z}\right),
$$

with

$$
M^{\#}=\left\{x \in \mathbb{Q} \otimes_{Z \mathbb{Z}} M \mid\left(\psi+\psi^{\star}\right)(x)(M) \in \mathbb{Z} \subseteq \mathbb{Q}\right\}
$$

the "dual lattice", λ a non-singular symmetric linking pairing on the finite abelian group M^{*} / M, and μ a quadratic refinement of λ. The proof of Proposition 1.7 .1 is a generalization of the standard proof of the Novikov additivity property for the signature: if $(M, \phi),\left(M^{\prime}, \phi^{\prime}\right)$ are symmetric forms over \mathbb{Z} and $[f]: \partial(M, \phi) \longrightarrow \partial\left(M^{\prime},-\phi^{\prime}\right)$ is a stable isomorphism of boundary skew-symmetric formations over \mathbb{Z} then the signature of the union non-singular symmetric form over $\mathbb{Z}(M, \phi) \cup_{[f]}\left(M^{\prime}, \phi^{\prime}\right)$ is given by the sum of the sianatures of (M, ϕ) and $\left(M^{\prime}, \phi^{\prime}\right)$

$$
\sigma^{*}\left((M, \phi) \cup \cup_{\{f]}\left(M^{\prime}, \phi^{\prime}\right)\right)=\sigma^{*}(M, \phi)+\sigma^{*}\left(M^{\prime}, \phi^{\prime}\right) \in \mathbb{Z}
$$

which we shall generalize in Proposition 7.3.6. Proposition l. is generalized to complexes in Proposition 1.8.3 below.

1.8 Unified L-theory

In SI. 6 there were defined lower $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{n}(A, \varepsilon) \\ L_{n}(A, \varepsilon)\end{array}(n \leqslant-1)\right.$, as we now recall. We shall also give a un construction of the unified $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { E-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{n}(A, \varepsilon) \\ L_{n}(A, \varepsilon)\end{array}\right.$
 by

$$
\begin{cases}L^{n}(A, \varepsilon)= \begin{cases}L\left\langle v_{0}\right\rangle^{n+2}(A,-\varepsilon) & \text { if } n=-1,-2 \\ L_{n}(A, \varepsilon) & \text { if } n \leqslant-3\end{cases} \\ L_{n}(A, \varepsilon)=L_{n+2 i}\left(A,(-)^{i} \varepsilon\right) & \text { if } n \leqslant-1, n+2 i \geqslant 0\end{cases}
$$

extending the semi-periodicity $\left\{\begin{array}{l}L^{n}(A, \varepsilon)=L\left\langle v_{O}\right\rangle^{n+2}(A,-\varepsilon) \\ L_{n}(A, \varepsilon)=L_{n+2}(A,-\varepsilon)\end{array}\right.$ (n :
of Proposition $\left\{\begin{array}{l}1.4 .2 \\ 1.2 .3 \text { i) }\end{array}\right.$.
Define the skew-suspension maps

$$
\bar{S}: L^{n}(A,-\varepsilon) \longrightarrow L^{n+2}(A, \varepsilon) \quad(n \in \mathbb{Z})
$$

to be the skew-suspension previously defined for $n \geqslant 0$ and n and to be the appropriate $\pm \varepsilon$-symmetrization maps for $-3 \leqslant n \leqslant$ Proposition 1.8.1 If $\hat{A}^{0}\left(\mathbb{Z}_{2} ; A, E\right)=0$ the skew-suspension maps

$$
\bar{S}: L^{n}(A,-\varepsilon) \longrightarrow L^{n+2}(A, \varepsilon) \quad(n \in \mathbb{Z})
$$

are isomorphisms.
Proof: See Proposition 1.6.1.
,
In particular, if there exists a central element af A $a+\bar{a}=1 \in A($ egg. $a=1 / 2 \in A)$ then $\hat{H}^{*}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)=0$ and up to isomorphism

$$
L_{n}(A, \varepsilon)=L^{n}(A, \varepsilon)=L^{n+2}(A,-\varepsilon) \quad(n \in \mathbb{Z})
$$

cf. Proposition 1.4.3.
be the additive categories given by

$\mathcal{L}_{n}(A, E)=$

$$
\left\{\begin{array}{cc}
\{\text { connected } n \text {-dimensional } \varepsilon \text {-quadratic complexes over } A, \\
\text { homotopy equivalences }\} & (n \geqslant 1) \\
\left\{(-)^{i} \varepsilon \text {-quadratic forms over } A, \text { isomorphisms }\right\} & (n=2 i \leqslant 0) \\
\left\{s p l i t(-)^{i} \varepsilon \text {-quadratic formations over } A,\right. & (n=2 i+1 \leqslant-1) \\
\text { stable isomorphisms }\} &
\end{array}\right.
$$

Note that by Proposition 1.6.4
$\left\{\begin{array}{l}\alpha^{1}(A, \varepsilon)=\{\varepsilon-s y m m e t r i c \text { formations over } A, \text { stable isomorphisms }\}, \\ \mathcal{L}_{1}(A, \varepsilon)=\mathcal{L}_{-3}(A, \varepsilon) .\end{array}\right.$

Define the orientation-reversing involutions

$$
\left\{\begin{array}{l}
-: \dot{\alpha}^{n}(A, \varepsilon) \longrightarrow \dot{\alpha}^{n}(A, \varepsilon) ;(C, \phi) \longmapsto(C,-\phi) \\
-: \mathcal{L}_{n}(A, \varepsilon) \longrightarrow(C,-\psi) \quad(n \in \mathbb{Z}),
\end{array}\right.
$$

and use the boundary operations of $\$ \$ 1.3,1.6$ to define the boundary functors

$$
\left\{\begin{array}{lll}
\partial: \mathcal{L}^{n}(A, \varepsilon) \longrightarrow \mathcal{L}^{n-1}(A, \varepsilon) ;(C, \phi) \longmapsto \\
\partial: \mathcal{L}_{n}(A, \varepsilon) \longrightarrow & \longrightarrow(C, \phi) \\
\mathcal{L}_{n-1}(A, \varepsilon) ;(C, \psi) \longmapsto & (C, \psi)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

For any object x

$$
-(-x)=x, \quad \partial(-x)=-(\partial x), \quad \partial(\partial x)=0
$$

up to natural equivalence. The morphisms of the \mathcal{L}-categories will all be called homotopy equivalences; objects x, y of the same \mathcal{L}-category are homotopy equivalent $x \simeq y$ if there exists a homotopy equivalence

$$
\mathbf{f}: x \longrightarrow \sim Y,
$$

in which case there are also defined homotopy equivalences

$$
f^{-1}: y \xrightarrow{\sim} x \quad f:-x \xrightarrow{\sim}-y, \quad j f: \partial x \xrightarrow{\sim} \partial y .
$$

An object x is closed if $\partial x=0$, and it is a boundary if $x \approx j y$ for some object y. In particular, boundary objects are closed, and if x is closed (resp. a boundary) then so is $-x$. For $n \geqslant 0$ the closed objects are precisely the algebraic Poincare complexes, and for $n \leqslant l$ they are precisely the non-singular forms and formations.

Given objects x, y in the same \mathcal{L}-category and a homotopy equivalence of the boundaries of x and $-y$

$$
\mathbf{f}: 3 x \xrightarrow{\sim}-j y
$$

define the union $x y_{f} y$ to be the closed object of the same \mathcal{L}-category constructed as in $\$ 1.7$. For closed objects x, y

$$
x u_{f} y=x \oplus y .
$$

A cobordism ($z ; f, g$) of objects x, y in the same n-dimensional -category is a triple consisting of an object z of the corresponding ($n+1$)-dimensional \mathcal{L}-category, and homotopy equivalences

$$
f: \hat{o x} \sim \partial_{y}, \quad g: x \cup_{f}-y \longrightarrow \partial z .
$$

For closed objects x, y this is just the cobordism of §§l.l.l.7.
A surgery on an object x of an n-dimensional \mathcal{L}-category is an operation

$$
x \longmapsto x^{\prime}
$$

sending x to an object x of the same \mathcal{L}-category; for $n \geqslant 0$ this is to be surgery on complexes as defined in $\$ 1.5$, and for $n \leqslant l$ it is the translation of this surgery from the language of complexes to that of forms and formations. For example, if (M, ϕ) is an ε-symmetric form over A and $L \subset M$ is a sublagrangian the operation

$$
(M, \phi) \longmapsto \longrightarrow\left(M^{\prime}, \phi^{\prime}\right)=\left(L^{\perp} / L, \phi^{\perp} / \phi\right)
$$

is a surgery on (M, ϕ).
Proposition 1.8.2 i) Cobordism is the equivalence relation on the set of objects of $\left\{\begin{array}{l}\alpha^{n}(A, \varepsilon) \\ \dot{\alpha}_{n}(A, \varepsilon)\end{array}\right.$ ($n \in \mathbb{Z}$) generated by surgery and homotopy equivalence. The cobordism classes of closed objects form an abelian group with respect to the direct sum \oplus, namely $\left\{\begin{array}{l}L^{n}(A, \varepsilon) \\ L_{n}(A, E)\end{array}(n \in \mathbb{Z})\right.$.
ii) If x, y, z are objects of $\left\{\begin{array}{l}\alpha^{n}(A, \varepsilon) \\ \dot{\alpha}_{n}(A, \varepsilon)\end{array}\right.$ and $f: j x \xrightarrow[\sim]{\sim} y, q: i y \longrightarrow \partial z$ are homotopy equivalences then

$$
\left(x U_{f}-y\right) \oplus\left(y U_{g^{-z}}=\left(x U_{q f}-z\right) \in\left\{\begin{array}{l}
L^{n}(A, \varepsilon) \\
L_{n}(A, \varepsilon)
\end{array} .\right.\right.
$$

Proof: i) Immediate from Propositions 1.3.3.1.5.1 and 1.6.5.
ii) It is possible to obtain $x u_{g} f^{-z}$ from $\left(x u_{f}-y\right) \oplus\left(y u_{g}-z\right)$ by surgery (as in the proof of Proposition 1.8.3 below).

The homotopy equivalence classes of the null-cobordant
objects of $\left\{\begin{array}{l}\alpha^{n}(A, E) \\ \dot{\alpha}_{n}(A, \varepsilon)\end{array}\right.$ (i.e those representing o in $\left\{\begin{array}{l}L^{n}(A, \varepsilon) \\ L_{n}(A, E)\end{array}\right.$,
are in one-one correspondence with the following equivalence classes of objects of $\left\{\begin{array}{l}\alpha^{n+1}(A, E) \\ \alpha_{n+1}(A, \varepsilon)\end{array}\right.$.

Let ∂-equivalence be the equivalence relation on the objects of $\left\{\begin{array}{l}\alpha^{n+1}(A, \varepsilon) \\ \alpha_{n+1}(A, \varepsilon)\end{array}\right.$ ($n \in \mathbb{Z}$) generated by the elementary operations:
i) $x \longrightarrow x^{\prime}$ if x^{\prime} is homotopy equivalent to x
ii) $x \longrightarrow x^{\prime}$ if x^{\prime} is obtained from x by surgery
iii) $x \longmapsto x^{\prime}$ if $x^{\prime}=x \oplus y$ for some closed object y. Note that $\partial x \sim x^{\prime}$ in each case, so that the homotopy type of ∂x is an invariant of the 3 -equivalence class of an object For $n+1=0$-equivalence is just the a-equivalence relation on forms defined in $\$ 1.7$ above. Proposition 1.7 .1 is the special case $n+1=0$ of:

Proposition 1.8.3 The boundary operation defines a natural one-one correspondence

$$
j: \text { \{-equivalence classes of objects } x \text { of }\left\{\begin{array}{l}
\mathcal{L}^{n+1}(A, \varepsilon) \\
\mathcal{L}_{n+1}(A, \varepsilon)
\end{array}\right\}
$$

$\xrightarrow{\sim}$ \{homotopy equivalence classes of null-cobordant

$$
\text { objects } \partial x \text { of }\left\{\begin{array}{l}
a_{n}^{n}(n, \varepsilon) \\
n_{n}(\Lambda, \varepsilon)
\end{array}\right\}
$$

Proof: Given connected $(n+1)$-dimensional e-symmetric complexes over $A(C, \phi),\left(C^{\prime}, \phi^{\prime}\right)(f o r$ some $n \geqslant 0)$ and a homotopy equivalence of the boundary n-dimensional $\varepsilon-s y m m e t r i c$ Poincaré complexes over A

$$
f: J(C, \phi) \longrightarrow \longrightarrow \partial\left(C^{\prime}, \phi^{\prime}\right)
$$

there is defined a union ($n+1$)-dimensional e-symmetric c-symmetric Poincaré complex over A

$$
\left(C^{\prime \prime}, \phi^{\prime \prime}\right)=\left(C \cup_{f} C^{\prime}, \phi \cup-\phi^{\prime}\right)
$$

Surgery on $\left(C^{+}, \phi^{\prime}\right) \oplus\left(C^{\prime \prime} . \phi^{\prime \prime}\right)$ by the connected $(n+2)$-dimensional ε-symmetric pair (g:C'和" $\left.\longrightarrow C^{\prime},\left(O, \phi^{\prime} \oplus \phi^{\prime \prime}\right)\right)$ with

$$
\begin{aligned}
& 9=\left(\begin{array}{lll}
1 & 0 & 0 \\
1
\end{array}\right) \\
&:\left(C^{\prime} \oplus C^{\prime \prime}\right)_{r}=C_{r}^{\prime \oplus C_{r} \oplus \partial C_{r-1} \oplus C_{r}^{\prime} \longrightarrow \longrightarrow C_{r}^{\prime}}
\end{aligned}
$$

results in an $(n+1)$-dimensional $\varepsilon-s y m m e t r i c$ complex homotopy equivalent to (C, ϕ), so that (C, ϕ) and $\left(C^{\prime}, \phi^{\prime}\right)$ are a-equivalent. Similarly for the other cases.

The matrix identity of Wall $\{4, \mathrm{p} .63\}$ was used to prove that the odd-dimensional surgery obstruction group $L_{2 i+1}(\pi)$ defined as the quotient of the stable (-$)^{i}$-unitary group of $\mathbb{Z}[\pi]$ by the subgroup generated by the elementary (-$)^{\mathbf{i}}$-unitary matrices is in fact abelian. Proposition 1.8 .3 is a generalization of this identity, and also of the related normal forms of Sharpe [1] and Wall [1l] for the elementary (-) i-unitary group. The normal forms may in fact be deduced from the ε-quadratic case for $n+1=0$ (as has already been done in Proposition I.9.2 iii)). The sum formula of Proposition 1.8.2 ii) is an L-theoretic analogue of the Whitehead lemma of algebraic K-theory.

1.9 Products

The tensor product $A \otimes_{\mathbb{Z}}{ }^{B}$ of rings with involution A, B is a ring with involution

$$
: A \otimes_{\mathbb{Z}}{ }^{B} \longrightarrow A \otimes_{\mathbb{Z}}{ }^{B} ; a \otimes b \longmapsto \overline{a \otimes b}=\bar{a} \otimes \bar{b}
$$

If $\in \in A, n \in B$ are central units such that

$$
\bar{\varepsilon}=\epsilon^{-1} \in A \quad, \quad \bar{n}=\bar{n}^{-1} \in \mathrm{~B}
$$

then $\varepsilon \otimes \sum^{A} \in \mathbb{Z}^{B}$ is a central unit such that

$$
(\overline{\varepsilon \otimes \eta})=(\varepsilon \otimes \eta)^{-1} \in A \otimes_{Z^{B}}^{B}
$$

If C is a p-dimensional A-module chain complex and D is a q-dimensional B-module chain complex then $C \mathbb{D}_{Z} D$ is a $(p+q)$-dimensional $A B_{Z} Z^{B-m o d u l e}$ chain complex, with $A \otimes_{\mathbb{Z}}{ }^{B}$ acting by

$$
A \otimes_{\mathbb{Z}} \mathrm{B} \times \mathrm{C} \otimes_{\mathbb{Z}^{D}} \mathrm{D} \longrightarrow \mathrm{C} \otimes_{\mathbb{Z}} \mathrm{D} ;(a \otimes b, x \otimes y) \longmapsto a x \otimes \text { by }
$$

As in $S I .8$ there are defined products in the Q-groups

$$
\otimes: Q^{m}(C, E) \otimes_{\mathbb{Z}^{2}} Q^{n}(D, \eta) \longrightarrow Q^{m+n}\left(C \otimes_{\mathbb{Z}} D, \epsilon \otimes n\right)
$$

$$
\left.\left\{\phi_{s} \in \operatorname{Hom}_{A}\left(C^{*}, C\right)_{m+s} \mid s \geqslant 0\right\} \otimes \theta_{s} \in \operatorname{Hom}_{B}\left(D^{*}, D\right)_{n+s} \mid s \geqslant 0\right\}
$$

$$
\longmapsto\left((\phi \theta \theta)_{s}=\sum_{r=0}^{s}(-)^{(m+r) s_{\phi}}{ }_{r} T_{n}^{r_{\theta}} s_{s-r}\right.
$$

$$
\begin{aligned}
\in & \operatorname{Hom}_{A \otimes_{Z} B^{B}}\left(\left(C \otimes_{Z^{2}}^{D) *, C \otimes_{Z}}{ }^{D))_{m+n+s}}\right.\right. \\
& \left.=\sum_{r=-\infty}^{\infty} \operatorname{Hom}_{A}\left(C^{\star}, C\right)_{m+r} \otimes_{Z} \operatorname{Hom}_{B}\left(D^{\star}, D\right)_{n-r+s} \mid s \geqslant 0\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \otimes: Q^{m}(C, \varepsilon) \otimes_{\mathbb{Z}^{2}}{ }_{n}(D, \eta) \longrightarrow Q_{m+n}\left(C \otimes_{\mathbb{Z}^{D}}, \varepsilon \otimes \eta\right) ; \\
& \left\{\phi_{s} \in \operatorname{Hom}_{A}\left(C^{*}, C\right)_{m+s} \mid s \geqslant 0\right\} \otimes\left\{\psi_{s} \in \operatorname{Hom}_{B}\left(D^{*}, D\right)_{n-s} \mid s \geqslant 0\right\} \\
& \longmapsto\left\{(\phi \otimes \psi){ }_{S}=\sum_{r=0}^{\infty}(-)^{(m+r) s} \phi_{r} \otimes T_{\eta}^{r} \psi_{S+r}\right. \\
& \in \operatorname{Hom}_{A} \otimes_{\mathbb{Z}}{ }^{B}\left(\left(C \otimes_{\mathbb{Z}} D\right) *, C \otimes_{\mathbb{Z}^{D}}\right)_{m+n-s} \\
& =\sum_{r=-\infty}^{\infty} \operatorname{Hom}_{A}\left(C^{\star}, C\right)_{m+r} \otimes_{Z} \operatorname{Hom}_{B}\left(D^{\star}, D\right)_{n-s}^{n}
\end{aligned}
$$

which extend to the L-groups:
Proposition 1.9.1 Given A, B, \in, η as above there are defined external products in the $L-g r o u p s$

$$
\begin{gathered}
\otimes: L^{m}(A, \varepsilon) \otimes_{\mathbb{Z}^{2}} L^{n}(B, \eta) \longrightarrow L^{m+n}\left(A \otimes_{\mathbb{Z}} B, \varepsilon \otimes_{n}\right) ; \\
(C, \phi) \otimes(D, \theta) \longmapsto\left(C \otimes_{\mathbb{Z}} D, \phi \otimes \theta\right), \\
\otimes: L^{m}(A, \varepsilon) \otimes_{\mathbb{Z}^{L_{n}}(B, \eta)} \longrightarrow L_{m+n}\left(A \otimes_{\mathbb{Z}^{B}}, \varepsilon \otimes_{n}\right) ; \\
(C, \phi) \otimes(D, \psi) \longmapsto
\end{gathered}
$$

for all $m, n \in \mathbb{Z}$.
Proof: See Proposition I.8.1.

Given rings with involution A, R we shall say that
A is an R-module if there is given a morphism of rings with involution

(We are anticipating here the definition in $\$ 2.2$ below of a morphism of rings with involution).

Proposition 1.9.2 If A is an R-module there are defined inter products in the L-groups
 for any $m, n \in \mathbb{Z}$. In particular, the symmetric witt group $L^{\circ}(R)$ acts on the $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups of $A\left\{\begin{array}{l}L^{\star}(A, E) \\ L_{\star}(A, E)\end{array}\right.$

$$
\left\{\begin{array}{l}
\otimes: L^{O}(R) \otimes \mathbb{Z}^{L^{\star}(A, \varepsilon) \longrightarrow L^{\star}(A, \varepsilon)} \\
\otimes: L^{O}(R) \otimes \mathbb{Z}^{L_{\star}}(A, \varepsilon) \longrightarrow L_{\star}(A, \varepsilon)
\end{array}\right.
$$

with the element

$$
\left(R, 1: R \longrightarrow R^{*} ; r \longmapsto(s \longmapsto s \bar{r})\right) \in L^{O}(R)
$$

acting by the identity.
Proof: Compose the external products given by Proposition l. with the L-group morphisms induced by $R \otimes_{Z_{2}} A \longrightarrow A$, defining $\left\{\begin{array}{l}\otimes: L^{m}(R, \rho) \otimes_{\mathbb{Z}^{n}} L^{n}(A, \varepsilon) \longrightarrow L^{m+n}\left(R \otimes_{\mathbb{Z}^{A}}, \rho \otimes \varepsilon\right) \longrightarrow L^{m+n}(A, \rho \varepsilon) \\ \otimes: L^{m}(R, \rho) \otimes_{\mathbb{Z}^{\prime}} L_{n}(A, \varepsilon) \longrightarrow L_{m+n}\left(R \otimes_{\left.\mathbb{Z}^{A}, \rho \otimes \varepsilon\right)} \longrightarrow L_{m+n}(A, \rho \varepsilon)\right.\end{array}\right.$

The symmetric witt group $L^{O}(R)$ of a commutative $r i n g ~ R$ (with any involution) is a commutative r ing with respect to t internal product $L^{O}(R) \otimes_{\mathbb{Z}^{L^{\circ}}}(R) \longrightarrow L^{O}(R)$, with unit $(R, 1) \in L^{C}$ and the $\left\{\begin{array}{l}\epsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$-groups $\left\{\begin{array}{l}L^{\star}(A, \varepsilon) \\ L_{\star}(A, E)\end{array}\right.$ of an R-module A are a $L^{O}(R)$-modules.

The external L-group products appear in the product formula of Proposition II.8.1 for the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ signature of the cartesian product of an m-dimensional
$\left\{\begin{array}{l}\text { geometric Poincaré complex } x \\ \text { normal an } n \text {-dimensional }\end{array}\right.$
(normal map $(f, b): M \longrightarrow X$
$\left\{\begin{array}{l}\text { geometric Poincaré complex } Y \\ \text { normal map }(g, c): N \longrightarrow Y\end{array}\right.$

$$
\left\{\begin{aligned}
& \sigma^{*}(X \times Y)=\sigma^{*}(X) \otimes \sigma^{*}(Y) \in L^{m+n}\left(\mathbb{Z}\left[\pi_{1}(X \times Y)\right]\right) \\
& \sigma_{\star}((f \times g, b \times c): M \times N \longrightarrowX \times Y) \\
&=\sigma_{*}(f, b) \otimes \sigma_{\star}(g, c)+\sigma^{*}(X) \otimes \sigma_{\star}(g, c)+\sigma_{\star}(f, b) \otimes \sigma^{*}(Y) \\
& \in L_{m+n}\left(\mathbb{Z}\left[\pi_{1}(X \times Y)\right]\right),
\end{aligned}\right.
$$

identifying $\pi_{1}(X \times Y)=\pi_{1}(X) \times \pi_{1}(Y)$ and

$$
\mathbb{Z}\left[\pi_{1}(X \times Y)\right]=\mathbb{Z}\left[\pi_{1}(X)\right] \mathbb{Z}_{\mathbb{Z}}^{Z \mathbb{Z}}\left[\pi_{1}(Y)\right]
$$

1.10 Change of K -theory

Given a ring with involution A define the duality involution in the reduced $\left\{\begin{array}{l}\text { projective class } \\ \text { torsion }\end{array}\right.$ group $\left\{\begin{array}{l}\tilde{K}_{0}(A)=K_{0}(A) / K_{0}(\mathbb{Z}) \\ \tilde{K}_{1}(A)=K_{1}(A) / K_{1}(\mathbb{Z})\end{array}\right.$ of the underlying ring A

$$
\left\{\begin{array}{l}
\bullet: \tilde{K}_{0}(A) \longrightarrow \tilde{K}_{0}(A) ; x=[P] \longmapsto x^{*}=\left[P^{*}\right] \\
\bullet: \tilde{K}_{1}(A) \longrightarrow \tilde{K}_{1}(A) ; \\
x=\tau(f: M \longrightarrow N) \longmapsto x^{*}=\tau\left(f^{*}: N^{*} \longrightarrow M^{*}\right)
\end{array}\right.
$$

with $\left\{\begin{array}{l}\mathrm{P} \text { a f.g. projective A-module } \\ \mathrm{f} \in \mathrm{Hom}_{A}(M, N) \text { an isomorphism of based f.g. free A-modules }\end{array}\right.$.
A - invariant subgroup $x \subseteq \tilde{K}_{m}(A) \quad(m=0,1)$ is a subgroup X of $\widetilde{K}_{m}(A)$ such that $x^{*} \in X$ for all $x \in X$.

The projective class of an n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is the projective Euler class of C

$$
[C]=\sum_{r=-\infty}^{\infty}(-)^{r}\left[C_{r}\right] \in \tilde{K}_{0}(A)
$$

which is such that

$$
[C]^{\star}=(-)^{n}[C] \in \tilde{K}_{O}(A)
$$

The projective class is a homotopy invariant such that $[C]=0 \in \widetilde{K}_{O}(A)$ if and only if $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is homotopy equivalent to a complex such that each $C_{r}(r \in \mathbb{Z})$ is a f.g. free A-module (of which all but a finite number are 0 , by hypothesis).

An $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is based if each
$C_{r}(r \in \mathbb{Z})$ is a based $£ . g$. free A-module.
The torsion of a based n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ Poincaré complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q^{n}(C, E)\right) \\ \left(C, \psi \in Q_{n}(C, \varepsilon)\right)\end{array}\right.$ is the torsion of the Poincaré duality chain equivalence

$$
\left\{\begin{aligned}
\tau & =\tau\left(\phi_{O}: C^{n-\star} \longrightarrow C\right) \in \widetilde{K}_{1}(A) \\
\tau & =\tau\left(\left(1+T_{\varepsilon}\right) \psi_{O}: C^{n-\star} \longrightarrow C\right) \in \widetilde{K}_{1}(A)
\end{aligned}\right.
$$

which is such that

$$
T^{*}=(-)^{n} t \in \widehat{K}_{1}(A)
$$

In dealing with the torsion of based complexes we shall assume that

$$
\tau(\varepsilon: A \longrightarrow A) \in X \subseteq \widetilde{K}_{1}(A)
$$

which is automatically the case if $\varepsilon= \pm 1 \in \mathrm{~A}$.
As in §I.9, qiven a *-invariant subqroup $X \subseteq \hat{R}_{m}(A) \quad(m=0,1)$
define the intermediate $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \underline{\varepsilon-q u a d r a t i c}\end{array}\right.$ L-groups of $A\left(\begin{array}{l}L_{X}^{n}(A, \varepsilon) \\ L_{n}^{X}(A, \varepsilon)\end{array}\right.$ (neZ) in the same way as $\left\{\begin{array}{l}L^{n}(A, E) \\ L_{n}(A, E)\end{array}\right.$ but using algebraic Poincaré complexes
with K-theory in X, meaning the projective class if $m=0$, and the torsion if $m=1$ (in which case all the complexes are to be based). In particular, for $X=\widetilde{K}_{O}(A)$ we have

$$
\left\{\begin{array}{l}
L_{\bar{K}_{O}^{*}}^{\star}(A)(A, E)=L_{*}^{*}(A, E) \\
\bar{K}_{O}(A) \\
L_{\star}(A, E)=L_{\star}(A, E)
\end{array}\right.
$$

The Tate \mathbb{Z}_{2}-cohomology groups $\hat{H}^{\star}\left(\mathbb{Z}_{2} ; G\right)$ of a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module G are defined by

$$
\hat{H}^{n}\left(\mathbb{z}_{2} ; G\right)=\left\{g \in G \mid T g=(-)^{n} g\right\} /\left\{h+(-)^{n_{T h}} \operatorname{Th} \in G\right\} \quad(n(\bmod 2))
$$

Proposition 1.10.1 Given *-invariant subgroups $X \subseteq Y \subseteq \tilde{K}_{m}(A) \quad(m=0$ there is defined an exact sequence of the intermediate $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{c}
\cdots \longrightarrow L_{X}^{n}(A, \varepsilon) \longrightarrow L_{Y}^{n}(A, \varepsilon) \longrightarrow L_{n}^{K}(A, \varepsilon) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; Y / X\right) \longrightarrow L_{X}^{n-1}(A, \varepsilon) \longrightarrow L_{n}^{Y}(A, \varepsilon) \longrightarrow L_{n-I}^{X}(A, \varepsilon) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; Y / X\right) \longrightarrow \\
\cdots \longrightarrow
\end{array}\right.
$$

with $\mathrm{T} \in \mathbb{Z}_{2}$ acting on Y / X by the duality involution, with k the map associating to an algebraic Poincaré complex the Tate \mathbb{Z}_{2}-cohomology class of its K-theory.
Proof: See Proposition 1.9.1.

As in 51.9 we introduce the following terminology for the intermediate L -groups

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ L _ { x } ^ { n } (A , \varepsilon) = U _ { x } ^ { n } (A , \varepsilon) } \\
{ L _ { n } ^ { X } (A , \varepsilon) = U _ { n } ^ { x } (A , \varepsilon) }
\end{array} \text { for } x \subseteq \tilde { K } _ { O } ^ { (A) , } \left\{\begin{array}{l}
L_{X}^{n}(A, \varepsilon)=V_{x}^{n}(A, \varepsilon) \\
L_{n}^{x}(A, \varepsilon)=V_{n}^{x}(A, \varepsilon)
\end{array} \text { for } x \subseteq \tilde{k}_{1}^{(A)}\right.\right. \\
& \left\{\begin{array}{l}
U_{\widetilde{R}_{0}}^{n}(A)(A, \varepsilon)=U^{n}(A, \varepsilon) \quad\left(=L^{n}(A, E)\right) \\
\widetilde{K}_{0}(A) \\
U_{n}(A, \varepsilon)=U_{n}(A, \varepsilon) \quad\left(=L_{n}(A, E)\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
v_{\widetilde{K}_{1}}^{n}(A)(A, E)=U_{\{O\}}^{n}(A, \varepsilon)=V^{n}(A, \varepsilon) \\
\widetilde{K}_{1}(A) \\
V_{n}(A, \varepsilon)=U_{n}^{\{0\}}(A, \varepsilon)=V_{n}(A, \varepsilon) \quad .
\end{array}\right.
\end{aligned}
$$

For $E=1 \in A$ the notation is contracted in the usual fashion, for example

$$
L_{X}^{*}(A, 1)=L_{X}^{*}(A)
$$

The original surgery obstruction groups of wall [4] are the simple quadratic L-groups of a group ring $\mathbb{Z}[\pi]$ with a w-twisted involution

$$
L_{*}^{S}(\pi, w)=v_{*}^{[\pi\}}(\mathbb{Z}[\pi])
$$

The L^{h}-groups of Shaneson [1] are the free quadratic L-groups

$$
L_{\star}^{h}(\pi, w)=V_{\star}(\pi[\pi]),
$$

and the Rothenberg exact sequence

$$
\cdots L_{n}^{s}(\pi, w) \longrightarrow L_{n}^{h}(\pi, w) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; W h(\pi)\right) \longrightarrow L_{n-1}^{s}(\pi, w) \longrightarrow \ldots
$$

is the special case of the exact sequence of Proposition 1.10.1 for the intermediate quadratic L-groups associated to

$$
\mathrm{X}=\{\pi\} \subseteq \mathrm{Y}=\tilde{\mathrm{k}}_{1}(\mathbb{Z}[\pi])
$$

since $Y / X=W h(\pi)$ is the Whitehead group of π. The $\left\{\begin{array}{l}\text { simple } \\ \text { finite }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L_{*}^{S}(\pi, w) \\ L_{*}^{h}(\pi, w)\end{array}\right.$ are the obstruction groups for surgery to $\left\{\begin{array}{c}\text { simple } \\ -\end{array}\right.$ homotopy equivalence on topological normal maps $(f, b): M \rightarrow X$ from compact manifolds M to $\left\{\begin{array}{l}\text { simple } \\ \text { finite }\end{array}\right.$ geometric poincaré complexes x. The projective quadratic L-groups originally introduced by Novikov [1]

$$
L_{\star}^{p}(\pi, w)=U_{\star}(\mathbb{Z}[\pi])
$$

have two distinct geometric interpretations: either as
the obstruction groups for surgery to proper homotopy equivalence on normal maps from paracompact manifolds to infinite locally finite CW complexes with the Poincare duality of such manifolds, as in Maumary [1] and Taylor [1], or else as the obstruction groups for surgery to homotopy equivalence on topological normal maps from compact manifolds to finitely dominated geometric Poincaré complexes (i.e. Poincaré complexes in the sense of Wall [31) as in Pedersen and Ranicki [1]. See Hambleton [1] and Taylor and Williams [3] for applications of projective L-theory to the description of the surgery obstructions of topological normal maps of closed manifolds with finite fundamental groups.

Proposition 1.10.2 The surgery obstruction of an n-dimensional topological normal map $(f, b): M \longrightarrow X$ with X

bordant to a $\left\{\begin{array}{l}\text { simple } \\ - \\ -\end{array}\right.$ homotopy equivalence.

Given a topological normal map of n-dimensional pairs $((f, b),(\partial f, \partial b)):(M, \partial M) \longrightarrow(X, \partial X)$ such that $\exists \mathrm{f}: ~ d M \longrightarrow J X$ is a homotopy equivalence there is dnfined a relj surgery obstruction $\sigma_{\star}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X) \|\right)\right.$ such that the analogue of Proposition 1.10 .2 holds for topological normal bordism rel ($\exists \mathrm{f}, \mathrm{\partial b}$). By the realization theorems of Wall $[4,5 \$ 5,6]$ every element of $L_{n}(\mathbb{Z}[\pi])(n \geqslant 6)$ for a finitely presented qroup π is the relo surgery obstruction $\sigma_{*}(f, b)$ of such a topological normal map $(f, b):(M, \partial M) \longrightarrow(X, \partial X)$.
52. Relative L-theory

Bass [l] related the projective class group $K_{0}(A)$ of a ring A to the torsion group $K_{1}(A)=G L(A) / E(A)$, associating to a morphism of r ings

$$
\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{~B}
$$

a change of rings exact sequence

with the relative K-group $K_{1}(f)$ defined to be the Grothendieck group of triples ($\mathrm{P}, \mathrm{Q}, \mathrm{h}$) consisting of $\mathrm{f} . \mathrm{g}$. projective A-modules P, Q and an isomorphism $h \in \operatorname{Hom}_{B}\left(B \otimes_{A} P, B \otimes_{A} Q\right)$. The sequence extends on the r ight to the lower K-groups $K_{n}(A)(n \leqslant-1)$ of Bass $[2, X I I]$ and on the left to the higher K-groups $K_{n}(A)(n \geqslant 2)$ of Quillen [1],[2] (with $K_{2}(A)$ the K_{2}-group of Milnor (4])

$$
\ldots \longrightarrow K_{n}(A) \longrightarrow K_{n}(B) \longrightarrow K_{n}(f) \longrightarrow K_{n-1}(A) \longrightarrow \ldots(n \in \mathbb{Z})
$$

Gersten [2] constructed a spectrum $\mathbf{K}(A)$ such that

$$
K_{n}(A)=\pi_{n}(\underline{K}(A)) \quad(n \in \mathbb{Z}),
$$

so that the relative K-groups $K_{*}(f)$ can be defined to be the relative homotopy groups of the induced map of spectra

$$
K_{n}(f)=\pi_{n}(f: \underline{K}(A) \longrightarrow \underline{K}(B)) \quad(n \in \mathbb{Z}) .
$$

Wall [4] used the geometric interpretation of the surger obstruction groups $L_{\star}(\pi)$ for a finitely presented group π as bordism groups of normal maps to geometrically define the relative L-groups $L_{*}(f)$ of a morphism $f: \pi \longrightarrow \pi$, of such groups as relative bordism groups, fitting into an exact sequence

$$
\ldots \longrightarrow L_{n}(\pi) \longrightarrow L_{n}\left(\pi^{\prime}\right) \longrightarrow L_{n}(f) \longrightarrow L_{n-1}(\pi) \longrightarrow \ldots(n(m o
$$

Wall [4, §7] also gave an algebraic definition of the odd-dimensional relative L-groups $L_{2 i+1}(f)$, as the witt groups of pairs
(non-singular $(-)^{i}$-quadratic form over $\mathbb{Z}[\pi](M, \psi)$,
lagrangian L of the induced form over $\left.\mathbb{Z}\left[\pi^{\prime}\right] \mathbb{Z}\left[\pi^{\prime}\right] \mathbb{Z}_{\mathbb{Z}}[\pi](M, \psi)\right) \quad$.
Sharpe [2] gave an algebraic definition of the even-dimensional relative L-groups $L_{2 i}(f)$ (which however only applies to the simple L-groups, since it is based on the unitary Steinberg group relations of Sharpe [1]).

Following the definition in $\$ 2.1$ of algebraic Poincare triads we shall define in $\$ 2.2$ the relative $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{n}(f, \varepsilon) \\ L_{n}(f, \varepsilon)\end{array}(n \in \mathbb{Z})\right.$ of a morphism of rings with involution $f: A \longrightarrow B$, to $f i t$ into an exact sequence

$$
\left\{\begin{array}{l}
\cdots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{n}(A, \varepsilon) \longrightarrow L^{n}(B, \varepsilon) \longrightarrow L_{n}^{n}(f, \varepsilon) \longrightarrow L^{n-1}(A, \varepsilon) \longrightarrow \ldots \\
\cdots L_{n}(E, \varepsilon) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow \ldots
\end{array} \text { (nєZZ)}\right. \text {. }
$$

For $n \geqslant 1\left\{\begin{array}{l}L^{n}(f, \varepsilon) \\ L_{n}(f, \varepsilon)\end{array}\right.$ is defined to be the relative cobordism group of pairs

$$
\begin{aligned}
& \text { ((} n-1) \text {-dimensional }\left\{\begin{array} { l }
{ \varepsilon - \text { symmetric } } \\
{ \varepsilon - q u a d r a t i c }
\end{array} \text { Poincaré complex over } A \left\{\begin{array}{l}
(C, \phi) \\
(C, \psi)
\end{array}\right.\right. \text {, } \\
& \text { n-dimensional }\left\{\begin{array}{l}
\varepsilon-\text { symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { Poincaré pair over } B\right. \\
& \left\{\begin{array}{l}
\left(g: B \otimes_{A} C \longrightarrow D,(\delta \phi: \phi)\right) \\
\left(g: B \otimes_{A} C \longrightarrow D,(\delta \psi: \psi)\right)
\end{array} \text { bounding }\left\{\begin{array}{l}
B \otimes_{A}(C, \phi) \\
B \otimes_{A}(C, \psi)
\end{array}\right),\right.
\end{aligned}
$$

in evident analogy with the definition of relative geometric
cobordism groups. For $n \leqslant 0\left\{\begin{array}{l}L^{n}(f, E) \\ L_{n}(f, E)\end{array}\right.$ is defined in terms of forms and formations. (In Ranicki [12] there will be defined spectra $\left\{\begin{array}{l}\underline{\underline{L}}^{O}(A, \varepsilon) \\ \underline{\underline{L}}_{0}(A, \varepsilon)\end{array}\right.$ such that

$$
\left\{\begin{array}{l}
\pi_{\star}\left(\underline{\underline{\Pi}}^{0}(A, \varepsilon)\right)=L^{*}(A, \varepsilon) \\
\pi_{*}\left(\underline{\underline{\Pi}}_{0}(A, \varepsilon)\right)=L_{*}(A, \varepsilon)
\end{array}\right.
$$

using algebraic Poincaré n-ads, allowing the relative L-groups to be defined as relative homotopy groups

$$
\left\{\begin{array}{l}
L^{*}(f, \varepsilon)=\pi_{\star}\left(f: \underline{\Pi}^{0}(A, \varepsilon) \longrightarrow \underline{\underline{L}}^{0}(B, \varepsilon)\right) \\
L_{\star}(f, \varepsilon)=\pi_{\star}\left(f: \underline{\underline{L}}_{0}(A, \varepsilon) \longrightarrow \underline{\underline{L}}_{0}(B, \varepsilon)\right)
\end{array}\right.
$$

See Ranicki \{7] for a brief discussion of the algebraic II-spectra. The ε-quadratic \amalg-spectrum $\underline{\Perp}_{O}(A, \varepsilon)$ may be defined using forms and formations, as was in fact done in Ranicki [5]). In 52.3 the construction is extended to some of the other types of relative L-groups arising in topology, such as the e-hyperquadratic $/ \begin{aligned} & \hat{L}^{n}(A, \varepsilon) \\ & \text { sequence }\end{aligned}$ ($n \in \mathbb{Z}$) which fit into a long exact

$$
\left.\ldots \longrightarrow L_{n}(A, \varepsilon) \xrightarrow{1+T_{\varepsilon}} L^{n}(A, \varepsilon) \xrightarrow{J} \hat{L}^{n}(A, \varepsilon) \xrightarrow{H} L_{n-1}(A, \varepsilon) \longrightarrow \mathbb{Z}\right) .
$$

In $\$ 2.4$ we shall define the Γ-groups $\left\{\begin{array}{l}\Gamma^{n}(f: A \longrightarrow B, E) \\ \Gamma_{n}(f: A \longrightarrow B, \varepsilon)\end{array}(n \geqslant 0)\right.$
of cobordism classes of n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes over A which become Poincaré over B, for some morphism of rings with involution $f: A \longrightarrow B$. The quadratic $\Gamma-q r o u p s \Gamma_{\star}(f) \equiv \Gamma_{\star}(f, l)$
will be identified in $\$ 2.5$ with the homology surgery obstructic groups originally defined by Cappell and Shaneson [1]. (The rel homology surgery theory will be discussed in 57.7 below). We shall also define lower Γ-groups $\left\{\begin{array}{l}\Gamma^{n}(f, \varepsilon) \\ \Gamma_{n}(f, C)\end{array} \quad(n \leqslant-1)\right.$, using forms and formations. Given a commutative square of r ings with involution

there will also be defined relative Γ-groups $\left\{\begin{array}{l}r^{n}(F, \epsilon) \\ \Gamma_{n}(F, \varepsilon)\end{array}\right.$ (n $\left.\in \mathbb{Z}\right)$ to fit into a long exact sequence

$$
\left\{\begin{array}{l}
\left.\ldots \longrightarrow \Gamma^{n}(f, \varepsilon) \longrightarrow \Gamma^{n}\left(f^{\prime}, \varepsilon\right) \longrightarrow \Gamma^{n}(F, \varepsilon) \longrightarrow \Gamma_{n}(f, \varepsilon) \longrightarrow \Gamma_{n}\left(f^{\prime}, \varepsilon\right) \longrightarrow \Gamma_{n}(F, \varepsilon) \longrightarrow \Gamma_{n-1}(f, \varepsilon) \longrightarrow \ldots\right) \longrightarrow \ldots \\
\ldots \longrightarrow{ }_{n} \longrightarrow \ldots
\end{array}\right.
$$

The relative Γ-aroups $\left\{\begin{array}{l}\Gamma^{*}(F, \varepsilon) \\ \Gamma_{\star}(F, \varepsilon)\end{array}\right.$ in the special case $1: A \longrightarrow A^{\prime}=$
will be expressed as the cobordism groups of the $\left\{\begin{array}{l}\mathrm{E} \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes over A which become Poincaré over B and contractible over B^{\prime}. This expression will then be used in $\$ 3$ for the commutative square

associated to a localization map $A \longrightarrow S^{-1} A$ inverting a multiplicative subset $S \subset A$, allowing the relative L-groups

$$
\left\{\begin{array}{l}
L^{*}\left(A \longrightarrow S^{-1} A, E\right) \\
L_{\star}\left(A \longrightarrow S^{-1} A, \varepsilon\right)
\end{array}\right. \text { (of the appropriate intermediate type) to bi }
$$

identified with the L-groups $\left\{\begin{array}{l}L^{\star}(A, S, E) \\ L_{\star}(A, S, \varepsilon)\end{array}\right.$ of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes over A which become contractible over $S^{-1} A$

2.1 Algebraic Poincaré triads

is a triad of finite-dimensional A-module chain complexes

such that C is n-dimensional, D and D^{\prime} are ($n+1$-dimensional, C^{\prime} is ($n+2$)-dimensional, together with an element

$$
\left\{\begin{array}{l}
\Phi=\left(\phi^{\prime}, \delta \phi^{\prime}, \delta \phi, \phi\right) \in Q^{n+2}(\Gamma, \varepsilon) \\
\psi=\left(\psi^{\prime}, \delta \psi^{\prime}, \delta \psi, \psi\right) \in Q_{n+2}(\Gamma, \varepsilon)
\end{array}\right.
$$

of the $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ triad 0-group defined in Sl.3. Such a triad is Poincaré if
i) the $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ pairs over A

$$
\begin{aligned}
\begin{cases}(f: C \longrightarrow & \left.D,(\delta \phi, \phi) \in Q^{n+1}(f, E)\right) \\
(f: C \longrightarrow & \left.D,(\delta \psi, \psi) \in Q_{n+1}(f, E)\right),\end{cases} \\
\left\{\begin{array}{l}
\left(f f^{\prime}: C \longrightarrow D^{\prime},\left(\delta \phi^{\prime}, \phi\right) \in Q^{n+1}\left(f^{\prime}, \varepsilon\right)\right) \\
\left(f^{\prime}: C \longrightarrow D^{\prime},\left(\delta \psi^{\prime}, \psi\right) \in Q_{n+1}\left(f^{\prime}, \varepsilon\right)\right)
\end{array}\right.
\end{aligned}
$$

are Poincaré
ii) the A-module chain map

$$
\left\{\begin{array}{l}
\Phi_{O}: C^{n+2-\star} \longrightarrow C(\Gamma) \\
\left(1+T_{E}\right) \psi_{O}: C^{n+2-*} \longrightarrow C(\Gamma)
\end{array}\right.
$$

defined by

$$
\begin{aligned}
& : C^{n+2-r} \longrightarrow C(\Gamma)_{r}=C_{r}^{\prime \oplus D_{r-1}}{ }^{\oplus D_{r-1}^{\prime}}{ }^{\oplus C}{ }_{r-2}
\end{aligned}
$$

is a chain equivalence.
Proposition 2.1.1 There is a natural one-one correspondence between quadruples

$$
\begin{aligned}
& \text { (} n \text {-dimensional }\left\{\begin{array} { l }
{ \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { Poincaré complex over } A \left\{\begin{array}{l}
(C, \phi) \\
(C, \psi),
\end{array}\right.\right. \\
& (n+1) \text {-dimensional }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { Poincaré pairs over } A\right. \\
& \left\{\begin{array}{l}
(f: C \longrightarrow D,(\delta \phi, \phi)) \\
(f: C \longrightarrow D,(\delta \phi, \phi))
\end{array},\left\{\begin{array} { l }
{ (\mathrm { f } ^ { \prime } : \mathrm { C } \longrightarrow \mathrm { D } ^ { \prime } , (\delta \phi ^ { \prime } , \phi)) } \\
{ (\mathrm { f } ^ { \prime } : \mathrm { C } \longrightarrow \mathrm { D } ^ { \prime } , (\delta \phi ^ { \prime } , \phi)) }
\end{array} \text { bounding } \left\{\begin{array}{l}
(\mathrm{C}, \phi) \\
(\mathrm{C}, \phi)
\end{array},\right.\right.\right. \\
& \text { (} n+2 \text {)-dimensional }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { Poincaré pair over } A\right. \\
& \left\{\begin{array}{l}
\left(e: D \cup_{C^{\prime}}^{D^{\prime}} \longrightarrow C^{\prime},\left(\phi^{\prime}, \delta \phi \cup_{\phi} \delta \phi^{\prime}\right)\right) \\
\left(e: D \cup_{C^{\prime}} D^{\prime} \longrightarrow C^{\prime},\left(\psi^{\prime}, \delta \psi u_{\psi^{\prime}} \delta \psi^{\prime}\right)\right)
\end{array}\right. \text { with boundary the union } \\
& \left\{\begin{array}{l}
\left(D u_{C} D^{\prime}, \delta \phi u_{\phi} \delta \phi^{\prime}\right) \\
\left(D u_{C^{\prime}} D^{\prime}, \delta \psi u_{\psi} \delta \psi^{\prime}\right)
\end{array}\right)
\end{aligned}
$$

and $(n+2)$-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triads over A $\left\{\begin{array}{l}(\Gamma, \phi) \\ (\Gamma, \Psi)\end{array}\right.$, under which

$$
\begin{align*}
& \Gamma: f, \\
& \left\{\begin{array}{l}
\phi=\left(\phi^{\prime}, \delta \phi^{\prime}, \delta \phi, \phi\right) \in \varrho^{n+2}(\Gamma, \varepsilon) \\
\psi=\left(\psi^{\prime}, \delta \psi^{\prime}, \delta \psi, \psi\right) \in Q_{n+2}(\Gamma, \varepsilon)
\end{array}\right. \\
& e=\left(g(-)^{r-1} h-g^{\prime}\right) \\
& :\left(D \cup_{C} D^{\prime}\right)_{r}=D_{r}{ }^{\oplus C_{r-1}}{ }^{\oplus D_{r}^{\prime}} \longrightarrow C_{r}^{\prime}
\end{align*}
$$

and

$$
\left\{\begin{array}{l}
\Phi=\left(\delta \nu, \nu, \delta \phi \oplus-\delta \phi^{\prime}, \phi \oplus-\phi^{\prime}\right) \in Q^{n+2}(\Gamma, \varepsilon) \\
\psi=\left(\delta x, x, \delta \psi \oplus-\delta \psi^{\prime}, \psi \oplus-\psi^{\prime}\right) \in Q_{n+2}(\Gamma, \varepsilon)
\end{array}\right.
$$

As it stands this cobordism relation is trivial (i.e. with a single equivalence class), since every $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ poincaré pair $\left\{\begin{array}{l}(f: C \longrightarrow D,(\delta \phi, \phi)) \\ (f: C \longrightarrow D,(\delta \psi, \psi))\end{array}\right.$ is cobordant to o by the $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triad $\left\{\begin{array}{l}(\Gamma,(0, \delta \phi, \delta \phi, \phi)) \\ (\Gamma,(0, \delta \psi, \delta \psi, \psi))\end{array}\right.$ with I defined by

However, in the applications we shall be considering the cobori of algebraic Poincaré pairs in which the boundary is restrictec in some way. The above null-cobordism will not in general be restricted in that sense, so that the restricted cobordism neer not be trivial. In verifying that such restricted cobordisms are in fact equivalence relations we shall make use of the following algebraic glueing operation, which is an evident generalization of the union of algebraic poincaré cobordisms of Sl.5. (The glueing is required for the verification of transitivity; reflexitivity and symmetry are clear).

Let
 be $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pairs over A. The union of adjoining $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ Poincaré cobordisms of pairs

$$
\left\{\begin{array}{l}
\left(\Gamma, \Phi=\left(\delta \nu, \psi, \delta \phi \oplus-\delta \phi^{\prime}, \phi \oplus-\phi^{\prime}\right)\right),\left(\Gamma^{\prime}, \phi^{\prime}=\left(\delta \nu^{\prime}, \nu^{\prime}, \delta \phi^{\prime} \oplus-\delta \phi^{\prime \prime}, \phi^{\prime} \oplus-\phi^{\prime \prime}\right)\right) \\
\left(\Gamma, \psi=\left(\delta \chi, \chi, \delta \psi \oplus-\delta \psi^{\prime}, \psi \oplus-\psi^{\prime}\right)\right),\left(\Gamma^{\prime}, \psi^{\prime}=\left(\delta \chi^{\prime}, \chi^{\prime}, \delta \psi^{\prime} \oplus-\delta \psi^{\prime \prime}, \psi^{\prime} \oplus-\psi^{\prime \prime}\right)\right)
\end{array}\right.
$$

with

$$
\Gamma^{\prime}:\left.\left(\tilde{g}^{\prime} g^{\prime \prime}\right)\right|_{\delta C^{\prime} \xrightarrow{C^{\prime} \oplus C^{\prime \prime} \xrightarrow[\left(k^{\prime} k^{\prime \prime}\right)]{f^{\prime} \oplus f^{\prime \prime}} D^{\prime} D^{\prime} \oplus D^{\prime \prime}}\left(\tilde{h}^{\prime} h^{\prime \prime}\right),} ^{\left(D^{\prime}\right)}
$$

is the cobordism

$$
\left\{\begin{array}{l}
\left(\Gamma^{\prime \prime}, \Phi^{\prime \prime}=\left(\delta v^{\prime \prime}, v^{\prime \prime}, \delta \phi \oplus-\delta \phi^{\prime \prime}, \phi \oplus-\phi^{\prime \prime}\right)\right)=\left(\Gamma \cup_{f^{\prime}} \Gamma^{\prime}, \phi \cup_{\left.\left(\delta \phi^{\prime}, \phi^{\prime}\right)^{\prime}\right)}^{\left(\Gamma^{\prime \prime}, \psi^{\prime \prime}=\left(\delta \chi^{\prime \prime}, \chi^{\prime \prime}, \delta \psi \oplus-\delta \psi^{\prime \prime}, \psi \oplus-\psi^{\prime \prime}\right)\right)=\left(\Gamma u_{f^{\prime}} \Gamma^{\prime}, \psi \cup\left(\delta \psi^{\prime}, \psi^{\prime}\right)^{\psi^{\prime}}\right)}\right.
\end{array}\right.
$$

with

defined by

$$
\begin{aligned}
& d_{\delta C \prime}=\left(\begin{array}{lll}
d_{\delta C} & (-)^{r-1} g^{\prime} & 0 \\
0 & d_{C}, & 0 \\
0 & (-)^{r-1} \tilde{g}^{\prime} & d_{\delta C},
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& d_{\delta D^{\prime \prime}}=\left(\begin{array}{lcl}
d_{\delta D} & (-)^{r-1} h^{\prime} & 0 \\
0 & d_{D^{\prime}} & 0 \\
0 & (-)^{r-1} \tilde{h}^{\prime} & d_{\delta D^{\prime}}
\end{array}\right) \\
& : \delta D_{r}^{\prime \prime}=\delta D_{r} \oplus D_{r-1}^{\prime} \oplus \delta D_{r}^{\prime} \longrightarrow \delta D_{r-1}^{\prime \prime}=\delta D_{r-1} \oplus D_{r-2}^{\prime} \oplus \delta D_{r-1}^{\prime} \\
& \left(\begin{array}{ll}
\tilde{g} & \tilde{g}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{ll}
g & 0 \\
0 & 0 \\
0 & g^{\prime \prime}
\end{array}\right): C_{r} \oplus C_{r}^{\prime \prime} \longrightarrow \delta C_{r}^{\prime \prime}=\delta C_{r} \oplus C_{r-1}^{\prime} \oplus \delta C_{r}^{\prime} \\
& \left(\tilde{h} \widetilde{h}^{\prime \prime}\right)=\left(\begin{array}{ll}
h & 0 \\
0 & 0 \\
0 & h \prime \prime
\end{array}\right): D_{r} \oplus D_{r}^{\prime \prime} \longrightarrow \delta D_{r}^{\prime \prime}=\delta D_{r} \oplus D_{r-1}^{\prime} \oplus \delta D_{r}^{\prime} \\
& \left(\tilde{k} \tilde{k}^{\prime \prime}\right)=\left(\begin{array}{ll}
k & 0 \\
0 & 0 \\
0 & k \prime \prime
\end{array}\right):{c_{r} \oplus C_{r}^{\prime \prime}}_{\longrightarrow} D_{D_{r+1}^{\prime \prime}}=\delta D_{\mathbf{r}+1} \oplus D_{\mathbf{r}}^{\prime} \oplus \delta D_{r}^{\prime} \\
& \left(\begin{array}{ccc}
v_{s} & 0 & 0 \\
\nu_{s}^{\prime \prime}=(-)^{n-r_{\phi_{S}^{\prime}} g^{\prime *}} & (-)^{n-r+s+1} T_{\varepsilon^{\prime}} \phi_{s-1}^{\prime} & 0 \\
0 & (-)^{s} q^{\prime} \phi_{s}^{\prime} & v_{s}^{\prime}
\end{array}\right) \\
& : \delta C^{n-r+s+1}=\delta C^{n-r+s+1} \oplus C^{n-r+s} \oplus \delta C, n-r+s+1 \\
& \longrightarrow C_{r}^{\prime}=\delta C_{r} \oplus C_{r-1}^{\prime} \oplus \delta C_{r}^{\prime} \\
& \left\langle s \geqslant 0, \Phi_{-1}^{\prime}=0\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& x_{s}^{\prime \prime}=\left(\begin{array}{ccc}
x_{s} & 0 & 0 \\
(-)^{n-r+1_{\psi_{S}^{\prime}} g^{\prime *}} & (-)^{n-r-s_{T}} \psi_{s+1} & 0 \\
0 & (-)^{s} g^{\prime} \psi_{s}^{\prime} & x_{s}^{\prime}
\end{array}\right) \\
& : \delta C^{n-r-s+1}=\delta C^{n-r-s+1} \oplus C^{n-r-s} \oplus \delta C^{n-r-s+1} \\
& \longrightarrow \delta \mathrm{C}_{\mathbf{r}}^{\prime \prime}=\delta \mathrm{C}_{\mathbf{r}} \oplus \mathrm{C}_{\mathrm{r}-1}^{\prime} \oplus \delta \mathrm{C}_{\mathbf{r}}^{\prime} \\
& \left\{\begin{array}{l}
\delta v_{s}^{\prime \prime} \\
\delta x_{s}^{\prime \prime} \\
\end{array}\right. \\
& \delta v_{s}^{\prime \prime}=\left(\begin{array}{ccc}
\delta v_{s} & 0 & 0 \\
(-)^{n-r+1} v_{s}^{\prime} h^{\prime *} & (-)^{n-r+s+2} T_{\varepsilon} v_{s-1}^{\prime} & 0 \\
0 & (-1)_{h}^{\sim} v_{s}^{\prime} & \delta v_{s}^{\prime}
\end{array}\right) \\
& : \delta D^{\prime \prime} n-r+s+2=\delta D^{n-r+s+2_{\oplus D^{\prime}}, n-r+s+1}{ }_{\oplus \delta D^{\prime}}, n-r+s+1 \\
& \longrightarrow \delta D_{r}^{\prime \prime}=\delta D_{r} \oplus D_{r-1}^{\prime} \oplus \delta D_{r}^{\prime} \\
& \delta x_{S}^{\prime \prime}=\left(\begin{array}{ccc}
\delta x_{S} & 0 & 0 \\
(-)^{n-r+1} \chi_{S}^{\prime} h^{\prime *} & (-)^{n-r+s+1} T_{E} x_{S+1}^{\prime} & 0 \\
0 & (-)^{s} h^{\prime} x_{S}^{\prime} & \delta x_{S}^{\prime}
\end{array}\right) \\
& : \delta D^{n-r-s+2}=\delta D^{n-r-s+2} \oplus D^{\prime n-r-s+1} \oplus \delta D^{, n-r-s+2} \\
& \longrightarrow \delta D_{r}^{\prime \prime}=\delta D_{r} \oplus D_{r-1}^{+}{ }^{\oplus \delta D_{r}^{\prime}} \\
& \delta f^{\prime \prime}=\left(\begin{array}{ccc}
\delta f & (-)^{r-\mathbf{l}_{k}}, & 0 \\
0 & f^{\prime} & 0 \\
0 & (-)^{r-1_{k}} & \delta f^{\prime}
\end{array}\right) \\
& : \delta C_{r}^{\prime \prime}=\delta C_{r} \oplus C_{r-1}^{\prime}{ }^{\oplus} C_{\mathbf{r}}^{\prime} \longrightarrow \delta D_{r}^{\prime \prime}=\delta D_{r} \oplus D_{r-1}^{\prime} \oplus \delta D_{r}^{\prime} \\
& (s \geqslant 0
\end{aligned}
$$

2.2 Change of rings

Let A, B be rings with involution.
A morphism

$$
f: A \longrightarrow B
$$

is a function such that

$$
\begin{aligned}
& f\left(a+a^{\prime}\right)=f(a)+f\left(a^{\prime}\right), f\left(a a^{\prime}\right)=f(a) f\left(a^{\prime}\right), \\
& f(a)=f(a), f(1)=1 \in B
\end{aligned}
$$

Regard B as a (B, A)-bimodule by

$$
B \times B \times A \longrightarrow B ;(b, x, a) \longmapsto b, x, f(a) \text {. }
$$

An A-module M induces a B-module $B a_{A} M$, with $B A_{A} B=B$. If N is another A-module there is defined a morphism of abelian groups

$$
\operatorname{Hom}_{A}(M, N) \longrightarrow \operatorname{Hom}_{B}\left(\mathrm{Ba}_{A} M, \mathrm{Ba} A_{A} N\right) ; g \longmapsto(\log : b x \longmapsto b=g(x))
$$

If M is a f.g. projective A-module then $B A_{A} M$ is a f.g. projecti B-module, and there is defined a natural B-module isomorphism

$\mathrm{bag} \longmapsto(\mathrm{csy} \longmapsto \mathrm{C} \cdot \mathrm{f}(\mathrm{g}(\mathrm{y})) . \overline{\mathrm{b}}) \quad$.
allowing us to write

$$
B a_{A} M^{*}=B a_{A}\left(M^{*}\right)=\left(B a_{A} M\right)^{*} .
$$

If C is an (n-dimensional) A-module chain complex then $\mathrm{Bm}_{A} \mathrm{C}$ is an (n-dimensional) B-module chain complex, and the \mathbb{Z}-module chain map

induces a change of rings \mathbb{Z}-module morphisms in $\left\{\begin{array}{l}\text { homology } \\ \text { cohomology }\end{array}\right.$

$$
\left\{\begin{array}{l}
f: H_{\star}(\mathrm{C}) \longrightarrow H_{\star}\left(\mathrm{Ba}_{A} \mathrm{C}\right) \\
\mathrm{f}: \mathrm{H}^{*}(\mathrm{C}) \longrightarrow \mathrm{H}^{*}\left(\mathrm{Ba}_{A} \mathrm{C}\right)
\end{array}\right.
$$

Let $\varepsilon_{A} \in A, \varepsilon_{B} \in B$ be central units such that

$$
\bar{\varepsilon}_{A}=\varepsilon_{A}^{-1} \in A, \bar{\varepsilon}_{B}=\varepsilon_{B}^{-1} \in B, f\left(\varepsilon_{A}\right)=\varepsilon_{B} \in B .
$$

Given a finite-dimensional A-module chain complex C let $T \in \mathbb{Z}_{2}$ act on $\operatorname{Hom}_{A}\left(C^{*}, C\right)$ by the ϵ_{A}-duality involution $T_{\varepsilon_{A}}$ and on $\operatorname{Hom}_{B}\left(\operatorname{Ra}_{A} C *, B m_{A} C\right)$ by the ε_{B}-duality involution $T \varepsilon_{B}$.
The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
\begin{aligned}
& f: \operatorname{Hom}_{A}\left(C^{*}, C\right) \longrightarrow \operatorname{Hom}_{B}\left(\mathrm{Ba}_{A} C^{*}, \mathrm{Ba}_{A} \mathrm{C}\right) \text {; }
\end{aligned}
$$

$$
\begin{aligned}
& \left(b, c \in B, x, y \in C^{*}, B \omega_{A} C=\left(B \omega_{A} C^{*}\right) *\right)
\end{aligned}
$$

induces a natural transformation of the long exact sequence:: of Q-groups given by Proposition 1.1.2

denoting both ε_{A} and ε_{B} by ε. It follows that the various algebraic W u classes of $\$ 1.4$ are invariant under the change of rings. For example, the e-symmetric wu classes $v^{*}(\phi)$ of an element $\phi \in Q^{n}(C, E)$ are such that there is defined a commutative diagram

$$
\begin{aligned}
& \text { An } n \text {-dimensional }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { (Poincaré) complex over } A\right. \\
& \left\{\begin{array} { l }
{ (C , \phi) } \\
{ (C , \psi) }
\end{array} \text { induces an n-dimensional } \left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right.\right. \text { (Poincaré) }
\end{aligned}
$$

complex over B

$$
\left\{\begin{array}{l}
B \Xi_{A}(C, \phi)=\left(B a_{A} C, l \boxminus \phi\right) \\
B \otimes_{A}(C, \psi)=\left(B a_{A} C, l \otimes \psi\right)
\end{array}\right.
$$

and similarly for pairs.
Proposition 2.2.1 A morphism of rings with involution

$$
\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{~B}
$$

induces morphisms in the $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{l}
f: L^{n}(A, \varepsilon) \longrightarrow L^{n}(B, \varepsilon):(C, \phi) \longmapsto L_{n}(B, \varepsilon) ;(C, \psi) \longmapsto B \otimes_{A}(C, \phi) \tag{}\\
f: L_{n}(A, \varepsilon) \longrightarrow B \otimes_{A}(C, \psi)
\end{array} \quad(n \in \mathbb{Z}) .\right.
$$

Define the $(n+1)$-dimensional relative $\left\{\begin{array}{l}\frac{\varepsilon \text {-symmetric }}{\varepsilon-q u a d r a t i c ~}\end{array}\right.$ L-group $\left\{\begin{array}{l}L^{n+1}(f, \varepsilon) \\ L_{n+1}(f, \varepsilon)\end{array}(\eta \geqslant 0)\right.$ of a morphism of rings with involution
$f: A \longrightarrow B$ to be the abelian group of equivalence classes of pairs
(n -dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ poincaré complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q^{n} \text { (C, }\right. \\ 1 C, \psi \in Q_{n}(C,\end{array}\right.$ ($n+1$)-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over B
 under the relative cobordism equivalence relation
$\left\{\begin{array}{l}\left((\mathrm{C}, \phi),\left(\mathrm{g}: \mathrm{B}{\underset{A}{ }}^{\mathrm{C}} \longrightarrow \mathrm{D},(\delta \phi, \phi)\right) \sim\left(\left(\mathrm{C}^{\prime}, \phi^{\prime}\right),\left(\mathrm{g}^{\prime}: \mathrm{B} \mathrm{A}_{\mathrm{A}} \mathrm{C}^{\prime} \longrightarrow \mathrm{D}^{\prime},\left(\delta \phi^{\prime}, \phi^{\prime}\right)\right.\right.\right. \\ \left((\mathrm{C}, \psi),(\mathrm{g}: \mathrm{B}{\underset{A}{ }} \mathrm{C} \longrightarrow \mathrm{D},(\delta \psi, \psi)) \sim\left(\left(\mathrm{C}^{\prime}, \psi^{\prime}\right),\left(\mathrm{g}^{\prime}: \mathrm{B} \mathrm{A}_{\mathrm{A}} \mathrm{C}^{\prime} \longrightarrow \mathrm{D}^{\prime},\left(\delta \psi^{\prime}, \psi^{\prime}\right)\right.\right.\right.\end{array}\right.$
if there exists a pair
($(\mathrm{n}+1)$-dimensional $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { E-quadratic }\end{array}\right.$ Poincaré pair over A

$$
\left\{\begin{array}{l}
\left(\left(h h^{\prime}\right): C \oplus C \longrightarrow E,\left(\nu, \phi \oplus-\phi^{\prime}\right) \in Q^{n+1}\left(\left(\begin{array}{l}
\left.\left.\left.h^{\prime}\right), \varepsilon\right)\right) \\
\left(\left(h h^{\prime}\right): C \oplus C^{\prime} \longrightarrow\right.
\end{array}, \quad,\left(x, \psi \oplus-\psi^{\prime}\right) \in Q_{n+1}\left(\left(h h^{\prime}\right), \varepsilon\right)\right)^{\prime}\right.\right.
\end{array}\right.
$$

$(n+2)$-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triad over B
with

The verification that relative cobordism is an equivalence relation proceeds as in the absolute case in SI.3, with transitivity requiring the union operation defined in $\$ 2.1$ above. Addition in the relative L-qroups is by the direct sum and inverses are given by changing signs, as in the absolute case.

Proposition 2.2.2 The relative $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ E \text {-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L *(f, E) \\ L_{\star}(f, \varepsilon)\end{array}\right.$ fit into a change of rings exact sequence $\left\{\begin{array}{l}\ldots \rightarrow L^{n+1}(f, \varepsilon) \longrightarrow L^{n}(A, \varepsilon) \xrightarrow{f} L^{n}(B, \varepsilon) \longrightarrow L^{n}(f, \varepsilon) \rightarrow \ldots L_{n+1}(f, \varepsilon) \rightarrow L_{n}(A, \varepsilon) \xrightarrow{f} L_{n}(B, \varepsilon) \rightarrow L_{n}(f, \varepsilon) \rightarrow \ldots L_{0}(B, \varepsilon \\ \ldots \rightarrow L_{n}\end{array}\right.$ involving the forgetful maps

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left.L^{n+1}(B, \varepsilon) \longrightarrow L^{n+1}(f, \varepsilon) ;(D, \delta \phi) \longmapsto(0,10: 0 \longrightarrow D,(\delta \phi, 0))\right) \\
L_{n+1}(B, \varepsilon) \longrightarrow L_{n+1}(f, \varepsilon) ;(D, \delta \psi) \longmapsto(0,(0: 0 \longrightarrow D,(\delta \psi, 0)))
\end{array}\right.
\end{aligned}
$$

Proof: Exactness is obvious at $\left\{\begin{array}{l}L^{n}(A, \varepsilon) \\ L_{n}(A, \varepsilon)\end{array}\right.$ (n $\left.\geqslant 0\right)$ and $\left\{\begin{array}{l}L^{n}(B, \varepsilon) \\ L_{n}(B, \varepsilon)\end{array}\right.$ (n As for $\left\{\begin{array}{l}L^{n+1}(f, E) \\ L_{n+1}(f, E)\end{array} \quad(n \geqslant 0)\right.$ consider

$$
\left\{\begin{array}{l}
\left((C, \phi) \cdot\left(g: B \otimes_{A} C \longrightarrow D,(\delta \phi, 1 \otimes \phi)\right)\right) \in \operatorname{ker}\left(L^{n+1}(f, \varepsilon) \longrightarrow L^{n}(A, \varepsilon)\right. \\
\left((C, \psi),\left(g: B \otimes_{A} C \longrightarrow L_{n}(A, \varepsilon)\right.\right.
\end{array}\right.
$$

so that there exists a null-cobordism $\left\{\begin{array}{l}(h: C \longrightarrow E,(v, \phi)) \\ (h: C \longrightarrow E,(x, \psi))\end{array}\right.$ over
of $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$. Write the union $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
Poincaré complex over B as
and define an $(n+2)$-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ poincaré triad
over B

$$
\left\{\begin{array}{l}
\left(\Gamma,\left(0,1 \otimes v, \delta \phi \oplus-\delta \phi^{\prime}, 1 \otimes \phi\right)\right) \\
\left(\Gamma,\left(0,1 \otimes x, \delta \psi \oplus-\delta \psi^{\prime}, 1 \otimes \psi\right)\right)
\end{array}\right.
$$

by

where

$$
\begin{aligned}
& i=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right): D_{r} \longrightarrow D_{r}^{\prime}=D_{r} \oplus B \otimes_{A} C_{r-1} \oplus B \otimes_{A} E_{r} \\
& j=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right): B \otimes_{A} E_{r} \longrightarrow D_{r}^{\prime}=D_{r} \oplus B \otimes_{A} C_{r-1} \oplus B \otimes_{A} E_{r} \\
& k=\left(\begin{array}{l}
0 \\
(-)^{r} \\
0
\end{array}\right): B \otimes_{A} C_{r} \longrightarrow D_{r+1}^{\prime}=D_{r+1} \oplus B \otimes_{A} C_{r} \oplus B \otimes_{A} E_{r+1}
\end{aligned}
$$

It follows that $\left\{\begin{array}{l}\left((C, \phi),\left(g: B \otimes_{A} C \longrightarrow D,(\delta \phi, l \otimes \phi)\right)\right) \in L^{n+1}(f, \varepsilon) \\ \left((C, \psi),\left(g: B \otimes_{A} C \longrightarrow D,(\delta \psi, l \otimes \psi)\right)\right) \in L_{n+1}(f, \varepsilon)\end{array}\right.$ is the image of $\left\{\begin{array}{l}\left(D^{\prime}, \delta \phi^{\prime}\right) \in L^{n+1}(B, \varepsilon) \\ \left(D^{\prime}, \delta \psi^{\prime}\right) \in L_{n+1}(B, \varepsilon)\end{array}\right.$ under the natural map.

Define the $(n+1)$-dimensional relative even e-symmetric L-groups $L\left\langle v_{O}\right\rangle^{n+1}(f, \varepsilon)(n 20)$ of a morphism of rings with involution $f: A \longrightarrow B$ to be the relative cobordism groups of pairs
(n-dimensional even ε-symmetric Poincaré complex over $A(C, \phi)$, ($n+1$)-dimensional even ε-symmetric Poincaré pair over B

$$
\left.\left(g: B \otimes_{A} C \longrightarrow D,(\delta \phi, 1 \otimes \phi)\right)\right)
$$

where the $(n+2)$-dimensional e-symmetric Poincaré triads appearing in the relative cobordisms are even in the sense that all the e-symmetric Poincare complexes and pairs associated to it by Proposition 2.1 .1 are even. Proposition 2.2.3 i) The relative even ε-symmetric L-groups $L\left\langle v_{0}\right\rangle *(f, \varepsilon\rangle$ fit into a change of rings exact sequence

$$
\begin{aligned}
\cdots \longrightarrow L\left\langle v_{0}\right\rangle^{n+1}(f, \varepsilon) \longrightarrow L\left\langle v_{O}\right\rangle^{n}(A, \varepsilon) \xrightarrow{f} L\left\langle v_{0}\right\rangle^{n}(B, \varepsilon) \\
\longrightarrow L\left\langle v_{0}\right\rangle^{n}(f, \varepsilon) \longrightarrow L\left\langle v_{0}\right\rangle^{0}(B, E) \quad .
\end{aligned}
$$

ii) The skew-suspension maps
$\bar{S}: L_{n}(f, \varepsilon) \longrightarrow L_{n+2}(f,-\varepsilon) ;$
$\left((C, \psi),\left(\mathrm{q}: \mathrm{B} \otimes_{A} \mathrm{C} \longrightarrow \mathrm{D},(\delta \psi, 1 \otimes \psi)\right)\right)$
$\longrightarrow\left((S C, \bar{S} \psi),\left(\mathrm{g}: \mathrm{B} \mathrm{A}_{\mathrm{A}} \mathrm{SC} \longrightarrow \mathrm{SD}, \overrightarrow{\mathrm{S}}(\delta \psi, 1 \otimes \psi)\right)\right.$
are isomorphisms.
Proof: i) By analogy with Proposition 2.2.2.
ii) This follows from Proposition $\left\{\begin{array}{l}1.4 .2 \\ 1.2 .2 \text { i) }\end{array}\right.$ by applying the

5-lemma to the skew-suspension morphism of the change of rings exact sequences.

Define the lower relative $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c ~}{\varepsilon-q u a d r a t i c ~}\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{n}(f, \varepsilon) \\ L_{n}(f, \varepsilon)\end{array}(n \leqslant O)\right.$ of a morphism of rings with involution $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ by

$$
\begin{aligned}
& \quad L_{n}(f, \varepsilon)=L_{n+2 i}\left(f,(-)^{i} \varepsilon\right) \quad(n \leqslant 0, n+2 i \geqslant 1) .
\end{aligned}
$$

Proposition 2.2.4 The relative $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$-groups $\left\{\begin{array}{l}L^{n}(f, E) \\ L_{n}(f, \epsilon)\end{array}\right.$ ($n \in \mathbb{Z}$) fit into a long exact sequence

$$
\left\{\begin{array}{l}
\cdots \longrightarrow L^{n+1}(f, \varepsilon) \longrightarrow L^{n}(A, \varepsilon) \xrightarrow{f} L^{n}(B, \varepsilon) \longrightarrow L^{n}(f, \varepsilon) \longrightarrow L_{n+1}(f, \varepsilon) \longrightarrow L_{n}(A, \varepsilon) \longrightarrow L_{n}(B, \varepsilon) \longrightarrow L_{n}(f, \varepsilon) \longrightarrow \\
\cdots \longrightarrow
\end{array}\right.
$$

In the range $-\infty \leqslant n \leqslant 1$ the change of rings exact sequenc of Proposition 2.2 .4 can be expressed entirely in terms of th Witt groups of forms and formations defined in the absolute case in 51.6

$$
\begin{aligned}
& \ldots \longrightarrow M^{\varepsilon}(A) \xrightarrow{f} M^{\varepsilon}(B) \longrightarrow M^{\varepsilon}(f) \longrightarrow L^{\varepsilon}(A) \xrightarrow{f} L^{\varepsilon}(B) \longrightarrow L^{\varepsilon}(f) \\
& \longrightarrow M\left\langle v_{0}\right\rangle^{-\varepsilon}(A) \longrightarrow M\left\langle v_{0}\right\rangle^{-\varepsilon}(B) \longrightarrow M\left\langle v_{0}\right\rangle^{-\varepsilon}(f) \\
& \longrightarrow L\left\langle v_{0}\right\rangle^{-\varepsilon}(A) \longrightarrow L\left\langle v_{0}\right\rangle^{-\varepsilon}(B) \longrightarrow L\left\langle v_{0}\right\rangle^{-\varepsilon}(f) \\
& \longrightarrow M_{\varepsilon}(A) \xrightarrow{f} M_{\varepsilon}(B) \longrightarrow M_{E}(f) \longrightarrow L_{\varepsilon}(A) \xrightarrow{f} L_{E}(B) \longrightarrow L_{\varepsilon}(f) \\
& \longrightarrow M_{-\varepsilon}(A) \xrightarrow{f} M_{-\varepsilon}(B) \longrightarrow M_{-\varepsilon}(f) \longrightarrow L_{-\varepsilon}(A) \longrightarrow .
\end{aligned}
$$

The relative Witt groups of forms and formations are defined as follows.

The full force of the equivalence relation of
Proposition 1.3.3 i) (between the homotopy equivalence classe: of $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pairs and those of connected
$\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes) allows the higher relative $\left\{\begin{array}{l}\varepsilon-s y m m e t i \\ \varepsilon \text {-quadrat }\end{array}\right.$
L-groups $\left\{\begin{array}{l}L^{n+1}(f, \varepsilon) \\ L_{n+1}(f, \varepsilon)\end{array}(n \geqslant 0)\right.$ to be expressed as the cobordism
groups of triples
(n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ Poincaré complex over A $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)^{\prime}\end{array}\right.$
connected $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $B\left\{\begin{array}{l}(D, v) \\ (D, X)\end{array}\right.$,
homotopy equivalence $\left\{\begin{array}{l}g: B \otimes_{A}(C, \phi) \longrightarrow \partial(D, \nu) \\ q: B \otimes_{A}(C, \phi) \longrightarrow \partial(D, x)\end{array}\right.$
A cobordism between two such triples $\left\{\begin{array}{l}((C, \phi),(D, v), g) \\ ((C, \psi),(D, x), g)\end{array}\right.$, $\left\{\begin{array}{l}\left(\left(C^{\prime}, \phi^{\prime}\right),\left(D^{\prime}, v^{\prime}\right), g^{\prime}\right) \\ \left(\left(C^{\prime}, \psi^{\prime}\right),\left(D^{\prime}, x^{\prime}\right), g^{\prime}\right)\end{array}\right.$ is a quadruple
(connected $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}(E, \delta \phi) \\ (E, \delta \psi)\end{array}\right.$,
homotopy equivalence $\left\{\begin{array}{l}h: \partial(E, \delta \phi) \longrightarrow(C,-\phi) \oplus\left(C^{\prime}, \phi^{\prime}\right) \\ h: \partial(E, \delta \psi) \longrightarrow(C,-\psi) \oplus\left(C^{\prime}, \psi^{\prime}\right),\end{array}\right.$,
connected $(n+2)-$ dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $B\left\{\begin{array}{l}(F, \delta \nu) \\ (F, \delta x)\end{array}\right.$, homotopy equivalence

$$
\left\{\begin{array}{l}
B \otimes_{A}(E, \delta \phi) \cup\left(g \oplus g^{\prime}\right)(1 \otimes h)\left((D, \nu) \oplus\left(D^{\prime},-v^{\prime}\right)\right) \longrightarrow \partial(F, \delta v) \\
B \otimes_{A}(E, \delta \psi) \cup\left(g \oplus g^{\prime}\right)(1 \otimes h)
\end{array}\left((D, x) \oplus\left(D^{\prime},-\chi^{\prime}\right)\right) \longrightarrow \partial(F, \delta x) \quad . \quad .\right.
$$

In the low-dimensional cases this formulation translates directly into the language of forms and formations:

Proposition 2.2.5 The 0 - (resp. 1-) dimensional relative

is naturally isomorphic to the relative witt group

(non-singular $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formation
(resp. $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even E-symmetric form) over } A x, \\ \varepsilon \text {-quadratic }\end{array}\right.$
$\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even e-symmetric form (resp. formation) over } B y, \\ \varepsilon \text {-quadratic }\end{array}\right.$

(resp. isomorphism of $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric forms) over } B \\ \text { e-quadratic }\end{array}\right.$
$\left.g: B \omega_{A} x \longrightarrow 3 y\right)$,
where two such t'riples (x, y, g), ($x^{\prime}, y^{\prime}, g^{\prime}$) are cobordant if there exists a quadruple
$\left(\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even } \varepsilon \text {-symmetric form (resp. formation) over } A z, \\ \varepsilon \text {-guadratic }\end{array}\right.\right.$ stable isomorphism of formations (resp. isomorphism of forms) over A

$$
h: \partial z \longrightarrow x \oplus-x^{\prime}
$$

```
\(\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even } \varepsilon \text {-symmetric formation (resp. } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.\)
\(\left\{\begin{array}{l}\text { connected 2-dimensional } \varepsilon \text {-symmetric } \\ (-\varepsilon) \text {-symmetric form } \\ \text { even }(-\varepsilon) \text {-symmetric form }\end{array}\right.\), over Bw,
```

isomorphism of forms (resp. stable isomorphism of formations)
over B

$$
\left.k: o w \longrightarrow\left(B \otimes_{A} z\right) \cup\left(g \oplus g^{\prime}\right)(1 \otimes h)\left(y \oplus-y^{\prime}\right)\right) .
$$

(In the cobordism relation for $L^{1}(f, \varepsilon)=L^{\varepsilon}(f)$ we are using Proposition 1.6.4 to identify the boundary of the connected 2-dimensional ε-symmetric complex 2 , a 1 -dimensional ε-symmetric Poincaré complex ∂z, with the corresponding non-singular ε-symmetric formation).

In S§3,4 we shall need the following extension to the relative L-groups of the products of $\$ 1.9$. Proposition 2.2.6 Let R be a ring with involution, and let

$$
\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{~B}
$$

be a morphism of rings with involution which are R -modules, with f also an R-module morphism (f(ra) $=r f(a) \in B$ for all $r \in R, a \in A)$. There are then defined products $\left\{\begin{array}{l}\Delta: L^{m}(R, \rho) \mathscr{C}_{\mathbb{Z}^{2}}{ }^{n}(f: A \longrightarrow B, \varepsilon) \longrightarrow L^{m+n}(f: A \longrightarrow B, \rho \in) \\ \Delta: L^{m}(R, \rho) \mathbb{Z}_{\mathbb{Z}^{2}} L_{n}(f: A \longrightarrow B, \varepsilon) \longrightarrow L_{m+n}(f: A \longrightarrow B, \rho \varepsilon)\end{array}(m, n \in \mathbb{Z})\right.$ Proof: Immediate from Proposition 1.9.2 and the definition of the relative L-groups.

In particular, the symmetric witt group $L^{\circ}(R)$ of a commutative ring R (with any involution) is a ring with $1=(R, 1) \in L^{o}(R)$, so that the relative $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L^{*}(f, \varepsilon) \\ L_{\star}(f, \varepsilon)\end{array}\right.$ of an R-module morphism of rings with involution $f: A \longrightarrow B$ are all $L^{\circ}(R)$-modules, and the change of rings exact sequence of Proposition 2.2.4

$$
\left\{\begin{array}{l}
\cdots \longrightarrow L^{n}(A, E) \xrightarrow{f} L^{n}(B, E) \longrightarrow L^{n}(f, E) \longrightarrow L_{n}(A, \varepsilon) \longrightarrow L^{n-1}(A, \varepsilon) \longrightarrow L_{n}(B, \varepsilon) \longrightarrow \\
\cdots \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow
\end{array}\right.
$$

is an exact sequence of $L^{0}(R)$-modules.

2.3 Change of categories

The unified L-groups of $\$ 1.8$ were constructed using the \mathcal{L}-categories and the j-functors. We shall now define relative L-groups for a ∂-preserving functor of the \mathcal{L}-categories, which include the change of rings relative L-groups of $\$ 2.2$ as a special case.

Let A, B be rings with involution, and let $\epsilon_{A} \in A, \varepsilon_{B} \in B$ be central units such that

$$
\bar{\varepsilon}_{A}=\varepsilon_{A}^{-1} \in A, \bar{\epsilon}_{B}=\varepsilon_{B}^{-1} \in B
$$

As in $\$ 2.2$ both ε_{A} and E_{B} will be denoted by ε.

$$
A n\left\{\begin{array}{l}
\frac{\varepsilon-\text { symmetric }}{\text { E-guadratic }} \\
\text { E-hyperguadratic }
\end{array} \quad\right. \text { chain functor }
$$

$$
\left\{\begin{array}{l}
F: \mathcal{L}^{\star}(A, \varepsilon) \longrightarrow \mathcal{L}^{*}(B, \varepsilon) \\
F: \mathcal{L}_{\star}(A, \varepsilon) \longrightarrow \mathcal{L}_{\star}(B, \varepsilon) \\
F: \mathcal{L}_{\star}(A, \varepsilon) \longrightarrow \mathcal{L}^{*}(B, \varepsilon)
\end{array}\right.
$$

is a collection of additive functors $\left\{\begin{array}{l}\left\{F: \mathcal{L}^{n}(A, \varepsilon) \longrightarrow \mathcal{L}^{n}(B, \varepsilon) \mid n \in \mathbb{Z}\right\} \\ \left\{F: \mathcal{L}_{n}(A, \varepsilon) \longrightarrow \mathcal{L}_{n}(B, \varepsilon) \mid n \in \mathbb{Z}\right\} \\ \left\{F: \mathcal{L}_{n}(A, \varepsilon) \longrightarrow \mathcal{L}^{n}(B, \varepsilon) \mid n \in \mathbb{Z}\right\}\end{array}\right.$
such that $\partial F=F \partial,-F=F-$ (up to natural equivalence). There are induced abelian group morphisms in the cobordism groups

$$
\left\{\begin{array}{l}F: L^{n}(A, \varepsilon) \longrightarrow L^{n}(B, \varepsilon) \\ F: L_{n}(A, \varepsilon) \longrightarrow \\ \left.F: L_{n}(B, \varepsilon) \quad(n, \varepsilon) \longrightarrow \mathbb{Z}\right) \\ \\ \text { Define the relative L-groups of } F\end{array} \quad \begin{array}{l}L^{n}(B, \varepsilon) \\ L^{n}(F, \varepsilon) \\ L_{n}(F, \varepsilon) \quad(n \in \mathbb{Z}) \text { to be the abelian } \\ \hat{L}^{n}(F, \varepsilon)\end{array}\right.
$$

groups of cobordism classes of triples (x, y, f) consisting of a
closed object x of $\left\{\begin{array}{l}\alpha^{n-1}(A, E) \\ \alpha_{n-1}(A, \varepsilon), \\ \alpha^{n-1}(A, \varepsilon)\end{array}\right.$ an object y of $\left\{\begin{array}{l}\alpha^{n}(B, \varepsilon) \\ \alpha_{n}(B, \varepsilon), \\ \alpha^{n}(B, E)\end{array}\right.$ and a
homotopy equivalence $f: F(x) \longrightarrow{ }^{7} y$. Two such pairs (x, y, f), ($x^{\prime}, y^{\prime}, f^{\prime}$) are cobordant if there exists a quadruple (z,g,w,h)
consisting of an object z of $\left\{\begin{array}{l}\mathcal{L}^{n}(A, \varepsilon) \\ \mathcal{L}_{n}(A, \varepsilon), \text { a homotopy equivalence } \\ \mathcal{L}^{n}(A, \varepsilon)\end{array}\right.$
$g: \partial z \longrightarrow x \oplus-x^{\prime}$, an object w of $\left\{\begin{array}{l}\mathcal{L}^{n+1}(B, \varepsilon) \\ \mathcal{L}_{n+1}(B, \varepsilon), \\ \mathcal{L}^{n+1}(B, \varepsilon)\end{array}\right.$ and a homotopy

F(g)
$\left(f \oplus-f^{\prime}\right) F(g): \partial F(z)=F \partial(z) \xrightarrow{P} F\left(x \oplus-x^{\prime}\right)=F(x) \oplus F\left(x^{\prime}\right)$

$$
\xrightarrow{f \oplus-f^{\prime}} \partial y \oplus-\partial y^{\prime}=\partial\left(y \oplus-y^{\prime}\right) \text {. }
$$

Addition and inverses are given by

$$
(x, y, f)+\left(x^{\prime}, y^{\prime}, f f^{\prime}\right)=\left(x \oplus x^{\prime}, y \oplus y^{\prime}, f \oplus f^{\prime}\right),-(x, y, f)=(-x,-y,-f)
$$

Proposition 2.3.1 The relative L-groups $\left\{\begin{array}{l}L_{*}^{*}(F, \varepsilon) \\ L_{*}(F, \varepsilon) \\ \hat{L}^{*}(F, \varepsilon)\end{array}\right.$
$\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { E-quadratic } \\ \text { E-hyperquadratic }\end{array} \quad\right.$ chain functor $\left\{\begin{array}{l}F: \mathcal{L} *(A, \varepsilon) \longrightarrow \mathcal{L}^{*}(B, \varepsilon) \\ F: \mathcal{L} *(A, \varepsilon) \longrightarrow \mathcal{\longrightarrow}(B, \varepsilon) \text { fit } \\ F: \mathcal{L}_{\star}(A, \varepsilon) \longrightarrow \mathcal{L}(B, \varepsilon)\end{array}\right.$
into the change of categories exact sequence
$\left\{\begin{array}{l}\cdots \longrightarrow I^{n}(A, \varepsilon) \longrightarrow L^{F} L^{n}(B, \varepsilon) \longrightarrow L^{n}(F, \varepsilon) \longrightarrow L^{n-1}(A, \varepsilon) \longrightarrow L^{n} \longrightarrow L_{n}(B, \varepsilon) \longrightarrow L_{n}(F, \varepsilon) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow L_{n}(A, \varepsilon) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow L^{n}(B, \varepsilon) \longrightarrow L^{n}(F, \varepsilon) \longrightarrow \\ \cdots \longrightarrow\end{array}\right.$
$(n \in \mathbb{Z})$
Proof: By analogy with Proposition 2.2 .4 (which is a special c

The following examples of relative L-groups arise in topology:
i) A morphism of rings with involution $f: A \longrightarrow B$
induces an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ chain functor

$$
\left\{\begin{array}{l}
f: \mathcal{L}^{*}(A, \varepsilon) \longrightarrow \mathcal{L}^{*}(B, \varepsilon) ; x \longmapsto \mathcal{B A}_{A} x \\
f: \mathcal{L}_{\star}(A, E) \longrightarrow \mathcal{L}_{A}(B, \varepsilon) ; x \longmapsto
\end{array}\right.
$$

The relative L-groups $\left\{\begin{array}{l}L^{*}(f, E) \\ L_{*}(f, \varepsilon)\end{array}\right.$ for this change of categories
are just the relative L-groups for the change of rings defined in $\$ 2.2$ above. The methods of II. associate to an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré pair }(X, \partial x) \\ \text { normal map of pairs }(g, c):(M, \partial M) \longrightarrow(x, \partial x)\end{array}\right.$ the relative $\left\{\begin{array}{l}\text { symmetric } \\ \text { guadratic }\end{array}\right.$ signature

$$
\left\{\begin{array}{l}
\sigma^{*}(x, j x) \in L^{n}\left(\mathbb{Z}\left[\pi_{1}(\partial x)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(x)\right]\right) \\
\left.\sigma_{\star}(g, c) \in L_{n}\left(\mathbb{Z} \mid \pi_{1}(\partial x)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(x)\right]\right) .
\end{array}\right.
$$

(The terminology is contracted in the usual fashion for $\epsilon=1$)

The relative quadratic signature is the obstruction for frame surgery to a homotopy equivalence of pairs. The relative quad L-groups $L_{*}(f)$ were first defined by wall [4] using geometric methods; the $\left\{\begin{array}{l}\text { odd- dimensional relative quadratic } L \text {-groups } \\ \text { even- }\end{array}\right.$ $\left\{\begin{array}{l}L_{2 \star+1}(f) \\ \left.L_{2 \star} f\right)\end{array}\right.$ were first obtained algebraically by $\left\{\begin{array}{l}\text { Wall [4, 57] } \\ \text { Sharpe [2] }\end{array}\right.$ ii) Given an integer $m \geqslant 1$ define an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ functo $\left\{\begin{array}{l}m: \mathcal{L}^{\star}(A, \varepsilon) \longrightarrow \mathcal{L}^{\star}(A, \varepsilon) ; x \longmapsto m x=x \oplus x \oplus \ldots \oplus x \text { (mtim } \\ m: \mathcal{L}_{\star}(A, \varepsilon) \longrightarrow \mathcal{L}_{\star}(A, \varepsilon) ; x \longmapsto m x=x \oplus x \oplus \ldots \oplus x \text { (mtim }\end{array}\right.$ The relative L-groups are the $\left\{\begin{array}{l}\frac{\varepsilon \text {-symmetric }}{\text { E-quadratic }} \text { mod m L-groups of }\end{array}\right.$

$$
\left\{\begin{array}{l}
L_{*}^{*}\left(A, \varepsilon ; \mathbb{Z}_{m}\right)=L^{*}\left(m: \mathcal{A}^{*}(A, \varepsilon) \longrightarrow \mathcal{L}^{*}(A, \varepsilon)\right) \\
L_{\star}\left(A, \varepsilon ; \mathbb{Z}_{m}\right)=L_{\star}\left(m: \mathcal{L}_{\star}(A, \varepsilon) \longrightarrow \mathcal{L}_{\star}(A, \varepsilon)\right),
\end{array}\right.
$$

and fit into the exact sequence

$$
\left\{\begin{array}{l}
\cdots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{n}(A, \varepsilon) \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L^{n}\left(A, \varepsilon ; \mathbb{Z}_{m}\right) \longrightarrow L^{n-1}(A, \varepsilon) \longrightarrow L_{n}\left(A, \varepsilon ; \mathbb{Z}_{m}\right) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow \\
\cdots \longrightarrow
\end{array}\right.
$$

A geometric \mathbb{Z}_{m}-Poincaré complex (resp. \mathbb{Z}_{m}-manifold) ($\mathrm{X}, \partial \mathrm{X}$) is geometric Poincaré pair (resp. manifold with boundary) such t the boundary is the disjoint union of m copies of the Bockste geometric Poincaré complex (resp. manifold) δx

$$
\partial x=\bigsqcup_{m} \delta x
$$

The mod $m\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ signature of an n-dimensional
$\left\{\begin{array}{l}\left.\text { geometric } \mathbb{Z}_{m} \text {-Poincaré complex (X, } \partial X\right) \\ \text { normal map }(f, b):(M, \partial M) \longrightarrow(X, \partial X) \text { from a } \mathbb{Z}_{m} \text {-manifold }(M, \partial M) \\ \text { to a geometric } \mathbb{Z}_{m} \text { Poincaré complex }(X, \lambda X)\left((\lambda f, \partial b)=\bigcup_{m}(\delta f, \delta b)\right)\end{array}\right.$ is an element

$$
\left\{\begin{array}{l}
\sigma^{*}\left(x ; \mathbb{Z}_{m}\right) \in L^{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] ; \mathbb{Z}_{m}\right) \\
\sigma_{*}\left(f, b ; \mathbb{Z}_{m}\right) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] ; \mathbb{Z}_{m}\right)
\end{array} \quad(\varepsilon=1)\right.
$$

defined using the methods of II. exactly as in the case $m=1$. The mod m quadratic signature is the obstruction to surgery to a homotopy equivalence of \mathbb{Z}_{m}-objects. Surgery on \mathbb{Z}_{m} - manifolds plays an important role in the characteristic variety theorem of Sullivan [2], and in the subsequent work of Morgan and Sullivan [1], Wall [13], Jones [2] and Taylor and Williams [1] on characteristic classes for the surgery obstructions of normal maps of closed manifolds.

$$
\text { iii) The e-symmetrization is an } \varepsilon \text {-hyperquadratic chain }
$$

functor

$$
1+T_{E}: \dot{\alpha}_{\star}(A, E) \longrightarrow \mathcal{L} *(A, E) \text {. }
$$

The relative L-groups of $1+T$ are the ε-hyperquadratic L-groups of $A \hat{L}^{\star}(A, E)$, which fit into the exact sequence $\ldots \longrightarrow L_{n}(A, \varepsilon) \xrightarrow{1+T} \varepsilon_{L^{n}}^{n}(A, \varepsilon) \xrightarrow{J} \hat{L}^{n}(A, \varepsilon) \xrightarrow{H} L_{n-1}(A, \varepsilon) \longrightarrow(n \in \mathbb{Z})$
and are 8 -torsion groups (by Proposition I.8.2).
In $\$ 7.4$ the hyperquadratic L-groups $\hat{L}^{*}(A)(\varepsilon=1)$ will be used to define a "hyperquadratic signature" invariant $\hat{o}^{*}(X) \in \hat{L}^{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ for an n-dimensional normal space X in the sense of Quinn [3]. In particular, given an ($n+1$)-dimensional degree 1 map of geometric poincaré pairs

$$
\mathrm{g}:(\mathrm{N}, \mathrm{M}) \longrightarrow(\mathrm{Y}, \mathrm{X})
$$

such that the restriction $f=g \mid: M \longrightarrow X$ underlies a normal map

$$
(f, b): M \longrightarrow X
$$

there is defined a hyperquadratic signature

$$
\hat{\sigma}^{*}(g, f, b) \in \hat{L}^{n+1}\left(Z\left[\pi_{1}(Y)\right]\right)
$$

such that

$$
H \hat{\sigma}^{*}(g, f, b)=\sigma_{*}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)
$$

as follows. (This is the hyperquadratic signature $\hat{\sigma}^{*}\left(N \cup_{f}-Y\right)$ of the $(n+1)$-dimensional normal space obtained from (N, M) and (Y, X) by glueing along $f: M \longrightarrow X)$.

In the first instance, recall from SII. 9 (and see also \$7.3
below) that a stable spherical fibration $p: X \longrightarrow B G$ nuer a finitely dominated $C W$ complex X has associated to it a Tate $\mathbb{Z}_{2^{-}}$hypercohomology class

$$
\theta(p) \in \hat{Q}^{O}\left(c(\tilde{x})^{-*}\right),
$$

with \tilde{X} the universal cover of $X(s a y)$. The hyperquadratic wu classes of $\theta(p)$ are the equivariant wu classes of p

$$
v_{\star}(p)=\hat{v}_{\star}(\theta(p)): H_{\star}(\widetilde{X}) \longrightarrow \hat{H}^{*}\left(\mathbb{Z}_{2} ; \mathbb{Z}\left(\pi{ }_{1}(x)\right]\right)
$$

The equivariant Wu classes are stable fibre homotopy invariants which are generalizations of the familiar mod 2 Wu classes $v_{*}(p) \in H^{*}\left(X ; \mathbb{Z}_{2}\right)$. Let (p, q, r) be a triple consisting of two stable spherical fibrations $p, q: X \longrightarrow B G$ over X and a stable fibre homotopy equivalence $r:\left.\left.p\right|_{Y} \longrightarrow q\right|_{Y}$ of their restrictions to a subcomplex Y of X, which is classified by a homotopy

$$
r:\left.\left.p\right|_{Y} \approx q\right|_{Y}: Y \rightarrow \cdots \rightarrow B G .
$$

The relative version of the above construction associates to (p, q, r) a Tate \mathbb{Z}_{2}-hypercohomology class

$$
\theta(p, q, r) \in \hat{Q}^{O}\left(C(\bar{X}, \widetilde{Y})^{-\star}\right)
$$

with image $\theta(p)-\theta(q) \in \hat{Q}^{O}\left(C(\widetilde{X})^{-*}\right)$ under the map induced by the projection $C(\tilde{X}) \longrightarrow C(\tilde{X}, \tilde{Y})$. If r extends to a stable fibre homotopy equivalence $p \xrightarrow{\sim} q$ then $\theta(p, q, r)=0$. The relative equivariant Wu classes of $(p, q, r) v_{*}(p, q, r)$ are the hyperquadratic wu classes of $\theta(p, q, r)$

$$
v_{\star}(p, q, r)=\hat{v}_{\star}(\theta(p, q, r)): H_{\star}(\tilde{x}, \tilde{Y}) \longrightarrow \hat{H}^{\star}\left(\mathbb{Z}_{2} ; \mathbb{Z}^{[}\left[\pi_{1}(x)\right]\right)
$$

and are such that

$$
\left.v_{\star}(p)-v_{\star}(q): H_{\star}(\tilde{X}) \longrightarrow H_{\star}(\tilde{X}, \tilde{Y}) \xrightarrow{v_{\star}(p, q, r)} \hat{H}^{\star}\left(\mathbb{Z}_{2} ; \mathbb{Z} \mid \pi_{1}(x)\right]\right)
$$

A stable fibre homotopy self equivalence

$$
c: v \longrightarrow v
$$

of a stable spherical fibration $v: X \longrightarrow B G$ over X is classified by a map $c: X \longrightarrow G=\Omega B G$.

The equivariant suspended Wu classes of $c \sigma v_{\star}(c)$ are defined by

$$
\begin{aligned}
o v_{\star}(c)=v_{\star}(p, q, r) \equiv \hat{v}_{\star}\left(\theta_{v, c}\right) \in H_{\star}(\widetilde{x} \times I, \widetilde{x} \times\{0,1\})=H_{\star-1}(\widetilde{X}) \\
\end{aligned}
$$

with $\theta_{v, C} \in \hat{Q}^{O}\left(C(\tilde{x} \times I, \tilde{x} \times(0,1\})^{-\star}\right)$ defined bv

$$
\begin{aligned}
\theta_{v, c}=\theta(p & =\text { adjoint of } c: X \times I \longrightarrow B G, q: X \times I \longrightarrow * \longrightarrow B G, \\
r & \left.=i d .:\left.p\right|_{X \times\{0,1\}}=\left.\varepsilon^{\infty} \longrightarrow q\right|_{X \times\{0,1\}}=\varepsilon^{\infty}\right)
\end{aligned}
$$

The equivariant suspended Wu classes were defined in SII.9 in connection with a formula for the change in the quadratic kernel $\sigma_{\star}(f, b)$ of a normal map $(f, b): M \longrightarrow X$ caused by a change in the bundle map $b: v_{M} \longrightarrow v_{X}$, which we shall generalize in Proposition 2.3 .2 below to the quadratic signature $\sigma_{*}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$.

Given a chain map $f: C \longrightarrow D$ of finite-dimensional A-modu chain complexes define the $\underline{\underline{Q}}$-groups $\widetilde{Q}^{n+1}(f, \varepsilon)(n \in Z Z)$ to be the relative groups appearing in the exact sequence

$$
\ldots \rightarrow Q^{n+1}(D, \varepsilon) \rightarrow \tilde{Q}^{n+1}(f, \varepsilon) \rightarrow Q_{n}(C, \varepsilon) \xrightarrow{f^{q}\left(1+T_{\varepsilon}\right)} Q^{n}(D, \varepsilon) \longrightarrow \ldots
$$

For example, if $f=1: C \longrightarrow D=C$ then $\tilde{Q}^{\star}(f, \varepsilon)=\hat{Q}^{*}(C, \epsilon)$. An element $(\phi, \psi) \in \tilde{Q}^{n+1}(f, \varepsilon)$ is an equivalence class of collections of chains

$$
\left\{\left(\phi_{s}, \psi_{s}\right) \in \operatorname{Hom}_{A}\left(D^{n+1-r+s}, D_{r}\right) \oplus \operatorname{Hom}_{A}\left(C^{n-r-s}, c_{r}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right\}
$$

such that

$$
\begin{aligned}
& d \phi_{s}+(-)^{r} \phi_{s} d^{*}+(-)^{n+s}\left(\phi_{s-1}+(-)^{s} T_{\varepsilon} \phi_{s-1}\right) \\
& =\left\{\begin{array} { l }
{ (1 + T \tau _ { \varepsilon }) f \psi _ { 0 } f ^ { \star } : D ^ { n - r } \longrightarrow D _ { r } } \\
{ 0 : D ^ { n - r + s } \longrightarrow D _ { r } }
\end{array} \text { if } \left\{\begin{array}{l}
s=0 \\
s \geqslant 1
\end{array} \quad\left(\Phi_{-1}=0\right)\right.\right. \\
& d \psi_{S}+(-)^{r} \psi_{S} d^{*}+(-)^{n-s-1}\left(\psi_{S+1}+(-)^{s+1} T_{E} \psi_{S+1}\right)=0 \\
& : c^{n-r-s-1} \longrightarrow C_{r} \quad(s \geqslant 0) .
\end{aligned}
$$

The e-hyperquadratic L-groups $\hat{L}^{n+1}(A, \varepsilon)(n \geqslant 0)$ can be viewed as the cobordism groups of objects ($f: C \longrightarrow D,(\phi, \Psi) \in \tilde{Q}^{n+1}(f, \varepsilon)$) such that $\left(f: C \longrightarrow D,(\phi,(1+T \varepsilon) \psi) \in \widetilde{Q}^{n+1}(f, \varepsilon)\right)$ is an $(n+1)$-dimensional e-symmetric Poincaré pair over A.

Let now $g:(N, M) \longrightarrow(Y, X)$ be a degree 1 map of $(\mathrm{n}+1)$-dimensional geometric Poincaré pairs such that $\mathrm{g} \mid=\mathrm{f}: \mathrm{M}$ is part of an n-dimensional normal map $(f, b): M \longrightarrow X$. Let \tilde{Y} be the universal cover of Y, and let $\tilde{M}, \tilde{N}, \tilde{X}$ be the induced covers of M, N, X. There is then defined a commutative diagram of $\mathbb{Z}\left[\pi_{1}(Y)\right]$-module chain complexes and chain maps

Now $b: v_{M} \longrightarrow v_{X}$ defines a stable fibre homotopy equivalence of the restrictions to $M \subset N$ of $\nu_{N}: N \longrightarrow B G$ and $g * \nu_{Y}: N \longrightarrow B G$

$$
b:\left.v_{N}\right|_{M}=\left.v_{M} \longrightarrow g^{*} v_{Y}\right|_{M}=f * v_{X},
$$

so that by the above construction there is defined an element

$$
\theta\left(v_{N}, g^{*} v_{Y}, b\right) \in \hat{Q}^{o}\left(C(\tilde{N}, \tilde{M})^{-*}\right)=\hat{Q}^{n+1}\left(C(\tilde{N}, \tilde{M})^{n+1-*}\right)=\hat{Q}^{n+1}(C(\widetilde{N}))
$$

with image

$$
\begin{aligned}
\theta\left(\nu_{N}\right)-(g, f)^{18} \theta\left(v_{Y}\right) \in \hat{Q}^{O}\left(C(\tilde{N})^{-*}\right) & =\hat{Q}^{n+1}\left(C(\tilde{N})^{n+1-*}\right) \\
& =\hat{Q}^{n+1}(C(\tilde{N}, \tilde{M})) .
\end{aligned}
$$

Let $F: \sum^{\infty} \widetilde{M}_{+} \longrightarrow \sum^{\infty} \tilde{X}_{+}$be the geometric Umkehr map associated to (f, b), so that $\psi_{F}([X]) \in Q_{n}(C(\widetilde{M}))\left(\psi_{F}=\right.$ quadratic construction) is such that

$$
(1+T) \psi_{F}([X])=\phi_{\tilde{M}}([M])-f^{!\delta} \phi_{\tilde{X}}([X]) \in Q^{n}(C(\tilde{M}))
$$

and

$$
\sigma_{*}(f, b)=\left(C(f), e_{f} \psi_{F}([x]) \in Q_{n}(C(f))\right) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)
$$

Now \tilde{Q}^{n+1} (i) fits into a commutative braid of exact sequences

The elements $e_{f} \psi_{F}(|x|) \in Q_{n}\left(C\left(f^{l}\right)\right), \hat{h}^{q} \theta\left(v_{N}, g^{*} v_{Y}, b\right) \in \hat{Q}^{n+1}\left(C\left(g^{l}\right)\right)$ have the same image in $Q_{n}\left(C\left(g^{\prime}\right)\right)$, and in fact there is defined an element

$$
\theta(g, f, b) \in \widetilde{Q}^{n+1}(i)
$$

with images $e_{g} \psi_{F}([x]), \hat{h}^{\ell} \theta\left(v_{N}, g^{\star} v_{Y}, b\right)$. The hyperquadratic signature of $(g:(N, M) \longrightarrow(Y, X),(f, b): M \longrightarrow X)$ is defined to be

$$
\hat{\sigma}^{*}(g, f, b)=\left(i: C\left(f^{l}\right) \longrightarrow C\left(g^{!}\right), \theta(g, f, b)\right) \in \hat{L}^{n+1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right),
$$

and has image $\sigma_{\star}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)$. If $b: v_{M} \longrightarrow v_{X}$ extends to $c: v_{N} \longrightarrow v_{Y}$ then $\theta\left(v_{N}, g^{*} v_{Y}, b\right)=0$ and $\hat{\sigma}^{*}(g, f, b)=0$.
(I should like to thank Jean Lannes for his suggestion that I apply the algebraic theory of surgery to normal maps which bound as degree 1 maps).

Let $(f, b): M \longrightarrow X,\left(f, b^{\prime}\right): M \longrightarrow X$ be $n-d i m e n s i o n a l$ normal maps with the same underlying degree 1 map $f: M \rightarrow X$, so that $b^{\prime}=b c: v_{M} \longrightarrow v_{X}$ for some stable fibre self homotopy equivalence $c: v_{M} \longrightarrow v_{M}$. In Proposition II.9.10 the difference of the \mathbb{Z}_{2}-hyperhomology classes ψ, ψ^{\prime} appearing in the quadratic kernels

$$
\begin{aligned}
& \sigma_{\star}(f, b)=\left(C\left(f^{!}\right), \psi \in Q_{n}\left(C\left(f^{!}\right)\right)\right) \\
& \sigma_{\star}\left(f, b^{\prime}\right)=\left(C(f!), \psi^{\prime} \in Q_{n}\left(C\left(f^{!}\right)\right)\right)
\end{aligned}
$$

was expressed in terms of $\theta_{v_{M}, C} \in \hat{Q}^{n+1}(C(\tilde{M}))$ as

$$
\psi-\psi^{\prime}=e_{q} H\left(\theta_{\nu_{M}, C}\right) \in Q_{n}\left(C\left(f^{1}\right)\right)
$$

Proposition 2.3.2 The difference of quadratic signatures is given by

$$
\left.\sigma_{\star}(f, b)-\sigma_{\star}\left(f, b^{\prime}\right)=H \hat{\sigma}^{\star}\left(g, f \cup f, b \cup-b^{\prime}\right) \in L_{n}\left(\mathbb{Z} \mid \pi_{1}(x)\right]\right)
$$

with

$$
\begin{aligned}
& g=f \times 1:(M \times I, M \times\{0,1\}) \longrightarrow(X \times I, X \times\{0,1\}) \\
& f \cup f=g \mid: M \times\{0,1\} \longrightarrow X \times\{0,1\} .
\end{aligned}
$$

The hyperquadratic siqnature $\hat{\sigma}^{\star}\left(g, f \cup f, b \cup-b^{\prime}\right) \in \hat{L}^{n+1}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right)$
is represented by

$$
\begin{align*}
& \hat{o}^{*}\left(g, f \cup f \cdot, b \cup-b^{\prime}\right) \\
& =\left(\mathrm{i}=(\mathrm{ll} 1): \mathrm{C}\left(\mathrm{f}^{!}\right) \oplus C\left(\mathrm{f}^{!}\right) \longrightarrow \mathrm{C}\left(\mathrm{~g}^{!}\right)=\mathrm{C}\left(\mathrm{f}^{!}\right),\right. \\
& \theta\left(g, f \cup f, b \cup-b^{\prime}\right)=\left(\psi, \hat{e}^{8}\left(\theta_{v_{M}}, c\right), 0\right) \in \tilde{Q}^{n+1}(i) \\
& \left.\left.=Q_{n}(C(f!)) \oplus \hat{Q}^{n+1}\left(C(f)^{!}\right) \oplus H_{n}\left(C\left(f^{!}\right)^{t} \otimes_{\mathbb{Z}\left[\pi_{1}\right.}(X)\right]^{C(f}!\right)\right)
\end{align*}
$$

2.4 r-groups

Let $f: A \longrightarrow B$ be a morphism of rings with involution, as before.

An n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is
B-Poincaré if $\left\{\begin{array}{l}B \otimes_{A}(C, \phi) \\ B \otimes_{A}(C, \psi)\end{array}\right.$ is an n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
Poincaré complex over B. Similarly for pairs and triads.
The n-dimensional $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c ~}{\text { even } \varepsilon-s y m m e t r i c ~} \quad[\text {-group of } f \\ \frac{\varepsilon \text {-quadratic }}{}\end{array}\right.$
$\left\{\begin{array}{l}\Gamma^{n}(f, \varepsilon) \\ \Gamma\left\langle v_{0}\right\rangle^{n}(f, \varepsilon)(n \geqslant 0) \text { is the B-Poincaré cobordism group of } \\ \Gamma_{n}(f, \varepsilon)\end{array}\right.$
n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric } B \text {-Poincaré complexes over A. } \\ \varepsilon \text {-quadratic }\end{array}\right.$
In particular

$$
\left\{\begin{array}{l}
\Gamma \star(1: A \longrightarrow A, \varepsilon)=L^{\star}(A, \varepsilon) \\
\Gamma\left\langle v_{0}\right\rangle *(1: A \longrightarrow A, \varepsilon)=L\left\langle v_{O}\right\rangle *(A, \varepsilon) \\
\Gamma_{\star}(1: A \longrightarrow A, E)=L_{\star}(A, \varepsilon)
\end{array}\right.
$$

The quadratic Γ-groups $\Gamma_{\star}(f) \equiv \Gamma_{\star}(f, 1)$ are projective analogues of the original r -groups of Cappell and Shaneson [1]

The morphism $f: A \longrightarrow B$ is locally epic if for every fini subset $B_{O} \subseteq B$ there exists a unit ueB such that $u B_{O} \in \operatorname{im}(f: A \longrightarrow B) \subseteq B$.
(This definition is due to Cappell and Shaneson [11).

For example, if $f: A \longrightarrow B$ is onto it is locally epic; also, a localization map $f: A \longrightarrow S^{-1} A$ is locally epic - see $\$ 3$ below for the application of the Γ-groups to the L-theory of localization. In dealing with Γ-groups we shall always assume that $f: A \longrightarrow B$ is locally epic. (It is in fact possible to develop Γ-theory for more general morphisms see Vogel [3] and the discussion in $\$ 3.2$ below).

An A-module morphism $g \in \operatorname{Hom}_{A}(M, N)$ is a B-isomorphism if $10 \mathrm{~g} \in \operatorname{Hom}_{B}\left(\mathrm{~B} \otimes_{A} \mathrm{M}, \mathrm{BE}_{A} \mathrm{~N}\right)$ is a B -module isomorphism.

Proposition 2,4.1 Let $f: A \longrightarrow B$ be a locally epic morphism, and let M, N be f.g. free A-modules. A morphism $g \in \operatorname{Hom}_{A}(M, N)$ is such that $l 8 g \in \operatorname{Hom}_{B}\left(B Q_{A} M, B Z_{A} N\right)$ is onto if and only if there exists an A-module morphism $h \in \operatorname{Hom}_{A}(N, M)$ such that gh $\in \operatorname{Hom}_{A}(N, N)$ is a B-isomorphism.
Proof: Assume that $l \otimes g \in \operatorname{Hom}_{B}\left(B \otimes_{A} M, B \otimes_{A} N\right)$ is onto, so that there exists $b \in \operatorname{Hom}_{B}\left(B \otimes_{A} N, B \otimes_{A} M\right)$ right inverse to $1 \otimes g$, with $(1 \otimes g) b=1 \in \operatorname{Hom}_{B}\left(B \otimes_{A} N, B \otimes_{A} N\right)$. Choose bases for M and N, and let $\left(b_{i j}\right)\left(b_{i j} \in B\right)$ be the corresponding matrix of b. As f is locally epic there exist a matrix ($a_{i j}$) with entries $a_{i j} \in A$ and a unit $u \in B$ such that

$$
f\left(a_{i j}\right)=b_{i j} u \in B .
$$

Let $h \in \operatorname{Hom}_{A}(N, M)$ be the A-module morphism with matrix (a ${ }_{i j}$). Then $l \otimes g h=u \in \operatorname{Hom}_{B}\left(B \otimes_{A} N, B \otimes_{A} N\right)$ is a B-module isomorphism, so that $g h \in \operatorname{Hom}_{A}(N, N)$ is a $B-i s o m o r p h i s m$.

The converse is obvious.

An A-module chain map $\mathrm{g}: \mathrm{C} \longrightarrow \mathrm{D}$ is a B-eguivalence if

$$
1 \otimes \mathrm{~g}: B \otimes_{A} C \longrightarrow B \otimes_{A} D
$$

is a B-module chain equivalence.
If (C, ϕ) is an n-dimensional E-symmetric B-Poincaré complex over A and $g: C \longrightarrow D$ is a B-equivalence with D an n-dimensional A-module chain complex then $\left(D, g^{q}(\phi)\right)$ is also an n-dimensional e-symmetric B-Poincaré complex. Furthermore, $\left.((g)): C \oplus D \longrightarrow D,\left(0, \phi \oplus-g^{\circ}(\phi)\right)\right)$ is an ($\left.n+1\right)$-dimensional ε-symmetric B-Poincaré pair over A, so that

$$
(C, \phi)=\left(D, g^{\delta}(\phi)\right) \in \Gamma^{n}(f, \varepsilon) .
$$

Similarly for the e-quadratic and even e-symmetric cases.
The semi-periodicities of the L-groups given by
Propositions 1.2.3 i), 1.4.2 extend to the r-groups:
Proposition 2.4.2 If $f: A \longrightarrow B$ is locally epic the skew-suspension maps

$$
\left\{\begin{array}{l}
\bar{S}: \Gamma^{n}(f, \varepsilon) \longrightarrow \Gamma\left\langle v_{0}\right\rangle^{n+2}(f,-\varepsilon) ;(C, \phi) \longmapsto(S C, \bar{S} \phi) \\
\bar{S}: \Gamma_{n}(f, \varepsilon) \longrightarrow \Gamma_{n+2}(f,-\varepsilon) ;(C, \psi) \longmapsto(S C, \bar{S} \psi)
\end{array}\right.
$$

are isomorphisms.
Proof: Given an n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$-Poincaré complex
over $A\left\{\begin{array}{l}\left(C, \phi \in Q^{n}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{n}(C, \varepsilon)\right)\end{array}\right.$ and an $(n+3)$-dimensional
$\left\{\begin{array}{l}\text { even }(-\epsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array} \quad\right.$-Poincaré pair over A
$\left\{\begin{array}{l}\left(g: S C \longrightarrow D,(\delta \phi, \bar{S} \phi) \in Q_{Q}\left\langle v_{O}\right\rangle^{n+3}(g,-\varepsilon)\right) \\ \left(g: S C \longrightarrow D,(\delta \psi, \bar{S} \psi) \in Q_{n+3}(g,-\varepsilon)\right)\end{array}\right.$ we shall define an

$$
\begin{aligned}
& (n+1) \text {-dimensional }\left\{\begin{array}{l}
\varepsilon-\text { symmetric } \\
\epsilon \text {-quadratic }
\end{array} \text { B-Poincaré pair over } A\right. \\
& \left\{\begin{array}{l}
\left(g^{\prime}: C \longrightarrow D^{\prime},\left(\delta \phi^{\prime}, \phi\right) \in Q^{n+1}\left(g^{\prime}, \varepsilon\right)\right) \\
\left(g^{\prime}: C \longrightarrow D^{\prime},\left(\delta \psi^{\prime}, \psi\right) \in Q_{n+1}\left(g^{\prime}, \varepsilon\right)\right)
\end{array}\right.
\end{aligned}
$$

as follows.
Without loss of generality it may be assumed that

$$
C_{r}=0(r<0, r>n), D_{r}=0(r<0, r>n+3)
$$

and that in the symmetric case

$$
\delta \phi_{n+3}=0: D^{n+3} \longrightarrow D_{n+3}
$$

Define an $(n+3)$-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic -poincaré }\end{array}\right.$ pair over $A\left\{\begin{array}{l}\left(g^{\prime \prime}: S C \longrightarrow D^{\prime \prime},\left(\delta \phi^{\prime \prime}, \bar{S} \phi\right) \in Q\left\langle v_{O}\right\rangle^{n+3}\left(g^{\prime \prime},-\varepsilon\right)\right) \\ \left(g^{\prime \prime}: S C \longrightarrow D^{\prime \prime},\left(\delta \psi^{\prime \prime}, \bar{S} \psi\right) \in Q_{n+3}\left(g^{\prime},-\varepsilon\right)\right)\end{array}\right.$ by

$$
\text { with }\left\{\begin{array}{l}
\delta \phi_{S}^{\prime \prime}=\delta \phi_{S} \oplus O \\
\delta \psi_{S}^{\prime \prime}=\delta \psi_{S} \oplus O
\end{array}(s \geqslant 0)\right. \text { except for }
$$

$$
\begin{aligned}
& \mathrm{g}^{\prime \prime}=\left\{\begin{array}{l}
\mathrm{g}: \mathrm{C}_{r-1} \longrightarrow \mathrm{D}_{\mathrm{r}}^{\prime \prime}=\mathrm{D}_{\mathrm{r}} \quad(2 \leqslant \mathrm{r} \leqslant n+1) \\
\binom{\mathrm{g}}{0}: \mathrm{C}_{\mathrm{O}} \longrightarrow \mathrm{D}_{1}^{\prime \prime}=\mathrm{D}_{\mathrm{I}} \oplus \mathrm{D}^{\mathrm{n}+3}
\end{array},\right. \\
& \left.D^{\prime \prime}: \ldots \longrightarrow 0 \longrightarrow D_{n+3} \xrightarrow{\binom{d_{D}}{1-)^{n+3}}} D_{n+2}{ }^{\oplus D_{n+3}} \xrightarrow{\left(d_{D}\right.} \begin{array}{l}
0
\end{array}\right) D_{n+1} \xrightarrow{d_{D}} \\
& \xrightarrow[\longrightarrow]{ } D_{2} \xrightarrow{\binom{d_{D}}{0}} D_{1} \oplus D^{n+3} \xrightarrow{\left(d_{D}\left\{\begin{array}{l}
-\delta \phi_{O} \\
-\left(1+T_{-\varepsilon}\right) \delta \psi_{0}
\end{array}\right)\right.} D_{0} \longrightarrow 0 \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \delta \phi_{0}^{\prime \prime}=\left\{\begin{array}{l}
\left(\begin{array}{cc}
\delta \phi_{O} & 0 \\
0 & (-)^{n+3} E
\end{array}\right): D^{\prime \prime}=D^{1} \oplus D_{n+3} \longrightarrow D_{n+2}^{\prime \prime}=D_{n+2^{\oplus}} D^{n+} \\
\left(\begin{array}{cc}
\delta \phi_{O} & 0 \\
0 & 1
\end{array}\right): D^{n \prime n+2}=D^{n+2} \oplus D^{n+3} \longrightarrow D_{1}^{\prime \prime}=D_{1} \oplus D^{n+3}
\end{array}\right. \\
& \delta \psi_{O}^{\prime \prime}=\left(\begin{array}{cc}
\delta \psi_{O} & 0 \\
0 & 1
\end{array}\right): D^{n+2}=D^{n+2} \oplus D^{n+3} \longrightarrow D_{1}^{n}=D_{1} \oplus D^{n+3}
\end{aligned}
$$

Now $1 \mathbb{Q d}_{D "} \in \operatorname{Hom}_{B}\left(B \otimes_{A} D_{1}^{\prime \prime}, B \mathscr{A}_{A} D_{0}^{\prime \prime}\right)$ is onto. Stabilizing if necessa it may be assumed that $D_{1}^{\prime \prime}$ and $D_{0}^{\prime \prime}$ are f.g. free A-modules, so that by Proposition 2.4.1 there exists an A-module morphi e $\in \operatorname{Hom}_{A}\left(D_{O}^{\prime \prime}, D_{1}^{\prime \prime}\right)$ such that $d_{D^{\prime \prime}} e \in \operatorname{Hom}_{A}\left(D_{O}^{\prime \prime}, D_{O}^{\prime \prime}\right)$ is a $B-i$ somorphis Define an ($n+1$)-dimensional A-module chain complex D and a B-equivalence

$$
h: D^{\prime \prime} \longrightarrow S D^{\prime}
$$

by

$$
\begin{aligned}
& d_{D^{\prime}}^{\prime}=d_{D^{\prime \prime}}: D_{r}^{\prime}=D_{r+1}^{\prime \prime} \longrightarrow D_{r-1}^{\prime}=D_{r}^{\prime \prime} \quad(r \neq 0.1,2,31 \\
& h=1: D_{r}^{\prime \prime} \longrightarrow D_{r-1}^{\prime}=D_{r}^{\prime \prime} \quad(r \neq 0,1,2)
\end{aligned}
$$

Then

$$
g^{\prime}=h g^{\prime \prime}: C \longrightarrow D^{\prime},\left\{\begin{array}{l}
\left(\delta \phi^{\prime}, \phi\right)=\left(h^{\delta} \delta \phi^{\prime \prime}, \phi\right) \in Q^{n+1}\left(g^{\prime}, \varepsilon\right) \\
\left(\delta \psi^{\prime}, \psi\right)=\left(h_{\delta} \delta \psi^{\prime \prime}, \psi\right) \in Q_{n+1}\left(g^{\prime}, \varepsilon\right)
\end{array}\right.
$$

define an $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$-Poincaré pair over A $\left\{\begin{array}{l}\left(g^{\prime}: C \longrightarrow D^{\prime},\left(\delta \phi^{\prime}, \phi\right)\right) \\ \left(g^{\prime}: C \longrightarrow D^{\prime},\left(\delta \psi^{\prime}, \psi\right)\right)\end{array}\right.$, as required.

The above construction shows that the skew-suspension map $\left\{\begin{array}{l}\bar{S}: \Gamma^{n}(f, \varepsilon) \longrightarrow \Gamma\left\langle v_{0}\right\rangle^{n+2}(f,-\varepsilon) \\ \bar{S}: \Gamma_{n}(f, \varepsilon) \longrightarrow \Gamma_{n+2}(f,-\varepsilon)\end{array}\right.$ is one-one; to see that it is also onto set $\left\{\begin{array}{l}(C, \phi)=0 \\ (C, \psi)=0\end{array}\right.$ in the construction, which now associates to an $(n+3)$-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ B-Poincaré complex over $A\left\{\begin{array}{l}(D, \delta \phi) \\ (D, \delta \psi)\end{array}(n \geqslant-1)\right.$ a B-Poincaré cobordant skew-suspension $\left\{\begin{array}{l}\bar{S}\left(D^{\prime}, \delta \phi^{\prime}\right) \\ \bar{S}\left(D^{\prime}, \delta \psi^{\prime}\right)\end{array}\right.$.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Gamma^{n}(f, \varepsilon)=\left\{\begin{array} { l }
{ \Gamma \langle v _ { O } \rangle ^ { n + 2 } (f , - \varepsilon) } \\
{ \Gamma _ { n } (f , \varepsilon) \quad (\text { as defined below }) }
\end{array} \text { if } \left\{\begin{array}{l}
n=-1,-2 \\
n \leqslant-3
\end{array}\right.\right. \\
\Gamma_{n}(f, \varepsilon)=\Gamma_{n+2 i}\left(f,(-)^{i} \varepsilon\right) \quad(n+2 i \geqslant 0),
\end{array}\right.
\end{aligned}
$$

thus extending the semi-periodicity $\left\{\begin{array}{l}\Gamma^{n}(f, \varepsilon)=\Gamma\left\langle v_{O}\right\rangle^{n+2}(f,-\varepsilon) \\ \Gamma_{n}(f, \varepsilon)=\Gamma_{n+2}(f,-\varepsilon)\end{array} \quad(n \geqslant 0)\right.$ of Proposition 2.4.2.

We shall justify the above definitions of the unified Γ-groups $\left\{\begin{array}{l}r^{n}(f, \varepsilon) \\ \Gamma_{n}(f, \varepsilon)\end{array}\right.$ ($n \in \mathbb{Z}$) by extending the definition of the relative L-groups in $\$ 2.2$ to relative r -groups. First, however, we shall express the Γ-groups for $n \leqslant l$ in terms of forms and formations, extending the expressions of the L-groups for $n \leqslant l$ as Witt groups in si.6.

$$
\begin{aligned}
& \text { An }\left\{\begin{array} { l }
{ \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { form over } A \left\{\begin{array}{l}
\left(M, \phi \in Q^{\varepsilon}(M)\right) \\
\left(M, \psi \in Q_{E}(M)\right)
\end{array}\right.\right. \text { is B-non-singular } \\
& \text { if }\left\{\begin{array} { l }
{ \phi \in \operatorname { H o m } _ { A } (M , M ^ { \star }) } \\
{ (1 + T _ { \varepsilon }) \phi \in \operatorname { H o m } _ { A } (M , M ^ { * }) }
\end{array} \text { is a B-isomorphism, i.e. if } \left\{\begin{array}{l}
B \otimes_{A}(M, \phi) \\
B \otimes_{A}(M, \psi)
\end{array}\right.\right. \\
& \text { is a non-singular }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { form over } B .\right.
\end{aligned}
$$

$$
\text { A B-lagrangian of a } B \text {-non-singular }\left\{\begin{array}{l}
\epsilon-\text { symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { form }
$$

over $A\left\{\begin{array}{l}(M, \phi) \\ (M, \psi)\end{array}\right.$ is a morphism of $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A

$$
\left\{\begin{array}{l}
j:(L, O) \longrightarrow(M, \phi) \\
j:(L, O) \longrightarrow(M, \psi)
\end{array}\right.
$$

which becomes the inclusion of a lagrangian over B, i.e. such that the sequence of A-modules
induces an exact sequence of B-modules. $A B$-non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A is B-hyperbolic if it admits a B-lagrangian.

epic morphism $f: A \longrightarrow B$ is the abelian group of equivalence Classes of B-non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric forms over } A \\ \varepsilon \text {-quadratic }\end{array}\right.$ subject to the relation

$$
\begin{aligned}
&(M, \phi) \sim\left(M^{\prime}, \phi^{\prime}\right) \text { if there exists an isomorphism of forms } \\
& g:(M, \phi) \oplus(H, \theta) \xrightarrow[\sim]{\sim}\left(M^{\prime}, \phi^{\prime}\right) \oplus\left(H^{\prime}, \theta^{\prime}\right) \\
& \text { for some B-hyperbolic forms }(H, \theta),\left(H^{\prime}, \theta^{\prime}\right.
\end{aligned}
$$

Proposition 2.4.3 i) There is a natural one-one correspondence between the homotopy equivalence classes of O-dimensional
$\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \text { c-quadratic }\end{array}\right.$ B-Poincaré complexes over A and the isomorphism classes of B-non-singular $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \text { E-quadratic }\end{array}\right.$ forms over A.
ii) There is a natural identification of the o-dimensional Γ-groups of $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ with the witt groups of B -non-singular forms over A

$$
\left\{\begin{array}{l}
\Gamma^{O}(f, \varepsilon)=\Gamma^{\varepsilon}(f) \\
\Gamma\left\langle v_{O}\right\rangle^{O}(f, \varepsilon)=\Gamma\left\langle v_{O}\right\rangle^{\varepsilon}(f) \\
\Gamma_{O}(f, \varepsilon)=\Gamma_{E}(f)
\end{array}\right.
$$

Proof: i) Immediate from Proposition 1.6.1.
ii) Given a l-dimensional $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array} \quad\right.$ B-Poincaré pair over $A\left\{\begin{array}{l}\left(\mathrm{g}: \mathrm{C} \longrightarrow \mathrm{D},(\delta \phi, \phi) \in Q^{1}(\mathrm{~g}, \varepsilon)\right) \\ \left(\mathrm{g}: \mathrm{C} \longrightarrow \mathrm{D},(\delta \psi, \psi) \in Q_{1}(\mathrm{~g}, \varepsilon)\right)\end{array}\right.$ such that

$$
\left.C_{r}=0(r \neq 0), D_{r}=0(r \neq), l\right)
$$

there is defined a B-lagrangian

$$
\left\{\begin{array}{l}
\left(\begin{array}{c}
g^{*} \\
d_{D}^{*} \\
T_{\varepsilon}^{\delta \delta \phi_{O}}
\end{array}\right):\left(D^{0}, O\right) \longrightarrow\left(C^{0}, \phi_{O}\right) \oplus\left(D^{1} \oplus D_{1},\left(\begin{array}{cc}
T_{\varepsilon}^{\delta \phi_{1}} & \varepsilon \\
1 & 0
\end{array}\right)\right) \\
\left(\begin{array}{c}
g^{*} \\
d_{D}^{*} \\
\left(1+T_{\varepsilon}\right) \delta \psi_{O}
\end{array}\right):\left(D^{\circ}, 0\right) \longrightarrow\left(C_{0}, \psi_{O}\right) \oplus\left(D^{1} \oplus D_{1},\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right)
\end{array}\right.
$$

so that $\left\{\begin{array}{l}\left(C^{0}, \phi_{O}\right) \\ \left(C^{0}, \psi_{O}\right)\end{array}\right.$ is a stably B-hyperbolic $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A, representing o in $\left\{\begin{array}{l}\Gamma^{\varepsilon}(f)\left(\Gamma\left\langle v_{O}\right\rangle^{\varepsilon}(f)\right) \text {. Conversely, } \\ \Gamma_{E}(f)\end{array}\right.$ stably B-hyperbolic forms correspond to the boundaries of l-dimensional B-Poincaré pairs under the correspondence of i).

$$
\begin{aligned}
& A \text { B-non-singular }\left\{\begin{array}{l}
\frac{(e v e n) ~ \varepsilon-s y m m e t r i c}{\varepsilon-q u a d r a t i c ~}
\end{array}\right. \text { formation over A } \\
& \left\{\begin{array}{l}
(M, \phi ; F, G) \\
(M, \psi ; F, G)
\end{array}\right] \\
& \left\{\begin{array}{l}
(M, \phi) \\
(M, \psi) \text { together with a lagrangian } F \text { and a B-lagrangian } \\
\varepsilon \text {-quadratic }
\end{array}\right. \\
& \left\{\begin{array}{l}
(G, O) \longrightarrow(M, \phi) \\
(G, O) \longrightarrow(M, \psi)
\end{array} \text { form over } A\right.
\end{aligned}
$$

$\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ formation over B. There are evident notions of isomorphism and stable isomorphism for B-non-singular
formations, generalizing the case $f=1: A \longrightarrow B=A$ (already treated in \$1.6).

Proposition 2.4.4 i) There is a natural one-one correspondence between the $\left\{\begin{array}{c}- \\ \varepsilon \text {-quadratic }\end{array}\right.$ homotopy equivalence classes of 1-dimensional $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array} \quad B\right.$-Poincaré complexes over A and the stable isomorphism classes of B-non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ formations over A.
ii) The l-dimensional Γ-groups $\left\{\begin{array}{l}\Gamma^{l}(f, \varepsilon) \quad\left(\Gamma\left\langle v_{O}\right\rangle^{l}(f, E)\right) \\ \Gamma_{1}(f, \varepsilon)\end{array}\right.$ have
natural expressions as Witt groups of B-non-singular $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ formations over A.
iii) The forgetful map

$$
\left\{\begin{array}{l}
\Gamma\left\langle v_{O}\right\rangle^{1}(f, \varepsilon) \longrightarrow L\left\langle v_{O}\right\rangle_{X}^{l}(B, E) ;(M, \phi ; F, G) \longmapsto L_{1}^{X}(B, \varepsilon) ;(M, \psi ; F, G) \longmapsto B \otimes_{A}(M, \phi ; F, G) \\
\Gamma_{1}(f, \varepsilon) \longrightarrow B \otimes_{A}(M, \psi ; F, G)
\end{array}\right.
$$

is one-one, where

$$
x=i m\left(\tilde{K}_{O}(A) \longrightarrow \tilde{K}_{O}(B)\right) \subseteq \widetilde{K}_{O}(B)
$$

Proof: i) A straightforward generalization of Proposition 1.6.4. ii) Immediate from i).
iii) Let $\left\{\begin{array}{l}\left(C, \phi \in Q\left\langle v_{0}\right\rangle^{1}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{1}(C, E)\right)\end{array}\right.$ be a L-dimensional $\left\{\begin{array}{l}\text { even E-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ B-Poincaré complex over A such that $C_{r}=0(r \neq 0,1)$, C_{1} is f.g. free and

$$
\left\{\begin{array}{l}
B \otimes_{A}(C, \phi)=0 \in L\left\langle v_{O}\right\rangle \frac{1}{X}(B, \varepsilon) \\
B \otimes_{A}(C, \psi)=0 \in L_{1}^{X}(B, \varepsilon)
\end{array}\right.
$$

By Proposition 1.6.5 iii) there exists a 2-dimensional $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ Poincaré pair over B $\left\{\begin{array}{l}\left(\mathrm{g}: B \otimes_{A} C \longrightarrow D,(0,1 \otimes \phi) \in Q_{Q}\left\langle v_{O}\right\rangle^{2}(g, \varepsilon)\right) \\ \left(g: B \otimes_{A} C \longrightarrow D,(0,1 \otimes \psi) \in Q_{2}(g, \varepsilon)\right)\end{array}\right.$ with $D_{r}=0(r \neq 1)$ and $\left[D_{1}\right] \in x \subseteq \tilde{K}_{0}(B)$. Stabilizing if necessary it may be assumed that $D_{1}=B Q_{A} D_{i}$ for some $f . g$. projective A-module D_{1}^{\prime}. Let D_{1}^{\prime} be a f.g. projective A-module such that $D_{1}^{\prime} \oplus D_{1}^{\prime \prime}$ is a f.g. free A-module, and $\operatorname{let}\binom{g}{0}: B \otimes_{A} C_{1} \longrightarrow B A_{A}\left(D_{1}^{\prime} \oplus D_{1}^{\prime}\right)$ have matrix representation ($b_{i j}$) ($\left.b_{i j} \in B\right)$ with respect to the B-module bases induced from A-module bases of C_{1} and $D_{1}^{\oplus D} D_{1}^{\prime}$. As $f: A \longrightarrow B$ is locally epic there exists a unit $u \in B$ such that $u b_{i j}=f\left(a_{i j}\right) \in B$ for some matrix ($a_{i j}$) with entries $a_{i j} \in A$. Define an A-module morphism $g^{\prime} \in \operatorname{Hom}_{A}\left(C_{1}, D_{1}\right)$ by

$$
g^{\prime}: C_{1} \xrightarrow{\left(a_{i j}\right)} D_{i}^{\left.\oplus D_{1}^{\prime \prime} \xrightarrow{(l o} \quad\right)} D_{1}^{\prime}
$$

Then $\left\{\begin{array}{l}\left(g^{\prime}: C \longrightarrow D^{\prime},(O, \phi) \in Q\left\langle v_{O}\right\rangle^{2}\left(g^{\prime}, \varepsilon\right)\right) \\ \left(g^{\prime}: C \longrightarrow D^{\prime},(O, \psi) \in Q_{2}\left(g^{\prime}, \varepsilon\right)\right)\end{array}\right.$ is a 2-dimensional $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array} \quad B\right.$-poincaré pair over $A\left(w i t h D_{r}^{\prime}=0\right.$ for $\left.r \neq 1\right)$,

Let F be a commutative square of rings with involution

with $f: A \longrightarrow B$ and $f^{\prime}: A^{\prime} \longrightarrow B^{\prime}$ locally epic morphisms. Define the $(n+1)$-dimensional relative $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ Γ-group $\left\{\begin{array}{l}\Gamma^{n+1}(F, E) \quad\left(\Gamma\left\langle v_{O}\right\rangle^{n+1}(f, E)\right) \\ \Gamma_{n+1}(F, E)\end{array} \quad(n \geqslant 0)\right.$ to be the relative cobordiam group of pairs

$$
\begin{aligned}
& \text { (n-dimensional }\left\{\begin{array}{l}
\begin{array}{l}
\text { (even) } \\
\text { E-quadratic }
\end{array} \\
\text { over } A x,(n+1) \text {-dimensional }\left\{\begin{array}{l}
\text { (even) } \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \\
\left.B^{\prime} \text { - Poincare pair over } A^{\prime} \text { with boundary } A^{\prime} A_{A} x\right)
\end{array} .\right.
\end{aligned}
$$

As usual, the skew-suspension maps

$$
\left\{\begin{array}{l}
\bar{S}: \Gamma^{n}(F, \varepsilon) \longrightarrow \Gamma\left\langle v_{0}\right\rangle^{n+2}(F,-\varepsilon) \\
\bar{s}: \Gamma_{n}(F, \varepsilon) \longrightarrow \Gamma_{n+2}(F,-\varepsilon)
\end{array} \quad(n \geqslant 1)\right.
$$

are isomorphisms. The lower relative Γ-groups are defined by

$$
\begin{aligned}
& \left.\longrightarrow \Gamma_{O}(F,-\varepsilon)\right) \\
& \Gamma_{n}(F, \varepsilon)(\text { as defined below) } \\
& (n \leqslant-3)
\end{aligned}
$$

generalizing the definition of the lower relative L-groups in $\mathbf{S 2 . 2}$ (the case $f=1: A \longrightarrow B=A, f^{\prime}=1: A^{\prime} \longrightarrow B^{\prime}=A^{\prime}$). Proposition 2.4.5 The relative Γ-groups $\left\{\begin{array}{l}\Gamma *(F, \varepsilon) \\ \Gamma_{*}(F, E)\end{array}\right.$ fit into a change of r ings exact sequence

$$
\left\{\begin{array}{l}
\cdots \longrightarrow \Gamma^{n+1}\left(f^{\prime}, \varepsilon\right) \longrightarrow \Gamma^{n+1}(F, \varepsilon) \longrightarrow \Gamma^{n}(f, \varepsilon) \longrightarrow \Gamma_{n+1}^{n}\left(f^{\prime}, \varepsilon\right) \longrightarrow \Gamma_{n+1}(F, \varepsilon) \longrightarrow \Gamma_{n}(f, \varepsilon) \longrightarrow \Gamma_{n}\left(f^{\prime}, \varepsilon\right) \longrightarrow \ldots \\
\cdots \longrightarrow \Gamma^{\prime} \longrightarrow
\end{array}\right.
$$

$(n \in \mathbb{Z})$.

Given a morphism of rings with involution $f: A \longrightarrow B$ we shall say that an A-module chain complex is B-acyclic if

$$
H_{\star}\left(B \otimes_{A} C\right)=0
$$

A finite-dimensional A-module chain complex C is B-acyclic if and only if $\mathrm{BE}_{\mathrm{A}} \mathrm{C}$ is a chain contractible B -module chain complex.

$$
\begin{aligned}
& \text { An }\left\{\begin{array} { l }
{ \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { complex (resp. pair) over } A \left\{\begin{array}{l}
(C, \phi) \\
(C, \psi)
\end{array}\right.\right. \\
& \text { (resp. }\left\{\begin{array}{l}
(C \longrightarrow D,(\delta \phi, \phi)) \\
(C \longrightarrow D,(\delta \psi, \psi))
\end{array} \text { is B-acyclic if C (resp. } C, D\right)
\end{aligned}
$$

are B-acyclic A-module chain complexes.

In Propositions 2.4.6.2.4.7 below we shall express the relative Γ-groups $\left\{\begin{array}{l}\Gamma^{*}(F, \varepsilon) \\ \Gamma_{\star}(F, \varepsilon)\end{array}\right.$ for a commutative square of the type

as the cobordism groups of algebraic B-Poincaré B'-acyclic complexes over A. In $\$ 3$ this expression will be used in the special case

to obtain the localization exact sequence in algebraic L-theory. We shall give a geometric interpretation of this expression in Proposition 7.7.2.

Proposition 2.4.6 Let F be a commutative square of rings with involution of the type

with $f: A \longrightarrow B$ and $f^{\prime}: A \longrightarrow B^{\prime}$ locally epic.
i) The relative $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array} \quad\right.$-group $\left\{\begin{array}{l}\Gamma^{n}(F, \varepsilon) \\ \Gamma_{n}(F, \varepsilon)\end{array} \quad(n \geqslant 1)\right.$ is naturally
isomorphic to the cobordism group of connected $(n+1)$-dimensional $\left\{\begin{array}{l}\text { even }(-\epsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array} \quad B\right.$-Poincaré B^{\prime}-acyclic complexes over A.

The maps appearing in the Γ-group change of rings exact sequence are given by
 $\left\{\begin{array}{l}\Gamma^{n}(F, \varepsilon) \longrightarrow \Gamma^{n-1}(f, \varepsilon)=\Gamma\left\langle v_{O}\right\rangle^{n+1}(f,-\varepsilon) ;(C, \phi) \longmapsto \longrightarrow(C, \phi) \\ \Gamma_{n}(F, \varepsilon) \longrightarrow \Gamma_{n-1}(f, \varepsilon)=\Gamma_{n+1}(f,-\varepsilon) ;(C, \psi) \longmapsto \longrightarrow(C, \psi) \quad(n \geqslant 1)\end{array}\right.$
ii) $\left\{\begin{array}{l}\Gamma^{0}(F, \varepsilon) \\ \Gamma_{O}(F, \varepsilon)\end{array}\right.$ is naturally isomorphic to the cobordism group of l-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array} \quad B\right.$-Poincaré B^{\prime}-acyclic complexes over A.
iii) $\Gamma_{n}(F, E)(n \geqslant 2)$ is naturally isomorphic to the cobordism group of ($n-1$)-dimensional ε-quadratic B-Poincaré B^{\prime}-acyclic complexes over A.
Proof: i) An element of $\left\{\begin{array}{l}\Gamma^{n}(F, E) \\ \Gamma_{n}(F, \epsilon)\end{array}(n \geqslant 1)\right.$ is the cobordism class of a pair
(($n-1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ B-Poincaré complex
over $A\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$, n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array} B^{\prime}\right.$-Poincaré
pair over $A\left\{\begin{array}{l}(g: C \longrightarrow D,(\delta \phi, \phi)) \\ (g: C \longrightarrow D,(\delta \psi, \psi)),\end{array}\right.$
by definition. Let $\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ be the connected $(n+1)$-dimensional
$\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ B-Poincaré B^{\prime}-acyclic complex over A obtained from the skew-suspension $\left\{\begin{array}{l}\bar{S}(C, \phi) \\ \bar{S}(C, \phi)\end{array}\right.$ by surgery on the connected $(n+2)$-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ pair $\left\{\begin{array}{l}\bar{S}(g: C \longrightarrow D,(\delta \phi, \phi)) \\ \bar{S}(g: C \longrightarrow D,(\delta \psi, \psi))\end{array}\right.$. Thus $\left\{\begin{array}{l}((C, \phi),(g: C \longrightarrow D,(\delta \phi, \phi))) \\ ((C, \psi),(g: C \longrightarrow D,(\delta \psi, \psi)))\end{array}\right.$ determines an element $\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ of the cobordism group of connected $(n+1)$-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ B-Poincaré B'-acyclic complexes over A. Conversely, let $\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ be a connected $(n+1)$-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array} \quad B\right.$-Poincaré B^{\prime}-acyclic complex over A such that $\left.C_{r}^{\prime}=O(r<0, r\rangle n+1\right)$, as is the case up to homotopy equivalence. Surgery on the connected $(n+2)$-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ pair over $A\left\{\begin{array}{l}\left(g^{\prime}: C \longrightarrow D^{\prime},\left(0, \phi^{\prime}\right)\right) \\ \left(g^{\prime}: C \longrightarrow D^{\prime},\left(0, \psi^{\prime}\right)\right)\end{array}\right.$ defined by

$$
g^{\prime}=1: C_{n+1}^{\prime} \longrightarrow D_{n+1}^{\prime}=C_{n+1}^{\prime}, D_{r}^{\prime}=0(r \neq n+1)
$$

results in the skew-suspension $\left\{\begin{array}{l}\bar{S}(C, \phi) \\ \bar{S}(C, \psi)\end{array}\right.$ of an ($n-1$-dimensional
$\left\{\begin{array}{l}\text { E-symmetric } \\ \text { E-quadratic }\end{array}\right.$ B-Poincaré complex over $A\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$.

The n-dimensional $\left\{\begin{array}{l}\text { E-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ pair over $A\left\{\begin{array}{l}(g: C \longrightarrow D,(0, \phi)) \\ (g: C \longrightarrow D,(0, \psi))\end{array}\right.$ defined by

$$
g=\left(\begin{array}{ll}
0 & 1
\end{array}\right): c_{0}=c_{i}^{\oplus C},{ }^{n+1} \longrightarrow D_{0}=c^{, n+1}, D_{r}=0(r \neq 0)
$$

is B^{\prime}-Poincare. Thus $\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ determines an element

$$
\left\{\begin{array}{l}
\left((C, \phi),(g: C \longrightarrow D,(\delta \phi, \phi)) \in \Gamma^{n}(F, \varepsilon)\right. \\
\left((C, \psi),(g: C \longrightarrow D,(\delta \psi, \psi)) \in \Gamma_{n}(F, \varepsilon)\right.
\end{array} .\right.
$$

ii) An element of $\left\{\begin{array}{l}\Gamma^{0}(F, \varepsilon) \\ \Gamma_{0}(F, \varepsilon)\end{array}\right.$ is the cobordism class of a pair

$$
\text { (l-dimensional }\left\{\begin{array}{l}
\text { even }(-\varepsilon) \text {-symmetric } \\
(-\varepsilon) \text {-quadratic }
\end{array}\right. \text { Boincaré complex }
$$

$$
\text { over } A\left\{\begin{array} { l }
{ (C , \phi) } \\
{ (C , \psi) }
\end{array} , \text { 2-dimensional } \left\{\begin{array}{l}
\text { even }(-\varepsilon) \text {-symmetric } \\
(-\varepsilon) \text {-quadratic }
\end{array}\right.\right.
$$

$$
B^{\prime} \text {-poincaré pair over } A\left\{\begin{array}{l}
(g: C \longrightarrow D,(\delta \phi, \phi)) \\
(\mathrm{g}: \mathrm{C} \longrightarrow \mathrm{D},(\delta \psi, \psi))
\end{array},\right.
$$

by definition. As in the proof of Proposition 2.4.4 iii) it may be assumed that

$$
c_{r}=0(r \neq 0,1), D_{r}=0(r \neq 1)
$$

It follows that the result of surgery on $\left\{\begin{array}{l}(g: C \longrightarrow D,(\delta \phi, \phi)) \\ (g: C \longrightarrow D,(\delta \psi, \psi))\end{array}\right.$ is a l-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ B-Poincaré B^{\prime}-acyclic complex over $A\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$.

Conversely, given a l-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ B-Poincare $B^{\prime}-a c y c l i c ~ c o m p l e x ~ o v e r ~ A\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ there is defined an element

$$
\left\{\begin{array}{l}
\left(\left(C^{\prime}, \phi^{\prime}\right),\left(O: C^{\prime} \longrightarrow 0,\left(O, \phi^{\prime}\right)\right)\right) \in \Gamma^{O}(F, \varepsilon) \\
\left(\left(C^{\prime}, \psi^{\prime}\right),\left(O: C^{\prime} \longrightarrow O,\left(O, \psi^{\prime}\right)\right)\right) \in \Gamma_{O}(F, \varepsilon)
\end{array}\right.
$$

iii) Given a connected ($n+1$)-dimensional (- ε)-quadratic B-Poincare B^{\prime}-acyclic complex over $A(C, \psi)$ we shall define an ($n-1$)-dimensional ε-quadratic B-Poincaré B^{\prime}-acyclic complex over $A\left(C^{\prime}, \psi^{\prime}\right)$ such that

$$
(C, \psi)=\bar{S}\left(C^{\prime}, \psi^{\prime}\right) \in \Gamma_{n+1}(F,-\varepsilon)
$$

and $\left(C^{\prime}, \psi^{\prime \prime}\right)=\left(C^{\prime \prime}, \psi^{\prime \prime}\right)$ if $(C, \psi)=\bar{S}\left(C^{\prime \prime}, \psi^{\prime \prime}\right)$, as follows.
Without loss of generality it may be assumed that $C_{r}=0(r<0, r>n+1)$ and that C_{n}, C_{n+1} are f.g. free A-modules. By Proposition 2.4.2 there exists an A-module morphism $h \in \operatorname{Hom}_{A}\left(C_{n}, C_{n+1}\right)$ such that hd $\in \operatorname{Hom}_{A}\left(C_{n}, C_{n}\right)$ is a $B^{\prime}-$ isomorphism. Define an A-module chain complex D and an A-module chain map $\mathrm{g}: \mathrm{C} \longrightarrow \mathrm{D}$ by

The complex obtained from (C, ψ) by surgery on the connected $(-E)$-quadratic $B^{\prime}-a c y c l i c$ pair over $A(g: C \longrightarrow D,(0, \psi))$ is the skew-suspension $\bar{S}(C, \psi)$ of an ($n-1$)-dimensional ε-quadratic B-Poincare B^{\prime}-acyclic complex over $A\left(C^{\prime}, \phi^{\prime}\right)$.

The low-dimensional relative Γ-groups $\left\{\begin{array}{ll}\Gamma^{n}(F, E) \\ \Gamma_{n}(F, E)\end{array} \quad(n \leqslant 1)\right.$ of a commutative square of rings with involution of the type

can be expressed in terms of forms and formations, as follows.
A B-non-singular $\left\{\begin{array}{l}\text { (even) E-symmetric } \\ \underline{\text { E-quadratic }}\end{array}\right.$ B-form over A $\left\{\begin{array}{l}(M, \phi ; L) \\ (M, \psi ; L)\end{array}\right.$
is a B-non-singular $\left\{\begin{array}{l}(\text { even }) \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over $A\left\{\begin{array}{l}(M, \phi) \\ (M, \psi)\end{array}\right.$
together with a B^{\prime}-lagrangian $\left\{\begin{array}{l}(L, O) \longrightarrow(M, \phi) \\ (L, O) \longrightarrow(M, \psi)\end{array}\right.$.

$\left\{\begin{array}{l}(M, \phi ; F, G) \\ (M, \psi ; F, G)\end{array}\right.$ is a non-singular $\left\{\begin{array}{l}(\text { even }) \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A $\left\{\begin{array}{l}(M, \phi) \\ (M, \psi)\end{array}\right.$ together with a lagrangian F and a B-lagrangian $\left\{\begin{array}{l}(G, O) \longrightarrow(M, \phi) \\ (G, O) \longrightarrow(M, \psi)\end{array}\right.$ such that the projection $G \longrightarrow M / F$ is a B'-isomorphism.

A B-non-sinqular split e-quadratic B^{\prime}-formation over A
(F, G) is a morphism of split ε-quadratic forms over A

$$
\left(\binom{Y}{\mu}, \theta\right):(G, 0) \longrightarrow \tilde{H}_{E}(F)
$$

defining a B-lagrangian of $\widetilde{H}_{E}(F)$, and such that $\mu \in \operatorname{Hom}_{A}\left(G, F^{*}\right)$ is a B^{\prime}-isomorphism.

The boundary of a B^{\prime}-non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \epsilon-\text { quadratic }\end{array}\right.$ formation over $A\left\{\begin{array}{l}(M, \phi ; F, G) \\ (M, \psi ; F, G)\end{array}\right.$ is the B-non-singular $\left\{\begin{array}{l}\text { (even) E-symmetric } \\ \varepsilon \text {-quadratic }\end{array} \quad B^{\prime}\right.$-form over A

$$
\left\{\begin{array}{l}
\partial(M, \phi ; F, G)=(M, \phi ; G) \\
\partial(M, \psi ; F, G)=(M, \psi ; G) .
\end{array}\right.
$$

The boundary of a B^{\prime}-non-singular $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric } \\ \text { e-quadratic }\end{array}\right.$
form over $A\left\{\begin{array}{l}\left(M, \phi \in Q^{\varepsilon}(M)\right) \\ \left(M, \phi \in Q\left\langle V_{O}\right\rangle^{\varepsilon}(M)\right) \text { is the } B \text {-non-singular } \\ \left(M, \psi \in Q_{E}(M)\right)\end{array}\right.$
$\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\epsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array} B^{\prime}\right.$-formation over A

$$
\left\{\begin{array}{l}
\partial(M, \phi)=\left(H^{-\varepsilon}(M) ; M,\binom{1}{\phi}:(M, O) \longrightarrow H^{-\varepsilon}(M)\right) \\
(M, \phi)=\left(H_{-E}(M) ; M,\binom{1}{\phi}:(M, O) \longrightarrow H_{-\varepsilon}(M)\right) \\
\left.\lambda(M, \psi)=\left(M, 1\binom{1}{\psi+\varepsilon \psi^{\star}}, \psi\right) M\right) \quad
\end{array}\right.
$$

Proposition 2.4.7 Let F be commutative square of rings with involution of the type

with f and f^{\prime} locally epic.
i) $\left\{\begin{array}{l}\Gamma^{O}(F, \varepsilon) \\ \Gamma^{-2}(F,-\varepsilon) \text { is naturally isomorphic to the witt group } \\ \Gamma_{0}(F, \varepsilon)\end{array}\right.$
of B-non-singular $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array} B^{\prime}\right.$-formations over A,
with

$$
\left\{\begin{array}{l}
\Gamma^{O}\left(f^{\prime}, \varepsilon\right) \longrightarrow \Gamma^{O}(F, E) ;(M, \phi) \longmapsto \\
\left.\Gamma^{-2}\left(f^{\prime},-\varepsilon\right) \longrightarrow \Gamma^{-2}(F,-\varepsilon) ;(M, \phi) \longmapsto \phi\right) \\
\Gamma_{O}\left(f^{\prime}, \varepsilon\right) \longrightarrow \Gamma_{O}(F, \varepsilon) ;(M, \psi) \longmapsto
\end{array}\right.
$$

$$
\text { ii) }\left\{\begin{array}{l}
r^{1}(F, \varepsilon) \\
r^{-1}(F,-\varepsilon) \\
\Gamma_{1}(F, \varepsilon)
\end{array}\right.
$$

of B-non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even e-symmetric } B^{\prime} \text {-forms over } A, \text { with } \\ \text { e-quadratic }\end{array}\right.$

$$
\left\{\begin{array}{l}
\Gamma^{1}\left(f^{\prime}, E\right) \longrightarrow \Gamma^{1}(F, \varepsilon) ;(M, \phi ; F, G) \longmapsto \\
r^{-1}\left(f^{\prime},-\varepsilon\right) \longrightarrow \Gamma^{-1}(F,-E) ;(M, \phi ; F, G) \longmapsto \longrightarrow \dot{\longrightarrow} \longrightarrow(M, \phi ; F, G) \\
\Gamma_{1}\left(f^{\prime}, \varepsilon\right) \longrightarrow \Gamma_{1}(F, \varepsilon) ;(M, \psi ; F, G) \longmapsto \partial(M, \psi ; F, G)
\end{array}\right.
$$

Proof: The expression of the low-dimensional relative Γ-groups in terms of forms and formations follows from Proposition 2.4.6 and the following generalizations of the correspondences of Propositions 1.6.1,1.6.4:
i) the homotopy equivalence classes of 1-dimensional $\left\{\begin{array}{l}\text { (even) E-symmetric } \\ \varepsilon \text {-quadratic }\end{array} \quad B\right.$-Poincaré B^{\prime}-acyclic complexes over A are in a natural one-one correspondence with equivalence classes of B-non-singular $\left\{\begin{array}{l}\text { (even) } E-s y m m e t r i c \\ \text { split } \\ \text { e-quadratic }\end{array} B^{\prime}\right.$-formations over A,
ii) the homotopy equivalence classes of connected

2-dimensional $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ B-Poincaré B'-acyclic complexes over A are in a natural one-one correspondence with equivalence classes of B-non-singular $\left\{\begin{array}{l}(\text { even })(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ B'-forms over A.
(We shall give a more detailed account of these correspondences in $\$ 3$ below, in the special case

2.5 Change of K -theory

There are evident extensions of all the results of s§2.1-2.4 to the intermediate L-groups of 51.10 and their intermediate Γ-group analogues. Here, we shall only state the extensions for which we shall need a reference.

Given a morphism of rings with involution

$$
f: A \longrightarrow B
$$

and *-invariant subgroups $X \subseteq \widetilde{K}_{m}(A), Y \subseteq \tilde{K}_{m}(B) \quad(m=0,1)$ such that

$$
B \otimes_{A} X \subseteq Y \subseteq \widetilde{K}_{m}(B)
$$

define the relative intermediate $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c}{\varepsilon-g u a d r a t i c ~}\end{array}\right.$ L-groups $\left\{\begin{array}{l}L_{Y, X}^{n}(f, \varepsilon) \\ L_{n}^{Y}, X(f, \varepsilon)\end{array}(n \in \mathbb{Z})\right.$ in the same way as the relative L-groups
$\left\{\begin{array}{l}L_{*}(f, \epsilon) \\ L_{*}(f, E)\end{array}\right.$ (which are the special case $\left.X=\widetilde{K}_{O}(A), Y=\widetilde{K}_{O}(B)\right)$ but using only algebraic Poincaré complexes over A with K-theory in X and algebraic Poincaré cobordisms over B with K -theory in Y . Given a morphism of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules

$$
\mathbf{f}: \mathbf{G} \longrightarrow \mathrm{H}
$$

define the relative Tate \mathbb{Z}_{2}-cohomology groups $\hat{H}^{*}\left(\mathbb{Z}_{2}\right.$; f) by

$$
\hat{H}^{n}\left(\mathbb{Z}_{2} ; f\right)=\frac{\left\{(x, y) \in G \oplus H \mid T x=(-)^{n-1} x, f x=y+(-)^{n-1} T y\right\}}{\left\{\left(u+(-)^{n-1} T u, f u+v+(-)^{n} T v\right) \mid(u, v) \in G \oplus H\right\}} \quad(n(\bmod 2))
$$

to fit into the long exact sequence

$$
\ldots \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; H\right) \longrightarrow \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; f\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; G\right) \xrightarrow{f} \hat{H}^{n}\left(\mathbb{Z}_{2} ; H\right) \longrightarrow \ldots
$$

Proposition 2.5.1 Given a morphism of rings with involution

$$
\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{~B}
$$

and *-invariant subgroups $X \subseteq X^{\prime} \subseteq \widetilde{K}_{m}(A), Y \subseteq Y^{\prime} \subseteq \widetilde{K}_{m}(B) \quad(m=0,1)$ such that

$$
B \otimes_{A} X \subseteq Y \subseteq \tilde{K}_{m}(B) \quad, \quad B \otimes_{A} X^{\prime} \subseteq Y^{\prime} \subseteq \tilde{K}_{m}(B)
$$

there is defined a commutative diagram of abelian groups with exact rows and columns

Similarly for the ε-quadratic L-groups L_{*}.
Proof: Immediate from Propositions 1.10.1,2.2.4.

Given a locally epic morphism of rings with involution

$$
\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{~B}
$$

and a *-invariant subgroup $x \subseteq \tilde{K}_{m}(B) \quad(m=0,1)$ define the intermediate $\left\{\begin{array}{l}\underline{\varepsilon-s y m m e t r i c} \\ \underline{\varepsilon-q u a d r a t i c}\end{array}\right.$-groups $\left\{\begin{array}{l}\Gamma_{X}^{n}(f, \varepsilon) \\ \Gamma_{n}^{X}(f, \varepsilon)\end{array} \quad(n \in \mathbb{Z})\right.$ in the

$$
\vdots
$$

same way as $\left\{\begin{array}{l}r^{n}(f, \varepsilon) \\ r_{n}(f, \varepsilon)\end{array}\right.$ (the special case $\left.X=\tilde{K}_{o}(B)\right)$ but using algebraic B-Poincaré complexes over A (based if $m=1)$ such that the induced algebraic Poincaré complexes over B have K -theory in X .

Proposition 2.5.2 The intermediate r-groups associated to *-invariant subgroups $X \subseteq Y \subseteq \tilde{K}_{m}(B)(m=0,1)$ are such that there is defined an exact sequence $\left\{\begin{array}{r}\cdots \longrightarrow \Gamma_{X}^{n}(f, \varepsilon) \longrightarrow \Gamma_{Y}^{n}(f, \varepsilon) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; Y / X\right) \longrightarrow \Gamma_{X}^{n-1}(f, \varepsilon) \longrightarrow \ldots \\ \left.\cdots \longrightarrow \Gamma_{n}^{X}(f, \varepsilon) \longrightarrow \Gamma_{n}^{Y}(f, \varepsilon) \longrightarrow \mathbb{Z}_{2} ; Y / X\right) \longrightarrow \Gamma_{n-1}^{X}(f, \varepsilon) \longrightarrow \ldots \\ (n \in \mathbb{Z})\end{array}\right.$

Proof: As for Proposition 1.10 .1 (the special case $\mathbf{f}=1: A \longrightarrow B=A$).

It follows from the intermediate analogues of Propositions 2.4.3,2.4.4 that the original r-groups of Cappell and Shaneson [1] are the intermediate quadratic Γ-groups

$$
\Gamma_{\star}(f)=\Gamma_{*}^{[f(\pi)]}(f: \mathbb{Z}[\pi] \longrightarrow B) \quad(\varepsilon=1)
$$

of a locally epic morphism $f: \mathbb{Z}\{\pi] \longrightarrow B$, with $\{f(\pi)\} \subseteq \hat{K}_{1}(B)$. Similarly, the P -groups of Matsumoto [l] are the intermediate t-quadratic Γ-groups

$$
P_{\star}(\varepsilon)=\Gamma_{*}^{(f(\pi)]}\left(f: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right], t\right)
$$

associated to a group extension

$$
\varepsilon:\{1\} \longrightarrow \mathrm{c} \longrightarrow \pi \longrightarrow{ }^{f} \longrightarrow \pi^{\prime} \longrightarrow\{1\}
$$

with C a cyclic group and $t \in \pi$ the image of a generator of C. See $\$ 7.8$ for a discussion of the geometric significance as codimension 2 surgery obstruction groups of the Γ - and p-groups.

53. Localization

Let A be a ring with involution, and let $S C A$ be a multiplicative subset of non-zero-divisors such that the ring with involution $S^{-1} A$ inverting S is defined - this is the "localization of A away from S ". We shall now apply the theory of $\$ \$ 1,2$ to express the relative $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{l}
L^{\star}\left(A \longrightarrow S^{-1} A, E\right) \\
L_{\star}\left(A \longrightarrow S^{-1} A, E\right)
\end{array} \text { of the inclusion } A \longrightarrow S^{-1} A\right. \text { as the }
$$

cobordism groups of algebraic Poincaré complexes over A which become contractible over $S^{-1} A$.

Our role model here is the localization exact sequence of algebraic k-theory, which identifies the relative K-groups $K_{\star}\left(A \longrightarrow S^{-1} A\right)$ appearing in the change of rings exact sequence

$$
\ldots \longrightarrow K_{n}(A) \longrightarrow K_{n}\left(S^{-1} A\right) \longrightarrow K_{n}\left(A \longrightarrow S^{-1} A\right) \longrightarrow K_{n-1}(A) \longrightarrow \ldots(n \in \mathbb{Z})
$$

(where $K_{n}(A)=K_{n}$ (exact category of f.g. projective A-modules)) with the K-groups

$$
\begin{array}{r}
K_{n}(A, S)=K_{n-1}(\text { exact category of } S \text {-torsion A-modules of } \\
\text { homological dimension } 1)(n \in \mathbb{Z}),
\end{array}
$$

that is

$$
K_{n}\left(A \longrightarrow S^{-1} A\right)=K_{n}(A, S) \quad(n \in \mathbb{Z}) .
$$

This identification was first obtained for central S fas = sa for all a $\in A, s \in S$) hy Bass $[2, I X]$ for $n=1$, and then extended to $n \geqslant 2$ by Quillen (Grayson [1]), and to $n \leqslant 0$ by Carter [1]. The extension to eccentric localizations $A \longrightarrow S^{-1} A$ (i.e. those in which S is not necessarily central in A) is due to Grayson [2].

The "S-adic completion of A " is the inverse limit

$$
\hat{A}=\frac{\operatorname{Lim}}{\operatorname{ses}} A / s A
$$

which fits into the cartesian square of rings

The functor
$\{$ h.d. 1 S -torsion A -modules $\} \longrightarrow\{h . d .1 \hat{S}$-torsion \hat{A}-modules $;$

is an isomorphism of exact categories (an observation due to Karoubi [21), so that it induces excision isomorphisms in the relative K -groups

$$
K_{\star}(A, S) \longrightarrow K_{\star}(\hat{A}, \hat{S})
$$

and there is defined a Mayer-Vietoris exact sequence

$$
\cdots \longrightarrow K_{n}(A) \longrightarrow K_{n}\left(S^{-1} A\right) \oplus K_{n}(\hat{A}) \longrightarrow K_{n}\left(\hat{S}^{-1} \hat{A}\right) \longrightarrow K_{n-1}(A) \longrightarrow \ldots(n \in \mathbb{Z})
$$

In particular, this applies to the "arithmetic square"

associated to a group ring $A=\mathbb{Z}\{\pi\}$ with $S=\mathbb{Z}-\{0\} \subset A$,

$$
\hat{\mathbb{Z}}=\frac{\operatorname{Lim}}{\mathrm{L}} \mathbb{Z} / s \mathbb{Z}=\prod_{\mathrm{p}} \hat{\mathbb{Z}}_{\mathrm{p}} \text { (p prime) }
$$

the profinite completion of \mathbb{Z}, and

$$
\hat{\mathscr{Q}}=\hat{\mathrm{S}}^{-1} \hat{\mathbb{Z}}=\prod_{\mathrm{p}}\left(\hat{\mathbf{Q}}_{\mathrm{p}}, \hat{\mathbb{Z}}_{\mathrm{p}}\right)
$$

the $r i n g$ of finite adeles of \mathbb{Z}.

Following some generalities in $\$ 3.1$ on the localization of rings with involution we shall define in $\mathbf{S} 3.2$ the

$$
\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { L-groups }\left\{\begin{array}{l}
L^{n}(A, S, E) \\
L_{n}(A, S, \varepsilon)
\end{array} \text { (n } \in \mathbb{Z}\right) \text { of } S^{-1} A\right. \text {-acyclic }
$$

algebraic Poincare complexes over A. In $\$ 3.3$ the algebraic Wu classes of $\$ 1.4$ will be generalized to linking Wu classes, the analogues of the Wu classes appropriate to $S^{-1} A$-acyclic complexes over A. In $\$ 53.4,3.5,3.6$ we shall show that there are natural identifications

$$
\left\{\begin{array}{l}
L_{S}^{*}\left(A \longrightarrow S^{-1} A, \varepsilon\right)=L^{\star}(A, S, \varepsilon) \\
L_{\star}^{S}\left(A \longrightarrow S^{-1} A, \varepsilon\right)=L_{\star}(A, S, \varepsilon)
\end{array}\right.
$$

the groups on the left being the relative intermediate

$$
\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { L-qroups of the localization map }
$$

associated to the *-invariant subgroup

$$
S=i m\left(\widetilde{K}_{0}(A) \longrightarrow \tilde{K}_{0}\left(S^{-1} A\right)\right) \subseteq \tilde{K}_{O}\left(S^{-1} A\right)
$$

so that there is obtained a localization exact sequence in algebraic L-theory

$$
\left\{\begin{aligned}
\cdots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow L^{n}(A, S, \varepsilon) \longrightarrow L^{n-1}(A, \varepsilon) \longrightarrow & \longrightarrow \\
\cdots & L_{n}(A, \varepsilon) \longrightarrow L_{n}(A, S, \varepsilon) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow \\
& (n \in \mathbb{Z})
\end{aligned}\right.
$$

(Special cases of these sequences have been obtained by many previous authors, listed below;. In $\$ \$ 3.4,3.5$ the low-dimensional $\left\{\begin{array}{l}\text { E-symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$-groups $\left\{\begin{array}{l}L^{n}(A, S, \varepsilon) \\ L_{n}(A, S, \varepsilon)\end{array}(n \leqslant l)\right.$ will be interpreted as
Witt groups of non-singular $S^{-1} A / A-v a l u e d$ linking forms and
linking formations involving S-torsion A-modules of homological dimension l. It will thus be possible to express the lowerdimensional e-symmetric L-theory localization exact sequence as a localization exact sequence of witt groups

$$
\begin{aligned}
& \cdots \longrightarrow L^{2}(A, S, \varepsilon) \longrightarrow M^{\varepsilon}(A) \longrightarrow M_{S}^{\varepsilon}\left(S^{-1} A\right) \longrightarrow M\left\langle v_{O}\right)^{\varepsilon}(A, S) \longrightarrow L^{\varepsilon}(A) \\
& \longrightarrow \mathrm{L}_{\mathrm{S}}^{\varepsilon}\left(\mathrm{S}^{-1} A\right) \longrightarrow \mathrm{L}\left\langle v_{0}\right\rangle^{\varepsilon}(A, S) \longrightarrow M\left\langle v_{O}\right\rangle^{-\varepsilon}(A) \longrightarrow M\left(v_{0}\right\rangle^{-\varepsilon}\left(S^{-1} A\right) \\
& \longrightarrow M_{-\varepsilon}(A, S) \longrightarrow L\left\langle v_{O}\right\rangle^{-\varepsilon}(A) \longrightarrow L\left\langle v_{O}\right\rangle_{S}^{-\varepsilon}\left(S^{-1} A\right) \longrightarrow L_{-\varepsilon}(A, S) \\
& \longrightarrow M_{\varepsilon}(A) \longrightarrow M_{\varepsilon}^{S}\left(S^{-1} A\right) \longrightarrow \tilde{M}_{\varepsilon}(A, S) \longrightarrow L_{\varepsilon}(A) \longrightarrow L_{\varepsilon}\left(S^{-1} A\right) \\
& \longrightarrow \tilde{L}_{\varepsilon}(A, S) \longrightarrow M_{-\varepsilon}(A) \longrightarrow M_{-\varepsilon}^{S}\left(S^{-1} A\right) \longrightarrow \tilde{M}_{-\varepsilon}(A, S) \longrightarrow
\end{aligned}
$$

which extends to the left as the localization exact sequence in the higher-dimensional e-symmetric L-groups (non-periodic in general) and to the right as the 12 -periodic localization exact sequence in the $\pm \varepsilon$-quadratic Witt groups. Here,
the witt group of non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric forms } \\ \varepsilon-q u a d r a t i c\end{array}\right.$
(resp. formations) over A, and $\left\{\begin{array}{l}L_{S}^{\varepsilon}\left(S^{-1} A\right)=L_{S}^{O}\left(S^{-1} A, \varepsilon\right) \\ L\left\langle v_{O}\right\rangle_{S}^{\varepsilon}\left(S^{-1} A\right)=L_{S}^{-2}\left(S^{-1} A,-\varepsilon\right) \\ L_{E}^{S}\left(S^{-1} A\right)=L_{O}^{S}\left(S^{-1} A, E\right)\end{array}\right.$
(resp. $\left\{\begin{array}{l}M_{S}^{\varepsilon}\left(S^{-1} A\right)=L_{S}^{1}\left(S^{-1} A, \varepsilon\right) \\ \left.M\left(v_{O}\right)_{S}^{\varepsilon}\left(S^{-1} A\right)=L_{S}^{-1}\left(S^{-1} A,-\varepsilon\right)\right) \text { is the Witt group of } \\ M_{\varepsilon}^{S}\left(S^{-1} A\right)=L_{1}^{S}\left(S^{-1} A, \varepsilon\right)\end{array}\right.$
non-singular $\left\{\begin{array}{l}\epsilon-\text { symmetric } \\ \text { even } \varepsilon-s y m m e t r i c ~ f o r m s ~(r e s p . ~ f o r m a t i o n s) ~ o v e r ~\end{array}\right.$
$S^{-1} A$ involving only the $f . g$. projective $S^{-1} A-m o d u l e s$ induced from f.g. projective A-modules. The relative L-group

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ L (v _ { O } \rangle ^ { \varepsilon } (A , S) = L ^ { O } (A , S , E) } \\
{ L _ { E } (A , S) = L ^ { - 2 } (A , S , - \varepsilon) } \\
{ \tilde { L } _ { E } (A , S) = L _ { O } (A , S , E) }
\end{array} \quad \left(\text { resp. } \left\{\begin{array}{l}
M\left\langle v_{O}\right\rangle^{E}(A, S)=L_{1}^{1}(A, S, E) \\
M_{E}(A, S)=L^{-1}(A, S,-\varepsilon) \\
\tilde{M}_{E}(A, S)=L_{1}(A, S, E)
\end{array}\right.\right.\right. \\
& \text { is the Witt group of non-singular }\left\{\begin{array}{l}
\text { even } \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic } \\
\text { split } \varepsilon \text {-quadratic }
\end{array}\right.
\end{aligned}
$$

linking forms (resp. formations) over (A,S).
A localization exact sequence for witt groups of the type

$$
\begin{aligned}
& \cdots \longrightarrow M^{\varepsilon}(A) \longrightarrow M_{S}^{\varepsilon}\left(S^{-1} A\right) \longrightarrow M^{\varepsilon}(A, S) \longrightarrow L^{\varepsilon}(A) \longrightarrow L_{S}^{\varepsilon}\left(S^{-1} A\right) \\
& \longrightarrow L^{\varepsilon}(A, S) \longrightarrow M^{-\varepsilon}(A) \longrightarrow M_{S}^{-\varepsilon}\left(S^{-1} A\right) \longrightarrow
\end{aligned}
$$

for arbitrary rings with involution A was first obtained by Karoubi [2], [3] in the case 1/2€A (when the various categories of linking forms over (A, S) coincide), following on from the work of earlier authors for Dedekind rings A - see $\$ 4$ below for a discussion of the L-theory of Dedekind rings.

A localization exact sequence for the surgery obstruction groups of the type

$$
\begin{aligned}
\cdots \longrightarrow L_{n}(\mathbb{Z}[\pi]) \longrightarrow & I_{n}^{S}(\mathbb{Q}[\pi]) \longrightarrow L_{n}(\mathbb{Z}[\pi], S) \longrightarrow L_{n-1}(\mathbb{Z}[\pi]) \longrightarrow \cdots \\
& (n(\bmod 4), S=\mathbb{Z}-\{0\} \subset \mathbb{Z}[\pi])
\end{aligned}
$$

was first obtained by Pardon [1],[2],[3] for finite groups π, following on from the earlier work on linking forms in
odd-dimensional surgery obstruction theory of wall [2], Passman and Petrie [1], and Connolly [1]. The algebraic methods of Pardon [2] apply to the quadratic L-groups of more general localizations, provided that $1 / 2 \in S^{-1} A(e . g$. if $2 \in S$).

The localization exact sequence of witt groups

$$
L^{\varepsilon}(A) \longrightarrow L_{S}^{E}\left(S^{-1} A\right) \longrightarrow L\left\langle v_{0}\right\rangle^{\varepsilon}(A, S) \longrightarrow M\left\langle v_{0}\right\rangle^{-\varepsilon}(A) \longrightarrow M\left\langle v_{O}\right\rangle^{-\varepsilon}\left(S^{-1} A\right)
$$

has also been obtained by Carlsson and Milgram [3].
In $\$ 3.6$ we shall apply the localization exact sequence
in the $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups to prove that
$\left\{\begin{array}{l}\text { if im }\left(\hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0 \\ \text { for all } A, S, \varepsilon\end{array} \quad\right.$ there are defined
excision isomorphisms in the relative L-groups

$$
\left\{\begin{array}{l}
L^{n}(A, S, \varepsilon) \longrightarrow L^{n}(\hat{A}, \hat{S}, \varepsilon) \\
L_{n}(A, S, \varepsilon) \longrightarrow L_{n}(\hat{A}, \hat{S}, \varepsilon)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

giving rise to a Mayer-Vietoris exact sequence in the absolute L-groups $\left\{\begin{array}{l}\cdots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \oplus L^{n}(\hat{A}, \varepsilon) \longrightarrow L_{S^{n}}^{n}\left(\hat{S}^{-1} \hat{A}, \varepsilon\right) \longrightarrow L_{n}^{n-1}(A, \varepsilon) \longrightarrow L_{n}(A, \varepsilon) \longrightarrow S_{n}\left(S^{-1} A, \varepsilon\right) \oplus L_{n}(\hat{A}, \varepsilon) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow \\ \cdots \longrightarrow L_{n} \longrightarrow\end{array}\right.$

$$
(n \in \mathbb{Z})
$$

Such a Mayer-Vietor is exact sequence was first obtained by Wall [8] for the quadratic L-groups of a finitely generated ring A with $S=\mathbb{Z}-\{O\} \subset A$, using arithmetic methods such as the strong approximation theorem for algebraic groups over $\mathbf{0}$.
Karoubi [2] obtained such a sequence for more genral localizations $A \longrightarrow S^{-1} A$, but with the restriction $1 / 2 \in A$. Bak [2] has
obtained a similar sequence in the context of the unitary algebraic K-theory of Bass [3].

In $\S 3.6$ we shall also use the localization exact sequen for $S=\mathbb{Z}-\{0\} \subset A$ and the natural action of the symmetric witt ring $L^{\circ}(\hat{\mathbb{Z}})$ (which is of exponent 8) on the relative L-groups $\left\{\begin{array}{l}L^{\star}(\hat{A}, \hat{S}, E)=L^{\star}(A, S, E) \\ L_{\star}(\hat{A}, \hat{S}, \varepsilon)=L_{\star}(A, S, \varepsilon)\end{array}\right.$ to prove that the natural maps

$$
\left\{\begin{array}{l}
L^{\star}(A, E) \longrightarrow L_{S}^{\star}\left(S^{-1} A, E\right) \\
L_{\star}(A, E) \longrightarrow L_{\star}^{S}\left(S^{-1} A, E\right)
\end{array}\right.
$$

are isomorphisms modulo 8 -torsion for any torsion-free ring with involution A (e.g. a group $r i n g A=\mathbb{Z}[\pi]$, in which case $\left.S^{-1} A=\mathbb{Q}(\pi)\right)$. Results of this type were first obtained for the surgery obstruction groups $L_{\star}(\mathbb{Z}[\pi])$ of finite groups. Taking for granted the result that the natural maps

$$
L_{2 i}^{S}(Q[\pi]) \longrightarrow L_{2 i}(\mathbb{R}[\pi]) \quad(i(\bmod 2), \pi f i n i t e)
$$

are isomorphisms modulo 2-primary torsion it is possible to interpret Theorems 13A.3, 13A.4 i) of Wall [4] as stating that the natural maps

$$
L_{2 i}(Z[\pi]) \longrightarrow L_{2 i}^{S}(\mathbb{Q}[\pi]) \quad(i(\bmod 2), \pi f \text { inite })
$$

are isomorphisms modulo 2-primary torsion. Passman and Petrie
and Connolly [l] showed that the natural maps

$$
L_{2 i+1}(\mathbb{Z}[\pi]) \longrightarrow L_{2 i+1}^{S}(\mathbb{Q}(\pi))(i(\bmod 2), \pi f i n i t e)
$$

are isomorphisms modulo 2^{j}-torsion, $j \leqslant 3$. (Actually, they wer working with the simple quadratic L-groups). Karoubi [2] obta similar results for the L-groups of arbitrary torsion-free ri with involution such that $1 / 2 \in A$.

The localization exact sequence and the Mayer-Vietoris exact sequence associated to a localization-completion squar are key tools in the computations of the surgery obstructior groups $L_{\star}(\mathbb{Z}[\pi])$ of finite groups π due to Wall [9], Bak [2], Pardon [5], Carlsson and Milgram [1],[2], Kolster [l], Bak a Kolster [1], Hambleton and Milgram [2].

The localization exact sequence for the quadratic L-gr $L_{*}(R[\pi])$ of group rings $R[\pi] \quad\left(R=S^{-1} \mathbb{Z} \subseteq \mathbb{Q}, S \subset \mathbb{Z}-\{O)\right.$ has a ge interpretation involving homotopy-theoretic localization, which is discussed in §7.7. below.

3.1 Localization and completion

We refer to Chapter II of Stenström [1] for the general
theory of localization in noncommutative rings.
Let A be a ring with involution.
A subset $S \subset A$ is multiplicative if
i) stes for all $s, t \in S$
ii) if sa=0 $=0$ for some $s \in S, a \in A$ then $a=0 \in A$
iii) $\bar{s} \in S$ for all $s \in S$
iv) for all a $\in A, s \in S$ there exist $b, b^{\prime} \in A, t, t^{\prime} \in S$
such that $a t=s b, t^{\prime} a=b^{\prime} s \in A$
("the two-sided ore condition")
v) $l \in S$.

We localization of A away from $S S^{-1} A$ is the ring with involution defined by the equivalence classes of pairs

$$
(a, s) \in A \times s
$$

finder the relation
$(a, s) \sim(b, t)$ if there exist $c, d \in A$ such that

$$
c a=d b \in A, c s=d t \in S \subset A
$$

(1th

$$
\begin{aligned}
&(a, s)+\left(a^{\prime}, s^{\prime}\right)=\left(b^{\prime} a+b a^{\prime}, t\right) \text { if } b, b^{\prime} \in A \text { are such that } \\
& t=b^{\prime} s=b s^{\prime} \in S \subset A, \\
&(a, s) .\left(a^{\prime}, s^{\prime}\right)=\left(b a^{\prime}, t s\right) \text { if } b \in A, t \in S \text { are such that } \\
& t a=b s^{\prime} \in A, \\
&(\bar{a}, \bar{s})=(b, t) \text { if } b \in A, t \in S \text { are such that } \\
& t \bar{a}=b \bar{s} \in A .
\end{aligned}
$$

he equivalence class of $(a, 5)=(1,5) .(a, 1)$ will be denoted by

$$
\frac{\mathrm{a}}{\mathrm{~s}} \in \mathrm{~s}^{-1} \mathrm{~A}
$$

as usual. The injection

$$
A \longrightarrow S^{-1} A ; a \vdash \longrightarrow \frac{a}{1}
$$

is a locally epic morphism of rings with involution.
An A-module chain complex C is S-acyclic if $H_{*}\left(S^{-1} A \otimes_{A} C\right)=$ that is if it is $S^{-1} A-a c y c l i c$ in the sense of $\$ 2.4$.

Here are some important examples of localization:
i) if A is an algebra over an integral domain R, then

$$
S=R-\{O\} \subset R \subset A
$$

is a multiplicative subset of both R and A. The localization $S^{-1} R=F$ is the quotient field of R and $S^{-1} A=F Q_{R} A$ is the induced algebra over F.
ii) if A is an algebra over a commutative $r i n g R$, and $\hat{\rho}$ is a prime ideal of R, then

$$
S=R-P \subset R \subseteq A
$$

is a multiplicative subset of both R and A. The localization $S^{-1} R=R_{p}$ is the "localization of A at $P "$, and $S^{-1} A=A_{p}$ is the "localization of A at ${ }^{\text {P". }}$
(The L-theory of localizations of type i) and ii) will be studied in $\$ 4$ in the case when R is a Dedekind ring).
iii) if A is a ring with involution and $\alpha: A \longrightarrow A$ is a ring automorphism such that $\overline{\alpha(a)}=\alpha^{-1}(\bar{a}) \in A$ for all $a \in A$ (e.g. $\alpha=1$) let x be an indeterminate over A such that

$$
a x=x \alpha(a) \quad(a \in A) .
$$

The " α-twisted polynomial extension of $A " A_{\alpha}[x]$ is then defined, a ring with involution

$$
-A_{\alpha}[x] \longrightarrow A_{\alpha}[x] ; \sum_{j=0}^{\infty} a_{j} x^{j} \longmapsto \sum_{j=0}^{\infty} x^{j} \bar{a}_{j}
$$

$$
x=\left\{x^{k} \mid k \geqslant 0\right\} \subset A_{\alpha}[x]
$$

is such that the localization

$$
x^{-1} A_{\alpha}[x]=A_{\alpha}\left[x, x^{-1}\right]
$$

is the " α-twisted Laurent polynomial extension of A ".
The L-theory of such polynomial extensions will be dealt with in $\$ 5$ below.
iv) if $A=\mathbb{Z}[\pi]$ is the group r ing of a group π which is an extension of a finitely generated torsion-free nilpotent group by a finite extension of a polycyclic group then

$$
S=\{1+i \mid i \in \operatorname{ker}(\mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\rho])\} \subset A
$$

is a multiplicative subset, such that a finite-dimensional A-module chain complex is $\mathbb{Z}[\rho]$-acyclic if and only if it is S-acyclic. This example is due to Smith [1],[2]. We shall consider a particular case of this type of localizatior in $\$ 7.9$ below, for $\pi=\mathbb{Z}, \rho=\{1\}$, in connection with the algebraic theory of knot cobordism.

A multiplicative subset $S \subset A$ is central if

$$
a s=s a \in A \text { for } a l l a \in A, s \in S
$$

For central SCA it is possible to express the localization $S^{-1} A$ in the familiar way as the set of equivalence classes of pairs $(a, s) \in A \times S$ under the relation

$$
(a, s) \sim(b, t) \text { if at }=b s \in A \text {, }
$$

with

$$
\begin{aligned}
& (a, s)+\left(a^{\prime}, s^{\prime}\right)=\left(a s^{\prime}+a^{\prime} s, s s^{\prime}\right) \\
& (a, s) \cdot\left(a^{\prime}, s^{\prime}\right)=\left(a a^{\prime}, s s^{\prime}\right) \\
& (\bar{a}, \bar{s})=(\bar{a}, \bar{s}) .
\end{aligned}
$$

We shall now develop some general properties of modules and chain complexes over a ring with involution A and the localization $S^{-1} A$ of A away from a multiplicative subset $S C A$ (which in general will not be assumed to be central).

An A-module M induces an $S^{-1} A$-module

$$
s^{-1} M=s^{-1} A \mathbb{A}_{A} M
$$

The elements of $\mathrm{s}^{-1} \mathrm{M}$ can be regarded as the equivalence classt $\frac{x}{s}$ of pairs $(x, s) \in M \times S$ under the relation
$(x, s) \sim(y, t)$ if there exist $c, d \in A$ such that $c x=d y \in M, c s=d t e s \subset A$
with

$$
\begin{gathered}
(x, s)+\left(x^{\prime}, s^{\prime}\right)=\left(b^{\prime} x+b x^{\prime}, t\right) \text { if } b, b^{\prime} \in A \text { are } \\
\text { such that } t=b^{\prime} s=b s^{\prime} \in S \subset A \\
(a, s)(y, t)=(b y, u s) \text { if } b \in A, u \in S \text { are such that } \\
\text { ua }=b t \in A .
\end{gathered}
$$

(Again, if $S C A$ is central this can be simplified to $(x, s) \sim(y, t)$ if $t x=s y \in M$
$(x, s)+\left(x^{\prime}, s^{\prime}\right)=\left(s^{\prime} x+s x^{\prime}, s s^{\prime}\right)$

$$
(a, s)(y, t)=(a y, s t)
$$

If M is a f.g. projective A-module then $S^{-1} M$ is a f.g. projec $S^{-1} A$-module, and there is defined a natural $S^{-1} A-m o d u l e$ isomorphism

$$
\begin{aligned}
S^{-1}\left(M^{\star}\right)= & S^{-1} \operatorname{Hom}_{A}(M, A) \longrightarrow\left(S^{-1} M\right) \bullet \operatorname{Hom}_{S^{-1}}\left(S^{-1} M, S^{-1} A\right) \\
& \frac{f}{s} \longmapsto \longrightarrow\left(\frac{x}{t} \longmapsto \frac{f(x)}{t} \cdot \frac{1}{S}\right)
\end{aligned}
$$

allowing us to write

$$
S^{-1} M^{*}=S^{-1}\left(M^{\star}\right)=\left(S^{-1} M\right)^{*}
$$

An A-module morphism $f \in \operatorname{Hom}_{A}(M, N)$ induces an $S^{-1} A$-module morphism

$$
S^{-1} f: S^{-1} M \longrightarrow S^{-1} N: \frac{x}{S} \longmapsto \frac{f(x)}{S}
$$

An \underline{S}-isomorphism is an A-module morphism $f \in \operatorname{Hom}_{A}(M, N)$ such that $S^{-1} f \in \operatorname{Hom}_{S}{ }^{-1} A_{A}\left(S^{-1} M, S^{-1} N\right)$ is an $S^{-1} A-m o d u l e$ isomorphism, i.e. f is an $S^{-1} A-i s o m o r p h i s m$ in the sense of $\$ 2.4$.

An A-module M is $\underline{S-t o r s i o n ~ i f ~}$

$$
s^{-1} M=0,
$$

that is if for every $x \in M$ there exists $s \in S$ such that

$$
s x=0 \in M .
$$

An (A,S)-module M is an S-torsion A-module of homological dimension 1 , that is an A-module which admits a f.g. projective A-module resolution of length 1

with $d \in \operatorname{Hom}_{A}\left(P_{1}, P_{0}\right)$ an S-isomorphism.
The S-dual M^{\wedge} of an (A, S)-module M is the (A, S)-module

$$
M^{\wedge}=\operatorname{Hom}_{A}\left(M, S^{-1} A / A\right)
$$

with A acting by

$$
A \times M^{\wedge} \longrightarrow M^{\wedge} ;(a, f) \longmapsto(x \longmapsto f(x), \bar{a})
$$

The S-dual has f.g. projective A-module resolution

with
$T h: P_{1}^{\star} \longrightarrow M^{\wedge} ; f \longmapsto\left([x] \longmapsto \frac{f(y)}{S}\right)$
$\left(x \in P_{O},[x] \in M, \quad s \in S, y \in P_{1}, s x=d y \in P_{O}\right)$.
The natural A-module isomorphism

$$
M \longrightarrow M^{\wedge \wedge} ; x \longmapsto(\mathrm{f} \longmapsto \overline{\mathrm{f}(\mathrm{x})})
$$

will be used to identify

$$
M^{\wedge n}=M
$$

If M, N are (A, S)-modules there is defined an S-duality isomorphism of abelian groups
$\operatorname{Hom}_{A}(M, N) \longrightarrow \operatorname{Hom}_{A}\left(N^{\wedge}, M^{\wedge}\right) ; f \longmapsto\left(f^{\wedge}: g \longmapsto(x \longmapsto g f(x))\right)$.
For example, a $(\mathbb{Z}, \mathbb{Z}-\{0\})$-module M is the same as a finite abelian group and the $(\mathbb{Z}-\{0\})-$ dual

$$
M^{\wedge}=\operatorname{Hom}_{\mathbb{Z}}(M, Q / \mathbb{Z})
$$

is the character group.
An n-dimensional (A, S)-module chain complex is an A-module chain complex

such that each $C_{r}(O \leqslant r \leqslant n)$ is an (A,S)-module. The S-dual A-module chain complex

is also an n-dimensional (A, S)-module chain complex. The homology A-modules $H_{*}(C)$ are S-torsion (but not in general (A, S)-modules). since localization is exact

$$
S^{-1} H_{\star}(C)=H_{\star}\left(S^{-1} C\right)=0
$$

The \underline{s}-dual cohomolcgy $H_{S}^{*}(C)$ are the S-torsion A-modules defined by

$$
H_{S}^{r}(C)=H_{n-r}\left(C^{n-\wedge}\right)=\operatorname{ker}\left(d^{\wedge}: C_{r}^{\wedge} \longrightarrow C_{r+1}^{\wedge}\right) / i m\left(d^{\wedge}: C_{r-1}^{\wedge} \longrightarrow C_{r}^{\wedge}\right)(O \leqslant r \leqslant n)
$$

If $\in \in A$ is a central unit such that

$$
\bar{\varepsilon}=E^{-1} E A
$$

then $\frac{\varepsilon}{1} \in S^{-1} A$ is a central unit (also to be denoted by ε) such that

$$
\left(\frac{\vec{E}}{1}\right)=\left(\frac{\mathrm{E}}{1}\right)^{-1} \in S^{-1} A
$$

Further below we shall define the $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric } \\ \text { e-quadratic }\end{array}\right.$
Q_{S}-groups $\left\{\begin{array}{l}Q_{S}^{\star}(C, \varepsilon) \\ Q\left\langle v_{O}\right\rangle S_{S}^{\star}(C, \varepsilon) \text { of a finite-dimensional }(A, S) \text {-module } \\ Q_{\star}^{S}(C, \varepsilon)\end{array}\right.$ chain complex C, generalizing the Q-groups of a finitedimensional A-module chain complex defined in $\$ 1.1$. (Indeed, the Q_{S}-groups of C will be defined to be the Q-groups of a finite-dimensional A-module chain complex D such that $\left.H_{\star}(D)=H_{\star}(C), H^{\star}(D)=H_{S}^{\star-1}(C)\right)$. The localization exact sequenc of $\$ 3.2$ will identify the relative $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-group $\left\{\begin{array}{l}L_{S}^{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right) \\ L_{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right)\end{array}(n \geqslant 0)\right.$ with the cobordism group of $" n-d i m e n s i o n a l\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array} \quad\right.$ Poincaré complexes over $(A, S) "$ $\left\{\begin{array}{l}\left(C, \phi \in Q\left\langle v_{O}\right\rangle{ }_{S}^{n}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{n}^{S}(C, \varepsilon)\right)\end{array}\right.$ with C an n-dimensional (A, S)-module chain complex and $\left\{\begin{array}{l}\Phi \text { such that there are defined Poincaré duality } \\ \psi\end{array}\right.$ isomorphisms of S -torsion A -modules

$$
\left\{\begin{array}{l}
\phi_{O}^{S}: H_{S}^{\star}(C) \longrightarrow \sim H_{n-\star}(C) \\
\left(1+T_{E}\right) \psi_{O}^{S}: H_{S}^{\star}(C) \longrightarrow H_{n-\star}(C)
\end{array}\right.
$$

In $\$ 3.4$ (resp. §3.5) we shall identify the n-dimensional $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ Poincaré complexes over (A, S) for
$n=0$ (resp. $n=1)$ with the "non-singular $\left\{\begin{array}{l}\text { (even) e-symmetri } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking forms (resp. formations) over (A,S)", going on in s3. to identify the relative L-groups $\begin{cases}L_{S}^{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right) & (-\infty<n \leqslant 1) \\ L_{n}^{S}\left(A \longrightarrow S^{-1} A, \varepsilon\right) & (n \in \mathbb{Z})\end{cases}$ with the Witt groups of such objects by analogy with the identifications of $\$ 1.6$ of the absolute L-groups $\left\{\begin{array}{ll}L^{n}(A, E) & (-\infty<n \leqslant 1) \\ L_{n}(A, \varepsilon) & (n \in \mathbb{Z})\end{array}\right.$ with the Witt groups of forms and format over A. A "linking form over (A, S)" is an (A, S)-module M together with a pairing

$$
M \times M \longrightarrow S^{-1} A / A
$$

and a "linking formation over (A, S)" is a linking form over together with a lagrangian and a sublagrangian. The familiar equivalence of categories
\{S-acyclic l-dimensional A-module chain complexes\}

$$
\longrightarrow \longrightarrow(A, S) \text {-modules }\} ; C \longmapsto H_{0}(C) \text {. }
$$

will be generalized to equivalences
$\{S$-acyclic algebraic Poincaré complexes over A\}
\longrightarrow \{algebraic Poincaré complexes over (A,S)
The maximal S-torsion submodule $T_{S}{ }^{M}$ of an A-module M is the submodule

$$
\begin{aligned}
T_{S} M & =\{x \in M \mid s x=0 \in M \text { for some } s \in S\} \\
& =\operatorname{ker}\left(M \longrightarrow S^{-1} M_{M} x \longmapsto \frac{x}{S}\right) \subseteq M
\end{aligned}
$$

The A-module M is S-torsion if and only if

$$
T_{S} M=M
$$

The linking pairing ϕ_{O}^{S} of an n-dimensional ε-symmetric complex over $A\left(C, \phi \in Q^{n}(C, \varepsilon)\right)$ is defined by

$$
\begin{aligned}
& \phi_{O}^{S}: T_{S} H^{r}(C) \times T_{S} H^{n-r+1}(C) \longrightarrow S^{-1} A / A ; \\
& (x, y) \longmapsto \frac{1}{S} \phi_{O}(x)(z) \\
& \left(x \in C^{r}, y \in C^{n-r+1}, z \in C^{n-r}, s \in S, d^{*} z=s y \in C^{n-r+1}\right)
\end{aligned}
$$

and satisfies

$$
\begin{aligned}
& \text { i) } \phi_{O}^{S}\left(x, y+y^{\prime}\right)=\phi_{O}^{S}(x, y)+\phi_{O}^{S}\left(x, y^{\prime}\right) \\
& \text { ii) } \phi_{O}^{S}(x, a y)=a \phi_{O}^{S}(x, y) \\
& \text { iii) } \phi_{O}^{S}(y, x)=(-)^{r(n-r+1)} \overline{\phi_{O}^{S}(x, y)} \\
& \quad\left(x \in T_{S} H^{r}(C), y, y^{\prime} \in T_{S} H^{n-r+1}(C), a \in A\right) .
\end{aligned}
$$

The name arises as follows.
Let M be a compact n-dimensional manifold, and let \tilde{M} be a covering of M with group of covering translations π such that the orientation map of M factors as

$$
w(M): \pi_{1}(M) \longrightarrow \pi \xrightarrow{w} \mathbb{Z}_{2}
$$

for some group morphism w, so that there is defined a symmetric Poincaré complex over $\mathbb{Z}[\pi]$ with the w-twisted involution

$$
\sigma^{\star}(M)=\left(C(\tilde{M}), \phi \in Q^{n}(C(\tilde{M}))\right.
$$

(as recalled from II. in $\$ 1.2$ above). Define a multiplicative subset

$$
S=\mathbb{Z}-\{0\} \subset \mathbb{Z}[\pi]
$$

The linking pairing of $\mathrm{o}^{*}(\mathrm{M})$

$$
\phi_{0}^{S}: T_{S} H^{r}(\tilde{M}) \times T_{S} H^{n-r+1}(\tilde{M}) \longrightarrow 0[\pi] / \mathbb{Z}[\pi]
$$

agrees via the Poincare duality $H^{*}(\tilde{M}) \cong H_{n-\star}(\tilde{M})$ with the pairing

$$
T_{S}{ }_{n-r}(\widetilde{M}) \times T_{S} H_{r-1}(\widetilde{M}) \longrightarrow \mathbb{Q}[\pi] / \mathbb{Z}[\pi]
$$

defined by the geometric linking numbers of torsion homology classes, as originally studied by deRham [1] and Seifert [l] (for $\pi=\{1\}$) and more recently by Kervaire and Milnor [1], Wall [2] and Pardon [3] (for π finite) in connection with odd-dimensional surgery obstruction theory.

In $£ 4.2$ below we shall identify the cobordism class $\left\{\begin{array}{l}(C, \phi) \in L^{2 i}(A, \varepsilon) \\ (C, \phi) \in L^{2 i-1}(A, \varepsilon)\end{array}\right.$ of a $\left\{\begin{array}{l}2 i \\ 2 i-1\end{array}\right.$-dimensional ε-symmetric Poincaré complex $\left\{\begin{array}{l}\left(C, \phi \in Q^{2 i}(C, E)\right) \\ \left(C, \phi \in Q^{2 i-1}(C, \varepsilon)\right)\end{array}\right.$ over a Dedekind ring A with a cobordism class of the non-singular $(-)^{i} \varepsilon-s y m m e t r i c$ $\left\{\begin{array}{l}\text { intersection } \\ \text { linking }\end{array}\right.$ pairing

$$
\left\{\begin{array}{l}
\phi_{O}: H^{i}(C) / T_{S} H^{i}(C) \times H^{i}(C) / T_{S} H^{i}(C) \longrightarrow A \\
\phi_{O}^{S}: T_{S} H^{i}(C) \times T_{S} H^{i}(C) \longrightarrow S^{-1} A / A
\end{array}\right.
$$

where

$$
S=A-\{O\} \subset A
$$

The expression in $\$ 3.2$ below of the relative L-groups of a localization map $A \longrightarrow S^{-1} A$ as the cobordism groups of S-acyclic algebraic Poincaré complexes over A will be based on the following results:
Proposition 3.1 .1 i) An n-dimensional $S^{-1} A$-module chain complex D with projective class

$$
[Q] \in \operatorname{im}\left(\tilde{K}_{O}(A) \longrightarrow \tilde{K}_{O}\left(S^{-1} A\right)\right) \subseteq \tilde{K}_{O}\left(S^{-1} A\right)
$$

has the chain homotopy type of $S^{-1} C=S^{-1} A_{A} C$ for some n-dimensional A-module chain complex C.
ii) An S-acyclic finite-dimensional A-module chain complex C is chain equivalent to a complex C^{\prime} for which there exist A-module morphisms $e \in \operatorname{Hom}_{A}\left(C_{r}^{\prime}, C_{r+1}^{\prime}\right)(r \in \mathbb{Z})$ such that the A-module morph

$$
s=d e+e d: C_{r}^{1} \longrightarrow C_{r}^{1} \quad(r \in \mathbb{Z})
$$

are S-isomorphisms. (If SCA is central can take $\left.C^{\prime}=C . s \in S\right)$. Proof: Clear denominators.

Localization is exact, so that for any A-module chain complex C there are natural identifications of $S^{-1} A$ modules

$$
\begin{aligned}
& H_{\star}\left(S^{-1} C\right)=S^{-1} H_{\star}(C) \\
& H^{\star}\left(S^{-1} C\right)=S^{-1} H^{\star}(C) .
\end{aligned}
$$

Thus C is S-acyclic if and only if the homology A-modules $H_{\star}(C)$ are S-torsion; similarly for $C^{*} H^{*}(C)$.

A chain map of A-module chain complexes

$$
f: c \longrightarrow c^{\prime}
$$

is a homology equivalence if it induces isomorphisms in the homology A-modules

$$
\mathrm{f}_{\star}: \mathrm{H}_{\star}(\mathrm{C}) \longrightarrow \mathrm{H}_{\star}\left(\mathrm{C}^{\prime}\right) \text {. }
$$

In particular, a chain equivalence is a homology equivalence. A homology equivalence of finite-dimensional chain complexes is a chain equivalence, but in general homology equivalences are not chain equivalences.

A resolution (D, g) of an n-dimensianal (A, S)-module chain complex C consists of an ($n+1$)-dimensional A-module chain complex D together with a homology equivalence

$$
g: D \longrightarrow C .
$$

The S-dual chain complex $C^{n-\wedge}$ admits a dual resolution ($\mathrm{D}^{n+1-*} \cdot \mathrm{Tg}$) inducing the A-module isomorphisms

$$
\begin{gathered}
\operatorname{Tg}_{*}: H_{r}\left(D^{n+1-*}\right)=H^{n+1-r}(D) \longrightarrow H_{r}\left(C^{n-\wedge}\right)=H_{S}^{n-r}(C) ; \\
f \longmapsto\left(g(x) \longmapsto \longrightarrow \frac{f(y)}{s}\right)
\end{gathered}
$$

$\left(f \in D^{n+1-r}, x \in D_{n-r}, y \in D_{n+1-r}, s \in S, s x=d y \in D_{n-r}\right)$.
For example, a resolution (D, g) of a O-dimensional (A, S)-modu chain complex C is a f.g. projective A-module resolution of 1 (A, S)-module C_{O}

$$
\mathrm{O} \longrightarrow \mathrm{D}_{1} \xrightarrow{\mathrm{~d}} \mathrm{D}_{\mathrm{O}} \longrightarrow \xrightarrow{\mathrm{~g}} \mathrm{C}_{\mathrm{O}} \longrightarrow \mathrm{O}
$$

with $d \in \operatorname{Hom}_{A}\left(D_{1}, D_{0}\right)$ an S-isomorphism, and ($\left.D^{1-*}, T h\right)$ is the d resolution of $\mathrm{C}_{\mathrm{O}}^{\wedge}$

defined above.
A resolution (h, k) of a chain map of n-dimensional (A, S)-module chain complexes

$$
f: C \longrightarrow C^{\prime}
$$

is a triad of A-module chain complexes

(i.e. a chain map $h: D \longrightarrow D^{\prime}$ together with a chain homotopy $k: f g \simeq g ' h: D \longrightarrow C ')$ such that (D, g) is a resolution of C anc (D^{\prime}, g^{\prime}) is a resolution of C^{\prime}. Note that f is a homology equivalence if and only if h is a chain equivalence.

Proposition 3.1.2 i) Every n-dimensional (A,S)-module chain complex C admits a resolution (D, g), and every chain map $\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{C}^{\prime}$ of n -dimensional (A, S) -module chain complexes admits a resolution (h,k).
ii) There are natural identifications of sets of homology equivalence classes
\{ n-dimensional (A,S)-module chain complexes\}
$=$ \{S-acyclic ($\mathrm{n}+1$)-dimensional A-module chain complexes $\}$

$$
(n \geqslant 0)
$$

Proof: i) Given an n-dimensional (A, S)-module chain complex C write a f.g. projective A-module resolution of $C_{r}(O \leqslant r \leqslant n)$ as

$$
\mathrm{O} \longrightarrow \mathrm{P}_{\mathrm{r}} \xrightarrow{\mathrm{f}} \mathrm{Q}_{\mathrm{r}} \xrightarrow{\mathrm{~h}} \mathrm{C}_{\mathrm{r}} \longrightarrow 0 \text {, }
$$

and resolve $d \in \operatorname{Hom}_{A}\left(C_{r}, C_{r-1}\right)(1 \leqslant r \leqslant n)$ by

As $d^{2}=0$ there exist chain homotopies $k \in \operatorname{Hom}_{A}\left(Q_{r}, P_{r-2}\right)(2 \leqslant r \leqslant n)$ such that

$$
i^{2}=k f \in \operatorname{Hom}_{A}\left(P_{r}, P_{r-2}\right), j^{2}=f k \in \operatorname{Hom}_{A}\left(Q_{r}, Q_{r-2}\right)
$$

Define a resolution ($0, \mathrm{~g}$) of C by

$$
\begin{aligned}
d_{D}= & \left(\begin{array}{cc}
i & (-)^{r_{k}} \\
f & (-)^{r}
\end{array}\right): D_{r}=P_{r-1}{ }^{\oplus Q_{r} \longrightarrow} \longrightarrow D_{r-1}=P_{r-2} Q_{r-1} \\
& \left(1 \leqslant r \leqslant n+1, P_{-1}=Q_{n+1}=0\right) \\
q= & \left(O(-)^{\left.r_{h}\right): D_{r}=} P_{r-1} \oplus Q_{r} \longrightarrow \rightarrow C_{r} \quad(0 \leqslant r \leqslant n) .\right.
\end{aligned}
$$

Similarly for chain maps.
ii) Given an S-acyclic ($n+1$)-dimensional A-module chain complex D define an n-dimensional (A, S)-module chain complex C with resolution $(0, g)$, as follows. Since $S^{-1} D$ is a chain contractible $S^{-1} A$-module chain complex there exist A-module morphisms e $\in \operatorname{Hom}_{A}\left(D_{r}, D_{r+1}\right)(0 \leqslant r \leqslant n)$ such that the A-module morphisms

$$
s=d e+e d: D_{r} \longrightarrow D_{r} \quad(0 \leqslant r \leqslant n+1)
$$

are S-isomorphisms, by Proposition 3.1.1 ii). Define a collection of f.g. projective A-modules and A-module morphisms

$$
\left(P, Q, f_{y} h, i, j, k\right)
$$

as in i) by

$$
\begin{aligned}
& : P_{r}=D_{r+1} D_{r+3}{ }^{\oplus D_{r+5}}{ }^{\oplus} \ldots \\
& \longrightarrow Q_{r}=D_{r+1} D_{r+3}{ }^{\oplus D_{r}+5^{\oplus}} \ldots \quad(r \geqslant 1)
\end{aligned}
$$

$$
\begin{aligned}
i= & \left(\begin{array}{llll}
d & 0 & 0 & \cdot \\
e & d & 0 & \cdot \\
0 & e & d & \cdot \\
\cdot & 1 & \cdot & \cdot
\end{array}\right) \\
: & P_{r}= \\
& \longrightarrow D_{r+1}{ }^{\oplus D_{r+3}}{ }^{\oplus D_{r+5}}{ }^{\oplus} \ldots \\
& \longrightarrow P_{r-1}=D_{r} \oplus D_{r+2}{ }^{\oplus D_{r+4}}{ }^{\oplus} \cdots \quad(r \geqslant 0)
\end{aligned}
$$

$$
g=\text { projection }: Q_{r} \longrightarrow C_{r}=\operatorname{coker}\left(f: P_{r} \longrightarrow Q_{r}\right) \quad(r \geqslant 0)
$$

The n-dimensional $\{A, S\}$-module chain complex C has a resolutio (D',g') with

$$
D_{r}^{\prime}=P_{r-1} \oplus Q_{r} \quad(r \geqslant 0)
$$

(as in i)) such that D^{\prime} is chain equivalent to D. Thus (D, g) also a resolution of C.

$$
\begin{aligned}
& : Q_{r}=D_{r+1} D_{r+3}{ }^{\oplus D_{r+5}}{ }^{\oplus} \ldots \\
& \longrightarrow O_{r-1}=D_{r} \oplus D_{r+2}{ }^{\oplus D_{L+4}}{ }^{\oplus} \ldots \quad(r \geqslant 2) \\
& k=\left(\begin{array}{llll}
0 & 0 & 0 & . \\
1 & 0 & 0 & . \\
0 & 1 & 0 & . \\
. & . & . & .
\end{array}\right) \\
& : Q_{r}=D_{r+1} D_{r+3} D_{r+5} D^{\oplus} \ldots \\
& \longrightarrow P_{r-2}=D_{r-1}{ }^{\oplus D_{r+1}}{ }^{\oplus D_{r+3}}{ }^{\oplus} \ldots \quad(r \geqslant 2)
\end{aligned}
$$

Given a finite-dimensional (A, S)-module chain complex define the $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c}{\text { even } \varepsilon-s y m m e t r i c ~} Q^{S}-g r o u p s \\ \underline{\varepsilon-\text { guadratic }}\end{array}\left\{\begin{array}{l}Q_{S}^{\star}(C, \varepsilon) \\ Q\left\langle v_{O}\right\rangle \star(C, \varepsilon) \text { by } \\ Q_{\star}^{S}(C, \varepsilon)\end{array}\right.\right.$

$$
\left\{\begin{array}{l}
Q_{S}^{n}(C, \varepsilon)=Q^{n+1}(D,-\varepsilon) \\
Q\left(v_{O}\right\rangle{ }_{S}^{n}(C, \varepsilon)=Q\left\langle v_{O}\right\rangle^{n+1}(D,-\varepsilon) \quad(n \in \mathbb{Z}) \\
Q_{n}^{S}(C, \varepsilon)=Q_{n+1}(D,-\varepsilon)
\end{array}\right.
$$

for any resolution (D, g) of C. The Q^{S}-groups are independent of the choice of resolution, on account of the chain homotof invariance of the Q-groups. As already noted above the relative L-groups of a localization map $A \longrightarrow S^{-1} A$ will be expressed in ss3.2-3.6 as the cobordism groups of algebraic Poincaré complexes over (A, S) defined using the Q^{S}-groups.
(It does not in general seem to possible to express th Q^{S}-groups of a finite-dimensional (A, S)-module chain complex directly in terms of C, although there are natural candidate for such expressions: let $\operatorname{Hom}_{A}\left(C^{\wedge}, C\right)$ be the $\mathbb{Z}\left\{\mathbb{Z}_{2} \mid\right.$-module chain complex defined by

$$
\begin{aligned}
& d: \operatorname{Hom}_{A}\left(C^{\wedge}, C\right)_{r}=\sum_{p+q=r} \operatorname{Hom}_{A}\left(C_{p}^{\wedge}, C_{q}\right) \longrightarrow \operatorname{Hom}_{A}\left(C^{\wedge}, C\right)_{r-1} \\
& f \vdash \longrightarrow d_{C} f+(-)^{q} f d_{C} \\
& T_{E}: \operatorname{Hom}_{A}\left(C_{p}^{\wedge}, C_{q}\right) \longrightarrow \operatorname{Hom}_{A}\left(C_{q}^{\wedge}, C_{p}\right) ; \\
& \phi \longrightarrow\left(\varepsilon \phi^{\wedge}: x \longmapsto(y \longmapsto \varepsilon \bar{\longrightarrow} \longrightarrow(y)(x)) \quad\left(C_{p}^{\wedge n}=\right.\right.
\end{aligned}
$$

Vogel [2.2.4] has shown that for any finite (A, S) module chain complex C there is defined a long exact sequence of Q-groups

$$
\ldots \longrightarrow \bar{Q}_{n}^{S}(C, \varepsilon) \longrightarrow Q_{n}^{S}(C, \varepsilon) \longrightarrow Q_{n+1}(C,-\varepsilon) \longrightarrow \bar{Q}_{n-1}^{S}(C, \varepsilon) \longrightarrow \ldots
$$

in which the groups $Q_{*}(C, \varepsilon)$ are defined by

$$
Q_{n}(C, \varepsilon)=H_{n}\left(W \mathbb{Q}_{Z}\left[\not Z_{2}\right]{ }^{\left.\left(C^{t} \otimes_{A} C\right)\right) \quad(n \in \mathbb{Z})}\right.
$$

with $T \in \mathbb{Z}_{2}$ acting on $C{ }_{A} C$ by the e-transposition involution

$$
\left.T_{\varepsilon}: C_{p}^{t} \otimes_{A} C_{q} \longrightarrow C_{q}^{t} A_{A} C_{p} ; x \otimes y \longmapsto(-)\right)^{p q_{E X}}
$$

exactly as in the original definition of the Q-groups in §I.l.1. The maps $Q_{n}^{S}(C, \varepsilon)=Q_{n+1}(D,-\varepsilon) \longrightarrow Q_{n+1}(C,-\varepsilon)$ are the ones
 $g: D \longrightarrow C$ of C by a finite $f . g$. projective A-module chain complex D, using the slant isomorphism of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complexes

$$
\backslash: D^{t} \otimes_{A} D \longrightarrow \operatorname{Hom}_{A}\left(D^{\star}, D\right): x \boxtimes y \longmapsto(f \vdash \longrightarrow \overline{f(x)} \cdot y)
$$

to identify

$$
\left.Q_{\star}(D, \varepsilon)=H_{\star}\left(W Q_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right] D^{t} \mathbb{Q}_{A} D\right)\right) .
$$

A chain map of finite (A, S)-module chain complexes

$$
\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{C}^{\prime}
$$

induces a natural transformation of exact sequences

$$
\begin{aligned}
& \ldots \longrightarrow \bar{Q}_{n}^{S^{\downarrow}}\left(C^{\prime}, \varepsilon\right) \longrightarrow Q_{n}^{S}\left(C^{\prime}, \varepsilon\right) \longrightarrow Q_{n+1}\left(C^{\prime},-\varepsilon\right) \longrightarrow \bar{Q}_{n-1}^{S}\left(C^{\prime}, \varepsilon\right) \longrightarrow \ldots
\end{aligned}
$$

However, a homology equivalence $f: C \longrightarrow C$ ' need not induce
isomorphisms \bar{f}_{q}^{S}, f_{q} (although the maps f_{f}^{S} are isomorphisms). since already the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map inducing $\overline{\mathbf{f}}_{\mathbb{8}}^{S}$

$$
f^{t} \otimes \mathrm{~F}: \mathrm{c}^{\mathrm{t}} \otimes_{A} \mathrm{C} \longrightarrow \mathrm{C}^{\prime}{ }^{\otimes_{A}} \mathrm{C}^{\prime}
$$

need not be a homology equivalence. For example, if

$$
S=\left\{2^{k} \mid k \geqslant 0\right\} \subset A=\mathbb{Z}
$$

and $\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{C}^{\prime}$ is defined by

with

$$
\begin{aligned}
& f: C_{0}=\mathbb{Z}_{2} \longrightarrow C_{0}^{\prime}=\mathbb{Z}_{4} ; 1 \longmapsto C_{-1}^{\prime}=\mathbb{Z}_{2} ; 1 \longmapsto 1 \\
& d^{\prime}: C_{0}^{\prime}=\mathbb{Z}_{4} \longrightarrow \longrightarrow C^{\prime} \longrightarrow 1
\end{aligned}
$$

it is the case that

Vogel [2,\$3] has also shown that for every "n-dimensional ε-quadratic complex over (A, S)" $\left(C, \psi \in Q_{n}^{S}(C, E)\right)$ there exists a finite (but not necessarily n-dimensional) (A, S)-module chain complex C^{\prime} with a homology equivalence

$$
\mathbf{f}: \mathbf{c} \longrightarrow C^{\prime}
$$

such that

$$
f_{\varepsilon}^{S}(\psi) \in \operatorname{im}\left(\bar{Q}_{n}^{S}\left(C^{\prime}, \varepsilon\right) \longrightarrow Q_{n}^{S}\left(C^{\prime}, \varepsilon\right)\right)
$$

and hence that the ε-quadratic L-groups $L_{n}(A, S, E)(n \geqslant 0)$ defined in 53.2 below using n-dimensional ε-quadratic Poincaré complexes over $(A, S)\left(C, \psi \in Q_{n}^{S}(C, E)\right)$ with C n-dimensional are isomorphic to the ε-quadratic L-groups $\overline{\mathrm{L}}_{\mathrm{n}}(A, S, \varepsilon)(\mathrm{n} \geqslant 0)$ defined using ε-quadratic Poincaré complexes
over (A, S) of type $\left(C, \psi \in \bar{Q}_{n}^{S}(C, \varepsilon)\right)$ with C finite. For example, with $f: C \longrightarrow C^{\prime}$ as in the special case above $\left(S=\left\{2^{k}\right\} \subset A=\mathbb{Z}\right.$, $C_{0}=\mathbb{Z}_{2}$ etc.) the map

$$
\bar{Q}_{O}^{S}\left(C^{\prime}\right)=\mathbb{Z}_{4} \longrightarrow Q_{O}^{S}\left(C^{\prime}\right)=\mathbb{Z}_{4} \quad(\varepsilon=1)
$$

is an isomorphism, whereas the map

$$
\bar{Q}_{O}^{S}(C)=\mathbb{Z}_{2} \longrightarrow Q_{O}^{S}(C)=\mathbb{Z}_{4}
$$

is not an isomorphism. Similar considerations apply in the $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even } \varepsilon \text {-symmetric }\end{array}\right.$ case, with an exact sequence $\left\{\begin{array}{l}\left.\cdots \longrightarrow \bar{Q}_{S}^{n}(C, \varepsilon) \longrightarrow Q_{S}^{n}(C, \varepsilon) \longrightarrow Q^{n+1}(C,-\varepsilon) \longrightarrow \bar{Q}_{S}^{n-1}(C, \varepsilon) \longrightarrow \bar{Q}^{n}\left\langle v_{O}\right\rangle_{S}^{n}(C, \varepsilon) \longrightarrow v_{O}\right\rangle_{S}^{n}(C, \varepsilon) \longrightarrow Q^{n+1}(C,-\varepsilon) \longrightarrow \bar{Q}\left\langle v_{O}\right\rangle_{S}^{n-1}(C, \varepsilon)\end{array}\right.$
for any finite (A, S)-module chain complex C).
The S-adic completion of A is the inverse limit

$$
\hat{A}=\frac{\lim _{s \in S}}{} A / s A
$$

of the inverse system of abelian groups $\{A / s A \mid s \in S\}$, with S partially ordered by

$$
s \leqslant s^{\prime} \text { if there exists } t \in S \text { such that } s^{\prime}=s t \in S \text {, }
$$

the structure maps being the projections

$$
A / s t A \longrightarrow A / s A \quad(s, t \in S)
$$

Thus an element $\hat{a} \in \hat{A}$ is a sequence

$$
\hat{a}=\left\{a_{s} \in A / s A \mid s \in S\right\}
$$

such that

$$
a_{s}=\left[a_{s t}\right] \in A / s A(s, t \in s)
$$

In dealing with completions we shall always assume that S is
central in A, so that each $A / s A(s \in S)$ inherits a ring structure from A, and \hat{A} is a ring with involution

$$
: \hat{A} \longrightarrow \hat{A} ; \hat{a}=\left\{a_{s} \in A / s A \mid s \in S\right\} \longmapsto \overline{\hat{a}}=\{\bar{a}-\in A / s A \mid s \in S\} .
$$

For example, the r ing of m-adic integers

$$
\hat{\mathbb{Z}}_{m}=\operatorname{Lim}_{k} \mathbb{Z} / m^{k} \mathbb{Z} \quad(k \geqslant 0, m \geqslant 2)
$$

is the $\left\{m^{k}\right\}$-adic completion of \mathbb{Z}. The inclusion

$$
i: A \longrightarrow \hat{A} ; a \vdash \longrightarrow\{|a| \in A / s A \mid s \in S\}
$$

is a morphism of r ings with involution such that

$$
\hat{S}=i(S) \subset \hat{A}
$$

is a multiplicative subset.
A commutative square of rings with involution

is cartesian if it gives rise to an exact sequence of abelian groups with involution

$$
\mathrm{O} \longrightarrow \mathrm{~A}^{2} \longrightarrow \mathrm{~B} \oplus \mathrm{~B}^{+} \longrightarrow \mathrm{A}^{\prime} \longrightarrow \mathrm{O}
$$

In particular, the localization-completion square

is cartesian. As described in the introduction to $\$ 3$ such a square gives rise to excision isomorphisms in the relative K-groups

$$
K_{\star}(A, S) \xrightarrow{\sim} K_{\star}(\hat{A}, \hat{S})
$$

(which follows from the isomorphism of exact categories

$$
\begin{aligned}
& \text { i : }\{(A, S) \text {-modules }\} \longrightarrow \simeq \text { (} \hat{\sim}, \hat{S}) \text {-modules }\} \text {; }
\end{aligned}
$$

and a Mayer-vietoris exact sequence in the absolute K -groups

$$
\ldots K_{n}(A) \longrightarrow K_{n}(\hat{A}) \oplus K_{n}\left(S^{-1} A\right) \longrightarrow K_{n}\left(\hat{S}^{-1} \hat{A}\right) \longrightarrow K_{n-1}(A) \longrightarrow \ldots
$$

In $\$ \$ 3.2,3.6$ below we shall identify the relative $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}L_{S}^{\star}\left(A \longrightarrow S^{-1} A, \varepsilon\right) \\ L_{*}^{S}\left(A \longrightarrow S^{-1} A, \varepsilon\right)\end{array}\right.$ with the cobordism groups $\left\{\begin{array}{l}L^{*}(A, S, \varepsilon) \\ L_{\star}(A, S, \varepsilon)\end{array}\right.$ of $\left\{\begin{array}{l}\text { even } \varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes over $(A, S)\left\{\begin{array}{l}\left(C, \phi \in O\left\langle v_{0}\right\rangle_{S}^{n}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{n}^{S}(C, \varepsilon)\right)\end{array}\right.$ with C an n-dimensional (A,S)-module chain complexes. The functors
i : \{n-dimensional (A, S)-module chain complexes\} $\longrightarrow\{n$-dimensional (\hat{A}, \hat{S})-module chain complexes $\}$;

$$
c \longmapsto \hat{c}=\hat{A} \otimes_{A} c \quad(n \geqslant 0)
$$

are isomorphisms of categories. Thus if the induced maps

$$
\left\{\begin{array}{l}
i: Q\left\langle v_{O}\right\rangle \stackrel{\star}{S}(C, \varepsilon) \longrightarrow Q\left\langle v_{O}\right\rangle \hat{\hat{S}}(\hat{C}, \varepsilon) \\
i: Q_{\star}^{S}(C, \varepsilon) \longrightarrow Q_{\star}^{\hat{S}}(\hat{C}, \varepsilon)
\end{array}\right.
$$

are isomorphisms there are defined excision isomorphisms in the relative L-groups

$$
\left\{\begin{array}{l}
L_{\star}^{*}(A, S, \varepsilon) \longrightarrow L^{\star}(\hat{A}, \hat{S}, \varepsilon) \\
L_{\star}(A, S, \varepsilon) \longrightarrow L_{\star}(\hat{A}, \hat{S}, \varepsilon)
\end{array}\right.
$$

and there is defined a Mayer-Vietoris exact sequence in the absolute L-groups
$\left\{\begin{array}{l}\cdots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L^{n}(\hat{A}, \varepsilon) \oplus L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow L_{\hat{S}}^{n}\left(\hat{S}^{-1} \hat{A}, \varepsilon\right) \longrightarrow L^{n-1}(A, \\ \left.\cdots L_{n}(A, \varepsilon) \longrightarrow L_{n}(\hat{A}, \varepsilon) \oplus L_{n}^{S}\left(S^{-1} A, \varepsilon\right) \longrightarrow \hat{S}^{-1} \hat{A}, \varepsilon\right) \longrightarrow L_{n-1}(A,\end{array}\right.$
$(n \in \mathbb{Z})$.
Use the cartesian property of the localization-completion squa to define the abelian group morphism

$$
\begin{aligned}
\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; \hat{S}^{-1} \hat{A}, \varepsilon\right) & \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; \hat{S}^{-1} \hat{A} / \hat{A}, \varepsilon\right) \\
& \equiv \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \\
& \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) .
\end{aligned}
$$

In Proposition 3.1.3 ii) we shall show that $\left\{\begin{array}{l}\text { if } \hat{\delta}=0 \\ \text { for all A,S, } \varepsilon\end{array}\right.$ the completion map $i:(A, S) \longrightarrow(\hat{A}, \hat{S})$ does induce isomorphisms ir $\left\{\begin{array}{l}Q\left\langle v_{0}\right\rangle \stackrel{\ominus}{S} \text {-groups. The conclusions regarding excision isomorphis } \\ Q_{*}\end{array}\right.$
and Mayer-Vietoris exact sequences in the L-groups will be drawn in \$3.6.

The property of the completion map i implying excision in the K - and L -groups can be abstracted as follows.

Let (B, T) be another pair such as (A, S), with B a ring with involution and $T B$ a multiplicative subset. A morphism of such pairs

$$
f:(A, S) \longrightarrow(B, T)
$$

is a morphism of rings with involution

such that

$$
f(S) \subseteq T \subseteq B .
$$

If C is an n-dimensional (A, S)-module chain complex then $\mathrm{BD}_{\mathrm{A}} \mathrm{C}$ is an n-dimensional (B, T)-module chain complex; if (D, g) is a resolution of C then $\left(B \otimes_{A} D, 1 \otimes g\right)$ is a resolution of $B \mathbb{X}_{A} C$.

The morphism $f:(A, S) \longrightarrow(B, T)$ is cartesian if
i) $\mathrm{f} \mid: \mathrm{S} \longrightarrow \mathrm{T}$ is a bijection
ii) for each seS the abelian group morphism

$$
A / s A \longrightarrow B / f(s) B ;[a] \longmapsto[f(a)] \quad(a \in A)
$$

is an isomorphism .
Cartesian morphisms were introduced by Karoubi [2].
In particular, the completion map

$$
i:(A, S) \longrightarrow(\hat{A}, \hat{S})
$$

is a cartesian morphism.
Define a direct system of abelian groups

$$
\{A / s A \mid s \in S\}
$$

by giving S the partial ordering

$$
s \leqslant s^{\prime} \text { if } s^{\prime}=t s \in S \text { for some } t \in S
$$

and defining the structure maps by

$$
A / s A \longrightarrow A / s^{\prime} A ;[a] \longmapsto \longrightarrow[t a] \text {. }
$$

Use the abelian group morphisms

$$
A / S A \longrightarrow S^{-1} A / A ;[a] \longmapsto \frac{a}{s} \quad(s \in S)
$$

to identify

$$
\frac{\operatorname{Lim}}{S E S} A / S A=S^{-1} A / A
$$

It follows from this identification that a cartesian morphism $f:(A, S) \longrightarrow(B, T)$ induces isomorphisms

$$
\mathrm{f}: \underset{\mathrm{L} \in \mathrm{~S}}{\operatorname{Lim}} A / S A=S^{-1} A / A \longrightarrow \underset{t \in T}{\operatorname{Lim}} B / t B=T^{-1} B / B
$$

and hence that the commutative square of rings with involution

is cartesian. There is thus defined a short exact sequence of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules

$$
\mathrm{O} \longrightarrow \mathrm{~A} \longrightarrow \mathrm{~B} \oplus \mathrm{~S}^{-1} \mathrm{~A} \longrightarrow \mathrm{~T}^{-1} \mathrm{~B} \longrightarrow \mathrm{O}
$$

inducing a long exact sequence of Tate \mathbb{Z}_{2}-cohomology groups

$$
\begin{aligned}
\cdots \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) & \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; B, \varepsilon\right) \oplus \hat{H}^{n}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right) \\
& \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; T^{-1} B, \varepsilon\right) \xrightarrow{\hat{\delta}} \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow(n \in \mathbb{Z})
\end{aligned}
$$

Proposition 3.1.3 i) A cartesian morphism

$$
f:(A, S) \longrightarrow(B, T)
$$

induces an isomorphism of exact categories

$$
f:\{(A, S) \text {-modules }) \longrightarrow[(B, T) \text {-modules }\} ; M \longrightarrow \mathrm{BO}_{A} M
$$

If M, N are (A, S)-modules there are defined \mathbb{Z}-module isomorphisms

$\operatorname{Hom}_{A}(M, N) \xrightarrow{\sim} \operatorname{Hom}_{B}\left(B Q_{A} M, B \otimes_{A} N\right) ; g \longmapsto\left(b Q_{x} \longmapsto \mathrm{bQg}(x)\right)$
$M^{\wedge}=\operatorname{Hom}_{A}\left(M, S^{-1} A / A\right) \longrightarrow\left(B \otimes_{A} M\right)^{\wedge}=\operatorname{Hom}_{B}\left(B \otimes_{A} M, T^{-1} B / B\right) ;$ $g \longmapsto(b) x \longmapsto b . f(g(x)))$.
ii) If $f:(A, S) \longrightarrow(B, T)$ is a cartesian morphism and C is a finite-dimensional (A, S)-module chain complex the induced abelian group morphisms

$$
\left\{\begin{array}{l}
f: Q_{S}^{\star}(C, \varepsilon) \longrightarrow Q_{T}^{\star}\left(B \otimes_{A} C, \varepsilon\right) \\
f: Q\left\langle v_{0}\right\rangle{ }_{S}^{\star}(C, \varepsilon) \longrightarrow Q\left\langle v_{O}\right\rangle{ }_{T}^{\star}\left(B \otimes_{A} C, \varepsilon\right) \\
f: Q_{\star}^{S}(C, \epsilon) \longrightarrow Q_{\star}^{T}\left(B \otimes_{A} C, \varepsilon\right)
\end{array}\right.
$$

are $\left\{\begin{array}{l}\text { isomorphisms } \\ \text { monomorphisms. If } \\ \text { isomorphisms }\end{array}\right.$

$$
\hat{\delta}=0: \hat{H}^{0}\left(\mathbb{Z}_{2} ; T^{-1} B, \epsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)
$$

the maps $f: Q\left\langle v_{O}\right\rangle \not{ }_{S}(C, \varepsilon) \longrightarrow Q\left\langle v_{O}\right\rangle \stackrel{\star}{S}\left(B \otimes_{A} C, E\right)$ are also isomorphi
Proof: i) See Appendix 5 of Karoubi [2].
ii) Let (D, g) be a resolution of C, and consider the commutati diagram of abelian group chain complexes

As $g: D \longrightarrow C$ is a homology equivalence (by definition) and D^{*} is a f.g. projective A-module chain complex the chain maps $\operatorname{Hom}_{A}(1, g), \operatorname{Hom}_{B}\left(1,1 \otimes_{A} g\right)$ are also homology equivalences. As $f:(A, S) \longrightarrow(B, T)$ is cartesian and D^{*} is a f.g. projective A-module chain complex the chain map

$$
f: \operatorname{Hom}_{A}\left(D^{*}, C\right) \longrightarrow \operatorname{Hom}_{B}\left(B \otimes_{A} D^{*}, B \otimes_{A} C\right)
$$

is an isomorphism of abelian group cnain complexes. It now follows from the commutativity of the above diagram that the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
f: \operatorname{Hom}_{A}\left(D^{*}, D\right) \longrightarrow \operatorname{Hom}_{B}\left(B \otimes_{A} D^{*}, B \otimes_{A} D\right)
$$

is a homology equivalence, so that it induces isomorphisms
in the $\left\{\begin{array}{l}\mathbb{Z}_{2} \text {-hypercohomology } \\ \mathbb{Z}_{2} \text {-hyperhomology }\end{array}\right.$ groups

$$
\left\{\begin{array}{r}
f: Q_{S}^{n}(C, \varepsilon)=Q^{n+1}(D,-\varepsilon) \longrightarrow Q_{T}^{n}\left(B \otimes_{A} D, \varepsilon\right)=Q^{n+1}\left(B \otimes_{A} D,-\varepsilon\right) \\
f: Q_{n}^{S}(C, \varepsilon)=Q_{n+1}(D,-\epsilon) \longrightarrow Q_{n}^{T}\left(B \otimes_{A} D, \varepsilon\right)=Q_{n+1}\left(B \otimes_{A} D,-\varepsilon\right) \\
(n \in Z) .
\end{array}\right.
$$

As D is S-acyclic, for every $\phi \in Q^{n+1}(D,-\varepsilon)$

$$
\begin{aligned}
\operatorname{im}\left(\hat{v}_{0}(\phi): H^{n+1}(D) \longrightarrow\right. & \left.\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \epsilon\right)\right) \\
& \sqsubseteq \operatorname{im}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) \longrightarrow \hat{H}^{l}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)
\end{aligned}
$$

(cf. the definition in 53.3 below of the "linking Wu class"

$$
\hat{v}_{O}^{S}(\phi): H^{n+1}(D) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right)
$$

such that $\left.\hat{\delta} \hat{v}_{O}^{S}(\phi)=\hat{v}_{O}(\phi)\right)$. We can thus identify

$$
\begin{aligned}
& Q\left\langle v_{O}\right\rangle{ }_{S}^{n}(C, \varepsilon)=Q\left\langle v_{O}\right\rangle^{n+1}(D,-\varepsilon) \\
& =\operatorname{ker}\left(\hat{v}_{O}: Q^{n+1}(D,-\varepsilon) \longrightarrow \operatorname{Hom}_{A}\left(H^{n+1}(D), \operatorname{im}\left(\hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right)\right.\right.\right. \\
& \left.\left.\longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right)\right)\right) .
\end{aligned}
$$

It follows from the exact sequence

$$
\begin{aligned}
O \longrightarrow & \operatorname{im}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; T^{-1} B, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right) \\
\longrightarrow & i m\left(\hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \epsilon\right)\right) \\
\longrightarrow & i m\left(\hat{H}^{O}\left(\mathbb{Z}_{2} ; T^{-1} B / B, \epsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; B, \varepsilon\right)\right) \longrightarrow 0
\end{aligned}
$$

that if $\hat{\delta}=0$ there are also induced isomorphisms

$$
\begin{aligned}
f: Q\left\langle v_{O}\right\rangle{ }_{S}^{n}(C, \varepsilon) & =Q\left\langle v_{O}\right\rangle^{n+1}(D,-\varepsilon) \\
& \simeq Q\left\langle v_{O}{ }_{T}^{n}\left(B \otimes_{A} C, \varepsilon\right)=Q\left\langle v_{O}\right\rangle^{n+1}\left(B \otimes_{A} D,-\varepsilon\right)\right.
\end{aligned}
$$

$$
(n \in \mathbb{Z})
$$

3.2 The localization exact sequence ($n \geqslant 0$)

Let A, S, ε be as in $\$ 3.1$ above.
Let

$$
s=\operatorname{im}\left(\tilde{K}_{0}(A) \longrightarrow \tilde{K}_{0}\left(S^{-1} A\right)\right) \subseteq \tilde{K}_{0}\left(S^{-1} A\right)
$$

be the *-invariant subgroup of the projective classes $\left[S^{-1} P\right]$
of the $f . g$. projective $S^{-1} A$-modules $s^{-1} p$ induced from f.g. projective A-modules P.

Let $\left\{\begin{array}{l}L_{S}^{n}\left(A \longrightarrow S^{-1} A, E\right) \\ S_{n}\left(A \longrightarrow S^{-1} A, E\right)\end{array}(n \in Z)\right.$ be the relative $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
L-groups appearing in the exact sequence

$$
\left\{\begin{array}{l}
\ldots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow L_{S}^{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right) \longrightarrow L_{n}^{n-1}(A, \varepsilon) \longrightarrow L_{n}^{S}\left(S^{-1} A, \varepsilon\right) \longrightarrow L_{n}^{S}\left(A \longrightarrow S^{-1} A, \varepsilon\right) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow \ldots \\
\ldots \longrightarrow
\end{array}\right.
$$

An n-dimensional $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \text { e-quadratic }\end{array}\right.$ complex over (A, S)
$\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is an n-dimensional (A,S)-module chain complex C
together with an element $\left\{\begin{array}{l}\phi \in Q_{S}^{n}(C, \varepsilon) \quad\left(\phi \in Q\left\langle v_{O}>S_{S}^{n}(C, \varepsilon)\right) .\right. \\ \psi \in Q_{n}^{S}(C, \varepsilon)\end{array}\right.$.
Such a complex is Poincaré if the A-module morphisms

$$
\left\{\begin{array}{l}
\phi_{O}: H_{S}^{*}(C) \longrightarrow H_{n-\star}(C) \\
\left(1+T T_{E}\right) \psi_{O}: H_{S}^{*}(C) \longrightarrow H_{n-\star}(C)
\end{array}\right.
$$

are isomorphisms. There is a corresponding notion of pair.
Define the n-dimensional $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c}{\text { E-quadratic }}\end{array} \underline{\text { L-group of }(A, S)}\right.$

$$
\left\{\begin{array}{l}
L^{n}(A, S, E) \\
L_{n}(A, S, E)
\end{array}(n \geqslant 0)\right. \text { to be the cobordism group of n-dimensional }
$$

$\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes over (A,S).
Proposition 3.2.1 A cartesian morphism $f:(A, S) \longrightarrow(B, T)$
$\left\{\begin{array}{l}\text { such that } \hat{\delta}=0: \hat{H}^{0}\left(\mathbb{Z}_{2} ; T^{-1} B, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \text { induces } \\ -\end{array}\right.$
isomorphisms in the $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{l}
f: L^{n}(A, S, \varepsilon) \longrightarrow L^{n}(B, T, \varepsilon) \\
f: L_{n}(A, S, \varepsilon) \longrightarrow L_{n}(B, T, \varepsilon)
\end{array} \quad(n \geqslant 0)\right.
$$

Proof: Immediate from Proposition 3.1.3 ii).

In Proposition 3.2 below we shall apply the algebraic r-theory of $\$ 2.4$ to identify

$$
\left\{\begin{array}{l}
L_{S}^{n}\left(A \longrightarrow S^{-1} A, E\right)=L^{n}(A, S, E) \\
L_{n}^{S}\left(A \longrightarrow S^{-1} A, E\right)=L_{n}(A, S, E) \quad(n \geqslant 0)
\end{array}\right.
$$

In $\$ 3.6$ this will be extended to the range $n \leqslant-1$, and these identifications will be used together with Proposition 3.2.1 to obtain Mayer-Vietoris exact sequences for the L-groups of the rings with involution appearing in the cartesian square

associated to cartesian morphism $(A, S) \longrightarrow \cdots(B, T)$.

Proposition 3.2.2 i) The homotopy equivalence classes of n-dimensional $\left\{\begin{array}{l}(\text { even }) \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ (Poincaré) complexes over are in a natural one-one correspondence with the homotopy equivalence classes of S-acyclic ($n+1$)-dimensional
$\left\{\begin{array}{l}\text { (even) }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ (Poincaré) complexes over A.
Similarly for pairs.
ii) $\left\{\begin{array}{l}L^{n}(A, S, E) \\ L_{n}(A, S, \varepsilon)\end{array}(n \geqslant 0)\right.$ is naturally isomorphic to the cobordisn group of s-acyclic $(n+1)$-dimensional $\left\{\begin{array}{l}\text { even }(-\epsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincare complexes over A.

Proof: i) Immediate from Proposition 3.1.2.
ii) Immediate from i).

We shall be mainly working with the characterization of the L-groups $\left\{\begin{array}{l}L^{*}(A, S, E) \\ L_{\star}(A, S, \varepsilon)\end{array}\right.$ as the cobordism groups of s-acyclic algebraic Poincaré complexes (Proposition 3.2.2 ii)), because all the A-module chain complex manipulations developed in $\$ 1$ in connection with the L-groups $\left\{\begin{array}{l}L^{\star}(A, \varepsilon) \\ L_{\star}(A, \varepsilon)\end{array}\right.$ specialize to manipulations of s-acyclic complexes. In particular, if it is insisted that all the A-module chain complexes involved be S-acyclic there is obtained from $\$ 1.5$ an algebraic S-acyclic surgery theory with which to analyze s-acyclic algebraic Poincare cobordism. (localization in geometric surgery theory
will be discussed more fully in $\$ 7.7$ below. For the present note that if $(f, b): M \longrightarrow X$ is an n-dimensional normal map which is a rational homotopy equivalence $\left(\pi_{*}(f) \mathbb{Z Q}=0\right)$ then quadratic kernel

$$
\sigma_{*}(f, b)=(C(f!), \psi)
$$

is an s-acyclic n-dimensional quadratic Poincaíé complex ove $\mathbb{Z}\left[{ }_{1}(X)\right]$, with

$$
s=\mathbb{Z}-\{0\} \subset \mathbb{Z}\left[\pi_{1}(x)\right]
$$

The s-acyclic cobordism class of the skew-suspension

$$
\sigma_{*}^{S}(f, b)=\bar{S} \sigma_{*}(f, b) \in L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(X)\right], S\right) \quad(\varepsilon=1)
$$

is the obstruction to making (f, b) normal bordant to a homot equivalence by a bordism which is also a rational homotopy equivalence, i.e. it is the "local surgery obstruction" in t sense of Pardon [3]. The chain level effect of a "local surc on a conglomerate Moore space" in the sense of Pardon [3] is that of an S-acyclic surgery on a connected S-acyclic ($n+1$)-dimensional quadratic pair over $\mathbb{Z}\left[\pi_{1}(x)\right]$ $\left(\varsigma: C\left(f^{!}\right) \longrightarrow D,(\delta \psi, \psi)\right)$ with $D_{r}=0(r \neq k, k+1)$ for some k, $0 \leqslant k \leqslant n+1$).

Proposition 3.2.3 i) There are natural identifications

$$
\left\{\begin{array}{l}
L_{S}^{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right)=L^{n}(A, S, \varepsilon) \\
L_{n}^{S}\left(A \longrightarrow S^{-1} A, E\right)=L_{n}(A, S, \varepsilon)
\end{array} \quad(n \geqslant 0)\right.
$$

under which the maps appearing in the localization exact sequence

$$
\left\{\begin{array}{l}
\cdots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow L_{S}^{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right) \longrightarrow L^{n-1}(A, 1 \\
\left.\cdots L_{n}(A, \varepsilon) \longrightarrow L_{n}(A, \varepsilon) \longrightarrow S^{-1} A, \varepsilon\right) \longrightarrow L_{n-1}\left(A, S_{n}\right.
\end{array}\right.
$$

are given by

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\boldsymbol{j}: L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow & L^{n}(A, S, \varepsilon): S^{-1}(C, \phi) \longmapsto & \longrightarrow \bar{S}(C, \phi) \\
\partial: L_{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow & L_{n}(A, S, \varepsilon) ; S^{-1}(C, \psi) \longmapsto
\end{array}\right. \\
& \left\{\begin{array}{l}
L^{n}(A, S, E) \longrightarrow L^{n-1}(A, E)=L^{n}\left\langle V_{O}\right\rangle^{n+1}(A,-\varepsilon) ;(C, \phi) \longmapsto(C, \phi) \\
L_{n}(A, S, E) \longrightarrow L_{n-1}(A, E)=L_{n+1}(A,-E) ;(C, \psi) \longmapsto(C, \psi)
\end{array}\right. \\
& (n \geqslant 0) \quad .
\end{aligned}
$$

ii) The skew-suspension maps in the $\pm \varepsilon$-quadratic L -groups

$$
\bar{S}: L_{n}(A, S, \varepsilon) \longrightarrow L_{n+2}(A, S,-\varepsilon) ;(C, \psi) \longmapsto(S C, \bar{S} \psi) \quad(n \geqslant 0)
$$

are isomorphisms.
Proof: i) It follows from Proposition 3.1.1 i) that the maps

$$
\left\{\begin{array}{l}
\left.\Gamma^{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right) \longrightarrow L_{S}^{n}\left(S^{-1} A, \varepsilon\right) ;(C, \phi) \longmapsto S^{-1} A, \varepsilon\right) \longrightarrow S^{-1}(C, \phi) \\
\Gamma_{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right) ;(C, \psi) \longmapsto S^{-1}(C, \psi)
\end{array} \quad(n \geqslant 0)\right.
$$

are isomorphisms, so that there are natural identifications

$$
\left\{\begin{array}{l}
L_{S}^{n}\left(A \longrightarrow S^{-1} A, E\right)=\Gamma^{n}(F, \varepsilon) \\
L_{n}^{S}\left(A \longrightarrow S^{-1} A, \varepsilon\right)=\Gamma_{n}(F, \varepsilon) \quad(n \geqslant 0)
\end{array}\right.
$$

the groups on the r ight being the relative $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ r-groups of the commutative square of rings with involution

By Proposition 3.2.2 ii) $\left\{\begin{array}{l}L^{n}(A, S, \varepsilon) \\ L_{n}(A, S, \varepsilon)\end{array}(n \geqslant 0)\right.$ is naturally isomorphic to the cobordism group of s-acyclic $(n+1)$-dimensional
$\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complexes over A, which is just
the expression obtained for $\left\{\begin{array}{l}\Gamma^{n}(F, \varepsilon) \\ \Gamma_{n}(F, \varepsilon)\end{array}(n \geqslant 0)\right.$ in Proposition 2.4.6.
We can thus identify

$$
\left\{\begin{array}{l}
L_{S}^{n}\left(A \longrightarrow S^{-1} A, E\right)=\Gamma^{n}(F, E)=L^{n}(A, S, E) \\
L_{n}^{S}\left(A \longrightarrow S^{-1} A, E\right)=\Gamma_{n}(F, \varepsilon)=L_{n}(A, S, \varepsilon) \quad(n \geqslant 0)
\end{array}\right.
$$

Explicitly, the isomorphism

$$
\left\{\begin{array}{l}
\mathrm{L}_{S}^{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right) \longrightarrow \sim S^{n}(A, S, \varepsilon) \\
L_{n}^{S}\left(A \longrightarrow L^{-1} A, \varepsilon\right) \longrightarrow L_{n}(A, S, \varepsilon)
\end{array}\right.
$$

sends the element

$$
\left\{\begin{array}{l}
\left(\left(C, \phi \in Q^{n-1}(C, \varepsilon)\right), S^{-1}\left(f: C \longrightarrow D,(\delta \phi, \phi) \in Q^{n}(f, \varepsilon)\right)\right) \in L_{S_{S}^{n}}\left(A \longrightarrow S^{-1} A, \varepsilon\right) \\
\left(\left(C, \psi \in Q_{n-1}(C, \varepsilon)\right), S^{-1}\left(f: C \longrightarrow D,(\delta \psi, \psi) \in Q_{n}(f, \varepsilon)\right)\right) \in L_{n}^{S}\left(A \longrightarrow S^{-1} A, \epsilon\right)
\end{array}\right.
$$

to the cobordism class $\left\{\begin{array}{l}\left(C^{\prime}, \Phi^{\prime}\right) \in L^{n}(A, S, \varepsilon) \\ \left(C^{\prime}, \psi^{\prime}\right) \in L_{n}(A, S, E)\end{array}\right.$ of the S-acyclic $(n+1)$-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complex over A $\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ obtained from the skew-suspension $\left\{\begin{array}{l}\bar{S}\left(C^{\prime}, \phi^{\prime}\right) \\ \bar{S}\left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ by surgery on the connected $(n+2)$-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ $S^{-1} A$-poincaré pair over $A\left\{\begin{array}{l}\bar{S}(f: C \longrightarrow D,(\delta \phi, \phi)) \\ \bar{S}(f: C \longrightarrow D,(\delta \psi, \psi))\end{array}\right.$. In particular, for $C=0\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right)=\partial \bar{S}(D, \delta \phi) \\ \left(C^{\prime}, \psi^{\prime}\right)=\partial \bar{S}(D, \delta \psi)\end{array}\right.$, and $\left\{\begin{array}{l}S^{-1}(D, \delta \phi) \in L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \\ S^{-1}(D, \delta \psi) \in L_{n}^{S}\left(S^{-1} A, \varepsilon\right)\end{array}\right.$.
ii) Immediate from i) and Proposition 2.2.3 ii).

The pair (A,S) is m-dimensional if every f.g. S-torsion A-module M has a f.g. projective A-module resolution of length $\mathrm{m}+1$

$$
0 \longrightarrow \mathrm{P}_{\mathrm{m}+1} \longrightarrow \mathrm{P}_{\mathrm{m}} \longrightarrow \ldots \longrightarrow \mathrm{P}_{1} \longrightarrow \mathrm{P}_{\mathrm{O}} \longrightarrow \mathrm{M} \longrightarrow \mathrm{O}
$$

For example, if A is m-dimensional (in the sense of $\$ 1.2$) then (A, S) is m-dimensional; if π is a finite group and p is a prime such that $p \nmid|\pi|$ then $\left(\mathbb{Z}[\pi],\left\{p^{k} \mid k \geqslant 0\right\}\right)$ is 0 -dimensional.

By analogy with Proposition 1.2.2 ii) we have:
proposition 3.2.4 If (A, S) is m-dimensional the skew-suspension maps in the $\pm \varepsilon$-symmetric L-groups

$$
\bar{S}: L^{n}(A, S, \varepsilon) \longrightarrow L^{n+2}(A, S,-\varepsilon) \quad(n \geqslant 2 m+1)
$$

are isomorphisms, and there are natural identifications

$$
\left.\begin{array}{rl}
\left\{\begin{array}{l}
L^{2 i}(A, S, E) \\
L^{2 i-1}(A, S, E)
\end{array}=\right. & \text { the cobordism group of S-acyclic } \\
& \left\{\begin{array}{l}
2 m+1 \\
2 m
\end{array} \text {-dimensional }(-)^{i-m-1} \varepsilon \text {-symmetric Poincare } \vec{e}\right.
\end{array}\right\}
$$

under which $L^{n}(A, S, \varepsilon) \longrightarrow L^{n-1}(A, E)(n \geqslant 2 m+1)$ becomes the forgetful map

$$
\left\{\begin{array}{l}
L^{2 i}(A, S, \varepsilon) \longrightarrow L^{2 i-1}(A, \varepsilon) ;(C, \phi) \longmapsto \bar{S}^{i-m-1}(C, \phi) \\
L^{2 i-1}(A, S, \varepsilon) \longrightarrow L^{2 i-2}(A, \varepsilon) ;(C, \phi) \longmapsto \bar{S}^{i-m-1}(C, \phi)
\end{array} \quad(i \geqslant m+1)\right.
$$

In particular, for $m=0$

$$
L^{2 i-1}(A, S, E)=0(i \geqslant 1)
$$

Proof: In order to identify $\left\{\begin{array}{l}L^{2 i}(A, S, E) \\ L^{2 i-1}(A, S, E)\end{array}(i \geqslant m+1)\right.$ with the
cobordism group of S-acyclic $\left\{\begin{array}{l}2 m+1 \\ 2 m\end{array}\right.$-dimensional
(-) ${ }^{i-m-1} \varepsilon$-symmetric Poincaré complexes over A it suffices (by the S-acyclic counterpart of Proposition 1.4.2) to show that it is possible to perform s-acyclic surgery on a connected S-acyclic ($n+1$)-dimensional even ($-\varepsilon$)-symmetric Poincaré complex over $A\left(C, \phi \in Q\left\langle v_{0}\right\rangle^{n+1}(C,-\epsilon)\right)(n \geqslant 2 m+1)$ ao as to obtain a skew-suspension, killing $H^{n+1}(C)$. Working exactly as in the proof (in I.) of Proposition 1.2 .2 use a f.g. projective resolution of the f.g. S-torsion A-module $H_{o}(C)$

$$
\mathrm{O} \longrightarrow \mathrm{D}_{\mathrm{m}+1} \longrightarrow \mathrm{D}_{\mathrm{m}} \longrightarrow \ldots \longrightarrow \mathrm{D}_{1} \longrightarrow \mathrm{D}_{\mathrm{O}} \longrightarrow \mathrm{H}_{\mathrm{O}}(\mathrm{C}) \longrightarrow \mathrm{O}
$$

to define a connected s-acyclic ($n+2$)-dimensional even $(-\varepsilon)$-symmetric pair over $A\left(f: C \longrightarrow D,(O, \phi) \in Q\left\langle v_{O}\right\rangle^{n+2}(f,-\varepsilon)\right)$ with which to perform such a surgery.

In particular, if (A,S) is O-dimensional we have that $L^{2 i-1}(A, S, E)(i \geqslant 1)$ is the cobordism group of S-acyclic o-dimensional (-) ${ }^{i-1} \varepsilon$-symmetric Poincaré complexes over A $\left(C, \phi \in Q^{O}\left(C,(-)^{i-1} \varepsilon\right)\right)$. Now $H_{O}(C)$ is an S-torsion f.g. projective A-module, and S consists of non-zero-divisors, so that $H_{O}(C)=0$ and $L^{2 i-1}(A, S, E)=0(i \geqslant 1)$.

Let

$$
f: A \longrightarrow B
$$

be a morphism of rings with involution for which there exists a multiplicative subset $S C A$ such that f factors through the localization $S^{-1} A$

$$
f: A \longrightarrow S^{-1} A \longrightarrow B
$$

with the property
f a finite-dimensional A-module chain complex C is B-acyclic if and only if C is S-acyclic.

It then follows that

$$
\begin{aligned}
\Gamma^{n}(f: A \longrightarrow B, \varepsilon)= & \text { the cobordism group of } n \text {-dimensional } \\
& \varepsilon \text {-symmetric } B \text {-Poincaré complexes over } A \\
= & \text { the cobordism group of } n \text {-dimensional } \\
& \varepsilon \text {-symmetric } S^{-1} A \text {-Poincaré complexes over } A \\
= & r^{n}\left(A \longrightarrow S^{-1} A, \varepsilon\right)=L_{S}^{n}\left(S^{-1} A, E\right) \quad(n \geqslant 0) .
\end{aligned}
$$

and similarly for the ε-quadratic case. The connection between the Γ-groups and the L-groups of localizations has been investigated in the quadratic case by Smith [1] \{following some preliminary work of Cappell and Shaneson in the commutative case). In particular, Smith showed that if

$$
\mathbf{f}: A=\mathbb{Z}[\pi] \longrightarrow B=\mathbb{Z}[0]
$$

is the morphism of rings with involution induced by a surjective group morphism $f: \pi \longrightarrow \rho$ such that ρ is a finite extension of a polycyclic group and $\operatorname{ker}(f: \pi \longrightarrow \rho)$ is a finitely generated nilpotent group then the multiplicative subset

$$
S=\{1+i \mid i \in \operatorname{ker}(f: A \longrightarrow B)\} \subset A
$$

is such that the evident factorization

$$
f: A \longrightarrow S^{-1} A \longrightarrow B
$$

does indeed have the property 1 , and hence that

$$
\Gamma_{\star}(f: A \longrightarrow B)=L_{\star}^{S}\left(S^{-1} A\right) .
$$

The case of the projection induced by $f: \pi=\mathbb{Z} \longrightarrow \rho=\{1\}$

$$
f: A=\mathbb{Z}[\mathbb{Z}] \longrightarrow B=\mathbb{Z}
$$

is of particular interest, since the groups

$$
\Gamma_{\star}(f: \mathbb{Z}[\mathbb{Z}] \longrightarrow \mathbb{Z})=\Gamma_{\star}\left(\mathbb{Z}(\mathbb{Z}] \longrightarrow S^{-1} \mathbb{Z}[\mathbb{Z}]\right)=L_{\star}^{S}\left(S^{-1} \mathbb{Z}[\mathbb{Z}]\right)
$$

are closely related to the high-dimensional knot cobordism groups C_{*}, as described in 57.9 below. More recently, Vogel [3]
has obtained natural identifications of the type

$$
\Gamma_{*}(f: A \longrightarrow B)=L_{*}^{X}(N)
$$

for any locally epic morphism $f: A \longrightarrow B$ with a factorization

$$
f: A \longrightarrow A \longrightarrow B
$$

satisfying the property

- a finite-dimensional A-module chain complex C is B-acyclic if and only if C is A -acyclic
universally, with $A \longrightarrow B$ onto.

3.3 Linking Wu classes

The linking wu classes are the S-acyclic counterparts of the algebraic W classes of $\$ 1.4$.

Let $T \in \mathbb{Z}_{2}$ act on the additive groups $A, S^{-1} A, S^{-1} A / A$ by $T: x \longmapsto \in \bar{x}$ in each case. Define the $\left\{\begin{array}{l}\mathbb{Z}_{2} \text {-cohomology } \\ \mathbb{Z}_{2} \text {-homology } \\ \text { Tate } \mathbb{Z}_{2} \text {-cohomology }\end{array}\right.$ groups $\left\{\begin{array}{l}H^{r}\left(\mathbb{Z}_{2} ; G, E\right) \\ H_{r}\left(\mathbb{Z}_{2} ; G, E\right) \quad(r \in \mathbb{Z}) \text { for } G=S^{-1} A, S^{-1} A / A \text { by analogy } \\ \hat{H}^{r}\left(\mathbb{Z}_{2} ; G, E\right)\end{array}\right.$ with the case $G=A$ considered in §1.4. The short exact sequence of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules

$$
0 \longrightarrow A \longrightarrow S^{-1} A \longrightarrow S^{-1} A / A \longrightarrow 0
$$

induces a long exact sequence of abelian groups

Let C be an S-acyclic finite-dimensional A-module chain
complex. The $\underline{r t h}\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c ~}{\text { E-quadratic }} \quad \text { linking Wu class } \\ \underline{\varepsilon-h y p e r q u a d r a t i c ~}\end{array}\left\{\begin{array}{l}v_{r}^{S}(\phi) \\ v_{S}^{r}(\psi) \\ \hat{v}_{r}^{S}(\theta)\end{array}\right.\right.$
of an element $\left\{\begin{array}{l}\phi \in Q^{n+1}(C, \varepsilon) \\ \psi \in Q_{n+1}(C, \varepsilon) \text { is the function } \\ 0 \in \hat{Q}^{n+1}(C, \varepsilon)\end{array}\right.$

$$
\begin{aligned}
& v_{r}^{S}(\phi): H^{n-r+1}(C) \longrightarrow H^{n-2 r}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n-r+1} E\right) ; \\
& x \xrightarrow{\longrightarrow}\left(\frac{1}{s}\right) \cdot\left(\phi_{n-2 r-1}+(-)^{n-r_{1}} \phi_{n-2 r}{ }^{\star}\right)(y)(y) \cdot\left(\frac{1}{s}\right) \\
& v_{S}^{r}(\psi): H^{n-r+1}(C) \longrightarrow H_{2 r-n}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n-r+1} \varepsilon\right): \\
& x \longmapsto\left(\frac{1}{s}\right) \cdot\left(\psi_{2 r-n+1}+(-)^{n-r_{1}} \psi_{2 r-n^{d *}}\right)(y)(y) \cdot\left(\frac{1}{s}\right) \\
& \hat{v}_{r}^{S}(\theta): H^{n-r+1}(C) \longrightarrow \hat{H}^{r-1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) ; \\
& x \longmapsto\left(\frac{1}{s}\right) \cdot\left(\theta_{n-2 r-1}+(-)^{n-r_{n}}{ }_{n-2 r} d^{*}\right)(y)(y) \cdot\left(\frac{1}{s}\right) \\
& \left(x \in c^{n-r+1}, y \in c^{n-r}, s \in S, s x=d^{*} y \in c^{n-r+1}\right) .
\end{aligned}
$$

Motivation: the cohomology classes $x \in H^{m}(C)$ of an s-acyclic A-module chain complex C are in a natural one-one corresponder with the chain homotopy classes of A-module chain maps

$$
x: C \longrightarrow C_{m}(A, S)
$$

where $C_{m}(A, S)$ is the S-acyclic A-module chain complex defined by

$$
\begin{aligned}
& d: C_{m}(A, S)_{m}=A \longrightarrow C_{m}(A, S)_{m-1}=S^{-1} A ; a \longmapsto \\
& C_{m}(A, S)_{i}=0(i \neq m-1, m)
\end{aligned}
$$

The linking wu classes are such that

$$
\left\{\begin{array}{l}
v_{r}^{S}(\phi)(x)=x^{\ell}(\phi) \in Q^{n+1}\left(C_{n-r+1}(A, S), E\right)=H^{n-2 r}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n}\right. \\
v_{S}^{r}(\psi)(x)=x_{z}(\psi) \in Q_{n+1}\left(C_{n-r+1}(A, S), E\right)=H_{2 r-n}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n}\right. \\
\hat{v}_{r}^{S}(\theta)(x)=\hat{x}^{\ell}(\theta) \in \hat{Q}^{n+1}\left(C_{n-r+1}(A, S), E\right)=\hat{H}^{r+1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right)
\end{array}\right.
$$

Now $C_{m}(A, S)$ is the direct limit

$$
C_{m}(A, S)=\frac{\operatorname{Lim}_{S E S}}{S m}(A, S)
$$

of the directed system $\left\{C_{m}(A, s) \mid s \in S\right\}$ of finite-dimensional S-acyclic A-module chain complexes defined by

$$
\begin{gathered}
d: C_{m}(A, s)_{m}=A \longrightarrow C_{m}(A, s)_{m-1}=A: a \longmapsto a s \\
C_{m}(A, S)_{i}=0(i \neq m-1, m)
\end{gathered}
$$

with $s \leqslant s^{\prime}$ if there exists $t \in S$ such that $s^{\prime}=s t \in S$ and

$$
C_{m}(A, s)_{i} \longrightarrow C_{m}\left(A, s^{\prime}\right)_{i} ; a \longmapsto \begin{cases}\text { at } & i=m-1 \\ \text { a } & i=m\end{cases}
$$

The $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ linking wu class $\left\{\begin{array}{l}v_{r}^{S}(\phi)(x) \\ v_{S}^{r}(\psi)(x)\end{array}\right.$ is the obstruction to killing $x \in H^{n-r+1}(C)\left(=H_{r}(C)\right.$ if $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is Poincaré by S-acyclic surgery on an $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ pair of the type

$$
\left\{\begin{array}{l}
\left(x: C \longrightarrow C_{n-r+1}(A, s),(\delta \phi, \phi) \in Q^{n+2}(x, \varepsilon)\right) \\
\left(x: C \longrightarrow C_{n-r+1}(A, s),(\delta \psi, \psi) \in Q_{n+2}(x, \varepsilon)\right)
\end{array} \quad(s \in S)\right.
$$

By analogy with Proposition 1.4.1 we have:
Proposition 3.3.1 i) The linking Wu classes are related to each other by

$$
\begin{aligned}
& \hat{v}_{r}^{S}(J \phi): H^{n-r+1}(C) \xrightarrow{v_{r}^{S}(\phi)} H^{n-2 r}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n-r+1} \varepsilon\right) \\
& \longrightarrow \xrightarrow{\mathrm{J}} \hat{\mathrm{H}}^{\mathrm{r}+1}\left(\mathbb{Z}_{2} ; \mathrm{S}^{-1} A / A, E\right) \\
& v_{r}^{S}\left(\left(1+T_{E}\right) \psi\right): H^{n-r+1}(C) \xrightarrow{v_{S}^{r}(\psi)} H_{2 r-n}\left(Z_{2} ; S^{-1} A / A,(-)^{n-r+1} E\right) \\
& \xrightarrow{1+T_{E}} H^{n-2 r}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n-r+1} E\right) \\
& v_{S}^{r-1}(H \theta): H^{n-r+1}(C) \xrightarrow{\hat{O}^{S}(\theta)} \hat{H}^{r-1}\left(\mathcal{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \\
& \xrightarrow{H} H_{2 r-n-1}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n-r+1} \varepsilon\right) \\
& \left(\phi \in Q^{n+1}(C, \varepsilon), \psi \in Q_{n+1}(C, \varepsilon), \quad \theta \in \hat{Q}^{n+1}(C, \varepsilon)\right) \text {. }
\end{aligned}
$$

ii) The linking wu classes are related to the algebraic wu classes of $\$ 1.4$ by

$$
\begin{aligned}
& v_{r}(\phi): H^{n-r+1}(C) \xrightarrow{v_{r}^{S}(\phi)} H^{n-2 r}\left(Z_{2} ; S^{-1} A / A,(-)^{n-r+1} \varepsilon\right) \\
& \xrightarrow{\delta} H^{n-2 r+1}\left(Z_{2} ; A,(-)^{n-r+1} E\right) \\
& v^{r}(\psi): H^{n-r+1}(C) \xrightarrow{v_{S}^{r}(\psi)} H_{2 r-n}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n-r+1} E\right) \\
& \xrightarrow{\partial} H_{2 r-n-1}\left(\mathbb{Z}_{2} ; A,(-)^{n-r+1} \varepsilon\right) \\
& \hat{v}_{r}(\theta): H^{n-r+1}(C) \xrightarrow{\hat{v}_{r}^{S}(\theta)} \hat{H}^{r-1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) \\
& \xrightarrow{\hat{\delta}} \hat{H}^{\mathrm{r}}\left(\mathrm{ZZ}_{2} ; A, \varepsilon\right) \quad \text {. }
\end{aligned}
$$

iii) The linking wu classes satisfy the sum formulae

$$
\left.\left.\begin{array}{l}
v_{r}^{S}(\phi)(x+y)-v_{r}^{S}(\phi)(x)-v_{r}^{S}(\phi)(y) \\
= \begin{cases}\phi_{O}^{S}(x, y)+\phi_{O}^{S}(y, x) \in H^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{r+1} \varepsilon\right) & (n=2 r) \\
0 \in H^{n-2 r}\left(Z_{2} ; S^{-1} A / A,(-)^{n-r+1} \varepsilon\right) & (n \neq 2 r)\end{cases} \\
v_{S}^{r}(\psi)(x+y)-v_{S}^{r}(\psi)(x)-v_{S}^{r}(\psi)(y)
\end{array}\right\} \begin{array}{l}
\left(1+T_{\varepsilon}\right) \psi_{O}^{S}(x, y) \in H_{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{r+1} \varepsilon\right) \quad(n=2 r) \\
0 \in H_{2 r-n}\left(\mathbb{Z}_{2} ; S^{-1} A / A,(-)^{n-r+1} \varepsilon\right) \quad(n \neq 2 r)
\end{array}\right\} \begin{aligned}
& \hat{v}_{r}^{S}(\theta)(x+y)-\hat{v}_{r}^{S}(\theta)(x)-\hat{v}_{r}^{S}(\theta)(y)=0 \in \hat{H}^{r-1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \epsilon\right)
\end{aligned}
$$

with $\left\{\begin{array}{l}\phi_{O}^{S} \\ \left(1+T_{\varepsilon}\right) \psi_{O}^{S}: H^{r+1}(C) \times H^{r+1}(C) \longrightarrow S^{-1} A / A \text { the linking }\end{array}\right.$ pairing of $\left\{\begin{array}{l}\left(C, \phi \in Q^{2 r+1}(C, \varepsilon)\right) \\ \left(C, \psi \in Q_{2 r+1}(C, \varepsilon)\right)\end{array}(n=2 r)\right.$. Furthermere,

$$
v_{r}^{S}(\phi)(x)=\phi_{0}^{S}(x, x) \in H^{O}\left(Z_{2} ; S^{-1} A / A,(-)^{r+1} \varepsilon\right) \quad(n=2 r)
$$

As a first application of the linking Wu classes we have the following S-acyclic analogues of proposition 1.2.2 i): Proposition 3.3 .2 i) If A, S, E are such that

$$
\operatorname{ker}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right)\right)=0
$$

there is a natural identification
$L^{n}(A, S, E)=$ the cobordism group of S-acyclic (n-1)-dimension c-symmetric Poincaré complexes over $A \quad(n \geqslant 2)$
under which $L^{n}(A, S, E) \longrightarrow L^{n-1}(A, E)$ becomes the forgetful map. In particular, this is the case if $\hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right)=0$ (e.g. if $1 / 2 \in S^{-1}$ A).
ii) If A, S, E are such that

$$
\hat{\mathrm{H}}^{\mathrm{O}}\left(Z_{2} ; A, E\right) \longrightarrow \hat{\mathrm{H}}^{O}\left(Z_{2} ; S^{-1} A, \varepsilon\right)
$$

is an isomorphism then the skew-suspension maps

$$
\bar{S}: L^{n}(A, S, \varepsilon) \longrightarrow L^{n+2}(A, S,-\varepsilon) \quad(n \geqslant 0)
$$

are isomorphisms. In particular, this is the case if $1 / 2 \in S^{-1} A$, Proof: i) By the S-acyclic counterpart of Proposition 1.5 .2 it suffices to show that it is possible to perform S-acyclic surgery on a connected S-acyclic $(n+1)$-dimensional even $(-\varepsilon)-s y m m e t r i c$ complex over $A\left(C, \phi \in Q\left\langle v_{O}\right\rangle^{n+1}(C,-\varepsilon)\right)(n \geqslant 2)$ so as to obtain a skew-suspension, killing $H^{n+1}(C)$. For any element $x \in H^{n+1}(C)$ we have

$$
\hat{\delta} v_{O}^{S}(\phi)(x)=v_{O}(\phi)(x)=0 \in \hat{\mathrm{H}}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)
$$

so that
$v_{O}^{S}(\phi)(x) \in \operatorname{ker}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0$. It follows that $x \in H^{n+1}(C)$ may be represented by an A-module chain map

$$
x: C \longrightarrow C_{n+1}(A, s)
$$

for some $s \in S$ (with $C_{n+1}(A, s)$ as defined above) such that the is defined a connected s-acyclic ($n+2$)-dimensional even (-E)-symmetric pair over A

$$
\left(x: C-\longrightarrow C_{n+1}(A, s),(\delta \phi, \phi) \in Q\left\langle v_{0}\right\rangle^{n+2}(x,-\varepsilon)\right)
$$

Surgery on this pair results in a connected S-acyclic ($n+2$)-dimensional even ($-\varepsilon$-symmetric complex over A $\left(C^{\prime}, \phi^{\prime} \in Q\left\langle v_{0}\right\rangle^{n+1}\left(C^{\prime},-E\right)\right)$ such that

$$
H^{n+1}\left(C^{\prime}\right)=H^{n+1}(C) /(x) \text {. }
$$

Now $\mathrm{H}^{\mathrm{n}+1}(\mathrm{C})$ is a f.g. S-torsion A-module, so that it is possi to kill $H^{n+1}(C)$ in (C, ϕ) by successively killing off a finite set of generators.
ii) Consider the exact sequence of abelian groups

$$
\begin{aligned}
\hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) & \xrightarrow{\hat{\delta}} \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, E\right) \\
& \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A ; A, E\right) \xrightarrow{\hat{\delta}} \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right) .
\end{aligned}
$$

If $\hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right)$ is onto then

$$
\operatorname{ker}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \epsilon\right)\right)=0
$$

and by i) we can identify

$$
\begin{aligned}
L^{n+2}(A, S, \varepsilon)= & \text { the cobordism group of } S \text {-acyclic } \\
& (n+1) \text {-dimensional } \varepsilon \text {-symmetric Poincaré } \\
& \text { complexes over } A \quad(n \geqslant 0) .
\end{aligned}
$$

If $\hat{H}^{O}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right)$ is one-one then

$$
i m\left(\hat{\delta}: \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{0}\left(\mathbb{Z}_{2} ; A, \epsilon\right)\right)=0
$$

and every S-acyclic ε-symmetric complex (or pair) over A is even. Thus if $\hat{\boldsymbol{H}}^{O}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right)$ is an
isomorphism we can identify
$L^{n+2}(A, S, E)=$ the cobordism group of S-acyclic ($n+1$)-dimensional even e-symmetric Poincaré complexes over A

$$
=L^{n}(A, S,-\varepsilon) \quad(n \geqslant 0) .
$$

3.4 Linking forms

In the first instance we define some subquotient groups of $S^{-1} A$, which are needed to define the various types of linking form that arise in the localization exact sequences of witt groups.

$$
\begin{gathered}
\text { Write } Q^{\varepsilon}\left(S^{-1} A / A\right) \text { for the } \mathbb{Z}_{2} \text {-cohomology group } \\
Q^{\varepsilon}\left(S^{-1} A / A\right)=H^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right)=\left\{b \in S^{-1} A \mid b-\varepsilon \bar{b} \in A\right\} / A
\end{gathered}
$$

and let $Q^{\varepsilon}(A, S)$ be the subgroup of $Q^{\varepsilon}\left(S^{-1} A / A\right)$ defined by

$$
\begin{aligned}
Q^{\epsilon}(A, S) & =i m\left(H^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right) \cdots H^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right)\right) \\
& =\left\{b \in S^{-1} A \mid b-\varepsilon \bar{b}=a-\varepsilon \bar{a}, a \in A\right\} / A \subseteq Q^{\varepsilon}\left(S^{-1} A / A\right) .
\end{aligned}
$$

Write $Q_{E}\left(S^{-1} A / A\right)$ for the \mathbb{Z}_{2}-homology group

$$
Q_{\varepsilon}\left(S^{-1} A / A\right)=H_{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right)=S^{-1} A /\left\{a+b-\varepsilon \bar{b} \mid a \in A, b \in S^{-1} A\right\},
$$

and define also the abelian group

$$
\begin{aligned}
Q_{E}(A, S) & =\operatorname{coker}\left(1+T_{E}: H_{0}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow H^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, E\right)\right\} \\
& =\left\{b \in S^{-1} A \mid b=\varepsilon \bar{b}\right\} /\{a+\varepsilon \bar{a} \mid a \in A\} .
\end{aligned}
$$

The e-symmetrization map

$$
1+T_{\varepsilon}: Q_{\varepsilon}\left(S^{-1} A / A\right) \longrightarrow Q^{\epsilon}\left(S^{-1} A / A\right) ; x \longmapsto \varepsilon \bar{x}
$$

factorizes as

$$
1+T_{E}: Q_{E}\left(S^{-1} A / A\right) \xrightarrow{p} Q_{E}(A, S) \xrightarrow{q} Q^{\varepsilon}(A, S) \xrightarrow{r} Q^{\varepsilon}\left(S^{-1} A / A\right)
$$

with
$p: Q_{E}\left(S^{-1} A / A\right) \longrightarrow Q_{\varepsilon}(A, S) ; x \longmapsto \longrightarrow+\epsilon \bar{x}$
$q: Q_{\varepsilon}(A, S) \longrightarrow Q^{E}(A, S) ; x \longmapsto x$
$r: Q^{\epsilon}(A, S) \longrightarrow Q^{\epsilon}\left(S^{-1} A / A\right) ; x \longmapsto \longrightarrow \cdots$.

An e-symmetric linking form over $(A, S)(M, \lambda)$ is an (A, S)-module M together with an A-module morphism $\lambda \in \operatorname{Hom}_{A}\left(M, M^{\wedge}\right)$ such that

$$
\varepsilon \lambda^{\wedge}=\lambda \in \operatorname{Hom}_{A}\left(M, M^{\wedge}\right)
$$

Equivalently, $\lambda \in \operatorname{Hom}_{A}\left(M, M^{\wedge}\right)$ can be regarded as a pairing

$$
\lambda: M \times M \longrightarrow S^{-1} A / A ;(x, y) \longmapsto \lambda(x, y) \equiv \lambda(x)(y)
$$

such that
i) $\lambda\left(x, y+y^{\prime}\right)=\lambda(x, y)+\lambda\left(x, y^{\prime}\right)$
ii) $\lambda(x, a y)=a \lambda(x, y)$
iii) $\lambda(y, x)=\epsilon \overline{\lambda(x, y)}$

$$
\left(x, y, y^{\prime} \in M, a \in A\right)
$$

For example, an ε-symmetric linking form over ($\mathbb{Z}, \mathbb{Z}-\{0\})$ (M, λ) is the same as a finite abelian group M together with a bilinear ε-symmetric pairing

$$
\lambda: M \times M \longrightarrow \mathbb{C} / \mathbb{Z} \quad .
$$

If (M, λ) is an ε-symmetric linking form over (A, S) then

$$
\lambda(x, x) \in Q^{E}\left(S^{-1} A / A\right) \quad(x \in M) .
$$

The linking form (M, λ) is even if

$$
\lambda(x, x) \in Q^{E}(A, S) \leq Q^{\varepsilon}\left(S^{-1} A / A\right) \quad(x \in M)
$$

An ε-quadratic linking form over $(A, S)(M, \lambda, \mu)$ is an even ε-symmetric linking form over $(A, S)(M, \lambda)$ together with a funct

$$
\mu: M \longrightarrow Q_{E}(A, S)
$$

such that

$$
\begin{aligned}
& \text { i) } \mu(a x)=a \mu(x) \vec{a} \in Q_{E}(A, S) \\
& \text { ii) } \mu(x+y)-\mu(x)-\mu(y)=\lambda(x, y)+\varepsilon \overline{\lambda(x, y)} \in Q_{E}(A, S) \\
& \text { iii) } q \mu(x)=\lambda(x, x) \in Q^{E}(A, S) \\
& (x, y \in M, a \in A) .
\end{aligned}
$$

This definition is due to Wall [2] (in the special case $(A, S)=(\mathbb{Z}[\pi], \mathbb{Z}-\{O\})$ arising in odd-dimensional surgery obstruction theory). If A is a commutative $r i n g$ with the identity involution $\vec{a}=a \in A(a \in A)$ and $1 / 2 \in \mathrm{~S}^{-1} A$ a quadrati linking form over (A, S) (M, λ, μ) ($\varepsilon=1 \in A$) consists of an (A, S)-module M toqether with a function

$$
\mu: M \longrightarrow Q_{+1}(A, S)=S^{-1} A / 2 A
$$

such that
i) $\mu(a x)=a^{2} \mu(x) \in S^{-1} A / 2 A \quad(x \in M, a \in A)$
ii) the function

$$
\lambda: M \times M \longrightarrow S^{-1} A / A ;(x, y) \longmapsto \frac{1}{2}(\mu(x+y)-\mu(x)-\mu(y)
$$

is bilinear.
A split e-quadratic linking form over (A, S) (M, λ, μ) is an even ε-symmetric linking form over $(A, S)(M, \lambda)$ together with a function

$$
v: M \longrightarrow Q_{\varepsilon}\left(S^{-1} A / A\right)
$$

such that

> i) $v(a x)=a v(x) \vec{a} \in Q_{E}\left(S^{-1} A / A\right)$
> ii) $v(x+y)-v(x)-v(y)=\lambda(x, y) \in Q_{E}\left(S^{-1} A / A\right)$
> iii) $q p v(x)=\lambda(x, x) \in Q^{E}(A, S)$
$(x, y \in M, a \in A) \quad$.
in which case the function
$\mu: M \longrightarrow Q_{E}(A, S) ; x \longrightarrow p \nu(x)$
defines an e-quadratic linking form (M, λ, μ). This definitior due to Karoubi (2]. In Proposition 3.4 .2 below we shall show that every ε-quadratic linking form (M, λ, μ) has a split
ε-quadratic refinement $(M, \lambda, \mu)(w i t h \mu=p \nu)$, and that if $1 / 2 \in S^{-1} A$ there is no difference between ε-quadratic and split e-quadratic linking forms over (A, S). If A is a commutative ring with the identity involution a split quadratic linking form over $(A, S)(M, \lambda, V)(\varepsilon=1 \in A)$ consists of an (A, S)-module M together with a function

$$
v: M \longrightarrow Q_{+1}\left(S^{-1} A / A\right)=S^{-1} A / A
$$

such that

$$
\text { i) } v(a x)=a^{2} v(x) \in s^{-1} A / A \quad(x \in M, a \in A)
$$

ii) the function

$$
\lambda: M \times M \longrightarrow S^{-1} A / A ;(x, y) \longmapsto(v(x+y)-v(x)-v(y))
$$

is bilinear.
The associated quadratic linking form ($M, \lambda, \mu=p v$) is obtained by composing v with

$$
\begin{array}{r}
p=2: Q_{+1}\left(S^{-1} A / A\right)=S^{-1} A / A \longrightarrow Q_{+1}(A, S)=S^{-1} A / 2 A ; \\
b \vdash
\end{array}
$$

(which is an isomorphism if $1 / 2 \operatorname{ES}^{-1} A$).

$$
\begin{gathered}
A n\left\{\begin{array}{l}
(\text { even }) ~ E-s y m m e t r i c \\
(\text { split }) ~ \\
\text { - -quadratic }
\end{array}\right. \text { linkinq form over (A,S) } \\
\left\{\begin{array}{l}
(M, \lambda) \\
(M, \lambda, \mu)((M, \lambda, V)) \text { is non-singular if } \lambda \in \operatorname{Hom}_{A}\left(M, M^{\wedge}\right) \text { is an }
\end{array}\right.
\end{gathered}
$$

isomorphism.
A morphism (resp. isomorphism) of $\left\{\begin{array}{l}(\text { even } \text { e-symmetric } \\ \text { e-quadratic } \\ \text { split e-quadratic }\end{array}\right.$
linking forms over (A, S)

$$
\left\{\begin{aligned}
& f:(M, \lambda) \longrightarrow\left(M^{\prime}, \lambda^{\prime}\right) \\
& f:(M, \lambda, U) \longrightarrow\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime}\right) \\
&\left.f:(M, \lambda, \nu) \longrightarrow \longrightarrow M^{\prime}, \lambda^{\prime}, v^{\prime}\right)
\end{aligned}\right.
$$

is an A-module morphism (resp. isomorphism) $f \in \operatorname{Hom}_{A}\left(M, M^{\prime}\right)$ such that

$$
\lambda: M \times M \xrightarrow{f \times f} M^{\prime} \times M^{\prime} \xrightarrow{\lambda^{\prime}} S^{-1} A / A
$$

and

$$
\left\{\begin{array}{l}
\mu: M \longrightarrow M^{\prime} \xrightarrow{\mu^{\prime}} Q_{E}(A, S) \\
\nu: M \longrightarrow M^{\prime} \xrightarrow{v^{\prime}} Q_{E}\left(S^{-1} A / A\right)
\end{array}\right.
$$

In Proposition 3.4.1 below the isomorphism classes of (non-singular) linking forms over (A, S) will be identified with the homotopy equivalence classes of S-acyclic l-dimensional (Poincaré) complexes over A. In Proposition 3.4.7 this will be extended to an identification of $\left\{\begin{array}{l}L^{2}(A, S,-E) \quad(A, S) \text { o-dimensional) } \\ L^{O}(A, S, E) \\ L^{-2}(A, S,-E) \\ L_{O}(A, S, E)\end{array}\right.$ with the witt group $\left\{\begin{array}{l}L^{\varepsilon}(A, S) \\ L^{\prime}\left\langle v_{0}\right\rangle^{\varepsilon}(A, S) \\ L_{\varepsilon}(A, S) \\ \widetilde{L}_{E}(A, S)\end{array}\right.$ of non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even E-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking forms over (A, S). Thus the even-dimensioanal e-quadratic L-groups of (A, S)

$$
L_{2 i}(A, S, \epsilon)=L_{0}\left(A, S,(-)^{i} \varepsilon\right)
$$

are the witt groups of the split $(-)^{i} \varepsilon$-quadratic linking forms over (A, S), rather then the witt groups of $(-)^{i} \varepsilon$-quadratic
linking forms. However, if $1 / 2 \in S^{-1} A(e . g$. if $(A, S)=(\mathbb{Z}[\pi], \mathbb{Z}-\{$ it will be shown in Proposition 3.4.2 below that the forgetful functor
\{split e-quadratic linking forms over (A,S)\}
$\longrightarrow\{\varepsilon$-quadratic linking forms over $(A, S)\}$
is an isomorphism of categories, so that the witt groups are also isomorphic. See Ranicki [6,\$6] and $\$ 5.1$ below for an example of a pair (A, S) (with $1 / 2 \notin S^{-1} A$) for which the witt groups are not isomorphic.
$A n\left\{\begin{array}{l}\frac{\varepsilon-s y m n e t r i c}{\varepsilon-q u a d r a t i c} \\ \text { split } \varepsilon \text {-quadratic }\end{array} \quad\right.$ map (resp. homotopy equivalence)
of S-acyclic l-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic complexes over } A \\ \varepsilon \text {-quadratic }\end{array}\right.$

$$
\left\{\begin{array}{l}
\mathrm{f}:(\mathrm{C}, \phi) \longrightarrow\left(\mathrm{C}^{\prime}, \phi^{\prime}\right) \\
\mathrm{f}:(\mathrm{C}, \psi) \longrightarrow\left(\mathrm{C}^{\prime}, \psi^{\prime}\right) \\
\mathrm{f}:(\mathrm{C}, \psi) \longrightarrow\left(\mathrm{C}^{\prime}, \psi^{\prime}\right)
\end{array}\right.
$$

is an A-module chain map (resp. chain equivalence)
$f: C \longrightarrow C^{\prime}$
such that

$$
\left\{\begin{array}{l}
f^{q}(\phi)-\phi^{\prime}=0 \in Q^{l}\left(C^{\prime}, \varepsilon\right) \\
f_{q}(\psi)-\psi^{\prime}=H(\theta) \in Q_{1}\left(C^{\prime}, \varepsilon\right) \\
f_{q}(\psi)-\psi^{\prime}=H(\theta) \in Q_{1}\left(C^{\prime}, \varepsilon\right)
\end{array}\right.
$$

for some Tate \mathbb{Z}_{2}-cohomology class $\theta \in \hat{\mathbf{Q}}^{2}\left(C^{\prime}, \varepsilon\right)$ such that

$$
\left\{\begin{array}{l}
\hat{v}_{1}(\theta)=0: H^{1}\left(C^{\prime}\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \\
\hat{v}_{1}^{S}(\theta)=0: H^{1}\left(C^{\prime}\right) \longrightarrow \hat{H}^{0}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \quad .
\end{array}\right.
$$

An ε-quadratic homotopy equivalence in this sense is the same an ε-quadratic homotopy equivalence in the sense of $\$ 1.6$. An $\left\{\begin{array}{l}\varepsilon \text {-quadratic } \\ \text { split } E \text {-quadratic }\end{array}\right.$ map $f:(C, \psi) \longrightarrow\left(C^{\prime}, \psi^{\prime}\right)$ determines an $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$

$$
\left\{\begin{array}{l}
\mathbf{f}:\left(C,\left(1+T_{\varepsilon}\right) \psi\right) \longrightarrow\left(C^{\prime},\left(1+T_{\varepsilon}\right) \psi^{\prime}\right) \\
\mathbf{f}:(C, \psi) \longrightarrow\left(C^{\prime}, \psi^{\prime}\right)
\end{array}\right.
$$

since

$$
\left\{\begin{array}{l}
\mathrm{f}^{8}\left(\left(1+\mathrm{T}_{\varepsilon}\right) \psi\right\rangle-\left(1+T_{E}\right) \psi^{\prime}=\left(1+\mathrm{T}_{\varepsilon}\right) H(\theta)=0 \in Q^{1}\left(C^{\prime}, \varepsilon\right) \\
\hat{v}_{1}(\theta): H^{1}\left(C^{\prime}\right) \longrightarrow \hat{v}_{1}^{S}(\theta)=0
\end{array}\right.
$$

Proposition 3.4.1 The category of $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon-s y m m e t r i c ~ l i n k i n g ~ \\ \varepsilon-q u a d r a t i c ~ \\ \text { split e-quadratic }\end{array}\right.$
forms over (A,S) is naturally equivalent to the opposite of t
category of s-acyclic 1 -dimensional $\left\{\begin{array}{l}(-\varepsilon)-\text { symmetric } \\ \text { even (- } \varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$
complexes over A and $\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ (-\varepsilon)-s y m m e t r i c \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ maps.
Isomorphisms of linking forms correspond to homotopy equivale of complexes. Non-singular linking forms correspond to Poinca complexes.

Proof: The linking pairing of an S-acyclic l-dimensional $(-\epsilon)$-symmetric complex over $A\left(C, \phi \in Q^{1}(C,-\varepsilon)\right)$

$$
\begin{gathered}
\phi_{O}^{S}: H^{1}(C) \times H^{1}(C) \longrightarrow S^{-1} A / A ;(x, y) \longmapsto \frac{1}{S} \phi_{O}(x)(z) \\
\left(x, y \in C^{1}, z \in C^{0}, s \in S, d^{\star} z=s y \in C^{1}\right)
\end{gathered}
$$

defines an ε-symmetric linking form over (A, S)

$$
(M, \lambda)=\left(H^{1}(C), \phi_{O}^{S}\right) .
$$

The Oth ($-\varepsilon$)-symmetric Wu class of (C, ϕ) factors as

$$
v_{O}(\phi): H^{1}(C)-{ }^{v_{O}^{S}(\phi)} H^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \xrightarrow{\delta} H^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)
$$

and

$$
\operatorname{ker}(\delta)=Q^{\varepsilon}(A, S) \subseteq H^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right)=Q^{\varepsilon}\left(S^{-1} A / A\right),
$$

so that the complex (C, ϕ) is even $\left(v_{0}(\phi)=0\right)$ if and only if the linking form (M, λ) is even $\left(\lambda(x, x) \equiv v_{O}^{S}(\phi)(x) \in Q^{£}(A, S) \subseteq Q^{\varepsilon}\left(S^{-1} A / A\right)\right.$ for all $\left.x \in M=H^{1}(C)\right)$.

The Oth (-e)-quadratic linking Wu class of an S-acyclic l-dimensional (- $(-\varepsilon)$ quadratic complex over $A\left(C, \psi \in Q_{1}(C,-\varepsilon)\right)$

$$
\begin{aligned}
v_{S}^{O}(\psi): H^{1}(C) & H_{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right)=Q_{\varepsilon}\left(S^{-1} A / A\right) ; \\
y \longmapsto & \left(\frac{1}{S}\right) \cdot\left(\psi_{1}+\psi_{O} d^{\star}\right)(z)(z) \cdot\left(\frac{1}{S}\right) \\
& \left(y \in C^{1}, z \in C^{0}, s \in S, d^{\star} z=s y \in C^{1}\right)
\end{aligned}
$$

defines a split ε-quadratic linking form over (A,S)

$$
(M, \lambda, \nu)=\left(H^{1}(C),\left(1+T_{-\varepsilon}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right)
$$

with associated ε-quadratic linking form over (A, S)

$$
(M, \lambda, \mu)=\left(H^{1}(C),\left(1+T_{-E}\right) \psi_{O}^{S}, p v_{S}^{O}(\psi): H^{1}(C) \longrightarrow Q_{E}(A, S)\right) .
$$

A map of S-acyclic l-dimensional (-E)-symmetric complexes
over A

$$
f:(C, \phi) \longrightarrow\left(C^{\prime}, \phi^{\prime}\right)
$$

induces contravariantly a morphism of the associated e-symmetric linking forms over (A, S)

$$
\mathrm{f}^{*}:\left(\mathrm{H}^{1}\left(\mathrm{C}^{\prime}\right), \phi_{\mathrm{O}}^{\mathrm{S}}\right) \longrightarrow\left(\mathrm{H}^{1}(\mathrm{C}), \phi_{\mathrm{O}}^{S}\right)
$$

Conversely, every morphism of the associated e-symmetric linking forms is induced by a map of complexes.

A map of the (-E)-symmetrizations

$$
f:\left(C,\left(1+T_{-\varepsilon}\right) \psi\right) \longrightarrow\left(C^{\prime},\left(1+T_{-\varepsilon}\right) \psi^{\prime}\right)
$$

of the S-acyclic 1 -dimensional $(-\varepsilon)$-quadratic complexe over A $(C, \psi),\left(C^{\prime}, \psi^{\prime}\right)$ induces contravariantly a morphism of the associated $\left\{\begin{array}{l}\epsilon-q u a d r a t i c \\ \text { split } \epsilon \text {-quadratic }\end{array}\right.$ linking forms over (A,S) $\left\{\begin{array}{l}\mathrm{f}^{*}:\left(\mathrm{H}^{1}\left(C^{\prime}\right),\left(1+T_{-\varepsilon}\right) \psi_{O}^{\prime}{ }^{S}, p v_{S}^{O}\left(\psi^{\prime}\right)\right) \longrightarrow\left(H^{1}(C),\left(1+T_{-\varepsilon}\right) \psi_{O}^{S}, p v_{S}^{O}(\psi)\right) \\ f^{*}:\left(H^{1}\left(C^{\prime}\right),\left(1+T_{-\varepsilon}\right) \psi_{O}^{\prime}{ }^{S}, v_{S}^{O}\left(\psi^{\prime}\right)\right) \longrightarrow\left(H^{1}(C),\left(1+T_{-\varepsilon}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right)\end{array}\right.$ if and only if $f:(C, \psi) \longrightarrow\left(C^{\prime}, \psi^{\prime}\right)$ is a $\left\{\begin{array}{l}(-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ map, since by the exact sequence of Proposition 1.1.3 there exists an element $\theta \in \hat{Q}^{2}\left(C^{\prime},-\varepsilon\right)$ such that

$$
f_{q}(\psi)-\psi^{\prime}=H(\theta) \in Q_{1}\left(C^{\prime},-\varepsilon\right)
$$

and there is defined a commutative diagram

involving the exact sequences

$$
\begin{aligned}
& 0 \longrightarrow \hat{H}^{1}\left(Z_{2} ; S^{-1} A / A, E\right) \longrightarrow Q_{\varepsilon}\left(S^{-1} A / A\right) \longrightarrow Q^{E}(A, S) \\
& O \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow Q_{\varepsilon}(A, S) \longrightarrow Q(A, S)
\end{aligned}
$$

with

$$
\begin{aligned}
& H: \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) \longrightarrow Q_{E}\left(S^{-1} A / A\right) ; x \longmapsto x \\
& j: \hat{H}^{0}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow Q_{E}(A, S) ; a \longmapsto \frac{a}{1} . \\
& \text { Conversely, given an }\left\{\begin{array}{l}
\text { (even) e-symmetric } \\
\text { e-quadratic linking form } \\
\text { split e-quadratic }
\end{array}\right.
\end{aligned}
$$

over $(A, S)\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \mu) \text { we shall construct an S-acyclic 1-dimensional } \\ (M, \lambda, V)\end{array}\right.$
$\left\{\begin{array}{l}(\text { even })(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q^{l}(C,-\varepsilon)\right) \\ \left(C, \psi \in Q_{1}(C,-\varepsilon)\right) \\ \left(C, \psi \in Q_{1}(C,-\varepsilon)\right)\end{array}\right.$
such that

$$
\left\{\begin{array}{l}
\left(H^{1}(C), \phi_{O}^{S}\right)=(M, \lambda) \\
\left(H^{1}(C),\left(1+T_{-E}\right) \psi_{O}^{S}, P v_{O}^{S}(\psi)\right)=(M, \lambda, \mu) \\
\left(H^{1}(C),\left(1+T_{-\varepsilon}\right) \psi_{O}^{S}, v_{O}^{S}(\psi)\right)=(M, \lambda, V),
\end{array}\right.
$$

as follows.
Given an e-symmetric linking form over (A, S) (M, λ) let $\mathrm{O} \longrightarrow \mathrm{C}_{1} \longrightarrow \mathrm{~d} \mathrm{C}_{\mathrm{O}} \longrightarrow \longrightarrow \mathrm{M}^{\wedge} \longrightarrow \mathrm{C}$
be a f.g. projective A-module resolution of the S-dual
(A, S)-module M^{\wedge} of M. The A-module morphism $\lambda \in \operatorname{Hom}_{A}\left(M, M^{\wedge}\right)$ can be resolved by a chain map

$$
\phi_{O}: C^{1-k} \longrightarrow C
$$

such that there is defined a commutative diagram

We thus have A-module morphisms

$$
\phi_{0}: c^{0} \longrightarrow c_{1}, \tilde{\phi}_{0}: c^{1} \longrightarrow c_{0}
$$

such that

$$
d \phi_{O}+\tilde{\phi}_{0} d^{*}=0: c^{0} \longrightarrow c_{0}
$$

and

$$
\begin{aligned}
\lambda: M= & \operatorname{coker}\left(d^{\star}: C^{0} \longrightarrow C^{1}\right) \longrightarrow M^{\wedge} ; \\
x \longmapsto & \left(y \longmapsto \frac{1}{s} \phi O^{\prime}(x)(z)\right) \\
& \left(x, y \in C^{1}, z \in C^{0}, s \in S, d^{\star} z=s y \in C^{1}\right) .
\end{aligned}
$$

The relation $T_{\varepsilon} \lambda=\lambda \in \operatorname{Hom}_{A}\left(M, M^{\wedge}\right)$ is resolved by a chain homotopy

$$
\phi_{1}: T_{-\varepsilon} \phi_{O} \simeq \phi_{O}: C^{1-*} \longrightarrow C
$$

as defined by an A-module morphism

$$
\phi_{1}: c^{1} \longrightarrow c_{1}
$$

such that

$$
\begin{aligned}
& \phi_{O}+\varepsilon \tilde{\phi}_{O}^{\star}=-\phi_{1} d^{\star}: c^{0} \longrightarrow c_{1} \\
& \tilde{\phi}_{O}+\varepsilon \phi_{O}^{\star}=d \phi_{1}: c^{1} \longrightarrow c_{O}
\end{aligned}
$$

Now

$$
d\left(\phi_{1}+\varepsilon \phi_{1}^{*}\right)=\left(\tilde{\phi}_{O}+\varepsilon \phi_{\mathrm{O}}^{\star}\right)-\varepsilon\left(\phi_{\mathrm{O}}+\varepsilon \tilde{\phi}_{\mathrm{O}}^{\star}\right) \bullet=0: c^{1} \longrightarrow C_{O}
$$

and $d \in \operatorname{Hom}_{A}\left(C_{1}, C_{O}\right)$ is a monomorphism, so that

$$
\phi_{1}+\varepsilon \phi_{1}^{*}=0: c^{1} \longrightarrow C_{1}
$$

The S-acyclic l-dimensional (-E)-symmetric complex over A $\left(C, \phi \in Q^{1}(C,-\varepsilon)\right)$ is such that

$$
\left(H^{1}(C), \phi_{S}^{O}\right)=(M, \lambda)
$$

by construction. The chain map $\phi_{\mathrm{O}}: \mathrm{C}^{l-*} \longrightarrow \mathrm{C}$ is a chain equivalence if and only if it induces an A-module isomorphism

$$
\left(\phi_{0}\right)_{\star}=\lambda: H^{1}(C)=M \longrightarrow H_{O}(C)=M^{\wedge},
$$

so that the complex (C, ϕ) is Poincare if and only if the linking form (M, λ) is non-singular.

Given an E-quadratic linking form over (A, S) (M, λ, μ) let

be a f.g. projective A-module resolution of the S -dual M^{\wedge} (as above), stabilized so as to have C_{1} a f.g. free A-module. Write the dual resolution for the double S-dual $\left(M^{\wedge}\right)^{\wedge}=M$ as

Choose a base $\left\{x_{i} \mid 1 \leqslant i \leqslant n\right\}$ for $C^{l}=C_{1}^{\star}$ and let $\left\{Y_{i j} \in S^{-1} A \mid 1 \leqslant i, j \leqslant n\right\}$ be such that

$$
\begin{aligned}
& \text { i) } Y_{i j}=\varepsilon \overline{Y_{j i}} \in s^{-1} A \quad(1 \leqslant i, j \leqslant n) \\
& \text { ii) } \lambda\left(e x_{i}\right)\left(e x_{j}\right)=y_{i j} \in s^{-1} A / A \quad(1 \leqslant i<j \leqslant n) \\
& \text { iii) } \mu\left(e x_{i}\right)=Y_{i i} \in Q_{\varepsilon}(A, S) \quad(1 \leqslant i \leqslant n) .
\end{aligned}
$$

Define an A-module structure on $\operatorname{Hom}_{A}\left(C^{1}, S^{-1} A\right)$ by

$$
\begin{aligned}
A \times \operatorname{Hom}_{A}\left(C^{1}, S^{-1} A\right) \longrightarrow & \operatorname{Hom}_{A}\left(C^{1}, S^{-1} A\right) ; \\
(a, f) & \longrightarrow(x \longmapsto f(x) \bar{a})
\end{aligned}
$$

The A-module morphism
$\alpha: C^{1} \longrightarrow \operatorname{Hom}_{A}\left(C^{1}, s^{-1} A\right)$:

$$
\sum_{i=1}^{n} a_{i} x_{i} \longmapsto\left(\sum_{j=1}^{n} b_{j} x_{j} \longmapsto \sum_{1 \leqslant i, j \leqslant n} b_{j} y_{i j} \overline{a_{i}}\right) \quad\left(a_{i}, b_{j} \in A\right)
$$

is such that

$$
\begin{aligned}
& \text { i) } \alpha(y)(x)=\overline{\alpha(x)(y)} \in s^{-1} A / A \\
& \text { ii) } \lambda(e x)(e y)=\alpha(x)(y) \in s^{-1} A / A \\
& \text { iii) } \mu(e x)=\alpha(x)(x) \in Q_{\varepsilon}(A, S)
\end{aligned}
$$

$$
\left(x, y \in C^{1}\right)
$$

Now

$$
\begin{aligned}
&\left(d^{\star} z\right)(y) \in A \subseteq S^{-1} A \\
&\left(d^{*} z\right)\left(d^{*} z\right) \in \operatorname{im}\left(1+T_{E}: A \longrightarrow\right. A ; a \longmapsto \\
&\left(y \in C^{1}, z \in C^{0}\right)
\end{aligned}
$$

so that there is a well-defined A-module morphism

$$
\psi_{0}: C^{0} \longrightarrow\left(C^{1}\right) \omega=C_{1} ; z \longmapsto\left(y \longrightarrow \alpha d^{\star}(z)(y)\right)
$$

such that for some $\psi_{1} \in \operatorname{Hom}_{A}\left(C^{0}, C_{O}\right)$

$$
\mathrm{d} \psi_{\mathrm{O}}+\psi_{1}+\varepsilon \psi_{1}^{*}=0: \mathrm{c}^{0} \longrightarrow \mathrm{c}_{\mathrm{O}}
$$

The S-acyclic l-dimensional ($-\varepsilon$)-quadratic complex over A $\left(C, \psi \in Q_{1}(C,-\varepsilon)\right)$ is such that

$$
\left(H^{1}(C),\left(1+T_{-\varepsilon}\right) \psi_{O}^{S}, \mathrm{Pv}_{S}^{O}(\psi)\right)=(M, \lambda, \mu),
$$

by construction.
Given a split ε-quadratic linking form over (A, S) (M, λ, V) let (C, ψ) be the S-acyclic l-dimensional ($-E$)-quadratic complex over A constructed as above, but with $\psi_{1} \in \operatorname{Hom}_{A}\left(C^{0}, C_{O}\right)$ determined by $v: M \longrightarrow Q_{E}\left(S^{-1} A / A\right)$, as follows. Let $\left\{z_{i} \in S^{-1} A \mid 1 \leqslant i \leqslant n\right\}$ be such that

$$
v\left(e x_{i}\right)=z_{i} \in Q_{E}\left(S^{-1} A / A\right) \quad(1 \leqslant i \leqslant n),
$$

and define an A-module morphism

$$
\begin{aligned}
& B: C^{1} \longrightarrow \operatorname{Hom}_{A}\left(C^{l}, S^{-1} A\right) ; \\
& \sum_{i=1}^{n} a_{i} x_{i} \longmapsto \\
&\left(\sum_{j=1}^{n} b_{j} x_{j} \longmapsto \longrightarrow \sum_{i \leqslant j \leqslant n} b_{j} y_{i j} \overline{a_{i}}+\sum_{i=1}^{n} b_{i} z_{i} \overline{a_{i}}\right)
\end{aligned}
$$

such that

$$
\begin{aligned}
& \alpha(x)(y)=B(x)(y)+\varepsilon \overline{B(y)(x)} \in S^{-1} A \\
& v(e x)=B(x)(x) \in Q_{\varepsilon}\left(S^{-1} A / A\right)
\end{aligned} \quad\left(x, y \in C^{1}\right) .
$$

Let $\Psi_{1} \in \operatorname{Hom}_{A}\left(C^{\circ}, C_{O}\right)$ be an A-module morphism such that

$$
\begin{aligned}
& \Psi_{1}(z)(z)=-B\left(d^{\star} z\right)\left(d^{\star} z\right) \in Q_{\varepsilon}\left(S^{-1} A\right) \quad\left(z \in C^{O}\right) \\
& d \psi_{O}+\psi_{1}+\varepsilon \psi_{1}^{\star}=0: C^{O} \longrightarrow C_{O} .
\end{aligned}
$$

The S-acyclic l-dimensional (-E)-quadratic complex over A $\left(C, \psi \in Q_{1}(C,-\varepsilon)\right)$ is such that

$$
\left(H^{1}(C),\left(1+T_{-E}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right)=(M, \lambda, v),
$$

by construction.

Proposition 3.4.2 i) Every c-quadratic linking form over (A,S) (M, λ, μ) admits a split ε-quadratic linking form (M, λ, ν) with v a refinement of μ,

$$
\mu: M \longrightarrow Q_{\varepsilon}\left(S^{-1} A / A\right) \xrightarrow{\nu} Q_{\varepsilon}(A, S)
$$

ii) If A, S, E are such that

$$
\left\{\begin{array}{l}
\operatorname{im}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0 \\
\hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right) \text { is an isomorphism } \\
\operatorname{im}\left(\hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right)\right)=0
\end{array}\right.
$$

then the forgetful functor

$$
\left(\left\{\begin{array}{l}
\text { even } \varepsilon \text {-symmetric } \\
\text { e-quadratic linking forms over }(A, S)), \\
\text { split } \varepsilon \text {-quadratic }
\end{array}\right.\right.
$$

$$
\longrightarrow\left(\left\{\begin{array}{l}
\text { e-symmetric } \\
\text { even e-symmetric linking forms over }(A, S)) \\
\varepsilon-\text { quadratic }
\end{array}\right.\right.
$$

is an isomorphism of categories. In particular, this is the case if $1 / 2 \in A$; if $1 / 2 \in S^{-1} A$ (e.g. if $2 \in S$) the forgetful functor
(split ε-quadratic linking forms over (A,S))
$\longrightarrow(\varepsilon-$ quadratic linking forms over (A,S))
is an isomorphism of categories.
Proof: i) Immediate from Proposition 3.4.1.
ii) Let $\tilde{Q}_{E}(A, S)$ be the subgroup of $Q_{E}(A, S)$ defined by

$$
\widetilde{Q}_{\varepsilon}(A, S)=\left\{b+\varepsilon \bar{B} \mid b \in S^{-1} A\right\} /\{a+\varepsilon \bar{a} \mid a \in A\} \text {. }
$$

and define abelian group morphisms

$$
\begin{aligned}
& \tilde{p}=p \mid: Q_{E}\left(S^{-1} A / A\right) \longrightarrow \tilde{Q}_{E}(A, S) ; b r \longrightarrow b+\varepsilon \bar{b} \\
& \tilde{\mathrm{q}}=\mathrm{q} \mid: \tilde{\mathrm{Q}}_{\varepsilon}(\mathrm{A}, \mathrm{~S}) \longrightarrow \mathrm{Q}^{\varepsilon}(\mathrm{A}, \mathrm{~S}) ; \mathrm{x} \longrightarrow \mathrm{X} \text {. }
\end{aligned}
$$

By i) we have that for every e-quadratic linking form over (A, S) (M, λ, μ)

$$
\mu(x) \in \tilde{Q}_{\epsilon}(A, S) \subseteq Q_{E}(A, S) \quad(x \in M)
$$

The isomorphisms of categories of linking forms may now be deduced from the correspondences of Proposition 3.4.1 and the exact sequences

(which are valid for any A, S, E).

Proposition 3.4.1 related linking forms over (A, S) to S-acyclic 1-dimensional complexes over A. Proposition 1.6.4 relates such complexes to formations over A which become stably isomorphic to 0 over S^{-1}. We shall now establish the direct connection between linking forms and such formations - such a connection was first observed by wall [1] in the case $(A, S)=(\mathbb{Z}, \mathbb{Z}-\{0\})$.

An S-lagrangian L of an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A $\left\{\begin{array}{l}\left(K, \alpha \in Q^{\varepsilon}(K)\right) \\ \left(K, \beta \in Q_{\varepsilon}(K)\right)\end{array}\right.$ is a f.g. projective A-submodule L of K
(not necessarily a direct summand) such that the inclusion $j \in \operatorname{Hom}_{A}(L, K)$ defines a morphism of forms over A

$$
\begin{cases}j:(L, O) \longrightarrow & (K, \alpha) \\ j:(L, O) \longrightarrow(K, B)\end{cases}
$$

which becomes the inclusion of a lagrangian over $s^{-1} A$. (An S -lagrangian is an $\mathrm{S}^{-1} \mathrm{~A}$-lagrangian in the sense of $\$ 2.4$).

$$
A n\left\{\begin{array} { l }
{ \text { (even) } \epsilon \text { -symmetric } } \\
{ \underline { \varepsilon - q u a d r a t i c ~ } }
\end{array} \text { S-formation over } A \left\{\begin{array}{l}
(Q, \Phi ; F, G) \\
(0, \psi ; F, G)
\end{array}\right.\right.
$$

is a non-singular $\left\{\begin{array}{l}(\text { even }) ~ \\ \varepsilon \text {-symmetric } \\ \epsilon \text { quadratic }\end{array}\right.$ form over $A\left\{\begin{array}{l}(Q, \phi) \\ (Q, \phi)\end{array}\right.$
together with a lagrangian F and an S-lagrangian G, such that $S^{-1} F$ and $S^{-1} G$ are complementary lagrangians in $\left\{\begin{array}{l}S^{-1}(Q, \phi) \\ S^{-1}(Q, \psi)\end{array}\right.$ $S^{-1} Q=S^{-1}{ }_{F \oplus S^{-1}}^{G}$.
It follows that $F \cap G=\{O\}$, and that $Q /(F+G)=\operatorname{coker}(G \longrightarrow Q / F)$ is an (A, S-module supporting an $\left\{\begin{array}{l}(\text { even })(-\varepsilon) \text {-symmetric } \\ (-E) \text {-quadratic }\end{array}\right.$ linking form over (A, S) (as made precise in Proposition 3.4.3 below). The S-formation is non-singular if G is a lagrangian. (An S-formation is an $\mathrm{S}^{-1} \mathrm{~A}$-formation in the sense of $\$ 2.4$).

$$
\text { An isomorphism of }\left\{\begin{array}{l}
\text { (even) } \varepsilon \text {-symmetric } \\
\text { E-quadratic }
\end{array}\right. \text { S-formations }
$$

$$
\begin{gathered}
\left\{\begin{array}{l}
f:(Q, \phi ; F, G) \longrightarrow\left(Q^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \\
f:(Q, \psi ; F, G) \longrightarrow\left(Q^{\prime}, \psi^{\prime} ; F^{\prime}, G^{\prime}\right)
\end{array}\right. \\
\text { is an isomorphism of the }\left\{\begin{array}{l}
(\text { even }) \varepsilon \text { e-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { forms } \\
\begin{cases}f:(Q, \phi) \longrightarrow\left(Q^{\prime}, \phi^{\prime}\right) \\
f:(Q, \psi) \longrightarrow\left(Q^{\prime}, \psi^{\prime}\right)\end{cases}
\end{gathered}
$$

such that

$$
\begin{gathered}
f(F)=F^{\prime}, f(G)=G^{\prime} . \\
\text { A stable isomorphism of }\left\{\begin{array}{l}
(\text { even }) \varepsilon \text {-symmetric } \\
\text { E-quadratic }
\end{array} \quad \begin{array}{l}
\left\{\begin{array}{l}
{[f]: \text { formations over } A} \\
{[f]:(Q, \phi ; F, G) \longrightarrow\left(Q^{\prime}, \Phi^{\prime} ; F^{\prime}, G^{\prime}\right)}
\end{array}\right. \\
(Q ; F, G) \longrightarrow\left(Q^{\prime}, \psi^{\prime} ; F^{\prime}, G^{\prime}\right)
\end{array}\right.
\end{gathered}
$$

is an isomorphism of the type

$$
\left\{\begin{array}{l}
f:(Q, \phi ; F, G) \oplus\left(H^{\varepsilon}(P) ; P, P^{\star}\right) \longrightarrow\left(Q^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \oplus\left(H^{\varepsilon}\left(P^{\prime}\right) ; P^{\prime}, P^{\prime \star}\right) \\
f:(Q, \psi ; F, G) \oplus\left(H \in(P) ; P, P^{*}\right) \longrightarrow\left(Q^{\prime}, \psi^{\prime} ; F^{\prime}, G^{\prime}\right) \oplus\left(H_{E}\left(P^{\prime}\right) ; P^{\prime}, P^{\prime \star}\right)
\end{array}\right.
$$

for some f.g. projective A-modules P, P^{\prime}.
A split e-quadratic S-formation over A

$$
\left.(F, G)=\left(F,\binom{Y}{\mu}, \theta\right) G\right)
$$

is an ε-quadratic S-formation $\left(H_{E}(F) ; F, G\right)$, with $(\underset{\mu}{\gamma}): G \longrightarrow F \oplus F^{*}$ the inclusion, together with a hessian ($-E$) -quadratic form over $A\left(G, \theta \in Q_{-\varepsilon}(G)\right)$ such that

$$
\gamma^{\star} \mu=\theta-\varepsilon \theta^{\star} \in \operatorname{Hom}_{A}\left(G, G^{\star}\right)
$$

Then $\mu \in \operatorname{Hom}_{A}\left(G, F^{\star}\right)$ is an S-isomorphism, and
$\left(F \oplus F^{*}\right) /(F+G)=\operatorname{coker}\left(\mu: G \longrightarrow F^{*}\right)$
is an (A, S)-module supporting a split ($-\varepsilon$)-quadratic linking form over (A, S) (as made precise in Proposition 3.4.3 below). The S-formation (F, G) is non-singular if G is a laqrangian,
that is such that the sequence

is exact.
An isomorphism of split e-quadratic S-formations over A

$$
(\alpha, \beta, \psi):\left(F,\left(\left(\begin{array}{l}
\gamma \\
\mu
\end{array}, \theta\right) G\right) \longrightarrow\left(F^{\prime},\left(\left(_{\mu}^{\gamma}\right), \theta^{\prime}\right) G^{\prime}\right)\right.
$$

is a triple $\left(\alpha \in \operatorname{Hom}_{A}\left(F, F^{\prime}\right), \beta \in \operatorname{Hom}_{A}\left(G, G^{\prime}\right), \theta \in Q_{-E}\left(F^{*}\right)\right)$ such that α and B are isomorphisms, and such that
i) $\mu^{\prime} \beta=\alpha^{*}-1 \mu \in \operatorname{Hom}_{A}\left(G, F^{\prime *}\right)$
ii) $\gamma^{\prime} \beta=\alpha \gamma+\alpha\left(\psi-\varepsilon \psi^{\star}\right){ }^{*} \mu \in \operatorname{Hom}_{A}\left(G, F^{\prime}\right)$
iii) $B^{*} \theta^{\prime} B-\theta-\mu^{*} \psi \mu \in \operatorname{ker}\left(S^{-1}: Q_{-E}(G) \longrightarrow Q_{-\varepsilon}\left(S^{-1} G\right)\right)$.

A stable isomorphism of split e-quadratic S-formations over A

$$
[\alpha, \beta, \psi]:(F, G) \longrightarrow\left(F^{\prime}, G^{\prime}\right)
$$

is an isomorphism of the type

$$
(\alpha, \beta, \psi):(F, G) \oplus\left(P, P^{*}\right) \longrightarrow\left(F^{\prime}, G^{\prime}\right) \oplus\left(P^{\prime}, P^{\prime} *\right)
$$

for some f.g. projective A-modules P, P^{\prime}, with $(P, P *)=\left(P, \mathcal{C l}_{1}^{0}\right.$
Proposition 3.4.3 The isomorphism classes of $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symme } \\ \varepsilon \text {-quadratic } \\ \text { split e-quadra }\end{array}\right.$
linking forms over (A, S) are in a natural one-one correspondel with the stable isomorphism classes of $\left\{\begin{array}{l}\text { (even) }(-\varepsilon) \text {-symmetri } \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ S-formations over A. Non-sinqular linking forms correspond to non-singular s-formations.

Proof: Proposition 3.4.1 gives a natural one-one correspondence between the isomorphism classes of (non-singular)
$\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \text { E-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking forms over (A, S) and the
$\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array} \quad\right.$ homotopy equivalence classes of s-acyclic 1-dimensional $\left\{\begin{array}{l}(\text { even })(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ (Poincaré) complexes over A.

A straightforward modification of the proof of Proposition 1.6.4 shows that the latter are in a natural one-one correspondence with the stable isomorphism classes of (non-singular)

```
{leven) (-\varepsilon)-symmetric
```

(non-singular) $\left\{\begin{array}{l}\text { (even) }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ S-formation over A
$\left\{\begin{array}{l}(Q, \phi ; F, G) \\ (Q, \psi ; F, G) \quad \text { corresponds to the (non-singular) } \\ \left(F,\left(\left(\begin{array}{r}Y \\ \mu\end{array}, \theta\right) G\right)\right.\end{array}\right.$
$\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array} \quad\right.$ linking form over (A, S) $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, M) \\ (M, \lambda, V)\end{array}\right.$
defined by

$$
\begin{align*}
& \left(x, y \in F^{*}, q \in G, s \in S, s y=\mu g \in F^{*}\right) \text {. } \tag{11}
\end{align*}
$$

An $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over $A\left\{\begin{array}{l}\left(K, \alpha \in Q^{E}(K)\right) \\ \left(K, \beta \in Q_{\epsilon}(K)\right)\end{array}\right.$ is S-non-singular
if $\left\{\begin{array}{l}S^{-1}(K, \alpha) \\ S^{-1}(K, B)\end{array}\right.$ is a non-singular $\left\{\begin{array}{l}\varepsilon-y_{m m e t r i c} \\ \varepsilon \text { q-quadratic }\end{array}\right.$ form over $S^{-1} A$, that is if $\left\{\begin{array}{l}\alpha \in \operatorname{Hom}_{A}\left(K, K^{*}\right) \\ \beta+\varepsilon \beta^{*} \in \operatorname{Hom}_{A}\left(K, K^{*}\right)\end{array}\right.$ is an S-isomorphism. (Thus an S-non-singular form is an $S^{-1} A-n o n-s i n g u l a r$ form in the sense of §2.4. S-non-singular forms were called "non-degenerate" in Ranicki [6], but an explicit reference to the multiplicative subset $S(A$ now seems preferable).

We shall now use the correspondence of Proposition 3.4.1
to characterize the non-singular $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking forms over (A, S) representing O in $\left\{\begin{array}{l}L^{O}(A, S, \varepsilon) \\ L_{O}(A, S, \varepsilon)\end{array}\right.$ in terms of S-non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A.

The boundary of an S-non-singular $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric } \\ \text { e-quadratic }\end{array}\right.$
form over $A\left\{\begin{array}{l}\left(K, \alpha \in Q^{E}(K)\right) \\ \left(K, \alpha \in Q\left\langle V_{O}\right\rangle^{E}(K)\right) \text { is the non-singular } \\ \left(K, \beta \in Q_{E}(K)\right)\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { even } \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic } \\
\text { split } \varepsilon \text {-quadratic } \\
\qquad\left\{\begin{array}{l}
\partial(K, \alpha)=(\partial K, \lambda) \\
\partial(K, \alpha) \\
\\
\partial(K, \beta)=(\partial K, \lambda, \mu)
\end{array}\right. \\
\partial(\partial K, \lambda, v)
\end{array}\right.
\end{aligned}
$$

defined by

$$
\left(x, y \in K^{*}, z \in K, s \in S, s y=\alpha(z) \in K^{*}, \alpha=\beta+\in \beta^{*} \text { in the } \varepsilon\right. \text {-quadrat: }
$$

The boundary linking form corresponds (via Proposition 3.4.3)
to the boundary $\left\{\begin{array}{l}\text { even (-e)-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formation over A

$$
\left\{\begin{array}{l}
\partial(K, \alpha)=\left(H^{-\epsilon}(K) ; K, \Gamma_{(K, \alpha)}\right) \\
;(K, \alpha)=\left(H_{-\varepsilon}(K) ; K, \Gamma_{(K, \alpha)}\right) \quad(\Gamma(K, \alpha)=\{(x, \alpha(x)) \in K \oplus K \star \mid x \in I \\
\left.j(K, \beta)=\left(K,\binom{1}{\beta+\varepsilon \beta *}, \beta\right) K\right) .
\end{array}\right.
$$

$$
\begin{aligned}
& \lambda: \quad \lambda K=\operatorname{coker}\left(\alpha: K \longrightarrow K^{*}\right) \longrightarrow \partial K^{\wedge} ; x \longmapsto \longrightarrow\left(y \longrightarrow \frac{x(z)}{s}\right) \\
& \mu: \exists K=\operatorname{coker}\left(\alpha: K \longrightarrow K^{*}\right) \longrightarrow Q_{E}(A, S) ; y \longmapsto \longrightarrow \frac{Y(z)}{S} \\
& \nu: \partial K=\operatorname{coker}\left(\alpha: K \longrightarrow K^{*}\right) \longrightarrow Q_{\varepsilon}\left(S^{-1} A / A\right) ; \\
& y \longmapsto\left(\frac{1}{s}\right) \cdot \beta(z)(z) \cdot\left(\frac{1}{s}\right)
\end{aligned}
$$

The boundary operations

$$
\partial:(S-n o n-s i n g u l a r \text { forms }) \longrightarrow \text { (linking forms) }
$$

are thus seen to be special cases of the boundary operations
$\partial:($ forms $) \longrightarrow$ (formations)
defined in Sl.6. (The boundary operations on S-non-singular forms can also be expressed in terms of the "dual lattice" construction familiar in the classical theory of quadratic forms over Dedekind rings (particularly in the case $(A, S)=(\mathbb{Z}, \mathbb{Z}-\{0\})$, when $\left.S^{-1} A=\mathbb{Q}\right)$, as follows.

A lattice in a non-singular $\left\{\begin{array}{l}(\text { even }) \text {-symmetric } \\ \text { e-quadratic }\end{array}\right.$ form over S^{-1}
$\left\{\begin{array}{l}(Q, \phi) \\ (Q, \psi)\end{array}\right.$ is an S-non-singular $\left\{\begin{array}{l}(\text { even }) \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A
$\left\{\begin{array}{l}(K, \alpha) \\ (K, B)\end{array}\right.$ with K a f.g. projective A-submodule of Q, such that
the inclusion $j \in \operatorname{Hom}_{A}(K, Q)$ extends to an isomorphism of forms over $\mathrm{S}^{-1} \mathrm{~A}$

$$
\left\{\begin{array}{l}
j: s^{-1}(K, \alpha) \longrightarrow(Q, \phi) \\
j: s^{-1}(K, \beta) \longrightarrow(0, \psi)
\end{array}\right.
$$

A non-singular $\left\{\begin{array}{l}(\text { even }) ~ \\ \epsilon \text {-symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$ form over $S^{-1} A\left\{\begin{array}{l}(Q, \phi) \\ (Q, \psi)\end{array}\right.$ admits such lattices if and only if Q is isomorphic to $\mathrm{s}^{-1} \mathrm{~K}$ for some f.g. projective A-module K. The dual lattice $K^{\#}$ of
a lattice $\left\{\begin{array}{l}(K, \alpha) \subseteq(Q, \phi) \\ (K, \beta) \subseteq(Q, \psi)\end{array}\right.$ is the A-submodule

$$
\left\{\begin{array}{l}
K^{\#}=\left\{x \in Q \mid \phi(x)(K) \subseteq A \subseteq S^{-1} A\right\} \subseteq Q \\
K^{\#}=\left\{x \in Q \mid\left(\psi+\varepsilon \psi^{*}\right)(x)(K) \subseteq A \subseteq S^{-1} A\right\} \subseteq Q \quad .
\end{array}\right.
$$

The A-module isomorphism

$$
\left\{\begin{array}{l}
K^{*} \longrightarrow K^{\star} ; x \longmapsto \longrightarrow\left(y \longmapsto K^{\star} ; x+\longrightarrow(x)(y)\right) \\
\left.K^{*} \longrightarrow\left(y \longmapsto q \longrightarrow \psi^{\star}\right)(x)(y)\right)
\end{array}\right.
$$

sends $K \subseteq K^{\#}$ to $\left\{\begin{array}{l}i m\left(\alpha: K \longrightarrow K^{*}\right) \subseteq K^{*} \\ i m\left(\beta+\varepsilon \beta^{*}: K \longrightarrow K^{*}\right) \subseteq K^{*}\end{array}\right.$, so there is induced an isomorphism of (A, S)-modules

$$
\left\{\begin{array}{l}
K^{*} / K \longrightarrow \partial K=\operatorname{coker}\left(\alpha: K \longrightarrow K^{*}\right) \\
\left.K^{*} / K \longrightarrow K^{*}\right)
\end{array}\right.
$$

Given a non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric form over } s^{-1} A \\ \varepsilon \text {-quadratic }\end{array}\left\{\begin{array}{l}(0, \phi) \\ (0, \phi) \\ (Q, \psi)\end{array}\right.\right.$
and a lattice $\left\{\begin{array}{l}(K, \alpha) \subseteq(Q, \phi) \\ (K, \alpha) \subseteq(Q, \phi) \text { define a non-singular } \\ (K, \beta) \subseteq(Q, \psi)\end{array}\right.$ $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \quad \text { linking form over }(A, S) \\ \operatorname{split} \varepsilon \text {-quadratic }\end{array}\left\{\begin{array}{l}\left(K^{*} / K, \lambda\right) \\ \left(K^{*} / K, \lambda, \mu\right) \text { by } \\ \left(K^{*} / K, \lambda, \nu\right)\end{array}\right.\right.$

$$
\lambda: K^{*} / K \longrightarrow\left(K^{*} / K\right)^{\wedge} ; x \longmapsto(y \longmapsto \phi(x)(y))
$$

$$
\mu: K / K \longrightarrow Q_{\varepsilon}(A, S) ; x \longmapsto \phi(x)(x)
$$

$$
v: K^{*} / K \longrightarrow Q_{\varepsilon}\left(S^{-1} A / A\right) ; x \longmapsto \Psi(x)(x)
$$

$$
\left(x, y \in K^{\#}, \phi=\psi+\varepsilon \psi^{*} \text { in the } \varepsilon \text {-quadratic case }\right)
$$

The isomorphism of (A, S)-modules $K^{\#} / K \xrightarrow{\sim} \partial K$ defined above actually defines an isomorphism of $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { e-quadratic } \\ \text { split e-quadratic }\end{array}\right.$
linking forms over (A, S)

$$
\begin{aligned}
& \qquad\left\{\begin{array}{ll}
\left(K^{\#} / K, \lambda\right) \longrightarrow & \sim(K, \alpha) \\
\left(K^{\#} / K, \lambda, \mu\right) \longrightarrow & \sim \\
\left(K^{*} / K, \lambda, \nu\right) \longrightarrow & \sim
\end{array}\right) \\
& \text { An S-non-singular }\left\{\begin{array} { l }
{ \varepsilon - \text { symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { form over } A \left\{\begin{array}{l}
(K, \alpha) \\
(K, \beta)
\end{array}\right.\right. \text { is }
\end{aligned}
$$

S-hyperbolic if it admits an S-lagrangian, or equivalently if $\left\{\begin{array}{l}S^{-1}(K, \alpha) \\ S^{-1}(K, \beta)\end{array}\right.$ is a hyperbolic $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over $S^{-1} A$ with a lagrangian isomorphic to $\mathrm{S}^{-1} \mathrm{~L}$ for some f.g. projective A-module L. (Thus an S-hyperbolic form is the same as an $S^{-1} A$-hyperbolic form in the sense of $\$ 2.4$).
Proposition 3.4.4 Let $\left\{\begin{array}{l}\left(C, \phi \in Q\left(V_{O}\right\rangle^{1}(C,-E)\right) \\ \left(C, \psi \in Q_{1}(C,-E)\right)\end{array}\right.$ be an S-acyclic l-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complex over A, with associated non-singular $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { split } E-q u a d r a t i c\end{array}\right.$ linking form over $(A, S)\left\{\begin{array}{l}(M, \lambda)=\left(H^{1}(C), \phi_{O}^{S}\right) \\ (M, \lambda, V)=\left(H^{1}(C),\left(1+T_{-E}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right)\end{array}\right.$.
i) The s-acyclic cobordism class $\left\{\begin{array}{l}(C, \phi) \in L_{0}^{O}(A, S, \varepsilon) \\ (C, \psi) \in L_{O}(A, S, \varepsilon)\end{array}\right.$ depends only on the isomorphism class of $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, V)\end{array}\right.$.

$$
\text { ii) }\left\{\begin{array} { l }
{ (C , \phi) = 0 \in L ^ { O } (A , S , E) } \\
{ (C , \psi) = 0 \in L _ { O } (A , S , E) }
\end{array} \text { if and only if } \left\{\begin{array}{l}
(M, \lambda) \\
(M, \lambda, V)
\end{array}\right.\right. \text { is }
$$

isomorphic to the boundary $\left\{\begin{array}{l}3(K, \alpha) \\ \partial(K, \beta)\end{array}\right.$ of an s-hyperbolic

S-non-singular $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over $A\left\{\begin{array}{l}(K, \alpha) \\ (K, \beta)\end{array}\right.$.
Proof: By the S-acyclic counterpart of Proposition 1.3 .3 iii) an S-acyclic 1-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complex over $A\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ represents O in $\left\{\begin{array}{l}L^{O}(A, S, E) \\ L_{O}(A, S, E)\end{array}\right.$ if and only if it is homotopy equivalent to the boundary $\left\{\begin{array}{l}\partial(D, \eta) \\ \partial(D, \zeta)\end{array}\right.$ of a connected S-acyclic 2-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ complex over A $\left\{\begin{array}{l}\left(D, \eta \in Q\left\langle v_{O}\right\rangle^{2}(D,-E)\right) \\ \left(D, \zeta \in Q_{2}(D,-\varepsilon)\right)\end{array}\right.$ with D a f.g. projective A-module chain complex of the type
 Let $\left\{\begin{array}{l}(C, \phi)=\partial(D, \eta) \\ (C, \psi)=3(D, \zeta)\end{array}\right.$ be an S-acyclic boundary, as above. The associated $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking formover (A,S) is the boundary

$$
\left\{\begin{array}{l}
\left(H^{1}(C), \phi_{O}^{S}\right)=j(K, \alpha) \\
\left(H^{1}(C),\left(1+T_{-C}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right)=j(K, B)
\end{array}\right.
$$

of the S-non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A

$$
\begin{aligned}
& \left.(K, \alpha)=\left(\operatorname{coker}\binom{d^{*}}{\eta_{O}}: D^{0} \longrightarrow D^{1} \oplus D_{2}\right),\left[\begin{array}{cc}
\eta_{O}+d \eta_{1} & d \\
d^{*} & 0
\end{array}\right] \in Q^{\varepsilon}(K)\right) \\
& \left.(K, \beta)=\left(\text { coker }\binom{d^{*}}{\left(1+T_{-\varepsilon}\right) \zeta_{O}}: D^{0} \longrightarrow D^{1} \oplus D_{2}\right),\left[\begin{array}{cc}
\zeta_{O} & d \\
0 & 0
\end{array}\right] \in Q_{\varepsilon}(K)\right)
\end{aligned}
$$

(which is obtained from $\left\{\begin{array}{l}(D, \eta) \\ (D, \zeta)\end{array}\right.$ by a surgery killing $\left.H^{2}(D)\right)$.
Moreover, the morphism of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A

$$
\left\{\begin{array}{l}
{\left[\begin{array}{l}
0 \\
1
\end{array}\right]:\left(D_{2}, 0\right) \longrightarrow(K, \alpha)} \\
{\left[\begin{array}{l}
0 \\
1
\end{array}\right]:\left(D_{2}, 0\right) \longrightarrow(K, \beta)}
\end{array}\right.
$$

is the inclusion of an S-lagrangian, so that $\left\{\begin{array}{l}(K, \alpha) \\ (K, \beta)\end{array}\right.$ is an
S-hyperbolic form.
Conversely, let $\left\{\begin{array}{l}(K, \alpha) \\ (K, \beta)\end{array}\right.$ be an s-hyperbolic s-non-singular
$\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A, and let

$$
\left\{\begin{array}{l}
j:(L, O) \longrightarrow(K, \alpha) \\
j:(L, O) \longrightarrow(K, \beta)
\end{array}\right.
$$

be the inclusion of an s-lagrangian. Define a connected S-acyclic 2-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ complex over A $\left\{\begin{array}{l}\left(D, \eta \in Q\left\langle V_{O}\right\rangle^{2}(D,-E)\right) \\ \left(D, \zeta \in Q_{2}(D,-E)\right)\end{array}\right.$ by

$$
\begin{aligned}
& d=j^{*}: D_{1}=K^{*} \longrightarrow D_{O}=L^{*} \\
& d=\left\{\begin{array}{l}
\alpha j \\
(\beta+\varepsilon \beta *) j
\end{array}: D_{2}=L \longrightarrow D_{1}=K^{*}\right. \\
& { }^{\eta_{O}}=\left\{\begin{array}{l}
1: D^{0}=L \longrightarrow D_{2}=L \\
\alpha: D^{1}=K \longrightarrow D_{1}=K^{*} \quad, n_{S}=O \quad(s \geqslant 1) \\
-\varepsilon: D^{2}=L^{*} \longrightarrow D_{O}=L^{*}
\end{array}\right. \\
& \zeta_{\mathrm{O}}=\left\{\begin{array}{l}
1: D^{0}=L \longrightarrow D_{2}=L \\
B: D^{1}=K \longrightarrow D_{1}=K^{*} \\
O: D^{2}=L * \longrightarrow D_{O}=L^{*}
\end{array}\right. \\
& \zeta_{1}=\left\{\begin{array}{l}
\varepsilon \beta * j: D^{O}=L \longrightarrow D_{1}=K * \\
0: D^{1}=K \longrightarrow D_{O}=L^{*}
\end{array}\right. \\
& \zeta_{2}=X: D^{\circ}=L \longrightarrow D_{O}=L^{*}
\end{aligned}
$$

for any $B \in \operatorname{Hom}_{A}\left(K, K^{*}\right)$ representing $B \in Q_{E}(K)$, and any $X \in \operatorname{Hom}_{A}\left(L, L^{*}\right)$ such that

$$
j^{*} \beta j=x-\varepsilon X^{*} \in \operatorname{Hom}_{A}\left(L, L^{\star}\right)
$$

The boundary $\left\{\begin{array}{l}j(K, \alpha) \\ j(K, B)\end{array}\right.$ is the non-singular $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { split e-quadratic }\end{array}\right.$
linking form over (A, S) associated by Proposition 3.4.1 to the boundary s-acyclic l-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$

Poincaré complex over $A\left\{\begin{array}{l}(C, \phi)=\partial(D, \eta) \\ (C, \psi)=\partial(D, \zeta)\end{array}\right.$,

$$
\left\{\begin{array}{l}
\partial(K, \alpha)=\left(H^{1}(C), \phi_{O}^{S}\right) \\
\partial(K, \beta)=\left(H^{1}(C),\left(1+T_{-\varepsilon}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right)
\end{array}\right.
$$

$$
\text { It remains to show that if }\left\{\begin{array}{l}
(C, \phi) \\
(C, \psi)
\end{array},\left\{\begin{array}{l}
\left(C^{\prime}, \phi^{\prime}\right) \\
\left(C^{\prime}, \phi^{\prime}\right)
\end{array}\right. \text { are S-acyclic }\right.
$$

1-dimensional $\left\{\begin{array}{l}\text { even (- }- \text {-symmetric } \\ (-\epsilon) \text {-quadratic }\end{array}\right.$ Poincaré complexes over A which are related by an isomorphism of the associated non-singular $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { split e-quadratic }\end{array}\right.$ linking forms over (A,S)

$$
\left\{\begin{array}{l}
\left(H^{1}(C), \phi_{O}^{S}\right) \longrightarrow\left(H^{1}\left(C^{\prime}\right), \phi_{O}^{\prime}\right) \\
\left(H^{1}(C),\left(1+T_{-\varepsilon}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right) \longrightarrow\left(H^{1}\left(C^{\prime}\right),\left(1+T_{-E}\right) \psi_{O}^{S} \cdot v_{S}^{O}\left(\psi^{\prime}\right)\right)
\end{array}\right.
$$

then

$$
\left\{\begin{array}{l}
(C, \phi)=\left(C^{\prime}, \phi^{\prime}\right) \in L^{O}(A, S, \varepsilon) \\
(C, \psi)=\left(C^{\prime}, \psi^{\prime}\right) \in L_{O}(A, S, E) .
\end{array}\right.
$$

Proposition 3.4.1 associates to such an isomorphism a $\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ homotopy equivalence

$$
\left\{\begin{array}{l}
\mathrm{f}:(\mathrm{C}, \phi) \longrightarrow \sim\left(\mathrm{C}^{\prime}, \phi^{\prime}\right) \\
\mathrm{f}:(\mathrm{C}, \psi) \longrightarrow\left(\mathrm{C}^{\prime}, \psi^{\prime}\right),
\end{array}\right.
$$

so that

$$
\left\{\begin{array}{l}
f^{g}(\phi)=\phi^{\prime} \epsilon Q\left\langle v_{O}\right\rangle^{1}\left(C^{\prime},-\varepsilon\right) \\
f_{g}(\psi)=\psi^{\prime}+H(\theta) \in Q_{1}\left(C^{\prime},-\varepsilon\right)
\end{array}\right.
$$

for some $\theta \in \hat{Q}^{2}\left(C^{\prime},-\varepsilon\right)$ such that

$$
\hat{v}_{1}^{S}(\theta)=0: H^{1}\left(C^{1}\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) .
$$

Now $\left\{\begin{array}{l}(C, \phi) \oplus\left(C^{\prime},-\phi^{\prime}\right) \\ (C, \psi) \oplus\left(C^{\prime},-\left(\psi^{\prime}+H(\theta)\right)\right)\end{array}\right.$ is the boundary of an S-acyclic
2-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ poincaré pair over A

$$
\left\{\begin{array}{l}
\left((f \quad 1): C \oplus C^{\prime} \longrightarrow C^{\prime},\left(\delta \phi, \phi \oplus-\phi{ }^{\prime}\right) \in Q\left\langle v_{O}\right\rangle^{2}((f \quad 1),-\varepsilon)\right) \\
\left((f \quad l): C \oplus C^{\prime} \longrightarrow C^{\prime},\left(\delta \psi, \psi \oplus-\left(\psi^{\prime}+H(\theta)\right)\right) \in Q_{2}((f \quad 1),-\varepsilon)\right)
\end{array}\right.
$$

so that

$$
\left\{\begin{array}{l}
(C, \phi)=\left(C^{\prime}, \phi^{\prime}\right) \in L^{O}(A, S, \varepsilon) \\
(C, \psi)=\left(C^{\prime}, \psi^{\prime}+H(\theta)\right) \in L_{O}(A, S, \varepsilon)
\end{array}\right.
$$

We shall prove that

$$
\left(C^{\prime}, \psi^{\prime}+H(\theta)\right)=\left(C^{\prime}, \psi^{\prime}\right) \in L_{0}(A, S, \varepsilon)
$$

using the language of S -formations (Proposition 3.4.3), as follows.

Given non-singular split ($-\varepsilon$)-quadratic S-formations over $A\left(F,\left(\binom{\gamma}{\mu}, \theta\right) G\right),\left(F,\left(\binom{\gamma}{\mu}, \theta^{\prime}\right) G\right)$ such that

$$
\theta^{\prime}-\theta \epsilon \operatorname{ker}\left(S^{-1}: Q_{E}(G) \longrightarrow Q_{E}\left(S^{-1} G\right)\right)
$$

we have to show that the non-sinqular split (-E)-quadratic formation over $A\left(F,\left(\binom{\gamma}{\mu}, \theta^{\prime}\right) G\right) \oplus\left(F,\left(\left(_{\mu}^{\gamma}\right),-\theta\right) G\right)$ is stably isomorphic to the boundary $)(K, \beta)=\left(K,\left(\binom{1}{\beta+\varepsilon \beta^{\star}}, \beta\right) K\right)$ of an S-hyperbolic s-non-singulat ε-quadratic form over $A\left(K, B \in Q_{E}(K)\right)$. By Proposition 1.6.2 the inclusion of the lagrangian

$$
\binom{Y}{\mu}:(G, O) \longrightarrow H_{-\varepsilon}(F)
$$

extends to an isomorphism of hyperbolic $(-\varepsilon)$-quadratic forms over A

$$
\left(\begin{array}{cc}
\gamma & \tilde{\gamma} \\
\mu & \tilde{\mu}
\end{array}\right): H_{-\varepsilon}(G)=\left(G \oplus G^{*},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \xrightarrow{\sim} H_{-\varepsilon}(F)=\left(F \oplus F^{*},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)
$$

Define an S-non-sinquiar ε-quadratic form over A

$$
\begin{array}{r}
(K, \beta)=\left(G \oplus F,\left(\begin{array}{cc}
-0 & 0 \\
\mu & 0
\end{array}\right)+\left(\begin{array}{cc}
-\gamma^{*} \mu & -\epsilon \mu^{*} \gamma \\
\mu & \tilde{\mu}
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & \theta^{\prime}-\theta
\end{array}\right)\left(\begin{array}{cc}
-\mu^{*} \gamma & \tilde{\mu}^{*} \\
-\bar{\varepsilon} \gamma^{*} \mu & \tilde{\mu}^{*}
\end{array}\right)\right. \\
\left.\epsilon Q_{\varepsilon}(G \oplus F)\right)
\end{array}
$$

For some S-isomorphism se $\operatorname{Hom}_{A}(F, F)$ there is defined a morphism of ε-quadratic forms over A

$$
\binom{0}{s}:(F, 0) \longrightarrow(K, B)=(G \oplus F, B)
$$

which is the inclusion of an 5 -lagrangian, so that (K, β) is an s-hyperbolic form. The isomorphism of non-singular split (-E)-quadratic formations over A

$$
\begin{aligned}
(a, b, c)= & \left(\begin{array}{cccc}
\gamma & -1 & -\varepsilon \tilde{\gamma} & 0 \\
0 & 1 & 0 & 0 \\
\mu & 0 & \tilde{\mu} & 1 \\
\mu & 0 & \tilde{\mu} & 0
\end{array}\right),\left(\begin{array}{cccc}
-\tilde{\mu}^{*} \gamma & \tilde{\mu}^{*} & 1 & 0 \\
-\bar{\varepsilon}^{*} \mu & \tilde{\mu}^{*} & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\gamma_{\gamma}{ }^{*} \mu & \varepsilon \tilde{\gamma}^{*} & \gamma & -1
\end{array}\right), \\
& \left(\begin{array}{cccc}
0 & \tilde{\gamma}^{\star} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & \gamma^{*} \theta^{\prime}-\theta & 0 \\
0 & 0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

$: \partial(G \oplus F, \beta) \oplus\left(G * \oplus F^{\star}, G \oplus F\right)$

$$
\left.\longrightarrow\left(F,\binom{-Y}{\mu},-\theta\right) G\right) \oplus\left(F,\left(\binom{\gamma}{\mu}, \theta^{\prime}\right) G\right) \oplus\left(F^{*} \oplus F^{*}, F \oplus F\right)
$$

defines a stable isomorphism

$$
\left.\left.[a, b, c]: j(K, \beta) \longrightarrow\left(F,\binom{Y}{\mu},-\theta\right) G\right) \oplus\left(F,\binom{Y}{\mu}, \theta^{\prime}\right) G\right)
$$

It follows that the S-acyclic l-dimensional $(-\varepsilon)$-quadratic Poincaré complexes over A associated to ($\left.F,\binom{\gamma}{\nu}, \theta\right) G$) and (F, ($\left.\binom{Y}{\mu}, \theta^{\prime}\right) G$) are S-acyclic cobordant

$$
(C, \psi)=\left(C, \psi^{\prime}\right) \in L_{0}(A, S, E) .
$$

A sublagrangian of an $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \text { E-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form
over $(A, S)\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \nu) \\ (M, \lambda, V)\end{array}\right.$
i) L and M / L are (A, S)-modules
ii) the inclusion $j \in \operatorname{Hom}_{A}(L, M)$ defines a morphism of $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { E-quadratic } \\ \text { split e-quadratic }\end{array} \quad\right.$ linking forms over (A, S)

$$
\left\{\begin{array}{l}
j:(L, O) \longrightarrow(M, \lambda) \\
j:(L, O, O) \longrightarrow(M, \lambda, \mu) \\
j:(L, O, O) \longrightarrow(M, \lambda, v)
\end{array}\right.
$$

iii) the A-module morphism

$$
[\lambda]: M / L \longrightarrow L^{\wedge} ; x \longmapsto(y \longmapsto \lambda(x)(y))
$$

is onto.

The annihilator of a sublagrangian L is the submodule

$$
L^{\perp}=\operatorname{ker}\left(j^{\wedge} \lambda: M \longrightarrow L^{\wedge} ; x \longmapsto(y \longmapsto \lambda(x)(y))\right) \subseteq M
$$

which contains L

$$
\mathrm{L} \subseteq \mathrm{~L}^{\perp}
$$

Both L^{\perp} and L^{\perp} / L are (A, S-modules, where

$$
L^{\perp} / L=\operatorname{ker}\left([\lambda]: M / L_{1} \longrightarrow L^{n}\right) .
$$

A lagrangian is a sublaqrangian L such that
$[\lambda] \in \operatorname{Hom}_{A}\left(M / L, L^{\perp}\right)$ is an isomorphism, that is

$$
\mathrm{I}^{\perp 1}=\mathrm{L} .
$$

A non-singular $\left\{\begin{array}{l}(\text { even }) \varepsilon \text {-symmetric } \\ (\text { split }) \varepsilon \text {-quadratic }\end{array}\right.$ linking form is
hyperbolic if it admits a lagrangian.
Proposition 3.4.5 i) Given a sublagrangian L of a non-singular
$\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over $(A, S)\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \mu) \text { there is } \\ (M, \lambda, V)\end{array}\right.$
defined a non-singular $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \varepsilon \text {-quadratic linking form over (} A, S \text {) } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$
$\left\{\begin{array}{l}\left(L^{1} / L, \lambda^{1} / \lambda\right) \\ \left(L^{1} / L, \lambda^{1} / \lambda, \mu^{1} / \mu\right) \\ \left(L^{1} / L, \lambda^{1} / \lambda, V^{1} / \nu\right)\end{array}\right.$ such that $\left\{\begin{array}{l}(M, \lambda) \oplus\left(L^{1} / L,-\lambda^{+} / \lambda\right) \\ (M, \lambda, \mu) \oplus\left(L^{1} / L,-\lambda+/ \lambda,-\mu+/ \mu\right) \text { is } \\ (M, \lambda, V) \oplus\left(L^{1} / L,-\lambda^{1} / \lambda,-V^{1} / \nu\right)\end{array}\right.$
hyperbolic, with lagrangian

$$
\Delta=\left\{(x,[x]) \in M \oplus L^{1} / L \mid x \in L^{1}\right\} \subseteq M \oplus L^{\perp} / L .
$$

ii) A non-singular $\left\{\begin{array}{l}\text { (even) E-symmetric } \\ (\operatorname{split}) \text { e-quadratic }\end{array}\right.$ linking form over (A, S) is hyperbolic if and only if the associated $\left\{\begin{array}{l}(-\varepsilon)-s y m m e t r i c \\ (s p l i t)(-\varepsilon) \text {-quadratic }\end{array}\right.$ homotopy equivalence class of S-acyclic l-dimensional $\left\{\begin{array}{l}\text { (even) (- }- \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ poincaré complexes over A contains the boundary $\left\{\begin{array}{l}\left(C, \phi \in Q^{1}(C,-\varepsilon)\right) \\ \left(C, \psi \in Q_{1}(C,-\varepsilon)\right)\end{array}\right.$ of an S-acyclic 2-dimensional $\left\{\begin{array}{l}\text { (even) }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré pair over A

$$
\left\{\begin{array}{l}
\left(f: C \longrightarrow D,(\delta \Phi, \phi) \in Q^{2}(f,-\varepsilon)\right) \\
\left(f: C \longrightarrow D,(\delta \psi, \psi) \in Q_{2}(f,-\varepsilon)\right)
\end{array} \text { with } H^{2}(D)=0 .\right.
$$

Proof: i) Trivial.
ii) Let $\left\{\begin{array}{l}(f: C \longrightarrow D,(\delta \phi, \phi)) \\ (f: C \longrightarrow D,(\delta \psi, \psi))\end{array}\right.$ be an S-acyclic 2-הimensional $\left\{\begin{array}{l}(\text { even) }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré pair over A such that $H^{2}(D)=0$
The non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over (A, S) $\left\{\begin{array}{l}\left(H^{1}(C), \phi_{O}^{S}\right) \\ \left(H^{1}(C),\left(l+T{ }_{-E}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right)\end{array}\right.$ associated to the boundary $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$
is hyperbolic, with lagrangian

$$
L=i m\left(f^{*}: H^{1}(D) \longrightarrow H^{l}(C)\right) \subseteq H^{1}(C)
$$

The correspondence of Proposition 3.4.1 associates to a hyperbolic (even) ε-symmetric linking form over (A, S) (M, λ) woth a lagrangian L a map of S-acyclic 1 -dimensional (even) (-ع)-symmetric complexes over A

$$
f:(C, \phi) \longrightarrow(D, O)
$$

with $f: C \longrightarrow D$ a chain map of $f . q$. projective A-module chain complexes

resolving

$$
\mathrm{f}^{\star}=\text { inclusion }: \mathrm{H}^{1}(\mathrm{D})=\mathrm{I} \longrightarrow \mathrm{H}^{1}(\mathrm{C})=\mathrm{M} \text {. }
$$

From the exact sequence of proposition l.l.4 we have
$\Phi \in \operatorname{ker}\left(f^{8}: Q^{1}(C,-\varepsilon) \longrightarrow Q^{1}(D,-\varepsilon)\right)=\operatorname{im}\left(\partial: Q^{2}(f,-\varepsilon) \longrightarrow Q^{1}(C,-\varepsilon):\right.$
so that there exists an S-acyclic 2-dimensional (even) $(-\varepsilon)$-symmetric Poincaré pair over $A\left(f: C \longrightarrow D,(\delta \phi, \phi) \in Q^{2}(f,-\varepsilon)\right.$ such that $H^{2}(D)=0$, with boundary (C, ϕ). Thus a non-singular (even) ε-symmetric linking form over $(A, S)(M, \lambda)$ is hyperbolic if and only if an associated s-acyclic l-dimensional (even) $(-\varepsilon)$-symmetric Poincaré complex over A (C, ϕ) is such a boundars The correspondence of Proposition 3.4.1 also associates to a hyperbolic $\left\{\begin{array}{l}\varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over (A, S) $\left\{\begin{array}{l}(M, \lambda, \mu) \\ (M, \lambda, \nu)\end{array}\right.$ with lagrangian L a $\left\{\begin{array}{l}(-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ map of S-acyclic l-dimensional (- ε)-quadratic complexes over A

$$
f:(C, \psi) \longrightarrow(D, O)
$$

with $\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D}$ exactly as in the ε-symmetric case dealt with above. It is possible to choose resolutions such that $f \in \operatorname{Hom}_{A}\left(C_{O}, D_{O}\right)$ is an isomorphism. (Explicitly, given a f.g. projective A-module resolution of m^{\wedge}

write the dual resolution of $\left(M^{\wedge}\right)^{\wedge}=M$ as

$$
0 \longrightarrow C^{0} \xrightarrow{d^{\star}} c^{1} \longrightarrow \xrightarrow{e} M \text {. }
$$

Define a f.g. projective A-module

$$
P=e^{-1}(L) \subseteq c^{1}
$$

let $g \in \operatorname{Hom}_{A}\left(P, C^{1}\right)$ be the inclusion, and let $h \in \operatorname{Hom}_{A}\left(C^{0}, P\right)$ be the restriction of $d^{\star} \in \operatorname{Hom}_{A}\left(C^{0}, c^{1}\right)$, so that

$$
d^{\star}=g h \in \operatorname{Hom}_{A}\left(C^{0}, \mathrm{c}^{1}\right)
$$

The s-acyclic l-dimensional fig. projective A-module chain complex D defined by

$$
\tilde{d}=h^{*}: D_{1}=p^{*} \longrightarrow D_{0}=c_{0}, D_{r}=0(r \neq 0,1)
$$

is a resolution of L^{\wedge}

$$
\mathrm{o} \longrightarrow \mathrm{D}_{1} \xrightarrow{\tilde{d}} \mathrm{D}_{\mathrm{O}} \longrightarrow \mathrm{~L}^{\wedge} \longrightarrow \text {. }
$$

The A-module chain map $f: C \longrightarrow D$ defined by

$$
\begin{aligned}
& \mathrm{f}=\mathrm{g}^{\star}: \mathrm{c}_{1} \longrightarrow \mathrm{D}_{1}=\mathrm{p} \\
& \tilde{\mathrm{f}}=\mathrm{l}: \mathrm{c}_{\mathrm{o}} \longrightarrow \mathrm{D}_{\mathrm{o}}=\mathrm{c}_{\mathrm{o}}
\end{aligned}
$$

is a resolution of

$$
f^{*}=\text { inclusion }: H^{1}(D)=L \longrightarrow H^{1}(C)=M
$$

with $\bar{f} \in \operatorname{Hom}_{A}\left(C_{O}, D_{O}\right)$ an isomorphism). By the definition of a $\left\{\begin{array}{l}(-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ map we have that

$$
f_{g}(\psi)=H(\theta) \in Q_{1}(D,-\varepsilon)
$$

for some element $\theta \in \hat{Q}^{2}(D,-\varepsilon)$ such that

$$
\left\{\begin{array}{l}
\hat{v}_{1}(\theta)=0: H^{1}(D) \longrightarrow \hat{H}^{0}\left(\mathbb{Z}_{2} ; A, E\right) \\
\hat{v}_{l}^{S}(\theta)=0: H^{1}(D) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \quad .
\end{array}\right.
$$

On the chain level the elements $\psi \in Q_{1}(C,-\varepsilon), \theta \in \hat{Q}^{2}(D,-\varepsilon)$ are represented by A-module morphisms

$$
\begin{aligned}
& \psi_{0}: c^{0} \longrightarrow c_{1}, \tilde{\psi}_{0}: c^{1} \longrightarrow c_{0}, \psi_{1}: c^{0} \longrightarrow c_{0} \\
& \theta_{0}: D^{1} \longrightarrow D_{1}, \theta_{-1}: D^{0} \longrightarrow D_{-1}, \tilde{\theta}_{-1}: D^{1} \longrightarrow D_{0},
\end{aligned}
$$

$$
\theta_{-2}: D^{0} \longrightarrow D_{0}
$$

such that

$$
\begin{aligned}
& \mathrm{d} \psi_{\mathrm{O}}+\widetilde{\psi}_{\mathrm{O}} \mathrm{~d}^{\star}+\psi_{1}+\varepsilon \psi_{1}^{\star}=0, \widetilde{\mathrm{~d}} \theta_{-1}+\tilde{\theta}_{-1} \tilde{\mathrm{~d}}^{\star}+\theta_{-2}+\varepsilon \theta_{-2}^{\star}=0, \\
& \theta_{0}-\varepsilon \theta_{0}^{\star}=0, \tilde{\mathrm{~d}} \theta_{0}-\theta_{-1}+\varepsilon \tilde{\theta}_{-1}^{\star}=0, \theta_{0} \tilde{\mathrm{~d}}^{\star}+\tilde{\theta}_{-1}-\varepsilon \theta_{-1}^{\star}=0, \\
& \mathrm{f} \psi_{\mathrm{O}} \widetilde{\mathrm{f}}^{*}=\theta_{-1}, \widetilde{\mathrm{f}}_{\mathrm{\psi}_{\mathrm{O}}} \mathrm{f}^{*}=\tilde{\theta}_{-1}, \tilde{\mathrm{f}} \psi_{1} \tilde{\mathrm{f}}^{*}=\theta_{-2} .
\end{aligned}
$$

The vanishing of the $(-\varepsilon)$-hyperquadratic $\left\{\begin{array}{l}- \\ \text { linking }\end{array}\right.$ wu class

$$
\left\{\begin{aligned}
\hat{v}_{1}(\theta)= & 0: H^{1}(D) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \epsilon\right) ; x \longmapsto \theta_{O}(x)(x) \\
\hat{v}_{1}^{S}(\theta)= & 0: H^{1}(D) \longrightarrow \\
& \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \epsilon\right) ; \\
& x \longmapsto\left(\frac{1}{S}\right) \cdot\left(\theta_{-2}^{+\tilde{\theta}_{-1}} \tilde{d}^{\star}\right)(y)(y) \cdot\left(\frac{1}{S}\right) \\
& \left(x \in D^{1}, y \in D^{0}, s \in S, S x=d^{*} y \in D^{1}\right)
\end{aligned}\right.
$$

implies that there exists an A-module morphism $x \in \operatorname{Hom}_{A}\left(D^{1}, D_{1}\right)$ such that

$$
\left\{\begin{array}{l}
\theta_{O}=X+\varepsilon X^{\star} \in Q\left\langle v_{O}\right\rangle^{\varepsilon}\left(D^{l}\right) \subseteq Q^{\varepsilon}\left(D^{1}\right) \\
\tilde{f}\left(\psi_{1}+\tilde{\psi}_{O} d^{\star}\right) \tilde{f}^{\star}-\tilde{d} X^{d^{\star}} \in \operatorname{ker}\left(S^{-1}: Q_{E}\left(D^{O}\right) \longrightarrow Q_{E}\left(S^{-1} D^{O}\right)\right)
\end{array}\right.
$$

Define $\theta^{\prime} \in Q^{2}(C,-\varepsilon)$ by

$$
\begin{aligned}
& \theta_{-2}^{\prime}=\tilde{\mathrm{f}}^{-1} \tilde{d}_{x} \tilde{d}^{*} \tilde{f}^{*}-\mathrm{l} \\
& \left.\theta_{s}^{\prime}=0\left(\psi_{1}+\tilde{\psi}_{0} \mathrm{~d}^{*}\right): c^{0} \longrightarrow-2\right),
\end{aligned}
$$

and let

$$
\psi^{\prime}=\psi+H\left(\theta^{\prime}\right) \in Q_{1}(C,-\varepsilon)
$$

Then

$$
f_{i}\left(\psi^{\prime}\right)=0 \in Q_{1}(D,-\varepsilon)
$$

and

$$
\left\{\begin{array}{l}
v_{1}\left(\theta^{\prime}\right)=0: H^{1}(C) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \\
v_{1}^{S}\left(\theta^{\prime}\right)=0: H^{1}(C) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \epsilon\right)
\end{array}\right.
$$

Now (C, ψ^{\prime}) is an S-acyclic l-dimensional (-E)-quadratic Poincaré complex over A which is the boundary of an s-acyclic 2-dimensional (- ε)-quadratic Poincaré pair over A $\left(f: C \longrightarrow D,\left(\delta \psi^{\prime}, \psi^{\prime}\right) \in Q_{2}(f,-E)\right)$ and such that there is defined $a\left\{\begin{array}{l}(-\varepsilon) \text {-quadratic } \\ \text { split }(-E) \text {-quadratic }\end{array}\right.$ homotopy equivalence

$$
1:(C, \psi) \longrightarrow\left(C, \psi^{\prime}\right)
$$

with (C, ψ) a complex associated to the hyperbolic $\left\{\begin{array}{l}\varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over $(A, S)\left\{\begin{array}{l}(M, \lambda, \mu) \\ (M, \lambda, v)\end{array}\right.$.

Next, we shall relate the (sub) lagrangians of the boundary linking form over (A, S) of an S-non-singular form over A to morphisms of S-non-singular forms over A which become isomorphisms over $S^{-1} A$. This relationship will then be used in Proposition 3.4.7 to identify the relative L-group $\left\{\begin{array}{l}L^{O}(A, S, E) \\ L_{O}(A, S, E)\end{array}\right.$ with the witt group of non-singular $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking forms over (A, S).

$$
\text { An s-isomorphism of S-non-singular }\left\{\begin{array}{l}
\varepsilon-s y m m e t r i c \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { forms }
$$

over A

$$
\left\{\begin{array}{l}
\mathrm{f}:\left(K^{\prime}, \alpha\right) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right) \\
\mathrm{f}:(K, \beta) \longrightarrow\left(K^{\prime}, \beta^{\prime}\right)
\end{array}\right.
$$

is an S-isomorphism of A-modules $f \in \operatorname{Hom}_{A}\left(K, K^{\prime}\right)$ such that

$$
\left\{\begin{array}{c}
f{ }^{\star} a^{\prime} f-\alpha \in \operatorname{ker}\left(S^{-1}: Q^{\varepsilon}(K) \longrightarrow Q^{\varepsilon}\left(S^{-1} K\right)\right)=\{0\} \subseteq Q^{\varepsilon}(K) . \\
f^{*} B^{\prime} f-\beta \in \operatorname{ker}\left(S^{-1}: Q_{\varepsilon}(K) \longrightarrow Q_{\varepsilon}\left(S^{-1}(K)\right) \subseteq Q_{\varepsilon}(K)\right. \\
(\neq\{0\}, \text { in general }) .
\end{array}\right.
$$

Then

$$
\left\{\begin{array}{l}
S^{-1} f: S^{-1}(K, \alpha) \longrightarrow S^{-1}\left(K^{\prime}, \alpha^{\prime}\right) \\
S^{-1} f: S^{-1}(K, \beta) \longrightarrow S^{-1}\left(K^{\prime}, \beta^{\prime}\right)
\end{array}\right.
$$

is an isomorphism of non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-\text { guadratic }\end{array}\right.$ ferms over $S^{-1} A$ Note that if $1 / 2 \in S^{-1} A$ there is a natural identification of sets of S -isomorphism classes (S-non-singular ε-quadratic forms over A)
$=$ (s-non-singular even e-symmetric forms over
(Specifically, if (K,B),(K', \mathcal{B}^{\prime}) are S-non-singular ε-quadratic forms over A which are related by an S-isomorphism of the e-symmetrizations

$$
f:\left(K, \beta+\varepsilon \beta^{*}\right) \longrightarrow\left(K^{\prime}, \beta^{\prime}+\varepsilon \beta^{\prime *}\right)
$$

then

$$
S^{-1}\left(f * B^{\prime} f-\beta\right)=\frac{1}{2}\left(f * \beta^{\prime} f-B\right)-\frac{1}{2} E\left(f * \beta^{\prime} f-\beta\right) *=0 \in Q_{\varepsilon}\left(S^{-1} K\right),
$$

so that there is also defined an S-isomorphism of e-quadratic forms

$$
\left.f:(K, \beta) \longrightarrow\left(K^{\prime}, B^{\prime}\right) \quad\right)
$$

An equivalence of S -isomorphisms of S -non-singular
$\left\{\begin{array}{l}\text { e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A

$$
\left\{\begin{array}{l}
\left(\mathrm{g}, \mathrm{~g}^{\prime}\right):\left(\mathrm{f}:(\mathrm{K}, \alpha) \longrightarrow\left(\mathrm{K}^{\prime}, \alpha^{\prime}\right)\right) \longrightarrow\left(\widetilde{\mathrm{f}}:(\tilde{\mathrm{K}}, \tilde{\alpha}) \longrightarrow\left(\tilde{\mathrm{K}}^{\prime}, \tilde{\alpha}^{\prime}\right)\right) \\
\left(\mathrm{g}, \mathrm{~g}^{\prime}\right):\left(\mathrm{f}:(\mathrm{K}, \beta) \longrightarrow\left(\mathrm{K}^{\prime}, \beta^{\prime}\right)\right) \longrightarrow\left(\widetilde{\mathrm{f}}:(\widetilde{\mathrm{K}}, \tilde{\beta}) \longrightarrow\left(\tilde{\mathrm{K}}^{\prime}, \tilde{B}^{\prime}\right)\right)
\end{array}\right.
$$

is defined by s-isomorphisms of forms

$$
\left\{\begin{array}{l}
g:(K, \alpha) \longrightarrow(\widetilde{K}, \widetilde{\alpha}), g^{\prime}:\left(K^{\prime}, \alpha^{\prime}\right) \longrightarrow(\widetilde{K}, \widetilde{\beta}), g^{\prime}:\left(\widetilde{K}^{\prime}, \tilde{\alpha}^{\prime}\right) \\
g:(K, \beta) \longrightarrow\left(\beta^{\prime}\right) \longrightarrow\left(\widetilde{B}^{\prime}\right)
\end{array}\right.
$$

with $g \in \operatorname{Hom}_{A}(K, K), g^{\prime} \in \operatorname{Hom}_{A}\left(K^{\prime}, K^{\prime}\right)$ isomorphisms, and such that the there is defined a commutative diagram

A non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ (\operatorname{split)} \text { e-quadratic }\end{array}\right.$ linking form x is
stably hyperbolic if there exists an isomorphism of such
linking forms

$$
X \oplus Y \longrightarrow Y^{\prime}
$$

with Y,Y' hyperbolic.
Proposition 3.4.6 i) Let $\left\{\begin{array}{l}\left(K, \alpha \in Q^{\varepsilon}(K)\right) \\ \left(K, \alpha \in Q\left\langle v_{O}\right\rangle^{\varepsilon}(K)\right) \text { be an S-non-singular } \\ \left(K, \beta \in Q_{\epsilon}(K)\right)\end{array}\right.$
$\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even } \varepsilon \text {-symmetric form over } A \text {. The sublagrangians } L \text { of the } \\ \text { e-quadratic }\end{array}\right.$
boundary $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over (A, S)

$$
\left\{\begin{array}{l}
\partial(K, \alpha)=(M, \lambda) \\
j(K, \alpha)=(M, \lambda, \mu) \text { are in a natural one-one correspondence } \\
j(K, \beta)=(M, \lambda, v)
\end{array}\right.
$$

with the equivalence classes of S-isomorphisms of S-non-singular
$\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric forms over } A \\ \varepsilon \text {-quadratic }\end{array}\right.$

$$
\left\{\begin{array}{l}
\mathbf{f}:\left(K_{,}, \alpha\right) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right) \\
\mathbf{f}:(K, \alpha) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right) \\
\mathbf{f}:(K, \beta) \longrightarrow\left(K^{\prime}, \beta^{\prime}\right),
\end{array}\right.
$$

under which

$$
\begin{aligned}
L=\operatorname{coker}\left(f: K \longrightarrow K^{\prime}\right) \subseteq M= & \text { coker }\left(\alpha: K \longrightarrow K^{*}\right) \\
& \left(\text { with } \alpha=\beta+\varepsilon \beta^{*} \text { in the } \varepsilon \text {-quadratic case }\right)
\end{aligned}
$$

and

$$
\left\{\begin{array}{l}
\left(L^{1} / L, \lambda^{1} / \lambda\right)=3\left(K^{\prime}, \alpha^{\prime}\right) \\
\left(L^{1} / L, \lambda^{1} / \lambda, L^{1} / \mu\right)=\partial\left(K^{\prime}, \alpha^{\prime}\right) \\
\left(L^{1} / L, \lambda^{2} / \lambda, L^{1} / \nu\right)=\partial\left(K^{\prime}, \beta^{\prime}\right) .
\end{array}\right.
$$

Lagrangians L correspond to S-isomorphisms with $\left\{\begin{array}{l}\left(K^{\prime}, \alpha^{\prime}\right) \\ \left(K^{\prime}, \alpha^{\prime}\right) \\ \left(K^{\prime}, B^{\prime}\right)\end{array}\right.$ non-singular.
ii) A non-singular $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { e-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over (A,S)
$\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \mu) \text { is stably hyperbolic if and only if it is isomorphic } \\ (M, \lambda, \nu)\end{array}\right.$
to the boundary $\left\{\begin{array}{l}\partial(K, \alpha) \\ \exists(K, \alpha) \text { of an S-hyperbolic S-non-singular } \\ \partial(K, B)\end{array}\right.$
$\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \text { even } \varepsilon \text {-symmetric form over } A \\ \varepsilon \text {-quadratic }\end{array}\left\{\begin{array}{l}(K, \alpha) \\ (K, \alpha) . \\ (K, \beta)\end{array}\right.\right.$

Proof: i) Given an S-isomorphism of S-non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A

$$
\left\{\begin{aligned}
\mathrm{E}:(K, \alpha) \longrightarrow & \left(K^{\prime}, \alpha^{\prime}\right) \\
E:(K, \beta) \longrightarrow & \left(K^{\prime}, \beta^{\prime}\right)
\end{aligned}\right.
$$

define a sublagrangian L of the boundary $\left\{\begin{array}{l}\text { even } \begin{array}{r}\varepsilon-s y m m e t r i c ~ \\ \text { (}- \text {-quadrati } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\end{array}\right.$
linking form over $(A, S)\left\{\begin{array}{l}\partial(K, \alpha) \\ \partial(K, B)\end{array}\right.$ by the resolution

with $\alpha=\beta+\epsilon \beta^{*} \in \operatorname{Hom}_{A}\left(K, K^{*}\right), \alpha^{\prime}=B^{\prime}+\varepsilon \beta^{\prime *} \in \operatorname{Hom}_{A}\left(K^{\prime}, K^{\prime *}\right)$ in the ε-quadratic case. An equivalence of S-isomorphisms of S-non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A

$$
\left\{\begin{array}{l}
\left(q, g^{\prime}\right):\left(f:(K, \alpha) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right)\right) \longrightarrow\left(\widetilde{f}:(\widetilde{K}, \widetilde{\alpha}) \longrightarrow\left(\tilde{K}^{\prime}, \widetilde{\alpha}^{\prime}\right)\right) \\
\left(g, g^{\prime}\right):\left(f:(K, \beta) \longrightarrow\left(K^{\prime}, \beta^{\prime}\right)\right) \longrightarrow\left(\widetilde{f}:(\widetilde{K}, \widetilde{\beta}) \longrightarrow\left(\widetilde{K^{\prime}}, \widetilde{\beta}\right)\right)
\end{array}\right.
$$

induces an isomorphism of $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric (} \varepsilon \text {-quadratic) } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$
linking forms over (A,S)

$$
\left\{\begin{array}{l}
h: \partial(K, \alpha) \longrightarrow 0(\bar{K}, \tilde{\alpha}) \\
h: v(K, \beta) \longrightarrow(\tilde{K}, \tilde{\beta})
\end{array}\right.
$$

such that

$$
h(L)=\widetilde{L} \subseteq \widetilde{M},
$$

where $h \in \operatorname{Hom}_{A}(M, \tilde{M})$ is the isomorphism with resolution

Conversely, given an S-non-singular $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \text { even E-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
form over $A\left\{\begin{array}{l}(K, \alpha) \\ (K, \alpha) \text { and a sublagrangian } L \text { of the boundary } \\ (K, \beta)\end{array}\right.$
$\left\{\begin{array}{l}\partial(K, \alpha) \\ \partial(K, \alpha) \text { define an S-isomorphism }\left\{\begin{array}{l}f:(K, \alpha) \longrightarrow\left(K^{\prime}, a^{\prime}\right) \\ f:(K, \alpha) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right) \\ f:(K, \beta) \longrightarrow\left(K^{\prime}, \beta^{\prime}\right)\end{array}\right.\end{array}\right.$
as follows.
In the first instance, define an S-acyclic l-dimension $\left\{\begin{array}{l}\text { even }(-\epsilon) \text {-symmetric } \\ (-\epsilon) \text {-quadratic } \\ (-\epsilon) \text {-quadratic }\end{array} \quad\right.$ Poincaré complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q\left\langle v_{0}\right)^{1}\right. \\ \left(C, \psi \in Q_{1}(C, \cdot\right. \\ \left(C, \psi \in Q_{1}(C,\right.\end{array}\right.$ with associated non-singular $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { e-quadratic linking forn } \\ \text { split } \quad \text {-quadratic }\end{array}\right.$ over $(A, S)\left\{\begin{array}{l}\partial(K, \alpha) \\ \partial(K, \alpha) \text { by } \\ \partial(K, \beta)\end{array}\right.$

$$
\alpha=\left\{\begin{array}{l}
\alpha \\
\alpha \\
\beta+\varepsilon \beta^{\star}
\end{array}: C_{1}=K \longrightarrow C_{O}=K^{\star}, C_{r}=O(r \neq 0,1)\right.
$$

for any $\tilde{\beta} \in \operatorname{Hom}_{A}\left(K, K^{\star}\right)$ such that $\left\{\begin{array}{l}\alpha=\widetilde{\beta}+\varepsilon \widetilde{\beta} \star \in \operatorname{Hom}_{A}\left(K, K^{*}\right) \\ B=\widetilde{\beta} \in Q_{E}(K)\end{array}\right.$.
Let $e \in \operatorname{Hom}_{A}\left(K^{*}, M\right)$ be the natural projection

$$
e: K^{*} \longrightarrow M=\left\{\begin{array}{l}
\operatorname{coker}\left(\alpha: K \longrightarrow K^{*}\right) \\
\operatorname{coker}\left(\alpha: K \longrightarrow K^{*}\right) \\
\operatorname{coker}\left(\beta+\varepsilon \beta^{\star}: K \longrightarrow\right)
\end{array}\right.
$$

define a f.g. projective A-module

$$
K^{\prime}=e^{-1}(L) \subseteq K^{*}
$$

and let $f \in \operatorname{Hom}_{A}\left(K, K^{\prime}\right), g \in \operatorname{Hom}_{A}\left(K^{\prime}, K^{*}\right)$ be defined by

$$
\begin{aligned}
& f=\left\{\begin{array}{l}
\alpha \mid \\
\alpha \mid: K \longrightarrow K^{\prime} \\
\beta+\varepsilon \beta^{*} \mid
\end{array}\right. \\
& g=\text { inclusion }: K^{\prime} \longrightarrow K^{*} .
\end{aligned}
$$

The A-module chain complex D and the A-module chain map

$$
h: C \longrightarrow D
$$

defined by

(with $\alpha=\beta+\varepsilon \beta^{*} \in \operatorname{Hom}_{A}\left(K, K^{*}\right)$ in the ε-quadratic case) are such that

$$
h_{\star}=(\text { inclusion })^{\wedge}: H_{O}(C)=M^{\wedge} \longrightarrow H_{O}(D)=L^{\wedge}
$$

The morphism of $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking forms over (A, S) defined by the inclusion

$$
\begin{cases}(L, O) \longrightarrow & \cdots(K, \alpha) \\ (L, O, O) \longrightarrow & \cdots(K, \alpha) \\ (L, O, O) \longrightarrow & \cdots(K, \beta)\end{cases}
$$

is associated by Proposition 3.4 .1 to an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split e-quadratic }\end{array}\right.$ map

$$
\left\{\begin{array}{l}
h:(C, \phi) \longrightarrow(D, O) \\
h:(C, \psi) \longrightarrow(D, O) \\
h:(C, \psi) \longrightarrow(D)
\end{array}\right.
$$

so that

$$
\left\{\begin{array}{l}
h^{\%}(\phi)=0 \in Q\left\langle v_{O}\right\rangle^{1}(D,-\varepsilon) \\
h_{\delta}(\psi)=H(\theta) \in Q_{1}(D,-\varepsilon) \\
h_{f}(\psi)=H(\theta) \in Q_{1}(D,-\varepsilon)
\end{array}\right.
$$

for some $\theta \in \hat{Q}^{2}(\mathrm{D},-\varepsilon)$ such that

$$
\left\{\begin{array}{l}
\hat{v}_{1}(\theta)=0: H^{1}(D)=L \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, E\right) \\
\hat{v}_{1}^{S}(\theta)=0: H^{1}(D)=I \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) .
\end{array}\right.
$$

Working exactly as in the proof of Proposition 3.4.5 it is possible to replace $\psi \in Q_{1}(C,-E)$ by $\psi+H\left(\theta^{\prime}\right) \in Q_{1}(C,-\epsilon)$ for some $\theta^{\prime} \in \hat{Q}^{2}\left(C, i_{\varepsilon}\right)$ such that $\left\{\begin{array}{l}\hat{v}_{1}\left(\theta^{\prime}\right)=0 \\ \hat{v}_{1}^{S}\left(\theta^{\prime}\right)=0\end{array}\right.$ to ensure that

$$
h_{8}(\psi)=0 \in Q_{1}(D,-\varepsilon)
$$

It follows from $\left\{\begin{array}{l}h^{q}(\phi)=0 \in Q\left\langle V_{O}\right\rangle^{1}(D,-\varepsilon) \\ h_{f}(\psi)=0 \in Q_{1}(D,-\varepsilon) \\ h_{f}(\psi)=0 \in Q_{1}(D,-\varepsilon)\end{array}\right.$ that there exists a connected S-acyclic 2-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic pair } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ $\left\{\begin{array}{l}\left(h: C \longrightarrow D,(\delta \phi, \phi) \in Q\left\langle v_{O}\right\rangle^{2}(h,-\varepsilon)\right) \\ \left(h: C \longrightarrow D,(\delta \psi, \psi) \in Q_{2}(h,-\varepsilon)\right) \\ \left(h: C \longrightarrow D,(\delta \psi, \psi) \in Q_{2}(h,-\varepsilon)\right)\end{array}\right.$. Define an s-non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric form over } A \\ \text { E-quadratic }\end{array}\left\{\begin{array}{l}\left(K^{\prime}, \alpha^{\prime} \in Q^{\varepsilon}\left(K^{\prime}\right)\right) \\ \left.\left(K^{\prime}, \alpha^{\prime} \in Q_{Q} v_{O}\right\rangle^{\varepsilon}\left(K^{\prime}\right)\right) \text { by } \\ \left(K^{\prime}, \beta^{\prime} \in Q_{E}\left(K^{\prime}\right)\right)\end{array}\right.\right.$

$$
\left\{\begin{array}{l}
\alpha^{\prime}=-\delta \phi_{O} \\
\alpha^{\prime}=-\left(\delta \psi_{O}+\varepsilon \delta \psi_{O}^{\star}\right): D^{1}=K^{\prime} \longrightarrow D_{1}=K^{\prime \star} \\
B^{\prime}=-\delta \psi_{O}
\end{array}\right.
$$

The S-isomorphism of S-non-singular forms

$$
\left\{\begin{array}{l}
\mathbf{f}:\left(K_{1}, \alpha\right) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right) \\
\mathbf{f}:(K, \alpha) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right) \\
\mathbf{f}:\left(K^{\prime}, \beta\right) \longrightarrow\left(K^{\prime}, \beta^{\prime}\right)
\end{array}\right.
$$

determines the sublagrangian L of $\left\{\begin{array}{l}\partial(K, \alpha) \\ \partial(K, \alpha), \text { with } \\ \partial(K, \beta)\end{array}\right.$
$L=\operatorname{coker}\left(f: K \longrightarrow K^{\prime}\right)$ etc.
ii) We need a preliminary result.

Lemma An S-isomorphism of S-non-singular $\left\{\begin{array}{l}\text { r-symmetric } \\ \text { even c-symmetric } \\ \text { e-quadratic }\end{array}\right.$
forms over A

$$
\left\{\begin{array}{l}
f:(K, \alpha) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right) \\
f:(K, \alpha) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right) \\
f:(K, \beta) \longrightarrow\left(K^{\prime}, \beta^{\prime}\right)
\end{array}\right.
$$

determines a lagrangian L of the boundary

Proof: The S-isomorphism of S-non-singular $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \text { e-quadratic }\end{array}\right.$
forms over A
$\left\{\begin{array}{l}\left(\begin{array}{cc}\alpha^{\prime} £ & 0 \\ \varepsilon f & 1\end{array}\right):(K, \alpha) \oplus\left(K^{\prime},-\alpha^{\prime}\right) \longrightarrow\left(K^{\prime} \neq \oplus K^{\prime},\left(\begin{array}{cc}0 & 1 \\ \varepsilon & -\alpha \prime\end{array}\right)\right) \\ \left(\begin{array}{cc}\left(\beta^{\prime}+\varepsilon \beta^{\prime} \star\right) f & 0 \\ \varepsilon f & 1\end{array}\right):(K, \beta) \oplus\left(K^{\prime},-\beta^{\prime}\right) \longrightarrow\left(K^{\prime} \neq K^{\prime},\left(\begin{array}{cc}0 & 1 \\ 0 & -\beta^{\prime}\end{array}\right)\right)\end{array}\right.$
has non-singular range, so that it determines a lagrangian L of $\left\{\begin{array}{l}\partial\left(K \oplus K^{\prime}, \alpha \oplus-\alpha^{\prime}\right) \\ \partial\left(K \oplus K^{\prime}, \beta \oplus-\beta^{\prime}\right)\end{array}\right.$ by $\left.i\right)$.
Let now $\left\{\begin{array}{l}(K, \alpha) \\ (K, B)\end{array}\right.$ be an S-hyperbolic S-non-singular
$\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A, and let $j \in \operatorname{Hom}_{A}(L, K)$ be the
inclusion of an S-lagrangian $L . A s\left\{\begin{array}{l}j * \alpha \in \operatorname{Hom}_{A}\left(K, L^{*}\right) \\ j *(\beta+\varepsilon \beta *) \in \operatorname{Hom}_{A}\left(K, L^{*}\right)\end{array}\right.$
becomes onto over $S^{-1} A$, there exists $k \in \operatorname{Hom}_{A}\left(L^{*}, K\right)$ such that

$$
\left\{\begin{array}{l}
s=j * \alpha k \in \operatorname{Hom}_{A}\left(L^{\star}, L^{\star}\right) \\
s=j *\left(B+\varepsilon \beta^{*}\right) k \in \operatorname{Hom}_{A}\left(L^{*}, L^{*}\right)
\end{array}\right.
$$

is an S-isomorphism. Applying the Lemma to the S-isomorphism of S-non-singular $\left\{\begin{array}{l}(\text { even }) ~ \varepsilon-s y m m e t r i c ~ f o r m s ~ o v e r ~\end{array}\right.$ (equadratic

$$
\left\{\begin{array}{l}
(j k):\left(K^{\prime}, \alpha^{\prime}\right)=\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & s \\
\varepsilon S^{*} & k * \alpha k
\end{array}\right)\right) \longrightarrow(K, \alpha) \\
(j k):\left(K^{\prime}, \beta^{\prime}\right)=\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & 0 \\
0 & k * \beta k
\end{array}\right)\right) \longrightarrow(K, \beta)
\end{array}\right.
$$

we have that $\left\{\begin{array}{l}\partial(K, \alpha) \oplus \partial\left(K^{\prime},-\alpha^{\prime}\right) \\ \exists(K, \beta) \oplus \partial\left(K^{\prime},-\beta^{\prime}\right)\end{array}\right.$ is a hyperbolic linking form over (A,S). Furthermore, there is defined an S-isomorphism of S -non-singular forms

$$
\left\{\begin{array}{l}
\left(\begin{array}{ll}
s^{\star} & 0 \\
0 & 1
\end{array}\right):\left(K^{\prime}, \alpha^{\prime}\right) \longrightarrow\left(L \oplus L^{\star},\left(\begin{array}{cc}
0 & 1 \\
E & k * \alpha k
\end{array}\right)\right) \\
\left(\begin{array}{ll}
s^{*} & 0 \\
0 & 1
\end{array}\right):\left(K^{\prime}, B^{\prime}\right) \longrightarrow\left(L \oplus L^{\star},\left(\begin{array}{cc}
0 & 1 \\
0 & k * \beta k
\end{array}\right)\right)
\end{array}\right.
$$

with non-singular range, so that $\left\{\begin{array}{l}3\left(K^{\prime}, \alpha^{\prime}\right) \\ 3\left(K^{\prime}, \beta^{\prime}\right)\end{array}\right.$ is hyperbolic by i). We have just shown that $\left\{\begin{array}{l}\partial(K, \alpha) \\ \partial(K, \beta)\end{array}\right.$ is a stably hyperbolic linking form.

It remains to prove the converse, that a stably hyperbolic $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { e-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over (A, S) is isomorphic to
the boundary of an S-hyperbolic $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { even } \varepsilon \text {-symmetric form over } A . \\ \varepsilon \text {-quadratic }\end{array}\right.$

$$
\text { Let }\left\{\begin{array} { l }
{ (M , \lambda) } \\
{ (M , \lambda , \nu) }
\end{array} \text { be a non-singular } \left\{\begin{array}{l}
\text { even } \varepsilon \text {-symmetric } \\
\text { split } \varepsilon \text {-quadratic }
\end{array}\right.\right. \text { linking }
$$

form over (A,S). By Proposition 3.4.l there exists an S-acyclic 1-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complex over A $\left\{\begin{array}{l}\left(C, \phi \in Q\left\langle v_{0}\right\rangle^{1}(C,-\varepsilon)\right) \\ \left(C, \psi \in Q_{1}(C,-\varepsilon)\right)\end{array}\right.$ such that

$$
\left\{\begin{array}{l}
\left(H^{1}(C), \phi_{O}^{S}\right)=(M, \lambda) \\
\left(H^{1}(C),\left(1+T_{-\epsilon}\right) \psi_{O}^{S}, v_{S}^{O}(\psi)\right)=(M, \lambda, v) .
\end{array}\right.
$$

The S-acyclic cobordism class $\left\{\begin{array}{l}(C, \phi) \in L^{O}(A, S, \varepsilon) \\ (C, \psi) \in L_{O}(A, S, \varepsilon)\end{array}\right.$ depends only on the isomorphism class of $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, v)\end{array}\right.$ (Proposition 3.4.4 i)), vanishing if $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \nu)\end{array}\right.$ is hyperbolic (Proposition 3.4.5 ii)). It follows that if $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, v)\end{array}\right.$ is stably hyperbolic then

$$
\left\{\begin{array}{l}
(C, \phi)=0 \in L_{1}^{O}(A, S, \varepsilon) \\
(C, \psi)=0 \in L_{O}(A, S, \varepsilon)
\end{array}\right.
$$

and hence (by proposition 3.4.4 ii)) that $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, v)\end{array}\right.$ is isomorphic to the boundary $\left\{\begin{array}{l}\partial(K, \alpha) \\ \partial(K, \beta)\end{array}\right.$ of an S-hyperbolic S-non-singular $\left\{\begin{array}{l}E-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ form over $A\left\{\begin{array}{l}(K, \alpha) \\ (K, \beta)\end{array}\right.$. It may be
verified that if (M, λ) is the ε-symmetrization of a stably hyperbolic ε-quadratic linking form over $(A, S)(M, \lambda, \mu)$ then the S-hyperbolic S-non-singular ε-symmetric form (K, α) arising is even, and that (M, λ, μ) is isomorphic to the boundary $a(K, \alpha)$

Define the Witt group of $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c ~}{\text { even } \varepsilon \text {-symmetric }} \\ \frac{\varepsilon \text {-guadratic }}{\text { split E-quadratic }} \text { linking }\end{array}\right.$
forms over $(A, S)\left\{\begin{array}{l}L^{\varepsilon}(A, S) \\ L\left\langle v_{O}\right\rangle^{\epsilon}(A, S) \\ L_{\epsilon}(A, S) \\ \tilde{L}_{\epsilon}(A, S)\end{array}\right.$ to be the abelian group of

linking forms over (A, S), the stability being with respect to the hyperbolic linking forms (i.e. a stable isomorphism of linking forms X, X^{\prime} is an isomorphism $X \oplus Y \longrightarrow X^{\prime} \oplus Y^{\prime}$ for some hyperbolic linking forms $\left.Y, Y^{\prime}\right)$. Addition is by the direct sum \oplus, and inverses are given by

$$
\left\{\begin{array}{l}
-(M, \lambda)=(M,-\lambda) \in L^{E}(A, S) \\
-(M, \lambda)=(M,-\lambda) \in L\left\langle v_{O}\right\rangle^{E}(A, S) \\
-(M, \lambda, \mu)=(M,-\lambda,-\mu) \in L_{\varepsilon}(A, S) \\
-(M, \lambda, v)=(M,-\lambda,-v) \in \widetilde{L}_{\varepsilon}(A, S),
\end{array}\right.
$$

since the diagonal $\Delta=\{(x, x) \in M \oplus M \mid x \in M\} \subseteq M \oplus M$ is a lagrangian of $X \oplus-X$ for any non-sinqular linking form X, by Proposition 3.

There are evident forgetful maps

A non-singular $\left\{\begin{array}{l}(\text { even }) ~ \varepsilon-s y m m e t r i c ~ f o r m ~ o v e r ~ \\ \varepsilon \text {-quadratic }\end{array}\right.$ f $\left\{\begin{array}{l}(Q, \phi) \\ (Q, \psi)\end{array}\right.$ with projective class

$$
[Q] \epsilon S=\operatorname{im}\left(\tilde{K}_{O}(A) \longrightarrow \tilde{K}_{O}\left(S^{-1} A\right)\right) \subseteq \tilde{K}_{O}\left(S^{-1} A\right)
$$

is stably isomorphic to $\left\{\begin{array}{l}s^{-1}(K, \alpha) \\ s^{-1}(K, \beta)\end{array}\right.$ for some S-non-singular $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ form over $A\left\{\begin{array}{l}(K, \alpha) \\ (K, \beta) .\end{array}\right.$. It follows from Proposition 3.4.6 ii) that the boundary operations

$$
3:(S-n o n-s i n g u l a r \text { forms over } A)
$$

give rise to well-defined abelian group morphisms

$$
\begin{aligned}
& \partial: L_{S}^{E}\left(S^{-1} A\right) \longrightarrow L^{\prime}\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) ; S^{-1}(K, \alpha) \longmapsto 3(K, \alpha) \\
& 3: L\left\langle v_{O}\right\rangle_{S}^{\varepsilon}\left(S^{-1} A\right) \longrightarrow L_{\varepsilon}(A, S) ; S^{-1}(K, \alpha) \longmapsto T(K, \alpha) \\
& \partial: L_{E}^{S}\left(S^{-1} A\right) \longrightarrow \tilde{L}_{E}(A, S) ; S^{-1}(K, B) \longmapsto \partial(K, B) \quad .
\end{aligned}
$$

There is also defined a morphism

$$
\partial: L_{S}^{\varepsilon}\left(S^{-1} A\right) \longrightarrow L^{\varepsilon}(A, S): S^{-1}(K, \alpha) \longmapsto(K, \alpha)
$$

namely the composite

$$
\left.L_{S}^{E}\left(S^{-1} A\right) \longrightarrow L^{a} \longrightarrow v_{0}\right\rangle^{\varepsilon}(A, S) \longrightarrow L^{\varepsilon}(A, S) .
$$

The correspondence of Proposition 3.4.3 associates to a non-singular $\left\{\begin{array}{l}(\text { even }) ~ \\ \varepsilon-\text {-symmetric }\end{array}\right.$ linking form over $(A, S)\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \mu)\end{array}\right.$ a stable isomorphism class of non-singular $\left\{\begin{array}{l}(\text { even })(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ formations over $A\left\{\begin{array}{l}(Q, \phi ; F, G) \\ (Q, \psi ; F, G)\end{array}\right.$ (i.e. the associated S-formations, regarded as formations), and it follows from Proposition 3.4.6 ii) that there are well-defined abelian group morphisms

$$
\begin{aligned}
& L^{E}(A, S) \longrightarrow M^{-\varepsilon}(A) ;(M, \lambda) \longmapsto \longrightarrow(Q, \Phi ; F, G) \\
& \left.L\left\langle V_{O}\right\rangle^{\varepsilon}(A, S) \longrightarrow M_{O_{0}}\right\rangle^{-\varepsilon}(A) ;(M, \lambda) \longmapsto(Q, \Phi ; F, G) \\
& L_{E}(A, S) \longrightarrow M_{-\epsilon}(A) ;(M, \lambda, H) \longmapsto \longrightarrow(Q, \Psi ; F, G)
\end{aligned}
$$

from the witt groups of linking forms over (A, S) to the Witt groups of formations over A defined in $\$ 1.6$ above. There is also defined an abelian group morphism

$$
\tilde{\mathrm{L}}_{E}(A, \mathrm{~S}) \longrightarrow M_{-E}(A) ;(M, \lambda, v) \longmapsto(Q, \psi ; F, G),
$$

namely the composite

$$
\widetilde{\mathrm{L}}_{\varepsilon}(A, S) \longrightarrow \mathrm{L}_{\varepsilon}(A, S) \longrightarrow M_{-\varepsilon}(A)
$$

Define the lower even-dimensional $\left\{\begin{array}{l}\frac{\varepsilon \text {-symmetric }}{\varepsilon \text {-quadratic }}\end{array}\right.$ L-groups of $(A, S)\left\{\begin{array}{l}L^{2 k}(A, S, E) \\ L_{2 k}(A, S, E)\end{array}(k \leqslant-1)\right.$ by

$$
\left\{\begin{array}{l}
L^{2 k}(A, S, E)= \begin{cases}L_{-E}(A, S) \quad(k=-1) \\
L_{2 k}(A, S, E) & (k \leqslant-2)\end{cases} \\
I_{2 k}(A, S, E)=I_{2 k+2 i}\left(A, S,(-)^{i} E\right) \quad(k \leqslant-1, k+i \geqslant 0)
\end{array}\right.
$$

Proposition 3.4.7 i) The localization exact sequence of algebraic Poincaré cobordism groups

$$
\begin{aligned}
& L^{2 k}\left(A,(-)^{k} \varepsilon\right) \longrightarrow L_{S}^{2 k}\left(S^{-1} A,(-)^{k} \varepsilon\right) \longrightarrow L^{2 k}\left(A, S,(-)^{k} \in\right) \\
& \longrightarrow L^{2 k-1}\left(A,(-)^{k} \varepsilon\right) \longrightarrow L_{S}^{2 k-1}\left(S^{-1} A,(-)^{k} \varepsilon\right) \quad\left({ }^{k}\right) 2 k \\
& \text { is naturally isomorphic for }\left\{\begin{array}{l}
k=0 \\
k=-1 \text { to a localization exact } \\
k \leqslant-2
\end{array}\right.
\end{aligned}
$$

sequence of witt groups

$$
\left\{\begin{array}{l}
L^{\varepsilon}(A) \longrightarrow L_{S}^{\varepsilon}\left(S^{-1} A\right) \xrightarrow{\partial} L\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \longrightarrow M\left\langle v_{O}\right\rangle^{-\varepsilon}(A) \longrightarrow M\left\langle v_{O}\right\rangle_{S}^{-\varepsilon}\left(S^{-1} A\right) \\
L_{1}\left\langle v_{O}\right\rangle^{\varepsilon}(A) \longrightarrow L\left\langle v_{O}{ }_{S}^{\varepsilon}\left(S^{-1} A\right) \xrightarrow{\partial} L_{E}(A, S) \longrightarrow M_{-\varepsilon}(A) \longrightarrow M_{-\varepsilon}^{S}\left(S^{-1} A\right)\right. \\
L_{E}(A) \longrightarrow L_{\varepsilon}^{S}\left(S^{-1} A\right) \xrightarrow{\partial} \tilde{L}_{E}(A, S) \longrightarrow M_{-E}(A) \longrightarrow M_{-E}^{S}\left(S^{-1} A\right)
\end{array}\right.
$$

ii) There are defined natural abelian group morphisms

$$
L^{\varepsilon}(A, S) \longrightarrow L^{2 k}\left(A, S,(-)^{k} \varepsilon\right) \quad(k \geqslant 1)
$$

for all A, S, E. If $\left\{\begin{array}{l}(A, S) \text { is o-dimensional } \\ \operatorname{ker}\left(\hat{\delta}: \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \cdots \hat{H}^{O}\left(\mathbb{Z}_{2} ; \Lambda, \varepsilon\right)\right)=0\end{array}\right.$ then for $\left\{\begin{array}{l}k \geqslant 1 \\ k=1\end{array}\right.$ these are isomorphisms, and $(*){ }_{2 k}$ is naturally isomorphic to a localization exact sequence of int aroups

$$
\left\{\begin{array}{l}
L^{\varepsilon}(A) \longrightarrow L_{S}^{E}\left(S^{-1} A\right) \xrightarrow{3} L^{\varepsilon}(A, S) \longrightarrow M^{-\varepsilon}(A) \longrightarrow M_{S}^{-\varepsilon}\left(S^{-1} A\right) \\
L^{2}(A,-\varepsilon) \longrightarrow L_{S}^{2}\left(S^{-1} A,-\varepsilon\right) \xrightarrow{\partial} L^{E}(A, S) \longrightarrow M^{-\varepsilon}(A) \longrightarrow M_{S}^{-\varepsilon}\left(S^{-1} A\right) .
\end{array}\right.
$$

iii) For all A, S, ε the forgetful map of witt groups

$$
\mathrm{I}_{\varepsilon}(A, S) \longrightarrow L_{\varepsilon}(A, S) ;(M, \lambda, V) \longmapsto(M, \lambda, P \cup)
$$

is onto, and there are natural identifications

$$
\begin{aligned}
\operatorname{coker}\left(d: L_{E}^{S}\left(S^{-1} A\right) \longrightarrow L_{E}(A, S)\right) & =\operatorname{coker}\left(d: L\left\langle v_{O}\right\rangle_{S}^{E}\left(S^{-1} A\right) \rightarrow L_{E}(A,\right. \\
& =\operatorname{ker}\left(M_{-E}(A) \rightarrow_{-E} S_{\left.-S^{-1} A\right)}^{S}\left(S^{-1}\right)\right.
\end{aligned}
$$

If (A, S) is O-dimensional

$$
\begin{aligned}
& \operatorname{ker}\left(L^{\varepsilon}(A, S) \longrightarrow M^{-\varepsilon}(A)\right)=\operatorname{ker}\left(L\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \longrightarrow M\left\langle v_{O}\right\rangle^{-\varepsilon}(A)\right) \\
& =\operatorname{coker}\left(I^{E}(A) \longrightarrow L_{S}^{E}\left(S^{-1} A\right)\right) . \\
& \text { If }\left\{\begin{array}{l}
\operatorname{im}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right)\right)=0 \\
\hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, E\right) \text { is an isomorphism } \\
i m\left(\hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right)\right)=0
\end{array}\right.
\end{aligned}
$$

the forgetful maps identify

$$
\left\{\begin{array}{l}
I\left\langle v_{O}\right\rangle^{E}(A, S)=L^{E}(A, S) \\
L_{E}(A, S)=L\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \\
L_{\varepsilon}(A, S)=L_{E}(A, S)
\end{array}\right.
$$

In particular, if $1 / 2 \in \mathrm{~S}^{-1} \mathrm{~A}$

$$
\stackrel{L}{L}_{E}(A, S)=L_{E}(A, S)
$$

and if $1 / 2 \in A$ then

$$
\dot{I}_{E}(A, S)=L_{E}(A, S)=L\left\langle v_{O}\right\rangle^{E}(A, S)=L^{E}(A, S)
$$

Proof: i) An S-acyclic 1 -dimensional $\left\{\begin{array}{l}\text { even (-E)-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$
Poincaré complex over $A\left\{\begin{array}{l}\left(C, \Phi \in Q\left\langle V_{O}\right\rangle^{1}(C,-E)\right) \\ \left(C, \Psi \in Q_{1}(C,-\varepsilon)\right)\end{array}\right.$ represents o in
$\left\{\begin{array}{l}L^{O}(A, S, E) \\ I_{O}(A, S, E)\end{array}\right.$ if and only if the associated non-singular
$\left\{\begin{array}{l}\text { even } \epsilon \text {-symmetric } \\ \text { split } \epsilon \text {-quadratic }\end{array}\right.$ linking form over (A, S)

$$
\left\{\begin{array} { l }
{ (H ^ { 1 } (C) , \phi _ { O } ^ { S }) } \\
{ (H ^ { 1 } (C) , (1 + T T _ { - \varepsilon }) \psi _ { O } ^ { S } , v _ { S } ^ { O } (\psi)) }
\end{array} \text { represents } O \text { in } \left\{\begin{array}{l}
L\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \\
\tilde{L}_{\epsilon}(A, S)
\end{array},\right.\right.
$$

by Propositions 3.4.4 ii), 3.4.6 ii). It follows that the correspondence of Proposition 3.4.1 gives rise to isomorphisms of abelian groups

$$
\left\{\begin{array}{l}
L^{0}(A, S, \varepsilon) \longrightarrow L\left\langle\nu_{O}{ }^{\varepsilon}(A, S) ;(C, \phi) \longmapsto\left(H^{1}(C), \phi_{O}^{S}\right)\right. \\
L_{O}(A, S, \varepsilon) \longrightarrow \tilde{L}_{\varepsilon}(A, S) ;(C, \psi) \longmapsto\left(H^{1}(C),\left(1+T_{-\varepsilon}\right) \psi_{O}^{S} v_{S}^{O}(\psi)\right.
\end{array}\right.
$$

The exactness of the Witt group sequences

$$
\left\{\begin{array}{l}
I^{\varepsilon}(A) \longrightarrow L_{S}^{\varepsilon}\left(S^{-1} A\right) \xrightarrow{\exists} L\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \longrightarrow M\left\langle v_{O}\right\rangle^{-\varepsilon}(A) \longrightarrow M\left\langle v_{O} S^{-\varepsilon}(S\right. \\
L_{\varepsilon}(A) \longrightarrow L_{\varepsilon}^{S}\left(S^{-1} A\right) \longrightarrow \tilde{L}_{\varepsilon}(A, S) \longrightarrow M_{-\varepsilon}(A) \longrightarrow M_{-\varepsilon}^{S}\left(S^{-1} A\right)
\end{array}\right.
$$

can now be deduced from the exactness of (*) ${ }_{0}$ and (*) 4 (which is given by Proposition 3.2.3 i)), or else may be established directly using Proposition 3.4.6 ii). The direct method also applies to the exactness of (*) -2

$$
L\left\langle v_{O}\right\rangle^{\varepsilon}(A) \longrightarrow L\left\langle v_{O}\right\rangle_{S}^{\varepsilon}\left(S^{-1} A\right) \xrightarrow{j} L_{E}(A, S) \longrightarrow M_{-\varepsilon}(A) \longrightarrow M_{-E}^{S}\left(S^{-1} A\right)
$$

ii) Define abelian group morphisms

$$
L^{\varepsilon}(A, S) \longrightarrow L^{2 k}\left(A, S,(-)^{k} E\right) ;(M, \lambda) \longmapsto \bar{S}^{k}(C, \phi) \quad(k \geqslant 1)
$$

by sending a non-singular ε-symmetric linking form over (A, S) (M, λ) to the k-fold skew-suspension

$$
\bar{s}^{k}(c, \phi)=\left(s^{k} c, \bar{s}^{k} \phi \in Q\left\langle v_{O}\right\rangle^{2 k+1}\left(S^{k} c,(-)^{k+1} \varepsilon\right)\right)
$$

of an S-acyclic l-dimensional (-ध)-symmetric Poincaré complex over $A\left(C, \phi \in Q^{1}(C,-\varepsilon)\right)$ such that

$$
\left(H^{1}(C), \Phi_{O}^{S}\right)=(M, \lambda)
$$

as given by Proposition 3.4.1. The S-acyclic cobordism class
$\bar{S}^{k}(C, \phi) \in f^{2 k}\left(A, S,(-)^{k}\right)$ depends only on the isomorphism class of (M, λ) (which may be proved exactly as was done in Proposition 3.4.4 i) in the even e-symmetric case), and vanishes if (M, λ) is stably hyperbolic (Proposition 3.4.5 ii)), so that the morphisms are well-defined. If
$\left\{\begin{array}{l}(A, S) \text { is o-dimensional } \\ \operatorname{ker}\left(\hat{\delta}: \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) \longrightarrow \hat{H}^{\mathrm{O}}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0\end{array}\right.$ then by Proposition $\left\{\begin{array}{l}3.2 .4 \\ 3.3 .2\end{array}\right.$ i) there are natural identifications for $\left\{\begin{array}{l}k \geqslant 1 \\ k=1\end{array}\right.$ $L^{2 k}\left(A, S,(-)^{k} E\right)=$ the cobordism group of S-acyclic l-dimensional (-E)-symmetric Poincaré complexes over A
so that the morphisms are onto. Moreover, if $(M, \lambda) \in \operatorname{ker}\left(L^{\varepsilon}(A, S) \longrightarrow L^{2}(A, S,-\varepsilon)\right)$ then (C, ϕ) is homotopy equivalent to the boundary $3(D, \eta)$ of a connected S-acyclic $(-E)$-symmetric complex over $A\left(D, \eta \in Q^{2}(D,-\varepsilon)\right)$, and the proof of Proposition 3.4 .6 ii) generalizes to show that (M, λ) is stably hyperbolic, so that the morphisms are also one-one, and hence isomorphisms.
iii) Immediate from i), ii) and Proposition 3.4.2 ii).

3.5 Linking formations

A "non-singular linking formation over $(A, S) "$ is a linking form over (A, S) together with an ordered pair of lagrangians. In Proposition 3.5 .2 below we shall show that the homotopy equivalence classes of s-acyclic 2-dimensional algebraic Poincaré complexes over A are in one-one correspondence with the "stable equivalence" classes of non-singular linking formations over (A, S), and in Proposition 3.5 .5 the cobordism groups of such complexes will be identified with witt groups of linking formations. There is an evident analogy between the theory of forms and formations set out in $\$ 1.6$ and the theory of linking forms and linking formations.

$$
\begin{gathered}
\text { An }\left\{\begin{array}{l}
\frac{\text { leven }) ~ E-s y m m e t r i c ~}{E-q u a d r a t i c ~}
\end{array} \text { linking formation over }(A, S)\right. \\
\left\{\begin{array} { l }
{ (M , \lambda ; F , G) } \\
{ (M , \lambda , \mu ; F , G) }
\end{array} \text { is a non-singular } \left\{\begin{array}{l}
\text { (even) E-symmetric } \\
\text { E-quadratic }
\end{array}\right.\right. \text { linking }
\end{gathered}
$$

form over (A, S) $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \mu)\end{array}\right.$ together with a lagrangian F and a sublaqrangian G. The linking formation is non-singular if G is a laqrangian.
 over (A,S)

$$
\left\{\begin{array}{l}
\mathrm{f}:(\mathrm{M}, \lambda ; \mathrm{E}, \mathrm{G}) \longrightarrow\left(M^{\prime}, \lambda^{\prime} ; \mathrm{F}^{\prime}, G^{\prime}\right) \\
\mathrm{f}:(M, \lambda, \mu ; F, G) \longrightarrow\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime} ; F^{\prime}, G^{\prime}\right)
\end{array}\right.
$$

is an isomorphism of the $\left\{\begin{array}{l}(\varepsilon v e n) ~ \varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ Jinking forms

$$
\left\{\begin{array}{l}
\mathrm{f}:(M, \lambda) \longrightarrow\left(M^{\prime}, \lambda^{\prime}\right) \\
\mathrm{f}:(M, \lambda, \mu) \longrightarrow\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime}\right)
\end{array}\right.
$$

such that

$$
\begin{gathered}
f(F)=F^{\prime}, f(G)=G^{\prime} . \\
\text { A sublagrangian } H \text { of an } \begin{cases}\text { (even }) \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }\end{cases}
\end{gathered}
$$ formation over $(A, S)\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G)\end{array}\right.$ is a sublagranaian H of $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \mu)\end{array}\right.$ such that

i) $H \subseteq G$, with G / H an (A, S)-module
ii) $\mathrm{F} \cap \mathrm{H}=\{\mathrm{O}\}, \mathrm{M}=\mathrm{F}+\mathrm{H}^{\perp}$.

An elementary equivalence of $\left\{\begin{array}{l}(\text { even }) ~ \\ \text { e-symmetric } \\ \text { e-quadratic }\end{array}\right.$
linking formations over (A.S) is the transformation

$$
\left\{\begin{array}{l}
(M, \lambda ; F, G) \longmapsto\left(M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}\right) \\
(M, \lambda, \mu ; F, G) \longmapsto\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime} ; F^{\prime}, G^{\prime}\right)
\end{array}\right.
$$

determined by a sublagrangian H of $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G)\end{array}\right.$, with

$$
\left\{\begin{array}{l}
\left(M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}\right)=\left(H^{\perp} / H, \lambda \perp / \lambda ; F \cap H^{\perp}, G / H\right) \\
\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime} ; F^{\prime}, G^{\prime}\right)=\left(H^{+} / H, \lambda+/ \lambda, \mu^{\perp} / \mu ; F \cap H^{\perp}, G / H\right)
\end{array}\right.
$$

(where $\mathrm{F} \mathrm{n}^{+1}$ stands for the image of the natural injection $\left.\left.\mathrm{F} \cap \mathrm{H}^{2} \longrightarrow \mathrm{H}^{+} / \mathrm{H} ; \mathrm{x} \longrightarrow \mid \mathrm{x}\right]\right)$. Note that there are natural identifications of S -torsion A -modules
$F^{\prime} \cap G^{\prime}=F \cap G, M^{\prime} /\left(F^{\prime}+G^{\prime}\right)=M /(F+G), \quad G^{\prime}+/ G^{\prime}=G^{1} / G$

- in general, only $G+G$ is an (A, S)-module.

Elementary equivalences an isomorphisms qenerate an
equivalence refation on the set of $\left\{\begin{array}{l}\text { (even) E-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
linking formations over (A, S), called stable equivalence. Note that $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G)\end{array}\right.$ is stably equivalent to O if and only if

$$
M=F \oplus G .
$$

In Proposition 3.5 .2 ii) below the stable equivalence classes of (even) e-symmetric linking formations over (A, S) will be shown to be in one-one correspondence with the homotopy equivalence classes of connected s-acyclic 2-dimensional (even) $(-\varepsilon)$-symmetric complexes over A, with non-singular linking formations corresponding to Poincaré complexes.

Given an-(A,S)-module L define the standard hyperbolic $\left\{\begin{array}{l}\text { even e-symmetric } \\ \frac{\varepsilon \text {-guadratic }}{\text { split } \varepsilon \text {-quadratic }}\end{array}\right.$ linking form over (A, S)
for which both L and L^{\wedge} are lagrangians.
A split e-guadratic linking formation over (A, S)

$$
(F, G)=\left(F,\left(\binom{Y}{\mu} \theta\right) G\right)
$$

is an e-quadratic linking formation over (A, S) of the type $\left(H_{E}(F) ; F, G\right)$, with $\binom{\gamma}{\mu}: G \longrightarrow F \oplus F^{\wedge}$ the inclusion, together with a function

$$
\theta: G \longrightarrow Q_{-\varepsilon}(A, S)
$$

such that $\left(G, \gamma^{\wedge} \mu \in \operatorname{Hom}_{A}\left(G, G^{\wedge}\right), \theta\right)$ is a $(-\epsilon)$-quadratic linking form over (A, S), the hessian of (F, G). (Such objects were
first considered by Pardon [21). Note that the existence of the hessian θ ensures that G is a sublagrangian of the hyperbolic split ε-quadratic linking form $\tilde{H}_{\varepsilon}(F)$. The linking formation (F, G) is non-singular if G is a lagrangian, that is if the sequence

$$
0 \longrightarrow G \xrightarrow{\binom{\gamma}{\mu}} 0
$$

is exact.
An isomorphism of split e-quadratic linking formations over (A, S)

$$
(\alpha, \beta, \phi, \psi):(F, G) \longrightarrow\left(F^{\prime}, G^{\prime}\right)
$$

is a quadruple
$\left(\alpha \in \operatorname{Hom}_{A}\left(F, F^{\prime}\right), B \in \operatorname{Hom}_{A}\left(G, G^{\prime}\right), \phi \in \operatorname{Hom}_{A}\left(F^{\wedge}, F\right), \phi: F^{\wedge} \longrightarrow Q_{-E}(A, S)\right)$ with α, β isomorphisms and $\left(F^{\wedge}, \phi, \psi\right)$ a $(-\epsilon)$-quadratic linking form over (A, S), such that

$$
\begin{aligned}
& \text { i) } \alpha^{\wedge-1} \mu=\mu^{\prime} \beta \in \operatorname{Hom}_{A}\left(G, F^{\prime \wedge}\right) \\
& \text { ii) } \alpha \gamma+\alpha \phi^{\wedge} \mu=\gamma^{\prime} \beta \in \operatorname{Hom}_{A}\left(G, F^{\prime}\right) \\
& \text { iii) } \theta+\psi \mu=\theta^{\prime} \beta: G \longrightarrow Q_{-\varepsilon}(A, S) \text {. }
\end{aligned}
$$

The isomorphism of (A, S)-modules

$$
\mathrm{f}=\left(\begin{array}{ll}
\alpha & \alpha \phi^{\wedge} \\
0 & \alpha^{\wedge-1}
\end{array}\right): F \oplus \mathrm{~F}^{\wedge} \longrightarrow \mathrm{F}^{\wedge} \oplus F
$$

defines an isomorphism of the underlying e-quadratic linking formations over (A, S)

$$
f:\left(H_{\varepsilon}(F) ; F, G\right) \longrightarrow\left(H_{\varepsilon}\left(F^{\prime}\right) ; F^{\prime}, G^{\prime}\right)
$$

Conversely, every such isomorphism arises from a triple (α, β, ϕ) satisfying i) and ii).

A sublagrangian H of a split e-quadratic linking formation over (A, S) (F, G) is a sublagrangian H of the
underlying ε-quadratic linking formation ($\left.H_{\varepsilon}(F) ; F, G\right)$ such that
i) $\theta j=0: H \longrightarrow Q_{-\varepsilon}(A, S)$, where $j \in \operatorname{Hom}_{A}(H, G)$ is the inclusion,
ii) $\gamma j=0 \in \operatorname{Hom}_{A}(H, F)$, i.e. $H \subseteq F^{\wedge} \subseteq F \oplus F^{\wedge}$.

An elementary equivalence of split ε-quadratic linking
formations over (A, S) is the transformation

$$
(F, G) \longmapsto\left(F^{\prime}, G^{\prime}\right)
$$

determined by a sublagrangian H of (F, G), with

$$
\begin{aligned}
& F^{\prime}=F \cap H^{\perp}=\operatorname{ker}\left(j^{\wedge} \mu^{\wedge}: F \longrightarrow H^{\wedge}\right) \\
& G^{\prime}=G / H=\operatorname{coker}(j: H \longrightarrow G) \\
& Y^{\prime}: G^{\prime} \longrightarrow F^{\prime} ;[x] \longmapsto Y(x) \\
& \mu^{\prime}: G^{\prime} \longrightarrow F^{\prime}{ }^{\wedge} ;(x] \longmapsto(y \longmapsto u(x)(y)) \\
& \theta^{\prime}: G^{\prime} \longrightarrow Q_{-\varepsilon}(A, S) ;[x] \longmapsto \theta(x) \quad\left(x \in G, Y \in F^{\prime}\right) \text {. }
\end{aligned}
$$

(The ε-quadratic linking formation $\left(H_{\epsilon}\left(F^{\prime}\right) ; F^{\prime}, G^{\prime}\right)$ underlying (F^{\prime}, G^{\prime}) is then obtained from ($\left.H_{\varepsilon}(F) ; F, G\right)$ by an elementary equivalence of ε-quadratic linking formations).

Elementary equivalences and isomorphisms generate an equivalence relation on the set of split ε-quadratic linking formations over (A, S), called stable equivalence. Note that (F, G) is stably equivalent to O if and only if $\mu \in \operatorname{Hom}_{A}\left(G, F^{\wedge}\right.$) is an isomorphism. In Proposition 3.5.2 iii) below the stable equivalence classes of split ε-quadratic linking formations over (A, S) will be shown to be in one-one correspondence with the appropriate equivalence classes of connected s-acyclic 2-dimensional (- ε)-quadratic complexes over A, with non-singular linking formations corresponding to Poincaré complexes.

Prior to such an identification we need some preliminary results on the homotopy classification of 2-dimensional complexes.

A 2 -dimensional A-module chain complexes C is in normal form if $C_{r}=O(r \neq 0,1,2)$ and each $C_{r}(r=0,1,2)$ is a f.g. projective A-module,

A connected 2-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over A
$\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is in normal form if C is in normal form and $\left\{\begin{array}{l}\phi \in Q^{2}(C, E) \\ \psi \in Q_{2}(C, E)\end{array}\right.$ has a chain representative $\left\{\begin{array}{l}\left.\phi \in \operatorname{Hom}_{\mathbb{Z}} \mid \mathbb{Z}_{2}\right)^{\left(W, \operatorname{Hom}_{A}\left(C^{\star}, C\right)\right)_{2}} \\ \psi \in \mathcal{W A}_{\mathbb{Z}}\left\{\left.\mathbb{Z}_{2}\right|^{\operatorname{Hom}_{A}\left(C^{\star}, C\right)_{2}}\right.\end{array}\right.$ such that
i) $\left\{\begin{array}{l}\phi_{0} \in \operatorname{Hom}_{\Lambda}\left(C^{0}, C_{2}\right) \\ \psi_{0} \in \operatorname{lom}_{A}\left(C^{0}, C_{2}\right)\end{array}\right.$ is an isomorphism
ii) $\left\{\begin{array}{l}\Phi_{1}=0 \in \operatorname{Hom}_{A}\left(C^{2}, C_{1}\right) \\ \psi_{1}=0 \in \operatorname{Hom}_{A}\left(C^{1}, C_{O}\right), \psi_{O}=0 \in \operatorname{Hom}_{A}\left(C^{2}, C_{O}\right) .\end{array}\right.$ An $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ in normal form is Poincaré if and only if $\left\{\begin{array}{l}\phi_{O} \in H o m_{A}\left(C^{1}, C_{1}\right) \\ \left(1+\Gamma_{E}\right) \psi_{O} \in \operatorname{Hom}_{A}\left(C^{1}, C_{1}\right)\end{array}\right.$ is an isomorphism.

A stable isomorphism of connected 2-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes over A in normal form

$$
\left\{\begin{array}{l}
{[f]:(C, \phi) \longrightarrow\left(C^{\prime}, \phi^{\prime}\right)} \\
{[f]:(C, \psi) \longrightarrow\left(C^{\prime}, \psi^{\prime}\right)}
\end{array}\right.
$$

is an isomorphism of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes

$$
\left\{\begin{array}{l}
f:(C, \phi) \oplus C^{E}(P) \longrightarrow\left(C^{\prime}, \phi^{\prime}\right) \oplus C^{\varepsilon}\left(P^{\prime}\right) \\
f:(C, \psi) \oplus C_{E}(P) \longrightarrow\left(C^{\prime}, \psi^{\prime}\right) \oplus C_{\epsilon}\left(P^{\prime}\right)
\end{array}\right.
$$

for some f.g. projective A-modules P. P', with

$$
\left\{\begin{array}{l}
C^{\epsilon}(P)=\left(D, \eta \in Q^{2}(D, \varepsilon)\right) \\
C_{\varepsilon}(P)=\left(D, \zeta \in Q_{2}(D, \varepsilon)\right)
\end{array}\right.
$$

the contractible 2-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over A in normal form defined by

$$
\begin{aligned}
& D: \ldots \longrightarrow O \longrightarrow P \xrightarrow{\binom{0}{-\varepsilon}} P * \oplus P \longrightarrow\binom{1}{1}
\end{aligned}
$$

and similarly for $\left\{\begin{array}{l}C^{E}\left(P^{\prime}\right) \\ C_{\varepsilon}\left(P^{\prime}\right)\end{array}\right.$.
Proposition 3.5.1 The homotopy equivalence classes of connected $2-$ तimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes over A are in a natural one-one correspondence with the stable isomorphism classes of connected 2-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$ complexes over A in normal form.

Proof: A stable isomorphism is a homotopy equivalence. Therefore it is sufficient to prove that every connected 2 -dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex is homotopy equivalent to one in normal form, and that homotopy equivalent complexes determine stably isomorphic complexes in normal form.

$$
\text { Every 2-dimensional. }\left\{\begin{array}{l}
\varepsilon-\text { symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { complex over A }
$$

$$
\left\{\begin{array}{l}
\left(C, \phi \in O^{2}(C, E)\right) \\
\left(C, \psi \in Q_{2}(C, \varepsilon)\right)
\end{array}\right. \text { is homotopy equivalent to one in which the }
$$

chain complex C is in normal form, and for such C the class $\left\{\begin{array}{l}\phi \\ \psi\end{array}\right.$ is represented by A-module morphisms

such that

Such a complex $\left\{\begin{array}{l}(C, \phi) \\ (C, \phi)\end{array}\right.$ is connected if and only if the A-module morph ism

$$
\left\{\begin{array}{l}
\left(\mathrm{d} \quad \tilde{\tilde{\phi}}_{\mathrm{O}}\right): \mathrm{c}_{1} \oplus \mathrm{C}^{2} \longrightarrow \mathrm{C}_{\mathrm{O}} \\
\left(\mathrm{~d} \quad\left(\tilde{\psi}_{\mathrm{O}}+\varepsilon \psi_{\mathrm{O}}^{\star}\right)\right): c_{1} \oplus C^{2} \longrightarrow c_{0}
\end{array}\right.
$$

is onto, in which case we shall construct a homotopy equivalent complex $\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime} \in Q^{2}\left(C^{\prime}, \varepsilon\right)\right) \\ \left(C^{\prime}, \psi^{\prime} \in Q_{2}\left(C^{\prime}, E\right)\right)\end{array}\right.$ in normal form, as follows.

Define a connected $2-$ dimensional ϵ-symmetric complex over $A\left(C^{\prime}, \phi^{\prime} \in Q^{2}\left(C^{\prime}, \varepsilon\right)\right)$ in normal form by
$d^{\prime}=\left\{\begin{array}{l}\binom{d}{0}: c_{2}^{\prime}=c_{2} \longrightarrow C_{1}^{\prime}=\operatorname{ker}\left(\left(d-\phi_{O}^{\star}\right): c_{1} \oplus C^{2} \longrightarrow c_{0}\right), \\ (0 \quad 1): C_{1}^{\prime} \longrightarrow c_{0}^{\prime}=c^{2},\end{array}\right.$
$\Phi_{\mathrm{O}}^{\prime}=1: \mathrm{C}^{, 2}=\mathrm{c}^{2} \longrightarrow C_{\mathrm{O}}^{\prime}=\mathrm{C}^{2}$,

 $\phi_{1}^{\prime}=0: C^{\prime 2}=c_{2} \longrightarrow C_{i}^{\prime}, \phi_{2}^{\prime}=\phi_{2}: c^{\prime 2}=c^{2} \longrightarrow C_{2}^{\prime}=c_{2}$.

The chain equivalence

$$
f: C^{\prime} \longrightarrow C
$$

given by

defines a homotopy equivalence of 2 -dimensional e-symmetric complexes over A

$$
f:\left(C^{\prime}, \phi^{\prime}\right) \longrightarrow(C, \phi)
$$

Given (C, ψ) as above we define first an auxiliary 2-dimensional e-quadratic complex over $A\left(C ", \psi " \in Q_{2}(C ", E)\right)$ by $d^{\prime \prime}=\left\{\begin{array}{l}\binom{d}{0}: C_{2}^{\prime \prime}=C_{2} \longrightarrow C_{1}^{\prime \prime}=c_{1} \oplus C^{2}, \\ \left(\begin{array}{cc}d & -\left(\psi_{0}+\epsilon \psi_{0}^{\star}\right) \\ 0 & 1\end{array}\right): c_{1}^{\prime \prime}=c_{1} \oplus C^{2} \longrightarrow c_{0}^{\prime \prime}=C_{0} \oplus C^{2}\end{array}\right.$
$\psi_{0}^{\prime \prime}=10$

1) $: C^{\prime \prime}{ }^{\mathrm{O}}=\mathrm{C}^{\mathrm{O}} \oplus \mathrm{C}_{2} \longrightarrow \mathrm{C}_{2}^{\prime}=\mathrm{C}_{2}$

$$
\begin{aligned}
& \tilde{\Psi}_{O}^{\prime \prime}=\left(\begin{array}{cc}
\tilde{\Psi}_{0} & 0 \\
-\varepsilon d^{*} & 0
\end{array}\right): c^{\prime \prime}=c^{1} \oplus C_{2} \longrightarrow C_{i}^{\prime \prime}=c_{1} \oplus C^{2} \\
& \tilde{\tilde{\psi}}_{\mathrm{O}}^{\prime \prime}=0: c^{\prime \prime}=c^{2} \longrightarrow c_{0}^{\prime \prime}=c_{0} \oplus C^{2} \\
& \psi_{1}^{\prime \prime}=\left(\begin{array}{cc}
-\widetilde{\Psi}_{0} \mathrm{~d}^{\star} & d \\
0 & 0
\end{array}\right): \mathrm{C}^{\mathrm{O}}=\mathrm{C}^{0} \oplus \mathrm{C}_{2} \longrightarrow \mathrm{C}_{1}^{\prime \prime}=\mathrm{C}_{1} \oplus \mathrm{C}^{2} \\
& \tilde{\Psi}_{1}^{\prime \prime}=0: C^{\prime \prime}=C^{1} \oplus C_{2} \longrightarrow C_{0}^{\prime \prime}=C_{0} \oplus C^{2} \\
& \psi_{2}^{\prime \prime}=\left(\begin{array}{cc}
\psi_{2}+\widetilde{\psi}_{1} \mathrm{~A}^{*} & 0 \\
0 & 0
\end{array}\right): \mathrm{c}^{\mathrm{n}}=\mathrm{c}^{\mathrm{O}} \oplus \mathrm{C}_{2} \longrightarrow \mathrm{c}_{0}^{\prime \prime}=\mathrm{C}_{\mathrm{o}} \oplus \mathrm{C}^{2} .
\end{aligned}
$$

The chain equivalence

$$
\mathrm{f}^{\prime \prime}: \mathrm{C} \longrightarrow \mathrm{C}^{\prime \prime}
$$

given by

defines a homotopy equivalence of 2 -dimensional e-quadratic complexes over A

$$
f^{\prime \prime}:(C, \psi) \longrightarrow\left(C^{\prime \prime}, \psi^{\prime \prime}\right) .
$$

Defien a 2 -dimensional A-module chain complex C^{\prime} in normal form by

$$
d^{\prime}=\left\{\begin{array}{l}
\binom{d}{0}: c_{2}^{\prime}=c_{2} \longrightarrow c_{i}^{\prime}=\operatorname{ker}\left(\left(d \widetilde{\psi}_{O}+\varepsilon \psi_{0}^{*}\right): c_{1} \oplus C^{2} \longrightarrow c_{0}^{\prime}\right. \\
(0 \quad 1): c_{i} \longrightarrow c_{0}^{\prime}=c^{2}
\end{array}\right.
$$

Choose a splitting map

$$
\binom{j}{k}: c_{0} \longrightarrow c_{1} \oplus C^{2}
$$

for $\left(d \tilde{\Psi}_{O}+\varepsilon \psi_{O}^{\star}\right): C_{1} \oplus C^{2} \longrightarrow C_{O}$, so that
$\left(\mathrm{d} \widetilde{\Psi}_{\mathrm{O}}+\varepsilon \psi_{\mathrm{O}}^{\star}\right)\binom{j}{\dot{k}}=d j+\left(\tilde{\Psi}_{\mathrm{O}}+\varepsilon \psi_{\mathrm{O}}^{\star}\right) k=1: c_{\mathrm{O}} \longrightarrow \mathrm{C}_{\mathrm{O}}$,
and define a chain equivalence

$$
f^{\prime}: C^{\prime \prime} \longrightarrow C^{\prime}
$$

by

with

$$
\begin{aligned}
& \mathbf{f}_{\dot{O}}^{\prime}=(-k-\bar{\varepsilon}): C_{O}^{\prime \prime}=C_{O} \oplus C^{2} \longrightarrow C_{O}^{\prime}=C^{2} \\
& f_{i}^{\prime}=\left(\begin{array}{cc}
1-j d & \bar{\varepsilon} j\left(\tilde{\psi}_{O}+\epsilon \psi_{O}^{\star}\right) \\
-k d & \bar{\epsilon}_{k}\left(\tilde{\Psi}_{O}+\varepsilon \psi_{O}^{*}\right)-\bar{\varepsilon}
\end{array}\right) \\
& : C_{1}^{\prime \prime}=C_{1} \oplus C^{2} \longrightarrow C_{1}=\operatorname{ker}\left(\left(\begin{array}{c}
\approx_{0} \\
\Psi_{0} \\
\varepsilon
\end{array} \psi_{0}^{*}\right): C_{1} \oplus C^{2} \longrightarrow C_{0}\right) \\
& f_{2}^{\prime}=1: C_{2}^{\prime \prime}=C_{2} \longrightarrow C_{2}^{\prime}=C_{2} .
\end{aligned}
$$

The connected 2 -dimensional ε-quadratic complex over $A\left(C^{*}, \psi^{\prime}\right)$ defined by

$$
\psi^{\prime}=f_{i}^{\prime}\left(\psi^{\prime \prime}\right) \in Q_{2}\left(C^{\prime}, \varepsilon\right)
$$

is in normal form, and there is defined a homotony equivalence

$$
f=f^{\prime} f^{\prime \prime}:(C, \psi) \longrightarrow\left(C^{\prime}, \psi^{\prime}\right)
$$

Tha above procedure associates to an isomorphism class of connected 2 -dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ complexes over $A\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$
with the chain complex C in normal form an isomorphism class of connected 2 -dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ complexes over $A\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ in normal form. The association proserves homotopy types, and
also the direct sum \oplus. In particular, if C is a chain contractible 2 -dimensional A-module chain complex in normal form it is isomorphic to one of the type

for some f.g. projective A-modules P, Q, so that $\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array}\right.$ is isomorphic to $\left\{\begin{array}{l}C^{\epsilon}(\mathrm{P}) \\ \mathrm{C}_{\varepsilon}(\mathrm{P})\end{array}\right.$, and hence is stably isomorphic to 0 . It follows from the Lemma below that homotopy equivalent complexes $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array},\left\{\begin{array}{l}(\tilde{C}, \tilde{\phi}) \\ (\tilde{C}, \tilde{\psi})\end{array}\right.\right.$ with C and \tilde{C} in normal form determine stably isomorphic complexes in normal form $\left\{\begin{array}{l}\left(C^{\prime}, \phi^{\prime}\right) \\ \left(C^{\prime}, \psi^{\prime}\right)\end{array},\left\{\begin{array}{l}\left(\tilde{C}^{\prime}, \tilde{\phi}^{\prime}\right) \\ \left(\widetilde{C}^{\prime}, \tilde{\psi}^{\prime}\right)\end{array}\right.\right.$.
Lemma Let $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array},\left\{\begin{array}{l}(\widetilde{C}, \widetilde{\phi}) \\ (\widetilde{C}, \widetilde{\psi})\end{array}\right.\right.$ be 2-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ complexes over A with C, \tilde{C} in normal form. There exists a homotopy equivalence

$$
\left\{\begin{array}{l}
\mathrm{f}:(\mathrm{C}, \phi) \longrightarrow(\tilde{\mathrm{C}}, \tilde{\phi}) \\
\mathrm{f}:(\mathrm{C}, \phi) \longrightarrow(\widetilde{\mathrm{C}}, \tilde{\psi})
\end{array}\right.
$$

if and only if there exists an isomorphism

$$
\begin{cases}(\mathrm{C}, \phi) \oplus(\mathrm{D}, \mathrm{O}) \longrightarrow(\tilde{C}, \tilde{\phi}) \oplus(\tilde{\mathrm{D}}, 0) \\ (\mathrm{C}, \psi) \oplus(\mathrm{D}, \mathrm{O}) \longrightarrow & (\tilde{C}, \tilde{\psi}) \oplus(\widetilde{\mathrm{D}}, \mathrm{O})\end{cases}
$$

for some contractible 2 -dimensional A-module chain complexes D. ${ }^{\text {D }}$ in normal furt.

Proof: This is a special case of Proposition I.l.5.

S-non-singular $\left\{\begin{array}{l}(\text { even }) ~ \\ \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over $A\left\{\begin{array}{l}\left(K, \alpha \in Q^{\varepsilon}(K)\right) \\ \left(K, \beta \in Q_{E}(K)\right)\end{array}\right.$
together with an S-lagranaian L. Such an S-form is
non-singular if $\left\{\begin{array}{l}(K, \alpha) \\ (K, B)\end{array}\right.$ is a non-singular form. (An S-form is an $\mathrm{S}^{-1} \mathrm{~A}$-form in the sense of $\$ 2.4$).

An isomorphism of $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ S-forms over A

$$
\left\{\begin{array}{l}
\mathrm{f}:(K, \alpha ; L) \longrightarrow\left(K^{\prime}, \alpha^{\prime} ; L^{\prime}\right) \\
\mathrm{f}:(K, \beta ; L) \longrightarrow\left(K^{\prime}, \beta^{\prime} ; L^{\prime}\right)
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
\mathrm{f}:(K, \alpha) \longrightarrow \sim\left(K^{\prime}, \alpha^{\prime}\right) \\
\mathrm{f}:(K, \beta) \longrightarrow\left(K^{\prime}, \beta^{\prime}\right)
\end{array}\right.
$$

such that

$$
f(L)=L^{\prime} .
$$

A stable isomorphism of $\left\{\begin{array}{l}\text { (even) c-symmetric } \\ \text { E-quadratic }\end{array}\right.$ S-forms over

$$
\left\{\begin{array}{l}
{[f]:(K, \alpha ; L) \longrightarrow\left(K^{\prime}, \alpha^{\prime} ; L^{\prime}\right)} \\
{[f]:(K, \beta ; L) \longrightarrow\left(K^{\prime}, \beta^{\prime} ; L^{\prime}\right)}
\end{array}\right.
$$

is an isomorphism of S -forms

$$
\left\{\begin{array}{l}
f:(K, \alpha ; I \cdot) \oplus(M, \phi ; N) \longrightarrow \longrightarrow\left(K^{\prime}, \alpha^{\prime} ; L^{\prime}\right) \oplus\left(M^{\prime}, \phi^{\prime} ; N^{\prime}\right) \\
f:(K, \beta ; L) \oplus(M, \phi ; N) \longrightarrow\left(K^{\prime}, \beta^{\prime} ; L^{\prime}\right) \oplus\left(M^{\prime}, \psi^{\prime} ; N^{\prime}\right)
\end{array}\right.
$$

for some non-singular $\left\{\begin{array}{l}(\text { even }) ~ \epsilon-s y m m e t r i c ~ \\ \text { f-quadratic }\end{array}\right.$ S-forms over A

$$
\left\{\begin{array}{l}
(M, \Phi ; N) \\
(M, \psi ; N)
\end{array},\left\{\begin{array} { l }
{ (M ^ { \prime } , \phi ^ { \prime } ; N ^ { \prime }) } \\
{ (M ^ { \prime } , \psi ^ { \prime } ; N ^ { \prime }) }
\end{array} \text { such that } N \text { is a laqrangian of } \left\{\begin{array}{l}
(M, \phi) \\
(M, \psi)
\end{array}\right.\right.\right.
$$

and N^{\prime} is a lagrangian of $\left\{\begin{array}{l}\left(M^{\prime}, \phi^{\prime}\right) \\ \left(M^{\prime}, \psi^{\prime}\right)\end{array}\right.$.

Proposition 3.5.2 i) The stable equivalence classes of $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking formations over (A, S) are in a natural one-one correspondence with the stable isomorphism classes of $\left\{\begin{array}{l}\varepsilon-\text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric } S \text {-forms over } A . \text { Non-singular } \\ \varepsilon \text {-quadratic }\end{array}\right.$
linking formations correspond to non-singular s-forms.
ii) The stable equivalence classes of (even) e-symmetric
linking formations over (A, S) $(M, \lambda ; F, G)$ are in a natural one-one correspondence with the homotopy equivalence classes of connected S-acyclic 2-dimensional (even) (-E)-symmetric complexes over $A\left(C, \phi \in Q^{2}(C,-\varepsilon)\right)$. Under this correspondence the exact sequence of S-torsion A-modules

$$
\mathrm{O} \longrightarrow \mathrm{H}^{1}(\mathrm{C}) \xrightarrow{\phi_{\mathrm{O}}} \mathrm{H}_{1}(\mathrm{C}) \longrightarrow \mathrm{H}_{1}\left(\phi_{\mathrm{O}}\right) \longrightarrow \mathrm{H}^{2}(\mathrm{C}) \xrightarrow{\phi_{\mathrm{O}}} \mathrm{H}_{\mathrm{O}}(\mathrm{C}) \longrightarrow \mathrm{O}
$$

can be identified with

$$
O \longrightarrow F \cap G \longrightarrow F \cap G^{+} \longrightarrow G^{+} / G \longrightarrow M /(F+G) \longrightarrow M /(F+G+) \longrightarrow 0
$$

and

$$
v_{O}^{S}(\phi): H^{2}(C)=M /(F+G) \longrightarrow \hat{H}^{O}\left(Z_{2} ; S^{-1} A / A, E\right) ; x \mapsto \lambda(x)(:
$$

Non~singular linking formations correspond to Poincaré compl'
iii) There is a natural projection of the set of homotopy equivalence classes of connected S-acyclic 2-dimensional (-E)-quadratic complexes over $A\left(C, \psi \in O_{2}(C,-\varepsilon)\right)$ onto the set of stable equivalence classes of split ε-quadratic linking formations over $(A, S)(F,((\underset{\mu}{Y}), \theta) G)$. If the complexes ($C, \psi)$, ($\left.C^{\prime}, \psi^{\prime}\right)$ project to the same stable equivalence class then ($C^{\prime}, \psi^{\prime}$) is homotopy equivalent to a complex obtained from (C, ψ) by an s-acyclic ($-\varepsilon$)-quadratic surgery preserving the $(-\varepsilon)$-symmetric homotopy type, and

$$
\begin{aligned}
\operatorname{pv}_{S}^{1}(\psi)=\operatorname{pv}_{S}^{1}(\psi '): H^{1}(C)=\operatorname{ker}(\mu: G \longrightarrow & \left.F^{\wedge}\right) \longrightarrow Q_{-E}(A, S) ; \\
& x \longmapsto \theta(x)
\end{aligned}
$$

(Before embarking on the proof of Proposition 3.5.2 we remark on the similarity between these correspondences and those of
(1inking forms over $(A, S)) \longmapsto$
(S-acyclic 1-dimensional complexes over A) (Proposition 3.4.1)
(linking forms over $(A, S)) \longmapsto \longrightarrow$
(S-formations over A) (Proposition 3.4.3)
$($ formations over $A) \longleftrightarrow$
(1-dimensional complexes over A) (Proposition 1.6.4).

In particular, qiven a connected l-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q^{1}(C, \varepsilon)\right) \\ \left(C, \psi \in O_{1}(C, \varepsilon)\right)\end{array}\right.$ with a corresponding
$\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ formation over $A\left\{\begin{array}{l}(M, \lambda ; F, G) \\ \left(F,\left(\binom{\gamma}{\mu}, \theta\right) G\right)\end{array}\right.$ the exact sequence of A-modules
 (with $\Phi_{O}=\left(1+T_{E}\right) \psi_{O}$ in the ε-quadratic case) may be identified with the exact sequence

$$
\mathrm{O} \longrightarrow \mathrm{~F} \cap \mathrm{G} \longrightarrow \mathrm{~F} \cap \mathrm{G}^{\perp} \longrightarrow \mathrm{G}^{1} / \mathrm{G} \longrightarrow \mathrm{M} /(F+G) \longrightarrow \mathrm{M} /\left(F+\mathrm{G}^{\perp}\right) \longrightarrow \mathrm{O}
$$

and

$$
\begin{aligned}
v_{O}(\phi): H^{1}(C)=N /(F+G) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) ;[x] \longmapsto \alpha(x)(x) \quad(x \in M) \\
v^{1}(\psi): H^{O}(C)=F \cap G=\operatorname{ker}\left(\mu: G \longrightarrow F * \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \epsilon\right) ;\right. \\
y \longmapsto \theta(y)(y)) .
\end{aligned}
$$

Proof: i) Given an $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ linking formation over (A, S) $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G)\end{array}\right.$ we have from Proposition 3.4 .6 that the $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ linking form $\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda, \mu)\end{array}\right.$ is isomorphic to the
boundary $j(K, \alpha)$ of an S-hyperbolic S-non-singular

$$
\begin{array}{r}
\left\{\begin{array} { l }
{ \text { e-symmetric } } \\
{ \text { even } \varepsilon \text { -symmetric } }
\end{array} \text { form over } A \left\{\begin{array}{l}
\left(K, \alpha \in Q^{\varepsilon}(K)\right) \\
\left(K, \alpha \in Q\left\langle v_{O}\right\rangle^{\varepsilon}(K)\right), ~ a n d ~ t h a t ~
\end{array}\right.\right. \\
F=\operatorname{coker}\left(f: K \longrightarrow K_{F}\right) \subseteq M=\operatorname{coker}\left(\alpha: K \longrightarrow K^{*}\right) \\
G=\operatorname{coker}\left(G: K \longrightarrow K_{G}\right) \subseteq M=\operatorname{coker}\left(\alpha: K \longrightarrow K^{\star}\right)
\end{array}
$$

for some S-isomorphisms of s-non-singular $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { even } \varepsilon \text {-symmetric }\end{array}\right.$ forms over A

$$
f:(k, \alpha) \longrightarrow\left(K_{F}, \alpha_{F}\right), g:(K, \alpha) \longrightarrow\left(K_{G}, \alpha_{G}\right)
$$

with $\left(K_{F}, \alpha_{F}\right)$ non-singular. The $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even } \varepsilon \text {-symmetric }\end{array}\right.$ s-form over A associated to $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G)\end{array}\right.$ is defined to be

$$
\left(K_{F} \oplus K_{G} \cdot\left(\begin{array}{cc}
\alpha_{F} & 0 \\
0 & -\alpha_{G}
\end{array}\right) \in Q^{\varepsilon}\left(K_{F} \oplus K_{G}\right) ; i m\left(\binom{f}{g}: K \longrightarrow K_{F} \oplus K_{G}\right)\right)
$$

We defer to iil the proof that the stable isomorphism class of this S-form is independent of the choice of S-non-singular form (k, α) such that

$$
\left\{\begin{array}{l}
(M, \lambda)=3(K, \alpha) \\
(M, \lambda, \mu)=\lambda(K, \alpha) .
\end{array}\right.
$$

We shall now prove that the S-forms associated to stably equivalent linking formations are stably isomorphic.

$$
\text { Given an }\left\{\begin{array}{l}
\text { even } \varepsilon \text {-symmetric } \\
\text { f-quadratic }
\end{array} \text { linking formation over }(A, S)\right.
$$

$$
\left\{\begin{array}{l}
(M, \lambda: F, G) \\
(M, \lambda, \mu ; F, G)
\end{array} \text { and a sublagrangian } H\right. \text { write the linking formation }
$$

oblained by elementary equivalence as

$$
\left\{\begin{array}{l}
\left(M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}\right)=\left(H^{+} / H, \lambda+/ \lambda ; F \cap H^{\perp}, G / H\right) \\
\left(M^{\prime}, \lambda^{\prime}, H^{\prime} ; F^{\prime}, G^{\prime}\right)=\left(H^{+} / H, \lambda^{\perp} / \lambda, H^{+} / H ; F \cap H^{+}, G / H\right)
\end{array}\right.
$$

Continuing with the previous terminology, let

$$
h:(K, \alpha) \longrightarrow\left(K^{\prime}, \alpha^{\prime}\right)
$$

be the S-isomorphism of S-non-singular $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even } \varepsilon-s y m m e t r i c ~ f o r m s ~\end{array}\right.$ over A associated to H by Proposition 3.4.6 i), with

$$
\begin{gathered}
H=\operatorname{coker}\left(h: K \longrightarrow K^{\prime}\right) \subseteq M=\operatorname{coker}\left(\alpha: K \longrightarrow K^{*}\right) \\
\left\{\begin{array}{l}
\left(M^{\prime}, \lambda^{\prime}\right)=3\left(K^{\prime}, \alpha^{\prime}\right) \\
\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime}\right)=\partial\left(K^{\prime}, \alpha^{\prime}\right) .
\end{array}\right.
\end{gathered}
$$

AS H G there is also defined an S-isomorphism

$$
g^{\prime}:\left(K^{\prime}, \alpha^{\prime}\right) \longrightarrow\left(K_{G}, \alpha_{G}\right)
$$

$$
g=q^{\prime} h:(K, \alpha) \longrightarrow \xrightarrow{h}\left(K^{\prime}, \alpha^{\prime}\right) \xrightarrow{g^{\prime}}\left(K_{G}, \alpha_{G}\right)
$$

The composite

$$
\mathrm{F} \xrightarrow{\text { \{inclusion }\}} \mathrm{M/H}^{+} \xrightarrow{[\lambda]} \mathrm{H}^{\star}
$$

is onto, with resolution

Thus the (A, S)-module $F^{\prime}=\operatorname{ker}\left(F \longrightarrow H^{\wedge}\right)$ has $f . q$. projective A-module resolution

with

$$
e=\binom{f}{\alpha^{\prime} h}: K \longrightarrow J=\operatorname{ker}\left(\left(f^{\star} \alpha_{F}-h^{\star}\right): k_{F} \oplus K^{*} \ldots \longrightarrow k^{*}\right)
$$

Define a non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon-s y m m e t r i c ~ f o r m ~ o v e r ~\end{array}\right.$

$$
(R, \rho)=\left(K_{F} \oplus K^{\prime} * \oplus K^{\prime},\left(\begin{array}{ccc}
a_{F} & 0 & 0 \\
0 & 0 & 1 \\
0 & \varepsilon & a^{\prime}
\end{array}\right) \in Q^{E}\left(K_{F} \oplus K^{\prime *} \oplus K^{\prime}\right)\right)
$$

and let L be the sublagrangian of (R, ρ) defined by
so that

$$
\left(L^{\perp} / L, \lambda^{\perp} / \lambda\right)=\left\{K_{F},, \alpha_{F},\right\}
$$

is also a non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric }\end{array}\right.$ form over A.
The S-isomorphism of f.g. projective A-modules

$$
f^{\prime}=\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right): K^{\prime} \longrightarrow K_{F},=\frac{\operatorname{ker}\left(\left(f^{\star} \alpha_{F} \epsilon h^{\star} 0\right): K_{F} \oplus K^{\prime *} \oplus K^{\prime} \longrightarrow K^{\star}\right)}{i m\left(\left(\begin{array}{c}
\mathrm{F} \\
-\alpha^{\prime}{ }^{\prime} h \\
h
\end{array}\right): K \longrightarrow K_{F} \oplus K^{\left.\prime * \oplus K^{\prime}\right)}\right.}
$$

defines an S-isomorphism of S-non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric }\end{array}\right.$ forms over A

$$
\mathrm{E}^{\prime}:\left(K^{\prime}, \alpha^{\prime}\right) \longrightarrow\left(K_{F}, \alpha_{F},\right)
$$

such that

$$
\operatorname{coker}\left(f^{\prime}: K^{\prime} \longrightarrow K_{F^{\prime}}\right)=\operatorname{coker}(e: K \longrightarrow J)=F^{\prime}
$$

is the associated lagrangian of $j\left(K^{\prime}, \alpha^{\prime}\right)=\left\{\begin{array}{l}\left(M^{\prime}, \lambda^{\prime}\right) \\ \left(M^{\prime}, \lambda^{\prime}, \mu^{\prime}\right)\end{array}\right.$.
Thus the $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { even e-symmetric }\end{array}\right.$ S-form over A associated to

$$
\left\{\begin{array}{l}
\left(M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}\right) \\
\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime} ; F^{\prime}, G^{\prime}\right)
\end{array}\right. \text { is given by }
$$

$$
\left(K_{F}, \oplus K_{G},\left(\begin{array}{cc}
\alpha_{F}, & 0 \\
0 & -\alpha_{G}
\end{array}\right) \in Q^{\varepsilon}\left(K_{F^{\prime}, \oplus K_{G}}\right) ; \operatorname{im}\left(\binom{f^{\prime}}{g^{\prime}}: K^{\prime} \longrightarrow K_{F^{\prime}} \oplus K_{G}\right)\right)
$$

Define an $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric }\end{array}\right.$ S-form over A

$$
\begin{aligned}
(Q, \phi ; P)= & \left(K_{F} \oplus K^{\prime *} \not \oplus K^{\prime} \oplus K_{G^{\prime}}\left(\begin{array}{cccc}
\alpha_{F} & 0 & 0 & 0 \\
0 & 0 & \varepsilon & 0 \\
0 & 1 & -\alpha^{\prime} & 0 \\
0 & 0 & 0 & -\alpha_{G}
\end{array}\right):\right. \\
& \quad \operatorname{im(}\left(\begin{array}{cc}
f & 0 \\
-\alpha^{\prime} h & -\alpha^{\prime} \\
0 & 1 \\
g & g^{\prime}
\end{array}\right): K \oplus K^{\prime} \longrightarrow K_{\left.\left.F^{\prime} \oplus K^{\prime} * \oplus K^{\prime} \oplus K_{G}\right)\right)}
\end{aligned}
$$

By Proposition 1.6.2 the inclusion of the sublagrangian

$$
\left(\begin{array}{c}
f \\
-\alpha^{\prime} h \\
h \\
0
\end{array}\right):(K, 0) \longrightarrow(0, \phi)=\left(K_{F} \oplus K^{\prime} * \oplus K^{\prime} \oplus K_{G}, \phi\right)
$$

extends to an isomorphism of $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \text { even } \varepsilon-s y m m e t r i c\end{array}\right.$ forms over A

$$
\begin{gathered}
H^{\varepsilon}(K, \theta) \oplus\left(K^{\perp} / K, \phi \perp / \phi\right)=\left(K \oplus K^{\star},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right)\right) \oplus\left(K_{F^{\prime} \oplus K_{G}}\left(\begin{array}{cc}
\alpha_{F^{\prime}} & 0 \\
0 & -\alpha_{G}
\end{array}\right)\right. \\
\longrightarrow(Q, \phi)
\end{gathered}
$$

sending $K \oplus i m\left(\binom{f^{\prime}}{g^{\prime}}: K^{\prime} \longrightarrow K_{F}, \oplus K_{G}\right)$ to P, for some $\left\{\begin{array}{l}\theta \in Q^{\epsilon}\left(K^{*}\right) \\ \theta \in Q\left\langle v_{O}\right\rangle^{\epsilon}\left(K^{*}\right)\end{array}\right.$.
Thus there are defined isomorphisms of $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric }\end{array}\right.$
S-forms over A

$$
\left(H^{\varepsilon}(K, \theta) ; K\right) \oplus\left(K_{F}, \oplus K_{G},\left(\begin{array}{cc}
\alpha_{F} & 0 \\
0 & -\alpha_{G}
\end{array}\right) ; i m\left(\binom{f^{\prime}}{g}: K^{\prime} \longrightarrow K_{F^{\prime}}, \oplus K_{G} \prime\right)\right.
$$

$$
\begin{aligned}
& \left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & g^{\prime} & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & g^{\prime * \alpha_{G}}
\end{array}\right) \\
& \left.\quad:(Q, \oplus ; P) \longrightarrow\left(K_{F} \otimes K_{G},\left(\begin{array}{cc}
\alpha_{F} & 0 \\
0 & -a_{G}
\end{array}\right) ; i m\binom{f}{g}: K \rightarrow K_{F} \oplus K_{G}\right)\right) \oplus\left(H^{E}(H)\right.
\end{aligned}
$$

Thus the $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric }\end{array}\right.$ S-forms over A associated to stably equivalent $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ linking formations over (A, S)

$$
\left\{\begin{array}{l}
(M, \lambda ; F, G) \\
(M, \lambda, \mu ; F, G)
\end{array},\left\{\begin{array}{l}
\left(M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}\right) \\
\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime} ; F^{\prime}, G^{\prime}\right)
\end{array}\right. \text { are related by a stable }\right.
$$

isomorphism

$$
\begin{aligned}
& \left.\left\langle K_{F} \oplus K_{G},\left(\begin{array}{cc}
\alpha_{F} & 0 \\
0 & -\alpha_{G}
\end{array}\right) ; i m\binom{f}{g}: K \longrightarrow K_{F} \oplus K_{G}\right)\right) \\
& \left.\longrightarrow\left(K_{F^{\prime}} \oplus K_{G^{\prime}}\left(\begin{array}{cc}
\alpha_{F}, & 0 \\
0 & -\alpha_{G}
\end{array}\right): \operatorname{im}\binom{f^{\prime}}{g^{\prime}}: K^{\prime} \longrightarrow K_{F^{\prime}} \oplus K_{G}\right)\right) \text {. }
\end{aligned}
$$

Given a split ϵ-quadratic linking formation over (A, s) $(F,((Y), \theta) G)$ we shall obtain an ε-quadratic S-form over $A(K, R$ as follows. Let $u \in H_{A} m_{A}\left(L^{\prime}, L^{\star}\right)$ be an S-isomorphism of f.g. projective A-modules defining a resolution of F by

let ef $\operatorname{Hom}_{A}\left(L^{*} \oplus I^{\prime *}, F^{*} \oplus F^{\wedge}\right)$ be the projection appearing in the corresponding resolution of FPF^{\wedge}
define a f.g. projective A-module

$$
K=e^{-1}(G) \subseteq L^{*} \oplus L^{*} *
$$

and write the inclusion as
$(j k): L \oplus L^{\prime} \longrightarrow K$.
There is then a natural identification

$$
\left.\operatorname{coker}(j k): L \oplus L^{\prime} \longrightarrow \longrightarrow K\right)=G,
$$

and there exists an S-non-singular ε-quadratic form over A $\left(K, \beta \in Q_{\varepsilon}(K)\right)$ such that the inclusion $\binom{Y}{\mu}: G \longrightarrow F \oplus F^{\wedge}$ is resolved by

(As in Proposition 3.4.6 i) (K, B) is only determined by G up to S-isomorphism, i.e. only the coset
$[\beta] \in Q_{E}(K) / \operatorname{ker}\left(S^{-1}: Q_{E}(K) \longrightarrow Q_{E}\left(S^{-1} K\right)\right)$
is determined). Proposition 3.4.3 associates to the ($-\varepsilon$)-qu linking form over (A, S)

$$
\left(G, \gamma^{\wedge} \mu \in \operatorname{Hom}_{A}\left(G, G^{\wedge}\right), \theta: G \longrightarrow Q_{-\varepsilon}(A, S)\right)
$$

the ε-quadratic S-formation over A

$$
\left(K * \oplus K,\left(\begin{array}{ll}
0 & 1 \\
0 & B
\end{array}\right) \in Q_{E}(K \star \oplus K) ; K^{\star}, \operatorname{im}\left(\left(\begin{array}{cc}
-\left(\beta+E \beta^{*}\right) * j & 0 \\
j & k
\end{array}\right): L \oplus L \cdot \longrightarrow K \star \oplus K\right)\right)
$$ with

$$
\theta: G=\operatorname{coker}\left((j k): L \oplus L^{\prime} \longrightarrow K\right) \longrightarrow Q_{-\varepsilon}(A, S):
$$

$$
x \longmapsto\left(\frac{1}{5}\right) \cdot \varepsilon u^{*}(y)\left(y^{\prime}\right) \cdot\left(\frac{1}{5}\right)-\beta(x)(x)
$$

$\left(x \in K, s \in S, y \in L, y^{\prime} \in L^{\prime}, s x=j(y)+k\left(y^{\prime}\right) \in K\right)$,
for a unique ε-quadratic form over $A\left(K, B \in Q_{\varepsilon}(K)\right)$ in the prescribed S-isomorphism class. The ε-quadratic S-form over A associated to (F,G) is defined to be

$$
\left(K, B \in Q_{\varepsilon}(K) ; \mathrm{im}(\mathrm{j}: \mathrm{L} \longrightarrow \mathrm{~K})\right)
$$

The verification that stably equivalent split e-quadratic linking formations over (A, S) determine stably isomorphic ε-quadratic S-forms over A proceeds as in the (even) E-symmetric case.

Conversely, given an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even E-symmetric } S \text {-form over } A \\ \varepsilon \text {-quadratic }\end{array}\right.$
$\left\{\begin{array}{l}\left(K, \alpha \in Q^{\varepsilon}(K) ; L\right) \\ \left(K, \alpha \in Q\left\langle V_{O}\right\rangle^{\varepsilon}(K) ; L\right) \\ \left(K, \beta \in Q_{E}(K) ; L\right)\end{array}\right.$ we shall define an $\left\{\begin{array}{l}\text { even E-symmetric } \\ \text { E-quadratic } \\ \text { split E-quadratic }\end{array}\right.$
linking formation over $(A, S)\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G), \text { as follows. } \\ (F, G)\end{array}\right.$

$$
\text { Given an }\left\{\begin{array} { l }
{ \text { (even }) \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { S-form over } A \left\{\begin{array}{l}
(K, \alpha ; L) \\
(K, B ; L)
\end{array}\right.\right.
$$

let $j \in \operatorname{Hom}_{A}(L, k)$ be the inclusion, and apply Proposition 1.6.2
to extend the inclusion of the lagrangian

$$
\left\{\begin{array}{l}
j:\left(S^{-1} L, O\right) \longrightarrow S^{-1}(K, \alpha) \\
j:\left(S^{-1} L, O\right) \longrightarrow S^{-1}(K, \beta)
\end{array}\right.
$$

 over $S^{-1} A$

$$
\left\{\begin{array}{l}
\left(j j^{\prime}\right):\left(S^{-1} L_{\oplus} S^{-1} L^{*},\left(\begin{array}{cc}
0 & 1 \\
\varepsilon & j^{\prime *} \alpha j
\end{array}\right)\right) \longrightarrow S^{-1}(K, \alpha) \\
\left(j j^{\prime}\right):\left(S^{-1} L_{\oplus S^{-1} L^{*}},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \longrightarrow S^{-1}(K, \beta)
\end{array}\right.
$$

for some $j^{\prime} \in \operatorname{Hom}_{S}{ }^{-1}{ }_{A}\left(S^{-1} L^{*}, S^{-1} K\right)$ such that

$$
\left\{\begin{array}{l}
j^{\star \alpha} \alpha j=1 \in \operatorname{Hom}_{S^{-1}} A^{\left(S^{-1} L^{*}, S^{-1} L^{*}\right)} \\
j^{\star}\left(\beta+\varepsilon \beta^{\star}\right) j^{\prime}=1 \in \operatorname{Hom}_{S^{-1}}\left(S^{-1} L^{*}, S^{-1} L^{\star}\right)
\end{array}\right.
$$

By Proposition 3.l.l there exists an S-isomorphism $s \in \operatorname{Hom}_{A}\left(L^{*}, L^{\star}\right)$ such that

$$
j^{\prime} s=k \in \operatorname{Hom}_{A}\left(L^{\star}, K\right) \subseteq \operatorname{Hom}_{S} S_{A}\left(S^{-1} L^{\star}, S^{-1} K\right)
$$

(stabilizing $\left\{\begin{array}{l}(K, \alpha ; L) \\ (K, \beta ; L)\end{array}\right.$ if necessary). In the ε-quadratic case

$$
j^{\prime * \beta j^{\prime}}=0 \in Q_{\varepsilon}\left(S^{-1} L^{\star}\right)
$$

so that $k^{*} B k \in \operatorname{ker}\left(S^{-1}: Q_{E}\left(L^{*}\right) \longrightarrow Q_{C}\left(S^{-1} L^{*}\right)\right)$ and there exists an $S^{-1} A-m o d u l e$ orphism $X \in \operatorname{Hom}_{S} S_{A}\left(S^{-1} L^{*}, S^{-1} I\right)$ such that

$$
k * \beta k=x-\varepsilon X^{*} \in \operatorname{Hom}_{S}{ }^{-1}{ }_{A}\left(S^{-1} L^{*}, S^{-1} L\right)
$$

Applying Proposition 3.1.1 again let $t \in \operatorname{Hom}_{A}\left(I, *, L^{*}\right)$ be an S-isomorphism such that

$$
x \in \in \operatorname{Hom}_{\Lambda}\left(\mathrm{L}^{\star}, \mathrm{I}\right) \leq \operatorname{lom}_{S^{-1}}\left(S^{-1} L^{\star}, S^{-1} L\right)
$$

Replacing s, k, x by $s t, k t, t^{*} \chi t$ ensures that

$$
k * \beta k=O \in Q_{\varepsilon}\left(L^{*}\right) .
$$

Define an \mathcal{G}-isomorphism of f, g. projective A-modules

$$
\left\{\begin{array}{l}
u=j \star \alpha k: L, * \longrightarrow L^{*} \\
u=j *\left(\beta+\varepsilon \beta^{\star}\right) k: L^{*} \longrightarrow L^{\star}
\end{array}\right.
$$

The S-isomorphism of S-non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A

$$
\begin{cases}\left(\begin{array}{ll}
u^{*} & 0 \\
0 & 1
\end{array}\right):\left(L \oplus L *,\left(\begin{array}{cc}
0 & u \\
\varepsilon u^{*} & k^{*} \alpha k
\end{array}\right)\right) \longrightarrow\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & 1 \\
\varepsilon & k^{*} \alpha k
\end{array}\right)\right) \\
\left(\begin{array}{ll}
u^{*} & 0 \\
0 & 1
\end{array}\right):\left(L \oplus L *,\left(\begin{array}{cc}
0 & u \\
0 & 0
\end{array}\right)\right) \longrightarrow\left(L . \oplus L^{*},\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)\right)\end{cases}
$$

has non-singular range, corresponding by Proposition 3.4.6 i) to a lagrangian

$$
F=\operatorname{coker}\left(u^{\star}: L \longrightarrow L\right) \varsigma M
$$

 over (n, S)

$$
\left\{\begin{array}{l}
3\left(L \oplus L^{\star},\left(\begin{array}{cc}
0 & u \\
\varepsilon u^{\star} & k^{\star} \alpha k
\end{array}\right)\right)=(M, \lambda)(=(M, \lambda, \mu)) \\
3\left(I, \oplus L_{1}{ }^{\star},\left(\begin{array}{ll}
O & u \\
0 & 0
\end{array}\right)\right)=\vec{H}_{\varepsilon}(F)=(M, \lambda, v)
\end{array}\right.
$$

The inclusion of the lagrangian

is resolved by

with $k * \alpha k=k^{*}\left(B+\varepsilon \beta^{*}\right) k=0 \in \operatorname{Hom}_{A}\left(L^{*}, L\right)$ in the ε-quadratic case. The S-isomorphism of S-non-singular $\left\{\begin{array}{l}(\text { even }) ~ \varepsilon-s y m m e t r i c ~ \\ \varepsilon \text {-quadratic }\end{array}\right.$
forms over A

$$
\begin{cases}(j k):\left(L \oplus L, *,\left(\begin{array}{cc}
0 & u \\
\varepsilon u^{*} & k * \alpha k
\end{array}\right)\right) \longrightarrow(K, \alpha) \\
(j k):\left(L \oplus L, *,\left(\begin{array}{ll}
0 & u \\
0 & 0
\end{array}\right)\right) \longrightarrow(K, \beta)\end{cases}
$$

corresponds by Proposition 3.4.6 i) to a sublagrangian

$$
G=\operatorname{coker}\left((j k): L \oplus L^{\star} \longrightarrow K\right) \subseteq M
$$

of the $\left\{\begin{array}{l}\text { even e-symmetric (E-quadratic) } \\ \text { split E-quadratic }\end{array}\right.$ linking form over (A, S)

$$
\left\{\begin{array}{l}
(M, \lambda)((M, \lambda, \mu)), \\
(M, \lambda, v)=\widetilde{H}_{\varepsilon}(F)
\end{array}\right. \text {, such that the inclusion }
$$

has resolution

with $\alpha=\beta+E \beta^{*}, k * \beta_{k}=0$ in the ε-quadratic case.

The above procedure associates an $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even e-symmetric } \\ \text { e-quadratic }\end{array}\right.$
S-form over $A\left\{\begin{array}{l}(K, \alpha ; L) \\ (K, \alpha ; L) \\ (K, \beta ; L)\end{array}\right.$ the $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic linking } \\ \text { split e-quadratic }\end{array}\right.$
formation over (A, S)

$$
\left\{\begin{array}{l}
(M, \lambda ; F, G) \\
(M, \lambda, \mu ; F, G) \\
\left(F,\left(\left(_{\mu}^{Y}\right), \theta\right) G\right)
\end{array}\right.
$$

where the hessian $\left(G, \gamma^{\wedge} \mu \in \operatorname{Hom}_{A}\left(G, G^{\wedge}\right), \theta: G \longrightarrow Q_{-\varepsilon}(A, S)\right)$ is the $(-\epsilon)$-quadratic linking form over (A, S) associated by Proposition 3.4.3 to the E-quadratic S-formation over A

$$
\left(H^{\varepsilon}\left(K^{*}\right) ; K^{\star}, i m\left(\left(\begin{array}{cc}
-\bar{\varepsilon} \beta j & \beta^{\star} k \\
j & k
\end{array}\right): L \oplus L^{\prime} \longrightarrow K^{*} \oplus K\right)\right)
$$

(For an even ε-symmetric S-form (K, a; L) Proposition 1.6 .2 actually gives an extension of $\left.j \in \operatorname{Hom}_{S}{ }^{-1} A^{(S}{ }^{-1} L_{,}, S^{-1} K\right)$ to an isomorphism of non-singular even ε-symmetric forms over $s^{-1} A$

$$
\left(j j^{\prime}\right): H^{\varepsilon}\left(S^{-1} L\right)=\left(S^{-1} L \oplus S^{-1} L^{*},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & 0
\end{array}\right)\right) \longrightarrow S^{-1}(K, \alpha)
$$

leading to an S-isomorphism of S-non-singular even e-symmetric forms over A

$$
(j k):\left(L \otimes L^{\star},\left(\begin{array}{cc}
0 & u \\
€ u^{*} & 0
\end{array}\right)\right) \longrightarrow(K, \alpha)
$$

In this way it can be proved that every ε-quadratic linking formation over (A,S) (M,,$\mu ; F, G)$ is stably equivalent to one of the type $\left.\left(H_{\varepsilon}(F) ; F, G\right)\right)$.

It remains to show that the $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric (e-quadratic) } \\ \text { split e-quadratic }\end{array}\right.$ linking formations over $(A, S)\left\{\begin{array}{l}\left(M_{r}, \lambda_{r} ; F_{r}, G_{r}\right)\left(\left(M_{r}, \lambda_{r}, \mu_{r} ; F_{r}, G_{r}\right)\right) \\ \left(F_{r}, G_{r}\right)\end{array}\right.$ $(r=1,2)$ associated to an $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A

$$
\begin{aligned}
& \left\{\begin{array}{l}
(K, \alpha ; L) \\
\left(K, B ; L_{1}\right)
\end{array} \text { using two different choices }\left(k_{1}, u_{1}\right),\left(k_{2}, u_{2}\right)\right. \text { of the pair } \\
& \left(k \in \operatorname{Hom}_{A}\left(K, L^{\star}\right), u \in \operatorname{Hom}_{A}\left(L_{,}, L^{\star}\right)\right)
\end{aligned}
$$

(that is two different extensions of the inclusion je Hom (L, K) to an S-isomorphism of S-non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$
forms over A
are stably equivalent. The two choices are related by an A-module morphism h $\in \operatorname{Hom}_{A}\left(L^{*}, L\right)$ and S-isomorphisms $v_{1}, v_{2} \in \operatorname{Hom}_{A}\left(L_{4}, L^{*}\right)$ such that

$$
\begin{aligned}
& u_{1} v_{1}=u_{2} v_{2} \in \operatorname{Hom}_{\Lambda}\left(L^{\star}, L^{*}\right) \\
& k_{2} v_{2}-k_{1} v_{1}=j h \in \operatorname{Hom}_{A}\left(L^{\star}, K\right) \\
& \left\{\begin{array}{l}
v_{1}^{*} u_{1}^{*} h \in Q^{-\epsilon}\left(L^{*}\right) \\
v_{1}^{\star} u_{1} h \in Q\left\langle v_{O}\right\rangle^{-\epsilon}\left(L_{*}^{\star}\right)
\end{array}\right.
\end{aligned}
$$

We shall consider separately the effects of the transformations

$$
\left(k_{1}, u_{1}\right) \longmapsto\left(k_{1} v_{1}, u_{1} v_{1}\right) \longmapsto\left(k_{1} v_{1}+j h, u_{1} v_{1}\right)=\left(k_{2} v_{2}, u_{2} v_{2}\right) \longmapsto\left(k_{2}, u_{2}\right)
$$

If the choices $\left(k_{1}, u_{1}\right),\left(k_{2}, u_{2}\right)$ are related by an

$$
u_{1}=u_{2} v \in \operatorname{Hom}_{A}\left(L^{*}, L^{*}\right), k_{1}=k_{2} v \in \operatorname{Hom}_{A}\left(L^{\star}, k\right)
$$

then the sublagrangian H of $\left\{\begin{array}{l}\left(M_{1}, \lambda_{1} ; F_{1}, G_{1}\right)\left(\left(M_{1}, \lambda_{1}, \mu_{1} ; F_{1}, G_{1}\right)\right) \\ \left.\left(F_{1},\binom{\gamma_{1}}{\mu_{1}}, \theta_{1}\right) G_{1}\right)\end{array}\right.$
defined by the resolution

is such that

$$
\left\{\begin{array}{l}
\left(H^{\perp} / H, \lambda \frac{1}{1} / \lambda_{1} ; F_{1} \cap H^{\perp}, G_{1} / H\right)=\left(M_{2}, \lambda_{2} ; F_{2}, G_{2}\right) \\
\left(\left(H^{\perp} / H, \lambda \frac{1}{1} / \lambda, \mu_{1}^{1} / H ; F_{1} \cap H^{\perp}, G_{1} / H\right)=\left(M_{2}, \lambda_{2}, H_{2} ; F_{2}, G_{2}\right)\right. \\
\left(F_{1} \cap H^{\perp},\left(\binom{\left|\gamma_{1}\right|}{\left|H_{1}\right|},\left[\theta_{1} 1\right) G_{1} / H\right)=\left(F_{2},\binom{\gamma_{2}}{\mu_{2}}, \theta_{2}\right) G_{2}\right) .
\end{array}\right.
$$

Thus the linking formations associated to the choices ($\left.k_{1}, u_{1}\right)$, $\left(k_{2}, u_{2}\right)$ are related by an elementary equivalence.

$$
\begin{aligned}
& \text { If the choices }\left(k_{1}, u_{1}\right),\left(k_{2}, u_{2}\right) \text { are related by } \\
& u_{1}=u_{2} \in \operatorname{Hom}_{A}\left(L^{*}, H_{*}\right), k_{2}=k_{1}+j k \in \operatorname{Hom}_{A}(L *, K)
\end{aligned}
$$

for some $h \in \operatorname{Hom}_{A}\left(L^{*}, L\right)$ such that

$$
\left\{\begin{array}{l}
u_{1}^{*} h \in Q^{-\epsilon}\left(L^{\star}\right) \\
u_{1}^{\star} h \in Q\left\langle v_{0}\right\rangle^{-\epsilon}\left(L^{\star}\right)
\end{array}\right.
$$

there is defined an isomorphism of $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric (} \varepsilon \text {-quad } \\ \text { split e-quadratic }\end{array}\right.$
linking formations over (A, S)

$$
\left\{\begin{array}{l}
f:\left(M_{1}, \lambda_{1} ; F_{1}, G_{1}\right) \longrightarrow\left(M_{2}, \lambda_{2} ; F_{2}, G_{2}\right) \\
\\
\left(f:\left(M_{1}, \lambda_{1}, \mu_{1} ; F_{1}, G_{1}\right) \longrightarrow\left(M_{2}, \lambda_{2}, \mu_{2} ; F_{2}, G_{2}\right)\right) \\
(1, g, \phi, \psi):\left(F_{1}, G_{1}\right) \longrightarrow\left(F_{2}, G_{2}\right)
\end{array}\right.
$$

with

and $\left(\mathrm{F}_{1}^{\hat{n}}=\operatorname{coker}\left(\mathrm{u}_{1}: L^{\star} \longrightarrow \mathrm{L}^{*}\right), \phi \in \operatorname{Hom}_{A}\left(\mathrm{~F}_{1}^{n}, F_{1}\right), \psi: \mathrm{F}_{1} \longrightarrow Q_{-\varepsilon}(\Lambda, S\right.$
the $(-\varepsilon)$-quadratic linking form over (A, S) associated by
Proposition $3.4,3$ to the ε-quadratic S-formation over A

$$
\left(H_{\epsilon}(L) ; L, i m\left(\binom{-\bar{E}_{h}}{u_{1}}: L^{*} \longrightarrow L \oplus L *\right)\right)
$$

This completes the verification that the stable equive class of the linking formation $\left\{\begin{array}{l}(M, \lambda ; F, G)((M, \lambda, \mu ; F, G)) \\ (F, G)\end{array}\right.$
associated to the S-form $\left\{\begin{array}{l}(K, \alpha ; L) \\ (K, \beta ; L)\end{array}\right.$ is independent of the choice of (k, u).
ii) A connected S-acyclic 2-dimensional (even) (-E)-symmetric complex over $A\left(C, \phi \in Q^{2}(C,-\varepsilon)\right)$ is homotopy equivalent to one in normal form, by Proposition 3.5.1. Given such a complex in normal form we shall construct an (even) ε-symmetric linking formation over (A, S) ($M, \lambda ; F, G$), as follows.

Choose a cycle representative $\phi \in \operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{A}(C *, C)\right)_{2}$ in normal form, i.e. such that $\phi_{O} \in \operatorname{Hom}_{A}\left(C^{O}, C_{2}\right)$ is an isomorphism (which we shall use as an identification), and $\tilde{\phi}_{1}=0 \in \operatorname{Hom}_{A}\left(C^{2}, C_{1}\right)$. It is thus possible to write the diagram of f.g. projective A-modules and A-module morphisms

as

with $j \in \operatorname{Hom}_{A}(L, K), \quad \alpha \in \operatorname{Hom}_{A}(K, K *), \eta \in \operatorname{Hom}_{A}\left(L^{*}, L\right)$ such that

$$
\begin{aligned}
& j^{\star} \alpha j=0 € \operatorname{Hom}_{A}\left(L, L^{\star}\right) \\
& \alpha-\varepsilon \alpha^{\star}+\alpha j \eta j^{\star} \alpha^{\star}=0 € \operatorname{Hom}_{A}\left(K, K^{\star}\right) \\
& \eta+\varepsilon \eta^{\star}=0 € \operatorname{Hom}_{A}\left(L^{\star}, L\right)
\end{aligned}
$$

The sequence of f.g. projective A-modules and A-module morphisms

becomes exact over $S^{-1} A$, so that there exists an A-module morphism $k \in \operatorname{Hom}_{A}\left(L^{*}, K\right)$ such that the A-module morphism

$$
u=j * \alpha k: L^{*} \longrightarrow I_{1}^{*}
$$

is an S-isomorphism. Let (M, λ) be the non-singular (even) E-symmetric linking form over (Λ, S) associated by Proposition 3.4.3 to the non-singular (even) (- ε)-symmetric S-formation over A

$$
\begin{aligned}
& \left(L \oplus L * \oplus L * \oplus L,\left(\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-\varepsilon & 0 & \eta & 0 \\
0 & -\varepsilon & 0 & 0
\end{array}\right) ; i m\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0 \\
0 & 0
\end{array}\right): L \oplus L * \longrightarrow L \oplus L^{*} \oplus L^{*} \oplus L\right),\right. \\
& \left.\left.\operatorname{im}\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
0 & u \\
\epsilon u^{*} & k * \alpha_{k}
\end{array}\right): L \oplus L_{1}{ }^{*} \longrightarrow \mathrm{~L} \oplus \mathrm{~L}^{\star} \oplus \mathrm{L}^{\star} \oplus \mathrm{L}\right)\right) \text {. }
\end{aligned}
$$

Define a lagrangian F and a sublagrangian G of (M, λ) by the resolutions

Then (M, $\lambda ; F, G$) is the (even) e-symmetric linking formation over (A, S) associated to the complex (C, ϕ).

Replacing ϕ by a different cycle representative
 $\left(\alpha^{\prime} \in \operatorname{Hom}_{A}\left(K, K^{*}\right), \eta^{\prime} \in \operatorname{Hom}_{A}\left(L^{\star}, I\right)\right)$ such that for some $x \in \operatorname{Hom}_{A}\left(L^{\star}, L\right)$

$$
\begin{aligned}
& \alpha^{\prime}-\alpha=\alpha j x j^{\star} \alpha^{\star} \in \operatorname{Hom}_{A}\left(K, K^{\star}\right) \\
& \eta^{\prime}-\eta=-x+\varepsilon x^{\star} \in \operatorname{Hom}_{A}\left(L^{*}, L\right)
\end{aligned}
$$

The A-module isomorphism $f \in \operatorname{Hom}_{A}\left(M, M^{\prime}\right)$ given by the resolution

defines an isomorphism of the associated (even) e-symmetric linking formations over (A, S)

$$
f:(M, \lambda ; F, G) \longrightarrow\left(M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}\right) .
$$

The verification that the stable equivalence class of ($M, \lambda ; F, G$) is independent of the choice of $\left(k \in \operatorname{Hom}_{A}\left(L^{*}, K\right), u \in \operatorname{Hom}_{A}\left(L^{*}, L^{*}\right)\right)$ proceeds exactly as in the proof of i) above - indeed, if $\left(C, \phi \in Q^{2}(C,-\epsilon)\right)$ is even then $\phi \in Q\left\langle v_{O}\right\rangle^{2}(C,-E)$ has a cycle representative with

$$
\Phi_{2} \equiv \eta=0 \in \operatorname{Hom}_{A}\left(L^{\star}, L\right) \quad\left(L \equiv C_{2}\right)
$$

in which case ($K, \alpha \in Q^{\varepsilon}(K) ; i m(j: L \longrightarrow K)$) is an ε-symmetric S-form over A and ($M, \lambda ; F, G$) is the associated even ε-symmetric linking formation over (A, S). Moreover, if $(C, \phi)=C^{-\varepsilon}(D)$ for some f.g. projective A-module P we can take

$$
(k, u)=\left(\binom{1}{0}: P^{\star} \longrightarrow P^{*} \oplus P, 1: P^{\star} \longrightarrow P^{\star}\right)
$$

so that the associated even e-symmetric linking formation is $(M, \lambda ; F, G)=0$.

We have shown that the stable equivalence class of the (even) e-symmetric linking formation over (A,S) (M, $\overline{\text { i }} \mathrm{F}, \mathrm{G}$) associated to a connected S-acyclic 2-dimensional (even) $(-\varepsilon)$-symmetric complex over $A(C, \phi)$ in normal form depends only on the stable isomorphism class of (C, ϕ), which by Proposition 3.5.1 is just the homotopy equivalence class of (C

Conversely, given an (even) e-symmetric linking formation over (A,S) (M, $;$;,G) we shall construct a connected S-acyclic 2-dimensional (even) (-E)-symmetric complex over A (C, ϕ) in normal form, such that $(M, \lambda ; F, G)$ is in the stable equivalence class determined by (C, ϕ), as follows.

Let $\left(D, \eta \in Q^{1}(D,-\varepsilon)\right)$ be an S-acyclic l-dimensional (even)
$(-\varepsilon)$-symmetric Poincaré complex over A associated to the non-singular (even) e-symmetric linking form over (A, S) (M, λ) by Proposition 3.4.1, with D an S-acyclic l-dimensional
f.g. projective A-module chain complex

$$
\mathrm{D}: \ldots \rightarrow \mathrm{o} \longrightarrow \mathrm{D}_{1} \xrightarrow{\mathrm{~d}} \mathrm{D}_{\mathrm{O}} \longrightarrow 0 \longrightarrow \ldots \text {, }
$$

such that

$$
\left(H^{1}(D), n_{0}^{S}\right)=(M, \lambda)
$$

Let $e \in \operatorname{Hom}_{A}\left(D^{1}, M\right)$ be the projection appearing in the resolution

$$
O \longrightarrow D^{0} \longrightarrow d^{\star} \xrightarrow{d^{\star}} \xrightarrow{e} \longrightarrow
$$

and define f.g. projective A-modules

$$
D_{1}^{\prime}=\left(e^{-1}(F)\right) *, D_{1}^{\prime \prime}=\left(e^{-1}(G)\right) \omega
$$

Define A-module morphisms $f^{\prime} \in \operatorname{Hom}_{A}\left(D_{1}^{\prime}, D_{0}\right), f^{\prime \prime} \in \operatorname{Hom}_{A}\left(D_{1}^{\prime \prime}, D_{0}\right)$ to be such that their duals are the inclusions

$$
f^{\prime *}: D^{\prime 1}=e^{-1}(F) \longrightarrow D^{1}, f^{\prime \prime *}: D^{\prime 1}=e^{-1}(G) \longrightarrow D^{1},
$$

and let $d^{\prime} \in \operatorname{Hom}_{A}\left(D_{1}^{\prime}, D_{0}\right), d^{\prime} \in \operatorname{Hom}_{A}\left(D_{1}^{\prime \prime}, D_{0}\right)$ be the duals of the restrictions of $d * \in \operatorname{Hom}_{A}\left(D^{0}, D^{1}\right)$

$$
d^{\prime *}=d^{*}: D^{0} \longrightarrow D^{\prime}{ }^{1}, d^{\prime \prime *}=d^{*}: D^{0} \longrightarrow D^{\prime \prime}
$$

(which are well-defined since

$$
\operatorname{im}\left(d^{*}: D^{0} \longrightarrow D^{1}\right)=e^{-1}(O) \subseteq e^{-1}(F) \cap e^{-1}(G),
$$

Let $D^{\prime}, D^{\prime \prime}$ be the S-acyclic l-dimensional f.g. projective A-moduie chain complexes defined by

$$
\begin{aligned}
& d_{D^{\prime}}=d^{\prime}: D_{1}^{\prime} \longrightarrow D_{0}^{\prime}=D_{O}, D_{r}^{\prime}=0(r \neq 0,1) \\
& d_{D^{\prime \prime}}=d^{\prime \prime}: D_{1}^{\prime \prime} \longrightarrow D_{0}^{\prime \prime}=D_{0}, D_{r}^{\prime \prime}=0(r \neq 0,1)
\end{aligned}
$$

and let

$$
\mathrm{E}^{\prime}: \mathrm{D} \longrightarrow \mathrm{D}^{\prime}, \mathrm{E}^{\prime \prime}: \mathrm{D} \longrightarrow \mathrm{D}^{\prime \prime}
$$

be the A-module chain maps defined by

so that

$$
\begin{aligned}
& f^{\prime *}=\text { inclusion }: H^{1}\left(D^{\prime}\right)=F \longrightarrow H^{1}(D)=M \\
& f^{\prime *}=\text { inclusion }: H^{1}\left(D^{\prime}\right)=G \longrightarrow H^{1}(D)=M .
\end{aligned}
$$

These inclusions define morphisms of (even) c-symmetric linking forms over (A, S)

$$
(F, O) \longrightarrow(M, \lambda),(G, O) \longrightarrow(M, \lambda)
$$

which by Proposition 3.4.1 correspond to maps of S-acyclic l-dimensional (even) (-E)-symmetric complexes over A

$$
f^{\prime}:(D, n) \longrightarrow\left(D^{\prime}, O\right), f^{\prime \prime}:(D, \eta) \longrightarrow\left(D^{\prime \prime}, 0\right)
$$

Thus there are defined an s-acyclic 2-dimensional (even) (-E)-symmetric Poincaré pair over A

$$
\left(f^{\prime}: D \longrightarrow D^{\prime},\left(\delta \eta^{\prime}, \eta\right) \in Q^{2}\left(f^{\prime},-\varepsilon\right)\right)
$$

and a connected S-acyclic 2-dimensional (even) (-E)-symmetric pair over A

$$
\left(f^{\prime \prime}: D \longrightarrow D^{\prime \prime},\left(\delta \eta^{\prime \prime}, \eta\right) \in Q^{2}\left(f^{\prime \prime},-\epsilon\right)\right) .
$$

The union

$$
(C, \phi)=\left(D^{\prime} \cup_{D^{\prime}} D^{\prime \prime},-\delta \eta^{\prime} U_{n} \delta \eta^{\prime \prime} \in Q^{2}\left(D^{\prime} \cup_{D^{\prime}} D^{\prime \prime},-\epsilon\right)\right)
$$

(as defined in $\mathbf{5 1 . 7}$) is a connected S-acyclic 2-dimensional (even) ($-\varepsilon$)-symmetric complex over A. Next, we show how to recover the stable equivalence class of ($M, \lambda ; F, G$) from (C, ϕ).

The relative Z_{2}-hypercohomology classes $\left(\delta \eta^{\prime}, \eta\right) \in Q^{2}(f,-\varepsilon)$, $(\delta \pi ", \eta) \in Q^{2}\left(f^{\prime \prime},-\varepsilon\right)$ are represented by A-module morphism

$$
\begin{aligned}
& \eta_{0}: D^{0} \longrightarrow D_{1}: \tilde{n}_{0}: D^{1} \longrightarrow D_{0}, \eta_{1}: D^{1} \longrightarrow D_{1} \\
& \delta \eta_{0}^{\prime}: D^{\prime 1} \longrightarrow D_{1}^{\prime}, \delta n_{0}^{\prime \prime}: D^{1}-\cdots D_{1}^{\prime \prime}
\end{aligned}
$$

such that

$$
\begin{aligned}
& d \eta_{0}+\tilde{n}_{0} d^{*}=0: D^{0} \longrightarrow D_{O} \cdot d \eta_{1}-\tilde{\pi}_{O}-\varepsilon \eta_{0}^{\star}=0: D^{1} \longrightarrow D_{1} . \\
& \eta_{1}+\varepsilon \eta_{1}^{\star}=0: D^{1} \longrightarrow D_{1}, \eta_{1} d^{*}+\eta_{0}+\varepsilon \tilde{\Pi}_{0}^{\star}=0: D^{0} \longrightarrow D_{1} \text {, } \\
& f^{\prime} n_{O}=-\delta n_{0}^{\prime} d^{\prime *}: D^{0} \longrightarrow D_{i}^{\prime}, \tilde{n}_{O} F^{\prime *}=d^{\prime} \delta n_{0}^{\prime}: D^{\prime} \longrightarrow D_{O} \text {, } \\
& \mathrm{f}^{\prime} \boldsymbol{\eta}_{1} \mathrm{~F}^{\prime *}=\delta \eta_{\mathrm{o}}^{\prime}-\varepsilon \delta \eta_{\mathrm{O}}^{\prime *}: \mathrm{D}^{\prime \prime} \longrightarrow \mathrm{D}_{\mathrm{i}} \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime \prime} \eta_{1} f^{\prime *}=\delta \eta_{O}^{\prime \prime}-\varepsilon \delta \eta_{O}^{\prime \prime}: D^{\prime 1} \longrightarrow D_{1}^{\prime \prime} .
\end{aligned}
$$

Define a connected S-acyclic 2-dimensional (even) (- ε)-symmetric complex over $A\left(C^{\prime}, \phi^{\prime} \in q^{2}\left(C^{\prime},-\varepsilon\right)\right)$ by

$$
\begin{aligned}
& d_{C^{\prime}}=\left\{\begin{array}{l}
\binom{f^{\prime}}{f^{\prime \prime}}: C_{2}^{\prime}=D_{1} \longrightarrow C_{1}^{\prime}=D_{1}^{\prime \oplus D_{1}^{\prime \prime}} \\
\left(d^{\prime}-d^{\prime \prime}\right): C_{1}^{\prime}=D_{i}^{\prime \oplus D_{1}^{\prime \prime} \longrightarrow C_{0}^{\prime}=D_{0}^{\prime}} \quad, C_{r}^{\prime}=0(r \neq 0,1,2)
\end{array}\right. \\
& \phi_{0}^{\prime}=\left\{\begin{array}{l}
\eta_{0}: C^{\prime}{ }^{0}=D^{0} \longrightarrow C_{2}^{\prime}=D_{1} \\
\left(\begin{array}{cc}
-\delta n_{0}^{\prime} & 0 \\
0 & \delta n_{0}^{\prime \prime}
\end{array}\right): C^{\prime \prime}=D^{\prime} 1_{\oplus D^{\prime \prime}} \longrightarrow C_{1}^{\prime}=D_{1}^{\prime} \oplus D_{1}^{\prime \prime} \\
\tilde{n}_{0}: C^{\prime 2}=D^{1} \longrightarrow C_{0}^{\prime}=D_{0}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{2}^{\prime}={ }_{n_{1}}: C^{2}=D^{1} \longrightarrow C_{2}^{1}=D_{1} .
\end{aligned}
$$

There is defined a homotopy equivalence

$$
h:(C, \phi) \longrightarrow\left(C^{\prime}, \phi^{\prime}\right) \text {, }
$$

with $h: C \longrightarrow C^{\prime}$ the A-module chain equivalence given by

Now apply the method of the proof of Proposition 3.5.1 to obtain from ($C^{\prime}, \phi^{\prime}$) a homotopy equivalent s-acyclic 2-dimensional (even) $(-\varepsilon)$-symmetric complex over $A\left(C ", \phi " \in Q^{2}(C ",-\varepsilon)\right)$ with

$$
\begin{aligned}
& d_{C \prime}^{\prime \prime}=\left\{\begin{array}{l}
\left(\begin{array}{l}
f \\
f^{\prime \prime} \\
0
\end{array}\right) \\
: C_{2}^{\prime \prime}=D_{1} \longrightarrow C_{1}^{\prime \prime}=\operatorname{ker}\left(d^{\prime}-\right. \\
\left(\begin{array}{lllll}
0 & 0 & 1
\end{array}\right): C_{1}^{\prime \prime} \longrightarrow C_{o}^{\prime \prime}=D^{1}
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& -\epsilon: C^{\prime 2}=D^{1} \longrightarrow C_{o}^{\prime \prime}=D^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \Phi_{1}^{\prime \prime}=\left\{\begin{array}{l}
\left(\eta_{1} f^{\prime *} \eta_{1} f^{\prime \prime *} 0\right): C^{\prime \prime} \longrightarrow C_{2}^{\prime \prime}=D^{1} \\
0: C^{\prime \prime} \longrightarrow C_{1}^{\prime \prime}
\end{array}\right. \\
& \phi_{2}^{\prime \prime}={ }_{\eta_{1}}: C^{\prime \prime 2}=D^{1} \longrightarrow C_{2}^{\prime \prime}=D_{1} .
\end{aligned}
$$

As before, write

$$
\begin{aligned}
& d_{\mathrm{C}}^{\star}=\mathrm{j}: \mathrm{C}^{\prime \prime}=\mathrm{L} \longrightarrow \mathrm{C}^{\prime 1}=\mathrm{K} \\
& \Phi_{\mathrm{O}}^{\prime \prime}=\alpha: \mathrm{C}^{\prime \prime}=\mathrm{K} \longrightarrow C_{1}^{\prime \prime}=K^{*},
\end{aligned}
$$

and let $s \in \operatorname{Hom}_{A}\left(D_{1}, D_{1}\right)$ be an S-isomorphism such that

$$
s f^{-1}=i \in \operatorname{Hom}_{A}\left(D_{1}^{\prime}, D_{1}\right) \subseteq \operatorname{Hom}_{S^{-1}} A^{\left(S^{-1} D_{1}, S^{-1} D_{1}\right), ~ . ~ . ~}
$$

so that the A-module morphism

$$
k=\left(\begin{array}{l}
i^{*} \\
0 \\
0
\end{array}\right): L^{*}=D^{1} \longrightarrow K=\operatorname{coker}\left(\left(\begin{array}{c}
d^{* *} \\
-d^{\prime *} \\
-n_{0}
\end{array}\right): D^{0} \longrightarrow D^{\prime}{ }^{1} \oplus D^{\prime \prime} \oplus D_{1}\right)
$$

is such that there is defined an S-isomorphism

$$
u \equiv j \star \alpha k=\varepsilon S^{*}: L^{*} \longrightarrow L^{\star}
$$

The (even) ε-symmetric linking formation over (A, S) ($M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}$) associated to the complex (C, ϕ) (via ($\left.C^{\prime \prime}, \phi^{\prime \prime}\right)$) is thus described by the resolutions

Let H^{\prime} be the sublagrangian of ($\left.M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}\right)$ with resolution

There is defined an isomorphism of (even) e-symmetric linking formations over (Λ, S)

$$
(M, \lambda ; F, G) \longrightarrow\left(H^{\prime} \perp / H^{\prime}, \lambda^{\prime} \perp / \lambda^{\prime} ; F^{\prime} \cap H^{\prime 1}, G^{\prime} / H^{\prime}\right)
$$

so that ($M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}$) is stably equivalent to ($M, \lambda ; F, C$).
Next, we consider the effect on the complex

$$
(C, \phi)=\left(D^{\prime} \cup_{D} D^{\prime \prime},-\delta \eta^{\prime} u_{\eta} \delta \eta^{\prime \prime}\right)
$$

of the elementary equivalence

$$
(M, \lambda ; F, G) \longmapsto(\bar{M}, \bar{\lambda} ; \vec{F}, \bar{G})=\left(H^{\perp} / H, \lambda+/ \lambda ; F \cap H^{+}, G / H\right)
$$

determined by a sublagrangian H of ($M, \lambda ; F, G$). Let the inclusion $j \in \operatorname{Hom}_{A}(H, G)$ have resolution

with $g^{\star} \in \operatorname{Hom}_{A}\left(D^{\prime \prime 1}, D^{\prime 1}\right)$ the inclusion of $D^{\prime \prime}=e^{-1}(H) \subseteq D^{1}$ in $D^{\prime \prime}=e^{-1}(G) \subseteq D^{l}$, where ee Hom $A\left(D^{1}, M\right)$ is the projection (as above). The A-module chain map

$$
f^{\prime \prime \prime}: D \longrightarrow D^{\prime \prime}
$$

defined by

is such that there exists a connected S-acyclic 2-dimensional (even) (-e)-symmetric pair over A

$$
\left(f{ }^{\prime \prime}: D \longrightarrow D^{\prime \prime \prime},\left(\delta \eta^{\prime \prime}, \eta\right) \in Q^{2}\left(f^{\prime \prime},-\varepsilon\right)\right)
$$

The S-acyclic l-dimensional (even) (-є)-symmetric Poincare complex over $A\left(\vec{D}, \vec{n} \in Q^{l}(\bar{D},-\epsilon)\right)$ obtained from (D, η) by S-acyclic surgery on $\left(f^{\prime \prime}: D \longrightarrow D^{\prime \prime},\left(\delta n^{\prime \prime \prime}, n\right)\right)$ has associated non-singular (even) ε-symmetric linking form over (A, S)

$$
\left(H^{I}(\bar{D}), \bar{\eta}_{O}^{S}\right)=(\bar{M}, \bar{\lambda})
$$

Define S-acyclic 2-dimensional A-module chain complexes $\overline{\mathrm{D}}{ }^{\prime}, \overline{\mathrm{D}}$ " by

$$
\begin{aligned}
& \tilde{D}^{\prime}=C\left(f^{\prime} \eta_{0} f^{\prime \prime *}: D^{\prime \prime}{ }^{l-\star} \longrightarrow D^{\prime}\right), \\
& \bar{D}^{\prime \prime}=\Omega C\left(\mathrm{~g}: \mathrm{D}^{\prime \prime} \longrightarrow \mathrm{D}^{\prime \prime}\right),
\end{aligned}
$$

and let

$$
\bar{f}^{\prime}: \overline{\mathrm{D}} \longrightarrow \overline{\mathrm{D}}^{\prime}, \overline{\mathrm{F}}^{\prime \prime}: \overline{\mathrm{D}} \longrightarrow \overline{\mathrm{D}}^{\prime \prime}
$$

be the A-module chain maps defined by

$$
\begin{aligned}
& \bar{f}^{\prime}=\left(\begin{array}{lll}
f^{\prime} & 0 & 0 \\
0 & 0 & 1
\end{array}\right): \bar{D}_{r}=D_{r} \oplus D_{r+1}^{\prime \prime \prime} \oplus D^{\prime \prime \prime} 2-r \longrightarrow \bar{D}_{r}^{\prime}=D_{r}^{\prime} \oplus D^{\prime \prime}, 2-r \\
& \bar{f}^{\prime \prime}=\left(\begin{array}{lll}
\mathrm{E}^{\prime \prime} & 0 & 0 \\
0 & 1 & 0
\end{array}\right): \overline{\mathrm{D}}_{\mathrm{r}}=\mathrm{D}_{\mathrm{r}} \oplus \mathrm{D}_{\mathrm{r}+1} \oplus \mathrm{D}^{\prime \prime \prime}{ }^{2-\mathrm{r}} \longrightarrow \overline{\mathrm{D}}_{\mathrm{r}}^{\prime \prime}=\mathrm{D}_{\mathrm{r}}^{\prime \prime \oplus D_{\mathrm{r}}^{\prime \prime \prime}+1}
\end{aligned}
$$

so that

$$
\begin{aligned}
& \overline{\mathrm{f}}^{\prime} *=\text { inclusion }: \mathrm{H}^{1}\left(\overline{\mathrm{D}}^{\prime}\right)=\overline{\mathrm{F}} \longrightarrow \mathrm{H}^{1}(\overline{\mathrm{D}})=\overline{\mathrm{M}} \\
& \overline{\mathrm{f}}^{\prime *}=\text { inclusion }: \mathrm{H}^{1}\left(\overline{\mathrm{D}}^{\prime \prime}\right)=\overline{\mathrm{G}} \longrightarrow \mathrm{H}^{1}(\overline{\mathrm{D}})=\overline{\mathrm{M}}
\end{aligned}
$$

There exist connected S-acyclic 2-dimensional (even) (- ε)-symm pairs over A

$$
\begin{aligned}
& \left(\overline{\mathrm{f}}^{\prime}: \overline{\mathrm{D}} \longrightarrow \overline{\mathrm{D}}^{\prime},\left(\overline{\delta n^{\prime}}, \overline{\mathrm{n}}\right) \in \mathrm{Q}^{2}\left(\overline{\mathrm{f}}^{\prime},-\varepsilon\right)\right), \\
& \left(\overline{\mathrm{f}}^{\prime}: \overline{\mathrm{D}} \longrightarrow \overline{\mathrm{D}}^{\prime \prime},\left(\overline{\delta n}^{\prime \prime}, \overline{\mathrm{n}}\right) \in \mathrm{Q}^{2}\left(\overline{\mathrm{f}}^{\prime \prime},-\varepsilon\right)\right)
\end{aligned}
$$

such that the union

$$
(\overline{\mathrm{C}}, \bar{\phi})=\left(\overline{\mathrm{D}}^{\prime} \cup \overline{\mathrm{D}}^{\prime \prime},-\overline{\delta n} \cdot \cup \bar{\eta}^{\delta \eta} \overline{\mathrm{D}}^{\prime} \in \mathrm{Q}^{2}\left(\overline{\mathrm{D}}^{\prime} \cup \overline{\mathrm{D}}^{\prime \prime},-\varepsilon\right)\right)
$$

is a connected s-acyclic 2-dimensional (even) (-E)-symmetric complex over A associated to $(\bar{M}, \bar{\lambda} ; \bar{F}, \bar{G})$. It may be verified that $(\bar{C}, \bar{\phi})$ is homotopy equivalent to (C, ϕ), the complex associated to ($M, \lambda ; F, G$).

This completes the proof of ii). It remains to complete the proof of i). Given an $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ linking formation over $(A, S)\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G)\end{array}\right.$ let $(K, \alpha),\left(K^{\prime}, \alpha^{\prime}\right)$ be s-non-singular $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even } \varepsilon \text {-symmetric }\end{array}\right.$ forms over A such that

$$
(M, \lambda)=\partial(K, \alpha)=3\left(K^{\prime}, \alpha^{\prime}\right)
$$

(up to isomorphism), so that

$$
\begin{aligned}
& F=\operatorname{coker}\left(f: K \longrightarrow K_{F}\right)=\operatorname{coker}\left(f^{\prime}: K^{\prime} \longrightarrow K_{F^{\prime}}^{\prime}\right) \\
& G=\operatorname{coker}\left(g: K \longrightarrow K_{G}\right)=\operatorname{coker}\left(g^{\prime}: K^{\prime} \longrightarrow K_{G}^{\prime}\right)
\end{aligned}
$$

for some S-isomorphisms of S-non-sinqular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric }\end{array}\right.$
forms over A

$$
\begin{aligned}
& f:(K, \alpha) \longrightarrow\left(K_{F^{\prime}}, \alpha_{F}\right), f^{\prime}:\left(K^{\prime}, \alpha^{\prime}\right) \longrightarrow\left(K_{G}, \alpha_{G}\right), g^{\prime}:\left(K^{\prime}, \alpha^{\prime}\right) \longrightarrow\left(K_{G}^{\prime}, \alpha_{F}^{\prime}\right) \\
& \left.g:(K, \alpha) \longrightarrow \alpha_{G}^{\prime}\right)
\end{aligned}
$$

with (K_{F}, α_{F}), ($K_{F}, \alpha_{F}^{\prime}$) non-singular. We have to show that the
associated $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric }\end{array} \quad S\right.$-forms over A

$$
\begin{aligned}
& \left(K_{F} \oplus K_{G} \prime\left(\begin{array}{cc}
\alpha_{F} & 0 \\
0 & -\alpha_{G}
\end{array}\right) \in Q^{\varepsilon}\left(K_{F} \oplus K_{G}\right) ; i m\left(\binom{f}{g}: K \longrightarrow K_{F} \oplus K_{G}\right)\right) \\
& \left(K_{F}^{\prime} \oplus K_{G}^{\prime},\left(\begin{array}{cc}
\alpha_{F}^{\prime} & 0 \\
0 & -\alpha_{G}^{\prime}
\end{array}\right) \in Q^{\varepsilon}\left(K_{F}^{\prime} \oplus K_{G}^{\prime}\right) ; i m\left(\left(\begin{array}{l}
f \\
g \\
g^{\prime}
\end{array}\right): K^{\prime} \longrightarrow K_{F}^{\prime} \oplus K_{G}^{\prime}\right)\right)
\end{aligned}
$$

are stably isomorphic. The S-acyclic connected 2-dimensional

$$
\left\{\begin{array}{l}
(-\varepsilon) \text {-symmetric } \\
\text { even }(-\varepsilon) \text {-symmetric }
\end{array} \text { complexes over } A\right. \text { in normal form obtained }
$$

from the S-forms (as in i)) are homotopy equivalent, since they correspond to the same linking formation, and are therefore stably isomorphic (by Proposition 3.5.1). It follows that the S-forms are stably isomorphic.
iii) A connected S-acyclic 2-dimensional (-E)-quadratic complex over $A\left(C, \psi \in Q_{2}(C,-\varepsilon)\right)$ is homotopy equivalent to one in normal form (by Proposition 3.5.1). Given such a complex in normal form we shall construct a split equadratic linking formation over (A,S)

$$
(F, G)=(F,((Y), \theta) G)
$$

as follows. Choose a cycle representative $\psi \in\left(W \mathbb{Z}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]{ }^{\left.\text {Hom }_{A}(C *, C)\right)_{2}}\right.$ in normal form, i.e. such that $\psi_{O} \in \operatorname{Hom}_{A}\left(C^{\circ}, C_{2}\right)$ is an isomorphism (which we shall use as an identification), $\tilde{\Psi}_{O}=0 \in \operatorname{Hom}_{A}\left(C^{2}, c_{0}\right)$, $\psi_{1}=0 \in \operatorname{Hom}_{A}\left(C^{1}, C_{O}\right)$. It is thus possible to write the diagram of f.q. projective A-modules and A-module morphisms

as

with $j \in \operatorname{Hom}_{A}(L, K), B \in \operatorname{Hom}_{A}\left(K, K^{\star}\right), x \in \operatorname{Hom}_{A}\left(L, L^{\star}\right)$ such that

$$
j \star B j=x-\epsilon x^{\star} \in \operatorname{Hom}_{A}\left(L, L^{\star}\right)
$$

Let (F, G) be the split ε-quadratic linking formation over (A, S) associated by i) to the e-quadratic S-form over A

$$
\left(K, B \in Q_{E}(K) ; \operatorname{im}(j: L \longrightarrow K)\right)
$$

Replacing ψ by a different cycle representative $\psi^{\prime} \in\left(\mathcal{W}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]^{\left.\operatorname{Hom}_{A}\left(C^{*}, C\right)\right)_{2}}\right.$ replaces B, x by B^{\prime}, X^{\prime} such that

$$
\begin{aligned}
& \beta^{\prime}-\beta=\omega-\varepsilon w^{*} \in \operatorname{Hom}_{A}\left(K, K^{*}\right) \\
& x^{\prime}-x=j * \omega j+\eta+\varepsilon \eta^{*} \in \operatorname{Hom}_{A}\left(L, L^{*}\right)
\end{aligned}
$$

Cor some $\omega \in \operatorname{Hom}_{A}\left(K, K^{*}\right), \eta \in \operatorname{Hom}_{A}\left(L, L^{*}\right)$. Neither the E-quadratic S-form ($K, \beta ; L$) nor the split ε-quadratic linking formation (F, G) are affected by such a change.

In particular, if P is a f.g. projective A-module the e-quadratic S-form over $A(K, \beta ; L)$ associated to the contractib S-acyclic 2-dimensional (- ε)-quadratic complex over $A C_{-\varepsilon}(P)$ is given by

$$
(K, \beta ; L)=\left(P \oplus P *,\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) ; P\right)
$$

corresponding by i) to a split e-quadratic linking formation (F,G) stably equivalent to 0 (take $k=\binom{1}{0}: L=P \longrightarrow K=P \oplus P^{\star}$).

Thus the stable equivalence class of the linking formatic (F, G) associated to (C, ψ) depends only on t'e stable isomorphi class of (C, ψ), which by Proposition 3.5.1 is the same as the homotopy equivalence class of (C, ψ).

Conversely, given a split e-quadratic linking formation over (A, S) (F, G) we shall construct a connected S-acyclic 2-dimensional (- -)-quadratic complex over $A(C, \psi)$ in normal form, such that (E, G) is in the stable equivalence class determined by (C, ψ), as follows.

Let ($K, B ; L$) be an ε-quadratic S-form over A associated by i) to (F, G), and let $j \in \operatorname{Hom}_{A}(L, K)$ be the inclusion. For any lift $\widetilde{\beta} \in \operatorname{Hom}_{A}\left(K, K^{*}\right)$ of $B \in Q_{\varepsilon}(K)$ there exists $x \in \operatorname{Hom}_{A}\left(L, L^{*}\right)$ such that

$$
j \star \tilde{\beta} j=x-\varepsilon X^{\star} \in \operatorname{Hom}_{A}\left(L, L^{*}\right)
$$

Given such a choice $(\tilde{B}, \chi) \in \operatorname{Hom}_{A}\left(K, K^{*}\right) \oplus \operatorname{Hom}_{A}\left(L, L^{*}\right)$ define $\left(C, \psi \in Q_{2}(C,-\varepsilon)\right)$ by

$$
\begin{aligned}
& d=\left\{\begin{array}{l}
\left(\tilde{B}+\varepsilon \tilde{B}^{\star}\right) j: C_{2}=L \longrightarrow C_{1}=K^{*} \\
j \star: C_{1}=K^{\star} \longrightarrow C_{O}=L^{\star}
\end{array}, 0(r \neq 0,1,2)\right. \\
& \psi_{O}=1: C^{O}=L \longrightarrow C_{2}=L, \tilde{\psi}_{O}=\tilde{B}: C^{1}=K \longrightarrow C_{1}=K^{*},
\end{aligned}
$$

$$
\begin{aligned}
& \tilde{\psi}_{O}=0: C^{2}=L^{\star} \longrightarrow C_{O}=L^{*}, \Psi_{1}=\epsilon \tilde{\beta}^{\star} j: C^{0}=L \longrightarrow C_{1}= \\
& \tilde{\psi}_{1}=0: C^{1}=K \longrightarrow C_{O}=L^{\star}, \psi_{2}=x: C^{O}=L \longrightarrow C_{O}=L^{\star}
\end{aligned}
$$

The method of proof of i) shows that the homotopy equivalence class of (C, ψ) depends only on the stable equivalence class c (F, G) together with a choice of hessian $(\tilde{\beta}, X) \in Q_{\epsilon}(K, L)$ for tr S-lagrangian L of $\left(K, B \in Q_{E}(K)\right)$, where

$$
Q_{\varepsilon}(K, L)=\frac{\left\{(\tilde{B}, x) \in \operatorname{Hom}_{A}\left(K, K^{*}\right) \oplus \operatorname{Hom}_{A}\left(L, L^{*}\right) \mid j * \tilde{B} j=x-\varepsilon x^{*}\right\}}{\left\{\left(\omega-\varepsilon \omega^{*}, j * \omega j+\eta+\varepsilon \eta^{*}\right) \mid(\omega, \eta) \in \operatorname{Hom}_{A}(K, K *) \oplus \operatorname{Hom}_{A}(L, L *)\right\}}
$$

(Define a split ε-quadratic S-form over $A(K, \tilde{B} ; L, X)$ to be an S-non-singular split ε-quadratic form over $A\left(K, \tilde{B} \in \tilde{Q}_{E}(K)\right)$ together with an $S-l a g r a n g i a n ~ L a n d ~ c h o i c e ~ o f ~ h e s s i a n ~ x \in Q$. The homotopy equivalence classes of connected S-acyclic 2-dimensional (-E)-quadratic complexes over A are in a natura one-one correspondence with the stable isomorphism classes of split ε-quadratic S-forms over A).

It remains to show that if $(C, \psi),(C, \bar{\psi})$ are the complext associated to two different choices $x, \vec{\chi} \in \operatorname{Hom}_{A}\left(L, L^{*}\right)$ such thi

$$
j * \tilde{B} j=x-\varepsilon x^{*}=\bar{x}-\varepsilon \bar{X}^{*} \varepsilon \operatorname{Hom}_{A}(L, L *)
$$

then $(C, \bar{\psi})$ is homotopy equivalent to a complex obtained from (C, ψ) by an S-acyclic (-E)-quadratic surgery. As before, let $k \in \operatorname{Hom}_{A}\left(L^{\star}, K\right)$ be such that
i) $u=j^{*}\left(\beta+\varepsilon \beta^{\star}\right) k \in \operatorname{Hom}_{A}\left(L^{*}, L^{*}\right)$ is an S-isomorphism
ii) $k * B k=0 \in Q_{\varepsilon}\left(L^{*}\right)$.

Also, let $X^{*} \in \operatorname{Hom}_{A}\left(L^{*}, L\right)$ be such that

$$
k * \widetilde{B} k=x^{\prime}-\varepsilon X^{\prime *} \in \operatorname{Hom}_{A}\left(L^{*}, L\right)
$$

and let $\left(C^{\prime}, \psi^{\prime} \in Q_{2}\left(C^{\prime},-E\right)\right)$ be the connected S-acyclic 2-dimensional (- -)-quadratic complex over A in normal form
associated to the ε-quadratic S-form over A

$$
\left(K, B \in Q_{E}(K) ; \operatorname{im}\left(k: L^{\star} \longrightarrow K\right)\right)
$$

with choice of hessian $\left(\widetilde{B}, X^{\prime}\right) \in Q_{E}\left(K, L^{*}\right)$, corresponding by i) to the split ε-quadratic linking formation over (A, S)

$$
\left.\left(F^{\wedge},\binom{\mu}{-\varepsilon \gamma}, \theta\right) G\right)
$$

Let $\left(C ", \psi " \in Q_{2}(C ",-\varepsilon)\right)$ be the connected s-acyclic 2-dimensional $(-\varepsilon)$-quadratic complex over A obtained from (C, ψ) by surgery on the connected s-acyclic 3-dimensional (-E)-quadratic pair over $A\left(f: C \longrightarrow D,(\delta \psi, \psi) \in Q_{3}(f,-\epsilon)\right)$ defined by

$$
\begin{aligned}
& d_{D}=\varepsilon u^{*}: D_{2}=L \longrightarrow D_{1}=L, D_{r}=0(r \neq 1,2), \\
& f=\left\{\begin{array}{l}
1: C_{2}=L \longrightarrow D_{2}=L \\
k^{*}: C_{1}=K^{*} \longrightarrow D_{1}=L
\end{array}\right. \\
& \delta \psi_{1}=-x^{\prime}: D^{1}=L^{*} \longrightarrow D_{1}=L, \\
& \delta \psi_{O}=0: D^{r} \longrightarrow D_{3-r}(r=1,2) .
\end{aligned}
$$

The A-module chain equivalence

$$
\mathrm{h}: \mathrm{C}^{\prime \prime} \longrightarrow \mathrm{C}^{\prime}
$$

given by

defines a homotopy equivalence

$$
h:\left(C^{\prime \prime}, \psi^{\prime \prime}\right) \longrightarrow\left(C^{\prime}, \psi^{\prime}\right) .
$$

Now (C, ψ) is homotopy equivalent to a complex obtained from ($C^{\prime \prime}, \psi^{\prime \prime}$) by S-acyciic surgery (since ($C^{\prime \prime}, \psi^{\prime \prime}$) is obtained from (C, ψ) by S -acyclic surgery), so that (C, ψ) is also homotopy equivalent to a complex obtained from ($\left.C^{\prime}, \psi^{\prime}\right)$ by s-acyclic surgery. The complex ($C^{\prime}, \psi^{\prime}$) is independent of the choices $x, \bar{x} \in \operatorname{Hom}_{A}\left(L, L^{*}\right)$, and the effect of successive S-acyclic surgeries may be composed (cf. Proposition I.4.7), so that $(C, \bar{\psi})$ is homotopy equivalent to a complex obtained from (C, ψ) by s -acyclic surgery.

$$
\begin{align*}
& \text { An S-non-singular }\left\{\begin{array}{l}
\text { (even) } \varepsilon \text {-symmetric } \\
\underline{\text { E-guadratic }}
\end{array}\right. \text { formation over A } \tag{11}\\
& \left\{\begin{array} { l }
{ (K , \alpha ; I , J) } \\
{ (K , \beta ; I , J) }
\end{array} \text { ia non-singular } \left\{\begin{array}{l}
(\text { even }) \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { form over } A\right.\right. \\
& \left\{\begin{array}{l}
(K, \alpha) \\
(K, \beta)
\end{array}\right. \text { together with a lagrangian I and an s-lagrangian J. }
\end{align*}
$$

(An S-non-singular formation over A is an $S^{-1} A$ non-singular formation over A in the sense of $\$ 2.4)$. The induced
$\left\{\begin{array}{l}\text { (even) E-symmetric } \\ E \text {-quadratic }\end{array}\right.$ formation over $S^{-1} A\left\{\begin{array}{l}S^{-1}(K, \alpha ; I, J) \\ S^{-1}(K, B ; I, J)\end{array}\right.$ is
non-singular, and it is stably isomorphic to o precisely
when $\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, \beta ; I, J)\end{array}\right.$ is an S-formation (i.e. $\left.S^{-1} K=S^{-1} I \oplus S^{-1} J\right)$.
The S-non-singular formation $\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, \beta ; I, J)\end{array}\right.$ is non-singular if
J is a lagrangian of $\left\{\begin{array}{l}(K, \alpha) \\ (K, \beta)\end{array}\right.$.

The boundary of an S-non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
formation over $A\left\{\begin{array}{l}\left(K, \alpha \in Q^{\in}(K) ; I, J\right) \\ \left(K, \alpha \in Q\left\langle v_{O}\right\rangle \in(K) ; I, J\right) \text { is the non-singular } \\ \left(K, \beta \in Q_{E}(K) ; I, J\right)\end{array}\right.$
$\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { e-quadratic linking formation over } A \\ \text { split e-quadratic }\end{array}\right.$

$$
\left\{\begin{array}{l}
\partial(K, \alpha ; I, J)=(M, \lambda ; F, G) \\
\partial(K, \alpha ; I, J)=(M, \lambda, \mu ; F, G) \\
\partial(K, B ; I, J)=(F, G)
\end{array}\right.
$$

associated (uniquely up to stable equivalence) to the
non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even e-symmetric } S \text {-form over } A \\ \text { E-quadratic }\end{array}\left\{\begin{array}{l}(K, \alpha ; J) \\ (K, \alpha ; J) . \\ (K, B ; J)\end{array}\right.\right.$
An S-non-singular formation is non-singular if and only if its boundary is stably equivalent to 0 .
(The boundary operations
3 : (S-non-singular formations over A)
$\longrightarrow($ non-singular linking formations over $(A, S))$ can also be expressed in terms of the "dual lattice" conctruction, by analogy with the corresponding expression in $\$ 3.4$ for the boundary operations
d : (S-non-singular forms over A) $\longrightarrow(n o n-s i n q u l a r ~ l i n k i n g$ forms over $(A, S))$.

A lattice $\left\{\begin{array}{l}(K, \alpha) \\ (K, B)\end{array}\right.$ in a non-singular $\left\{\begin{array}{l}(\text { even }) \text {-symmetric } \\ r \text {-quadratic }\end{array}\right.$ form
over $S^{-1} A\left\{\begin{array}{l}(Q, \phi) \\ (Q, \psi)\end{array}\right.$ (which is an $\left\{\begin{array}{l}(\text { even }) \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A such that $\left\{\begin{array}{l}s^{-1}(K, \alpha)=(Q, \phi) \\ s^{-1}(K, \beta)=(Q, \psi)\end{array}\right.$ is non-singular if it is a non-singular form over A, or equivalently if the lattice $K \subseteq Q$ is self-dual

$$
\left\{\begin{array}{l}
K^{\#} \equiv\left\{x \in Q \mid \phi(x)(K) \subseteq A \subseteq S^{-1} A\right\}=K \\
K^{\#} \equiv\left\{x \in Q \mid\left(\psi+\varepsilon \psi^{*}\right)(x)(K) \subseteq A \subseteq S^{-1} A\right\}=K
\end{array} .\right.
$$

Given an S-non-singular $\left\{\begin{array}{l}\text { (even) E-symmetric } \\ \text { e-quadratic }\end{array}\right.$ formation over A
$\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, \beta ; I, J)\end{array}\right.$ there exist
i) a non-singular lattice $\left\{\begin{array}{l}\left(K_{I}, \alpha_{I}\right) \\ \left(K_{I}, \beta_{I}\right)\end{array}\right.$ in $\left\{\begin{array}{l}S^{-1}(K, \alpha) \\ S^{-1}(K, \beta)\end{array}\right.$ such the

$$
K_{I} \cap S^{-1} I=I \subseteq S^{-1}{ }_{K}
$$

is a lagrangian of $\left\{\begin{array}{l}\left(K_{I}, \alpha_{I}\right) \\ \left(K_{I}, \beta_{I}\right),\end{array}\right.$
ii) a lattice $\left\{\begin{array}{l}\left(K_{J}, \alpha_{J}\right) \\ \left(K_{J}, \beta_{J}\right)\end{array}\right.$ in $\left\{\begin{array}{l}S^{-1}(K, \alpha) \\ S^{-1}(K, \beta)\end{array}\right.$ such that

$$
K_{J} \cap s^{-1} J=J \subseteq S^{-1}{ }_{K}
$$

is an s-lagrangian of $\left\{\begin{array}{l}\left(k_{J}, \alpha_{J}\right) \\ \left(k_{J}, \beta_{J}\right)\end{array}\right.$,
iii) a lattice $\left\{\begin{array}{l}\left(K^{\prime}, \alpha^{\prime}\right) \\ \left(K^{\prime}, \beta^{\prime}\right)\end{array}\right.$ in $\left\{\begin{array}{l}S^{-1}(K, \alpha) \\ S^{-1}(K, \beta)\end{array}\right.$ such that $K^{\prime} \subseteq K_{I} \cap K_{J} \subseteq S^{-1} K$.

The boundary $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric }(-\varepsilon) \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ over (A, S) is given by

$$
\left\{\begin{array}{l}
\partial(K, \alpha ; I, J)=\left(\partial\left(K^{\prime}, \alpha^{\prime}\right) ; K_{I} / K^{\prime}, K_{J} / K^{\prime}\right) \\
\exists(K, B ; I, J)=\left(K_{I} / K^{\prime}, K_{J} / K^{\prime}\right),
\end{array}\right.
$$

using Proposition 3.4.6 i) to translate the S-isomorphisms S-non-singular $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A

$$
\left\{\begin{array}{l}
\left(K^{\prime}, \alpha^{\prime}\right) \longrightarrow\left(K_{I}, \alpha_{I}\right) \\
\left(K^{\prime}, \beta^{\prime}\right) \longrightarrow\left(K_{I}, \beta_{I}\right)
\end{array},\left\{\begin{array}{l}
\left(K^{\prime}, \alpha^{\prime}\right) \longrightarrow\left(K_{J}, \alpha_{J}\right) \\
\left(K^{\prime}, \beta^{\prime}\right) \longrightarrow\left(K_{J}, \beta_{J}\right)
\end{array}\right.\right.
$$

defined by the inclusions into the lagrangian K_{I} / K^{\prime} of the boundary $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric (} \varepsilon \text {-quadratic) linking form over } A(A, S) \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$

$$
\left\{\begin{array}{l}
\partial\left(K^{\prime}, \alpha^{\prime}\right)=\left(K^{\prime} / K^{\prime}, \alpha^{\prime \#} / \alpha^{\prime}\right) \\
\partial\left(K^{\prime}, \beta^{\prime}\right)=\left(K^{\prime} / K^{\prime}, \beta^{\prime \#} / \beta^{\prime}\right)=\tilde{H}_{E}\left(K_{I} / K^{\prime}\right)
\end{array}\right.
$$

and the sublagrangian K_{J} / K).
The boundary $\left\{\begin{array}{l}\partial(M, \lambda) \\ \partial(M, \lambda) \\ \partial(M, \lambda, \mu)\end{array}\right.$ of an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric linking } \\ \varepsilon \text {-quadratic }\end{array}\right.$
form over $(A, S)\left\{\begin{array}{l}(M, \lambda) \\ (M, \lambda) \\ (M, \lambda, \mu)\end{array}\right.$ is the non-singular $\left\{\begin{array}{l}\text { even }(-\epsilon)-\text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$
linking formation over (A, S)

$$
\left\{\begin{array}{l}
\partial(M, \lambda)=\left(H^{-\varepsilon}(M) ; M, \Gamma^{\prime}(M, \lambda)\right) \\
\partial(M, \lambda)=\left(H_{-\varepsilon}(M) ; M, \Gamma_{(M, \lambda)}\right) \\
\left.(M, \lambda, \mu)=\left(M,\binom{1}{\lambda}, \mu\right) M\right)
\end{array}\right.
$$

where

$$
\Gamma_{(M, \lambda)}=\left\{(x, \lambda(x)) \in M \oplus M^{\wedge} \mid x \in M\right\} \subseteq M \oplus M^{\wedge}
$$

is the graph lagrangian of (M, λ) in $H^{-\varepsilon}(M)$ (in $H_{-\varepsilon}(M)$ if (M, λ) is even).

The boundary operations on S-non-singular formations and linking forms are related by the factorization a : \{linking forms over $(A, S)\}=\{S$-formations over $A\}$
$\longrightarrow\{S-n o n-s i n g u l a r$ formations over $A\}$ $\xrightarrow{\partial}\{$ linking formations over $(A, S)\}$.

Thus if the $\left\{\begin{array}{l}\text { (even) }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ S-formation over A

$$
\begin{aligned}
& \left\{\begin{array}{l}
(K, \alpha ; I, J) \\
(K, \beta ; I, J)
\end{array}\right. \text { associated by Proposition 3.4.3 to an } \\
& \left\{\begin{array} { l }
{ (\text { even }) \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \quad \left\{\begin{array}{l}
(M, \lambda) \\
(M, \lambda, \mu)
\end{array}\right.\right. \text { is }
\end{aligned}
$$

regarded as an S-non-singular $\left\{\begin{array}{l}\text { (even) }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$
formation over A there is a natural identification (up to stable equivalence) of the boundary $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric }((-\varepsilon) \text {-quadratic }) \text { linking formations } \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$
over (A, S)

$$
\left\{\begin{array}{l}
\exists(K, \alpha ; I, J)=\jmath(M, \lambda) \\
\exists(K, \beta ; I, J)=\exists(M, \lambda, \mu) .
\end{array}\right.
$$

(There is an evident analogy between the boundary operations

$$
\}:\{1 \text { inking forms }\} \longrightarrow\{\text { inking formations }\}
$$

and the boundary operations of $\$ 1.6$
] : \{forms\} \rightarrow - \rightarrow formations $\}$.

To complete the analogy we can also define boundary operations
$\lambda:\{$ linking formations $\longrightarrow \longrightarrow$ [linking forms \longrightarrow
corresponding to the boundary operations of $\$ 1.6$

$$
a:\{\text { formations }\} \longrightarrow \text { \{forms }\}
$$

The boundary of an $\left\{\begin{array}{l}\text { (even) } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic linking formation over } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$
 form over (A,S)

$$
\left\{\begin{array}{l}
3(M, \lambda ; F, G)=(G \perp / G, \lambda \perp / \lambda) \\
3(M, \lambda, \mu ; F, G)=(G \perp / G, \lambda \perp / \lambda, \mu \perp / \mu) \\
3(F, G)=(G \perp / G, \lambda \perp / \lambda, v \perp / v) \quad\left(\tilde{H}_{\varepsilon}(F)=\left(F \oplus F^{\wedge}, \lambda, v\right)\right)
\end{array}\right.
$$

if its boundary $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ linking formation
over (A, S) is stably equivalent to O (resp, if it is isomorphic
to the boundary of an $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ over (A,S))).
Proposition 3.5.3 Let $\left\{\begin{array}{l}\left(C, \phi \in Q\left(v_{O}\right\rangle^{2}(C,-\varepsilon)\right) \\ \left(C, \psi \in O_{2}(C,-\varepsilon)\right)\end{array}\right.$ be an S-acyclic 2-dimensional $\left\{\begin{array}{l}\text { even }(-E) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complex over A,
and let $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (F, G)\end{array}\right.$ be an associated non-sinqular
$\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { split e-quadratic }\end{array}\right.$ linking formation over (A, S).
i) the S-acyclic cobordism class $\left\{\begin{array}{l}(C, \phi) \in L_{1}^{1}(A, S, E) \\ (C, \psi) \in L_{1}(A, S, \varepsilon)\end{array}\right.$ depends only on the stable equivalence class of $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (F, G)\end{array}\right.$.

$$
\text { ii) }\left\{\begin{array} { l }
{ (C , \phi) = 0 \in L ^ { l } (A , S , \varepsilon) } \\
{ (C , \psi) = 0 \in L _ { 1 } (A , S , E) }
\end{array} \text { if and only if } \left\{\begin{array}{ll}
(M, \lambda ; F, G) \\
(F, G) & \text { is }, ~
\end{array}\right.\right.
$$

stably equivalent to the boundary $\left\{\begin{array}{l}3(K, \alpha ; I, J) \\ 3(K, \beta ; I, J)\end{array}\right.$ of an S-non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ formation over $A\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, B ; I, J)\end{array}\right.$ such that

$$
\left\{\begin{array}{l}
S^{-1}(K, \alpha ; I, J)=0 \in M_{S}^{E}\left(S^{-1} A\right)=L_{S}^{1}\left(S^{-1} A, \varepsilon\right) \\
S^{-1}(K, B ; I, J)=0 \in M_{\varepsilon}^{S}\left(S^{-1} A\right)=L_{1}^{S}\left(S^{-1} A, \varepsilon\right)
\end{array}\right.
$$

$\left\{\begin{array}{l}\text { If } \operatorname{ker}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0 \\ \text { For all } A, S, \epsilon\end{array}\right.$ it is possible
to choose $\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, \beta ; I, J)\end{array}\right.$ to be an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ s-formation over Λ (i.e. such that $S^{-1} K=S^{-1} I \oplus S^{-1} J$), so that

$$
\left\{\begin{array} { l }
{ (C , \phi) = 0 \in L _ { 1 } ^ { 1 } (A , S , E) } \\
{ (C , \psi) = 0 \in L _ { 1 } (A , S , \varepsilon) }
\end{array} \text { if and only if } \left\{\begin{array}{l}
(M, \lambda ; F, G) \\
(F, G)
\end{array}\right.\right. \text { is stably }
$$

equivalent to the boundary $\left\{\begin{array}{l}\partial(N, \xi) \\ \partial(N, \xi, \rho)\end{array}\right.$ of a $\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$
linking form over $(A, S)\left\{\begin{array}{l}(N, \xi) \\ (N, \xi, \rho)\end{array}\right.$.
Proof; i) Immediate from Proposition 3.5.2 $\left\{\begin{array}{l}\text { ii) } \\ \text { iii) }\end{array}\right.$.
ii) By the S-acyclic counterpart of Proposition 1.2.2 iii) an S-acyclic 2-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q\left\langle V_{O}\right\rangle^{2}(C,-\varepsilon)\right) \\ \left(C, \psi \in Q_{2}(C,-\varepsilon)\right)\end{array}\right.$ represents O in $\left\{\begin{array}{l}L^{1}(A, S, \varepsilon) \\ L_{1}(A, S, E)\end{array}\right.$ if and only if it is homotopy equivalent to the boundary $\left\{\begin{array}{l}3(D, \Pi) \\ \exists(D, \zeta)\end{array}\right.$ of a connected s-acyclic 3 -dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}\left(D, \eta \in Q\left(v_{O}\right\rangle^{3}(D,-\varepsilon)\right) \\ \left(D, \zeta \in O_{3}(D,-\varepsilon)\right)\end{array}\right.$ with D a f.g. projective A-module chain complex of the type

Let then $\left\{\begin{array}{l}(C, \phi)=j(D, \eta) \\ (C, \psi)=j(D, \zeta)\end{array}\right.$ be the boundary of such a
complex $\left\{\begin{array}{l}(D, \eta) \\ (D, \zeta)\end{array}\right.$, and let $\left\{\begin{array}{l}\left(D^{\prime}, \eta^{\prime} \in Q\left\langle V_{O^{\prime}}\right\rangle^{3}\left(D^{\prime},-\epsilon\right)\right) \\ \left(D^{\prime}, \zeta^{\prime} \in Q_{3}\left(D^{\prime},-\epsilon\right)\right)\end{array}\right.$ be the connected 3 -dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ complex obtained from $\left\{\begin{array}{l}(D, n) \\ (D, C)\end{array}\right.$ by surgery on the connected 4-dimensional $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ pair over $A\left\{\begin{array}{l}\left(f: D \longrightarrow \delta D,(O, \eta) \in Q\left\langle v_{O}\right\rangle^{4}(f,-\varepsilon)\right) \\ \left(f: D \longrightarrow \delta D,(O, \zeta) \in Q_{4}(f,-\varepsilon)\right)\end{array}\right.$ defined by

$$
f=1: D_{3} \longrightarrow \delta D_{3}=D_{3}, \delta D_{r}=0(r \neq 3)
$$

Then $\left\{\begin{array}{l}\left(D^{\prime}, \eta^{\prime}\right)=\bar{S}\left(D^{\prime \prime}, \eta^{\prime \prime}\right) \\ \left(D^{\prime}, \zeta^{\prime}\right)=\bar{S}\left(D^{\prime \prime}, \zeta^{\prime \prime}\right)\end{array}\right.$ is the skew-suspension of a 1 -dimensional $\left\{\begin{array}{l}\text { E-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}\left(D^{\prime \prime}, \eta^{\prime \prime} \in Q^{1}\left(D^{\prime \prime}, E\right)\right) \\ \left(D^{\prime \prime}, \zeta^{\prime \prime} \in Q_{1}\left(D^{\prime \prime}, E\right)\right)\end{array}\right.$ such that $\left\{\begin{array}{l}S^{-1}\left(D^{\prime \prime}, n^{\prime \prime}\right) \\ S^{-1}\left(D^{\prime \prime}, S^{\prime \prime}\right)\end{array}\right.$ is Poincaré and null-cobordant over $S^{-1} A$.

The homotopy equivalence classes of l-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ $S^{-1} A$-Poincaré complexes over A are in a natural one-one correspondence with the stable isomorphism classes of S-non-singular $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { split e-quadratic }\end{array}\right.$ formations over A by a straightforward generalization of Proposition 1.6.4). In particular, the S-non-singular $\left\{\begin{array}{l}\text { E-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ formation
over A associated to $\left\{\begin{array}{l}\left(D^{\prime \prime}, \eta^{\prime \prime}\right) \\ \left(D^{\prime \prime}, \zeta^{\prime \prime}\right)\end{array}\right.$ is given up to stable isomorphism by

$$
\left\{\begin{array}{l}
\langle K, \alpha ; 1, J\rangle=\left(D_{2} \oplus D^{2},\left(\begin{array}{cc}
0 & 1 \\
\varepsilon & \eta_{1}
\end{array}\right) ; D_{2} \cdot i m\left(\left(\begin{array}{cc}
d & { }^{\eta} O \\
0 & d *
\end{array}\right): D_{3} \oplus D^{1} \longrightarrow D_{2} \oplus D^{2}\right)\right) \\
(K, \beta ; 1, J\rangle=\left(D_{2} \oplus D^{2},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) ; D_{2}, i m\left(\left(\begin{array}{ll}
d & \left(1+T_{-E}\right) \zeta_{O} \\
0 & d *
\end{array}\right): D_{3} \oplus D_{1}^{1} \longrightarrow D_{2} \oplus D^{2}\right)\right)
\end{array}\right.
$$

and is such that

$$
\left\{\begin{array}{l}
S^{-1}(K, \alpha ; I, J)=S^{-1}\left(D^{\prime \prime}, \eta^{\prime \prime}\right)=0 \in M_{S}^{\varepsilon}\left(S^{-1} A\right)=L_{S}^{1}\left(S^{-1} A, E\right) \\
S^{-1}(K, \beta ; I, J)=S^{-1}\left(D^{\prime \prime}, \zeta^{\prime \prime}\right)=0 \in M_{E}^{S}\left(S^{-1} A\right)=L_{1}^{S}\left(S^{-1} A, \varepsilon\right)
\end{array}\right.
$$

The non-singular $\left\{\begin{array}{l}\text { even } e-s y m m e t r i c \\ \text { split } e \text {-quadratic }\end{array}\right.$ linking formation over $(A, S$) associated to $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is the boundary

$$
\left\{\begin{array}{l}
(M, \lambda ; F, G)=a(K, \alpha ; I, J) \\
(F, G)=\partial(K, B ; I, J)
\end{array}\right.
$$

Since D is S-acyclic there exists an A-module morphism $q \in \operatorname{Hom}_{n}\left(D_{2}, D_{3}\right)$ such that the composite

$$
s=g d: D_{3} \xrightarrow{d} D_{2} \xrightarrow{q} D_{3}
$$

is an S-isomorphism. Let

$$
\overrightarrow{\mathrm{F}}: \mathrm{D} \longrightarrow \boldsymbol{\sim}
$$

be the A-module chain map defined by

so that $\left\{\begin{array}{l}\text { if } v_{O}^{S}(n)=0: H^{3}(D) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \\ -\end{array}\right.$ then

$$
\left\{\begin{array}{l}
\widetilde{f}^{q}(\eta)=0 \in Q\left\langle v_{0}\right\rangle^{3}(\delta \widetilde{D},-\varepsilon) \\
\widetilde{f}_{q}(\zeta)=0 \in Q_{3}(\delta \widetilde{D},-\varepsilon) .
\end{array}\right.
$$

The connected s-acyclic 3-dimensional $\left\{\begin{array}{l}\text { even (-E)-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ complex over $A\left\{\begin{array}{l}\left(\tilde{D}^{\prime}, \tilde{n}, \epsilon Q\left(v_{0}\right)^{3}(\tilde{D},-\epsilon)\right) \\ \left(\tilde{D} \cdot, \tilde{\zeta} \cdot \in Q_{3}(\tilde{D},-\varepsilon)\right)\end{array}\right.$ obtained from $\left\{\begin{array}{l}(D, n) \\ (D, \zeta)\end{array}\right.$
 the skew-suspension $\left\{\begin{array}{l}\left(\tilde{D}^{\prime}, \tilde{\eta}^{\prime}\right)=\tilde{S}\left(\tilde{D}^{\prime \prime}, \tilde{\eta}^{\prime \prime}\right) \\ \left(\tilde{D}^{\prime}, \tilde{\zeta}^{\prime}\right)=\bar{s}\left(\tilde{D}^{\prime \prime}, \tilde{\zeta}^{\prime \prime}\right)\end{array}\right.$ of an s-acyclic
 The $\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ linking form over (A, S) assoctated to $\left\{\begin{array}{l}(\tilde{D} ", \tilde{n} \\ \left(\tilde{D}^{\prime \prime}, \tilde{\zeta}\right.\end{array}\right.$

$$
\left\{\begin{array}{l}
(N, \xi)=\left(H^{1}\left(\tilde{D}^{\prime \prime}\right), \tilde{\eta}_{O}^{n S}\right) \\
(N, \xi, \rho)=\left(H^{1}\left(\tilde{D}^{\prime \prime}\right),\left(1+T_{\varepsilon}\right) \tilde{\zeta}_{O}^{{ }_{O}^{S}}, p v_{S}^{O}\left(\tilde{\zeta}^{n}\right)\right)
\end{array}\right.
$$

is such that up to stable equivalence

$$
\left\{\begin{array}{l}
(M, \lambda ; F, G)=3(N, \xi) \\
(F, G)=3(N, \zeta, \rho)
\end{array}\right.
$$

If $\operatorname{ker}\left(\hat{\delta}: \hat{H}^{0}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0$ then for an Y S-acyclic 3 -dimensional even (- ε)-symmetric complex over A $\left(D, \eta \in Q\left\langle v_{o}\right\rangle^{3}(D,-\varepsilon)\right)$ we have

$$
\begin{aligned}
& \quad v_{O}(\eta)=0: H^{3}(D) \xrightarrow{v_{O}^{S}(\eta)} \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \epsilon\right) \xrightarrow{\hat{\delta}} \hat{H}^{I}\left(\mathbb{Z}_{2} ; A, \epsilon\right) \\
& \text { (by Proposition } 3.3 .1 \text { ii)), and so } v_{0}^{S}(\eta)=0 .
\end{aligned}
$$

$$
\text { Conversely, given an s-non-singular }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { formation }
$$

over $A\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, \beta ; I, J)\end{array}\right.$ such that

$$
\left\{\begin{array}{l}
S^{-1}(K, \alpha ; I, J)=0 \in M_{S}^{E}\left(S^{-1} A\right) \\
S^{-1}(K, \beta ; I, J)=0 \in M_{E}^{S}\left(S^{-1} A\right)
\end{array}\right.
$$

we have to show that the S-acyclic 2 -dimensional
$\left\{\begin{array}{l}\text { even }(-\epsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complex over $A\left\{\begin{array}{l}\left(C, \phi \in Q\left(v_{0}\right\rangle^{2}(C,-\epsilon)\right) \\ \left(C, \psi \in Q_{2}(C,-\varepsilon)\right)\end{array}\right.$ associated to the boundary $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { split e-quadratic }\end{array}\right.$ linking formation over $(A, S)\left\{\begin{array}{l}3(K, \alpha ; I, J)=(M, \lambda ; F, G) \\ \jmath(K, \beta ; I, J)=(F, G)\end{array}\right.$ is an S-acyclic boundary. As I is a lagrangian of $\left\{\begin{array}{l}(K, \alpha) \\ (K, \beta)\end{array}\right.$ we can identify

$$
\left\{\begin{array}{l}
(K, \alpha)=\left(I \oplus I^{*},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right)\right) \\
(K, \beta)=\left(I \oplus I^{*},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)
\end{array}\right.
$$

for some ε-symmetric form ($\left.I^{*}, \theta \in Q^{E}\left(I^{*}\right)\right)$ (by Proposition 1.6.2). Write the inclusion of J in $K=1 \oplus I^{*}$ as

$$
\binom{j}{k}: J \longrightarrow I \oplus I^{*}
$$

such that in the ε-quadratic case

$$
j^{\star} k=x-\epsilon X^{*}: J \longrightarrow J^{\star}
$$

for some (- ε)-quadratic form $\left(J, x \in Q_{-\varepsilon}(J)\right)$. Define a l-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array} S^{-1} \Lambda\right.$-Poincaré complex over $A\left\{\begin{array}{l}\left(D, \eta \in Q^{1}(D, E)\right) \\ \left(D, \zeta \in Q_{1}(D, E)\right)\end{array}\right.$ by

$$
\begin{aligned}
& \mathrm{d}=\mathrm{k}^{*}: \mathrm{D}_{1}=\mathrm{I} \longrightarrow \mathrm{D}_{\mathrm{O}}=\mathrm{J}^{*}, \mathrm{D}_{\mathrm{r}}=\mathrm{O}(\mathrm{r} \neq 0, \mathrm{l}) \\
& \left(\eta_{O}=\left\{\begin{array}{l}
\varepsilon j: D^{\circ}=J \longrightarrow D_{1}=I \\
j *+k \star \theta: D^{1}=I^{*} \longrightarrow D_{O}=J^{*}
\end{array},\right.\right. \\
& \eta_{1}=\theta: D^{1}=I * \longrightarrow D_{1}=I \\
& \zeta_{\mathrm{O}}=\left\{\begin{array}{rl}
\varepsilon j: D^{\circ}=J \longrightarrow D_{1}=I \\
O: D^{1}=I * \longrightarrow D_{0}=J^{*}
\end{array}, \zeta_{1}=-x: D^{0}=J \longrightarrow D_{O}=J^{*} .\right.
\end{aligned}
$$

Now

$$
\left\{\begin{array}{l}
S^{-1}(D, \eta)=S^{-1}(K, \alpha ; I, J)=0 \in L_{S}^{1}\left(S^{-1} A, \varepsilon\right)=M_{S}^{\varepsilon}\left(S^{-1} A\right) \\
S^{-1}(D, \zeta)=S^{-1}(K, B ; I, J)=0 \in L_{1}^{S}\left(S^{-1} A, \varepsilon\right)=M_{\varepsilon}^{S}\left(S^{-1} A\right)
\end{array}\right.
$$

so that there exists a 2-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array} \mathrm{S}^{-1}\right.$ A-Poincaré
pair ovet $A\left\{\begin{array}{l}\left(f: D \longrightarrow \delta D,(\delta n, \eta) \in Q^{2}(f, E)\right) \\ \left(f: D \longrightarrow \delta D,(\delta \zeta, \zeta) \in Q_{2}(f, E)\right)\end{array}\right.$. Let
$\left\{\begin{array}{l}\left(D^{\prime}, \eta^{\prime} \in Q\left\langle V_{O}\right\rangle^{3}\left(D^{\prime},-\varepsilon\right)\right) \\ \left(D^{\prime}, \zeta^{\prime} \in Q_{3}\left(D^{\prime},-\varepsilon\right)\right)\end{array}\right.$ be the connected S-acyclic 3-dimensional
$\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ complex over A obtained from the
skew-suspension $\left\{\begin{array}{l}\bar{S}(D, \eta) \\ \bar{S}(D, \zeta)\end{array}\right.$ by surgery on the skew-suspension
$\left\{\begin{array}{l}\bar{S}(f: D \longrightarrow \delta D,(\delta \eta, \eta)) \\ \bar{S}(f: D \longrightarrow \delta D,(\delta \zeta, \zeta))\end{array}\right.$. The boundary $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$
linking formation over $(A, S)\left\{\begin{array}{l}a(K, \alpha ; I, J) \\ a(K, R ; I, J)\end{array}\right.$ is the linking
formation associated to the s-acyclic boundary
$\left\{\begin{array}{l}\left(C, \phi \in Q\left\langle v_{O}\right\rangle^{2}(C,-\varepsilon)\right)=3\left(D^{\prime}, \eta \eta^{\prime}\right) \\ \left(C, \psi \in \Omega_{2}(C,-\varepsilon)\right)=,\left(D^{\prime}, \zeta^{\prime}\right)\end{array}\left(=\left\{\begin{array}{l}\bar{S}(D, \eta) \\ \bar{S}(D, \tau)\end{array}\right.\right.\right.$, up to homotopy
equivalence).

with one generator for each isomorphism class of non-singular
$\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array} \quad\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G \\ (F, G)\end{array}\right.\right.$
subject to the relations:
in the (even) e-symmotric case

$$
\begin{aligned}
(M, \lambda ; F, G)+ & \left(M^{\prime}, \lambda^{\prime} ; F^{\prime}, G^{\prime}\right)=\left(M \oplus M^{\prime}, \lambda \oplus \lambda^{\prime} ; F \oplus F^{\prime}, G \oplus G^{\prime}\right) \\
(M, \lambda ; F, G)+ & (M, \lambda ; G ; H)=(M, \lambda ; F, H) \\
(M, \lambda ; F, G)= & \left(L^{\perp} / L, \lambda^{\perp} / \lambda ; F \cap I, \perp, G / L\right) \\
& \text { if } L \text { is a sublaqrangian of }(M, \lambda ; F, G)
\end{aligned}
$$

$$
(M, \lambda ; F, G)=\left(L^{\perp} / L, \lambda^{\perp} / \lambda ; F / L, G / L\right)
$$

if L is a sublagrangian of ($M, \lambda ; F, G$) such that $L \subseteq F \cap G$,
similarly in the e-quadratic case,
in the split e-quadratic case,

$$
\begin{gathered}
(F, G)+\left(F^{\prime}, G^{\prime}\right)=\left(F^{\oplus} \oplus F^{\prime}, G \oplus G^{\prime}\right) \\
(F, G)=\left(F \cap L^{1}, G / L\right) \text { if Lis a sublagrangian of }(F, G) \\
(M, \lambda, \mu)=0 \text { if }(M, \lambda, \mu) \text { is a }(-\varepsilon) \text {-quadratic linking } \\
\text { form over }(A, S) .
\end{gathered}
$$

In particular, stably equivalent linking formations represent the same element in the Witt group. There are defined forgetfu maps

$$
\begin{aligned}
& M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \longrightarrow M^{\varepsilon}(A, S) ;(M, \lambda ; F, G) \longmapsto(M, \lambda ; F, G) \\
& M_{E}(A, S) \longrightarrow M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) ;(M, \lambda, \mu ; F, G) \longmapsto(M, \lambda ; F, G) \\
& \tilde{M}_{E}(A, S) \longrightarrow M_{E}(A, S) ;(F, G) \longmapsto(M, \lambda, \mu ; F, G)
\end{aligned}
$$

In order to verify that $\widetilde{M}_{\varepsilon}(A, S) \longrightarrow M_{E}(A, S)$ is well-defined we have to show that

$$
\partial(M, \lambda)=0 \in M_{\varepsilon}(A, S)
$$

for any ($-E$)-quadratic linking form over (A, S) (M, λ, μ),
for any non-singular e-quadratic linking formation $\left(H_{\varepsilon}(F) ; F, G\right.$ we have

$$
\begin{aligned}
&\left(H_{\epsilon}(F) ; F, G\right)=\left(H_{\varepsilon}(F) ; F, F^{\wedge}\right) \oplus\left(H_{\varepsilon}(F) ; F^{\wedge}, G\right) \\
&=\left(H_{\varepsilon}(F) ; F^{\wedge}, G\right) \in M_{\varepsilon}(A, S),
\end{aligned}
$$

so that for any even (- ε)-symmetric linking form (M, λ)

$$
\begin{aligned}
a(M, \lambda)=\left(H_{\varepsilon}(M) ; M_{r} \Gamma_{(M, \lambda)}\right) & =\left(H_{\varepsilon}(M) ; M^{\wedge}, \Gamma_{(M, \lambda)}\right) \\
& =0 \in M_{\epsilon}(A, S) .
\end{aligned}
$$

The following result is the analogue for linking format of Proposition 1.6 .5 iii) (a formation represents O in the Wi group if and and only if it is stably isomorphic to the bound of a form).

Proposition 3.5.4 A non-sinqular $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { E-quadratic linking } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$
formation over $(A, S)\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G) \text { represents } O \text { in the witt } \\ (F, G)\end{array}\right.$
$\left\{\begin{array}{l}M\left\langle v_{O}\right\rangle^{E}(A, S) \\ M_{E}(A, S) \\ M_{E}(A, S)\end{array} \quad\right.$ if and only if it is stably equivalent to the
boundary $\left\{\begin{array}{l}\exists(K, a ; I, J) \\ \exists(K, a ; I, J) \\ J(K, B ; I, J)\end{array}\right.$ of an s-non-singular $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
formation over $A\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, \alpha ; I, J) \text { such that } \\ (K, B ; I, J)\end{array}\right.$

$$
\left\{\begin{array}{l}
S^{-1}(K, \alpha ; I, J)=0 \in M_{S}^{\varepsilon}\left(S^{-1} A\right) \\
S^{-1}(K, \alpha ; I, J)=0 \in M\left\langle v_{O}\right\rangle_{S}^{\varepsilon}\left(S^{-1} A\right) \\
S^{-1}(K, B ; I, J)=0 \in M_{E}^{S}\left(S^{-1} A\right)
\end{array}\right.
$$

$\left\{\begin{array}{l}\text { If } \operatorname{ker}\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0 \\ \text { For all } A, S, \varepsilon \\ \text { For all } A, S, \varepsilon\end{array} \quad\right.$ it is possible
to choose $\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, \alpha ; I, J) \text { to be an } S \text {-formation (i.e. such that } \\ (K, \beta ; I, J)\end{array}\right.$
$\left.S^{-1} K=S^{-1} I \oplus S^{-1} J\right)$, so that $\left\{\begin{array}{l}(M, \lambda ; F, G)=0 \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \\ (M, \lambda, \mu ; F, G)=0 \in M_{\varepsilon}(A, S) \\ (F, G)=0 \in \tilde{M}_{\varepsilon}(A, S)\end{array}\right.$
if and only if $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G) \\ (F, G)\end{array}\right.$ is stably equivalent to the
boundary $\left\{\begin{array}{l}J(N, \xi) \\ \exists(N, \xi) \\ \exists(N, \xi, \rho)\end{array}\right.$ of an $\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ \text { even }(-\varepsilon) \text {-symmetric linking } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$
form over $(A, S)\left\{\begin{array}{l}(N, \xi) \\ (N, \xi) \\ (N, \xi, O)\end{array}\right.$.
Proof: It is convenient to introduce the following construction, which associates an element

$$
\left\{(Q, \phi), f,\left(Q^{\prime}, \phi^{\prime}\right)\right] \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)
$$

to an isomorphism of the non-singular ε-symmetric forms over $S^{-1} A$

$$
f: S^{-1}(Q, \phi) \longrightarrow S^{-1}\left(Q^{\prime}, \phi^{\prime}\right)
$$

induced from non-singular e-symmetric forms over A ($(\Omega, \phi),\left(Q^{\prime}, \phi^{\prime}\right)$. Let $u \in \operatorname{Hom}_{A}(P, Q)$ be an S-isomorphism of f.g. projective A-modules such that

$$
f u \in \operatorname{Hom}_{A}\left(P, Q^{\prime}\right) \subseteq \operatorname{Hom}_{S^{-1}}\left(S^{-1} P, S^{-1} Q^{\prime}\right)
$$

(Such u exist for $P=Q$). Let (P, θ) be the e-symmetric form over A defined by

$$
\theta=u^{*} \phi u: P \longrightarrow P^{\star} .
$$

The S-isomorphisms of S-non-sinqular ε-symmetric forms over A

$$
\mathrm{u}:(P, \theta) \longrightarrow(Q, \phi), \mathrm{fu}:(P, \theta) \longrightarrow\left(Q^{\prime}, \phi^{\prime}\right)
$$

correspond by Proposition 3.4 .6 i) to lagrangians

$$
\mathbf{F}=\operatorname{coker}(\mathrm{u}: \mathrm{P} \longrightarrow Q), G=\operatorname{coker}\left(f u: P \longrightarrow Q^{\prime}\right)
$$

of the boundary even ε-symmetric linking form over (A, S)

$$
(M, \lambda)=3(P, \theta) .
$$

Set

$$
\left[(Q, \phi), f,\left(Q^{\prime}, \phi^{\prime}\right)\right]=(M, \lambda ; F, G) \in M\left\langle v_{O}\right\rangle^{\in}(A, S)
$$

Lemma 1 The Witt class $\left\{(Q, \phi), f,\left(Q^{\prime}, \phi^{\prime}\right)\right] \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)$ is independent of the choice of s-isomorphism $u \in \operatorname{Hom}_{A}(P, Q)$. Proof: If $\tilde{u} \in \operatorname{Hom}_{A}(\widehat{\mathrm{P}}, \mathrm{Q})$ is another choice of S-isomorphism there exist a f.g. projective A-module $\tilde{\mathrm{p}}$ and S -isomorphisms $v \in \operatorname{Hom}_{A}(\dddot{P}, P), \tilde{v} \in \operatorname{Hom}_{A}(\widetilde{\tilde{P}}, \check{\mathrm{P}})$ such that

$$
u v=\tilde{u} v \in \operatorname{Hom}_{A}(\widetilde{\widetilde{P}}, Q)
$$

Therefore it is sufficient to consider the effect of replacing $u \in \operatorname{Hom}_{A}(\mathrm{P}, \mathrm{Q})$ by $\tilde{\mathrm{u}}=\mathrm{uv} \in \operatorname{Hom}_{\mathrm{A}}(\widetilde{\mathrm{P}}, \mathrm{Q})$ for some S -isomorphism $v \in \operatorname{Hom}_{A}(\widetilde{P}, P)$. The non-singular even ε-symmetric linking formation over (A, S)

$$
(M, \lambda ; F, G)=(0(P, \theta) ; \operatorname{coker}(u: P \longrightarrow Q), \operatorname{coker}(f u: P \longrightarrow Q))
$$

is replaced by

$$
(\tilde{\mathrm{m}}, \tilde{i} ; \tilde{F}, \tilde{G})=(,(\tilde{\mathrm{p}}, \tilde{\mathrm{~B}}) ; \operatorname{coker}(\tilde{\mathrm{u}}: \widetilde{\mathrm{p}} \longrightarrow Q), \operatorname{coker}(\mathrm{f} \tilde{\mathrm{u}}: \tilde{\mathrm{p}} \longrightarrow Q))
$$ with

$$
\tilde{\theta}=\tilde{u} \star \phi \tilde{u}=v^{\star} \theta v \in \operatorname{Hom}_{A}(\tilde{P}, \widetilde{p} \star) .
$$

By Proposition 3.4.6 i) the S-isomorphism of S-non-singular E-symmetric forms over A

$$
v:(\tilde{P}, \tilde{\theta}) \longrightarrow(P, \theta)
$$

determines the sublagrangian

$$
H=\operatorname{coker}(v: \widetilde{\mathrm{P}} \longrightarrow P)
$$

of $(\tilde{M}, \tilde{\lambda})=\gamma(\tilde{P}, \tilde{\theta})$. Now $H \subseteq \tilde{F} \cap \tilde{G}$, and there is defined an isomorphism of non-singular even ε-symmetric linking formations over (A,S)

$$
(M, \lambda ; F, G) \simeq\left(H^{\perp} / H, \widetilde{\lambda}+/ \widetilde{\lambda} ; \widetilde{F} / H, \widetilde{G} / H\right),
$$

so that

$$
\begin{aligned}
(M ; \lambda ; F, G) & =\left(H^{\perp} / H, \tilde{\lambda}+\tilde{\lambda} ; \tilde{F} / H, \tilde{G} / H\right) \\
& =(\tilde{M}, \tilde{\lambda} ; \widetilde{F}, \tilde{G}) \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) .
\end{aligned}
$$

Lemma 2 Given non-singular e-symmetric forms over A (Q, ϕ), ($\left.Q^{\prime}, \phi^{\prime}\right)$, $\left(Q ", \phi^{\prime \prime}\right)$ and isomorphisms of the induced forms over $S^{-1} A$

$$
f: S^{-1}(Q, \phi) \longrightarrow S^{-1}\left(Q^{\prime}, \phi^{\prime}\right), f^{\prime}: S^{-1}\left(Q^{\prime}, \phi^{\prime}\right) \longrightarrow S^{-1}\left(Q^{\prime \prime}, \phi^{\prime \prime}\right)
$$

the composite isomorphism

$$
f^{\prime} f: S^{-1}(Q, \phi) \longrightarrow S^{-1}\left(Q^{\prime \prime}, \phi^{\prime \prime}\right)
$$

is such that

$$
\begin{gathered}
{\left[(Q, \phi), f^{\prime} f,\left(Q^{\prime \prime}, \phi^{\prime \prime}\right)\right]=\left[(Q, \phi), f,\left(Q^{\prime}, \phi^{\prime}\right)\right] \oplus\left[\left(Q^{\prime}, \phi^{\prime}\right), f^{\prime},\left(Q^{\prime \prime}, \phi^{\prime \prime}\right)\right]} \\
\\
\in M\left(v_{0}\right\rangle^{\varepsilon}(A, 5) .
\end{gathered}
$$

Proof: Let $u \in \operatorname{Hom}_{A}(P, Q)$ be an S-isomorphism such that

$$
\begin{aligned}
& f u \in \operatorname{Hom}_{A}\left(P, Q^{\prime}\right) \subseteq \operatorname{Hom}_{S^{-1}}\left(S^{-1} P, S^{-1} Q^{\prime}\right) \\
& f^{\prime} f u \in \operatorname{Hom}_{A}\left(P, Q^{\prime}\right) \subseteq \operatorname{Hom}_{S^{-1}}\left(S^{-1} P, S^{-1} Q^{\prime}\right),
\end{aligned}
$$

and let $\theta=u * \phi u \in Q^{E}(P)$ (as before). Let F, G, H be the lagrangi; of $\partial(P, \theta)=(M, \lambda)$ associated by Proposition 3.4.6 i) to the S-isomorphisms of S-non-singular ε-symmetric forms over A

$$
\begin{aligned}
& u:(P, \theta) \longrightarrow(Q, \phi) \\
& f u:(P, \theta) \longrightarrow\left(Q^{\prime}, \Phi^{\prime}\right) \\
& f^{\prime} f u:(P, \theta) \longrightarrow\left(Q^{\prime}, \phi^{\prime}\right) \quad .
\end{aligned}
$$

Then

$$
\begin{aligned}
& {\left[(Q, \phi), f,\left(Q^{\prime}, \Phi^{\prime}\right)\right] \oplus\left[\left(Q^{\prime}, \phi^{\prime}\right), f^{\prime},\left(Q^{\prime}, \Phi^{\prime \prime}\right)\right] } \\
&=(M, \lambda ; F, G) \oplus(M, \lambda ; G, H) \\
&=(M, \lambda ; F, H)=\left[(Q, \phi), f^{\prime} f,\left(Q^{\prime \prime}, \phi^{\prime \prime}\right)\right] \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A,:
\end{aligned}
$$

Lemma 3 Let $(Q, \phi),\left(Q^{\prime}, \phi^{\prime}\right)$ be hyperbolic e-symmetric forms over with lagrangians L,L'. If an isomorphism of the induced hyperb ε-symmetric forms over $S^{-1} A$

$$
\mathrm{f}: \mathrm{S}^{-1}(Q \cdot \phi) \longrightarrow \mathrm{S}^{-1}\left(Q^{\prime}, \phi^{\prime}\right)
$$

is such that

$$
f\left(S^{-1} L\right)=s^{-1} L^{\prime} \subseteq S^{-1} Q^{\prime}
$$

then

$$
\left[(Q, \phi), f,\left(Q^{\prime}, \phi^{\prime}\right)\right]=O \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)
$$

Proof: Choose direct complements to L in Q and to L^{\prime} in Q^{\prime}, so that

$$
\begin{aligned}
& (Q, \phi)=\left(L \oplus L^{*},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \alpha
\end{array}\right) \in Q^{\varepsilon}\left(L \oplus L^{\star}\right)\right) \\
& \left(Q^{\prime}, \phi^{\prime}\right)=\left(L^{\prime} \oplus L^{\prime} *,\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \alpha^{\prime}
\end{array}\right) \in Q^{\varepsilon}\left(L^{\prime} \oplus L^{\prime} \star\right)\right)
\end{aligned}
$$

for some ε-symmetric forms over $A\left(L^{*}, \alpha \in Q^{\varepsilon}\left(L^{*}\right)\right)$, ($L^{\prime *}, \alpha^{\prime} \in Q^{E}\left(L^{\prime *}\right)$). There exist S-isomorphisms $s \in \operatorname{Hom}_{A}(L, L)$, $t \in \operatorname{Hom}_{A}\left(L^{*}, L\right)$ such that

$$
\begin{aligned}
& f\left(\begin{array}{ll}
s & 0 \\
0 & t
\end{array}\right)=\left(\begin{array}{ll}
g & k \\
0 & g^{\prime}
\end{array}\right) \\
& \\
& \quad \in \operatorname{Hom}_{A}\left(L \oplus L^{*}, L^{\prime} \oplus L^{\prime} *\right) \subseteq \operatorname{Hom}_{S^{-1}} A^{\left(S^{-1} L \oplus S^{-1} L^{*}, S^{-1} L^{\prime} \oplus S^{-1} L^{\prime *}\right)}
\end{aligned}
$$

for some S-isomorphisms $g \in \operatorname{Hom}_{A}\left(L, L^{\prime}\right), g^{\prime} \in \operatorname{Hom}_{A}\left(L^{*}, L^{\prime}\right)$ and some $k \in \operatorname{Hom}_{A}\left(L^{*}, L^{\prime}\right)$. The S-isomorphism of S-non-singular $E-s y m m e t r i c$ forms over A

$$
\begin{aligned}
u=\left(\begin{array}{ll}
s & 0 \\
0 & t
\end{array}\right):(P, \theta)=\left(L \oplus L^{\star},\left(\begin{array}{ll}
0 & s^{\star} t \\
\varepsilon t^{*} s & t * \alpha t
\end{array}\right)\right) \\
\longrightarrow(Q, \phi)=\left(L \oplus L^{\star},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \alpha
\end{array}\right)\right)
\end{aligned}
$$

determines a non-singular even ε-symmetric linking formation over (A, S)

$$
(M, \lambda ; F, G)=\left(0(P, \theta) ; \operatorname{coker}(f: P \longrightarrow 0), \operatorname{coker}\left(f u: P \longrightarrow Q^{\prime}\right)\right)
$$

such that

$$
\left[(Q, \phi), f,\left(Q^{\prime}, \phi^{\prime}\right)\right]=(M, \lambda ; F, G) \in M\left\langle v_{O}\right\rangle^{E}(A, S)
$$

The S-isomorphisms of 5 -non-singular ε-symmetric forms over A

$$
\begin{aligned}
& h=\left(\begin{array}{cc}
t * s & 0 \\
0 & 1
\end{array}\right):(P, \theta)=\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & s^{*} t \\
\epsilon t * s & t^{*} \alpha t
\end{array}\right)\right) \\
& \longrightarrow\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & 1 \\
\varepsilon & t^{*} \alpha t
\end{array}\right)\right) \\
& i=\left(\begin{array}{ll}
s & 0 \\
0 & 1
\end{array}\right):(P, \theta)=\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & s * t \\
\varepsilon t * s & t * \alpha t
\end{array}\right)\right) \\
& \longrightarrow\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & t \\
\varepsilon t^{*} & t^{*} \alpha t
\end{array}\right)\right) \\
& j=\left(\begin{array}{ll}
g & 0 \\
0 & l
\end{array}\right):(P, \theta)=\left(L \oplus L^{*},\left(\begin{array}{cc}
0 & s * t \\
\epsilon t^{*} s & t * \alpha t
\end{array}\right)\right) \\
& \longrightarrow\left(I^{\prime} \oplus L^{*},\left(\begin{array}{ll}
0 & g^{\prime} \\
\varepsilon g^{\prime *} & t^{*} \alpha t
\end{array}\right)\right)
\end{aligned}
$$

correspond by Proposition 3.4.6 i) to a lagrangian

$$
H=\operatorname{coker}\left(h: L \oplus L^{*} \longrightarrow I \oplus L^{*}\right) \subseteq M=\operatorname{coker}(\theta: P \longrightarrow P *)
$$

and the sublagrangians

$$
\begin{aligned}
& I=\operatorname{coker}\left(i: L \oplus L^{*} \longrightarrow L \oplus L^{*}\right) \subseteq M=\operatorname{coker}\left(\theta: P \longrightarrow P^{\star}\right) \\
& J=\operatorname{coker}\left(j: L \oplus L^{*} \longrightarrow L^{\prime} \oplus L^{\star}\right) \subseteq M=\operatorname{coker}\left(\theta: P \longrightarrow P^{*}\right)
\end{aligned}
$$

of the boundary even e-symmetric linking form over (A,S) $(M, \lambda)=\partial(P, \theta)$. Now $I \subseteq F \cap H, J \subseteq G \cap H$ and the even ε-symmetric linking formations over (A, S) ($\left.I^{\perp} / \mathrm{I}, \lambda^{1} / \lambda ; F / I, H / I\right),\left(J^{\perp} / J, \lambda^{\perp} / \lambda ; H / J, G / J\right)$ are stably equivalent to O, so that

$$
\begin{aligned}
{\left[(Q, \phi), f,\left(Q^{\prime}, \phi^{\prime}\right)\right] } & =(M, \lambda ; F, G) \\
& =(M, \lambda ; F, H) \oplus(M, \lambda ; H, G) \\
& =(I \perp / I, \lambda \perp / \lambda ; F / I, H / I) \oplus(J+/ J, \lambda \perp / \lambda ; H / J, G / J) \\
& =0 \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) .
\end{aligned}
$$

The witt class $\exists(K, \alpha ; I, J) \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)$ of the boundary even ε-symmetric linking formation over (A, S) of an \mathcal{S}-non-singul e-symmetric formation over $A(K, \alpha ; 1, J)$ may be described as follo Choose a direct complement to the lagrangian I in K, so that

$$
(K, \alpha)=\left(I \oplus I^{*},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right) \in Q^{\varepsilon}\left(I \oplus I^{*}\right)\right)
$$

for some $\theta \in Q^{E}\left(I^{*}\right)$. The inclusion of the S-lagrangian

$$
\binom{j}{k}:(J, 0) \longrightarrow\left(I \oplus I^{\star},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right)\right)
$$

extends to an S-isomorphism of S-non-singular e-symmetric forms over A

$$
\left(\begin{array}{cc}
\mathrm{j} & \tilde{j} \\
\mathrm{k} & \tilde{\mathrm{k}}
\end{array}\right): \quad\left(\mathrm{J} \oplus \mathrm{~J}^{\star},\left(\begin{array}{cc}
0 & \mathrm{~s}^{\star} \\
\varepsilon s & \phi
\end{array}\right)\right) \longrightarrow\left(I \oplus I^{\star},\left(\begin{array}{cc}
0 & 1 \\
\varepsilon & \theta
\end{array}\right)\right)
$$

for some S-isomorphism $s \in \operatorname{Hom}_{A}(J, J)$. Define an isomorphism of hyperbolic e-symmetric forms over $S^{-1} A$

$$
\begin{aligned}
& f=\left(\begin{array}{cc}
j s^{-1} & \tilde{j} \\
k s^{-1} & \tilde{k}
\end{array}\right): s^{-1}\left(J \oplus J^{*},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \phi
\end{array}\right)\right) \\
& \sim \sim s^{-1}\left(I \oplus I *,\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right)\right) .
\end{aligned}
$$

Then

$$
(K, \alpha ; I, J)=\left[\left(J \oplus J *,\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \phi
\end{array}\right)\right), f,\left(I \oplus I *,\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right)\right)\right] \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S
$$

(To verify that this is the linking formation associated to the non-singular ε-symmetric S-form over $A(K, \alpha ; J)$ used to define $\grave{\delta}(\mathrm{K}, \alpha ; I, J)$ use the S -isomorphism

$$
u=\left(\begin{array}{ll}
s & 0 \\
0 & 1
\end{array}\right): P=J \oplus J^{\star} \longrightarrow \longrightarrow J^{\star} J^{*}
$$

in the construction of $\left(\left(J \oplus J^{\star},\left(\begin{array}{ll}O & l \\ \varepsilon & \phi\end{array}\right)\right), f,\left(I \oplus I^{*} \cdot\left(\begin{array}{ll}0 & 1 \\ \varepsilon & \theta\end{array}\right)\right) 1\right)$.

Lemma 4 If $\left(K_{,}, \alpha ; I, J\right),\left(K^{\prime}, \alpha^{\prime} ; I^{\prime}, J^{\prime}\right)$ are S-non-sinqular ϵ-symmetr formations over A such that the induced non-singular e-symmetri formations over $S^{-1} A S^{-1}(K, \alpha ; I, J), S^{-1}\left(K^{\prime}, \alpha^{\prime} ; I^{\prime}, J^{\prime}\right)$ are isomorphic then

$$
\left.\partial(K, \alpha ; I, J)=K^{\prime}, \alpha^{\prime} ; I^{\prime}, J^{\prime}\right) \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)
$$

Proof: As above, let

$$
\begin{aligned}
& f: S^{-1}\left(J \oplus J^{*},\left(\begin{array}{ll}
0 & 1 \\
E & \phi
\end{array}\right)\right) \longrightarrow S^{-1}\left(I \oplus I^{*},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right)\right)=S^{-1}(K, \alpha \\
& f^{\prime}: S^{-1}\left(J^{\prime} \oplus J^{\prime *},\left(\begin{array}{ll}
0 & 1 \\
E & \phi^{\prime}
\end{array}\right)\right) \\
& \\
& S^{-1}\left(I^{\prime} \oplus I^{\prime *},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta^{\prime}
\end{array}\right)\right)=S^{-1}\left(K^{\prime}, \alpha^{\prime}\right)
\end{aligned}
$$

be isomorphisms of the induced hyperbolic e-symmetric forms over $s^{-1} A$. Let

$$
q: S^{-1}(K, \alpha ; I, J) \longrightarrow S^{-1}\left(K^{\prime}, \alpha^{\prime} ; I^{\prime}, J^{\prime}\right)
$$

be an isomorphism of the induced non-singular e-symmetric formations over $S^{-1} A$. The isomorphisms of hyperbolic e-symmetrin forms over $S^{-1} A$

$$
\begin{aligned}
& g: S^{-1}(K, \alpha) \longrightarrow S^{-1}\left(K^{\prime}, \alpha^{\prime}\right) \\
& h=f^{\prime-1} g f: S^{-1}\left(J \oplus J^{*},\left(\begin{array}{cc}
0 & 1 \\
\varepsilon & \phi
\end{array}\right)\right) \longrightarrow S^{-1}\left(J^{\prime} \oplus J^{\prime *},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \phi^{\prime}
\end{array}\right)\right)
\end{aligned}
$$

are such that

$$
\begin{aligned}
& g\left(S^{-1} I\right)=S^{-1} I^{\prime} \subseteq S^{-1} K^{\prime} \\
& h\left(S^{-1} J\right)=S^{-1} J^{\prime} \subseteq S^{-1}\left(J^{\prime} \oplus J^{\prime} \star\right)
\end{aligned}
$$

Applying Lemma 3, we have

$$
\begin{aligned}
& \left.I(K, \alpha), g,\left(K^{\prime}, \alpha^{\prime}\right)\right]=0 \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \\
& {\left[\left(J \oplus J^{*} \cdot\left(\begin{array}{ll}
O & 1 \\
\varepsilon & \phi
\end{array}\right)\right), h,\left(J^{\prime} \oplus J^{\prime} \star \cdot\left(\begin{array}{ll}
O & 1 \\
\varepsilon & \phi^{\prime}
\end{array}\right)\right)\right]=0 \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)}
\end{aligned}
$$

Applying Lemma 2 ，we have

$$
\begin{aligned}
& \dot{\partial}(K, \alpha ; I, J)=\left\{\left(J \oplus J *,\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \phi
\end{array}\right)\right), F,\left(I \oplus I *,\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right)\right)!\right. \\
& =\left[\left(J \oplus J^{*},\left(\begin{array}{ll}
0 & 1 \\
E & \emptyset
\end{array}\right)\right), h,\left(J^{\prime} \oplus J^{\prime *},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \phi^{\prime}
\end{array}\right)\right)\right] \\
& \left.\oplus\left(J^{\prime} \oplus J^{\prime *},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \phi^{\prime}
\end{array}\right)\right), f^{\prime},\left(I^{\prime} \oplus I^{\prime *},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta^{\prime}
\end{array}\right)\right)\right] \\
& \text { 由 (} \left.\left(K^{\prime}, \alpha^{\prime}\right), g^{-1},(K, \alpha)\right] \\
& =\left[\left(J^{\prime} \oplus J^{\prime} *,\left(\begin{array}{ll}
0 & 1 \\
\epsilon & \phi^{\prime}
\end{array}\right)\right), \mathrm{f}^{\prime},\left(I^{\prime} \oplus I^{\prime *},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta^{\prime}
\end{array}\right)\right)\right] \\
& =3\left(K^{\prime}, \alpha^{\prime} ; I^{\prime}, J^{\prime}\right) \in M\left\langle v_{O}\right\rangle^{€}(A, S) \text {. }
\end{aligned}
$$

Lemma 5 If（ $\mathrm{K}, \alpha ; \mathrm{I}, \mathrm{J})$ is an S －non－singular E －symmetric formation over A such that

$$
S^{-1}(K, \alpha ; I, J)=0 \in M_{S}^{\varepsilon}\left(S^{-1} A\right)
$$

then

$$
\partial(K, \alpha ; I, J)=0 \in M\left\langle v_{O}\right\rangle^{E}(A, S)
$$

Proof：Let（ $D, n \in Q^{1}(D, \varepsilon)$ ）be the l－dimensional e－symmetric $S^{-1} A$－Poincaré complex associated to $(K, a ; I, J)$ ，with

$$
\begin{aligned}
& d=k^{*}: D_{1}=I \longrightarrow D_{0}=J *, D_{r}=0(r \neq 0,1) \\
& \eta_{0}=\left\{\begin{array}{l}
\epsilon j: D^{0}=J \longrightarrow D_{1}=I \\
j^{*}+k^{\star}: D^{1}=I^{*} \longrightarrow D_{0}=J^{\star}
\end{array}\right. \\
& \eta_{1}=\theta: D^{1}=I * \longrightarrow D_{1}=I
\end{aligned}
$$

for some E－symmetric form over $A\left(I *, \theta \in Q^{E}(I *)\right)$ such tha＊

$$
(K, \alpha)=\left(I \oplus I *,\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & \theta
\end{array}\right),\right.
$$

with $\binom{j}{k}: J \longrightarrow I \oplus I$ the inclusion. Now

$$
\begin{aligned}
S^{-1}(D, \eta) & =S^{-1}(K, \alpha ; 1, J)=0 \\
& \in L_{S}^{1}\left(S^{-1} A, \varepsilon\right)=M_{S}^{\varepsilon}\left(S^{-1} A\right)=\Gamma^{1}\left(A \longrightarrow S^{-1} A, \varepsilon\right),
\end{aligned}
$$

so that there exists a 2 -dimensional ε-symmetric $S^{-1} A$-Poincaré pair over $A\left(f: D \longrightarrow \delta D,(\delta \eta, \eta) \in Q^{2}(f, \varepsilon)\right)$ with δD a
f.g. projective A-module chain complex such that $\delta D_{r}=0(r \neq 0,1,2)$. Define an A-module chain complex δD^{\prime} and an A-module chain map

$$
g: \delta D \longrightarrow \delta D^{\prime}
$$

by

and let $\left(D^{\prime}, n^{\prime} \in Q^{1}\left(D^{\prime}, \epsilon\right)\right)$ be the l-dimensional e-symmetric $S^{-1} A$-Poincaré complex over A obtained from (D, η) by suraery on the 2-dimensional e-symmetric pair over A

$$
\left(g f: D \longrightarrow \delta D^{\prime},(g, 1)^{8}(\delta n, \eta) \in Q^{2}(g f, \varepsilon)\right)
$$

(which becomes connected over $S^{-1} A$). The S-non-singular ε-symmetric formation over A associated to ($D^{\prime}, \eta^{\prime}$) is given by

The boundary even e-symmetric linking formation over (A, S) ($\left.{ }^{\prime}, \alpha^{\prime} ; I^{\prime}, J^{\prime}\right)$ is stably equivalent to $(\mathrm{K}, \alpha ; \mathrm{I}, \mathrm{J})$, by Propositions (1.5.1 i), 3.5.2 ii), since $3(K, \alpha ; I, J)$ corresponds to the S-acyclic 2-dimensional even $(-\varepsilon)$-symmetric Poincaré complex over $A \partial \bar{S}(D, \eta)$, and $\partial \bar{S}(D, \eta)$ is homotopy equivalent
to $\bar{S} \bar{S}\left(D^{\prime}, \eta^{\prime}\right)$. Define an A-module chain complex $\delta \bar{D}^{\prime}$ and an A-module chain map

$$
g^{\prime}: D^{\prime} \longrightarrow \delta \tilde{D}^{\prime}
$$

by

with

$$
\begin{aligned}
d^{\prime} & =\left(\begin{array}{ccc}
d & 0 & \eta_{O} f^{*} \\
-f & d & -\delta \eta_{O} \\
0 & 0 & -d^{*}
\end{array}\right) \\
& : D_{i}^{\prime}=D_{1} \oplus \delta D_{2} \oplus \delta D^{l} \longrightarrow D_{O}^{\prime}=D_{O}^{\oplus \delta D_{1} \oplus \delta D^{2}}, \\
g^{\prime} & =\left(f \quad d \quad-\delta \eta_{O}\right): D_{O}^{\prime}=D_{O} \oplus \delta D_{1} \oplus \delta D^{2} \longrightarrow \delta \widetilde{D}_{O}^{\prime}=\delta D_{O} .
\end{aligned}
$$

The 2-dimensional e-symmetric pair over A

$$
\left(g^{\prime}: D^{\prime} \longrightarrow \delta \tilde{D}^{\prime},\left(O, \eta^{\prime}\right) \in Q^{2}\left(g^{\prime}, \varepsilon\right)\right)
$$

is $\mathrm{S}^{-1} \mathrm{~A}$-Poincar \dot{e}, so that there exists an A -module morphism $i \in \operatorname{Hom}_{A}\left(D_{i}^{\prime}, \delta D^{\circ}\right)$ such that the composite A-module morphism

$$
s=i \eta_{0^{\prime}}{ }^{\prime *}: \delta \mathrm{D}^{0} \xrightarrow{g^{\prime *}} \mathrm{D}^{\circ} \xrightarrow{{ }^{\eta} \dot{\mathrm{O}}} \mathrm{D}_{\mathrm{i}} \xrightarrow{\mathrm{i}} \delta 0^{\circ}
$$

is an S-isomorphism. Define a l-dimensional A-module chain complex $D^{\prime \prime}$ and an S-equivalence

$$
h: D^{\prime} \longrightarrow D^{\prime \prime}
$$

by

Let

$$
\eta^{\prime \prime}=h^{\ell}\left(\eta^{\prime}\right) \in Q^{l}\left(D^{\prime \prime}, E\right),
$$

so that $\left(D^{\prime \prime}, \eta^{\prime \prime}\right)$ is a 1 -dimensional ε-symmetric $S^{-l}{ }_{A-P o i n c a r e ́}$ complex over A corresponding to the S-non-singular E-symmetric formation over A

$$
\begin{aligned}
& \left(K^{\prime \prime}, \alpha^{\prime \prime} ; I ", J^{\prime \prime}\right)=\left(D_{1}^{\prime \oplus D^{\prime \prime}},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & n_{1}^{\prime \prime}
\end{array}\right) ; D_{1}^{\prime \prime}, i m\binom{\bar{E} n_{0}^{\prime \prime}}{d^{\prime \prime}}: D^{\prime \prime} \rightarrow D_{1}^{\prime \prime \oplus D^{\prime \prime}}\right) \\
& =\left(\delta D^{\circ} \oplus \delta D_{0},\left(\begin{array}{ll}
0 & 1 \\
\varepsilon & i \eta_{1} i \star
\end{array}\right): \delta D^{\circ}, i m\left(s: \delta 0^{\circ} \longrightarrow \delta D^{\circ}\right)\right)
\end{aligned}
$$

with

$$
S^{-1} I^{\prime \prime}=S^{-1} J^{\prime \prime} \subseteq S^{-1} K^{\prime \prime} .
$$

Proposition 1.6 .4 translates the homotopy equivalence of l-dimensional e-symmetric Poincaré complexes over $s^{-1} A$

$$
h: s^{-1}\left(D^{\prime}, \eta^{\prime}\right) \longrightarrow S^{-1}\left(D^{\prime \prime}, \eta^{\prime \prime}\right)
$$

into an isomorphism of non-singular e-symmetric formations over $\mathrm{S}^{-1} \mathrm{~A}$

$$
\begin{aligned}
& h: S^{-1}\left(K^{\prime}, \alpha^{\prime} ; I^{\prime}, J^{\prime}\right) \oplus S^{-1}\left(H^{\varepsilon}\left(J^{\prime *}\right) ; J^{\prime *}, J^{\prime \prime}\right) \\
& \longrightarrow S^{-1}\left(K^{\prime \prime}, \alpha^{\prime \prime} ; I^{\prime \prime}, J^{\prime \prime}\right) \oplus S^{-1}\left(H^{\varepsilon}\left(J^{\prime *}\right) ; J^{\prime *}, J^{\prime} ;\right.
\end{aligned}
$$

Applying Lemma 4, we have

$$
\begin{align*}
& 3(K, \alpha ; I, J)=\partial\left(K^{\prime}, \alpha^{\prime} ; I^{\prime}, J^{\prime}\right) \\
& \quad=\exists\left(K^{\prime \prime}, \alpha^{\prime \prime} ; I^{\prime \prime}, J^{\prime \prime}\right)=3\left(K^{\prime \prime}, \alpha " ; I^{\prime \prime}, I^{\prime \prime}\right)=0 \in M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \tag{1}
\end{align*}
$$

It follows from Proposition 3.5.3 ii) and Lemma 5 that the correspondence of Proposition 3.5.2 ii)
(S-acyclic 2-dimensional even (-e)-symmetric Poincaré complexes over A ($C, \phi)$)
\longleftrightarrow (non-singular even e-symmetric linking formations over ($(\mathrm{A}, \mathrm{S})(\mathrm{M}, \lambda ; \mathrm{F}, \mathrm{G})$)
can be used to define an abelian group morphism

$$
L^{1}(A, S, E) \longrightarrow M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S):(C, \phi) \longmapsto(M, \lambda ; F, G)
$$

We shall prove that this is in fact an isomorphism, so that applying proposition 3.5 .3 ii) again it will follow that a non-singular even e-symmetric linking formation over (A,S) ($M, \lambda ; F, G$) representing O in $M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)$ is stably equivalent to the boundary $J(K, \alpha ; I, J)$ of an S-non-singular e-symmetric formation over $A\left(K, \alpha_{i} I, J\right)$ such that $S^{-1}(K, \alpha ; I, J)=0 \in M_{S}^{\varepsilon}\left(S^{-1} A\right)$. In order to verify that the correspondence of Proposition 3.5.2 ii) also defines an abelian group morphism

$$
M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \longrightarrow L^{1}(A, S, \varepsilon) ;(M, \lambda ; F, G) \longmapsto(C, \phi)
$$

we have to show that the S-acyclic 2 -dimensional even $(-\varepsilon)$-symmetric Poincaré complex over A associated to the non-singular even e-symmetric linking formation over (A, S)

$$
\left\{\begin{array}{l}
(M, \lambda ; F, G) \oplus(M, \lambda ; G, H) \\
(M, \lambda ; F, G) \\
(M, \lambda ; F, G)
\end{array}\right. \text { is S-acyclic cobordant to the complex }
$$

associated to $\left\{\begin{array}{l}(M, \lambda ; F, H) \\ \left(L^{1} / L, \lambda \perp / \lambda ; F \cap L 1, G / L\right), \text { for any non-singular } \\ \left(L^{1} / L, \lambda \perp / \lambda ; F / L, G / L\right)\end{array}\right.$
even e-symmetric linking form over (A, S) (M, A) and lagrangians
F, G together with a $\left\{\begin{array}{l}\text { lagrangian } H \text { of }(M, \lambda) \\ \text { sublagrangian } L \text { of }(M, \lambda ; F, G) \\ \text { sublagrangian } L \text { of }(M, \lambda) \text { such that } L \subseteq F \cap G\end{array}\right.$.
We shall consider the three cases separately.

Recall from the proof of Proposition 3.5.2 ii) that the S-acyclic 2 -dimensional even $(-\varepsilon)$-symmetric Poincaré complex over $A\left(C, \phi \in Q\left\langle v_{O}\right\rangle^{2}(C,-\varepsilon)\right)$ associated to the even ε-symmetric linking formation over (A, S) (M, $\lambda ; F, G$) is the union

$$
(C, \phi)=\left(\delta D U_{D^{\prime}} \delta D^{\prime},-\delta \eta U_{\eta} \delta \eta^{\prime} \in Q\left\langle v_{O^{\prime}}\right)^{2}\left(\delta D U_{D} \delta D^{\prime},-\varepsilon\right)\right)
$$

of the s-acyclic null-cobordisms ($\left.f: D \longrightarrow \delta D,(\delta \eta, \eta) \in Q\left\langle v_{O}\right\rangle^{2}(f,-\varepsilon)\right)$, $\left(f^{\prime}: D \longrightarrow \delta D^{\prime},\left(\delta \eta^{\prime}, \eta\right) \in Q\left\langle v_{0}\right\rangle^{2}\left(f^{\prime},-\varepsilon\right)\right)$ associated to the lagrangians F, G by Proposition 3.4 .5 ii), with ($D, \eta \in Q\left\langle v_{O}\right\rangle^{1}(D,-\varepsilon)$) the S-acyclic complex associated to the linking form (M, λ) by Proposition 3.4.1. Let $\left(f^{\prime \prime}: D \longrightarrow \delta D^{\prime \prime},\left(\delta \eta^{\prime \prime}, \eta\right) \in Q\left\langle v_{O}\right\rangle^{2}\left(f^{\prime \prime},-\varepsilon\right)\right)$ be the S-acyclic null-cobordism of (D, n) corresponding to the lagrangian H of (M, λ), so that the S-acyclic complexes associated to the linking formations $(M, \lambda ; G, H),(M, \lambda ; F, H)$ are the unions

$$
\begin{aligned}
& \left(C^{\prime}, \phi^{\prime}\right)=\left(\delta D^{\prime} U_{D} \delta D^{\prime \prime},-\delta \eta^{\prime} U_{\eta} \delta \eta^{\prime \prime} \in Q\left(v_{O}\right\rangle^{2}\left(\delta D^{\prime} U_{D} \delta D^{\prime \prime},-\varepsilon\right)\right) \\
& \left(C^{\prime \prime}, \phi^{\prime \prime}\right)=\left(\delta D U_{D} \delta D^{\prime \prime},-\delta \eta U_{\eta} \delta \eta^{\prime \prime} \in Q\left\langle v_{O}\right\rangle^{2}\left(\delta D U_{D} \delta D^{\prime \prime},-\varepsilon\right)\right) .
\end{aligned}
$$

Now (C ", $\phi^{\prime \prime}$) is homotopy equivalent to the S-acyclic complex obtained from $(C, \phi) \oplus\left(C^{\prime}, \phi^{\prime}\right)$ by surgery on the connected S-acyclic 3-dimensional even (-e)-symmetric pair over A

$$
\left(\left(g g^{\prime}\right): C \oplus C^{\prime} \longrightarrow \delta D^{\prime},\left(0, \phi \oplus \phi^{\prime}\right) \in Q\left\langle v_{O_{O}}\right\rangle^{3}\left(\left(\rho g^{\prime}\right),-\varepsilon\right)\right),
$$

where

$$
\begin{aligned}
& g=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right): C_{r}=\delta D_{r} \oplus D_{r-1} \oplus \delta D_{r}^{\prime} \longrightarrow \delta D_{r}^{\prime} \\
& g^{\prime}=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right): C_{r}^{\prime}=\delta D_{r}^{\prime \oplus D_{r-1} \oplus \delta D_{r}^{\prime \prime} \longrightarrow \delta D_{r}^{\prime} \longrightarrow(r \in \mathbb{Z})}
\end{aligned}
$$

It follows from the S-acyclic counterpart of Proposition 1.4 .2 that

$$
(C, \phi) \oplus\left(C^{\prime}, \phi^{\prime}\right)=\left(C^{\prime}, \phi^{\prime \prime}\right) \in L^{1}(A, S, \varepsilon) .
$$

The S-acyclic complexes associated to the stably equivalent even ε-symmetric linking formations ($M, \lambda ; F, G$), ($L^{1} / L, \lambda^{1} / \lambda ; F \cap I^{1}, G / L$) are homotopy equivalent (by Proposition 3.5 .2 jil) and hence represent the same element of $L^{1}(A, S, \varepsilon)$.

Given a non-singular even ε-symmetric linking formation over (A, S) ($M, \lambda ; F, G$) let $(K, \alpha ; J)$ be a non-singular $E-s y m m e t r i c$ S-form over A associated to it by Proposition 3.5.2 i). Let $j \in \operatorname{Hom}_{A}(J, K)$ be the inclusion, and let

$$
(j k):\left(J \oplus J^{*},\left(\begin{array}{cc}
0 & s \\
\varepsilon S^{\star} & k * \alpha k
\end{array}\right)\right) \longrightarrow(K, \alpha)
$$

be an extension of the inclusion to an S-isomorphism of S-non-sinquiar e-symmetric forms over A, with

$$
s=j * \alpha k: J^{*} \longrightarrow J^{*}
$$

an S-isomorphism. fiven a sublagrangian L of (M, λ) such that $L \subseteq F \cap G$ there exist a f.g. projective A-module J', an A-module morphism $j^{\prime} \in \operatorname{Hom}_{A}\left(J^{\prime}, K\right)$ and S-isomorphisms $u \in \operatorname{Hom}_{A}\left(J^{\prime}, J\right)$, $v \in \operatorname{Hom}_{A}\left(J^{\prime}, J\right)$ such that the inclusions $L \longrightarrow F, L \longrightarrow G$ have resolutions

Let $\left(C, \phi \in Q\left\langle v_{0}\right\rangle^{2}(C,-\epsilon\rangle\right)$ be the S-acyclic 2-dimensional even (-E)-symmetric Poincaré complex over A in normal form associal to the S-form $(K, \alpha ; J)$ (as in the proof of Proposition 3.5.2 i Define a 3 -dimensional S-acyclic A-module chain complex D and chain map

$$
\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D}
$$

by

Let $\left(C^{\prime}, \phi^{\prime} \in Q\left\langle v_{O}\right\rangle^{2}\left\{C^{\prime},-E\right)\right\}$ be the S-acyclic 2-dimensional eve $(-\varepsilon)$-symmetric Poincaré complex over A obtained from (C, ϕ) by surgery on the connected S-acyclic 3-dimensional even $(-\epsilon)-$ symmetric pair over $A\left(f: C \longrightarrow D,(O, \phi) \in Q\left\langle v_{0}\right\rangle^{3}(f,-\epsilon)\right)$. Let $\left(C^{\prime \prime}, \phi^{\prime \prime} \in Q\left\langle v_{O}\right\rangle^{2}\left(C^{\prime \prime},-\varepsilon\right)\right)$ be the S-acyclic $2-d i m e n s i o n a l$ eve (-E)-symmetric Poincaré complex over A in normal form associa by Proposition 3.5.2 ii) to the non-singular e-symmetric S-fc over $A\left(K, \alpha ; i m\left(j^{\prime}: J \longrightarrow \longrightarrow K\right)\right)$, which corresponds by Proposition 3.5 .2 i) to the non-singular even ε-symmetric linking formation over (A, S) ($L \perp / L, \lambda+/ \lambda ; F / L, G / L$). The chain
equivalence

$$
h: C^{\prime} \longrightarrow C^{\prime \prime}
$$

given by

defines a homotopy equivalence

$$
h:\left(C^{\prime}, \phi^{\prime}\right) \longrightarrow\left(C^{\prime \prime}, \phi^{\prime \prime}\right) \text {. }
$$

It follows that

$$
(C, \phi)=\left(C^{\prime}, \phi^{\prime}\right)=\left(C^{\prime}, \phi^{\prime \prime}\right) \in L^{1}(A, S, \varepsilon),
$$

verifying that the S-acyclic complexes associated to the linking formations $(M, \lambda ; F, G),\left(L^{\perp} / L, \lambda+/ \lambda ; F / L, G / L\right)$ are S-acyclic cobordant.

This completes the identification

$$
L^{1}(A, S, E)=M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)
$$

The verification that a non-sinqular $\left\{\begin{array}{l}\varepsilon \text {-quadratic } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking formation over $(A, S)\left\{\begin{array}{ll}(M, \lambda, \mu ; F, G) \\ (F, G)\end{array}\right.$ represents O in the Witt group $\left\{\begin{array}{l}M_{E}(A, S) \\ \bar{M}_{\varepsilon}(A, S)\end{array}\right.$ if and only if it is stably equivalent to the boundary $\left\{\begin{array}{l}\partial(K, \alpha ; I, J) \\ \partial(K, B ; I, J)\end{array}\right.$ of an S-non-singular $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ formation over $A\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, B ; I, J)\end{array}\right.$ such that

$$
\left\{\begin{array}{l}
S^{-1}(K, \alpha ; I, J)=0 \in M\left\langle v_{O}\right\rangle_{S}^{E}\left(S^{-1} A\right) \\
S^{-1}(K, B ; I, J)=0 \in M_{\epsilon}^{S}\left(S^{-1} A\right)
\end{array}\right.
$$

proceeds by analogy with the case of even e-symmetric linking formations dealt with above.

It remains to prove that
$\begin{cases}\text { if } \operatorname{ker}\left(\hat{\delta}: \hat{H}^{\circ}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \epsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \epsilon\right)\right)=0 \\ \text { for all } A, S, \varepsilon & \text { a non-singular } \\ \text { for all } A, S, \epsilon & \end{cases}$
$\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic } \\ \text { split e-quadratic }\end{array}\right.$ linking formation over (A, S) $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G) \\ (F, G)\end{array}\right.$
represents 0 in the Witt group $\left\{\begin{array}{l}M_{\langle }\left\langle v_{O}\right\rangle^{E}(A, S) \\ M_{\varepsilon}(A, S) \quad \text { if and only if } \\ \widetilde{M}_{\varepsilon}(A, S)\end{array}\right.$
it is stably equivalent to the boundary $\left\{\begin{array}{l}\partial(N, \xi) \\ \partial(N, \xi) \\ \partial(N, \xi, \rho)\end{array}\right.$ of an
$\left\{\begin{array}{l}(-\varepsilon) \text {-symmetric } \\ \text { even }(-\varepsilon) \text {-symmetric linking form over }(A, S) \\ (-\varepsilon) \text {-quadratic }\end{array}\left\{\begin{array}{l}(N, E) \\ (N, \varepsilon) \\ (N, E, 0)\end{array}\right.\right.$.
For $\left\{\begin{array}{l}\text { even e-symmetric } \\ \text { split e-quadratic }\end{array}\right.$ linking formations this follows from
Proposition 3.5.3 ii). (The projection of Proposition 3.5.2 iii)
(S-acyclic 2-dimensional (-E)-quadratic Poincaré
complexes over A $(C, \psi))$
\longrightarrow (non-singular split ε-quadratic linking formations
can thus be used to define an isomorphism of abelian groups

$$
\left.\mathrm{L}_{1}(A, S, E) \longrightarrow \tilde{M}_{E}(A, S) ;(C, \psi) \longmapsto(F, G)\right)
$$

The method of proof of Proposition 3.5.2 ii) is readily modified to give the corresponding result for equadratic linking formations.

$$
\text { A non-singular }\left\{\begin{array}{l}
\text { (even } \quad \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { formation over } S^{-1} A\right.
$$

$$
\left\{\begin{array}{l}
(Q, \phi ; F, G) \\
(Q, \psi ; F, G)
\end{array}\right. \text { with projective class }
$$

$$
[G]-\left[F^{*}\right] \in S=\operatorname{im}\left(\tilde{K}_{O}(A) \longrightarrow \tilde{K}_{O}\left(S^{-1} A\right)\right) \subseteq \tilde{K}_{O}\left(S^{-1} A\right)
$$

is stably isomorphic to $\left\{\begin{array}{l}S^{-1}(K, \alpha ; I, J) \\ S^{-1}(K, \beta ; I, J)\end{array}\right.$ for some s-non-singular $\left\{\begin{array}{l}(\text { even }) ~ E-s y m m e t r i c ~ f o r m a t i o n ~ o v e r ~\end{array}\right.$ f $\left\{\begin{array}{l}(K, \alpha ; I, J) \\ (K, \beta ; I, J)\end{array}\right.$. It follows
from Proposition 3.5.4 that the boundary operations
a : (S-non-singular formations over A)
\longrightarrow (linking formations over (A,S))
can be used to define abelian group morphisms

$$
\begin{aligned}
& \exists: M_{S}^{\varepsilon}\left(S^{-I} A\right) \longrightarrow M\left\langle v_{O}\right\rangle^{\epsilon}(A, S) ; S^{-1}(K, \alpha ; I, J) \longmapsto \partial(K, \alpha ; I, J) \\
& \dot{\partial}: M\left\langle v_{O}\right\rangle_{S}^{\epsilon}\left(S^{-1} A\right) \longrightarrow M_{\epsilon}(A, S) ; S^{-1}(K, \alpha ; I, J) \longmapsto \partial(K, \alpha ; I, J) \\
& \dot{\partial}: M_{E}^{S}\left(S^{-1} A\right) \longrightarrow M_{\epsilon}(A, S) ; S^{-1}(K, B ; I, J) \longmapsto \partial(K, B ; I, J) \quad
\end{aligned}
$$

There is also defined a morphism

$$
\therefore: M_{S}^{\varepsilon}\left(S^{-1} A\right) \longrightarrow \cdots M^{\varepsilon}(A, S) ; S^{-1}(K, \alpha ; I, J) \longmapsto \partial(K, \alpha ; I, J),
$$

namely the composite

$$
M_{S}^{E}\left(S^{-1} A\right) \longrightarrow M\left\langle V_{0}\right\rangle^{\varepsilon}(A, S) \longrightarrow M^{E}(A, S) .
$$

[^0]The correspondence of Proposition 3.5.2 i) associates to a non-singular $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetric } \\ \text { c-quadratic } \\ \text { split } \quad \text {-quadratic }\end{array}\right.$ linking formation over (A, S) $\left\{\begin{array}{l}(M, \lambda ; F, G) \\ (M, \lambda, \mu ; F, G) \text { a stable isomorphism class of non-singular } \\ (F, G)\end{array}\right.$ $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric } s \text {-forms over } A \\ \varepsilon \text {-quadratic }\end{array}\left\{\begin{array}{l}(K, \alpha ; L) \\ (K, \alpha ; L), \text { and it follows } \\ (K, \beta ; L)\end{array}\right.\right.$ from Proposition 3.5 .4 that there are well-defined abelian group morphisms

$$
\left\{\begin{array}{l}
M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \longrightarrow L^{E}(A) ;(M, \lambda ; F, G) \longmapsto(K, a) \\
\left.M_{E}(A, S) \longrightarrow L_{O}\right\rangle^{\varepsilon}(A) ;(M, \lambda, H ; F, G) \longmapsto(K, \alpha) \\
\tilde{M}_{\varepsilon}(A, S) \longrightarrow(A) ;(F, G) \longmapsto \longrightarrow(K, B)
\end{array}\right.
$$

from the witt groups of linking formations over (A, S) to the Witt groups of forms over A defined in $\$ 1.6$ above.

of $(A, S)\left\{\begin{array}{l}L^{2 k+1}(A, S, E) \\ L_{2 k+1}(A, S, E)\end{array}(k \leqslant-1)\right.$ by

$$
\begin{cases}L^{2 k+1}(A, S, \varepsilon)= \begin{cases}M_{-\varepsilon}(A, S) & (k=-1) \\ L_{2 k+1}(A, S, E) & (k \leqslant-2)\end{cases} \\ L_{2 k+1}(A, S, \varepsilon)=L_{2 k+2 i+1}\left(A, S,(-)^{i} \in\right) \quad(k \leqslant-1, k+i \geqslant 0) .\end{cases}
$$

Proposition 3.5 .5 i) The localization exact sequence of algebraic Poincaré cobordism groups

$$
\begin{aligned}
L^{2 k+1}\left(A,(-)^{k} \epsilon\right) & \longrightarrow L_{S}^{2 k+1}\left(S^{-1} A,(-)^{k} \varepsilon\right) \longrightarrow L^{2 k+1}\left(A, S,(-)^{k} \varepsilon\right) \\
& \longrightarrow L^{2 k}\left(A,(-)^{k} \varepsilon\right) \longrightarrow L_{S}^{2 k}\left(S^{-1} A,(-)^{k} \epsilon\right) \quad\left({ }^{k}\right)_{2 k+1}
\end{aligned}
$$

is naturally isomorphic for $\left\{\begin{array}{l}k=0 \\ k=-1 \text { to a localization exact } \\ k \leqslant-2\end{array}\right.$
sequence of witt groups

$$
\left\{\begin{array}{l}
M^{\varepsilon}(A) \longrightarrow M_{S}^{\varepsilon}\left(S^{-1} A\right) \xrightarrow{j} M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \longrightarrow L^{\varepsilon}(A) \longrightarrow L_{S}^{\varepsilon}\left(S^{-1} A\right) \\
M\left\langle v_{O}\right\rangle^{\varepsilon}(A) \longrightarrow M\left(v_{O}\right\rangle_{S}^{\varepsilon}\left(S^{-1} A\right) \xrightarrow{\ni} M_{\varepsilon}(A, S) \longrightarrow L\left\langle v_{O}\right\rangle^{\varepsilon}(A) \longrightarrow L\left\langle v_{O}\right\rangle_{S}^{\varepsilon}\left(S^{-1} A\right) \\
M_{\varepsilon}(A) \longrightarrow M_{\varepsilon}^{S}\left(S^{-1} A\right) \xrightarrow{\square} \tilde{M}_{\varepsilon}(A, S) \longrightarrow L_{\varepsilon}(A) \longrightarrow L_{\varepsilon}^{S}\left(S^{-1} A\right) .
\end{array}\right.
$$

ii) There are defined natural abelian group morphisms

$$
M^{\varepsilon}(A, S) \longrightarrow L^{2 k+1}\left(A, S,(-)^{k} E\right) \quad(k \geqslant 1)
$$

for all A, S, E. If $\left\{\begin{array}{l}(A, S) \text { is l-dimensional } \\ \operatorname{ker}\left(\hat{\delta}: \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, E\right)\right)=0\end{array}\right.$
then for $\left\{\begin{array}{l}k \geqslant 1 \\ k=1\end{array}\right.$ these are isomorphisms.
iii) If (A, S) is o-dimensional then

$$
M_{\varepsilon}(A, S)=M\left\langle v_{0}\right\rangle^{\varepsilon}(A, S)=M^{\varepsilon}(A, S)=0,
$$

and there are defined localization exact sequences of witt groups

$$
\begin{aligned}
O \longrightarrow I^{E}(A) \longrightarrow I_{S} & { }_{S}\left(S^{-1} A\right) \longrightarrow L^{E}(A, S) \\
& \longrightarrow M^{-\varepsilon}(A) \longrightarrow M_{S}^{-\varepsilon}\left(S^{-1} A\right) \longrightarrow 0,
\end{aligned}
$$

$$
\begin{aligned}
& 0 \longrightarrow \mathrm{~L}^{\varepsilon}(A) \longrightarrow \mathrm{L}_{\mathrm{S}}^{\mathrm{E}}\left(\mathrm{~S}^{-1} \mathrm{~A}\right) \xrightarrow{\ni} \mathrm{L}\left\langle\mathrm{v}_{\mathrm{O}}\right\rangle^{\varepsilon}(\mathrm{A}, \mathrm{~S}) \\
& \longrightarrow M\left(V_{O}\right\rangle^{-\varepsilon}(A) \longrightarrow M\left\langle v_{O}\right\rangle_{S}^{-\varepsilon}\left(S^{-1} A\right) \longrightarrow 0, \\
& 0 \longrightarrow L\left\langle v_{0}\right\rangle^{\varepsilon}(A) \longrightarrow I,\left\langle v_{O}\right\rangle{ }_{S}^{\varepsilon}\left(S^{-1} A\right) \longrightarrow L_{E}(A, S) \longrightarrow M_{-\varepsilon}(A) \\
& \longrightarrow M_{-\varepsilon}^{S}\left(S^{-1} A\right) \xrightarrow{\partial} \tilde{M}_{-\varepsilon}(A, S) \longrightarrow L_{-\varepsilon}(A) \longrightarrow L_{-\varepsilon}^{S}\left(S^{-1} A\right) \\
& \xrightarrow{\partial} \widetilde{L}_{-\epsilon}(A, S) \longrightarrow M_{\epsilon}(A) \longrightarrow M_{\epsilon}\left(S^{-1} A\right) \xrightarrow{\partial} \widetilde{M}_{\varepsilon}(A, S) \longrightarrow . \\
& \text { iv) If }\left\{\begin{array}{l}
\text { im }\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0 \\
\hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right) \text { is an isomorphism } \\
\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A, \varepsilon\right) \text { is an isomorphism }
\end{array}\right.
\end{aligned}
$$

there is a natural identification of witt groups of linking formations over (A, S)

$$
\left\{\begin{array}{l}
M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)=M^{\varepsilon}(A, S) \\
M_{\varepsilon}(A, S)=M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \\
\widetilde{M}_{\varepsilon}(A, S)=M_{E}(A, S)
\end{array}\right.
$$

In particular, if $1 / 2 \in A$

$$
\tilde{M}_{E}(A, S)=M_{E}(A, S)=M\left\langle V_{O}\right\rangle^{E}(A, S)=M^{E}(A, S)
$$

Proof: i) lt has already been verified (in the course of the proof of proposition 3.5.4) that there are natural identifications

$$
\left\{\begin{array}{l}
L^{1}(A, S, E)=M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S) \\
L_{L}(A, S, E)=\bar{M}_{E}(A, S)
\end{array}\right.
$$

The localization exact sequence of L-groups $\left\{\begin{array}{l}(*)_{1} \\ (*)_{-3}\end{array}\right.$ can thus be identified with the localization sequence of Witt qroups

The exactness of the witt group sequence can also be establisher directly, using Proposition 3.5.4. The direct method applies also to the verification of the exactness of (*) -1

$$
\begin{aligned}
M\left\langle v_{O}\right\rangle^{E}(A) \longrightarrow M\left\langle v_{O}\right\rangle{ }_{S}^{E}\left(S^{-1} A\right) & \longrightarrow M_{E}(A, S) \\
& \longrightarrow L\left\langle v_{O}\right\rangle^{\varepsilon}(A) \longrightarrow L\left\langle v_{O}\right\rangle_{S}^{E}\left(S^{-1} A\right) .
\end{aligned}
$$

ii) Define abelian group morphisms

$$
M^{\varepsilon}(A, S) \longrightarrow L^{2 k+1}\left(A, S,(-)^{k} E\right) ;(M, \lambda ; F, G) \longmapsto \overleftarrow{S}^{k}(C, \phi) \quad(k \geqslant
$$

by sending a non-singular ε-symmetric linking formation over (A ($M, \lambda ; F, G$) to the k-fold skew-suspension $\bar{S}^{k}(C, \phi)$ of an s-acyclic 2 -dimensional (-E)-symmetric Poincaré complex over a (C, $\phi \in Q^{2}$ (C associated to ($M, \lambda ; F, G$) by Proposition 3.5.2 ii). The S-acyclic cobordism class $\bar{S}^{k}(C, \phi) \in L^{2 k+1}\left(A, S,(-)^{k} E\right)$ depends only on the stable equivalence class of ($M, \lambda ; F, G$) (proved exactly as in Proposition 3.5.3 i)), vanishing if ($M, \lambda ; F, G)=0 \in M^{\varepsilon}(A, S)$ (proved exactly as in Proposition 3.5.4), so that the morphisms are well-defined. If $\left\{\begin{array}{l}(A, S) \text { is } 1 \text {-dimensional } \\ \operatorname{ker}\left(\hat{\delta}: \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0\end{array}\right.$ then for $\left\{\begin{array}{l}k \neq 1 \\ k=1\end{array} \mathrm{~L}^{2 k+1}\left(A, S,(-)^{k} \varepsilon\right)\right.$ is the cobordism group of S-acyclic 2-dimensional (- - -symmetric Poincaré complexes over (by Proposition $\left\{\begin{array}{l}3.2 .4 \\ 3.3 .2\end{array}\right.$), so that the morphisms are onto. If $(M, \lambda ; F, G) \in \operatorname{ker}\left(M^{\epsilon}(A, S) \longrightarrow L^{2 k+1}\left(A, S,(-)^{k} E\right)\right)$ the S-acyclic complex (C, ϕ) is homotopy equivalent to the boundary $\partial(D, n)$ of a connected S-acyclic 3 -dimensional ($-\varepsilon$)-symmetric complex over $A\left(D, \eta \in Q^{3}(D,-\epsilon)\right)$, and the proof of Proposition 3.5.4 generalizes to show that $(M, \lambda ; F, G)=0 \in M^{E}(A, S)$, so that the morphisms are also one-one.
iii) If (A, S) is O-dimensional Proposition 3.2.4 shows that

$$
L^{1}(A, S, \varepsilon)=L^{3}(A, S,-\varepsilon)=0 .
$$

so that

$$
M\left\langle v_{O}\right\rangle^{E}(A, S)=M^{E}(A, S)=0 .
$$

The proof of Proposition 3.2 .4 generalizes to also show that

$$
L^{-1}(A, S,-E)=M_{E}(A, S)=0 .
$$

iv) If $\left\{\begin{array}{l}\text { im }\left(\hat{\delta}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A / A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0 \\ \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, E\right) \text { is an isomorphism }\end{array}\right.$

Proposition 3.4 .2 ii) gives an identification of categories

$$
\left\{\begin{array}{l}
(\text { even } \varepsilon \text {-symmetric linking forms over }(A, S)) \\
\quad=(\varepsilon-s y m m e t r i c \text { linking forms over }(A, S)) \\
(\varepsilon \text {-quadratic linking forms over }(A, S)) \\
=(\text { even } \varepsilon \text {-symmetric linking forms over }(A, S))
\end{array}\right.
$$

There is thus also an identification of categories

$$
\left\{\begin{array}{l}
(\text { even e-symmetric linking formations over }(A, S)) \\
\quad=(\varepsilon-s y m m e t r i c \text { linking formations over }(A, S)) \\
(\varepsilon \text {-quadratic linking formations over }(A, S)) \\
=(\text { even E-symmetric linking formations over }(A, S))
\end{array}\right.
$$

giving rise to an identification of the Witt groups

$$
\left\{\begin{array}{l}
M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)=M^{\varepsilon}(A, S) \\
M_{E}(A, S)=M\left\langle v_{O}\right\rangle^{\varepsilon}(A, S)
\end{array}\right.
$$

If $\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \epsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A, \epsilon\right)$ is an isomorphism Proposition
3.4.2 ii) gives identifications of categories
(split ε-quadratic linking forms over (A,S))

```
                        = (\varepsilon-quadratic linking forms over (A,S))
```

$((-\varepsilon)$-quadratic linking forms over (A, S))
$=$ (even (-E)-symmetric linking forms over (A, S)), so that there is an identification of stable equivalence classes (split e-quadratic linking formations over (A,S))
$=(\varepsilon$-quadratic linking formations over (A, S)),
giving rise to an identification of the witt groups

$$
\tilde{M}_{\varepsilon}(A, S)=M_{\varepsilon}(A, S)
$$

3.6 The localization exact sequence ($n \in \mathbb{Z}$)

In the course of $\$ 53.4,3.5$ the definition of the
$\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$-groups $\left\{\begin{array}{l}L^{n}(A, S, \varepsilon) \\ L_{n}(\Lambda, S, \varepsilon)\end{array}(n \geqslant 0)\right.$ of $\varsigma 3.2$ was extended
to the range $n \leqslant-1$, by s~acyclic analogy with the lower
L-groups $\left\{\begin{array}{l}L^{n}(A, E) \\ L_{n}(A, \varepsilon)\end{array}(n \leqslant-1)\right.$ of $\$ 1.8$. Combining the results of
Propositions 3.4.7,3.5.5 we have:
Proposition 3.6.1 i) There is defined a localization exact sequence of $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{aligned}
& \cdots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow L_{n} L^{n}(A, S, \varepsilon) \longrightarrow L^{n-1}(A, \varepsilon) \longrightarrow \longrightarrow L_{n}^{S}\left(S^{-1} A, \varepsilon\right) \longrightarrow L_{n}(A, S, \varepsilon) \longrightarrow \\
& \cdots \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow \\
&(n \in \mathbb{Z})
\end{aligned}\right.
$$

ii) The localization exact sequence of ε-quadratic L-groups is 12-periodic, all the groups involved beinq 4 -periodic in n, and it is naturally isomorphic to the localization exact sequence of $\pm \varepsilon$-quadratic Witt groups

$$
\begin{aligned}
& \ldots \longrightarrow \widetilde{L}_{-\varepsilon}(A, S) \longrightarrow M_{\varepsilon}(A) \longrightarrow M_{\varepsilon}^{S}\left(S^{-1} A\right) \longrightarrow L_{\varepsilon}(A) \longrightarrow \widetilde{M}_{\varepsilon}(A, S) \\
& \longrightarrow L_{\varepsilon}^{S}\left(S^{-1} A\right) \xrightarrow{j} \widetilde{L}_{\varepsilon}(A, S) \longrightarrow M_{-\varepsilon}(A) \longrightarrow \ldots .
\end{aligned}
$$

iii) In the range $n \leqslant 2$ the localization exact sequence of e-symmetric L-groups is naturally isomorphic to the localization exact sequence of witt aroups

$$
\begin{align*}
& \longrightarrow L^{\varepsilon}(A) \longrightarrow L_{S}^{\varepsilon}\left(S^{-1} A\right) \xrightarrow{\dot{Z}} L\left\langle v_{O_{O}}\right\rangle^{\varepsilon}(A, S) \longrightarrow M\left\langle v_{O}\right\rangle^{-\varepsilon}(A) \\
& \left.\longrightarrow M\left\langle v_{O}\right\rangle_{S}^{-\varepsilon}\left(S^{-1} A\right) \longrightarrow L M_{-E}(A, S) \longrightarrow L\left\langle v_{O}\right\rangle^{-\varepsilon}(A) \longrightarrow L v_{O}\right\rangle_{S}^{-E}\left(S^{-1}\right. \\
& \xrightarrow{\hat{t}} L_{-\varepsilon}(A, S) \longrightarrow M_{E}(A) \longrightarrow M_{\epsilon}^{S}\left(S^{-1} A\right) \longrightarrow{ }^{\partial} \widetilde{M}_{E}(A, S) \longrightarrow L_{E}(A) \tag{A}\\
& \longrightarrow L_{E}^{S}\left(S^{-1} A\right) \longrightarrow \widetilde{L}_{E}(A, S) \longrightarrow M_{-\varepsilon}(A) \longrightarrow M_{-\varepsilon}^{S}\left(S^{-1} A\right) \\
& \xrightarrow{\partial} \widetilde{M}_{-\varepsilon}(A, S) \longrightarrow \ldots \text {, }
\end{align*}
$$

becoming the 12 -periodic ε-quadratic sequence on the right. iv) If $\hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \epsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; S^{-1} A, E\right)$ is an isomorphism the skew-suspension maps

$$
\bar{S}: I^{n}(A, S, \varepsilon) \longrightarrow L^{n+2}(A, S,-\varepsilon) \quad(n \in \mathbb{Z})
$$

are isomorphisms.
v) If (A, S) is O-dimensional

$$
\begin{aligned}
& \quad L^{2 k}\left(A, S,(-)^{k} E\right)=L^{\epsilon}(A, S) \quad(k \geqslant 1) \\
& \quad L^{2 k+1}\left(A, S,(-)^{k} E\right)=M_{E}(A, S)=M\left\langle V_{O}\right\rangle^{\epsilon}(A, S)=M^{E}(A, S)=O(k \geqslant-1 \\
& \text { If }(A, S) \text { is } 1 \text {-dimensional }
\end{aligned}
$$

$$
L^{2 k+1}\left(A, S,(-)^{k} \varepsilon\right)=M^{\varepsilon}(A, S) \quad(k \ngtr 1) .
$$

If $\operatorname{ker}\left(\hat{\delta}: \hat{H}^{1}\left(\mathbb{Z}_{2} ; S^{-1} A / A ; \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)\right)=0$

$$
\begin{align*}
& L^{2}(A, S,-E)=L^{\varepsilon}(A, S) \\
& L^{3}(A, S,-E)=M^{\varepsilon}(A, S) \tag{}
\end{align*}
$$

(Note that Proposition 3.6.l iv) is an S-acyclic analoque of the result of proposition 1.8 .1 that if $\hat{H}^{0}\left(\mathcal{Z}_{2} ; A, \varepsilon\right)=0$ then the skew-suspension maps $\overline{\mathrm{S}}: \mathrm{L}^{n}(\mathrm{n}, \varepsilon) \longrightarrow \mathrm{L}^{\mathrm{n}+2}(\mathrm{~A},-\varepsilon) \quad(\mathrm{n} \in \mathbb{Z})$ are isomorphisms).

As promised in $\$ 3.1$ we shall now apply the localization exact sequence to obtain excision isomorphisms and Mayer-Vietor exact sequences for the L-groups of the rings with involution appearing in the cartesian square

associated to a cartesian morphism

$$
f:(A, S) \longrightarrow(B, T)
$$

of rings with involution and multiplicative subsets.
In the first instance we consider the witt groups of linking
$\left\{\begin{array}{l}\text { forms } \\ \text { formations }\end{array}\right.$:
Proposition 3.6.2 A cartesian morphism

$$
f:(A, S) \longrightarrow(B, T)
$$

induces isomorphisms of witt groups

If $\hat{\delta}=0: \hat{H}^{O}\left(\mathbb{Z}_{2} ; T^{-1} B, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)$ there are also induced isomorphisms

$$
\begin{aligned}
& \left\{\begin{array}{l}
f: L\left\langle\left\langle v_{O}\right\rangle^{\epsilon}(A, S) \longrightarrow I,\left\langle v_{O}\right\rangle^{\epsilon}(B, T)\right. \\
f: M\left\langle v_{O}\right\rangle^{\epsilon}(A, S) \longrightarrow M\left\langle v_{O}\right\rangle^{\epsilon}(B, T)
\end{array}\right. \\
& \qquad\left\{\begin{array}{l}
f: L_{-\epsilon}(A, S) \longrightarrow I_{-\epsilon}(B, T) \\
f: M_{-\epsilon}(A, S) \longrightarrow M_{-\epsilon}(B, T)
\end{array}\right.
\end{aligned}
$$

Proof: The cartesian morphism $f:(A, S) \longrightarrow(B, T)$ induces an isomorphism of exact categories

$$
f:\{(A, S)-\text { modules }\} \longrightarrow\{(B, T)-\text { modules }\} ; M \longmapsto B A_{A} M
$$

(Proposition 3.1 .3 i)), so that it also induces an isomorphism of categories
 and hence also isomorphisms of the corresnonding witt groups. Although the functor
$f:\left\{\right.$ split e-quadratic linking $\left\{\begin{array}{l}\text { forms } \\ \text { formations }\end{array}\right.$ over ($\left.\left.A, S\right)\right\}$ $\longrightarrow\left\{\operatorname{split} \varepsilon\right.$-quadratic linking $\left\{\begin{array}{l}\text { forms } \\ \text { formations }\end{array}\right.$ over $\left.(B, T)\right\}$ need not be an isomorphism of categories in the linking formation case it does induce isomorphisms in the corresponding witt groups, since it induces isomorphisms

$$
f: Q_{*}^{S}(C, E) \longrightarrow Q_{k}^{T}\left(B Q_{A} C, E\right)
$$

for any finite-dimensional (A, S)-module chain complex C (Proposition 3.1.3 ii)). It follows from the exact sequences

$$
\begin{aligned}
& O \longrightarrow Q^{\varepsilon}(A, S) \longrightarrow Q^{\varepsilon}(B, T) \longrightarrow i m(\hat{\delta}) \longrightarrow 0 \\
& O \longrightarrow i m(\hat{\delta}) \longrightarrow \tilde{Q}_{-E}(A, S) \longrightarrow \underline{f} \hat{Q}_{-\epsilon}(B, T) \longrightarrow 0
\end{aligned}
$$

(with the \bar{Q}-groups as defined in the proof of proposition 3.4.2 ii)) that if $\hat{\delta}=0: \hat{H}^{O}\left(Z_{2} ; T^{-1} B, C\right) \longrightarrow \hat{H}^{1}\left(Z_{2} ; A, f\right)$ then $f:(A, S) \longrightarrow(B, T)$ induces isomorphisms of catogories
f: \{even ε-symmetric linking $\left\{\begin{array}{l}\text { forms } \\ \text { formations over (} A, S)\}\end{array}\right.$ $\xrightarrow[\sim]{\sim}$ (even ε-symmetric linking $\left\{\begin{array}{l}\text { forms } \\ \text { formations }\end{array}\right.$ over ($\left.\left.B, T\right)\right\}$,
$f:\left\{(-\varepsilon)\right.$-quadratic linking $\left\{\begin{array}{l}\text { forms } \\ \text { formations }\end{array}\right.$ over ($\left.\left.A, S\right)\right\}$
$\xrightarrow{\sim}\left((\sim \varepsilon)\right.$-quadratic linking $\left\{\begin{array}{l}\text { forms } \\ \text { formations }\end{array}\right.$ over $\left.(B, T)\right\}$
(as well as an isomorphism
f: \{split ε-quadratic linking $\left\{\begin{array}{l}\text { forms } \\ \text { formations over }(A, S)\}\end{array}\right.$
$\xrightarrow[\longrightarrow]{\sim}$ (split ε-quadratic linking $\left\{\begin{array}{l}\text { forms } \\ \text { formations }\end{array}\right.$ over ($\left.\left.\left.B, T\right)\right\}\right)$,
and hence also isomorphisms of the corresponding witt groups.
[]
Next, we consider the excision properties of the L-groups:
Proposition 3.6.3 i) A cartesian morphism

$$
f:(A, S) \longrightarrow(B, T)
$$

induces excision isomorphisms in the e-quadratic L-groups

$$
\mathrm{f}: \mathrm{L}_{n}(A, S, E) \longrightarrow L_{n}(B, T, E) \quad(n \in R),
$$

and there is defined a Mayer-Vietoris exact sequence

$$
\begin{aligned}
& \ldots L_{n}(A, \varepsilon) \longrightarrow L_{n}^{S}\left(S^{-1} A, \varepsilon\right) \oplus I_{n_{n}}(B, \epsilon) \longrightarrow L_{n}\left(T^{-1} B, \epsilon\right) \\
& \cdots L_{n-1}(A, E) \rightarrow \quad(n \in \mathbb{Z}) .
\end{aligned}
$$

ii) A cartesian morphism

$$
f:(A, S) \longrightarrow(B, T)
$$

such that $\left\{\begin{array}{l}(A, S) \text { is O-dimensional } \\ \hat{\delta}=0: \hat{U}^{O}\left(\mathbb{Z}_{2} ; T^{-1} A, \varepsilon\right) \cdots \hat{H}^{l}\left(\mathcal{R}_{2} ; A, f\right)\end{array}\right.$ induces excision
isomorphisms in the e-symmetric L -groups

$$
f: L^{n}(A, S, \varepsilon) \longrightarrow L^{n}(B, T, \varepsilon) \quad\left(\left\{\begin{array}{l}
n \geqslant 1 \\
n \in \mathbb{Z}
\end{array}\right)\right.
$$

and there is defined a Mayer-Vietoris exact sequence

$$
\ldots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{S}^{n}\left(G^{-1} A, \varepsilon\right) \oplus L^{n}(B, \varepsilon) \longrightarrow L_{T}^{n}\left(T^{-1} B, \varepsilon\right)
$$

$$
\longrightarrow L^{n-1}(A, E) \longrightarrow \ldots
$$

for $\left\{\begin{array}{l}n \geqslant l, \text { with } L^{2 k+1}(A, S, E)=L^{2 k+1}(B, T, E)=0(k \geqslant 0) \text { and } \\ n \in \mathbb{Z}\end{array}\right.$

$$
\left\{\begin{array}{l}
\hat{\delta}=0: L_{T}^{2 k+1}\left(T^{-1} B, \varepsilon\right) \longrightarrow L^{2 k}(A, \varepsilon) \quad(k \geqslant 0) \\
-
\end{array}\right.
$$

Proof: Immediate from Propositions 3.2.1,3.6.1 and 3.6.2.

In particular, for a central multiplicative subset $S \subset A$ there is defined a cartesian morphism

$$
(A, S) \longrightarrow(\hat{A}, \hat{S})
$$

with $\hat{A}=\frac{1, i m}{\frac{1}{S E S}} A / s A$ the S-adic completion of $A, ~ g i v i n g ~ r i s e ~ t o ~$ the cartesian square of rings with involution

Proposition 3.6.3 $\left\{\begin{array}{l}\text { (i) } \\ i)\end{array}\right.$ shows that
$\left\{\begin{array}{l}\left.\text { if } \hat{\delta}=0: \hat{H}^{0}\left(\mathbb{Z}_{2} ; \hat{S}^{-1} \hat{A}, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right) \text { (e.g. if } 1 / 2 \in \hat{S}^{-1} \hat{A}\right) \\ \text { for all } A, S, \varepsilon\end{array}\right.$
there are defined excision isomorphisms in the $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$

L-groups

$$
\left\{\begin{array}{l}
L^{n}(A, S, \varepsilon) \longrightarrow L^{n}(\hat{A}, \hat{S}, \varepsilon) \\
L_{n}(A, S, E) \longrightarrow L_{n}(\hat{A}, \hat{S}, \varepsilon)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

and a Mayer-Vietoris exact sequence

A ring with involution A is m-torsion-free for some integer $m \geqslant 2$ if $m l \in A$ is a non-zero-divisor of A, in which case

$$
s=\left\{m^{k} \mid k \geqslant O\right\} \subset A
$$

is a central multiplicative subset of A. The localization of A away from m is the localization

$$
A\left[\frac{1}{m}\right]=S^{-1} A .
$$

The m-adic completion of A is the s-adic completion of A

$$
\hat{A}_{m}=\frac{L i m}{k} A / m^{k} A
$$

The completion \hat{A}_{m} is an m-torsion-free ring with involution which is a module over the ring of m-adic integers $\hat{\mathbb{Z}}_{m}=\frac{L_{i m}}{k} \mathbb{Z} / m^{k} \mathbb{Z}$, and the localization of the completion

$$
\hat{A}_{m}\left[\frac{1}{m}\right]=\hat{S}^{-1} \hat{A}_{m}=\hat{\mathbb{Q}}_{m} \hat{Z}_{m} \hat{A}_{m}
$$

is a vector space over the field of m-adic numbers $\hat{\mathbb{Q}}_{\mathrm{m}}=\hat{\mathbb{Z}}_{\mathrm{m}}\left[\frac{1}{\mathrm{~m}}\right]$.

A ring with involution A is torsion-free if it is m-torsion-free for each integer $m \geqslant 2$, in which case

$$
S=Z Z-\{0\} \subset A
$$

is a central multiplicative subset of A. The localization of A at O is the localization

$$
A_{(0)}=S^{-1} A=\Phi \mathbb{Z}^{A},
$$

which is a vector space over the field of rational numbers \mathbb{Q}. The profinite completion of A is the S-adic completion

$$
\hat{A}=\frac{\operatorname{Lim}}{m} A / m A
$$

which is a module over $\hat{\mathbb{Z}}=\frac{\operatorname{Lim}}{\mathrm{m}} \mathbb{Z} / m \mathcal{Z}$. Furthermore, $\hat{\mathrm{A}}$ is a torsion-free ring with involution, and the localization of the completion

$$
\hat{A}_{(0)}=S^{-1} \hat{\mathbb{A}}=\hat{\mathbb{Q}}^{(0)} \hat{\mathbb{Z}}^{\hat{A}}
$$

is a module over the ring of f inite adèles $\hat{\mathbb{Q}}=\hat{\mathbf{S}}^{-1} \hat{\mathbb{Z}}$ of \mathbb{Z}.
As in Ranicki $\{6,54\}$ define for each integer $m \geqslant 2$ the number

$$
\begin{aligned}
\hat{\psi}(m) & =\text { the exponent of } L^{O}\left(\hat{Z}_{m}\right) \\
& =\left\{\begin{array}{l}
2 \text { if } m \text { is a product of odd primes } p \equiv 1(\bmod 4) \\
4 \text { if } m \text { is a product of odd primes at least } \\
8 \text { if } m \text { is even, }
\end{array}\right.
\end{aligned}
$$

and note that $L^{O}(\hat{Z})$ has exponent 8. (In fact, $L^{\circ}\left(\hat{Z}_{m}\right)$ and $L^{0}(\hat{Z})$ are given by

$$
L^{O}\left(\hat{z}_{m}\right)=\sum_{i=1}^{r} L_{1}^{O}\left(\hat{Z}_{p_{i}}\right) \text { if } m=p_{1}^{k_{1}} p_{2}^{k} \ldots p_{r}^{k} r \text { is the }
$$

$$
L^{O}(\hat{\mathbb{Z}})=\prod_{p \text { prime }} L^{O}\left(\hat{\mathbb{Z}}_{p}\right)
$$

with

$$
L^{O}\left(\hat{Z}_{p}\right)= \begin{cases}\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} & \text { if } p=2 \\ \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} & \text { if } p \equiv 1(\bmod 4) \\ \mathbb{Z}_{4} & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

Proposition 3.6.4 Let A be a ring with involution which is m -torsion-free (resp. torsion-free), and let

$$
S=\left\{m^{k} 1 \mid k \geqslant 0\right\} \subset A \quad(\text { resp. } S=\mathbb{Z}-\{O\} \subset A),
$$

so that the cartesian square of rings with involution

is given by

i) There is defined a Mayer-vietoris exact sequence of

$$
\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-guadratic }
\end{array}\right. \text { L-groups }
$$

$$
\left\{\begin{array}{l}
\cdots \longrightarrow L^{n}(A, \varepsilon) \rightarrow L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \oplus L^{n}(\hat{A}, \varepsilon) \longrightarrow L_{\hat{S}}^{n}\left(\hat{S}^{-1} \hat{A}, \varepsilon\right) \rightarrow L^{n-1}(A, \varepsilon) \longrightarrow \ldots \\
\cdots L_{n}(A, \varepsilon) \longrightarrow L_{n}^{S}\left(S^{-1} A, \varepsilon\right) \oplus L_{n}(\hat{A}, \varepsilon) \longrightarrow \hat{S}_{n}\left(\hat{S}^{-1} \hat{A}, \varepsilon\right) \rightarrow L_{n-1}(A, \varepsilon) \rightarrow \ldots
\end{array}\right.
$$

$$
(n \in Z)
$$

ii) The localization maps

$$
\left\{\begin{array}{l}
L^{n}(A, \varepsilon) \longrightarrow \\
L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \\
L_{n}(A, \varepsilon) \longrightarrow L_{n}^{S}\left(S^{-1} A, \varepsilon\right)
\end{array}(n \in \mathbb{Z})\right.
$$

are isomorphisms modulo $\hat{\psi}(m)$ - (resp. $8-$) torsion, and the L-groups $\left\{\begin{array}{l}L^{n}(\hat{A}, \varepsilon) \\ L_{n}(\hat{A}, \varepsilon)\end{array},\left\{\begin{array}{l}L_{\hat{S}}^{n}\left(\hat{S}^{-1} \hat{A}, \epsilon\right) \\ L_{S_{n}}\left(\hat{S}^{-1} \hat{A}, \epsilon\right)\end{array}\right.\right.$ (n $\left.\in \mathbb{Z}\right)$ have exponents dividing $\hat{\psi}(m)$ (resp. 8).

Proof: i) The Mayer-Vietoris exact sequence in the e-quadratic case is just that given by Proposition 3.6.3 i) for the cartesian morphism

$$
(A, S) \longrightarrow(\hat{A}, \hat{S})
$$

defined by the inclusion. In the ε-symmetric case it is the sequence given by Proposition 3.6.3 ii) - this applies here since $1 / 2 \in \hat{S}^{-1} \hat{A}$, so that

$$
\hat{\delta}=0: \hat{H}^{O}\left(\mathbb{Z}_{2} ; \hat{S}^{-1} \hat{A}, \varepsilon\right)=0 \longrightarrow \hat{\mathrm{H}}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) .
$$

ii) The maps

$$
\left\{\begin{array}{l}
L^{n}(A, S, E) \longrightarrow L^{n}(\hat{A}, \hat{S}, E) \\
L_{n}(A, S, E) \longrightarrow L_{n}(\hat{A}, \hat{S}, \varepsilon)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

are isomorphisms (by Proposition 3.6.3 again). Now the localization map

$$
\hat{A} \longrightarrow \hat{S}^{-1} \hat{A}
$$

is a morphism of $\hat{\mathbb{Z}}_{\mathrm{m}}{ }^{-}$(resp. $\hat{\mathbb{Z}}-$) modules, so that by Proposition 2.2.6 the localization exact sequence

$$
\begin{aligned}
& (n \in \mathbb{Z})
\end{aligned}
$$

is a sequence of $1^{\circ}\left(\hat{z}_{m}\right)-\left(r i s p . A^{\circ}(\hat{z})-\right)$ modules.

In particular, for any group π the group ring $\mathbb{Z}[$.] is torsion-free, so that by Proposition 3.6.4 ii) the localization maps

$$
\left\{\begin{array}{l}
L^{n}(\mathbb{Z}[\pi]) \longrightarrow L_{S}^{n}(\mathbb{Q}[\pi]) \\
L_{n}(\mathbb{Z}[\pi]) \longrightarrow L_{n}^{S}(\mathbb{Q}[\pi])
\end{array} \quad(n \in \mathbb{Z})\right.
$$

are isomorphisms modulo 8 -torsion, with

$$
S=\mathbb{Z}-\{0\} \subset \mathbb{Z}[\pi], S^{-1} \mathbb{Z}[\pi]=\mathbb{Q}[\pi] .
$$

For each prime p define the multiplicative subset

$$
S_{p}=\left\{p^{k} 1 \mid k \geqslant 0\right\} \subset \mathbb{Z}[\pi] .
$$

In $\S 4.1$ below the L-groups of $(\mathbb{Z}[\pi], S)$ will be expressed as direct sums

$$
\left\{\begin{array}{l}
L^{n}(\mathbb{Z}[\pi], S)=\underset{p}{\oplus} L^{n}\left(\mathbb{Z}[\pi], s_{p}\right)=\underset{p}{\bigoplus_{L}^{n}\left(\hat{Z}_{p}[\pi], \hat{S}_{p}\right)} \\
L_{n}(\mathbb{Z}[\pi], S)=\underset{p}{\oplus} L_{n}\left(\mathbb{Z}[\pi], s_{p}\right)=\underset{p}{\bigoplus_{n}}(n \in \mathbb{Z})
\end{array}\right.
$$

in which the p-components are $L^{O}\left(\hat{\mathbb{Z}}_{p}\right)$-modules, and hence of exponent dividing $\hat{\psi}(p)$.

Returning to general rings with involution, we have the following result (which is needed for \$4.1):

Proposition 3.6.5 If S,TCA are multiplicative subsets such that

$$
S^{-1} A=T^{-1} A
$$

(in the sense that there exists an isomorphism of rings with involution $S^{-1} A \longrightarrow T^{-1} A$ which is the identity on A) there are defined natural identifications

$$
\left\{\begin{array}{l}
L^{n}(A, S, E)=L_{1}^{n}(A, T, E) \\
L_{n}(A, S, E)=L_{n}(A, T, E)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

Proof: Immediate from the definitions and the identification of exact cateqories

$$
\{(\Lambda, S) \text {-module } s\}=\{(A, T) \text {-modules }\}
$$

Given central multiplicative subsets $S, T \subset A$ in a ring with involution A define a central multiplicative subset

$$
S T=\{s t \mid s \in S, t \in T\} \subset A
$$

such that

$$
(S T)^{-1} A=S^{-1}\left(T^{-1} A\right)=T^{-1}\left(S^{-1} A\right)
$$

The central multiplicative subsets $S, T \subset A$ are coprime if for all $s \in S, t \in T$ the ideals $s A, t A$ of A are coprime, that is if there exist $a, b \in A$ such that

$$
a s+b t=1 \in A
$$

It follows that the inclusion defines a cartesian morphism

$$
(A, S) \longrightarrow\left(T^{-1} A, S\right)
$$

giving rise to the cartesian square of rings with involution

Proposition 3.6.6 Let $S, T \subset A$ be coprime central multiplicative subsets in a ring with involution A.
i) For all A,S,T, \in there is defined a Mayer-vietoris exact sequence of ε-quadratic L-groups

$$
\begin{aligned}
\ldots \longrightarrow I_{n}(A, E) \longrightarrow & L_{n}^{S}\left(S^{-1} A, E\right) \oplus I_{n}^{T}\left(T^{-1} A, E\right) \longrightarrow L_{n}^{S T}\left((S T)^{-1} A, E\right) \\
& \xrightarrow{\partial} L_{n-1}(A, E) \longrightarrow \ldots(n \in Z Z)
\end{aligned}
$$

ii) If $\hat{\delta}=0: \hat{H}^{O}\left(Z_{2} ;(S T)^{-1} A, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right)$ (e.g. if the involution on A restricts to the identity on S and T there is defined a Mayer-Vietoris exact sequence of ε-symmetric L-groups

$$
\begin{aligned}
\ldots \longrightarrow L^{n}(A, \varepsilon) \longrightarrow L_{S}^{n}\left(S^{-1} A, \varepsilon\right) \oplus L_{T}^{n}\left(T^{-1} A, \varepsilon\right) \longrightarrow & \longrightarrow L_{S T}^{n}\left((S T)^{-1} A, \varepsilon\right) \\
\longrightarrow & L^{n-1}(A, \varepsilon) \longrightarrow(n \in \mathbb{Z}) .
\end{aligned}
$$

Proof: By Proposition 3.6.3 $\left\{\begin{array}{l}\text { ii) } \\ \text { i) }\end{array}\right.$ there are defined excision isomorphisms of $\left\{\begin{array}{l}\text { e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{l}
L^{n}(A, S, E) \longrightarrow L^{n}\left(T^{-1} A, S, \varepsilon\right) \\
L_{n}(A, S, \varepsilon) \longrightarrow L_{n}\left(T^{-1} A, S, \varepsilon\right)
\end{array} \quad(n \in Z)\right.
$$

It follows from the exact sequence

$$
\begin{aligned}
& \ldots \longrightarrow R_{1}\left((S T)^{-1} A\right) \longrightarrow R_{O}(A) \longrightarrow R_{O}\left(S^{-1} A\right) \oplus R_{O}\left(T^{-1} A\right) \\
& \longrightarrow K_{O}\left((S T)^{-1} A\right) \longrightarrow K_{-1}(A) \longrightarrow \ldots
\end{aligned}
$$

that the natural map

$$
\widetilde{\mathrm{K}}_{\mathrm{O}}\left(\mathrm{~T}^{-1} A\right) / T \longrightarrow S / S T
$$

is an isomorphism, where S,T,ST are the *-invariant subgroups

$$
\begin{aligned}
& S=\operatorname{im}\left(\widetilde{K}_{O}\left(T^{-1} A\right) \longrightarrow \widetilde{K}_{O}\left((S T)^{-1} A\right)\right) \subseteq \widetilde{K}_{O}\left((S T)^{-1} A\right) \\
& T=\operatorname{im}\left(\widetilde{K}_{O}(A) \longrightarrow \widetilde{K}_{O}\left(T^{-1} A\right)\right) \subseteq \widetilde{K}_{O}\left(T^{-1} A\right) \\
& S T=i m\left(\widetilde{K}_{O}(A) \longrightarrow \tilde{K}_{O}\left((S T)^{-1} A\right)\right) \subseteq \widetilde{K}_{O}\left((S T)^{-1} A\right) .
\end{aligned}
$$

Proposition 2.5 .1 shows that the natural maps

$$
\begin{aligned}
& \int t^{n}\left(T^{-1} A, S, E\right)=L_{S,}^{n}, \widetilde{K}_{O}\left(T^{-1} A\right)\left(T^{-1} A \longrightarrow(S T)^{-1} A, E\right) \\
& \longrightarrow L_{S T, S}^{n}\left(T^{-1} A \longrightarrow(S T)^{-1} A, E\right)
\end{aligned}
$$

$$
\begin{aligned}
& L_{n}(A, S, E)=L_{n}^{S, K_{O}(A)}\left(A \longrightarrow S^{-1} A, E\right) \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \left.L_{n} S_{n}, S \in \mathbb{Z}\right)
\end{aligned}
$$

are isomorphisms, so that the natural maps
are excision isomorphisms and give rise to the Mayer-vietoris exact sequences claimed in the statement.

Given disjoint collections of primes in \mathbf{N}

$$
p=\left\{p_{1}, p_{2}, \ldots\right\} \quad, \quad Q=\left\{q_{1}, q_{2}, \ldots\right\}
$$

(one of which may be empty) such that

$$
P \cup Q=\{\text { all primes in } N\}
$$

there are defined coprime multiplicative subsets

$$
\begin{aligned}
s & =\left\{p_{1}^{k_{1}}{ }^{k_{2}}{ }_{2} \ldots p_{r}^{k}{ }^{r} \mid k_{1}, k_{2}, \ldots, k_{r} \geqslant 0, r \geqslant 0\right\} \subset A \\
T & =\left\{q_{1}^{j}{ }_{1} q_{2}^{j_{2}} \ldots q_{S}^{j}{ }_{s} \mid j_{1}, j_{2}, \ldots, j_{s} \geqslant 0, s \geqslant 0\right\} \subset A
\end{aligned}
$$

for any torsion-free ring with involution A. The localization of away from P, or equivalently the localization of A at Q, is defined to be the ring with involution

$$
S^{-1} A=A\left[\frac{1}{P}\right]=A(P)
$$

The localizations at and away from p are related by a cartesian square

for which Proposition 3.6 .6 gives a Mayer-Vietoris exact segue
$(n \in \mathbb{Z})$.
In particular, there is defined such a Mayer-vietoris exact sequence of the $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups of the rings with involu appearing in the cartesian square

with $A=\mathbb{Z}\{\pi]$ a group $r i n g$ and $P=\{p\}$ for some prime p.

3.7 Change of K -theory

The localization exact sequence of $\$ 3.6$ will now be extended to the intermediate L-groups of $\mathbf{5 1 . 1 0}$. In fact there are two such extensions, one indexed by the *-invariant subgroups $X \subseteq K_{1}(A, S)$ and one which is indexed by the *-invariant subgroups $X \subseteq \widetilde{K}_{m}(A) \quad(m=0,1)$. The generalizations may be proved in the same way as the original sequence, or else may be deduced from it using the comparison exact sequences of $\$ 1.10$.

In the first instance it is necessary to consider the action of the duality involutions on the localization exact sequence of algebraic k-theory

$$
\widetilde{K}_{1}(A) \xrightarrow{i_{1}} \widetilde{K}_{1}\left(S^{-1} A\right) \xrightarrow{a} K_{1}(A, S) \xrightarrow{j} \widetilde{K}_{0}(A) \xrightarrow{i_{0}} \widetilde{K}_{0}\left(S^{-1} A\right)
$$

for a localization $A \longrightarrow S^{-1} A$ of r ings with involution. The duality involution

$$
\ell: \widetilde{\mathrm{K}}_{m}(A)=\widetilde{\mathrm{K}}_{m}(\underline{\underline{P}}(A)) \longrightarrow \widetilde{K}_{m}(A)=\widetilde{\mathrm{K}}_{m}(\underline{\underline{P}}(A)) \quad(m=0,1)
$$

is induced by the duality involution on the exact category P (A) of f.g. projective A-modules

$$
\ell: \underline{\underline{P}}(A) \longrightarrow P(A) ; P \longrightarrow P^{\star}=\operatorname{Hom}_{A}(P, A) \text {. }
$$

and similarly for $*: \dddot{K}_{m}\left(S^{-1} A\right) \longrightarrow \widetilde{K}_{m}\left(S^{-1} A\right)$. The morphisms $i_{m}: \widetilde{K}_{m}(A) \longrightarrow \widetilde{K}_{m}\left(S^{-1} A\right)$ are induced by a functor of categories with involution

$$
\underline{\underline{P}}(A) \longrightarrow \Gamma_{\underline{\Gamma}}\left(S^{-1} A\right) ; P \longmapsto S^{-1} P=S^{-1} A \otimes_{A} P \text {, }
$$

so that the diagrams

commate. The duality involution
*: $K_{1}(A, S)=K_{0}(\underline{\underline{P}}(A, S)) \longrightarrow K_{1}(A, S)=K_{O}(\underline{P}(A, S))$
is induced by the S-duality involution on the exact category
$\underline{\underline{p}}(A, S)$ of (A, S)-modules
$\star: \underline{\underline{P}}(A, S) \longrightarrow \underline{\underline{P}}(A, S) ; M \longmapsto M^{\wedge}=\operatorname{Hom}_{A}\left(M, S^{-1} A / A\right)$.
If an (A, S)-module M has f.g. profective A-module resolution

$$
\mathrm{O} \longrightarrow \mathrm{P}_{1} \xrightarrow{d} \mathrm{P}_{\mathrm{O}} \longrightarrow \mathrm{M} \longrightarrow
$$

the S-dual M^{\wedge} has resolution

$$
0 \longrightarrow P_{0}^{*} \longrightarrow d^{*} P_{1}^{*} \longrightarrow M^{\wedge} \longrightarrow
$$

It follows that the morphisms

$$
\begin{aligned}
\lambda: & \tilde{K}_{1}\left(S^{-1} A\right\} \longrightarrow K_{1}(A, S) ; \\
& \tau\left(S^{-1} f: S^{-1} P \longrightarrow S^{-1} P\right) \mapsto|P / f(P)|-\{P / S(P)]
\end{aligned}
$$

(with f,s $\boldsymbol{E} \operatorname{Hom}_{A}(P, P)$-automorphisms of a f.g. projective A-module P) and
$j: K_{1}(A, S) \longrightarrow \widetilde{K}_{0}(A) ;[M] \longmapsto\left[P_{1}\right]-\left[P_{0}\right]$
(with P_{O}, P_{1} the f.g. projective A-modules appearing in a resolution $O \longrightarrow \mathrm{P}_{1} \longrightarrow \mathrm{P}_{\mathrm{O}} \longrightarrow \mathrm{M} \longrightarrow \mathrm{O}$ of an (A, S)-module M) are well-defined and such that the diagram

commutes.
Define the S-projective class of an (A, S)-module M to be the element

$$
[M] \in K_{1}(A, S)=K_{0}(\underline{P}(A, S))
$$

More generally, the s-projective class of an n-dimensional (A, S) -module chain complex C is defined to be

$$
[C]=\sum_{r=0}^{n}(-)^{r}\left[C_{r}\right] \in K_{1}(A, S)
$$

and is such that

$$
\left[C^{n-n}\right]=(-)^{n}[C] * \in K_{1}(A, S)
$$

A short exact sequence of (A, S)-modules

$$
0 \longrightarrow M \longrightarrow M^{\prime} \longrightarrow M^{\prime} \longrightarrow \longrightarrow \longrightarrow
$$

is an acyclic 2-dimensional (A, S) -module chain complex with S-projective class

$$
[M]-\left[M^{\prime}\right]+\left[M^{\prime \prime}\right]=0 \in K_{1}(A, S)
$$

Given a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module G let G^{-}denote the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module with the same additive group, but with $T \in \mathbb{Z}_{2}$ acting by

$$
\mathrm{T}_{\mathrm{G}^{-}}: \mathrm{G} \longrightarrow \mathrm{G}: \mathrm{x} \longmapsto-\mathrm{T}_{\mathrm{G}}(\mathrm{x})
$$

The Tate \mathbb{T}_{2}-cohomology groups are such that

$$
\hat{H}^{\star}\left(Z_{2} ; G^{-}\right)=\hat{H}^{\star-1}\left(\mathbb{Z}_{2} ; G\right)
$$

> Given a $*$-invariant subgroup $X S K_{1}(A, S)$ let $\left\{\begin{array}{l}L_{X}^{n}(A, S, E) \\ L_{n}^{X}(A, S, E)\end{array}\right.$ ($\cap \in \mathbb{Z}$) be the L-groups defined in the same way a: $\left\{\begin{array}{l}L^{n}(A, S, E) \\ I_{n}(A, S, E)\end{array}\right.$ (the special case $\left.X=K_{1}(A, S)\right)$ but using only (A,S)-module chain complexes C with S-projective class

$$
[C] \in \times \subseteq K_{1}(A, S)
$$

Define *-invariant subgroups

$$
\begin{aligned}
& j x=i m\left(j \mid: x \longrightarrow \tilde{K}_{O}(A)\right) \subseteq \tilde{K}_{O}(A), \\
& x^{3}=\partial^{-1}(x) \subseteq \widetilde{K}_{1}\left(S^{-1} A\right),
\end{aligned}
$$

so that there is defined a short exact sequence of $\mathbb{Z}\left\{\mathbb{Z}_{2}\right]$-modules

inducing a long exact sequence of Tate \mathbb{Z}_{2}-cohomology groups

$$
\begin{aligned}
& \cdots \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; x^{\exists} / \operatorname{ker}(\partial)\right) \xrightarrow{\jmath} \hat{H}^{n}\left(\mathbb{Z}_{2} ; x\right) \xrightarrow{j} \hat{H}^{n-1}\left(\mathbb{Z}_{2} ; j x\right) \\
& \longrightarrow \hat{H}^{n-1}\left(\mathbb{Z}_{2} ; x^{\partial} / \operatorname{ker}(\jmath)\right) \longrightarrow \ldots .
\end{aligned}
$$

The exact sequences of Proposition 2.5.1, 3.6.1 generalize to the intermediate $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{l}
L_{X}^{\star}(A, S, E) \\
L_{\star}^{X}(A, S, E)
\end{array} \quad\left(X \subseteq K_{1}(A, S)\right)\right. \text { as follows: }
$$

Proposition 3.7.1 Given *-invariant subgroups $X \subseteq Y \subseteq K_{1}(A, S)$ there is defined a commutative diagram of abelian groups with exact rows and columns

$(n \in \mathbb{Z}) \quad$.
Similarly for the e-quadratic L-groups L_{n}.

Given a *-invariant subgroup $X \subseteq \widetilde{\mathrm{~K}}_{\mathrm{O}}(\mathrm{A})$ define *-invariant subgroups

$$
\begin{aligned}
& S^{-1} x=\operatorname{im}\left(i_{O} \mid: x \longrightarrow \widetilde{K}_{O}\left(S^{-1} A\right) \subseteq \tilde{K}_{O}\left(S^{-1} A\right),\right. \\
& x^{j}=j^{-1}(x) \subseteq K_{1}(A, S),
\end{aligned}
$$

so that there is defined a short exact sequence of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules

$$
0 \longrightarrow\left(X^{j} / \operatorname{ker}\left(j: K_{l}(A, S) \longrightarrow \vec{K}_{0}(A)\right)^{-} \xrightarrow{j} x \xrightarrow{\mathrm{i}_{\mathrm{O}}} S^{-1} x \longrightarrow 0\right.
$$

inducing a long exact sequence of Tate \mathbb{Z}_{2}-cohomology groups

$$
\begin{aligned}
& \ldots \longrightarrow \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; x^{j} / \operatorname{ker}(j)\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; x\right) \xrightarrow{i} O \hat{H}^{n}\left(\mathbb{Z}_{2} ; s^{-1} x\right) \\
& \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; x^{j} / \operatorname{ker}(j)\right) \longrightarrow \ldots
\end{aligned}
$$

Proposition 3.7.2 Given *-invariant subqroups $X \subseteq Y \subseteq \widetilde{K}_{O}(A)$ there is defined a commutative diagram of abelian groups with exact rows and columns

Similarly for the ε-quadratic L-groups I_{n}.

The localization exact sequence of Proposition 3.7.1 for $x=\operatorname{im}\left(3: \tilde{K}_{1}\left(S^{-1} A\right) \longrightarrow K_{1}(A, S)\right)=\operatorname{ker}\left(j: K_{1}(A, S) \longrightarrow \tilde{K}_{O}(A)\right) \subseteq K_{1}(A, S)$

$$
\cdots \longrightarrow I_{j x}^{n}(A, E) \longrightarrow L_{x}^{n}\left(S^{-1} A, E\right) \xrightarrow{\partial} \operatorname{L}_{x}^{n}(A, S, F) \longrightarrow L_{i x}^{n-1}(A, F) \longrightarrow \ldots
$$

coincides with the localization exact sequence of proposition 3.7.2 for $Y=\{0\} \leq \hat{K}_{O}(\Lambda)$

$$
\ldots L_{Y}^{n}(A, \varepsilon) \longrightarrow L_{S^{-1}}^{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow L_{Y}^{\exists}{ }_{Y}^{n}(A, S, \varepsilon) \longrightarrow L_{Y}^{n-1}(A, E) \longrightarrow
$$

This sequence can be written as

$$
\cdots \longrightarrow v^{n}(A, \varepsilon) \longrightarrow v^{n}\left(S^{-1} A, \varepsilon\right) \longrightarrow v^{n}(A, S, \varepsilon) \longrightarrow v^{n-1}(A, \varepsilon) \longrightarrow .
$$

$$
\text { with } V^{\star}(A, E)\left(\text { resp. } V^{\star}\left(S^{-1} A, \varepsilon\right)\right) \text { the } V \text {-groups of } \$ 1.10 \text {, i.e. th }
$$

$$
\text { analogues of the } L \text {-groups } L^{*}(A, E) \text { defined using only f.g. free }
$$ $A-$ (resp. $S^{-1} A^{\prime}$) modules, and $V^{\star}(A, S, E)$ the analogues of the L-groups $L^{*}(A, S, E)$ defined using only (A, S)-modules with a f.g. free A-module resolution of length 1.

An (A, S)-module M is S-based is there is given a f.g. fr A-module resolution of length 1

$$
0 \longrightarrow P_{1} \longrightarrow \mathrm{~d} \mathrm{P}_{\mathrm{O}} \longrightarrow \mathrm{M} \longrightarrow 0
$$

with P_{O} and P_{l} based. The S-torsion of M is then defined to be

$$
\tau_{S}(M)=\tau\left(S^{-1} d: S^{-1} P_{1} \longrightarrow S^{-1} p_{O}\right) \in \tilde{K}_{1}\left(S^{-1} A\right)
$$

The S-Aual (A, S)-module M^{\wedge} is also S-based (using the dually based A-modules $\mathrm{P}_{\mathrm{O}}^{\star}, \mathrm{P}_{1}^{\star}$), with S -torsion

$$
{ }^{\tau} S\left(M^{\wedge}\right)=\tau\left(S^{-1} A^{\star}: S^{-1} P_{O}^{\star} \longrightarrow S^{-1} P_{1}^{\star}\right)=\tau_{S}(M) \bullet \in \widetilde{K}_{1}\left(S^{-1} A\right)
$$

More generally, the S-torsion of an n-dimensional S-based (A, S)-module chain complex C is defined to be

$$
t_{S}(C)=\sum_{r=0}^{n}(-)^{r} \tau_{S}\left(C_{r}\right) \in \widetilde{k}_{1}\left(S^{-1} A\right)
$$

If D is an $(n+1)$-dimensional S-acyclic based A-module chain complex resolving C (with the S-hases of the (A, S)-modules C_{r} determined by the bases of the A-modules D_{r}) then $S^{-1} D$ is an $(n+1)$ - imensional acyclic based $S^{-1} A$-module chain complex such that

$$
\tau_{S}(C)=\tau(D) \in \tilde{K}_{1}\left(S^{-1} A\right) .
$$

It follows from the definitions that

$$
\tau_{S}\left(C^{n-\wedge}\right)=\tau\left(S^{-1} D^{n+1-\star}\right)=(-)^{n} \tau_{S}(C) * \in \tilde{K}_{1}\left(S^{-1} A\right) .
$$

The torsion of an n-dimensional acyclic S-based (A, S) -m chain complex C is defined to be

$$
\tau(C)=\tau(D) e \ddot{K}_{1}(A)
$$

with D an ($n+1$-dimensional acyclic based A-module chain comp resolving C. It follows from the definitions that

$$
\tau\left(C^{n-\wedge}\right)=\tau\left(D^{n+1-k}\right)=(-)^{n} \tau(C) \cdot E \widetilde{k}_{1}(A)
$$

The torsion of a homology equivalence

$$
\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{C}^{\prime}
$$

of n-dimensional S-based (A, S)-module chain complexes is defined to be

$$
T(f)=T(C(f)) \in \widetilde{\mathrm{K}}_{1}(A),
$$

and is such that

$$
\begin{gather*}
\tau\left(f^{n-\wedge}: C^{n^{n-\wedge}} \longrightarrow C^{n-\wedge}\right)=(-)^{n+1} \tau(f)^{*} \in \widetilde{K}_{1}(A) \tag{A}\\
S^{-1} \tau(f)=\tau_{S}(C)-\tau_{S}\left(C^{\prime}\right) \in \widetilde{K}_{1}\left(S^{-1} A\right) .
\end{gather*}
$$

The torsion of an n-dimensional s-based ε-symmetric Poi complex over $(A, S)\left(C, \phi \in Q_{S}^{n}(C, E)\right)$ is defined to be

$$
\begin{aligned}
& \tau(C, \phi)=\left(\tau\left(\phi_{0}: C^{n-n} \longrightarrow C\right), \tau S^{(C)}\right) \\
& \quad \in \operatorname{ker}\left(\left(\begin{array}{cc}
1+(-)^{n_{T}} & 0 \\
-S^{-1} & 1-(-)^{n_{T}}
\end{array}\right): \widetilde{K}_{1}(\Lambda) \oplus \widetilde{K}_{1}\left(S^{-1} A\right) \longrightarrow \widetilde{K}_{1}(A) \oplus \widetilde{K}_{1}\right.
\end{aligned}
$$

with $T: \widetilde{K}_{1} \longrightarrow \widetilde{\mathrm{~K}}_{1} ; \tau \longmapsto \tau$ * the duality involutions. The torsion an n-dimensional S-based ε-quadratic Poincaré complex over (l $\left(C, \psi \in Q_{n}^{S}(C, E)\right)$ is defined to be the torsion of the ε-symmetri

$$
T(C, \psi)=T\left(C,\left(1+T_{\varepsilon}\right) \psi \in Q_{S}^{n}(C, \varepsilon)\right)
$$

Given a *-invariant subgroup $x \subseteq \breve{K}_{1}(A)$ define a *-invariant subgroup

$$
s^{-1} x=i m\left(i_{1} \mid: x \longrightarrow \tilde{k}_{1}\left(S^{-1} A\right)\right) \subseteq \widetilde{k}_{1}\left(S^{-1} A\right) \text {. }
$$

Given *-invariant subgroups $X \subseteq \widetilde{K}_{1}(A), Y \subseteq \widetilde{K}_{1}\left(S^{-1} A\right)$ such that

$$
S^{-1} X \subseteq Y \subseteq \widetilde{K}_{1}\left(S^{-1} A\right)
$$

let $\left\{\begin{array}{l}L_{X}^{n}, Y(A, S, E) \\ L_{n}^{X}, Y(A, S, E)\end{array}(n \in \mathbb{Z})\right.$ be the L-groups defined in the same
way as $\left\{\begin{array}{l}H^{n}(A, S, E) \\ I_{n}(A, S, E)\end{array}\right.$ ($\cap \in \mathbb{Z}$) but using only s-based algebraic Poincare complexes over (A, S) with torsion in

$$
\left\{(x, y) \in X \oplus Y \mid x^{*}=(-)^{n} x, s^{-1} x=y+(-)^{n-1} y^{*}\right\}
$$

$$
\subseteq \operatorname{ker}\left(\left(\begin{array}{cc}
1+(-)^{n_{T}} & 0 \\
-S^{-1} & 1-(-)^{n_{T}}
\end{array}\right): \widetilde{K}_{1}(A) \oplus \widetilde{K}_{1}\left(S^{-1} A\right) \longrightarrow \widetilde{K}_{1}(A) \oplus \widetilde{R}_{1}\left(S^{-1} A\right)\right)
$$

For $X=\widetilde{K}_{1}(A), Y=\tilde{K}_{1}\left(S^{-1} A\right)$ these are the free L-groups $\left\{\begin{array}{l}V^{n}(A, S, E) \\ V_{n}(A, S, E)\end{array}\right.$.
As in $\$ 2.5$ define the relative tate \mathbb{Z}_{2}-cohomology qroups of a morphism of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules

$$
f: G \longrightarrow H
$$

by

$$
\hat{\mathrm{i}}^{\mathrm{n}}\left(\mathbb{Z}_{2} ; f\right)=\frac{\left\{(x, y) \in \mathrm{G} \oplus H \mid x^{*}=(-)^{n-1} x, f x=y+(-)^{n-1} y^{\star}\right\}}{\left\{\left(u+(-)^{n-1} u^{\star}, f u+v+(-)^{n} v^{*}\right) \mid(u, v) \in G \oplus H\right\}} \quad(n(\bmod 2)),
$$

and note that there is defined a long exact sequence

$$
\ldots \longrightarrow \hat{\mathrm{H}}^{n}\left(\mathbb{Z}_{2} ; G\right) \xrightarrow{\mathrm{f}} \hat{\mathrm{H}}^{n}\left(\mathbb{Z}_{2} ; \mathrm{H}\right) \longrightarrow \hat{\mathrm{H}}^{n}\left(\mathbb{Z}_{2} ; f\right) \longrightarrow \hat{\mathrm{H}}^{n-1}\left(\mathbb{Z}_{2} ; G\right) \longrightarrow \ldots
$$

The exact sequences of Propositions 1.10.1,2.5.1 and 3.6.1 generalize to the intermediate torsion L-groups as follows: Proposition 3.7.3 Given $*$-invariant subgroups $X \subseteq X^{\prime} \subseteq \widetilde{K}_{1}(A)$, $Y \subseteq Y^{\prime} \subseteq \widetilde{K}_{1}\left(S^{-1} A\right)$ such that $S^{-1} X \subseteq Y, S^{-1} X^{\prime} \subseteq Y^{\prime}$ there is defined a commutative diagram of abelian oroups with exact rows and columns

($n \in \mathbb{Z}$).
Similarly for the eqquadratic $L-g r o u p s L_{n}$.

The generalizations to the intermediate L-qroups of the excision isomorphisms and Mayer-Vietoris exact sequences of $\$ 3.6$ will be dealt with in $\$ 6.3$ below.

\$4. Arithmetic L-theory

Localization has long been a key tool in the unstable classification of quadratic forms over rings of arithmetic type - cf. the work of Gauss. Minkowski, Hasse et. al. The classification over a global ring such as an algebraic number field (e.g. Q) is reduced to the classifications over local rings such as the completions at the various valuations (e.g. the p-adic fields $\hat{\mathbb{Q}}_{\mathrm{p}}$ and the reals \mathbf{R} for \mathbb{Q}). This reduction can also be used for the classification over an order such as the ring of algebraic integers (eng. \mathbb{Z} in 0). See O'Meara [1], Milnor and Husemoller [1] and Cassel [1] for modern accounts of the arithmetic theory of quadratic forms.

Many authors have used the localization techniques of algebraic number theory to obtain localization exact sequences for the witt groups of quadratic forms over rings of arithmetic type and more general Dedekind rings, notably Kneser, Minor, Wall [6], Fröhlich [1], Knebusch and Scharlau [1], Durfee [1] and Barge, Landes, Latour and Vogel [1 The arithmetic approach has been extended to more general orders in semi-simple algebras (egg. $\mathbb{Z}[\pi]$ in $Q[\pi]$ for a finite group 7) by Wall [8], Back and Scharlau [1], and Bake [2].

We shall now apply the localization exact sequence of 93 to the L-theory of rings with involution which are algebras over a Dedekind ring. As usual, we start with some K-theory.

Let R be a Dedekind r ing, and let A be a ring which is an algebra over R. Then $S=R-\{O\} C A$ is a multiplicative subset of A such that the localization $S^{-1} A=F \otimes_{R} A$ is the induced algebra over the quotient field $F=S^{-1} R$.

An (A, S)-module M is "P-primary" if the annihilator of M is

$$
\{r \in R \mid r M=0\}=\mathcal{P}^{k} \Delta R
$$

for some maximal ideal $P \triangleleft R$, with $k \geqslant 1$. Every (A, S)-module M has a canonical decomposition as a direct sum of p-primary (A,S)-modules

$$
M=\stackrel{\oplus}{\rho} M_{\rho}
$$

with \mathcal{P} ranging over all the maximal ideals of R. The resulting identification of exact categories

$$
\{(A, S) \text {-modules })={\underset{P}{P}}_{\oplus}^{P}(P \text {-primary }(A, S) \text {-modules }\}
$$

gives rise to an identification of algebraic K -groups

$$
K_{n}(A, S)={\underset{\mathcal{P}}{ }}_{\oplus}^{K_{n}}\left(A, P^{\infty}\right) \quad(n \in \mathbb{Z}),
$$

so that the algebraic K-theory localization exact sequence car be written as

$$
\cdots \longrightarrow K_{n}(A) \longrightarrow K_{n}\left(S^{-1} A\right) \longrightarrow \underset{\rho}{\oplus} K_{n}\left(A, p^{\infty}\right) \longrightarrow K_{n-1}(A) \longrightarrow \ldots
$$

In the case $A=R$ devissage argument (due to Bass [2] for n : and to Quillen $[1]$ for $n \geqslant 2$) identifies

$$
K_{n}\left(R, \rho^{\infty}\right)=K_{n-1}(R / \mathcal{P}) \quad(n \in \mathbb{Z})
$$

so that the sequence can also be written as

In $\$ 4.1$ we shall deal with with the algebraic L-theory localization exact sequence for a ring with involution A whict is an algebra over a Dedekind r ing R, with $S=R-\{O\} \subset A$. The decomposition of (A,S)-modules into P-primary components will be used to obtain natural direct sum decompositions of l-groul
with P ranging over all the maximal ideals of R which are
invariant under the involution, $\bar{\beta}=? \Delta R$. For $A=R, 1 / 2 \in A$ such decompositions have been previously obtained by Karoubi [3].

In $\$ 4.2$ the results of $\$ 4.1$ are specialized to the L-theory of a Dedekind ring, with $A=R$. In particular, an L-theoretic devissage argument will be used to identify

$$
L^{O}\left(R, \beta^{\infty}, \varepsilon\right)=L^{O}(R / P, \varepsilon),
$$

thus recovering the localization exact sequence of Milnor and Husemoller (1, IV.3.3] relating the symmetric Witt groups of a Dedekind $r i n g R$ and its quotient field F

$$
0 \longrightarrow L^{O}(R) \longrightarrow L^{O}(F) \longrightarrow \mathrm{D}^{\mathrm{O}}(R / P) \quad\left(\longrightarrow L^{-1}(R) \longrightarrow 0\right)
$$ extending it to the right by the map onto $L^{-1}(R)$.

In $\$ 4.3$ the results of $\$ 4.2$ are applied to obtain the L-theory of \mathbb{Z} and \mathbb{Q}.

4.1 Dedekind algebra

We refer to Zariski and Samuel [1,§V.6] for the basic properties of Dedekind rings.

A Dedekind algebra with involution (A, S) is a ring with involution A together with a central multiplicative subset SCA such that $R=S \cup\{O\}$ is a Dedekind ring with respect to the ring operations inherited from A. The localization away from S

$$
S^{-1} A=F \otimes_{R}^{A}
$$

is the induced algebra over the quotient field $F=S^{-1}$. For example, a torsion-free ring with involution A is the same as a Dedekind algebra $(A, \mathbb{Z}-\{O\})$, and a Dedekind ring with involution R is the same as a Dedekind algebra ($R, R-\{O\}$).

Let (A, S) be a Dedekind algebra with involution, and let $\max (R)$ be the spectrum of maximal ideals of the Dedekind ring $R=S \cup\{O\}$, that is the set of maximal ideals $1=$ non-zero prime ideals) of R.

The annihilator of an A-module M is the ideal of R defined by

$$
\operatorname{ann}(M)=\{r \in R \mid r x=0 \in M \text { for all } x \in M\} \triangleleft R .
$$

By the classical ideal theory of Dedekind rings this has a unique factorization as a product of powers of maximal ideals $P_{1}, \rho_{2}, \ldots, P_{q} \in \max (R)$

$$
\operatorname{ann}(M)=\beta_{1}^{k} \beta_{2}^{k} 2 \ldots \beta_{q}^{k} q\left(k_{i} \geqslant 1\right) .
$$

A non-zero A-module M is S-torsion if and only if ann(M) is a proper ideal of R. If M is an (A, S)-module then

$$
\operatorname{ann}\left(M^{\wedge}\right)=\overline{\operatorname{ann}(M)} \triangle R
$$

(since $\overline{\operatorname{ann}(M)} \subseteq \operatorname{ann}\left(M^{\wedge}\right)$ for any A-module M and $M^{\wedge}=M$ for an (A, S)-module M).

$$
\begin{gathered}
\text { An } S \text {-torsicn A-module } M \text { is } \mathcal{P - p r i m a r y ~ i f ~} \\
\operatorname{ann}(M)=\rho^{k}
\end{gathered}
$$

for some $\mathcal{P} \in \max (K), k \geqslant 1$. An $\left(A, P^{\infty}\right)$-module is an (A, S)-module which is ?-primary, that is a P-primary S-torsion A-module of homological dimension 1 . An n-dimensional (A, ρ^{∞})-module chain complex C is an n-dimensional (A, S)-module chain complex
 such that each $C_{r}(O \leqslant r \leqslant n)$ is an $\left(A, P^{\infty}\right)$-module. An A-module chain complex D is \underline{p}^{∞}-acyclic if it is S-acyclic and the homology S-torsion A-modules $H_{\star}(D)$ are D^{∞}-acyclic.

Proposition 4.1.1 There are natural identifications of sets of homology equivalence classes
$\left\{n\right.$-dimensional $\left(A, D^{\infty}\right)$-module chain complexes $\}$
$=\left\{3^{\infty}\right.$-acyclic $(n+1)$-dimensional A-module chain complex $(n \in \mathbb{Z}, \mathcal{P} \in \max (R))$.

Proof: Immediate from Proposition 3.1.2.

Let $P \in \max (R)$. The localization of A at P is the r ing obtained from A by inverting $R-P C A$

$$
A_{P}=(R-P)^{-1} A
$$

If $\bar{\rho}=?$ then $R-P \subset A$ is a multiplicative subset in the sense of $\$ 3.1$, and A_{p} is a ring with involution

$$
-A_{p} \longrightarrow A_{3} ; x=\frac{a}{r} \longmapsto \bar{x}=\frac{\bar{a}}{\bar{r}} \quad(a \in A, r \in R-P)
$$

(If $\bar{\rho} \neq p$ then $A_{p} \times A_{\bar{\rho}}$ is a ring with involution

$$
\left.-A_{3} \times A_{\bar{p}} \longrightarrow A_{p} \times A_{\bar{\rho}} ;\left(\frac{a}{r}, \frac{b}{s}\right) \longmapsto\left(\frac{\bar{b}}{\bar{s}}, \frac{\bar{a}}{\bar{r}}\right) \quad\right)
$$

If M is an (A, S)-module the localization of M at P is the ($\mathrm{A}, \mathcal{F}^{\infty}$)-module

$$
M_{P}=A_{P} \otimes_{A} M\left(=R_{P} \otimes_{R} M\right),
$$

that is

$$
M_{\rho}=\left\{\left.\frac{x}{r} \in s^{-1} M \right\rvert\, x \in M, r \in R-\mathcal{P} \subseteq S\right\} \subseteq s^{-1} M
$$

If ann (M) $=o_{1}^{k} p_{2}^{k_{2}} \ldots p_{q}^{k}{ }_{q}$ (as above) there are natural identifications

$$
\begin{aligned}
& M_{p}= \begin{cases}\rho_{1}^{k} 1_{p}^{k} p_{2} \ldots p_{i-1}^{k} p_{i+1} p_{i+1} \ldots p_{q}^{k} q_{M} & \text { if } \mathcal{P}=\rho_{i} \text { for some } i, \\
0 & \text { if } \mathcal{P} \notin\left\{P_{1}, \mathcal{P}_{2}, \ldots, \mathcal{P}_{q}\right\}\end{cases} \\
& M={\underset{i=1}{q} M_{P_{i}},},
\end{aligned}
$$

and if M^{\prime} is another (A, S)-module

$$
\operatorname{Hom}_{A}\left(M, M^{\prime}\right)=\underset{p \in \max (R)}{\mathcal{E})} \operatorname{Hom}_{A}\left(M_{p}, M_{p}^{\prime}\right)
$$

There is thus an identification of exact categories

$$
\{(A, S) \text {-modules }\}=\bigoplus_{D \in \max (R)}\left\{\left(A, D^{\infty}\right) \text {-modules }\right\}
$$

The S-duality involution

$$
\{(A, S\} \text {-modules }\} \longrightarrow\{(A, S) \text {-modules }\} ; M \longmapsto M^{\wedge}
$$

sends the $?$-primary component M_{ρ} of an (A, S)-module M to the $\overline{\mathcal{P}}$-primary component $\left(M^{\wedge}\right) \neq$ of the S-dual M^{\wedge}, that is

$$
\left(M^{\wedge}\right)_{\hat{\beta}}=\left(M_{\rho}\right)^{\wedge} .
$$

Define $\overline{\max }(R)$ to be the subset of $\max (R)$ consisting of the maximal ideals of R which are invariant under the involt

$$
\overline{\max }(R)=\{\rho \in \max (R) \mid \beta=\rho \Delta R\}
$$

For each $\rho \in \overline{\max }(R)$ define the n-dimensional $\left\{\begin{array}{l}\frac{\varepsilon \text {-symmetric }}{\varepsilon \text {-quadratic }}\end{array}\right.$ L-group of $\left(A, \mathcal{B}^{\infty}\right)\left\{\begin{array}{l}L^{n}\left(A, P^{\infty}, E\right) \\ L_{n}\left(A, P^{\infty}, \varepsilon\right)\end{array}(n \in \mathbb{Z})\right.$ in exactly the same way as $\left\{\begin{array}{l}L^{n}(A, S, \epsilon) \\ L_{n}(A, S, \epsilon)\end{array}(n \in \pi)\right.$ but using only $\left(A, \mathcal{P}^{\infty}\right)$-module chain complexes, or equivalently P^{∞}-acyclic A-module chain complexes.

Proposition 4.1.2 The L-groups of a Dedekind algebra (A,S) have natural direct sum decompositions

$$
\left\{\begin{array}{l}
L_{1}^{n}(A, S, E)=\rho \in \frac{\oplus}{\max (R)} L^{n}\left(A, \rho^{\infty}, \varepsilon\right) \\
L_{n}(A, S, E)=\rho \in \frac{\oplus}{\max (R)} L_{n}\left(A, \rho^{\infty}, E\right) \quad(n \in \mathbb{Z})
\end{array}\right.
$$

Proof: In the first instance recall from Proposition I.1.4 that for any finite-dimensional A-module chain complexes C, D there are natural direct sum decompositions

$$
\begin{aligned}
& Q^{n}(C \oplus D, \varepsilon)=Q^{n}(C, \varepsilon) \oplus Q^{n}(D, \varepsilon) \oplus H_{n}\left(\operatorname{Hom}_{A}\left(C^{*}, D\right)\right) \\
& Q\left\langle v_{O}\right\rangle^{n}(C \oplus D, \varepsilon)=Q\left\langle v_{O}\right\rangle^{n}(C, \varepsilon) \oplus Q\left\langle v_{O}\right\rangle^{n}(D, \varepsilon) \oplus H_{n}\left(\operatorname{Hom}_{A}\left(C^{*}, D\right)\right) \\
& Q_{n}(C \oplus D, \varepsilon)=Q_{n}(C, \varepsilon) \oplus Q_{n}(D, \varepsilon) \oplus H_{n}\left(\operatorname{Hom}_{A}\left(C^{*}, D\right)\right)
\end{aligned}
$$

By Proposition 4.1.1 an S-acyclic ($n+1$)-dimensional A-module chain complex C is chain equivalent to the direct sum $\rho \in \underset{\max (R)}{\oplus} C(\rho)$ of ρ^{∞}-acyclic $(n+1)$-dimensional A-module chain complexes $C(\rho)$. If $\mathcal{P}_{1}, P_{2} \in \max (R)$ are such that $\bar{\rho}_{1} \neq \mathcal{P}_{2}$ then $\operatorname{Hom}_{A}\left(C\left(\mathcal{P}_{1}\right)^{\star}, C\left(\mathcal{P}_{2}\right)\right)$ is an acyclic Z-module chain complex, so that in particular

$$
H_{n+1}\left(\operatorname{Hom}_{A}\left(C\left(P_{1}\right) *, C\left(\rho_{2}\right)\right)\right)=0 ;
$$

if $Q \in \max (R)$ is such that $\bar{\gamma} \neq$ then $\operatorname{Hom}_{A}(C(\gamma) *, C(x))$ is an
acyclic $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex, so that in particular

$$
\left\{\begin{array}{l}
Q\left\langle v_{O}\right\rangle^{n+1}(C(P),-\varepsilon)=0 \\
Q_{n+1}(C(P),-\varepsilon)=0
\end{array}\right.
$$

Choose a decomposition of $\max (R)-\overline{\max }(R)$ as a disjoint union

$$
\max (R)-\overline{\max }(R)=\{Q\} \cup\{\bar{Q}\} .
$$

Applying the above sum formula there is thus a direct sum decomposition

$$
\left\{\begin{array}{l}
Q\left\langle v_{0}\right\rangle^{n+1}(C,-\varepsilon)=\bigoplus_{\rho} Q\left\langle v_{O}\right\rangle^{n+1}(C(\rho),-\varepsilon) \oplus \underset{Q}{\oplus} H_{n+1}\left(\operatorname{Hom}_{A}(C(\bar{Q}) *, C(\alpha))\right) \\
Q_{n+1}(C,-\varepsilon)=\frac{\Theta}{\rho} Q_{n+1}(C(\rho),-\varepsilon) \oplus \underset{Q}{\theta} H_{n+1}\left(\operatorname{Hom}_{A}\left(C(\bar{\gamma})^{*}, C((x))\right)\right.
\end{array}\right.
$$

with P ranging over $\overline{\max }(R)$. An S-acyclic $(n+1)$-dimensional
$\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincaré complex over A
$\left\{\begin{array}{l}\left(C, \phi \in Q\left\langle v_{O}\right\rangle^{n+1}(C,-\varepsilon)\right) \\ \left(C, \psi \in Q_{n+1}(C,-\varepsilon)\right)\end{array}\right.$ is thus homotopy equivalent to a
 $\left\{\begin{array}{l}\left(C(\rho), \phi(\mathcal{P}) \in Q\left\langle v_{O}\right\rangle^{n+1}(C(P),-\varepsilon)\right) \\ \left(C(\rho), \psi(\mathcal{P}) \in Q_{n+1}(C(P),-\varepsilon)\right)\end{array}\right.$ a \mathcal{J}^{∞}-acyclic $(n+1)$-dimensional
$\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ Poincare complex over A and

$$
\left\{\begin{array}{l}
\phi(Q, \bar{Q}) \in Q\left(v_{O}>^{n+1}(C(Q) \oplus C(\bar{Q}),-\varepsilon)=H_{n+1}\left(\operatorname{Hom}_{A}(C(\bar{Q}) *, C(Q))\right)\right. \\
\psi(Q, \bar{Q}) \in Q_{n+1}(C(Q) \oplus C(\bar{Q}),-\varepsilon)=H_{n+1}\left(\operatorname{Hom}_{A}\left(C(\bar{Q})^{*}, C(\bar{Q})\right)\right)
\end{array}\right.
$$

a chain homotopy class of chain equivalences

$$
\left\{\begin{array}{l}
\phi(\overline{\mathcal{Q}}, \overline{\bar{q}}): C\left(\overline{Q_{1}}\right)^{n+1-\star} \longrightarrow C(Q) \\
\psi(\bar{Q}, \overline{\bar{\gamma}}): C(\overline{\bar{v}})^{n+1-\star} \longrightarrow C(Q)
\end{array}\right.
$$

The $(n+2)$-dimensional s-acyclic $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$ poincaré pair over A

$$
\left\{\begin{array}{l}
\left((10): C(Q) \oplus C(\bar{Q}) \rightarrow C(\alpha),(0, \phi(Q, \bar{Q})) \in Q\left\langle v_{O}\right\rangle^{n+2}((10),-\varepsilon)\right) \\
\left((10): C(Q) \oplus C(\bar{Q}) \longrightarrow C(Q),(0, \psi(Q, \bar{Q})) \in Q_{n+2}((10),-\varepsilon)\right)
\end{array}\right.
$$

shows that for each Q

$$
\left\{\begin{array}{l}
(C(Q) \oplus C(\bar{Q}), \Phi(Q, \bar{Q}))=0 \in L^{n}(A, S, \varepsilon) \\
(C(Q) \oplus C(\bar{Q}), \psi(Q, \bar{Q}))=0 \in L_{n}(A, S, \varepsilon)
\end{array}\right.
$$

and so

$$
\begin{aligned}
& (P \in \overline{\max }(R), n \geqslant 0) .
\end{aligned}
$$

Similarly for the lower L-groups.

A multiplicative subset $P \subset A$ is characteristic for
$\mathcal{F} \in \overline{\max }(R)$ if there is an identity of categories

$$
\left\{\left(A, P^{\infty}\right) \text {-modules }\right\}=\{(A, P) \text {-modules }\}
$$

For example, if some power $\rho^{k}(k \geqslant 1)$ of ρ is a principal ideal of R, with generator $\pi \in R$

$$
\mathcal{F}^{k}=\pi R \Delta R
$$

then $\bar{\pi}=\pi u \in R$ for some unit $u \in R$ such that $u \bar{u}=l$ and the multiplicative subset

$$
S_{\pi}=\left\{\pi^{m} u^{n} \mid m \geqslant 0, n \in \mathbb{Z}\right\} \subset A
$$

is characteristic for P.

Proposition 4.1.3 If $\mathcal{P} \in \overline{\max }(R)$ has a characteristic multiplicative subset $P \subset A$ there are natural identifications of L-groups

$$
\left\{\begin{array}{l}
L^{n}\left(A, \bigodot^{\infty}, \epsilon\right)=L^{n}(A, P, \varepsilon) \\
L_{n}\left(A, P^{\infty}, \varepsilon\right)=L_{n}(A, P, \varepsilon)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

Proof: Immediate from the definitions and Proposition 3.6.5.
 Dedekind algebra with involution (A_{ρ}, S_{ρ}) defined by

$$
S_{\rho}=\left\{\left.\frac{S}{r} \right\rvert\, r \in R-\rho, S \in S\right\} \subset A_{\rho}=(R-\rho)^{-1} A,
$$

with

$$
S_{p} \cup\{0\}=R_{P}, S_{P}^{-1} A_{\rho}=S^{-1} A
$$

Now R_{ρ} is a local ring, with unique maximal ideal

$$
\mathcal{P}_{\mathcal{P}}=\mathcal{P} R_{\rho} \in \overline{\max }\left(R_{\rho}\right)
$$

and $S_{\rho} \subset A_{\rho}$ is a characteristic multiplicative subset for \mathcal{P}_{ρ} so that by Proposition 4.1.3 there are natural identifications

$$
\left\{\begin{array}{l}
L^{n}\left(A_{\rho}, \rho_{\rho}^{\infty}, \varepsilon\right)=L^{n}\left(A_{\rho}, S_{\rho}, E\right) \\
L_{n}\left(A_{\rho}, \rho_{\rho}^{\infty}, E\right)=L_{n}\left(A_{\rho}, S_{\rho}, E\right)
\end{array} \quad(n \in \mathbb{Z}) .\right.
$$

The functor

$$
\begin{gathered}
\left\{\left(A, \rho^{\infty}\right) \text {-modules }\right\} \longrightarrow\left\{\left(A_{\rho}, S_{\rho}\right) \text {-modules }\right\}=\left\{\left(A_{\rho}, \rho_{\rho}^{\infty}\right) \text {-modules }\right\} ; \\
M \mapsto \longrightarrow M_{\rho}(=M \text { as an } A \text {-module })
\end{gathered}
$$

is an isomorphism of cateqories.
Proposition 4.1.4 i) For every $\rho \in \overline{\max }(R)$ there are natural identifications

$$
L_{n}\left(A, \rho^{\infty}, \varepsilon\right)=L_{n}\left(A_{\rho}, S_{p}, \varepsilon\right) \quad(n \in \mathbb{Z})
$$

ii) If $\mathcal{B} \in \overline{\max }(R)$ is such that
either the map $\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow \hat{H}^{l}\left(Z_{2} ; A_{\rho}, E\right)$ is one-one
or there exists a characteristic multiplicative subset $P \subset A$ for P and the map

$$
\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A_{\rho}, \varepsilon\right) \oplus \hat{H}^{1}\left(\mathbb{Z}_{2} ; P^{-1} A, \varepsilon\right)
$$

is one-one
(e.g. if some power $\rho^{k}(k \geqslant 1)$ is principal
and $\left.\hat{H}^{O}\left(\mathbb{Z}_{2} ; F, E\right)=0\right)$
then there are natural identifications

$$
L^{n}\left(A, P^{\infty}, E\right)=L^{n}\left(A_{\rho}, S_{\rho}, E\right) \quad(n \in \mathbb{Z})
$$

Proof: Consider first the case $n \geqslant 0$.
Let C be a ρ^{∞}-acyclic $(n+1)$-dimensional A-module chain complex, so that $A_{P} C$ is an S_{P}-acyclic $(n+l)$-dimensional A_{ρ}-module chain complex. Working as in the proof of Proposition 3.1.4 we can identify

$$
\left\{\begin{array}{l}
Q^{n+1}(C,-\varepsilon)=Q^{n+1}\left(A_{\rho} Q_{A} C,-\varepsilon\right) \\
Q_{n+1}(C,-\varepsilon)=Q_{n+1}\left(A_{\rho} Q_{A} C,-\varepsilon\right)
\end{array}\right.
$$

Also, there is defined an exact sequence

$$
\begin{aligned}
& 0 \longrightarrow Q\left\langle v_{o}\right\rangle^{n+1}(C,-\varepsilon) \longrightarrow Q\left\langle v_{O}\right\rangle^{n+1}\left(A_{\rho} \otimes_{A} C,-\varepsilon\right) \\
& \longrightarrow \operatorname{Hom}_{A}\left(H^{n+1}(C), \operatorname{ker}\left(\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A_{\rho}, \varepsilon\right)\right)\right)
\end{aligned}
$$

so that if $\operatorname{ker}\left(\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A_{\rho}, E\right)\right)=0$ we can also identify

$$
\rho\left(v_{0}\right\rangle^{n+1}(C,-\varepsilon)=Q\left\langle v_{O}\right\rangle^{n+1}\left(A_{\rho} 刃_{A} C,-\varepsilon\right)
$$

As for the Q-groups, so for the l-groups.

For the case $n \leqslant-1$ we need only consider $n=-1,-2$.
In the first instance, we show that if the map $\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{l}\left(\mathbb{Z}_{2} ; A_{\rho}, \varepsilon\right)$ is one-one there are identifications of categories
((- ε)-quadratic linking forms (resp. formations) over (A, \mathcal{P}^{∞})] $=\left\{(-\varepsilon)\right.$-quadratic linking forms (resp. formations) over (Ap, $\left.\left.S_{\rho}\right)\right\}$ where a linking form (resp. formation) over (A, β^{∞}) is defined to be a linking form (resp. formation) over (A, S) involving only $\left(A, P^{\infty}\right)$-modules. By the above identifications of Q-groups there are identifications of categories

$$
\begin{aligned}
&\{(-\varepsilon) \text {-symmetric (resp. split }(-\varepsilon) \text {-quadratic) } \\
&\text { linking forms over } \left.\left(A, P^{\infty}\right)\right\}
\end{aligned}
$$

$=((-\varepsilon)$-symmetric (resp. split (-E)-quadratic)
linking forms over ($\left.A_{\rho}, S_{\rho}\right)$).
By Proposition 3.4.2 i) every (- $\boldsymbol{\varepsilon}$) -quadratic linking form over (A_{ρ}, S_{ρ})

$$
\left(M, \lambda: M \times M \longrightarrow S^{-1} A / A, \mu: M \longrightarrow Q_{-E}\left(A_{P}, S_{\rho}\right)\right)
$$

can be lifted to a split (-E)-quadratic linking form over (A_{ρ}, S_{p}), and hence to a $(-\varepsilon)$-quadratic linking form over $\left(A, P^{\infty}\right)$

$$
\left(M, \lambda_{1}: M \times M \longrightarrow S^{-1} A / A, \mu_{1}: M \longrightarrow Q_{-\varepsilon}(A, S)\right)
$$

with λ_{1} uniquely determined by λ. If (M, λ_{1}, μ_{2}) is another such lifting of (M, λ, μ) then for each $x \in M$

$$
\begin{aligned}
\mu_{1}(x)-\mu_{2}(x) & \in\left\{a \in A \mid a=b-\varepsilon \vec{b} \text { for some } b \in A_{\rho}\right\} /\{c-\varepsilon \bar{c} \mid c \in A\} \\
& =\operatorname{ker}\left(\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A_{\rho}, \varepsilon\right)\right) \\
& \subseteq \operatorname{ker}\left(Q_{-\varepsilon}(A, S) \longrightarrow Q_{-\varepsilon}\left(A_{\rho}, S_{\rho}\right)\right) .
\end{aligned}
$$

Thus if $\operatorname{ker}\left(\hat{i l}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A_{\rho}, \varepsilon\right)\right)=0$ there are identifications of categories as claimed above and $L^{n}\left(A, \rho^{\infty}, \varepsilon\right)=L^{n}\left(A_{\rho}, S_{\rho}, C\right)$ for $n=-2($ resp. $n=-1)$.

If there exists a characteristic multiplicative subset $P \subset A$ for $\rho \in \max (R)$ there is defined a cartesian morphism

$$
(A, P) \longrightarrow\left(A_{\rho}, P\right)
$$

There is an identity of categories

$$
\left\{\left(A_{\rho}, P\right)-\text { modules }\right\}=\left\{\left(A_{p}, S_{\rho}\right) \text {-modules }\right\}\left(=\left\{\left(A, \rho^{\infty}\right) \text {-modules }\right\}\right),
$$

so that by Proposition 3.6 .5 there are identifications

$$
L_{1}^{n}\left(A_{P}, P, \varepsilon\right)=L_{1}^{n}\left(\Lambda_{\rho}, S_{P}, E\right) \quad(n \in \mathbb{Z})
$$

If $\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A_{\rho}, E\right) \oplus \hat{H}^{1}\left(\mathbb{Z}_{2} ; P^{-1} A, \varepsilon\right)$ is one-one then by Proposition 3.6.3 ii) there are also identifications

$$
L^{n}(A, P, \varepsilon)=L^{n}\left(A_{\rho}, P, \varepsilon\right) \quad(n \in \mathbb{Z})
$$

and by Proposition 4.1 .3

$$
L^{n}\left(A, P^{\infty}, E\right)=I^{n}(A, P, E) \quad(n \in \mathbb{Z})
$$

Given $\mathcal{P} \in \max (R)$ define the \mathcal{P}-adit completion of A to be the ring

$$
\hat{A}_{\rho}=\frac{L i m}{k} A / \zeta^{k} A
$$

which is also the ρ_{ρ}-adic completion $\left(\widehat{A_{\rho}}\right)_{\rho_{\rho}}=\frac{L i m}{k} A_{\rho} / \rho^{k} A_{\rho}$ of the localization A_{p} of A at \mathcal{P}. If $\mathcal{P} \in \max (R) \subseteq \max (R)$ the completion \hat{A}_{ρ} is a ring with involution, and

$$
\hat{S}_{p}=\hat{R}_{p}-\{0\} \subset \hat{A}_{\beta}
$$

is a multiplicative subset such that $\left(\hat{\Lambda}_{\rho}, \hat{S}_{\rho}\right)$ is a Dedekind algebra with involution. The quotient field of \hat{R}_{ρ}

$$
\hat{F}_{\rho}=\hat{S}_{\rho}^{-1} \hat{R}_{\rho}
$$

is the ρ-adic field of R, and is such that

$$
\hat{S}_{\rho}^{-1} \hat{A}_{\rho}=\hat{F}_{\rho} \hat{R}_{\rho} \hat{A}_{\rho}
$$

The S-adic completion $\hat{A}=\underset{S \in S}{\operatorname{Lim}} N / S A$ is the unrestricted product
of the 3 -adic completions

$$
\hat{A}=\prod_{\rho \in \max (R)} \AA_{\rho},
$$

and the localization of the completion is the restricted product

$$
\hat{S}^{-1} \hat{A}=\prod_{\rho \in \max (R)}\left(\hat{S}_{\rho}^{-1} \hat{A}_{\rho}, \hat{A}_{\rho}\right)
$$

consisting of collections $\left\{x_{\beta} \in \hat{S}_{\rho}^{-1} \hat{A}_{\rho} \mid \rho \in \max (R)\right\}$ such that $x_{p} \in \hat{A}_{\mathcal{P}} \subseteq \hat{S}_{P}^{-1} \hat{A}_{p}$ for all but a finite number of $\rho \in \max (\mathrm{R})$. Thus the cartesian square of rings with involution associated to (A, S)

can be written as

If $P \subset A$ is a characteristic multiplicative subset for $\mathcal{P} \in \max (R)$ the \mathcal{P}-adic completion of A is just the P-adic completion of A

$$
\hat{A}=\underset{p \in p}{\frac{L i m}{N}} A / p A
$$

For example, the r ing of p-adic inteqers $\hat{\mathbb{Z}}_{p}=\frac{L_{k}}{k} \mathbb{Z} / p^{k} \mathbb{Z}$ is the (p)-adic completion of \mathbb{Z}, with $(p)=p \mathbb{Z} \in \overline{\max }(\mathbb{Z})$ (p prime), and $\hat{S}_{(p)}^{-1} \hat{Z}_{p}=\hat{\mathbb{Q}}_{p}$ is the field of p-adic numbers.

Given $\rho \in \overline{\max }(\mathrm{R})$ let

$$
\hat{\rho}_{\rho}=\rho \hat{R}_{P} \in \overline{\max }\left(\hat{R}_{\rho}\right)
$$

be the unique maximal ideal of the complete loacl ring $\hat{\mathbb{R}}_{p}$. The multiplicative subset

$$
\hat{S}_{p}=\hat{R}_{p}-\{0\} \subset \hat{\mathbf{A}}_{\rho}
$$

is characteristic for $\hat{\mathcal{P}}_{\rho} \in \overline{\max }\left(\hat{R}_{\rho}\right)$, and there are natural
identifications of exact categories

$$
\begin{aligned}
\left\{\left(A, P^{\infty}\right) \text {-modules }\right\} & =\left\{\left(A_{\rho}, P^{\infty}\right) \text {-modules }\right\} \\
& =\left\{\left(\hat{A}_{\rho}, \hat{\rho}_{\rho}^{\infty}\right) \text {-modules }\right\}=\left\{\left(\hat{A}_{\rho}, \hat{S}_{\rho}\right) \text {-modules }\right\}
\end{aligned}
$$

Proposition 4.1.5 il There are natural identifications of ε-quadratic L -groups

$$
L_{n}\left(A, \rho^{\infty}, \varepsilon\right)=L_{n}\left(\hat{A}_{\rho}, \hat{S}_{p}, E\right) \quad(n \in \mathbb{Z})
$$

giving rise to a Mayer-Vietoris exact sequence

$$
\begin{aligned}
\ldots \longrightarrow L_{n}(A, \varepsilon) & \longrightarrow L_{n}^{S}\left(S^{-1} A, \varepsilon\right) \oplus \prod_{\rho} L_{n}\left(\hat{A}_{\rho}, \varepsilon\right) \\
& \longrightarrow \prod_{P}\left(L_{n}\left(\hat{S}_{\rho}^{-1} \hat{A}_{p}, \varepsilon\right), L_{n}\left(\hat{A}_{\rho}, \varepsilon\right)\right) \longrightarrow L_{n-1}(A, \varepsilon) \longrightarrow \ldots(n \in \mathbb{Z}),
\end{aligned}
$$

with $\hat{\rho}$ ranging over $\overline{\max }(\mathrm{R})$.
ii) If $P \in \overline{\max }(R)$ is such that
either the maps $\hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right) \longrightarrow \hat{H}^{l}\left(\mathbb{Z}_{2} ; \hat{A}_{\rho}, \varepsilon\right)$ and
$\hat{H}^{1}\left(\mathbb{Z}_{2} ; A_{\rho}, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; \hat{A}_{\rho}, E\right) \oplus \hat{H}^{1}\left(\mathbb{Z}_{2} ; \hat{S}_{\rho}^{-1} \hat{A}_{\rho}, E\right)$ are one-one
or there exists a characteristic multiplicative subset PCA for ρ and the map
$\hat{H}^{1}\left(Z_{2} ; A, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; \hat{A}_{\varphi} ; \varepsilon\right) \oplus \hat{H}^{1}\left(\mathbb{Z}_{2} ; P^{-1} A, E\right)$
is one-one
(e.g. if some power $\rho^{k}(k \geqslant 1)$ is principal and
$\left.\hat{H}^{O}\left(Z_{2} ; \hat{F}_{\beta}, \varepsilon\right)=0\right)$
there are natural identifications of ε-symmetric l-groups

$$
L^{n}\left(A, P^{\infty}, E\right)=L^{n}\left(\hat{A}_{P}, \hat{S}_{P}, E\right) \quad(n \in \mathbb{Z})
$$

If one of these conditions is satisfied for each $\mathcal{P} \boldsymbol{\epsilon} \overline{\max }(R)$ there is defined a Mayer-vietoris exact sequence

$$
\begin{aligned}
\cdots \longrightarrow L^{n}(A, E) & \longrightarrow L_{S}^{n}\left(S^{-1} A, E\right) \oplus \prod_{\rho} L^{n}\left(\hat{A}_{\rho}, \varepsilon\right) \\
& \longrightarrow \prod_{\rho}\left(L_{\hat{S}}^{n}\left(\hat{S}_{\rho}^{-1} \hat{A}_{\rho}, \varepsilon\right), L^{n}\left(\hat{A}_{\rho}, \varepsilon\right)\right) \longrightarrow L^{n-1}(A, \varepsilon) \longrightarrow \ldots(n \in \mathbb{Z}) .
\end{aligned}
$$

iii) For A, P, ε as in $\left\{\begin{array}{l}\text { ii) } \\ \text { i) }\end{array}\right.$ the groups $\left\{\begin{array}{l}L^{\star}\left(A, P^{\infty}, \varepsilon\right)=L^{\star}\left(\hat{\Lambda}_{\rho}, \hat{S}_{P}, \varepsilon\right) \\ L_{*}\left(A, P^{\infty}, \varepsilon\right)=L_{*}\left(\hat{A}_{\rho}, \hat{S}_{S}, \varepsilon\right)\end{array}\right.$
are $L^{O}\left(\hat{R}_{\rho}\right)$-modules.
Proof: i), ii) Immediate from Propositions 3.6.3,3.6.5 and 4.1.4 using the cartesian morphisms $\left(A_{\rho}, S_{\rho}\right) \longrightarrow\left(\hat{A}_{\rho}, S_{\rho}\right),(A, P) \longrightarrow\left(\hat{A}_{\rho}, P\right)$.
(The restricted product $\frac{\Pi}{\rho}\left(\mathrm{G}_{\rho}, \mathrm{H}_{\rho}\right)$ of a collection of abelian group morphisms $H_{\rho} \longrightarrow G_{\rho}$ indexed by a set $\{\emptyset\}$ is the direct limit

$$
\prod_{\rho}\left(G_{\rho}, H_{\rho}\right)=\frac{L i m}{I}\left(\prod_{\rho \in I} G_{\rho} \times \prod_{\rho \notin I} H_{\rho}\right)
$$

taken over all the finite subsets I of $\{9\}$).
iii) Immediate from i), ii) and Proposition 2.2.6.

The hypotheses of Propositions 4.1.4 ii), 4.1.5 ii) are satisfied if the Dedekind ring \mathbb{R}^{i} s of characteristic $\neq 2$ and has finite reduced projective class group $\hat{K}_{O}(R)$ ($=$ the ideal class group), such as is the case for the ring of integers R in an algebraic number field F. In particular, the hypotheses are satisfied, if (A,S) is the Dedekind algebra with involution defined by a torsion-free ring with involution A, with

$$
S=\mathbb{Z}-\{0\} \subset A, R=S \cup\{0]=\mathbb{Z},
$$

for which Proposition 4.1.5 gives identifications

$$
\left\{\begin{aligned}
& L^{n}(A, S, \varepsilon)= \underset{p}{\bigoplus_{p}} L^{n}\left(A,(p)^{\infty}, \varepsilon\right)=\underset{p}{\bigoplus_{p}} L^{n}\left(\hat{A}_{p},(\hat{p})^{\infty}, \varepsilon\right) \\
& L_{n}(A, S, \varepsilon)=\underset{p}{\bigoplus_{n}} L_{n}\left(A,(p)^{\infty}, \varepsilon\right)=\bigoplus_{p} L_{n}\left(\hat{A}_{p^{\prime}}(\hat{p})^{\infty}, \varepsilon\right) \\
&(n \in \mathbb{Z}, p \text { prime, }(p)=p \mathbb{Z} \triangleleft \mathbb{Z})
\end{aligned}\right.
$$

and a Mayer-vietoris exact sequence
where $S^{-1} A=0 \mathbb{X}_{\mathbb{Z}^{A}}, \hat{A}_{p}=\frac{L_{4} i m}{K} A / p^{k} A=\hat{\mathbb{Z}}_{p} \mathbb{Z}_{\mathbb{Z}^{A}}, \hat{S}_{p}^{-1} \hat{A}_{p}=\hat{\Phi}_{p} \mathbb{X}_{\mathbb{Z}^{A}}$.
Moreover, the L-groups $\left\{\begin{array}{l}L^{\star}\left(A,(p)^{\infty}, \varepsilon\right) \\ L_{*}\left(A,(p)^{\infty}, \varepsilon\right)\end{array}\right.$ are $L^{O}\left(\hat{Z}_{p}\right)$-modules, and hence of exponent $\hat{\psi}(p)$. (See $\$ 3.6$ for the definition of $\hat{\psi}(p))$.

4.2 Dedekina rings

We shall now specialize the results of $\$ 4.1$ to the cas of a Dedekind algebra with involution (A, S) with $A=R=S U$ i.e. A is itself the underlying Dedekind ring with involutiol

Let then R be a Dedekind with involution, and let

$$
S=R-\{0\} \subset R,
$$

so that the quotient field of R is given by

$$
\mathrm{F}=\mathrm{S}^{-1} \mathrm{R}
$$

Recall from $\$ 3.1$ the definition of the maximal S-torsion submodule of an R-module M

$$
\begin{aligned}
& \qquad T_{S} M=\{x \in M \mid s x=0 \in M \text { for some } s \in S\} \subseteq M . \\
& \text { An R-module } M \text { is }\left\{\begin{array}{l}
\text { torsion } \\
\text { torsion-free }
\end{array}\right. \text { if }
\end{aligned}
$$

$$
\left\{\begin{array}{l}
T_{S} M=M \\
T_{S} M=\{0\}
\end{array}\right.
$$

An R-module is $\left\{\begin{array}{l}\text { an (R, } S \text {)-module } \\ \text { a f.g. projective } R-m o d u l e ~ i f ~ a n d ~ o n l y ~ i f ~ i t ~\end{array}\right.$
is f.g. and $\left\{\begin{array}{l}\text { torsion } \\ \text { torsion-free }\end{array}\right.$.
Given a finite-dimensional R-module chain complex \mathcal{C} let $\left\{\begin{array}{l}T_{r}(C)=T_{S} H_{r}(C) \\ F_{r}(C)=H_{r}(C) / T_{S} H_{r}(C)\end{array}\left(\right.\right.$ resp. $\left\{\begin{array}{l}T^{r}(C)=T_{S} H^{r}(C) \\ F^{r}(C)=H^{r}(C) / T_{S} H^{r}(C) \quad(r \in \mathbb{Z}, ~\end{array}\right.$
be the $\left\{\begin{array}{l}\text { maximal torsion submodule } \\ \text { minimal torsion-free quotient module }\end{array}\right.$ of $H_{r}(C)$ (resp.
which is $\left\{\begin{array}{l}\text { an (} R, S \text {)-module } \\ \text { a f.g. projective } R \text {-module }\end{array}\right.$. The universal coefficie
theorem gives natural R -module isomorphisms

$$
\begin{aligned}
T_{r}(C) \longrightarrow T^{r+1}(C)^{\wedge}= & \operatorname{Hom}_{R}\left(T^{r+1}(C), F / R\right) ; x \longmapsto\left(f \longmapsto\left(\frac{f(y)}{S}\right)\right) \\
& \left(x \in C_{r}, y \in C_{r+1}, s \in S, s x=d y \in C_{r}, f \in C^{r+1}\right) \\
F_{r}(C) \longrightarrow F^{r}(C)^{*}=\operatorname{Hom}_{R}\left(F^{r}(C), R\right) ; & x \longmapsto(f \longmapsto \overline{f(x)}) \\
& \left(x \in C_{r}, f \in C^{r}\right) .
\end{aligned}
$$

Proposition 4.2.1 The L-groups of a Dedekind ring with involution R and of the quotient field $F=S^{-1} R$ are such that
i) The skew-suspension maps in the $\pm \varepsilon$-symmetric L-groups

$$
\begin{cases}\bar{S}: L^{n}(R, E) \longrightarrow L^{n+2}(R,-\varepsilon) & (n \geqslant 0) \\ \bar{S}: L^{n}(R, S, \varepsilon) \longrightarrow L^{n+2}(R, S,-\varepsilon) & (n \geqslant 1)\end{cases}
$$

are isomorphisms.
ii) The witt group of $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { even } \varepsilon \text {-symmetric formations over } F \\ \varepsilon \text {-quadratic }\end{array}\right.$
vanishes

$$
\left\{\begin{array}{l}
M^{\varepsilon}(F)=L^{1}(F, \varepsilon)=0 \\
M\left\langle v_{O}\right\rangle^{\varepsilon}(F)=L^{-1}(F,-\varepsilon)=0 \\
M_{\varepsilon}(F)=L_{1}(F, \varepsilon)=0
\end{array}\right.
$$

as does the Witt group of $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \text { even } \varepsilon \text {-symmetric linking formations } \\ \varepsilon \text {-quadratic }\end{array}\right.$
over (R,S)

$$
\left\{\begin{array}{l}
M^{\varepsilon}(R, S)=L^{3}(R, S,-\varepsilon)=0 \\
M\left\langle V_{O}\right\rangle^{\varepsilon}(R, S)=L^{1}(R, S, \varepsilon)=0 \\
M_{C}(R, S)=L^{-1}(R, S,-\varepsilon)=0
\end{array}\right.
$$

iii) There are defined localization exact sequences of Witt groups

In particular, there are natural identifications of witt groups of formations over R with quotients of Witt groups of linking forms over (R, S)

$$
M_{E}(R)=
$$

(non-singular ($-\varepsilon$)-quadratic linking forms over (R, S)) (boundaries of S -non-singular even $(-\varepsilon)$-symmetric forms over R) $=$ (non-singular split ($-\varepsilon$)-quadratic linking forms over (R, S))
 form over (R, S) is isomorphic to the boundary of an S -non-singular $\left\{\begin{array}{l}(-\varepsilon)-\text { symmetric } \\ \text { even }(-\varepsilon) \text {-symmetric form over } R, \text { by proposition } 3.4 .6 \text { ii)). } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$

$$
\begin{aligned}
& M^{\epsilon}(R)=\frac{\text { (non-singular }(-E) \text {-symmetric linking forms over }(R, S))}{\left(\begin{array}{l}
\text { (boundaries of } S \text {-non-singular } \\
(-\varepsilon) \text {-symmetric forms over } R)
\end{array},\right. \text { (hyperbolics) }} \\
& M\left\langle v_{0}\right\rangle^{E}(R)= \\
& \text { (non-singular even (-E)-symmetric linking forms over (R,S)) } \\
& \text { (boundaries of } S \text {-non-singular }(-\varepsilon) \text {-symmetric forms over } R \text {) }
\end{aligned}
$$

$$
\begin{aligned}
& 0 \longrightarrow L^{E}(R) \longrightarrow L^{E}(F) \longrightarrow L^{\mathcal{A}}(R, S) \longrightarrow M^{-\varepsilon}(R) \longrightarrow 0 \\
& O \longrightarrow L^{\varepsilon}(R) \longrightarrow L^{\varepsilon}(F) \xrightarrow{j}^{j} L\left\langle v_{O}\right\rangle^{\varepsilon}(R, S) \longrightarrow M\left\langle v_{O}\right\rangle^{-\varepsilon}(R) \longrightarrow 0 \\
& 0 \longrightarrow \mathrm{~L}\left\langle\mathrm{v}_{\mathrm{O}}\right\rangle^{\varepsilon}(\mathrm{R}) \longrightarrow \mathrm{L}\left\langle\mathrm{v}_{\mathrm{O}}\right\rangle^{\varepsilon}(\mathrm{F}) \xrightarrow{\partial} \mathrm{L}_{\varepsilon}(\mathrm{R}, \mathrm{~S}) \longrightarrow \mathrm{M}_{-\varepsilon}(\mathrm{R}) \longrightarrow 0 \\
& 0 \longrightarrow \tilde{M}_{\varepsilon}(R, S) \longrightarrow L_{\varepsilon}(R) \longrightarrow L_{\varepsilon}(F) \xrightarrow{\partial} \tilde{L}_{\epsilon}(R, S) \longrightarrow M_{-\varepsilon}(R) \longrightarrow 0 .
\end{aligned}
$$

iv) For $n=2 i(r e s p . n=2 i+1)$ the isomorphism

$$
\left\{\begin{array}{l}
\bar{S}^{-i}: L^{n}(R, \varepsilon) \longrightarrow L^{n-2 i}\left(R,(-)^{i} \varepsilon\right) \\
\bar{S}^{-i}: L_{n}(R, \varepsilon) \longrightarrow L_{n-2 i}\left(R,(-)^{i} \varepsilon\right)
\end{array}\right.
$$

sends the cobordism class of an n-dimensional $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ Poincaré complex over $R\left\{\begin{array}{l}\left(C, \phi \in Q^{n}(C, E)\right) \\ \left(C, \psi \in Q_{n}(C, \varepsilon)\right)\end{array}\right.$ to the class in
 of the non-singular $\left\{\begin{array}{l}(-)^{i} \varepsilon \text {-symmetric } \\ (-)^{i} \varepsilon \text {-quadratic }\end{array}\right.$ form over R

$$
\left\{\begin{array}{l}
\left(F^{i}(C), \phi_{O}: F^{i}(C) \times F^{i}(C) \longrightarrow R\right) \\
\left(F^{i}(C),\left(1+T_{E}\right) \psi_{O}, v^{i}(\psi): F^{i}(C) \longrightarrow Q_{(-)^{i} \varepsilon}(R)\right)
\end{array}\right. \text { (resp. of the }
$$

\square
\qquad

$$
\text { non-singular }\left\{\begin{array}{l}
(-)^{i+1} \varepsilon \text {-symmetric } \\
(-)^{i+1} \varepsilon \text {-quadratic }
\end{array} \text { linking form over }(R, S)\right.
$$

$$
\left\{\begin{array}{l}
\left(T^{i+1}(C), \Phi_{O}^{S}: T^{i+1}(C) \times T^{i+1}(C) \longrightarrow F / R\right) \\
\left(T^{i+1}(C),\left(1+T_{\varepsilon}\right) \psi_{O}^{S}{ }^{i} P v_{S}^{i}(\psi): T^{i+1}(C) \longrightarrow Q_{(-1)}^{i+1}(R, S)\right)
\end{array}\right.
$$

expressed as

$$
0 \longrightarrow L^{E}(R) \longrightarrow L^{E}(F) \longrightarrow \mathcal{P \in} \frac{\oplus}{\max (R)} L^{\varepsilon}(R / P) \longrightarrow M^{-\varepsilon}(R) \longrightarrow
$$

Proof: i) - v) Immediate from Propositions 1.2.3.3.6.1 and 4 since a Dedekind ring is l-dimensional and the quotient fie is 0 -dimensional.
vi) Define an $\left(R, \rho^{k}\right)$-module $M(k \geqslant 1)$ to be a \mathcal{P}-primary (R, S)-module with annihilator

$$
\operatorname{ann}(M)=\rho^{\dot{j}} \triangleleft R
$$

for some $j \leqslant k$. Let $L^{E}\left(R, \rho^{k}\right)(k \geqslant 1)$ be the witt group of non-singular ε-symmetric linking forms over (R, \mathcal{P}^{k}), that is non-sinqular E-symmetric linking forms over (R, S) (M, λ) wit M an ($\mathrm{R}, \mathrm{P}^{\mathrm{K}}$)-module. The natural maps

$$
L^{\varepsilon}\left(R, \rho^{k}\right) \longrightarrow L^{\varepsilon}\left(R, \rho^{k+1}\right) ;(M, \lambda) \longmapsto(M, \lambda) \quad(k \geqslant 1)
$$

are isomorphisms, for if (M, λ) is a non-singular e-symmetri linking form over (R, ρ^{k+1}) then

$$
L=\rho^{k} M \subseteq M
$$

is a sublagrangian of (M, λ) such that L is an $\left(R, \rho^{k+1}\right)$-modi and ($L^{+} / L_{1}, \lambda^{\perp} / \lambda$) is a non-singular e-symmetric linking form over (R, ρ^{k}), so that there are defined inverses

$$
L^{\varepsilon}\left(R, \rho^{k+1}\right) \longrightarrow L^{E}\left(R, \rho^{k}\right) ;(M, \lambda) \longmapsto(L \perp / L, \lambda+\lambda) \quad(k>1)
$$

We can thus identify

$$
L^{\varepsilon}\left(R, \rho^{\infty}\right)=\frac{L i m}{k} L^{\varepsilon}\left(R, \rho^{k}\right)=L^{\varepsilon}(R, P) .
$$

There is a natural identification of categories

$$
\begin{aligned}
& \{(R, S) \text {-modules }\} \\
& =\{\text { finite-dimensional vector spaces over the } \\
& \quad \text { residue class field } R / \mathcal{P}\} .
\end{aligned}
$$

Choose an element $\pi \in \rho-\rho^{2}$, so that $\pi \in R_{\rho}$ is a generator of the unique maximal ideal $\rho_{\rho}=\pi R_{\rho} E \overline{\max }\left(R_{\rho}\right)$ of the local ring R_{ρ}, and note that for any (R, \mathcal{P})-module M there is defined an R-module isomorphism

$$
\begin{aligned}
M^{*}=\operatorname{Hom}_{R / \rho}(M, R / \rho) \longrightarrow M^{\wedge}= & \operatorname{Hom}_{R_{\rho}}\left(M, F / R_{\rho}\right) ; \\
& f \longmapsto \longmapsto\left(x \longmapsto \frac{f(x)}{\pi}\right) .
\end{aligned}
$$

Moreover, the ε-duality involution T_{E} on $H_{R} R_{R}\left(M, M^{*}\right)$ corresponds under this isomorphism to the e-duality involution T_{ε} on $\operatorname{Hom}_{R_{\rho}}\left(M, M^{\wedge}\right)$. (We are assuming here that $\bar{\pi}=\pi \in \mathcal{P}$). The natural R -module morphism

$$
\operatorname{Hom}_{R}(M, F / R) \longrightarrow \operatorname{Hom}_{R_{\rho}}\left(M, F / R_{\mathcal{P}}\right): f \longmapsto(x \longmapsto f(x))
$$

is an isomorphism, so that we have identifications of categories

$$
\begin{aligned}
& \text { \{e-symmetric linking forms over } R / p \text { \} } \\
& =\left\{\varepsilon-s y m m e t r i c \text { linking forms over }\left(R_{p}, \rho_{p}\right)\right\} \\
& =\{\varepsilon-\text { symmetric linking forms over }(R, \rho)\}
\end{aligned}
$$

and hence also of e-symmetric Witt groups

$$
L^{E}(R / \rho)=L^{E}\left(R_{\rho}, \rho_{\rho}\right)=L^{E}(R, \rho)=L^{E}\left(R, \rho^{\infty}\right)
$$

(with only the identification $L^{\varepsilon}(R / \mathcal{P})=L^{\varepsilon}\left(R_{p}, \mathcal{P}_{p}\right)$ depending on the choice of uniformizer π).

The 1 ,-theoretic devissage argument used to identify $L^{F}\left(R, P^{\infty}\right)=L^{\varepsilon}(R, P)$ in the proof of Proposition 4.2 .1 vi) above breaks down in the ε-quadratic case. Given a non-singular E-quadratic linking form over $(R, S)(M, \lambda, \mu)$ such that

$$
\operatorname{ann}(M)=3^{k+1} \quad(k \geqslant 1)
$$

for some $\rho \in \overline{\max }(R)$ it need not be the case that $L=\mathcal{\rho}^{k} M \subset M$ is a sublagrangian of (M, λ, μ) as well as of (M, λ).

For example, consider the non-singular quadratic linking form over ($\mathbb{Z}, \mathbb{Z}-\{O\})(M, \lambda, \mu)$ defined by

$$
\begin{aligned}
& M=\mathbb{Z}_{4}\left(\text { so that ann }(M)=(2)^{2} \triangleleft \mathbb{Z}\right) \\
& \lambda: M \times M \longrightarrow Q / \mathbb{Z} ;(m, n) \longmapsto \frac{1}{4} m n \\
& \mu: M \longrightarrow Q_{+1}(\mathbb{Z}, \mathbb{Z}-\{0\})=Q / 2 \mathbb{Z} ; m \longmapsto \longrightarrow \frac{1}{4} m^{2} .
\end{aligned}
$$

Then $L=2 M C M$ is a lagrangian of the symmetrization (M, λ) but not of (M, λ, μ), since

$$
\mu(2)=1 \neq 0 \in \Phi / 2 \pi z
$$

In fact, the kernel of the symmetrization map of witt groups

$$
\begin{aligned}
1+T: L_{+1}\left(\mathbb{Z},(2)^{\infty}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \longrightarrow & L^{+1}\left(\mathbb{Z},(2)^{\infty}\right)=L^{+1}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2} ; \\
& (a, b) \longmapsto b
\end{aligned}
$$

is generated by $(M, \lambda, \mu)=(1,0) \in \operatorname{ker}(1+T)=\mathbb{Z}_{8}$, and the non-singular quadratic linking form over $(\mathbb{Z}, \mathbb{Z}-(O\})\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime}\right)$ defined by

$$
\begin{aligned}
& M^{\prime}=\mathbb{Z}_{2} \\
& \lambda^{\prime}: M^{\prime} \times M^{\prime} \longrightarrow Q / \mathbb{Z} ;(m, n) \longmapsto \frac{1}{2} m n \\
& \mu^{\prime}: M^{\prime} \longrightarrow Q / 2 \mathbb{Z} ; m \longmapsto \longrightarrow \frac{1}{2} m^{2}
\end{aligned}
$$

represents $\left(M^{\prime}, \lambda^{\prime}, \mu^{\prime}\right)=(0,1) \in L_{+1}\left(\mathbb{Z},(2)^{\infty}\right)$. Furthermore, $L_{+1}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$ (generated by the non-singular quadratic form over \mathbb{Z} $\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2},\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in Q_{+1}\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right)\right)$ of Arf invariant 1$)$, so that

$$
\mathrm{L}_{+1}\left(\mathbb{Z},(2)^{\infty}\right) \neq \mathrm{L}_{+1}\left(\mathbb{Z}_{2}\right)
$$

In Proposition 4.3 .3 below we shall relate this failure of devissage in quadratic L-theory to a failure of reduction modulo a complete ideal $(=$ Hensel's lemmal in symmetric L-theory.

The e-symmetric Witt group localization exact sequence of Proposition 4.2.1 vi)

$$
0 \longrightarrow L^{\varepsilon}(R) \longrightarrow L^{\varepsilon}(F) \longrightarrow \rho \in \frac{\oplus}{\max (R)} L^{\varepsilon}(R / \rho)
$$

was first obtained by Milnor (cf. Corollary IV.3.3 of Milnor and Husemoller [1]) in the case $\varepsilon=+1 \in R$, with R a Dedekind ring of characteristic $\neq 2$. The identifications of Proposition 4.2.1 iii), vi)

$$
\begin{aligned}
& M^{-\epsilon}(R)=\operatorname{coker}\left(\hat{O}: L^{\epsilon}(F) \longrightarrow L^{\varepsilon}(R, S)\right), \\
& L^{\varepsilon}(R, S)=\underset{\rho}{\oplus} L^{\epsilon}(R / \rho)
\end{aligned}
$$

were first obtained by Karoubi [3], in the case $1 / 2 \in R$. Example IV.3.5 of Milnor and Husemoller [l] can be interpreted as stating that for the coordinate r ing of the circle

$$
\mathbb{R}=\mathbb{R}[x, y] /\left(x^{2}+y^{2}-1\right)
$$

the Witt group of non-singular skew-symmetric formations over : is given by

$$
M^{-1}(R)=Z,
$$

generated by the formation

$$
\left(R \oplus R^{\star},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) ; R, i m\left(\binom{x}{y}: R \longrightarrow R \oplus R^{\star}\right)\right),
$$

corresponding to the symplectic automorphism

$$
\left(\begin{array}{cc}
x & -y \\
y & x
\end{array}\right) \in \operatorname{SL}_{2}(R)=\operatorname{Aut}\left(R \oplus R^{*},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\right)
$$

Given a Dedekind ring with involution R and $\rho \in \overline{\max }(R)$ together with a choice of uniformizer $\pi \in \rho-\rho^{2}$ such that $\bar{\pi}=\pi$ there is defined a non-singular skew-symmetric S-formation ove

$$
\left(R \oplus R^{*},\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) ; R, i m\left(\binom{i}{\pi i}: \rho \longrightarrow R \oplus R^{*}\right)\right)
$$

with $i \in H_{H} m_{R}(P, R)$ the inclusion, corresponding by Proposition to the non-sinqular symmetric linking form over (R, \mathcal{P})

$$
\left(R / \rho, \lambda: R / \rho \times R / \beta \longrightarrow F / R ;(x, Y) \longmapsto \frac{\bar{x} y}{\pi}\right)
$$

The inclusion of the lagrangian $\binom{i}{n i}: \rho \longrightarrow R \oplus R^{*}$ extends by Proposition 1.6.2 to an R-module isomorphism
$\rho \oplus \rho \star \longrightarrow \mathrm{R}_{\mathrm{R}} \mathrm{R}^{*}$.
Thus if R has the identity involution $(\bar{r}=r$ for all $r \in R)$ the duality involution on the reduced projective class group (= the ideal class group of R) is given by

$$
\star: \widetilde{\mathrm{K}}_{\mathrm{O}}(\mathrm{R}) \longrightarrow \widetilde{\mathrm{k}}_{\mathrm{O}}(\mathrm{R}) ;[P] \longmapsto[P]^{*}=-[P]
$$

and

$$
\hat{H}^{m}\left(\mathbb{Z}_{2} ; \widetilde{\mathrm{K}}_{\mathrm{O}}(R)\right)=\left\{\begin{array} { l }
{ \operatorname { k e r } (2 : \tilde { \mathrm { K } } _ { \mathrm { O } } (R) \longrightarrow \widetilde { \mathrm { K } } _ { \mathrm { O } } (R)) } \\
{ \operatorname { c o k e r } (2 : \tilde { \mathrm { K } } _ { \mathrm { O } } (R) \longrightarrow \widetilde { \mathrm { K } } _ { \mathrm { O } } (R)) }
\end{array} \quad \text { if } \left\{\begin{array}{l}
\mathrm{m} \equiv 0(\bmod 2) \\
m \equiv 1(\bmod 2)
\end{array}\right.\right.
$$

Now $V^{0}(R,-1)=0$ (by Corollary 1.3 .5 of Milnor and Husemoller so that a portion of the relevant exact sequence of Proposition 1.10 .1 can be written as

$$
\begin{aligned}
& \ldots \longrightarrow U^{2}(R,-1) \longrightarrow \hat{H}^{2}\left(\mathbb{Z}_{2} ; \tilde{\mathrm{K}}_{\mathrm{O}}(R)\right) \longrightarrow \mathrm{V}^{1}(R,-1) \\
& \longrightarrow U^{1}(R,-1) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; \overline{\mathrm{K}}_{\mathrm{O}}(R)\right) \longrightarrow 0 .
\end{aligned}
$$

The map

$$
U^{2}(R,-1)=U^{O}(R) \longrightarrow \hat{H}^{2}\left(\mathbb{Z}_{2} ; \tilde{K}_{0}(R)\right) ;(M, \phi) \longmapsto \longrightarrow(M)
$$

is onto: if I is an ideal of R such that $r^{2}=r R$ is a princif ideal, with generator $r \in I^{2}$, then

$$
\left(I, \phi: I \times I \longrightarrow R ;(x, y) \longmapsto \frac{x y}{r}\right)
$$

is a non-singular symmetric form over R with projective class $[1] \in \tilde{K}_{O}(R)$. Thus the map $\hat{\mathrm{H}}^{1}\left(\mathbb{Z}_{2} ; \tilde{K}_{\mathrm{O}}(\mathrm{R})\right) \longrightarrow \mathrm{V}^{1}(\mathrm{R},-1)$ is 0 , and there is defined a short exact sequence

$$
0 \longrightarrow v^{1}(R,-1) \longrightarrow U^{1}(R,-1) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; \tilde{K}_{0}(R)\right) \longrightarrow 0 .
$$

If R is the ring of integers in an algebraic number field F then by Milnor (4,Cor.16.3)

$$
V^{1}(R,-1)=S K_{1}(R)=0
$$

so that there are identifications

$$
U^{1}(R,-1)=M^{-1}(R)=\hat{H}^{1}\left(\mathbb{Z}_{2} ; \widetilde{K}_{O}(R)\right) .
$$

The consequent identification

$$
\operatorname{coker}\left(j: L^{+1}(F) \longrightarrow \bigoplus_{\rho \in \max (R)} L^{+1}(R / \rho)\right)=\hat{H}^{1}\left(\mathbb{Z}_{2} ; \tilde{K}_{O}(R)\right)
$$

appears as Example IV. 3.4 of Milnor and Husemoller [1] - in this connection see also Knebusch and Scharlau [1].

See Pardon [6],[7] for an extension of the localization exact sequence of L -groups of Dedekind rings to more general regular rings, and for an application of the algebraic theory of surgery to the conjecture that for a regular local ring R with quotient field $F=(R-\{O\})^{-1} R$ the natural map of symmetric Witt groups $L^{\circ}(R) \longrightarrow L^{\circ}(F)$ is injective.

4.3 Integral and rational L-theory

The results of $\$ 4.2$ will now be applied to obtain the L-groups of the Dedekind $r i n g ~ R=\mathbb{Z}$ and of its quotient field $S^{-1} R=\mathbb{Q}$ (with $\left.S=\mathbb{Z}-\{0\} \subset \mathbb{Z}\right)$, in the sense of reducing the computation to the well-known stable classifications of forms over \mathbb{Z} and 0 . In the first instance we recall the classical invariants of forms over \mathbb{Z}.

A symmetric form over $\mathbb{Z}(M, \phi)$ induces a symmetric form over R which can be expressed as
up to isomorphism. The signature of (M, ϕ) is defined by

$$
\sigma^{*}(M, \phi)=p-q \in \mathbb{Z} .
$$

If (M, ϕ) is even $(\phi(x)(x) \equiv O(\bmod 2)$ for each $x e M)$ then

$$
\sigma^{*}(M, \phi) \equiv O(\bmod 8) .
$$

The deRham invariant of a non-singular skew-symmetric linking form over (\mathbb{Z}, S) (M, λ) is defined by

$$
\sigma^{*}(M, \lambda)=|M|-1 \in \mathbb{Z}_{2},
$$

or equivalently the mod 2 reduction of the number of summands in the decomposition of M as a direct sum of cyclic groups of type $\mathbb{Z}_{\mathrm{p}}{ }(\mathrm{p}$ prime, $k \geqslant 1)$. If (M, λ) is even $\left(\lambda(x)(x)=0 \in Q^{-1}(\Phi / \mathbb{Z})=\mathbb{Z}_{2}\right.$ for each $x \in M, e . g$. if M is of odd order) then

$$
\sigma^{\star}(M, \lambda)=0 \in \mathbb{Z}_{2} .
$$

A non-singular skew-quadratic form over $\mathbb{Z}(M, \psi)$ induces a form over \mathbb{Z}_{2} which can be expressed as
up to isomorphism. The Af invariant of (M, ψ) is defined by

$$
\sigma_{\star}(M, \psi)=c \in \mathbb{Z}_{2}
$$

Proposition 4.3.1 The symmetric and quadratic L-groups of \mathbb{Z} are given by

The invariants are given by

$$
\begin{aligned}
& L^{4 k}(\mathbb{Z}) \longrightarrow \mathbb{Z} ;\left(C, \phi \in Q^{4 k}(C)\right) \longmapsto \text { signature of }\left(F^{2 k}(C), \phi_{O}\right) \\
& L^{4 k+1}(\mathbb{Z}) \longrightarrow \mathbb{Z}_{2} ;
\end{aligned}
$$

$$
\left(C, \phi \in Q^{4 k+1}(C)\right) \longmapsto \text { diRham invariant of }\left(T^{2 k+1}(C), \phi_{O}^{S}\right)
$$

$$
\begin{aligned}
& \mathrm{L}_{4 k}(\mathbb{Z}) \longrightarrow \mathbb{Z} \text {; } \\
& \left.\left(C, \psi \in Q_{4 k}(C)\right) \longmapsto \longrightarrow \frac{1}{8} \text { (signature of }\left\{F^{2 k}(C),(I+T) \psi_{O}\right)\right) \\
& \mathrm{L}_{4 \mathrm{k}+2}(\mathbb{Z}) \longrightarrow \mathbb{Z}_{2} \text {; } \\
& \left(C, \psi \in Q_{4 k+2}(C)\right) \vdash \longrightarrow \text { Ard invariant of }\left(F^{2 k+1}(C), \psi_{O}\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& L^{n}(\mathbb{Z})=\left\{\begin{array}{l}
\mathbb{Z} \\
\mathbb{Z}_{2} \\
0 \\
0
\end{array} \quad, \quad L_{n}(\mathbb{Z})=\left\{\begin{array} { l }
{ \mathbb { Z } } \\
{ 0 } \\
{ \mathbb { Z } _ { 2 } } \\
{ 0 }
\end{array} \quad \text { if } n \equiv \left\{\begin{array}{l}
0 \\
2 \\
3
\end{array} \quad(\bmod 4)\right.\right.\right. \\
& (n \geqslant 0) \\
& L_{n}(\mathbb{Z})=L_{n+4 k}(\mathbb{Z}) \quad(n \leqslant-1, n+4 k \geqslant 0) \\
& L^{n}(Z)=\left\{\begin{array} { l }
{ 0 } \\
{ L _ { n } (Z) }
\end{array} \text { if } \left\{\begin{array}{l}
n=-1,-2 \\
n \leqslant-3
\end{array} .\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \mathbb{Z}_{2} \otimes_{\mathbb{Z}}(M, \psi)=\underset{\mathrm{b}}{\oplus}\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2},\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right) \underset{\mathrm{c}}{\oplus}\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \cdot\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right) \\
& \text { (} b \geqslant 0, c=0 \text { or } 1 \text {) }
\end{aligned}
$$

The hyperquadratic L-groups $\hat{\mathrm{L}}^{\star}(\mathbb{Z})$ (as defined in $\mathbf{5 2 . 3 \text {) are }}$ given by

$$
\hat{\mathrm{L}}^{\mathrm{n}}(\mathbb{Z})= \begin{cases}\left\{\begin{array}{ll}
\mathbb{Z}_{8} \\
\mathbb{Z}_{2} \\
0 & \text { if } n \equiv\left\{\begin{array}{l}
0 \\
1 \\
2 \\
\mathbb{Z}_{2} \\
3
\end{array}\right. \\
0 & \text { if } n \leqslant-3 .
\end{array} \quad(n \geqslant-2)\right. \\
0\end{cases}
$$

Proof: Proposition 4.2.1 reduces the computation of the $\left\{\begin{array}{l}\text { even- } \\ \text { odd- }\end{array}\right.$ of non-singular $\left\{\begin{array}{l}\text { forms over } \mathbb{Z} \\ \text { linking forms over }(\mathbb{Z}, \mathbb{Z}-\{0\})\end{array}\right.$, for which we refer to $\left\{\begin{array}{l}\text { Arf [ll, Milnor and Husemoller [1] } \\ \text { deRham [1], Wall [1] }\end{array}\right.$.

The generator of the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-qroup $\left\{\begin{array}{l}L^{O}(\mathbb{Z})=\mathbb{Z} \\ L_{0}(\mathbb{Z})=\mathbb{Z}\end{array}\right.$ is represented by the non-singular $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ form over \mathbb{Z} $\left\{\begin{array}{l}\left(\mathbb{Z}, l \in Q^{+1}(\mathbb{Z})\right) \\ \left(\mathbb{Z}^{8}, E_{8} \in Q_{+1}(\mathbb{Z})\right)\end{array}\right.$ of signature $\left\{\begin{array}{l}1 \in \mathbb{Z} \\ 8 \in \mathbb{Z}\end{array}\right.$. The generator of $\left\{\begin{array}{l}L^{1}(\mathbb{Z})=L^{2}(\mathbb{Z}, \mathbb{Z}-\{0\})=L^{2}\left(\mathbb{Z},(2)^{\infty}\right)=\mathbb{Z}_{2} \\ L_{2}(\mathbb{Z})=L_{3}(\mathbb{Z}, \mathbb{Z}-\{0\})=L_{3}\left(\mathbb{Z},(2)^{\infty}\right)=\mathbb{Z}_{2}\end{array}\right.$ is represented by the non-singular $\left\{\begin{array}{l}\text { symmetric formation } \\ \text { skew-quadratic form }\end{array}\right.$ over \mathbb{Z} of $\left\{\begin{array}{l}\text { deRham } \\ \text { Arf }\end{array}\right.$ invariant $l \in \mathbb{Z}_{2}$

corresponding to the non-singular $\left\{\begin{array}{l}\text { skew-symmetric linking form } \\ \text { split skew-quadratic linking }\end{array}\right.$ $\left\{\begin{array}{l}- \\ \text { formation }\end{array}\right.$ over $\left(\mathbb{Z},(2)^{\infty}\right)$

$$
\left\{\begin{array}{l}
\left(\mathbb{Z}_{2}, \lambda: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \longrightarrow \mathbb{Q} / \mathbb{Z} ;(m, n) \longmapsto \frac{1}{2} m n\right) \\
\left(\mathbb{Z}_{4},\left(\left(\begin{array}{ll}
(20 & 0 \\
(0 & 2)
\end{array}\right), \theta\right) \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}\right), \text { with } \\
\theta: \mathbb{Z}_{2} \oplus \mathbb{Z}_{2} \longrightarrow Q_{+1}(\mathbb{Z}, \mathbb{Z}-\{0\})=Q / 2 \mathbb{Z} ;(m, n) \longmapsto m^{2}+n^{2}
\end{array}\right.
$$

Of course, the computation of the simply-connected surgery obstruction groups $L_{*}(\mathbb{Z})$ is well-known, going back to Kervaire and Milnor [1].

Proposition 4.3.2 The L-groups of Q are given by

$$
L^{n}(\mathbb{Q})=L_{n}(\mathbb{Q})= \begin{cases}\mathbb{Z} \oplus \mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}_{4}^{\infty} & \text { if } n \equiv O(\bmod 4) \\ 0 & \text { if } n \neq O(\bmod 4) .\end{cases}
$$

The $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-theory localization exact sequence

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { splits } \\
\text { does not split }
\end{array}\right. \\
& \qquad L^{O}\left(\mathbb{Z},(p)^{\infty}\right)=L_{O}\left(\mathbb{Z},(p)^{\infty}\right)=L^{O}\left(\mathbb{Z}_{p}\right)=\left\{\begin{array} { l }
{ \mathbb { Z } _ { 2 } \oplus \mathbb { Z } _ { 2 } } \\
{ \mathbb { Z } _ { 4 } }
\end{array} \text { if } \left\{\begin{array}{l}
p \equiv 1(\bmod 4) \\
p \equiv 3(\bmod 4)
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
L^{O}\left(\mathbb{Z},(2)^{\infty}\right)=L_{1}^{O}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \\
L_{O}\left(\mathbb{Z},(2)^{\infty}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}
\end{array}\right.
\end{aligned}
$$

The computation of $L^{*}(Q)$ is also well-known, cf. SIV. 2 of Milnor and Husemoller [1].

$$
\text { The element }\left\{\begin{array}{l}
1 \in L^{0}\left(\mathbb{Z},(2)^{\infty}\right)=\mathbb{Z}_{2} \\
(1,0),(0,1) \in L_{O}\left(\mathbb{Z},(2)^{\infty}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}
\end{array}\right. \text { is the image }
$$

under $\left\{\begin{array}{l}j: L^{O}(Q) \longrightarrow L^{O}\left(\mathbb{Z},(2)^{\infty}\right) \\ \partial: L_{O}(Q) \longrightarrow L_{O}\left(\mathbb{Z},(2)^{\infty}\right)\end{array}\right.$ of the Witt class of the non-singular
$\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ form over $Q\left\{\begin{array}{l}\left(Q, 2 \in Q^{+1}(Q)\right) \\ \left(Q, 2 \in Q_{+1}(Q)\right),\left(Q, 1 \in Q_{+1}(Q)\right),\end{array}\right.$
corresponding to the non-singular $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ linking form over $\left(\mathbb{Z},(2)^{\infty}\right)\left\{\begin{array}{l}\left(\mathbb{Z}_{2}, \lambda^{\prime}\right) \\ \left(\mathbb{Z}_{4}, \lambda, \mu\right),\left(\mathbb{Z}_{2}, \lambda^{\prime}, \mu^{\prime}\right)\end{array}\right.$ defined in $\$ 4.2$ above.

By contrast with Proposition 4.3 .2 both the symmetric and quadratic localization exact sequences for the witt group of the 2 -adic field $\hat{\mathbf{Q}}_{2}$

$$
\left\{\begin{array}{l}
0 \longrightarrow L^{0}\left(\hat{\mathbb{Z}}_{2}\right) \longrightarrow L_{0}{ }^{0}\left(\hat{\Phi}_{2}\right) \longrightarrow L_{0}\left(\hat{\mathbb{Z}}_{2}\right) \longrightarrow L_{0}\left(\hat{\mathbb{Z}}_{2},(\hat{2})^{\infty}\right) \longrightarrow L_{0}\left(\hat{\Phi}_{2}\right) \longrightarrow 0 \\
0 \longrightarrow L_{2}\left(\hat{z}^{\infty}\right) \longrightarrow 0
\end{array}\right.
$$

split, with

$$
\mathrm{L}^{\mathrm{O}}\left(\hat{\Phi}_{2}\right)=\mathrm{I}_{\mathrm{O}}\left(\hat{\Phi}_{2}\right)={Z_{8}}^{\oplus Z_{2} \oplus Z_{2}},
$$

$$
\left\{\begin{array}{l}
L^{O}\left(\hat{\mathbb{Z}}_{2},(\hat{2})^{\infty}\right)=L^{O}\left(\mathbb{Z},(2)^{\infty}\right)=L^{O}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}, L^{O}\left(\hat{\mathbb{Z}}_{2}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \\
L_{O}\left(\hat{\mathbb{Z}}_{2},(\hat{z})^{\infty}\right)=L_{O}\left(\mathbb{Z},(2)^{\infty}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}, L_{O}\left(\hat{\mathbb{Z}}_{2}\right)=L_{O}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
\end{array}\right.
$$ The element $\left\{\begin{array}{l}(1,0),(0,1) \in L^{O}\left(\hat{\mathbb{Z}}_{2}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \\ 1 \in L_{O}\left(\hat{Z}_{2}\right)=Z_{2}\end{array}\right.$ is represented by the non-singular $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ form over the 2-adic ring \hat{z}_{2}

$$
\left\{\begin{array}{l}
\left(\hat{\mathbb{Z}}_{2}, 1 \in Q^{+1}\left(\hat{Z}_{2}\right)\right), \quad\left(\hat{\mathbb{Z}}_{2} \oplus \hat{\mathbb{Z}}_{2},\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right) \in Q^{+1}\left(\hat{\mathbb{Z}}_{2} \oplus \hat{\mathbb{Z}}_{2}\right)\right) \\
\left(\hat{z}_{2} \oplus \hat{\mathbb{Z}}_{2},\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \in Q_{+1}\left(\hat{\mathbb{Z}}_{2} \oplus \hat{Z}_{2}\right)\right)
\end{array}\right.
$$

In identifying $L_{0}\left(\hat{Z}_{2}\right)=L_{0}\left(\mathbb{Z}_{2}\right)$ we are dealing with a special case of the result of wall [7] concerning reduction modulo a complete ideal in quadratic L-theory: if R is a ring with involution which is complete in the I-adic topology, i.e. such that the canonical map

$$
R \longrightarrow \hat{R}=\frac{L_{i m}}{k} R / I^{k}
$$

is an isomorphism, for some 2 -sided ideal I in R such that $\bar{I}=$ then the projection $R \longrightarrow R / I$ induces isomorphisms in the quadratic L-groups

$$
\mathrm{L}_{\star}(\mathrm{R}) \longrightarrow \mathrm{L}_{\star}(\mathrm{R} / \mathrm{I})
$$

- an L-theoretic version of Hensel's lemma. In particular, $\hat{\mathbb{Z}}_{2}$ is complete in the $(\hat{2})$-adic topology, with $(\hat{2})=2 \hat{\mathbb{Z}}_{2} \triangleleft \hat{\mathbb{Z}}_{2}$ and $\hat{\mathbb{Z}}_{2} /(\hat{2})=\mathbb{Z}_{2}$.

Proposition 4.3.3 i) Reduction modulo a complete ideal fails for the symmetric L-groups, since

$$
\mathrm{L}^{\mathrm{O}}\left(\hat{\mathbb{Z}}_{2}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2} \neq \mathrm{L}^{O}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}
$$

ii) Devissage fails for the quadratic L-groups, since

$$
\mathrm{L}_{\mathrm{O}}\left(\hat{\mathbb{Z}}_{2},(\hat{2})^{\infty}\right)=\mathbb{Z}_{8}^{\oplus \mathbb{Z}_{2} \neq \mathrm{L}_{\mathrm{O}}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}}
$$

The result of Proposition 4.3.3 i) is a direct consequel of the well-known failure of Hensel's lemma for symmetric fori at the prime 2 , which is remedied by reducing modulo $(2)^{3}=11$ instead of (2) - cf. Weyl [1,§III.5]. In particular, the natural map $L^{\circ}\left(\hat{\mathbb{Z}}_{2}\right) \longrightarrow L^{O}\left(\hat{\mathbb{Z}}_{2} /(\hat{2})^{3}\right)=L^{O}\left(\mathbb{Z}_{8}\right)=\mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$ is an isomorphism.

See Proposition 4.2.1 vi) for devissage in the symmetri L-groups of Dedekind rings.
§5. Polynomial extensions $(\bar{x}=x)$

We shall now study the L-theory of the polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ of a ring with involution A, with

$$
a x=x a(a) \quad(a \in A)
$$

for some ring automorphism $a: A \longrightarrow A$ such that $\overline{\alpha(a)}=a^{-1}(\bar{a}) \in A$ for all aEA (e.g. $\alpha=$ id. $: A \longrightarrow A)$, with the involution extended by

$$
\bar{x}=x
$$

(See Ranicki \{2], [3] and 57.6 below for the L-theory of polynomial extensions $A_{\alpha}\left[z, z^{-1}\right]$ with $\bar{z}=z^{-1}$, As usual, we start with a discussion of the relevant algebraic k-theory.

Given a central indeterminate x over a ring A let $A[x]$ be the ring of polynomials $\int_{j=0}^{\infty} a_{j} x^{j}$ in x with coefficients $a_{j} \in A$, only a finite number of which are to be non-zero. The central multiplicative subset

$$
x=\left\{x^{k} \mid k \geqslant 0\right\} c A[x]
$$

is then such that the localization

$$
X^{-1} A[x]=A\left[x, x^{-1}\right]
$$

is the ring of polynomials $\sum_{j=-\infty}^{\infty} a_{j} x^{j}$ in an invertible central indeterminate x with coefficients $a_{j} \in A$, only a finite number of which are to be non-zero. Bass, Heller and Swan (1) (for $n=1$), Bass $\{2, \mathrm{XII}]$ (for $n \leqslant O$) and Quillen (for $n \geqslant 2$, cf. Grayson [l]) used the linearization trick of Higman [1] and the isomorphism of exact categories

Nil $(A)=$ (f.g. projective A-modules P with a nilpotent A-module morphism $v \in \operatorname{Hom}_{A}(P, P)$ (i.e. $v^{k}=0$ for some $k \geqslant 0$)) $\longrightarrow((A[x], x)$-modules $) ;(P, v) \longmapsto(P, x=v: P \longrightarrow P)$
to identify

$$
\begin{aligned}
& \left.K_{n}(A \mid x], x\right)=K_{n-1}(N \underline{N i]}(A))=K_{n-1}(A) \oplus \widehat{N i 1}_{n}(A) \\
& K_{n}(A[x])=K_{n}(A) \oplus \widehat{N i l}_{n}(A) \quad(n \in \mathbb{Z})
\end{aligned}
$$

with $\widetilde{N i l}_{n}(A)=K_{n-1}(\widehat{N i I}(A))$ and $\widehat{N i l}(A)$ the fibre of the forgetful functor of exact categories
$\underset{\sim}{\mathrm{Ni}}(\mathrm{A}) \longrightarrow \underline{P}(\mathrm{~A})=$ (f.g. projective A -modules) $;(\mathrm{P}, \mathrm{v}) \longrightarrow \mathrm{P}$. The algebraic K-theory localization exact sequence

$$
\left.\left.\ldots \longrightarrow K_{n}(A \mid x]\right) \longrightarrow K_{n}\left(A \mid x, x^{-1}\right) \xrightarrow{\partial} K_{n}(A|x|, x) \longrightarrow K_{n-1}(A \mid x]\right) \longrightarrow .
$$

was shown to be made up of naturally split short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow K_{n}(A) \oplus{\overparen{N i 1_{n}}}_{n}(A) \longrightarrow K_{n}(A) \oplus K_{n-1}(A) \oplus N i 1_{n}(A) \oplus{\widetilde{N i l_{n}}}_{n}(A) \\
& \longrightarrow \quad K_{n-1}(A) \oplus \widetilde{N i 1}_{n}(A) \longrightarrow 0,
\end{aligned}
$$

and the "fundamental theorem of algebraic k-theory" was proved, the naturally split exact sequences

$$
\begin{aligned}
\left.0 \longrightarrow K_{n}(A) \longrightarrow K_{n}(A \mid x]\right) \oplus K_{n}\left(A\left[x^{-1}\right) \longrightarrow\right. & \left.K_{n}\left(A \mid x, x^{-1}\right]\right) \\
& \longrightarrow K_{n-1}(A) \longrightarrow 0 .
\end{aligned}
$$

These results were extended for $n=1$ to the α-twisted polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ of a ring A by Farrell and Hsiang [1], [and Siebenmann [l], with x no longer a central indeterminate over A but such that

$$
a x=x \alpha(a) \quad(a \in A)
$$

for some automorphism $\alpha: A \longrightarrow A$. (These results were obtained in connection with the obstruction theary of Farrell [l] for
the problem of fibring a manifold over S^{1}, and the codimensio splitting obstruction theory of Farrell and Hsiang [l] (resp. for homotopy equivalences of finite CW complexes (resp. compac manifoldsl with fundamental group $\pi x_{\alpha} \not{ }^{Z}$ the α-twisted extensio of a group π by \mathbb{Z} for some automorphism $a: \pi \longrightarrow \pi$ - cf. the discussion of codimension 1 splitting in $\$ 7.6$ below). The multiplicative subset

$$
x=\left\{x^{k} \mid k \geqslant 0\right\} \subset A_{\alpha}[x]
$$

is such that

$$
x^{-1} A_{\alpha}[x]=A_{\alpha}\left[x, x^{-1}\right],
$$

and the functor

$$
\begin{aligned}
\text { Nil }(A, \alpha)= & (\text { pairs }(P, v) \text { consisting of a f.g. projective } \\
& A \text {-module } P \text { and a function } v: P \longrightarrow P \text { such that } \\
& v(y+z)=v(y)+v(z), v(a y)=\alpha^{-1}(a) v(y) \in P(y, z \in) \\
& \text { and } \left.v^{k}=0: P \longrightarrow P \text { for some } k \geqslant 1\right) \\
\longrightarrow & \left(\left(A_{\alpha}[x], X\right) \text {-modules }\right) ;(P, v) \longmapsto(P, x=v: P \longrightarrow P)
\end{aligned}
$$

is an isomorphism of categories, so that the algebraic K-theo eccentric localization exact sequence of Grayson (2]

$$
\begin{aligned}
& \cdots \longrightarrow K_{n}\left(A_{\alpha}[x]\right) \longrightarrow K_{n}\left(A_{\alpha}\left[x, x^{-1}\right)\right) \xrightarrow{\partial} K_{n}\left(A_{\alpha}[x], x\right) \\
& \longrightarrow K_{n-1}\left(A_{\alpha}[x]\right) \longrightarrow \ldots \quad(n \in \mathbb{Z})
\end{aligned}
$$

is naturally isomorphic to the exact sequence

$$
\begin{aligned}
& \left(\begin{array}{ll}
B & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) \\
& \ldots \longrightarrow K_{n}(A){\widetilde{N i l_{n}}}_{n}\left(A, \alpha^{-1}\right) \xrightarrow{0} K_{n}(A, \alpha) \not \widetilde{N i l}_{n}(A, \alpha) \widetilde{N i 1}_{n}(A, \\
& \left(\begin{array}{lll}
\gamma & 0 & 0 \\
0 & 1 & 0
\end{array}\right) \quad \sim\left(\begin{array}{cc}
1-\alpha & 0 \\
0 & 0
\end{array}\right)
\end{aligned}
$$

with $\widetilde{N i l}_{n}(A, \alpha)=K_{n-1}(\widetilde{\sim}(A, \alpha)) \quad(n \in \mathbb{Z})$ the algebraic K-grou of the fibre Nil (A, α) of the forgetful functor of exact cat

$$
\underline{\underline{N i l}}(A, a) \longrightarrow P(A) ;(P, v) \longmapsto P \text {, }
$$

and $K_{*}(A, \alpha), B, \gamma$ the abelian groups and morphisms appearing the exact sequence

$$
\cdots \longrightarrow K_{n}(A) \xrightarrow{1-\alpha} K_{n}(A) \xrightarrow{\beta} K_{n}(A, a) \xrightarrow{\gamma} K_{n-1}(A) \xrightarrow{1-\alpha} K_{n-1}(A)-
$$

In $\mathbf{5} 5.1$ we shall study the algebraic L-groups of the α-twisted polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ of a ring with involution A, with $\alpha: A \longrightarrow A$ a ring automorphism such that $\overline{\alpha(a)}=\alpha^{-1}(\bar{a}) \in A(a \in A)$ and $\bar{x}=x \in A_{\alpha}[x]$, so that

$$
x=\left\{x^{k} \mid k \geqslant 0\right\} \subset A_{\alpha}[x]
$$

is a multiplicative susbset in the sense of $\$ 3.1$ and

$$
x^{-1} A_{\alpha}[x]=A_{\alpha}\left[x, x^{-1}\right]
$$

as a ring with involution. We shall show that the $\left\{\begin{array}{l}\varepsilon-\text { symmet } \\ \varepsilon \text {-quadri }\end{array}\right.$ L-theory localization exact sequence given for $\left(A_{\alpha}[x], X\right)$ by $\$ 3.6$

$$
\begin{aligned}
& \left\{K=\operatorname{im}\left(\widetilde{K}_{O}(A) \longrightarrow \widetilde{K}_{O}(B)\right) \subseteq \widetilde{\mathrm{K}}_{O}(B), B=A_{\alpha}[x], A_{\alpha}\left\{x, x^{-1}\right\}, n \in \mathbb{Z}\right)
\end{aligned}
$$

is made up of naturally split short exact sequences

$$
\left\{\begin{array}{l}
0 \rightarrow L_{K}^{n}\left(A_{\alpha}[x], \varepsilon\right) \longrightarrow L_{K}^{n}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \xrightarrow{\partial} L^{n}\left(A_{\alpha}[x], x, \varepsilon\right) \rightarrow 0 \\
0 \rightarrow L_{n}^{K}\left(A_{\alpha}[x], \varepsilon\right) \longrightarrow L_{n}^{K}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \xrightarrow{\partial} L_{n}\left(A_{\alpha}[x], x, \varepsilon\right) \longrightarrow 0
\end{array}\right.
$$

(by contrast with the corresponding localization exact sequence in algebraic k-theory, which need not split if $\alpha \neq i d$.$) .$ Furthermore, we shall show that each of these short exact sequences is naturally isomorphic to

$$
\underset{\varepsilon}{\left(\begin{array}{ll}
1 & 0 \\
0 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)}
$$

$$
L^{n}(A, E) \oplus L^{n}\left(A^{\alpha}, E\right) \oplus \overparen{L N i 1}^{n}(A, \alpha, E) \oplus{\underset{L N i l}{n}}_{n}\left(A, \alpha^{-1}, E\right)
$$

$$
\xrightarrow{\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)} \mathrm{L}^{n}\left(A^{\alpha}, \varepsilon\right) \oplus \overparen{\operatorname{LNi1}}^{n}(A, \alpha, \varepsilon) \longrightarrow 0
$$

(the e-quadratic analogue),
with the L-groups $\left\{\begin{array}{l}\overparen{\operatorname{LNi} 1} *(A, \alpha, \varepsilon) \\ \widetilde{\operatorname{LNi} 1}(A, \alpha, \varepsilon)\end{array}\right.$ cobordism groups of chain complexes in $\underline{\underline{N i j}}(A, \alpha)$ with an α-twisted $\left\{\begin{array}{l}\text { E-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré. duality, and A^{α} the ring with involution defined by giving the
ring underlying A the involution

$$
-A^{\alpha} \longrightarrow A^{\alpha}: a \longmapsto \alpha(\bar{a})
$$

In $\$ 5.2$ the results of $\$ 5.1$ will be extended to more e genfal intermediate L-groups of the $\alpha-t w i s t e d$ polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ of a ring with involution A. (In $\$ 7.6$ we shall outline a geometric interpretation of an appropriately intermediate version of the decomposition

$$
\left.L_{\star}^{K}\left(A_{\alpha} \mid x, x^{-1}\right]\right)=L_{\star}(A) \oplus L_{\star}\left(A^{\alpha}\right) \oplus \mathscr{L N i} 1_{\star}(A, \alpha) \oplus \widetilde{\operatorname{LNi} 1_{\star}}\left(A, \alpha^{-1}\right) \quad(\varepsilon=1)
$$

for a group r ing $A=\mathbb{Z}[\pi])$. In particular, in the untwisted case $\alpha=i d .: A \longrightarrow A$ there will be obtained the "fundamental theorem of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-theory", the naturally split exact sequence

$$
\left\{\begin{aligned}
&\left.0 \longrightarrow v^{n}(A, E) \longrightarrow v^{n}(A[x], E) \oplus v_{n}\left(A \mid x^{-1}\right], E\right) \\
&\left.\longrightarrow v^{n}\left(A \mid x, x^{-1}\right), \varepsilon\right) \longrightarrow U^{n}(A, \varepsilon) \longrightarrow 0 \\
& 0 \longrightarrow v_{n}(A, E) \longrightarrow v_{n}(A[x], E) \oplus v_{n}\left(A\left[x^{-1}\right], \varepsilon\right) \\
&\left.\longrightarrow v_{n}\left(A \mid x, x^{-1}\right], \varepsilon\right) \longrightarrow U_{n}(\Lambda, \varepsilon) \longrightarrow 0
\end{aligned}\right.
$$

relating the free $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}V_{\star}^{*}(A, \varepsilon) \\ V_{\star}(A, E)\end{array}\right.$ (as defined in $\$ 1$
to the projective $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ E \text {-quadratic }\end{array}\right.$ L-groups $\left\{\begin{array}{l}U_{*}(A, \varepsilon)=L_{*}^{*}(A, \varepsilon) \\ U_{\star}(A, \varepsilon)=L_{\star}(A, \varepsilon)\end{array}\right.$.
The e-quadratic L-theory fundamental theorem was obtained by Karoubi [2], [3] for $1 / 2 \in A$ (when $\widetilde{L N I I}_{\star}(A)=0$ by Karoubi [1]) using localization, and by Ranicki [4] using the techniques developed by Novikov [1] and Ranicki (2) in the proof of the splitting theorem $V_{n}\left(A\left(z, z^{-1}\right)\right)=V_{n}(A) \notin U_{n-1}(A) \quad\left(n \in \mathbb{Z}, \bar{z}^{\prime}=z^{-1}\right)$.

5.1 L-theory of polynomial extensions

Let A be a ring with involution, and let

$$
\alpha: A \longrightarrow A
$$

be a ring automorphism such that

$$
\overline{\alpha(a)}=\alpha^{-1}(\bar{a}) \in A \quad(a \in A)
$$

The a-twisted polynomial extension of $A A_{a}[x]$ is the ring of finite polynomials $\sum_{j=0}^{\infty} a_{j} x^{j}$ in an indeterminate x over A such that

$$
a x=x \alpha(a) \quad(a \in A),
$$

with the involution on A extended to $A_{\alpha}[x]$ by

$$
\bar{x}=x .
$$

Thus addition and multiplication in $A_{\alpha}[x]$ are given by

$$
\begin{aligned}
& \sum_{j=0}^{\infty} a_{j} x^{j}+\sum_{j=0}^{\infty} b_{j} x^{j}=\sum_{j=0}^{\infty}\left(a_{j}+b_{j}\right) x^{j} \\
& \left(\sum_{j=0}^{\infty} a_{j} x^{j}\right)\left(\sum_{k=0}^{\infty} b_{k} x^{k}\right)=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{j} a^{-j}\left(b_{k}\right) x^{j+k}
\end{aligned}
$$

and the involution is given by

$$
\left(\overline{\sum_{j=0}^{\infty} a_{j} x^{j}}\right)=\sum_{j=0}^{\infty} a^{-j}\left(\bar{a}_{j}\right) x^{j} \quad\left(a_{j}, b_{j} \in A\right) .
$$

Define the multiplicative subset

$$
x=\left\{x^{k} \mid k \geqslant 0\right\} \subset A_{a}[x]
$$

The localization away from X

$$
x^{-1} A_{\alpha}[x]=A_{\alpha}\left[x, x^{-1}\right]
$$

is the a-twisted Laurent polynomial extension of A, the ring of finite polynomials $\sum_{j=-\infty}^{\infty} a_{j} x^{j}\left(a_{j} \in A\right)$ with involution by $\bar{x}=x$, containing $A_{\alpha}[x]$ as a subring with involution.

Given an A-module M and $j \in \mathbb{Z}$ let $x^{j} M$ be the A-module with elements $x^{j} y(y \in M)$, addition by

$$
x^{j} y+x^{j} y^{\prime}=x^{j}\left(y+y^{\prime}\right) \in x^{j} M \quad\left(y, y^{\prime} \in M\right)
$$

and A acting by

$$
a\left(x^{j} y\right)=x^{j}\left(\alpha^{j}(y)\right) \in x^{j} M \quad(y \in M)
$$

(The automorphism of the projective class group $K_{O}(A)$ induced by the ring automorphism $a^{j}: A \longrightarrow A$ is given by

$$
\left.\alpha^{j}: K_{0}(A) \longrightarrow K_{0}(A) ;[M] \longmapsto\left[x^{-j} M\right]\right) .
$$

An A-module morphism $f \in \operatorname{Hom}_{A}\left(x^{j}{ }_{M}, x^{k} N\right.$) (for some A-modules M, N and $j, k \in \mathbb{Z}$) is a function

$$
f: M \longrightarrow N
$$

such that

$$
\begin{aligned}
& \text { i) } f\left(y+y^{\prime}\right)=f(y)+f\left(y^{\prime}\right) \in N \\
& \text { ii) } f(a y)=\alpha^{k-j}(a) f(y) \in N
\end{aligned}
$$

$$
\left(a \in A, Y, Y^{\prime} \in M\right)
$$

with

$$
f: x^{j_{M}} \longrightarrow x^{k} N ; x^{j} y \longmapsto x^{k} f(y)
$$

In particular, there is defined an A-module isomorphism

$$
\begin{aligned}
\left(x^{j} M\right)^{*}= & \operatorname{Hom}_{A}\left(x^{j} M, A\right) \longrightarrow x^{-j}\left(M^{*}\right)=x^{-j} \operatorname{Hom}_{A}(M, A) ; \\
& \left(f: x^{j} M \longrightarrow A\right) \longmapsto x^{-j}\left(y \longmapsto \alpha^{-j}\left(f\left(x^{j} y\right)\right)\right) \quad(y \in M)
\end{aligned}
$$

with inverse

$$
x^{-j}\left(M^{*}\right) \longrightarrow\left(x^{j} M\right)^{*} ; x^{-j} g \longmapsto\left(x^{j} y \longmapsto \alpha^{j}(g(y))\right) \quad\left(g \in M^{*}, Y \in\right.
$$

We shall write $x^{-j} M$ as $M x^{j}$,

$$
x^{-j}{ }_{M}=M_{x}^{j}(j \in \mathbb{Z}) .
$$

With this terminology there is a natural identification of A-modules

$$
\left(x^{j} M\right)^{\bullet}=M^{*} x^{j}(j \in \mathbb{Z}) .
$$

For any A-module M the induced $A_{\alpha}[x]$-module

$$
M_{\alpha}[x]=A_{\alpha}[x] \mathcal{A}_{A} M
$$

consists of finite polynomials $\sum_{j=0}^{\infty} x^{j} y_{j}\left(y_{j} \in M\right)$. As an A-module it can be expressed as a direct sum

$$
M_{\alpha}[x]=\sum_{j=0}^{\infty} x^{j} M
$$

For any A-modules M, N there is a natural identification of abelian groups

$$
\operatorname{Hom}_{A_{\alpha}}[x]{ }^{\left(M_{\alpha}[x], N_{\alpha}[x]\right)=} \sum_{j=0}^{\infty} \operatorname{Hom}_{A}\left(M, x^{j} N\right)
$$

Similarly, the induced $A_{\alpha}\left[x, x^{-1}\right]$-module

$$
M_{\alpha}\left[x, x^{-1}\right\}=A_{\alpha}\left\{x, x^{-1}\right\} A_{A}
$$

consists of finite polynomials $\sum_{j=-\infty}^{\infty} x^{j} y_{j}\left(y_{j} \in M\right)$, it can be expressed as a direct sum of A-modules

$$
M_{a}\left[x, x^{-1}\right]=\sum_{j=-\infty}^{\infty} x^{j} M
$$

and there is a natural identification

$$
\operatorname{Hom}_{A_{\alpha}}\left\{x, x^{-1}\right]\left(M_{\alpha}\left[x, x^{-1}\right], N_{\alpha}\left[x, x^{-1}\right]\right)=\sum_{j=-\infty}^{\infty} \operatorname{Hom}_{A}\left(M, x^{j} N\right)
$$

An A-module morphism $v \in \operatorname{Hom}_{A}(M, M x)$ is nilpotent if the composite A-module morphism

$$
v^{k}: M \xrightarrow{v} M x \xrightarrow{v} M x^{2} \longrightarrow M X^{k-1} \xrightarrow{v} X^{k}
$$

is $0, v^{k}=0 \in \operatorname{Hom}_{A}\left(M, M x^{k}\right)$, for some $k \geqslant 1$. (An A-module morphism $f \in \operatorname{Hom}_{A}(M, N)$ induces A-module morphisms $f \in \operatorname{Hom}_{A}\left(x^{j} M, x^{j} N\right) \quad(j \in \mathbb{Z})$ by

$$
\left.f: x^{j} M \longrightarrow x^{j} N: x^{j} y \longmapsto x^{j} f(y) \quad(y \in M) \quad\right)
$$

Equivalently, $v: M \rightarrow \longrightarrow M$ is a function such that

$$
\begin{aligned}
& \text { i) } v\left(y+y^{\prime}\right)=v(y)+v\left(y^{\prime}\right) \\
& \text { ii) } v(a y)=\alpha^{-1}(a) v(y) \\
& \text { iii) } v^{k}(y)=0 \text { for some } k \geqslant 1
\end{aligned}
$$

$$
\left(a \in A, Y, Y^{\prime} \in M\right)
$$

An α-twisted nilmodule over A is a pair
(f.g. projective A-module M, nilpotent morphism $v \in \operatorname{Hom}_{A}(M, M x)$). A morphism of α-twisted nilmodules over A

$$
\mathrm{f}:(\mathrm{M}, \mathrm{v}) \longrightarrow\left(\mathrm{M}^{\prime}, v^{\prime}\right)
$$

is an A-module morphism $f \in \operatorname{Hom}_{A}\left(M, M^{\prime}\right)$ such that there is defined a commutative diagram

Define the duality involution on the category of α-twisted nilmodules over A

- Nil $(A, \alpha)=(\alpha$-twisted nilmodules over $A) \longrightarrow N i(A, \alpha)$;

$$
(M, v) \vdash \longrightarrow(M, v)^{\star}=\left((M x)^{*}=x\left(M^{*}\right), v^{\star}:(M x)^{*} \longrightarrow(M x)^{\star} x=M\right)
$$

An n-dimensional α-twisted nilcompIex over $A(C, v)$ is an n-dimensional chain complex of α-twisted nilmodules over A

$$
\left(C_{0} v\right):\left(C_{n}, v\right) \xrightarrow{d}\left(C_{n-1}, v\right) \longrightarrow \ldots \longrightarrow\left(C_{1}, v\right) \xrightarrow{d}\left(C_{0}, v\right)
$$

Equivalently, we have that C is an n-dimensional A-module chain complex such that $C_{r}=0$ for $r<0$ and $r>n$ together with a
nilpotent A-module chain map

$$
v: C \longrightarrow C x
$$

Note that $\left(C^{n-\star}, v^{*}\right)$ is also an n-dimensional α-twisted nilcomp over A.

Proposition 5.1.1 i) There is a natural isomorphism of exact categories

$$
\begin{aligned}
\left(\left(A_{\alpha}[x], X\right)-\text { modules }\right) & \longrightarrow \xrightarrow{\text { Nil }(A, \alpha)}: \\
M r & \longrightarrow\left(M, v: M \longrightarrow M x=x^{-1} M ; y \mapsto x^{-1}(x y)\right)(y, x y \in
\end{aligned}
$$

under which the x-duality involution

$$
\begin{aligned}
\left(\left(A_{\alpha}[x], X\right)-\text { modules }\right) & \longrightarrow\left(\left(A_{\alpha}[x], X\right) \text {-modules }\right) ; \\
M & M^{\wedge}=\operatorname{Hom}_{A_{\alpha}}[x]\left(M, A_{\alpha}\left[x, x^{-1}\right] / A_{\alpha}[x]\right)
\end{aligned}
$$

corresponds to the duality involution on the category of α-twisted nilmodules over A
$\bullet: \underline{\underline{N i} 1}(A, \alpha) \longrightarrow \underline{\underline{N i l}}(A, \alpha):(M, v) \longmapsto(M, \nu)^{*}=\left(X^{M}, v^{*}\right)$,
with a natural $A_{\alpha}[x]$-module isomorphisin

$$
\begin{gathered}
x M^{*}=\operatorname{Hom}_{A}(M x, A) \longrightarrow M^{n}=\operatorname{Hom}_{A_{\alpha}}[x]^{\left(M, A_{\alpha}\left[x, x^{-1} 1 / A_{\alpha}[x \mid) ;\right.\right.} \\
g \longmapsto\left(y \longmapsto \sum_{j=-\infty}^{-1} x^{j} \alpha\left(g\left(v^{-j-1} y x\right)\right)\right) \quad(y \in M)
\end{gathered}
$$

ii) For each $n \geqslant 0$ there is a natural identification of exact categories

$$
\begin{aligned}
&\left(n \text {-dimensional }\left(A_{\alpha}[x], X\right)\right. \text {-module chain complexes) } \\
&=(n \text {-dimensional } \alpha \text {-twisted nilcomplexes over } A)
\end{aligned}
$$

Proof: i) This isomorphism was first established by Bass $\{2, \mathrm{XI}$ in the untwisted case $\alpha=i d .: A \longrightarrow A$. (See also Proposition 3.10 of Karoubi [2]). The extension to the α-twist case is due to Farrell and Hsiang [1].

In particular, an α-twisted nilmodule over $A(M, v)$ determines an $\left(A_{\alpha}[x], X\right)$-module M by

$$
A_{\alpha}[x] \times M \longrightarrow M ;\left(\sum_{j=0}^{\infty} a_{j} x^{j}, y\right) \longmapsto \sum_{j=0}^{\infty} a_{j} v^{j}(y),
$$

with a canonical f.g. projective $A_{\alpha}[x]$-module resolution

$$
0 \longrightarrow(x M){ }_{\alpha}\left[x, x^{-1}\right] \xrightarrow{x-v} M_{\alpha}\left[x, x^{-1}\right] \xrightarrow{h} M \longrightarrow 0
$$

where

$$
\begin{aligned}
& x-v:(x M){ }_{\alpha}\left[x, x^{-1}\right] \longrightarrow M_{\alpha}\left(x, x^{-1}\right] ; \\
& \sum_{j=0}^{\infty} x^{j}\left(x y_{j}\right) \longmapsto \\
& h: M_{j=0}^{\infty}\left(x^{j+1} y_{j}-x^{j}\left(v\left(y_{j}\right)\right)\right)
\end{aligned}
$$

$$
\left(y_{j} \in M\right)
$$

ii) Immediate from i).

We shall now use the identifications of Proposition 5.1 to express the relative $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ L-groups $\left\{\begin{array}{l}L_{*}^{*}\left(A_{\alpha}[x], X, \varepsilon\right) \\ L_{*}\left(A_{\alpha}[x], X, \varepsilon\right)\end{array}\right.$ appearing in the localization exact sequence of Proposition 3.6.1

($n \in \mathbb{Z}$)
as the L-groups $\left\{\begin{array}{l}\operatorname{LNi} l^{\star}(A, \alpha, E) \\ \operatorname{LNil}_{\star}(A, \alpha, E)\end{array}\right.$ of finite-dimensional α-twisted
nilcomplexes over A with an $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré duality structure, and to prove that the maps a are split surjections.

$$
\text { In dealing with }\left\{\begin{array}{l}
\varepsilon-\text { symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { complexes over the } \alpha\right. \text {-twisted }
$$

polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ we shall assume that

$$
\alpha(\varepsilon)=\varepsilon \in A .
$$

This is automatically the case if $\varepsilon= \pm 1 \in A$, for example.

$$
\text { Define the } \underline{\alpha-t w i s t e d ~}\left\{\begin{array} { l }
{ \frac { \varepsilon \text { -symmetric } } { \varepsilon \text { -guadratic } } }
\end{array} \text { Q-groups } \left\{\begin{array}{l}
Q^{*}(C, \alpha, \varepsilon) \\
Q_{*}(C, \alpha, \varepsilon)
\end{array}\right.\right.
$$

of a finite-dimensional A-module chain complex C to be

$$
\left\{\begin{array}{l}
Q^{n}(C, \alpha, E)=H_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{A}\left(C^{*}, x C\right)\right)\right) \\
Q_{n}(C, \alpha, E)=H_{n}\left(W Q_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} \operatorname{Hom}_{A}\left(C^{\star}, x C\right)\right)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

with $T \in \mathbb{Z}_{2}$ acting on $\operatorname{Hom}_{A}\left(C^{*}, x C\right)$ by the α-twisted e-duality involution

$$
\begin{aligned}
T_{\alpha, \varepsilon}: \operatorname{Hom}_{A}\left(C^{p}, x C_{q}\right) \longrightarrow \operatorname{Hom}_{A}\left(\left(x C_{q}\right)^{\star}, C_{p}\right) & =\operatorname{Hom}_{A}\left(C^{q}, x C_{p}\right) ; \\
\phi \vdash & \\
& (-)^{p q_{E}} \varepsilon \phi^{\star}
\end{aligned}
$$

An n-dimensional α-twisted $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { E-quadratic complex over } A\end{array}\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.\right.$
is an n-dimensional A-module chain complex C together with an
elenent $\left\{\begin{array}{l}\phi \in Q^{n}(C, \alpha, \varepsilon) \\ \psi \in Q_{n}(C, \alpha, \varepsilon)\end{array}\right.$. Such a complex is Poincaré if the
A-module chain map

$$
\left\{\begin{array}{l}
\phi_{O}: c^{n-\star} \longrightarrow x C \\
\left(1+T_{\alpha, \varepsilon}\right) \psi_{O}: c^{n-\star} \longrightarrow \cdots C
\end{array}\right.
$$

is a chain equivalence, inducing A-module isomorphisms

$$
\mathrm{H}^{\mathrm{n}-\star}(\mathrm{C}) \longrightarrow \mathrm{H}_{\star}(\mathrm{xC})=\mathrm{xH}_{\star}(\mathrm{C})
$$

The n-dimensional α-twisted $\left\{\begin{array}{l}\frac{\varepsilon \text {-symmetric }}{\varepsilon \text {-quadratic }}\end{array}\right.$ L-group of A $\left\{\begin{array}{l}L^{n}(A, \alpha, E) \\ L_{n}(A, \alpha, E)\end{array}(n \geqslant 0)\right.$ is the cobordism group of n-dimensional α-twisted $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complexes over A. Note that there are defined isomorphisms

$$
\left\{\begin{array}{c}
L^{n}(A, \alpha, \varepsilon) \longrightarrow L^{n}\left(A, \alpha^{-1}, \varepsilon\right) ;(C, \phi) \longmapsto\left(C^{n-*},\left(\phi_{O}^{-1}\right)^{q}(\phi)\right) \\
L_{n}(A, \alpha, \varepsilon) \longrightarrow L_{n}\left(A, \alpha^{-1}, \varepsilon\right) ;(C, \psi) \longmapsto\left(C^{n-*},\left(\left(1+T_{\alpha, \varepsilon}\right) \psi_{O}^{-1}\right)_{q}(\psi)\right) \\
(n \geqslant 0)
\end{array}\right.
$$

In the untwisted case $\alpha=1: A \longrightarrow A$ the canonical isomorphism of A-module chain complexes

$$
x C \longrightarrow C ; x y \longrightarrow y
$$

can be used to identify

$$
\begin{aligned}
& \operatorname{Hom}_{A}\left(C^{*}, x C\right)=\operatorname{Hom}_{A}\left(C^{*}, C\right), \\
& \left\{\begin{array}{l}
Q^{\star}(C, 1, \varepsilon)=Q^{*}(C, \varepsilon) \\
Q_{\star}(C, 1, \varepsilon)=Q_{\star}(C, \varepsilon),
\end{array}\right. \\
& \left\{\begin{array}{l}
L^{\star}(A, 1, E)=L^{\star}(A, E) \\
L_{\star}(A, 1, E)=L_{\star}(A, E) .
\end{array}\right.
\end{aligned}
$$

Let A^{α} denote the $r i n g$ with involution with the $r i n g$ structure of A, but with the involution

$$
+: A^{\alpha} \longrightarrow A^{\alpha} ; a \longmapsto \longrightarrow(\vec{a})
$$

Given an A-module M let M^{α} denote M regarded as an A^{α}-module, so that $M^{\alpha t}$ is the right A^{α}-module with the additive group
of M and A^{α} acting by

$$
M^{\alpha t} \times A^{\alpha} \longrightarrow M^{\alpha t} ;(y, a) \longmapsto \alpha(\bar{a}) y,
$$

and $M^{\alpha \star}$ is the A^{α}-module with additive group $\operatorname{Hom}_{A}(M, A)$ and A^{α} acting by

$$
A^{\alpha} \times M^{\alpha \star} \longrightarrow M^{\alpha \star} ;(a, f) \longmapsto(y \longmapsto f(y) \alpha(\bar{a})) \text {. }
$$

Proposition 5.1.2 There are natural identifications of L-groups

$$
\left\{\begin{array}{l}
L^{n}(A, \alpha, E)=L^{n}\left(A^{\alpha}, E\right) \\
L_{n}(A, \alpha, E)=L_{n}\left(A^{\alpha}, C\right)
\end{array} \quad(n \geqslant 0)\right.
$$

Proof: For any finite-dimensional A-module chain complexes C, D there is defined an isomorphism of \mathbb{Z}-module chain complexes

$$
\begin{aligned}
& C^{t} \otimes_{A} D=C \otimes_{Z^{2}} D /\left\{y a z-\bar{a} y \otimes_{z} \mid a \in A, y \in C, z \in D\right\} \longrightarrow \operatorname{Hom}_{A}\left(C^{*}, D\right) ;
\end{aligned}
$$

which can be used to identify

$$
C^{t} \mathbb{X}_{A} D=\operatorname{Hom}_{A}\left(C^{\star}, D\right)
$$

In particular, for $D=C x$ there are identifications of \mathbb{Z}-module chain complexes

$$
\begin{aligned}
\operatorname{Hom}_{A}\left(C^{\star}, C x\right) & =C \mathbb{Z}^{C /\left\{y \otimes a^{-1}(a) z-\bar{a} y \otimes z \mid a \in A, y, z \in C\right\}} \\
& =C \otimes_{\mathbb{Z}}^{C /\{y \otimes a z-\alpha(\bar{a}) y \otimes z \mid a \in A, y, z \in C\}} \\
& =\operatorname{Hom}_{A} \alpha\left(C^{\alpha *}, C^{\alpha}\right)
\end{aligned}
$$

Furthermore, the o-twisted ε-duality involution $T_{\alpha, \varepsilon}$ on $\operatorname{Hom}_{A}\left(C^{*}, C x\right)$ can be identified with the ϵ-duality involution T_{ϵ} on $\operatorname{Hom}_{\mathrm{A}} \alpha\left(\mathrm{C}^{\alpha *}, \mathrm{C}^{\alpha}\right)$, so that

$$
\left\{\begin{array}{l}
Q^{n}(C, \alpha, \varepsilon)=Q^{n}\left(C^{\alpha}, \varepsilon\right) \\
Q_{n}(C, \alpha, \varepsilon)=Q_{n}\left(C^{\alpha}, \varepsilon\right)
\end{array} \quad(n \geqslant 0)\right.
$$

and similarly for the L-groups.

Given a finite-dimensional α-twisted nilcomplex over A $(C, v: C \longrightarrow C X)$ define a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
\Gamma_{v}: \operatorname{Hom}_{A}\left(C^{\star}, x C\right) \longrightarrow \overline{\operatorname{Hom}}_{A}\left(C^{\star}, C\right) ; \phi \longmapsto-\phi v^{\star},
$$ with $T \in \mathbb{Z}_{2}$ acting on $\operatorname{Hom}_{A}\left(C^{*}, x C\right)$ by $T_{\alpha, \varepsilon}$ (as above) and $\overline{H o m}_{A}$ the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex defined by the \mathbb{Z}-module chain complex $\operatorname{Hom}_{A}\left(C^{*}, C\right)$ with $T \in \mathbb{Z}_{2}$ acting by the $(-\varepsilon)$-duality

 $\left\{\begin{array}{l}Q N i l^{*}(C, V, E) \\ Q N i l_{\star}(C, V, \varepsilon)\end{array}\right.$ to be the relative groups appearing in the long exact sequence of abelian groups

An element $\left\{\begin{array}{l}(\delta \phi, \phi) \in Q N i 1^{n}(C, \nu, \varepsilon) \\ (\delta \psi, \psi) \in Q N i l_{n}(C, \nu, \varepsilon)\end{array}\right.$ is an equivalence class of collections of A-module morphisms

$$
\left\{\begin{array}{l}
\left\{\left(\delta \phi_{s^{\prime}} \phi_{s}\right) \in \operatorname{Hom}_{A}\left(C^{n-r+s+1}, C_{r}\right) \oplus \operatorname{Hom}_{A}\left(C^{n-r+s}, x C_{r}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right. \\
\left\{\left(\delta \psi_{s^{\prime}}\right) \in \operatorname{Hom}_{A}\left(C^{n-r-s+1}, C_{r}\right) \oplus \operatorname{Hom}_{A}\left(C^{n-r-s}, x C_{r}\right) \mid r \in \mathbb{Z}, s \geqslant 0\right.
\end{array}\right.
$$

such that

$\left\{\begin{array}{l}(C, v, \delta \phi, \phi) \\ (C, v, \delta \psi, \psi)\end{array}(n \geqslant 0)\right.$ is an n-dimensional α-twisted nilcomplex
over $A(C, v)$ together with an element $\left\{\begin{array}{l}(\delta \phi, \phi) \in Q N i 1^{n}(C, v, \varepsilon) \\ (\delta \psi, \phi) \in Q N i l_{n}(C, v, \varepsilon)\end{array}\right.$. Such a complex is Poincaré if $\left\{\begin{array}{l}\left(C, \phi \in Q^{n}(C, \alpha, \varepsilon)\right) \\ \left(C, \psi \in Q_{n}(C, \alpha, \varepsilon)\right)\end{array}\right.$ is an n-dimensional α-twisted $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex over A. The n-dimensional α-twisted $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \underline{\varepsilon-q u a d r a t i c ~}\end{array}\right.$ LNil-group of A $\left\{\begin{array}{l}\operatorname{LNi} 1^{n}(A, \alpha, \varepsilon) \\ L N i 1_{n}(A, \alpha, \varepsilon)\end{array}\right.$ is the cobordism group of n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré nilcomplexes over $A(n \neq 0)$.

Proposition 5.1.3 i) For each $n \geqslant 0$ there is a natural identification of categories

$$
\begin{aligned}
& \text { (n-dimensional }\left\{\begin{array}{l}
\text { (even) } \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { (Poincaré) complexes } \\
& \text { over } \left.\left(A_{\alpha}[x], x\right)\right) \\
& =\text { (n-dimensional } \alpha \text {-twisted }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { (Poincaré) } \\
& \text { nilcomplexes over A). }
\end{aligned}
$$

ii) There are natural identifications of L-groups

$$
\left\{\begin{array}{l}
L^{n}\left(A_{\alpha}[x], X, \varepsilon\right)=\operatorname{LNil}^{n}(A, \alpha, E) \\
L_{n}\left(A_{\alpha}[x], X, E\right)=\operatorname{LNil}_{n}(A, \alpha, \varepsilon)
\end{array} \quad(n \geqslant 0)\right.
$$

iii) The $\left\{\begin{array}{l}\text { e-symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$ L-theory localization exact sequence of ($A_{\alpha}[x], X$) in the range $n \geqslant 0$ is made up of naturally split short exact sequences

$$
\left\{\begin{array}{l}
0 \longrightarrow L^{n}\left(A_{\alpha}[x], \varepsilon\right) \longrightarrow L_{x}^{n}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \xrightarrow{\partial} \operatorname{LNi1}{ }^{n}(A, \alpha, \varepsilon) \longrightarrow 0 \\
0 \longrightarrow L_{n}\left(A_{\alpha}[x], \varepsilon\right) \longrightarrow L_{n}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \longrightarrow \partial
\end{array}\right.
$$

Proof: i) This follows from Proposition 5.1.1 i), provided we can show that if D is an X-acyclic $(n+1)$-dimensional $A_{\alpha}[x]$-module chain complex resolving an n-dimensional ($\left.A_{\alpha}[x], x\right)$-module chain complex $(=\alpha$-twisted nilcomplex over A) (c,v) that

$$
\left\{\begin{array}{l}
Q^{n+1}(D,-\varepsilon)=Q\left\langle v_{0}\right\rangle^{n+1}(D,-\varepsilon)=Q N i I^{n}(C, v, \varepsilon) \\
O_{n+1}(D,-\varepsilon)=Q N i I_{n}(C, v, \varepsilon)
\end{array}\right.
$$

The exact sequence of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules

$$
0 \longrightarrow A_{\alpha}[x] \longrightarrow A_{\alpha}\left[x, x^{-1}\right] \longrightarrow A_{\alpha}\left[x, x^{-1}\right] / A_{\alpha}[x] \longrightarrow 0
$$

splits, with $T \in \mathbb{Z}_{2}$ acting in each case by

$$
\begin{array}{r}
T_{\varepsilon}: \sum_{j} a_{j} x^{j} \longmapsto \varepsilon\left(\overline{\sum_{j} a_{j} x^{j}}\right)=\sum_{j} \varepsilon \alpha^{-j}\left(\bar{a}_{j}\right) x^{j} \\
\left(a_{j} \in A\right) .
\end{array}
$$

It follows that every X-acyclic $(n+1)$-dimensional ($-\varepsilon$)-symmetr complex over $A_{\alpha}[x]\left(D, \phi \in Q^{n+1}(D,-\varepsilon)\right)$ is even, since

$$
\begin{aligned}
\hat{\mathrm{v}}_{\mathrm{O}}(\phi): \mathrm{H}^{\mathrm{n}+1}(D) \xrightarrow{\hat{\mathrm{v}}_{\mathrm{O}}^{\mathrm{X}}(\phi)} \xrightarrow{\longrightarrow} \hat{\mathrm{H}}^{\mathrm{O}}\left(\mathbb{Z}_{2} ; \mathrm{A}_{\alpha}\left[x, x^{-1}\right] / A_{\alpha}[x], \varepsilon\right) \\
\xrightarrow{\hat{\delta}=0}
\end{aligned}
$$

and

$$
Q\left\langle\nu_{O}\right\rangle^{n+1}(D,-\varepsilon)=Q^{n+1}(D,-\varepsilon) \text {. }
$$

An n-dimensional α-twisted nilcomplex over $A(C, v)$ can be regarded as an n-dimensional $\left(A_{\alpha}[x], X\right)$-module chain complex by Proposition 5.1.1 iij, and as such has a canonical resolutic $(D, h: D \longrightarrow C)$ with D the x-acyclic $(n+1)$-dimensional $A_{\alpha}[x]$-module chain complex defined by

$$
\begin{aligned}
d_{D} & =\left(\begin{array}{cc}
d_{c} & (-)^{r-1}(x-v) \\
0 & d_{C}
\end{array}\right) \\
& : D_{r}=\left(C_{r}\right)_{\alpha}[x] \oplus\left(x C_{r-1}\right)_{\alpha}[x] \\
& \longrightarrow D_{r-1}=\left(C_{r-1}\right)_{\alpha}[x] \oplus\left(x C_{r-2}\right)_{\alpha}[x]
\end{aligned}
$$

and $h: D \longrightarrow C$ the homology equivalence of $A_{\alpha}[x]$-module chain complexes defined by

$$
\begin{aligned}
h: & D_{r}=\left(C_{r}\right)_{\alpha}[x] \oplus\left(x C_{r-1}\right)_{\alpha}[x] \longrightarrow C_{r} ; \\
& \left(\sum_{j=0}^{\infty} x^{j} y_{j}{ }^{\prime} \sum_{j=0}^{\infty} x^{j}\left(x z_{j}\right)\right) \longmapsto \sum_{j=0}^{\infty} \nu^{j}\left(y_{j}\right) \quad\left(y_{j} \in C_{r}, z_{j} \in C_{r-1}\right.
\end{aligned}
$$

The \mathbb{Z}-module chain map

$$
h: \operatorname{Hom}_{A_{\alpha}}[x]\left(D^{*}, D\right) \longrightarrow \operatorname{Hom}_{A_{\alpha}}[x]\left(D^{*}, C\right) ; g \longmapsto h g
$$

is also a homology equivalence (working as in the proof of Proposition 3.1.3 ii)). Now

$$
\begin{aligned}
\operatorname{Hom}_{A_{\alpha}[x]}\left(D^{*}, C\right) & =\sum_{p+q=r} \operatorname{Hom}_{A_{\alpha}}[x]\left(D^{p}, C_{q}\right) \\
& =\sum_{p+q=r} \operatorname{Hom}_{A}\left(C^{p} \oplus C^{p-1} x, C_{q}\right) \\
& =\overline{\operatorname{Hom}}_{A}\left(C^{*}, C\right)_{r} \oplus \operatorname{Hom}_{A}\left(C^{*}, x C\right)_{r-1} \quad(r \in \mathbb{Z})
\end{aligned}
$$

allowing $\operatorname{Hom}_{A_{\alpha}[x]}\left(D^{*}, C\right)$ to be identified with the algebraic mapping cone $C\left(\Gamma_{v}\right)$ of the $\mathbb{Z}\left[\mathbb{Z}_{2}\right\}$-module chain map

$$
\Gamma_{V}: \operatorname{Hom}_{A}\left(C^{*}, C\right) \longrightarrow \operatorname{Hom}_{A}\left(C^{*}, x C\right)
$$

used to define the QNil-groups. Thus

$$
h: \operatorname{Hom}_{A_{\alpha}}[x]\left(D^{\star}, D\right) \longrightarrow \operatorname{Hom}_{A_{\alpha}[x]}\left(D^{*}, C\right)=C\left(\Gamma_{\nu}\right)
$$

is a $\mathbb{Z}\left\{\mathbb{Z}_{2}\right]$-module chain map inducing isomorphisms in homoloc and hence also in the $\left\{\begin{array}{l}\mathbb{Z}_{2} \text {-hypercohomology } \\ \mathbb{Z}_{2} \text {-hyperhomology }\end{array}\right.$ groups
ii) The identifications $\left\{\begin{array}{l}L^{n}\left(A_{\alpha}[x], x, \varepsilon\right)=\operatorname{LNi1}{ }^{n}(A, \alpha, \varepsilon) \\ L_{n}\left(A_{\alpha}[x], x, \varepsilon\right)=\operatorname{LNi1}{ }_{n}(A, \alpha, \varepsilon)\end{array} \quad(n \geqslant 0)\right.$
are immediate from i).
iii) The abelian group morphisms

$$
\left\{\begin{aligned}
\Delta: \operatorname{LNi1}{ }^{n}(A, \alpha, \varepsilon) \longrightarrow & L_{x}^{n}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) ; \\
& (C, v, \delta \phi, \phi) \longmapsto \longrightarrow\left(C_{\alpha}\left[x, x^{-1}\right],[v, \delta \phi, \phi]\right) \\
\Delta: \operatorname{LNi1}{ }_{n}(A, \alpha, \varepsilon) \longrightarrow & L_{n}^{x}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \\
& (C, v, \delta \psi, \psi) \longmapsto \longrightarrow\left(C_{\alpha}\left[x, x^{-1}\right],[v, \delta \psi, \psi]\right)
\end{aligned}\right.
$$

defined by
$\left\{\begin{aligned} & {[v, \delta \phi, \phi]_{s}=(x-v) \phi_{s}-T_{-\epsilon} \delta \phi_{S-1} } \\ &:\left(C^{n-r+s}\right)_{\alpha}\left[x, x^{-1}\right] \longrightarrow\left(C_{r}\right)_{\alpha}\left[x, x^{-1}\right] \\ &(v, \delta \psi, \psi]_{s}=(x-v) \psi_{s}+T_{-\varepsilon} \delta \psi_{s+1} \\ &:\left(C^{n-r-s}\right)_{\alpha}\left[x, x^{-1}\right] \longrightarrow\left(C_{r}\right)_{\alpha}\left[x, x^{-1}\right) \\ &\left(r \in \mathbb{Z}, s \geqslant 0, \delta \phi_{-1}=0\right)\end{aligned}\right.$
are right inverses $(j \Delta=1)$ for the morphisms

$$
\left\{\begin{array}{l}
\partial: L_{x}^{n}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \longrightarrow L^{n}\left(A_{\alpha}[x], x, \varepsilon\right)=\operatorname{LNiI}^{n}(A, \alpha, \varepsilon) \\
1: L_{n}^{x}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \longrightarrow L_{n}\left(A_{\alpha}[x], x, \varepsilon\right)=\operatorname{LNiI}_{n}(A, \alpha, \varepsilon)
\end{array} \quad(n \geqslant 0)\right.
$$

appearing in the localization exact sequence, since

$$
\left\{\begin{array} { l }
{ (C _ { \alpha } [x , x ^ { - 1 }] , [v , \delta \phi , \phi]) } \\
{ \partial (C _ { \alpha } [x , x ^ { - 1 }] , [v , \delta \psi , \psi]) }
\end{array} \text { is homotopy equivalent to } \left\{\begin{array}{l}
(C, v, \delta \phi, \phi) \\
(C, v, \delta \psi, \psi)
\end{array}\right.\right.
$$

(The underlying ($n+1$)-dimensional X-acyclic $A_{\alpha}[x]$-module chain complex $\left\{\begin{array}{l}C\left((x-v) \phi_{O}:\left(C^{n-*}\right)_{\alpha}[x] \longrightarrow C_{\alpha}[x]\right) \\ C\left((x-v)\left(1+T_{\alpha, \epsilon}\right) \psi_{O}:\left(C^{n-*}\right)_{\alpha}[x] \longrightarrow C_{\alpha}[x]\right)\end{array}\right.$ is chain
equivalent to the canonical resolution $D=C\left(x-\nu:(x C)_{\alpha}[x] \rightarrow C_{\alpha}[x]\right)$
of C, since $\left\{\begin{array}{l}\phi_{O}: C^{n-*} \longrightarrow x C \\ (1+T\end{array}\right) \psi_{\alpha, \epsilon}: C^{n-*} \longrightarrow x C$ is a chain equivalence of A-module chain complexes).

Define the n-dimensional a-twisted $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c ~}{\text { E-quadratic }} \text { LNil-group }\end{array}\right.$ $\left\{\begin{array}{l}\widetilde{L N i I}^{n}(A, \alpha, \varepsilon) \\ \widetilde{\text { LNiI }}_{n}(A, \alpha, E)\end{array}(n \geqslant 0)\right.$ to be the group appearing in the natural direct sum decomposition

$$
\left\{\begin{array}{l}
\operatorname{LNil}^{n}(A, \alpha, \varepsilon)=L^{n}(A, \alpha, \varepsilon) \oplus \overparen{L N i 1}^{n}(A, \alpha, \varepsilon) \\
\operatorname{LNi1}_{n}(A, \alpha, \varepsilon)=L_{n}(A, \alpha, \varepsilon) \oplus \overparen{L N i}_{n}(A, \alpha, \varepsilon)
\end{array}\right.
$$

obtained from the natural injection

$$
\left\{\begin{array}{l}
\bar{n}: L^{n}(A, \alpha, \varepsilon) \longrightarrow \operatorname{LNi1}{ }^{n}(A, \alpha, \varepsilon) ;(C, \phi) \longmapsto(C, 0,0, \phi) \\
\bar{n}: L_{n}(A, \alpha, \varepsilon) \longrightarrow \operatorname{LNi1}{ }_{n}(A, \alpha, \varepsilon):(C, \psi) \longmapsto \longrightarrow(C, 0, O, \psi)
\end{array}\right.
$$

and the natural projection

$$
\left\{\begin{array}{l}
\eta: \operatorname{LNi1}{ }^{n}(A, \alpha, \varepsilon) \longrightarrow L^{n}(A, \alpha, \varepsilon) ;(C, v, \delta \phi, \phi) \longmapsto(C, \phi) \\
n: \operatorname{LNil}_{n}(A, \alpha, \varepsilon) \longrightarrow L_{n}(A, \alpha, \varepsilon) ;(C, v, \delta \psi, \psi) \longmapsto(C, \psi)
\end{array}\right.
$$

(which are such that $\bar{n} \bar{\eta}=1$).
Let $A_{\alpha}\left[x^{-1}\right]$ be the ring with involution defined in the same way as $A_{\alpha}[x]$ but with α^{-1}, x^{-1} in place of α, x so that

$$
\begin{gathered}
a x^{-1}=x^{-1} \alpha^{-1}(a) \in A_{\alpha}\left[x^{-1}\right] \quad(a \in A) \\
\overline{x^{-1}}=x^{-1} \in A_{\alpha}\left[x^{-1}\right]
\end{gathered}
$$

The function

$$
A_{\alpha}-1[x] \longrightarrow A_{\alpha}\left[x^{-1}\right] ; \sum_{j=0}^{\infty} a_{j} x^{j} \longmapsto \sum_{j=0}^{\infty} a_{j} x^{-j}
$$

is an isomorphism of rings with involution. The multiplicative
subset

$$
x_{-}=\left\{x^{-k} \mid k \geqslant 0\right\} \subset A_{\alpha}\left[x^{-1}\right] .
$$

is such that

$$
\left(x_{-}\right)^{-1} A_{\alpha}\left[x^{-1}\right]=A_{\alpha}\left[x, x^{-1}\right]=\left(x_{+}\right)^{-1} A_{\alpha}[x] \text {. }
$$

where $x_{+}=x=\left\{x^{k} \mid k \geqslant 0\right\} \subset A_{\alpha}[x]$ is the multiplicative subset dealt with above. The inclusions

$$
\bar{e}_{ \pm}: A \longrightarrow A_{\alpha}\left[x^{ \pm 1}\right] ; a \longmapsto a
$$

are split by the projections

$$
e_{ \pm}: A_{\alpha}\left(x^{ \pm 1}\right] \longrightarrow A ; \sum_{j=0}^{\infty} a_{j} x^{ \pm j} \longrightarrow a_{0}
$$

with $e_{ \pm} \bar{e}_{ \pm}=1$. The inclusions

$$
\begin{aligned}
\left.\bar{E}_{ \pm}: A_{\alpha} \mid x^{ \pm 1}\right] & A_{\alpha}\left[x, x^{-1} 1 ;\right. \\
& \sum_{j=0}^{\infty} a_{j} x^{ \pm j} \longmapsto \sum_{j=0}^{\infty} a_{j} x^{ \pm j}
\end{aligned}
$$

do not split.
Let $K \subseteq \widetilde{K}_{O}\left(A_{\alpha}\left[x^{ \pm 1}\right]\right)$ (resp. $\tilde{K}_{O}\left(A_{\alpha}\left(x, x^{-1}\right]\right)$) be the $*$-invariant subgroup of the projective classes $\left[\mathrm{P}_{\alpha}\left\{\mathrm{x}^{ \pm 1}\right]\right\}$ (resp. $\left.\left[\mathrm{P}_{\alpha}\left[\mathrm{x}, \mathrm{x}^{-1}\right]\right]\right)$ of the modules induced from f.g. projective A-modules P by $\bar{e}_{ \pm}: A \longrightarrow A_{\alpha}\left[x^{ \pm 1}\right] \quad\left(\right.$ resp. $\left.\bar{E}_{+} \bar{e}_{+}=\bar{E}_{-} \bar{e}_{-}: A \longrightarrow A_{\alpha}\left[x, x^{-1}\right]\right)$.

Proposition 5.1.4 For each $n \geqslant 0$ there is defined a commutative braid of naturally split exact sequences of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

and there are defined natural direct sum decompositions

$$
\begin{aligned}
& (n \geqslant 0) \text {. }
\end{aligned}
$$

Proof: In the first instance note that the sequence of ε-symmetric L-groups

$$
o \longrightarrow L_{K}^{n}\left(A_{\alpha}[x], \varepsilon\right) \xrightarrow{\bar{E}_{+}} L_{K}^{n}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \xrightarrow{?}+\text { LNi1 }^{n}(A, \alpha, \varepsilon) \longrightarrow 1
$$

and its ε-quadratic counterpart are both naturally split exact:
this may be deduced from Proposition 5.1.3 iii) using the appropriate comparison exact sequences of Proposition 1.10.1, noting that

$$
\begin{aligned}
& \stackrel{\rightharpoonup}{E}_{+}: \widetilde{K}_{O}\left(A_{\alpha}(x]\right) / i m\left(\bar{e}_{+}: \tilde{K}_{O}(A) \longrightarrow \tilde{K}_{O}\left(A_{\alpha}[x]\right)\right) \\
& \longrightarrow \operatorname{im}\left(\vec{E}_{+}: \tilde{K}_{O}\left(A_{\alpha}[x]\right) \longrightarrow \tilde{K}_{O}\left(A_{\alpha}\left[x, x^{-1}\right]\right)\right) / i m\left(\bar{E}_{+} \bar{e}_{+}: \tilde{K}_{O}(A) \longrightarrow \tilde{K}_{O}\left(A_{\alpha}\left[x, x^{-1}\right]\right)\right)
\end{aligned}
$$

is an isomorphism, or else may be obtained directly from the corresponding intermediate L-theory localization exact sequence of Proposition 3.7 .2 by constructing a splitting map Δ_{+}for ${ }_{+}$ as in the proof of Proposition 5.1.3 iii). Let

$$
E_{+}: L_{K}^{n}\left(A_{\alpha}\left[x, x^{-1}\right), \varepsilon\right) \longrightarrow L_{K}^{n}\left(A_{\alpha}[x], \varepsilon\right) \quad(n \geqslant 0)
$$

be the split surjections associated to the split injections

$$
\Delta_{+}: \operatorname{LNil}{ }^{n}(A, \alpha, \varepsilon) \longrightarrow L_{K}^{n}\left(A_{\alpha}\left[x, x^{-1}\right\}, \varepsilon\right) \quad(n \geqslant 0),
$$

and similarly in the e-quadratic case. By Lemma 1.1 of Ranicki [4] it now suffices to prove that the diagrams of e-symmetric L-aroups

$$
\begin{aligned}
& L_{K}^{n}\left(A_{\alpha}[x], \varepsilon\right) \longrightarrow L^{n}(A, \varepsilon) \\
& \underset{L_{K}^{n}\left(A_{\alpha}\left[x_{1}, x^{-1}\right], \varepsilon\right) \xrightarrow{\bar{E}_{+}} \xrightarrow{E_{-}} L_{K}^{n}\left(A_{\alpha}\left[x^{-1}\right], \varepsilon\right)}{\stackrel{e}{e}_{-}}
\end{aligned}
$$

and their e-quadratic analogues are commutative in order to establish the split exactness of the other sequences in the braids, and hence to obtain the direct sum decompositions.

The relation $\bar{\eta}_{-} \eta_{+}=\partial_{-} \Delta_{+}$is easy to verify directly. The relation $E_{-} \bar{E}_{+}=\bar{e}_{-} e_{+}$was verified explicitly in Ranicki [4,54] in the ε-quadratic case for $\alpha=1: A \longrightarrow A$ (taking into account that the splitting maps E_{+}defined there are slghtly different from those defined here, being geared to the splitting maps of rings $A\left[x^{ \pm 1}\right] \longrightarrow A$ for $\left.\bar{e}_{ \pm}: A \longrightarrow A \mid x^{ \pm 1}\right)$ given by $x^{ \pm 1} \longrightarrow 1$ rather than $e_{ \pm}: x^{ \pm 1} \longrightarrow 0$). The verification of $E_{-} \bar{E}_{t}=\bar{e}_{-} e_{+}$in the general case requires a symmetric L-theory Higman linearization trick, and is deferred to Ranicki [11].

We shall now identify linking forms (resp. formations)
over ($\left.A_{\alpha}[x], x\right)$ with α-twisted forms (resp. formations) over A together with a nilpotent structure. This will allow us to express the LNil-groups $\left\{\begin{array}{l}\operatorname{LNi} 1^{n}(A, \alpha, \varepsilon) \\ \operatorname{LNi} l_{n}(A, \alpha, E)\end{array}\right.$ for $n=0$ (resp, $n=1$)
as the Witt groups of such objects, and also to define lower LNil-groups $\left\{\begin{array}{l}\operatorname{LNi} 1^{n}(A, a, \varepsilon) \\ \operatorname{LNi} l_{n}(A, \alpha, \varepsilon)\end{array} \quad(n \leqslant-1)\right.$, which appear in the extensions to the lower L-groups of the results of Propositions 5.1.2, 5.1.3 and 5.1.4.

Given a f.g. projective A-module M define the α-twisted e-duality involution

$$
T_{\alpha, E}: \operatorname{Hom}_{A}\left(M, X M^{\star}\right) \longrightarrow \operatorname{Hom}_{A}\left(M, X M^{*}\right) ; \phi \longmapsto \Phi^{*} \text {. }
$$

An element $\Phi E^{\prime} \operatorname{Hom}_{A}\left(M, X^{*}\right)$ is the same as a pairing

$$
\phi: M \times M \longrightarrow A ;(y, z) \longmapsto \longrightarrow \phi(y, z) \equiv \phi(y)(z x)
$$

(identifying $\left.x M^{*}=(M x)^{*}\right)$ such that

$$
\begin{aligned}
\text { i) } \phi\left(y+y^{\prime}, z\right) & =\phi(y, z)+\phi\left(y^{\prime}, z\right) \\
\text { ii) } \phi\left(y, z+z^{\prime}\right) & =\phi(y, z)+\phi\left(y, z^{\prime}\right) \\
\text { iii) } \phi(a y, b z) & =\alpha(b) \phi(y, z) \bar{a} \in A
\end{aligned}
$$

$$
\left(y, y^{\prime}, z, z^{\prime} \in M, a, b \in A\right)
$$

The α-twisted ε-dual $T_{\alpha, \varepsilon} \Phi \in \operatorname{Hom}_{A}\left(M, M^{*} x\right)$ is the pairing defined by

$$
T_{(x, \varepsilon} \phi(y, z)=\varepsilon \alpha(\overline{(z, y)}) \in A \quad(y, z \in M) .
$$

(Working as in the proof of Proposition 5.1.2 it is possible to identify

$$
\left(\operatorname{Hom}_{A}\left(M, x M^{\star}\right), T(\alpha, \varepsilon)=\left(\operatorname{Hom}_{A}^{\alpha}\left((M x)^{\alpha},(M x)^{\alpha *}\right), T_{\varepsilon}\right)\right)
$$

Define the α-twisted Q-groups of M

$$
\begin{aligned}
& \left\{\begin{array}{l}
Q^{\varepsilon}(M, \alpha)=\operatorname{ker}\left(1-T_{\alpha, \varepsilon}: \operatorname{Hom}_{A}\left(M, x M^{*}\right) \longrightarrow \operatorname{Hom}_{A}\left(M, x M^{*}\right)\right) \\
Q\left\langle v_{0}>^{\varepsilon}(M, \alpha)=\operatorname{im}\left(1+T_{\alpha, \varepsilon}: \operatorname{Hom}_{A}\left(M, x M^{*}\right) \longrightarrow \operatorname{Hom}_{A}\left(M, x M^{*}\right)\right) \subseteq Q^{\varepsilon}(M, \alpha\right. \\
Q_{E}(M, \alpha)=\operatorname{coker}\left(1-T_{\alpha, \varepsilon}: \operatorname{Hom}_{A}\left(M, x M^{\star}\right) \longrightarrow \operatorname{Hom}_{A}\left(M, x M^{*}\right)\right) .
\end{array}\right. \\
& \text { An a-twisted }\left\{\begin{array} { l }
{ \text { (even) E-symmetric } } \\
{ \text { f-quadratic } }
\end{array} \text { former } A \left\{\begin{array}{l}
(M, \phi) \\
(M, \psi)
\end{array}\right.\right. \text { is a }
\end{aligned}
$$

f.g. projective A-module M together with an element
$\left\{\begin{array}{l}\phi \in Q^{\varepsilon}(M, \alpha) \quad\left(\phi \in Q\left\langle v_{O}\right\rangle^{\varepsilon}(M, \alpha)\right) . \text { Such a form is non-singular if } \\ \psi \in Q_{\varepsilon}(M, \alpha)\end{array}\right.$ $\left\{\begin{array}{l}\phi \in \operatorname{Hom}_{A}\left(M, X M^{*}\right) \\ \left(1+T_{\alpha, \varepsilon}\right) \psi \in \operatorname{Hom}_{A}\left(M, X M^{*}\right)\end{array}\right.$ is an isomorphism. There are evident notions of morphism, (sub)lagrangian, hyperbolic, Witt group for α-twisted forms. The Witt group of non-sinqular α-twisted $\left\{\begin{array}{l}(\text { even }) ~ \\ \varepsilon \text {-symmetric }\end{array}\right.$ forms over A is denoted by $\left\{\begin{array}{l}L^{\varepsilon}(A, \alpha) \quad\left(L\left\langle v_{O}\right\rangle^{\varepsilon}(A,(x))\right. \\ I_{E}(A, \alpha)\end{array}\right.$. There are identifications of
categories

$$
\begin{aligned}
& \text { (O-dimensional } \alpha \text {-twisted }\left\{\begin{array}{l}
\left\{\begin{array}{l}
\text { (even) } \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \\
\text { (Poincaré) complexes over } A)
\end{array}\right. \\
& =\left(\text { (non-singular) } \alpha \text {-twisted }\left\{\begin{array}{ll}
(\text { even }) & \varepsilon \text {-symmetric } \\
\epsilon \text {-quadratic }
\end{array} \text { forms over } A\right)\right.
\end{aligned}
$$ and hence also identifications of groups

$$
\left\{\begin{array}{l}
L^{O}(A, \alpha, \varepsilon)=L^{E}(A, \alpha) \\
L_{O}(A, \alpha, \varepsilon)=L_{\varepsilon}(A, \alpha)
\end{array} .\right.
$$

Given an α-twisted nilmodule over $A\left(M, v \in \operatorname{Hom}_{A}(M, M x)\right)$
define the QNil-groups of (M, V) by

$$
\begin{aligned}
& \operatorname{QNi} 1^{E}(M, V)= \\
& \left\{\phi \in \operatorname{Hom}_{A}\left(M, x M^{*}\right) \mid \epsilon \phi^{*}=\emptyset \in \operatorname{Hom}_{A}\left(M, X^{*}\right), V * \phi=\emptyset \cup \in \operatorname{Hom}_{A}\left(M, M^{*}\right)\right\} \\
& \text { QNil }\left\langle v_{O}\right\rangle^{E}(M, v)= \\
& \left\{\phi \in \operatorname{Hom}_{A}\left(M, x M^{*}\right) \mid \phi=\psi+\varepsilon \psi^{*} \text { for some } \psi \in \operatorname{Hom}_{A}\left(M, x M^{*}\right)\right. \\
& \text { such that } v^{*} \psi-\psi \nu=\delta \psi+\varepsilon \delta \psi^{*} \in \operatorname{Hom}_{A}\left(M, M^{*}\right) \\
& \text { some } \left.\delta \psi \in \operatorname{Hom}_{A}\left(M, M^{\star}\right)\right\} \subseteq \operatorname{QNiI}^{\varepsilon}(M, \nu) \\
& \operatorname{QNil}_{\mathrm{E}}(\mathrm{M}, \mathrm{~V})= \\
& \left\{(\delta \psi, \psi) \in \operatorname{Hom}_{A}\left(M, M^{\star}\right) \oplus \operatorname{Hom}_{A}\left(M, x M^{\star}\right) \mid v^{\star} \psi-\psi \nu=\delta \psi+\varepsilon \delta \psi^{\star} \in \operatorname{Hom}_{A}\left(M, M^{*}\right.\right. \\
& \left\{\left(\delta x-\varepsilon \delta x^{\star}+v^{\star} X-X v, X-\varepsilon X^{\star}\right) \mid(\delta X, X) \in \operatorname{Hom}_{A}\left(M, M^{\star}\right) \oplus \operatorname{Hom}_{A}\left(M, X M^{\star}\right)\right\} \\
& \text { An } \alpha \text {-twisted }\left\{\begin{array} { l }
{ \text { (even) } \varepsilon \text { -symmetric } } \\
{ \underline { \varepsilon - q u a d r a t i c ~ } }
\end{array} \text { nilform over } A \left\{\begin{array}{l}
(M, v, \phi) \\
(M, v, \delta \psi, \psi
\end{array}\right.\right. \\
& \text { is an } \alpha \text {-twisted nilmodule over } A(M, v) \text { together with an element } \\
& \left\{\begin{array}{l}
\phi \in \operatorname{QNil}{ }^{E}(M, v)\left(\phi \in \operatorname{QNil}\left\langle v_{O}\right\rangle^{\varepsilon}(M, v)\right) . \\
(\delta \psi, \psi) \in \operatorname{QNil}_{\epsilon}(M, v)
\end{array}\right. \text {. Such a nilform is } \\
& \text { non-singular if } \begin{cases}\left(M, \phi \in Q^{\varepsilon}(M, \alpha)\right) & \left(M, \phi \in Q\left\langle v_{O}\right\rangle^{\varepsilon}(M, \alpha)\right) \\
\left(M, \psi \in \Omega_{€}(M, \alpha)\right) & \text { is a }\end{cases}
\end{aligned}
$$

non-singular α-twisted $\left\{\begin{array}{l}(\text { even }) \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A. There are evident notions of morphism, (sub)lagrangian, hyperbolic, Witt group for nilforms. The witt group of non-singular α-twisted $\left\{\begin{array}{l}(\text { even }) ~ \\ \varepsilon \text {-quadratic }\end{array}\right.$ nilforms over A is denoted by $\left\{\begin{array}{l}\operatorname{LNi} 1^{\varepsilon}(A, \alpha) \\ \operatorname{LNi} 1_{\varepsilon}(A, \alpha)\end{array} \quad\left(\operatorname{LNil}\left\langle v_{O}\right\rangle^{\varepsilon}(A, \alpha)\right)\right.$.

Proposition 5.1.5 i) There are natural identifications of categories

$$
\text { over } \left.\left(A_{\alpha}[x], x\right)\right)
$$

ii) There are natural identifications of L-groups

$$
\begin{aligned}
& \operatorname{LNi} 1^{0}(A, \alpha, \varepsilon)=\operatorname{LNil}{ }^{\varepsilon}(A, \alpha)=L^{\epsilon}\left(A_{\alpha}[x], X\right) \\
& =L\left\langle v_{0}\right\rangle^{\varepsilon}\left(A_{\alpha}[x], x\right)=L^{O}\left(A_{\alpha}[x], x, \varepsilon\right) \\
& \operatorname{LNiI_{O}}(A, \alpha, \epsilon)=\operatorname{LNil}{ }_{E}(A, \alpha)=\widetilde{L}_{\varepsilon}\left(A_{\alpha}[x], X\right)=L_{O}\left(A_{\alpha}[x], X, \varepsilon\right) \\
& \operatorname{LNi} 1\left\langle v_{0}\right\rangle^{\varepsilon}(A, \varepsilon)=L_{\epsilon}\left(A_{\alpha}[x], x\right)=L^{-2}\left(A_{\alpha}[x], x,-\varepsilon\right) \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (O-dimensional } \alpha \text {-twisted }\left\{\begin{array}{l}
\varepsilon-s y m m e t r i c \\
\epsilon \text {-quadratic }
\end{array}\right. \text { (Poincaré) } \\
& \text { nilcomplexes over A) } \\
& =\left(\text { (non-singular) } \alpha \text {-twisted }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { nilforms over } A\right)\right. \\
& =\text { ((non-singular) }\left\{\begin{array}{l}
\varepsilon-s y m m e t r i c \\
s p l i t ~ \\
\text { s-quadratic }
\end{array}\right. \text { linking forms } \\
& \text { over } \left.\left(A_{\alpha}[x], X\right)\right) \\
& \text { ((non-singular) a-twisted even } \varepsilon \text {-symmetric nilforms over A) } \\
& =\text { ((non-singular) even e-symmetric linking forms }
\end{aligned}
$$

Proof: i) Given an α-twisted nilmodule over $A\left(M, v \in \operatorname{Hom}_{A}(M, M x)\right.$) define a 0 -dimensional α-twisted nilcomplex over A $\left(\mathrm{C}, v^{*}: \mathrm{C} \longrightarrow \mathrm{Cx}\right)$ by

$$
c_{r}= \begin{cases}M^{*} & \text { if } r=0 \\ 0 & \text { if } r \neq 0\end{cases}
$$

and note that

$$
\left\{\begin{array}{l}
\operatorname{QNil}^{O}\left(C, v^{*}, \epsilon\right)=\operatorname{QNil}^{E}(M, v) \\
\operatorname{QNil}_{O}\left(C, v^{*}, \varepsilon\right)=\operatorname{QNil}_{E}(M, v) .
\end{array}\right.
$$

This gives the identification of O-dimensional α-twisted $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ nilcomplexes over A with α-twisted $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ nilforms over A. The correspondence between nilforms and linking forms now follows from Propositions 3.4.1, 5.1.3 i). In particular, an a-twisted $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \epsilon \text {-quadratic }\end{array}\right.$ nilform over A $\left\{\begin{array}{l}(M, v, \phi) \\ (M, v, \delta \psi, \psi)\end{array}\right.$ determines the $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over $\left(A_{\alpha}[x], X\right)\left\{\begin{array}{l}((M, v), \xi) \\ ((M, \nu), \xi, \zeta)\end{array}\right.$ defined by

1

$$
\begin{aligned}
& \zeta: M \longrightarrow Q_{E}\left(X^{-1} A_{\alpha}[x] / A_{\alpha}[x]\right) \\
&=H_{o}\left(\mathbb{Z}_{2} ; A_{\alpha}\left[x, x^{-1} j_{j} / A_{\alpha}[x], \varepsilon\right) ;\right. \\
& y r \longrightarrow \psi(y)(y) x^{-1}+(\psi v+\delta \psi)(y)(y) x^{-2}+\ldots
\end{aligned}
$$

and every $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ linking form over $\left(A_{\alpha}[x], x\right)$ can be expressed in this way.

By definition, an ϵ-quadratic linking form over ($A_{\alpha}[x], x$) $((M, V), E, \rho)$ is an e-symmetric linking form over ($\left.A_{\alpha}[x], X\right)$ $((M, v), \xi)$ together with a function

$$
\begin{aligned}
&\left.\rho: M \longrightarrow \hat{Q}_{\varepsilon}\left(A_{\alpha} \mid x\right], x\right) \\
&=\frac{\left\{b+\varepsilon \bar{b} \in A_{\alpha}\left[x, x^{-1}\right] \mid b \in A_{\alpha}\left[x, x^{-1}\right]\right\}}{\left[c+\varepsilon \bar{C} \mid c \in A_{\alpha}[x]\right\}} \\
&=\left\{d+\varepsilon \bar{d} \in A_{\alpha}\left[x, x^{-1}\right] / A_{\alpha}[x] \mid d \in A_{\alpha}[x]\right\}
\end{aligned}
$$

(with \hat{Q}_{ε} as in the proof of Proposition 3.4.2 ii)) satisfying, among others,

$$
\rho(y)=\xi(y, y) \in H^{O}\left(Z_{2} ; A_{\alpha}\left[x, x^{-1}\right] / A_{\alpha}[x], \epsilon\right) \quad(y \in M) .
$$

The natural map

$$
\check{Q}_{\varepsilon}\left(A_{\alpha}[x], x\right) \longrightarrow H^{O}\left(\mathbb{Z}_{2} ; A_{\alpha}\left[x, x^{-1}\right] / A_{\alpha}[x], \varepsilon\right) ; d+\varepsilon \bar{d} \longmapsto d+\varepsilon \bar{d}
$$

is injective, so that ρ (if it exists) is determined by ξ.
By Proposition 2.4 .1 i) every ε-quadratic linking form admits a split ε-quadratic refinement. Thus we can also identify α-twisted even ε-symmetric nilforms over A with ε-quadratic linking forms over ($\left.A_{\alpha}|x|, x\right)$.
ii) Immediate from i) and Propositions 3.4.7 i), 5.1.3 ii).
An α-twisted $\left\{\begin{array}{l}\text { (even) } \varepsilon-\text { symmetric } \\ \text { e-quadratic }\end{array}\right.$ formation over A
$\left\{\begin{array}{l}(M, \phi ; F, G) \\ (M, \psi ; F, G)\end{array}\right.$ is an α-twisted $\left\{\begin{array}{l}\text { (even) E-symmetric } \\ E \text {-quadratic }\end{array}\right.$ form over A
$\left\{\begin{array}{l}\left(M, \phi \in Q^{\epsilon}(M, \alpha)\right)\left(\left(M, \phi \in Q\left\langle v_{O}\right\rangle^{\epsilon}(M, \alpha)\right)\right) \\ \left(M, \psi \in Q_{E}(M, \alpha)\right)\end{array} \quad\right.$ together with a
lagrangicn F and a sublagrangian G. Such a formation is
non-singular if G is a lagrangian. There are evident notions
of (stable) isomorphism and witt group for a-twisted formatio
The witt group of non-singular α-twisted $\left\{\begin{array}{l}\text { (even) e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
formations over A is denoted by $\left\{\begin{array}{l}M^{\varepsilon}(A, \alpha)\left(M\left\langle V_{O}\right\rangle^{\varepsilon}(A, \alpha)\right) \\ M_{E}(A, \alpha)\end{array}\right.$. There are identifications of groups

$$
\begin{aligned}
& \left\{\begin{array}{l}
L_{1}^{1}(A, \alpha, \varepsilon)=M^{\varepsilon}(A, \alpha) \\
L_{1}(A, \alpha, \varepsilon)=M_{\varepsilon}(A, \alpha)
\end{array}\right. \\
& \text { An a-twisted }\left\{\begin{array}{l}
\text { (even } \quad \text {-symmetric } \\
\text { e-quadratic }
\end{array} \text { nilformation over } A\right. \\
& \left\{\begin{array} { l }
{ (M , v , \phi ; F , G) } \\
{ (M , v , \delta \psi , \psi ; F , G) }
\end{array} \text { is an } \alpha \text { -twisted } \left\{\begin{array}{l}
\text { (even) e-symmetric } \\
\varepsilon \text {-quadratic } \quad \text { nilform } .
\end{array}\right.\right. \\
& \text { over } A\left\{\begin{array}{l}
\left(M, v \in \operatorname{Hom}_{A}(M, M x), \phi \in \operatorname{QNil}^{\varepsilon}(M, v)\right)\left(\left(M, v, \phi \in Q N i l\left\langle v_{O}\right\rangle^{\varepsilon}(M,\right.\right. \\
\left(M, v \in \operatorname{Hom}_{A}(M, M x), \psi \in \operatorname{QNil}_{\varepsilon}(M, v)\right)
\end{array}\right.
\end{aligned}
$$

together with a lagrangian F and a sublagrangian G, and such that in the ε-quadratic case

$$
(M, v, \delta \psi, \psi)=\left(F \oplus \times F^{*},\left(\begin{array}{cc}
\omega & \bar{\epsilon}\left(\lambda+\varepsilon \lambda^{*}\right) \\
0 & \omega^{\star}
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & \lambda
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)
$$

for some nilpotent map $\omega \in \operatorname{Hom}_{A}(F, F x)$ and some ε-quadratic for
over $A\left(x F^{*}, \lambda \in Q_{\epsilon}\left(x F^{*}\right)\right)$, with $\left(G,\left.v\right|_{G},\left.\psi\right|_{G}\right)$ an α-twisted even $(-\varepsilon)$-symmetric nilform over A. Such a nilformation is non-singular if G is a lagrangian. There are evident notions of (stable) isomorphism and Witt group for α-twisted nilformations. The witt group of non-singular α-twisted

$$
\left\{\begin{array}{l}
\text { (even) } \varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { nilformations over } A\right. \text { is denoted by }
$$

$$
\left\{\begin{array}{l}
\operatorname{MNi}^{E}(A, \alpha) \quad\left(\operatorname{MNil}\left\langle v_{O}\right\rangle^{E}(A, \alpha)\right) \\
\operatorname{MNil}_{E}(A, \alpha)
\end{array}\right.
$$

Proposition 5.1.6 i) There are natural identifications of sets of equivalence classes
(connected l-dimensional α-twisted $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
complexes over A)

$$
\begin{aligned}
& =\left(\alpha \text {-twisted }\left\{\begin{array}{l}
\varepsilon-\text { symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { nilformations over } A\right)\right. \\
& =\left(\left\{\begin{array}{l}
(\text { even }) \text { E-symmetric } \\
\text { split } \varepsilon \text {-quadratic }
\end{array} \text { linking formations over }\left(A_{\alpha}[x], X\right)\right),\right.
\end{aligned}
$$

$$
\text { (a-twisted even } \varepsilon \text {-symmetric nilformations over A) }
$$

$$
=\left(\varepsilon \text {-quadratic } 1 \text { inking formations over }\left(\Lambda_{\alpha}|x|, x\right)\right)
$$

$$
\begin{aligned}
& \text { A l-dimensional } \alpha \text {-twisted }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { nilcomplex over } A\right. \\
& \left\{\begin{array}{l}
\left(C, v: C \longrightarrow C x,(\delta \phi, \phi) \in Q N i l^{1}(C, v, \varepsilon)\right) \\
\left(C, v: C \longrightarrow C x,(\delta \psi, \psi) \in Q N i I_{1}(C, v, \varepsilon)\right)
\end{array}\right. \text { is connected if } \\
& \left\{\begin{array}{l}
H_{O}\left(\phi_{O}: C^{1-*} \longrightarrow x C\right)=0 \\
H_{O}\left(\left(1+T_{\alpha, \varepsilon}\right) \psi_{O}: C^{1-*} \longrightarrow x C\right)=0 .
\end{array}\right.
\end{aligned}
$$

Poincaré nilcomplexes correspond to non-sinqular nilformations, which in turn correspond to non-singular linking formations.
ii) There are natural identifications of L-groups

$$
\begin{aligned}
\operatorname{LNil}^{1}(A, \alpha, E)=\operatorname{MNi1}^{E}(A, \alpha) & =M^{\varepsilon}\left(A_{\alpha}[x], x\right) \\
& =M\left\langle v_{O}\right\rangle^{\varepsilon}\left(A_{\alpha}[x], x\right)=L^{1}\left(A_{\alpha}[x], x, \varepsilon\right)
\end{aligned}
$$

$\operatorname{LNil}_{1}(A, \alpha, \varepsilon)=\operatorname{MNil}_{\varepsilon}(A, \alpha)=\widetilde{M}_{\epsilon}\left(A_{\alpha}[x], X\right)=L_{1}\left(A_{\alpha}[x], X, \varepsilon\right)$
$\operatorname{MNil}\left\langle v_{o}\right\rangle^{\varepsilon}(A, \alpha)=M^{\varepsilon}\left(A_{\alpha}[x], X\right)=L^{-1}\left(A_{\alpha}[x \mid, x,-\varepsilon)\right.$.
Proof: By analogy with Proposition 5.1.5.
In particular, given a connected l-dimensional a-twisted $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ nilcomplex over $A\left\{\begin{array}{l}(C, v, \delta \phi, \phi) \\ (C, v, \delta \psi, \psi)\end{array}\right.$ there is defined an α-twisted $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ nilformation over A, as follows.

The nilcomplex ($C, v: C \longrightarrow C x$) is defined by a morphism of α-twisted $n i l m o d u l e s$ over A
$d:\left(C_{1}, v\right) \longrightarrow\left(C_{0}, v\right)$.
The class $\left\{\begin{array}{l}(\delta \phi, \phi) \in Q N i l^{l}(C, v, E) \\ (\delta \psi, \psi) \in Q N i l_{1}(C, v, E)\end{array}\right.$ is represented by a collection of A-module morphisms

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
\phi_{0}: c^{0} \longrightarrow x c_{1}, \tilde{\Phi}_{0}: c^{1} \longrightarrow x c_{0}, \phi_{1}: c^{1} \longrightarrow x c_{1} \\
\delta \phi_{0}: c^{1} \longrightarrow c_{1}
\end{array}\right. \\
\left\{\begin{array}{l}
\psi_{0}: c^{0} \longrightarrow x c_{1}, \tilde{\psi}_{0}: c^{1} \longrightarrow x c_{0}, \psi_{1}: c^{0} \longrightarrow x c_{0} \\
\delta \psi_{0}: c^{1} \longrightarrow c_{1}, \delta \psi_{1}: c^{0} \longrightarrow c_{1}, \delta \psi_{1}: c^{1} \longrightarrow c_{0} \\
\delta \psi_{2}: c^{0} \longrightarrow c_{0}
\end{array}\right.
\end{array}\right.
$$

satisfying

$$
\left\{\begin{array}{l}
\left\{\begin{array}{l}
d \phi_{O}+\tilde{\phi}_{0} d^{*}=0, d \phi_{1}-\tilde{\phi}_{O}+\varepsilon \phi_{0}^{*}=0, \phi_{1}-\varepsilon \phi_{1}^{*}=0, \\
v \phi_{0}-\phi_{0} v^{*}+\delta \phi_{0} d^{*}=0, v \tilde{\phi}_{O}-\tilde{\phi}_{0} v^{*}-d \delta \phi_{0}=0, \\
v \phi_{1}-\phi_{1} v^{*}-\delta \phi_{O}+\varepsilon \delta \phi_{O}^{*}=0
\end{array}\right. \\
\left\{\begin{array}{l}
d \psi_{0}+\tilde{\psi}_{0} d^{*}+\psi_{1}-\varepsilon \psi_{1}^{*}=0, v \psi_{0}-\psi_{0} v^{*}-\delta \psi_{0} d^{*}-\delta \psi_{1}-\varepsilon \delta \tilde{\delta}_{1}^{*} \\
v \tilde{\psi}_{0}-\tilde{\psi}_{0}^{v *}-d \delta \psi_{0}+\delta \tilde{\psi}_{1}+\varepsilon \delta \psi_{1}^{*}=0, \\
v \psi_{1}-\psi_{1}^{v *}-d \delta \psi_{1}-\delta \tilde{\psi}_{1} d^{*}-\delta \psi_{2}+\varepsilon \delta \psi_{2}^{*}=0 .
\end{array}\right.
\end{array}\right.
$$

The α-twisted $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ nilformation over A associated to

$$
\left\{\begin{array}{l}
(\mathrm{c}, v, \delta \phi, \phi) \\
(\mathrm{c}, v, \delta \psi, \psi)
\end{array}\right. \text { is defined by }
$$

Define the n-dimensional a-twisted $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$

for $n \leqslant-1$ by
$\int L^{n}(A, \alpha, \varepsilon)=\left\{\begin{array}{l}M\left\langle v_{O}\right\rangle^{-\varepsilon}(A, \alpha) \\ L\left\langle v_{O}\right\rangle^{-\varepsilon}(A, \alpha) \\ i_{n}(A, \alpha, \varepsilon)\end{array}\right.$
 Let $\left\{\begin{array}{l}\widehat{\operatorname{LNil}}^{n}(A, \alpha, \varepsilon) \\ {\underset{\mathrm{LNi}}{n}}(A, \alpha, \varepsilon)\end{array}(n \leqslant-1)\right.$ be the groups appearing in the natu direct sum decompositions

$$
\left\{\begin{array}{l}
\operatorname{LNil}^{n}(A, \alpha, \varepsilon)=L^{n}(A, \alpha, \varepsilon) \oplus \overbrace{\operatorname{LNi}}{ }^{n}(A, \alpha, \varepsilon) \\
\operatorname{LNi1}_{n}(A, \alpha, \varepsilon)=L_{n}(A, \alpha, \varepsilon) \oplus \widetilde{L N i 1}_{n}(A, \alpha, \varepsilon)
\end{array}\right.
$$

as in the case $n \geqslant 0$ dealt with above.
Proposition 5.1.7 For each $n \in \mathbb{Z}$ there is defined a commutativ braid of naturally split exact sequences of e-symmetric L-grc

and there are defined natural direct sum decompositions

$$
L^{n}(A, \alpha, E)=E^{n}\left(A, \alpha^{-1}, \varepsilon\right)=L^{n}\left(A^{\alpha}, \varepsilon\right)
$$

Similarly for the ε-quadratic L-groups.
Proof: By analogy with the case $n \geqslant 0$ (Propositions 5.1.2.5.1.3 and 5.1.4).

In the untwisted case $\alpha=1: A \longrightarrow A$ the terminology involving α is contracted, for example

$$
\operatorname{LNi} l^{*}(A, 1, \varepsilon)=\operatorname{LNi} l^{*}(A, \varepsilon)
$$

We shall now reiterate the example given in Ranicki [6, §6] of a pair (A,S) for which the natural projection of witt groups

$$
\tilde{\mathrm{L}}_{\epsilon}(A, S) \longrightarrow I_{\epsilon}(A, S) ;(M, \lambda, v) \longmapsto \longrightarrow(M, \lambda, p \cup)
$$

is not injective, showing that in general split E -quadratic linking forms over (A, S) carry more information than ε-quadratic linking forms over (A, S). Namely, let

$$
E=-1 \in A=\mathbb{Z}[\mathbf{x}]
$$

and note that the non-singular skew-quadratic nilform over \mathbb{Z}

$$
\mathrm{c}=\left(\mathbb{Z \oplus Z}, 0,\left(0,\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\right) \operatorname{EQNi1}_{\varepsilon}(\mathbb{Z} \oplus \mathbb{Z})\right)
$$

represents the element

$$
\begin{aligned}
c=(1,0) \in \mathbb{L}_{\epsilon}(\mathbb{Z}[x], x) & =\operatorname{LNi} 1_{\varepsilon}(\mathbb{Z}) \\
& =L_{E}(\mathbb{Z}) \oplus \overbrace{N N i 1}^{\varepsilon}(\mathbb{Z})
\end{aligned}
$$

where $1=\left(\mathbb{Z} \oplus \mathscr{Z},\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \in Q_{\varepsilon}(\mathbb{Z} \oplus \mathbb{Z})\right) \in L_{E}(\mathbb{Z})=\mathbb{Z}_{2}$ is the Arf invariant 1 element, and that the natural map

$$
\tilde{\mathrm{L}}_{\varepsilon}(\mathbb{Z}[x], x) \longrightarrow \mathrm{L}_{\mathrm{E}}(\mathbb{Z}[x], x)=\mathrm{L}\left\langle v_{0}\right\rangle^{\varepsilon}(\mathbb{Z}) \oplus \widetilde{\mathrm{LNi} i}\left\langle\mathrm{v}_{0}\right\rangle^{\varepsilon}(\mathbb{Z})
$$

sends this element to 0 , since $L\left\langle v_{0}\right\rangle^{E}(\mathbb{Z})=0$ (Proposition 4.3.1).

5.2 Change of K-theory

The results of $\$ 5.1$ will now be extended to the intermediate L-groups of the α-twisted polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ of a ring with involution A, using the intermediate L-theory localization exact sequences of $\mathbf{\$ 3 . 7}$.

As in $\$ 3.7$ we start by considering the action of the duality involutions * on the algebraic K-theory localization exact sequence, which in this case is

$$
\begin{aligned}
\tilde{K}_{1}\left(A_{\alpha}[x]\right) \xrightarrow{\bar{E}_{+}} \tilde{K}_{1}\left(A_{\alpha}\left[x, x^{-1}\right]\right) \xrightarrow{\partial} K_{1}\left(A_{\alpha}[x], x\right) \\
\xrightarrow{\text { j }} \widetilde{K}_{O}\left(A_{\alpha}[x]\right) \xrightarrow{\bar{E}_{+}} \widetilde{K}_{O}\left(A_{\alpha}\left[x, x^{-1}\right]\right)
\end{aligned}
$$

for a ring with involution A and a ring automorphism $\alpha: A \longrightarrow A$ such that $\overline{\alpha(a)}=\alpha^{-1}(\bar{a}) \in A(a \in A)$. The action is such that

$$
\star \overline{\mathrm{E}}_{+}=\overline{\mathrm{E}}_{+} *, \quad \star \dot{d}=\partial \star, \quad * j=-j * .
$$

By the results of Farrell and Hsiang [1],[2] and Siebenmann [1] this sequence can be expressed as

$$
\begin{aligned}
& \widetilde{K}_{1}(A) \oplus \overparen{\mathrm{F}}_{+}=\left(\begin{array}{c}
\mathrm{i}_{1} \\
0 \\
0
\end{array}\right) \\
& \xrightarrow{\partial=\left(\begin{array}{ccc}
{ }^{\partial} 1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)}{ }^{j} K_{O}(A) \oplus \widetilde{N i 1}_{1}(A, \alpha) \xrightarrow{\left(\begin{array}{cc}
1-\alpha & 0 \\
0 & 0
\end{array}\right)} \widetilde{K}_{O}(A) \oplus \overbrace{N i 1}^{1}(A, \alpha \\
& \bar{E}_{+}=\left(\begin{array}{cc}
i_{0} & 0 \\
0 & 0 \\
0 & 1
\end{array}\right) \\
& \ldots \widetilde{K}_{\mathrm{O}}(\mathrm{~A}, \alpha) \oplus \mathrm{Ni1} 1_{\mathrm{O}}(A, \alpha) \oplus \mathrm{Ni1} \mathrm{O}_{\mathrm{O}}\left(\mathrm{~A}, \alpha^{-}\right.
\end{aligned}
$$

with

$$
K_{m}\left(A_{\alpha}[x], X\right)=K_{m-1}(\underline{N i 1}(A, \alpha))=K_{m-1}(A) \widehat{N i 1}_{m}(A, \alpha) \quad(m=0,1)
$$

and $\tilde{K}_{m}(A, \alpha)(m=0,1)$ the relative K-groups appearing in the exact sequence

$$
\begin{aligned}
\ldots \longrightarrow K_{1}(A) \xrightarrow{i_{1}} \tilde{K}_{1}(A, \alpha) \xrightarrow{\tilde{i}_{1}} K_{O}(A) \xrightarrow{\text { l- }\left(\tilde{K}_{O}(A)\right.} \\
\xrightarrow{i_{O}} \tilde{K}_{O}(A, \alpha) \longrightarrow
\end{aligned}
$$

The duality involution on the exact category Ni) (A, α) of α-twisted nilmodules over A

* : Nil $(A, \alpha) \longrightarrow N i=1(A, \alpha)$;

$$
(P, v: P \longrightarrow P x) \longmapsto\left(x P^{*}, v^{*}: x P^{*} \longrightarrow P^{*}\right)
$$

induces the duality involution

$$
\begin{aligned}
* & =\left(\begin{array}{cc}
* \alpha & 0 \\
0 & *
\end{array}\right) \\
& : K_{m}\left(A_{\alpha}[x], X\right)=K_{m-1}(A) \oplus{\widetilde{N i I_{m}}}_{m}(A, \alpha) \\
& K_{m}\left(A_{\alpha}[x], X\right)=K_{m-1}(A) \overparen{\oplus N i]_{m}}(A, \alpha) \quad(m=0,
\end{aligned}
$$

with *a the composite of the automorphism of the k-group

$$
\alpha: K_{m-1}(A)=K_{m-1}(\underline{P}(A)) \longrightarrow K_{m-1}(A)
$$

induced by the automorphism of the exact category $P(A)$

$$
\alpha: \underline{\underline{P}}(A)=\text { (f.g. projective } A \text {-modules) } \longrightarrow \underline{\underline{P}}(A) ;
$$

$$
\mathrm{P} \longmapsto P \mathrm{Px}
$$

and the duality involution

$$
\bullet: K_{m-1}(A) \longrightarrow K_{m-1}(A)
$$

induced by
$\star: \underline{\underline{P}}(A) \longrightarrow{ }^{\underline{P}}(A) ; P \longmapsto \longrightarrow P^{\star}=\operatorname{Hom}_{A}(P, A)$.
Note that $* \alpha: K_{m-1}(A) \longrightarrow K_{m-1}(A)$ is just the duality involutio $*: K_{m-1}\left(A^{\alpha}\right) \longrightarrow K_{m-1}\left(A^{\alpha}\right)$ associated to the ring with involution
defined in $\$ 5.1$ above, with the ring structure of A and involution

$$
: A^{\alpha} \longrightarrow A^{\alpha} ; a \longmapsto \alpha(\bar{a})
$$

The duality involution

$$
\text { - : } \widetilde{K}_{m}(A, \alpha) \longrightarrow \widetilde{K}_{m}(A, \alpha)
$$

which $\widetilde{K}_{m}(A, \alpha)$ inherits from $\widetilde{K}_{1}\left(A_{\alpha}\left[x, x^{-1}\right]\right)$ is such that in the diagram

we have the relations

$$
\left.* i_{m}=i_{m} *(m=0,1), *\right\}_{1}=a_{1} *, *(1-\alpha)=-(1-\alpha) \star .
$$

The duality involutions on the remaining groups of the algebraic K-theory localization exact sequence are given by

$$
\begin{aligned}
& *=\left(\begin{array}{ll}
* & 0 \\
0 & *
\end{array}\right): \\
& \widetilde{K}_{m}\left(A_{\alpha}[x]\right)=\widetilde{\mathrm{K}} \\
& *=\left(\begin{array}{ccc}
* & 0 & 0 \\
0 & * & 0 \\
0 & 0 & \star
\end{array}\right):
\end{aligned}
$$

$$
\widetilde{K}_{m}\left(A A_{\alpha}[x]\right)=\widetilde{K}_{m}(A) \oplus \widetilde{N i 1}_{m}\left(A, \alpha^{-1}\right) \longrightarrow \widetilde{K}_{m}(A) \oplus \widetilde{N i I}_{m}\left(A, \alpha^{-1}\right)
$$

$$
\begin{aligned}
\widetilde{K}_{m}\left(A_{\alpha}\left[x, x^{-1} j\right)\right. & =\widetilde{K}_{m}(A, \alpha) \oplus \widetilde{N i 1_{m}}(A, \alpha) \widetilde{ल i 1}_{m}\left(A, \alpha^{-1}\right) \\
& \longrightarrow \widetilde{K}_{m}(A, \alpha) \oplus \widetilde{N i 1_{m}}(A, \alpha) \oplus \widetilde{N i 1_{m}}\left(A, \alpha^{-1}\right)
\end{aligned}
$$

$$
(m=0,1) .
$$

Given $a *$-invariant subgroup $Y \subseteq K_{1}\left(A_{\alpha}[x], X\right)$ define the
 in the same way as the groups $\left\{\begin{array}{l}\operatorname{LNil} l^{*}(A, \alpha, E) \\ \operatorname{LNil} l_{\star}(A, \alpha, \varepsilon)\end{array}\right.$ of $\$ 5.1$ (the special case $\left.Y=K_{1}\left(A_{\alpha}[x], X\right)\right)$ but using only α-twisted nilcomplexes over A with X-projective class in $Y \subseteq K_{1}\left(A_{\alpha}|x|, X\right)$. The proof of Proposition 5.1 .3 ii) gives natural identifications

$$
\left\{\begin{array}{l}
L_{Y}^{\star}\left(A_{\alpha}[X], X, \varepsilon\right)=\operatorname{LNi} l_{Y}^{\star}(A, \alpha, \varepsilon) \\
L_{\star}^{Y}\left(A_{\alpha}[x], X, \varepsilon\right)=\operatorname{LNi} 1_{\star}^{Y}(A, \alpha, \varepsilon)
\end{array}\right.
$$

the groups on the left hand side being defined as in §3.7. If

$$
Y=Y_{0} \oplus Y_{1} \subseteq K_{1}\left(A_{\alpha}(x], X\right)=K_{0}\left(A^{\alpha}\right) \oplus \widetilde{N i 1}(A, \alpha)
$$

for some *-invariant subgroups $Y_{0} \subseteq K_{0}\left(A^{\alpha}\right), Y_{1} \subseteq \overparen{N i 1} 1(A, \alpha)$ there are natural direct sum decompositions
with $\tilde{Y}_{O} \subseteq \tilde{K}_{O}\left(A^{\alpha}\right)$ the image of Y_{O} under the natural projection $K_{O}\left(A^{\alpha}\right) \longrightarrow \tilde{K}_{O}\left(A^{\alpha}\right)$.

Given a *-invariant subgroup $Y \subseteq \widetilde{K}_{O}\left(A^{\alpha}\right)$ define *-invariant subgroups

$$
\begin{aligned}
& Y^{3}=\partial_{1}^{-1}(Y) \subseteq \widetilde{K}_{1}(A, \alpha) \subseteq \widetilde{K}_{1}\left(A_{\alpha}\left[x, x^{-1}\right]\right) \\
& (1-\alpha)(Y) \subseteq \widetilde{K}_{0}(A) \subseteq \widetilde{K}_{0}\left(A_{\alpha}[x]\right)
\end{aligned}
$$

The natural map

$$
1: Y \longrightarrow \widetilde{K}_{O}(A) /(1-\alpha)(Y) ;[P] \longmapsto(1-\alpha)(Y)+[P]
$$

is a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module morphism, with $T \in \mathbb{Z}_{2}$ acting on Y by the a-twisted duality involution it inherits from $\widetilde{K}_{O}(A)$ (i.e. the duality involution on $\widetilde{\mathrm{K}}_{\mathrm{O}}\left(\mathrm{A}^{\alpha}\right)$ with respect to which Y is invariant) and by the duality involution inherited from $\widetilde{K}_{0}(A)$ on $\tilde{K}_{O}(A) /(1-\alpha)(Y)$. Let $\tilde{L}_{Y}(A, \alpha, \varepsilon) \quad(n \in \mathbb{Z})$ be the relative e-symmetric L-groups appearing in the exact sequence

$$
\begin{aligned}
\ldots \longrightarrow L_{(1-\alpha) Y}^{n}(A, E) \xrightarrow{B} & \widetilde{L}_{Y}^{n}(A, \alpha, E) \xrightarrow{Y} L_{Y}^{n}\left(A^{\alpha}, \varepsilon\right) \\
\xrightarrow{\delta} & L_{(1-\alpha) Y}^{n-1}(A, E) \xrightarrow[\longrightarrow]{\beta} \widetilde{I}_{Y}^{n-1}(A, \alpha, \varepsilon) \longrightarrow Y^{\partial}
\end{aligned}
$$

with δ the composite

$$
\begin{aligned}
& \delta: L_{Y}^{n}\left(A^{\alpha}, \varepsilon\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; Y\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; \tilde{K}_{O}(A) /(1-\alpha) Y\right) \\
& \longrightarrow L_{(1-\alpha) Y}^{n-1}(A, \varepsilon) .
\end{aligned}
$$

Define similarly relative ε-quadratic L-groups $\widetilde{\mathrm{L}}_{\star}{ }^{\boldsymbol{j}}(\mathrm{A}, \alpha, \varepsilon)$. Proposition 5.2.1 Given *-invariant subgroups $Y \subseteq \widetilde{K}_{O}\left(A^{\alpha}\right)$, $\mathrm{z}_{ \pm} \subseteq \widetilde{\mathrm{Nil}}_{1}\left(\mathrm{~A}, \alpha^{ \pm 1}\right)$ there is a natural identification of the intermediate e-symmetric L-theory localization exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow L_{(1-\alpha) Y \oplus Z_{-}}^{n}\left(A_{\alpha}[x], \varepsilon\right) \longrightarrow L_{Y}^{n} Y_{Y} Z_{+} \oplus Z_{-} \\
&\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \\
& L_{Y \oplus Z_{+}}^{n}\left(A_{\alpha}[x], x, \varepsilon\right) \longrightarrow L_{(1-\alpha) Y \oplus Z_{-}}^{n-1}\left(A_{\alpha}[x], \varepsilon\right) \longrightarrow
\end{aligned}
$$

with the exact sequence
$\ldots \longrightarrow L_{(1-\alpha) Y}^{n}(A, \varepsilon) \oplus \overparen{L N i}_{Z_{-}}^{n}\left(A, \alpha^{-1}, \varepsilon\right)$

$$
\xrightarrow{\left(\begin{array}{lll}
\gamma & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} L_{Y}^{n}\left(A^{\alpha}, \varepsilon\right) \overparen{\oplus L_{i 1}^{-1}} Z_{Z_{+}}^{n}(A, \alpha, \varepsilon)
$$

$$
\xrightarrow{\left(\begin{array}{ll}
\delta & 0 \\
0 & 0
\end{array}\right)} \underset{\sim}{L_{(1-\alpha) Y}^{n-1}(A, \varepsilon) \oplus \operatorname{LNi1}_{Z_{-}}^{n-1}\left(A, \alpha^{-1}, \varepsilon\right) \longrightarrow} \underset{\longrightarrow}{\longrightarrow}
$$

If $Y=\{0\} \subseteq \widetilde{K}_{0}\left(A^{\alpha}\right)$ or if $\alpha=1: A \longrightarrow A$ then $\delta=0$ and the exact sequence is naturally split.

Similarly for the ε-quadratic L -groups L_{\star}.
Proof: By analogy with Propositions 3.7.1, 5.1.4.
If $Y=\{0\}$ or $\alpha=1$ define splitting maps

$$
\Delta_{+}: L_{Y \oplus Z_{+}}^{n}\left(A_{\alpha}[x], X, \varepsilon\right) \longrightarrow L_{Y}^{n}{ }_{Y}^{\partial} \oplus Z_{+}^{\oplus Z_{-}}\left(A_{\alpha}\left[x, x^{-1} 1, \varepsilon\right)\right.
$$

exactly as in the proof of Proposition 5.1.3 iii).

Given a *-invariant subgroup $Y \subseteq \widetilde{K}_{m}(A)(m=0$ or 1$)$ defir *-invariant subgroups

$$
\begin{aligned}
& (1-\alpha)^{-1} Y=\left\{w \in \widetilde{K}_{m}\left(A^{\alpha}\right) \mid(1-\alpha)(w) \in Y\right\} \subseteq \widetilde{K}_{m}\left(A^{\alpha}\right) \\
& X^{-1} Y=\left\{\begin{aligned}
i_{O}(Y) & \subseteq \widetilde{K}_{O}\left(A_{\alpha}\left[x, x^{-1}\right]\right) \text { if } m=0 \\
i_{1}(Y) & +\left\{\tau\left(x^{k}: A_{\alpha}\left[x, x^{-1}\right] \longrightarrow A_{\alpha}\left[x, x^{-1}\right]\right) \mid k \geqslant 0\right\} \\
& \subseteq \widetilde{K}_{1}\left(A_{\alpha}\left[x, x^{-1}\right\}\right) \text { if } m=1
\end{aligned}\right.
\end{aligned}
$$

The natural map

$$
1:(1-\alpha)^{-1} Y \longrightarrow \widetilde{K}_{m}(A) / Y ; w \longmapsto Y+w
$$

is a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module morphism. Let $\widetilde{L}_{X^{-1}}^{Y}(A, \alpha, \varepsilon)$ be the relative e-symmetric L-groups appearing in the exact sequence

$$
\begin{aligned}
& \ldots \longrightarrow L_{Y}^{n}(A, \varepsilon) \xrightarrow{\beta} \widetilde{L}_{X^{-1}}^{n}(A, \alpha, \varepsilon) \xrightarrow{Y} L_{(1-\alpha)^{-1}}^{n}\left(A_{Y}^{\alpha}, \varepsilon\right) \\
& \xrightarrow{\delta} L_{Y}^{n-1}(A, \varepsilon) \longrightarrow \ldots,
\end{aligned}
$$

with δ the composite

$$
\begin{aligned}
& \delta: L^{n} \\
&(1-\alpha)^{-1}\left(A^{\alpha}, \varepsilon\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ;(1-\alpha)^{-1} Y\right) \xrightarrow{1} \hat{H}^{n}\left(\mathbb{Z}_{2} ; \widetilde{K}_{m}(A) / Y\right) \\
& \longrightarrow L_{Y}^{n-1}(A, \varepsilon)
\end{aligned}
$$

Proposition 5.2.2 Let $Y \subseteq \widehat{K}_{m}(A), Z_{ \pm} \subseteq \widehat{N i l}_{m}\left(A, \alpha^{ \pm 1}\right) \quad(m=0$ or 1$)$ be *-invariant subgroups, with $z_{ \pm}=0$ if $m=0$. There is a natural identification of the intermediate ε-symmetric L-theory localization exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow L_{Y \oplus Z_{-}}^{n}\left(A_{\alpha}[x], \varepsilon\right) \longrightarrow L_{X^{-1}}^{n}{ }_{Y \oplus Z_{+} \oplus Z_{-}}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right)
\end{aligned}
$$

with the exact sequence

$$
\xrightarrow{\left(\begin{array}{ccc}
\gamma & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} L_{(1-\alpha)}^{n} \underbrace{-1}_{Y}\left(A^{\alpha}, \varepsilon\right) \oplus \widetilde{L N i 1}_{Z_{+}}^{n}(A, \alpha, \varepsilon)
$$

$$
\left.\xrightarrow{\left(\begin{array}{ll}
\delta & 0 \\
0 & 0
\end{array}\right)} L_{Y}^{n-1}(A, \varepsilon) \oplus{\widetilde{L N i} 1_{-}^{n-1}}_{(A, \alpha}^{-1}, \epsilon\right) \longrightarrow,
$$

where $\widetilde{\text { LNil }}_{Z_{ \pm}}^{*}\left(A, \alpha^{ \pm 1}, \varepsilon\right) \equiv \overparen{\text { LNil }} *\left(A, \alpha^{ \pm 1}, \varepsilon\right)$ if $m=0$. If $Y=\widetilde{K}_{m}(A)$ or if $\alpha=1: A \longrightarrow A$ then $\delta=0$ and the exact sequence is naturally split.

Similarly for the e-quadratic L-groups L_{*}.
Proof: As for Proposition 5.2.1, but using 3.7.2 and 3.7.3 instead of 3.7.1.

In the special case $\alpha=1: A \longrightarrow A, Y=\{O\} \subseteq \widetilde{K}_{O}(A)$
Proposition 5.2 .2 gives the "fundamental theorem of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-theory", the naturally split exact sequences

$$
\left\{\begin{aligned}
&\left.0 \longrightarrow v^{n}(A, \varepsilon) \longrightarrow v^{n}(A \mid x], \varepsilon\right) \oplus V^{n}\left(A \mid x^{-1} 1, \varepsilon\right) \longrightarrow v^{n}\left(A\left[x, x^{-1}\right], \varepsilon\right) \\
& \longrightarrow U^{n}(A, \varepsilon) \longrightarrow 0 \\
&\left.0 \longrightarrow v_{n}(A, \varepsilon) \longrightarrow v_{n}(A[x], \varepsilon) \oplus v_{n}\left(A \mid x^{-1}\right], \varepsilon\right) \longrightarrow v_{n}\left(A\left[x, x^{-1}\right], \varepsilon\right) \\
& \longrightarrow U_{n}(A, \varepsilon) \longrightarrow 0
\end{aligned}\right.
$$

(The ε-quadratic case was previously obtained in Ranicki [4]).

$$
\begin{aligned}
& \ldots \longrightarrow L_{Y}^{n}(A, E) \oplus \widetilde{L N i}_{Z_{-}}^{n}\left(A, a^{-1}, \varepsilon\right) \\
& \xrightarrow{\left(\begin{array}{ll}
B & 0 \\
0 & 0 \\
0 & 1
\end{array}\right)} \underset{X^{-1}}{\tilde{L}_{Y}}(A, \alpha, E) \oplus \overparen{L N i} 1_{Z_{+}}^{n}(A, \alpha, E) \oplus \widetilde{\operatorname{LNi} 1_{Z}^{n}}\left(A, \alpha^{-1}, E\right)
\end{aligned}
$$

We shall now investigate the existence or otherwise of a Mayer-vietoris exact sequence of intermediate $\left\{\begin{array}{l}\varepsilon-\text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$

L-groups
for a commutative square of rings with involution

and a commutative square of *-invariant subgroups

for $m=0$ or 1. As usual, we start with a review of the relevant algebraic k-theory.

A Mayer-Vietoris exact sequence of classical algebraic K-groups

$$
\begin{aligned}
& K_{1}(A) \xrightarrow{\binom{f}{f}} K_{1}(B) \oplus K_{1}\left(B^{\prime}\right) \xrightarrow{\left(g-g^{\prime}\right)} K_{1}\left(A^{\prime}\right) \\
& \xrightarrow{\partial} K_{0}(A) \xrightarrow{\binom{f}{f}} K_{0}(B) \oplus K_{0}\left(B^{\prime}\right) \xrightarrow{\left(g-g^{\prime}\right)} K_{O^{\prime}}\left(A^{\prime}\right.
\end{aligned}
$$ has been obtained for three types of commutative square of $r i$ Φ (as above):

I) Φ is cartesian, i.e. the sequence of additive groups

is exact, and $g: B \longrightarrow A^{\prime}$ (or $g^{\prime}: B^{\prime} \longrightarrow A^{\prime}$) is onto,
II) Φ is the cartesian localization-completion square

associated to a multiplicative subset $S \subset A$, with $\hat{A}=\underset{S \in S}{\operatorname{Lim}} A / S A$ or some abstraction thereof (e.g the cartesian square

associated to a cartesian morphism $(A, S) \longrightarrow(B$,
III) Φ is a pushout square with

$$
A^{\prime}=B A_{A^{\prime}} B^{\prime}
$$

the free product of B and B^{\prime} amalgamated along A, with the morphisms $f: A \longrightarrow B, f^{\prime}: A \longrightarrow B '$ injective, and satisfying some extra conditions.

The first such exact sequence was obtained by Milnor [4,54], who showed that for a cartesian square of rings of type 1 there is indeed a Mayer-Vietoris exact sequence of the type

$$
K_{1}(A) \longrightarrow K_{1}(B) \oplus K_{1}\left(B^{\prime}\right) \longrightarrow K_{1}\left(A^{\prime}\right) \xrightarrow{3} K_{0}(A) \longrightarrow K_{0}(B) \oplus K_{O}\left(B^{\prime}\right) \longrightarrow K_{O}\left(A^{\prime}\right) .
$$

Bass $\{2$, XII $\}$ defined the lower algebraic k-groups $K_{n}(A)(n \leqslant-1)$ inductively by

$$
\left.K_{n}(A)=\operatorname{coker}\left(K_{n+1}(A \mid x]\right) \oplus K_{n+1}\left(A\left[x^{-1}\right]\right) \longrightarrow K_{n+1}\left(A\left[x, x^{-1}\right]\right)\right)
$$

and extended this sequence to the right by

$$
\ldots \rightarrow K_{o}(B) \oplus K_{O}\left(B^{\prime}\right) \longrightarrow K_{o}\left(A^{\prime}\right) \xrightarrow{\partial} K_{-1}(A) \longrightarrow K_{-1}(B) \oplus K_{-1}\left(B^{\prime}\right) \longrightarrow K_{-1}\left(A^{\prime}\right) \rightarrow \ldots
$$

Swan [1] showed that there does not exist a K_{2}-functor extending the sequence to the left for all squares ϕ of type I. However, Milnor $[4, \$ \$ 5,6]$ defined $K_{2}(A)$ using Steinberg relations such that for the squares Φ of type I with both $g: B \longrightarrow A^{\prime}$ and $g^{\prime}: B^{\prime} \longrightarrow A^{\prime}$ onto there is an extension of the sequence to the left by

$$
K_{2}(A) \rightarrow K_{2}(B) \oplus K_{2}\left(B^{\prime}\right) \longrightarrow K_{2}\left(A^{\prime}\right) \xrightarrow{\partial} K_{1}(A) \longrightarrow K_{1}(B) \oplus K_{1}\left(B^{\prime}\right) \longrightarrow \ldots
$$

Quillen [1], [2] defined the higher $K-g r o u p s K_{n}(A)(n \geqslant 3)$ of a ring A to be the homotopy groups of a space $B G L(A)^{+}$, with

$$
K_{n}(A)=\pi_{n}\left(\operatorname{BGL}(A)^{+}\right) \quad(n \geqslant 1) .
$$

Gersten $[2]$ extended this definition to the lower K-groups, constructing a spectrum $\underline{K}(A)$ such that

$$
K_{n}(A)=\pi_{n}(\mathbb{K}(A)) \quad(n \in \mathbb{Z})
$$

The triad K-groups $K_{\star}(\Phi)$ of a commutative square of rings

can thus be defined by

$$
K_{n}(\Phi)=\pi_{n}\left(\begin{array}{lll}
\underline{K}(A) \xrightarrow{\mathbb{K}}(B) \\
f^{\prime} \mid & & \\
\underset{\mathbb{K}}{ }\left(B^{\prime}\right) \xrightarrow{\underline{K}} \xrightarrow{\underline{\mathbb{K}}\left(A^{\prime}\right)}
\end{array}\right) \quad(n \in \mathbb{Z})
$$

and are such that there is defined a commutative diagram of abelian groups with exact rows and columns

$(n \in \mathbb{Z})$.
The triad K-groups vanish

$$
K_{\star}(\Phi)=0
$$

if and only if the natural maps

$$
\left(f^{\prime}, g\right): K_{\star}(f) \longrightarrow K_{\star}\left(g^{\prime}\right)
$$

(or equivalently (f, g^{\prime}): $\mathrm{K}_{\star}\left(\mathrm{f}^{\prime}\right) \longrightarrow \mathrm{K}_{\star}(\mathrm{q})$) are isomorphisms, in which case they are called "excision isomorphisms". If in fact $K_{\star}(\phi)=0$ the above diaqram collapses to a commutative braid of exact sequences

and there is defined a Mayer-vietoris exact sequence

$$
\begin{aligned}
& \ldots \longrightarrow K_{n}(A) \xrightarrow{\binom{f}{f}} K_{n}(B) \oplus K_{n}\left(B^{\prime}\right) \xrightarrow{\left(g-g^{\prime}\right)} K_{n}\left(A^{\prime}\right) \\
& \xrightarrow{\dot{d}} K_{n-1}(A) \xrightarrow{\binom{f}{f}} K_{n-1}(B) \oplus K_{n-1}\left(B^{\prime}\right) \longrightarrow \ldots
\end{aligned}
$$

with the connecting maps a given by

$$
\partial: K_{n}\left(A^{\prime}\right) \longrightarrow K_{n}\left(g^{\prime}\right) \xrightarrow{\left(f^{\prime}, q\right)^{-1}} K_{n}(f) \longrightarrow K_{n-1}(A)
$$

(or equivalently

$$
\left.\dot{\partial}: K_{n}\left(A^{\prime}\right) \longrightarrow K_{n}(f \prime) \longrightarrow{ }^{\left(f, g^{\prime}\right)^{-1}} K_{n}(g) \longrightarrow K_{n-1}(A)\right)
$$

In particular, for a cartesian square Φ of type II (localization-completion) it is the case that $K_{\star}(\Phi)=0$, since the identification of exact categories

$$
((A, S) \text {-modules })=((\hat{A}, \hat{S}) \text {-modules })
$$

of Karoubi [2,App.5] (cf. Proposition 3.1.3 i) above) gives tha

$$
\begin{aligned}
K_{\star}\left(A \longrightarrow S^{-1} A\right) & =K_{\star-1}((A, S) \text {-modules }) \\
& =K_{\star-1}((\hat{A}, \hat{S}) \text {-modules })=K_{\star}\left(\hat{A} \longrightarrow \hat{S}^{-1} \hat{A}\right),
\end{aligned}
$$

so that there is defined a Mayer-Vietoris exact sequence

$$
\ldots \longrightarrow K_{n}(A) \longrightarrow K_{n}\left(S^{-1} A\right) \oplus K_{n}(\hat{A}) \longrightarrow K_{n}\left(\hat{S}^{-1} \hat{A}\right) \xrightarrow{\partial} K_{n-1}(A) \longrightarrow \ldots
$$

$$
(n \in \mathbb{Z})
$$

We shall only consider the K- and L-theory Mayer-Vietor sequences for squares of type I and II in $\$ 6$, leaving type III (pushout) to $\$ 7$, on account of the close connections with topology.

In 56.1 we shall define the $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ triad L-groups $\left\{\begin{array}{l}L^{n}(\Phi, \varepsilon) \\ L_{n}(\Phi, \varepsilon)\end{array}(n \in Z Z)\right.$ of a commutative square of rings with involu

The necessary and sufficient condition

$$
\left\{\begin{array}{l}
L_{*}^{*}(\phi, \varepsilon)=0 \\
L_{*}(\Phi, \varepsilon)=0
\end{array}\right.
$$

for there to be excision isomorphisms in the relative $\left\{\begin{array}{l}\varepsilon-\text { symn } \\ \varepsilon \text {-quad }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{l}
\left(f^{\prime}, g\right): L^{\star}(f, \varepsilon) \longrightarrow L^{\star}\left(g^{\prime}, \varepsilon\right) \\
\left(f^{\prime}, g\right): L_{\star}(f, \varepsilon) \longrightarrow L_{\star}\left(g^{\prime}, \varepsilon\right)
\end{array}\right.
$$

and a Mayer-vietoris exact sequence in the absolute $\left\{\begin{array}{l}\varepsilon-\text { symmet } \\ \varepsilon \text {-quadr } \bar{c}\end{array}\right.$
L-groups

$$
\begin{aligned}
& \left(\ldots \longrightarrow L^{n}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L^{n}(B, \varepsilon) \oplus L^{n}\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(g-g^{\prime}\right)} L^{n}\left(A^{\prime}, \varepsilon\right)\right. \\
& \xrightarrow{\partial} L^{n-1}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L^{n-1}(B, \varepsilon) \oplus L^{n-1}\left(B^{\prime}, \varepsilon\right) \longrightarrow \ldots \\
& \ldots \longrightarrow L_{n}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L_{n}(B, \varepsilon) \oplus L_{n}\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(g-g^{\prime}\right)} L_{n^{\prime}}\left(A^{\prime}, \varepsilon\right) \\
& \xrightarrow{\partial} L_{n-1}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L_{n-1}(B, \varepsilon) \oplus L_{n-1}\left(B^{\prime}, \varepsilon\right) \longrightarrow \ldots
\end{aligned}
$$

will be interpreted in $\$ 6.1$ in terms of Mayer-Vietoris splittings of algebraic Poincaré complexes over A^{\prime} with respect to Φ, using the algebraic glueing operations of 51.7 . In $\$ 6.2$ the theory will be extended to the intermediate L-groups of $\mathbf{5 1 . 1 0}$, since in practice there are only such excision isomorphisms and Mayer-Vietoris exact sequences for the intermediate L-groups associated to a commutative square of *-invariant subgroups
such that
i) $I_{m}=\operatorname{ker}\left(\binom{f}{f}: \tilde{K}_{m}(A) \longrightarrow \widetilde{K}_{m}(B) \oplus \widetilde{K}_{m}\left(B^{\prime}\right)\right) \subseteq X \subseteq \tilde{K}_{m}(A)$
ii) the sequence

$$
0 \longrightarrow X / I_{m} \xrightarrow{\binom{f}{f}} X \oplus Y^{\prime} \xrightarrow{\left(g-g^{\prime}\right)} X^{\prime} \longrightarrow 0
$$

Moreover, if Φ is such that there is defined a Mayer-Vietoris exact sequence in the reduced classical algehraic k-groups

$$
\begin{aligned}
& \widetilde{\mathrm{K}}_{1}(\mathrm{~A}) \xrightarrow{\binom{f}{f}} \widetilde{\mathrm{~K}}_{1}(\mathrm{~B}) \oplus \widetilde{\mathrm{K}}_{1}\left(\mathrm{~B}^{\prime}\right) \xrightarrow{\left(g-g^{\prime}\right)} \widetilde{\mathrm{K}}_{1}\left(\mathrm{~A}^{\prime}\right) \\
& \xrightarrow{\partial} \widetilde{K}_{O}(A) \xrightarrow{\binom{f}{f^{\prime}}} \widetilde{\mathrm{K}}_{\mathrm{O}}(B) \oplus \widetilde{\mathrm{K}}_{\mathrm{O}}\left(\mathrm{~B}^{\prime}\right) \xrightarrow{\left(\mathrm{g}-\mathrm{g}^{\prime}\right)} \widetilde{\mathrm{K}}_{\mathrm{O}}\left(\mathrm{~A}^{\prime}\right)
\end{aligned}
$$

and there is defined a Mayer-Vietoris exact sequence of intermediate $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { E-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{l}
\cdots \longrightarrow L_{X}^{n}(A, \varepsilon) \longrightarrow L_{Y}^{n}(B, \varepsilon) \oplus L_{Y}^{n},\left(B^{\prime}, \varepsilon\right) \longrightarrow L_{X}^{n}\left(A^{\prime}, \varepsilon\right) \xrightarrow{\partial} L_{X}^{n-1}(A, \varepsilon) \longrightarrow L_{n}^{X}(A, \varepsilon) \longrightarrow L_{n}^{Y}(B, \varepsilon) \oplus L_{n}^{Y^{\prime}}\left(B^{\prime}, \varepsilon\right) \longrightarrow L_{n}^{X^{\prime}}\left(A^{\prime}, \varepsilon\right) \xrightarrow{\partial} L_{n-1}^{X}(A, \varepsilon) \longrightarrow \ldots
\end{array}\right.
$$

for one such square k then there is defined such a sequence for all squares k satisfying i) and ii). At any rate, for any commutative squares Φ, k there are defined intermediate

$$
\begin{gathered}
\left\{\begin{array} { l }
{ \varepsilon \text { -symmetric } } \\
{ \varepsilon \text { -quadratic } }
\end{array} \text { triad L-groups } \left\{\begin{array}{l}
L_{k}^{n}(\Phi, \varepsilon) \\
L_{n}^{k}(\Phi, \varepsilon)
\end{array}\right.\right. \text { (n€ZZ) such that if } \\
\left\{\begin{array}{l}
L_{k}^{\star}(\Phi, \varepsilon)=0 \\
L_{\star}^{k}(\Phi, \varepsilon)=0
\end{array}\right.
\end{gathered}
$$

then there is defined a Mayer-Vietoris exact sequence in the corresponding intermediate $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups.
(The generalities of \$\$6.1.6.2 appiy equally well to L-theory Mayer-vietoris sequences for squares of type III) as to those of type I) and II)). In $\$ 6.3$ we shall show that for squares k satisfying i) and ii) it is indeed the case that $L_{*}^{k}(\Phi, \varepsilon)=0$ if Φ is either a cartesian square of type $I)\left(g: B \longrightarrow A^{\prime}\right.$ or
$g^{\prime}: B^{\prime} \longrightarrow A^{\prime}$ is ontol or a cartesian square of type II (localization-completion), thus obtaining a Mayer-Vietoris exact sequence in the corresponding intermediate ε-quadratic L-groups. Furthermore, we shall show that $L_{K}^{*}(\Phi, \varepsilon)=0$ for k satisfying i) and ii) with Φ of type II satisfying the extra condition

$$
\hat{\delta}=0: \hat{H}^{0}\left(\mathbb{Z}_{2} ; \hat{S}^{-1} \hat{A}, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(Z_{2} ; A, E\right)
$$

thus obtaining a Mayer-vietoris exact sequence in the corresponding intermediate e-symmetric L-groups.
(Special cases of the localization-completion Mayer-Vietoris sequences have already been obtained in $\{3.6$ above). In $\$ 6.4$ we shall consider the excision properties of the L-groups of cartesian squares of type I associated to ideals. In particular, an example will be constructed for which

$$
\mathrm{L}_{K}^{*}(\Phi, \varepsilon) \neq 0
$$

with Φ of type $I\left(\right.$ with both $g: B \longrightarrow A^{\prime}$ and $g^{\prime}: B^{\prime} \longrightarrow A^{\prime}$ onto) and k satisfying i) and ii). Thus the ε-symmetric L-groups do not have as good excision as the e-quadratic L-groups.

Quadratic L-theory Mayer-Vietoris exact sequences for cartesian squares of types I and II have also been obtained by Bass [3], Wall [8], Karoubi [2] and Bak [2], in various special cases.

6.1 Triad L-groups

We shall now define the $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ triad L-groups $\left\{\begin{array}{l}L^{\star}(\Phi, \varepsilon) \\ L_{\star}(\Phi, \varepsilon)\end{array}\right.$ of a commutative square of rings with involution

using the algebraic Poincare triads of $\$ 1.3$. The condition for excision $\left\{\begin{array}{l}L_{\star}(\Phi, \varepsilon)=0 \\ L_{\star}(\Phi, \varepsilon)=0\end{array}\right.$ will be interpreted in terms of algebraic Poincaré splittings with respect to Φ of algebraic Poincaré complexes over A'. (The connections with geometric Poincaré splittings will be explored in $\$ 7.5$ below). In orde to do this it is convenient to use the unified L-theory of s to adopt the following terminology for algebraic Poincaré complexes, pairs and triads, which is a straightforward adaptation of the familiar terminology for geometric Poincar complexes, pairs and triads. A more detailed account of this terminology will appear in Ranicki [11].

$$
\text { An n-dimensional }\left\{\begin{array}{l}
\varepsilon \text {-symmetric } \\
\underline{\varepsilon-q u a d r a t i c ~}
\end{array}\right. \text { Poincaré complex over A }
$$

($n \in \mathbb{Z}$) is a closed object x of $\left\{\begin{array}{l}\dot{d}^{n}(A, E) \\ \dot{\lambda}_{n}(A, \varepsilon)\end{array}\right.$. For $n \geqslant 0$ this is exactly the same as an algebraic Poincare complex of this type in the sense of $\$ 1.1$.

An n-dimensional $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c}{\varepsilon-q u a d r a t i c ~}\end{array}\right.$ Poincaré pair over $A(x, y)$ ($n \in \mathbb{Z}$) is defined by an object x of $\left\{\begin{array}{l}\mathcal{L}^{n}(A, \varepsilon) \\ \mathcal{L}_{n}(A, \varepsilon)\end{array}\right.$ and an object y of $\left\{\begin{array}{l}\alpha^{n-1}(A, \varepsilon) \\ \dot{\alpha}_{n-1}(A, \varepsilon)\end{array}\right.$ together with a homotopy equivalence

$$
\text { f : } 3 x \xrightarrow{\sim} y \text {, }
$$

which will be used to identify $y=\partial x$.

$$
\text { An n-dimensional }\left\{\begin{array}{l}
\frac{\varepsilon \text {-symmetric }}{\varepsilon-q u a d r a t i c ~}
\end{array} \text { Poincaré triad over } A\right.
$$

$\left.\left(x ; 3_{+} x, A_{-} x ;\right) 3_{+} x\right)(n \in \mathbb{Z})$ is defined by an object x of $\left\{\begin{array}{l}\mathcal{L}^{n}(A, \varepsilon) \\ \mathcal{L}_{n}(A, \varepsilon)\end{array}\right.$
and objects $3_{+} x, \partial_{-} x$ of $\left\{\begin{array}{l}\mathcal{L}^{n-1}(A, \varepsilon) \\ \mathcal{L}_{n-1}(A, \varepsilon)\end{array}\right.$ together with homotopy equivalences

$$
f: \partial \partial_{+} x \xrightarrow{\sim} \partial_{\partial_{-}} x, g: \partial_{+} x u_{f}-\partial_{-} x \xrightarrow{\sim} d x
$$

which will be used as identifications.
The algebraic glueing operation of $\$ 1.7$ is readily generalized to define the union of adjoining n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triads over $A\left(x ; y, y^{\prime} ; z\right),\left(x^{\prime} ; y^{\prime}, y^{\prime \prime} ; z\right)$
as an n-dimensional $\left\{\begin{array}{l}\text { E-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triad over A

$$
\left(x ; y, y^{\prime} ; z\right) \cup\left(x^{\prime} ; y^{\prime}, y^{\prime \prime} ; z\right)=\left(x \cup_{y}, x^{\prime} ; y, y^{\prime \prime} ; z\right) .
$$

Given a morphism of rings with involution

$$
\mathbf{f}: A \longrightarrow B
$$

let $\varepsilon \in A$ be a central unit such that $\bar{\varepsilon}=\varepsilon^{-1} \in A$ (as usual) and such that $f(E) \in B$ is a central unit, also to be denoted ε. An n-dimensional $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c}{\varepsilon-q u a d r a t i c ~} \\ \text { Poincaré pair over } f(y, x) \text { (} n \in \mathbb{Z} \text {) }, ~(y)\end{array}\right.$ consists of
i) an (n-l)-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex
over A x
ii) an n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over B $\left(y, B 0_{A}^{x}\right)$.
The relative $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-group $\left\{\begin{array}{l}L^{n}(f, \varepsilon) \\ L_{n}(f, \varepsilon)\end{array}\right.$ (n $\left.\in \mathbb{Z}\right)$ defined in
$\$ 2.2$ is the cobordism group of n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ E-q u a d a r t i c\end{array}\right.$ Poincaré pairs over f.

Let Φ be a commutative square of r ings with involution

and let $\in \in A$ be a central unit such that $\bar{\varepsilon}=\varepsilon^{-1} \in A$, and such that the elements $f(E) \in B, f^{\prime}(\in) \in B^{\prime}, g f(E)=g^{\prime} f^{\prime}(E) \in A^{\prime}$ are also central units, all to be denoted by ε.

An n-dimensional $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { E-quadratic }\end{array}\right.$ Poincaré triad over Φ ($\left.x^{\prime} ; y, y^{\prime} ; x\right)(n \in \mathbb{Z})$ consists of
i) an $(n-2)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex
over A x
ii) an $(n-1)$-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over $B\left(y, B A_{A} x\right)$

$$
\text { iii) an }(n-1) \text {-dimensional }\left\{\begin{array}{l}
\varepsilon-\text { symmetric } \\
\varepsilon \text {-quadratic }
\end{array}\right. \text { Poincaré pair }
$$ over $B^{\prime}\left(y^{\prime}, B^{\prime} ⿴_{A} x\right)$

iv) an n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair
over $A^{\prime}\left(x^{\prime}, A^{\prime} \otimes_{B} y \cup_{A^{\prime} \otimes_{A}(-x)} A^{\prime} \otimes_{B},\left(-y^{\prime}\right)\right)$.
In particular, ($\left.x^{\prime} ; A^{\prime} \otimes_{B} y, A^{\prime} \otimes_{B}, y^{\prime} ; A^{\prime} \otimes_{A} x\right)$ is an n-dimensional $\left\{\begin{array}{l}\text { e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triad over A^{\prime}. Define the n-dimensional $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c}{\varepsilon-q u a d r a t i c ~}\end{array}\right.$ triad L-group $\left\{\begin{array}{l}L^{n}(\Phi, \varepsilon) \\ L_{n}(\Phi, \varepsilon)\end{array}\right.$ (n€Z) to be the cobordism group of n-dimensional $\left\{\begin{array}{l}\text { e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triads over Φ.

Proposition 6.1.1 i) The ε-symmetric triad L-groups $L^{\star}(\Phi, \varepsilon$ into a commutative diagram of abelian groups with exact ro and columns

Similarly for the E-quadratic triad $L-g r o u p s L_{\star}(\Phi, \varepsilon)$. ii) If Φ, ε are such that $\left\{\begin{array}{l}L^{*}(\Phi, \varepsilon)=0 \\ L_{\star}(\Phi, \varepsilon)=0\end{array}\right.$ then there are defir excision isomorphisms of relative $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left\{\begin{array}{l}
\left(f^{\prime}, g\right): L_{\star}(f, \varepsilon) \longrightarrow L^{\star}\left(g^{\prime}, \varepsilon\right) \\
\left(f^{\prime}, g\right): L_{\star}(f, \varepsilon) \longrightarrow \leadsto L_{\star}\left(g^{\prime}, \varepsilon\right)
\end{array}\right.
$$

and a Mayer-vietoris exact sequence of absolute $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ L-groups

$$
(n \in \mathbb{Z})
$$

with the connecting maps a given by

$$
\left\{\begin{array}{l}
\partial: L^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow L^{n}\left(g^{\prime}, E\right) \xrightarrow{\left.(f)^{\prime} g\right)^{-1}} L^{n}(f, E) \longrightarrow L^{n-L^{\prime}}(A, E) \\
\left.\dot{d}: L_{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow L_{n}\left(g^{\prime}, \varepsilon\right) \xrightarrow\left[(f)^{\prime}, g\right)^{-1}\right]{ } L_{n}(f, \varepsilon) \longrightarrow L_{n-1}(A, E)
\end{array}\right.
$$

We shall now interpret the excision condition

$$
\left\{\begin{array}{l}
L^{*}(\Phi, \varepsilon)=0 \\
L_{\star}(\Phi, \varepsilon)=0
\end{array}\right.
$$

in terms of algebraic Poincaré splittings with respect to Φ of algebraic Poincaré complexes over A '.

A Poincaré splitting (with respect to Φ) $\left(y, y^{\prime}, x\right)$ of an n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex over $A^{\prime} x^{\prime}(n \in \mathbb{Z})$ consists of:
i) an (n-1)-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex
over A x
ii) an n-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over B $\left(y, B \otimes_{A} x\right)$
iii) an n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over B^{\prime}
$\left(y^{\prime}, B^{\prime} \otimes_{A}\right)$
iv) a homotopy equivalence

$$
A^{\prime} \otimes_{B} y \cup_{A} \Theta_{A}(-x)^{A^{\prime} ब_{B}}\left(-y^{\prime}\right) \xrightarrow{\sim} x^{\prime}
$$

which will be used as an identification.

There is also a relative version of Poincaré splitting, as follows.

A Poincaré splitting (with respect to Φ)

$\left(\left(y, z^{\prime} y\right),\left(y^{\prime}, y_{+} y^{\prime}\right),(x, i x)\right)$ of an n-dimensional $\left\{\begin{array}{l}\text { e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over $A^{\prime}\left(x^{\prime}, x^{\prime}\right)(n \in \mathbb{Z})$ consists of:
i) an ($n-1$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over A $(x, 3 x)$
ii) an n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triad over B $\left(y ;{ }_{+} y, B \otimes_{A}(-x) ; B \otimes_{A}(-7 x)\right)$
iii) an n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triad over B^{\prime} $\left(y^{\prime} ;{ }_{+} y^{\prime}, B^{\prime} \otimes_{A}(-x) ; B^{\prime} \Delta_{A}(-\exists x)\right)$
iv) a homotopy equivalence of pairs
$\left(A^{\prime} \otimes_{B} y U_{A} \|_{A}(-x)^{\prime} \otimes_{B},\left(-y^{\prime}\right), A^{\prime} \otimes_{B}{ }^{2} y U_{A} \Theta_{A} \partial x^{\prime} \otimes_{B},\left(-\theta_{+} y^{\prime}\right)\right)$ $\simeq\left(x^{\prime}, \partial x^{\prime}\right)$

x^{\prime}

Note that $\left({ }_{+} y^{\prime}, \partial_{+} y^{\prime},-j x\right)$ is a Poincaré splitting of the boundary ($\mathrm{n}-1$)-dimensional $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { e-quadratic }\end{array}\right.$ Poincaré complex over $A^{\prime} \partial x^{\prime}$.

$$
\text { An n-dimensional }\left\{\begin{array}{l}
\text { E-symmetric } \\
\text { e-quadratic }
\end{array} \text { Poincaré triad over } \phi\right.
$$ ($x^{\prime} ; y, y^{\prime} ; x$) is thus an n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincare pair over $A^{\prime}\left(x^{\prime}, \partial x^{\prime}\right)$ together with a Poincaré splitting $\left(y, y^{\prime}, x\right)$ of the boundary $(n-1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex over A^{\prime} ox', so that

$$
\partial x^{\prime}=A^{\prime} \otimes_{B} y U_{A} Q_{A}(-x)^{A^{\prime} \otimes_{B}}\left(-y^{\prime}\right)
$$

A cobordism of such triads $\left(x_{i} ; y_{i}, y_{i}^{\prime} ; x_{i}\right)(i=1,2)$ is an $(n+1)$-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triad over A^{\prime}

$$
\left(\delta x^{\prime}: \jmath_{+} \delta x^{\prime}, x_{1}^{\prime \oplus-x_{2}} ; \exists x_{1}^{\prime \oplus-j x_{2}^{\prime}}\right)
$$

such that the n-dimensional $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over $A^{\prime}\left(3_{+} \delta x^{\prime}, j x_{1}^{\left(\oplus-j x_{2}^{\prime}\right)}\right.$ has a Poincaré splitting

$$
\left(\left(\delta y_{,} y_{1}^{\oplus-y_{2}}\right),\left(\delta y^{\prime}, y_{1}^{\oplus-y_{2}^{\prime}}\right),\left(\delta x_{1} x_{1} \oplus-x_{2}\right)\right)
$$

extending the given Poincare splitting $\left\{Y_{1} \oplus-y_{2}, y_{1}^{\prime} \oplus-Y_{2}^{\prime}, x_{1} \oplus-x_{2}\right\rangle$
of the boundary $(n-1)$-dimensional $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincare complex over $A^{\prime} \quad\left\langle x_{1}^{\oplus-3} x_{2}^{\prime}\right.$.

The n-dimensional $\left\{\begin{array}{l}\epsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ triad L-group $\left\{\begin{array}{l}L^{n}(\Phi, \varepsilon) \\ L_{n}(\Phi, \varepsilon)\end{array}\right.$ ($n \in \mathbb{Z}$) is thus the cobordism group of n-dimensional $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré pairs over A^{\prime} with a Poincaré split boundary. Proposition 6.1.2 The $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-theory excision condition $\left\{\begin{array}{l}L^{*}(\Phi, \varepsilon)=0 \\ L_{\star}(\Phi, \varepsilon)=0\end{array}\right.$ is satisfied if and only if every $\left\{\begin{array}{l}\text { e-symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$ Poincaré pair over A^{\prime} with a Poincaré split boundary is cobordant to a Poincaré split pair.

In particular, if the excision condition is satisfied then every $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré complex over $A^{\prime} x^{\prime}$ is cobordant to a Poincaré split complex $A^{\prime} \otimes_{B} y U_{A^{\prime}} \otimes_{A}(-x)^{A^{\prime} \otimes_{B},\left(-y^{\prime}\right)}$ and the connecting maps in the $\left\{\begin{array}{l}\text { e-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-theory Mayer-vietoris exact sequence of Φ

$$
\left\{\begin{array}{l}
: L^{n}\left(A^{\prime}, E\right) \longrightarrow L^{n-1}(A, E) \\
\therefore: L_{n}\left(A^{\prime}, E\right) \longrightarrow L_{n-1}(A, E)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

are given by

$$
\therefore\left(x^{\prime}\right)=\left(A^{\prime} \mathbb{E}_{B} y \cup_{\left.A^{\prime} \otimes_{A}(-x)^{\prime} ⿴_{B^{\prime}}\left(-y^{\prime}\right)\right)=x .} .\right.
$$

While the Poincare splitting condition for excision of Proposition 6.l.2 has a pleasantly geometric flavour (to which we shall return in $£ 7$ below) the following criterion for excision will be found to be of greater use in $\$ 6.3$ below.

Proposition 6.1.3 The induced map of relative e-symmetric
L-groups for some $n \in \mathbb{Z}$

$$
\left(f^{\prime}, g\right): L^{n}(f, \varepsilon) \longrightarrow L^{n}\left(g^{\prime}, \varepsilon\right)
$$

is an isomorphism if and only if there exist abelian group morphisms

$$
\begin{aligned}
& \delta: L^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow L^{n}(f, \varepsilon) \\
& \hat{\delta}: L^{n}\left(g^{\prime}, \varepsilon\right) \longrightarrow L^{n-1}(A, \varepsilon)
\end{aligned}
$$

fitting into a commutative diagram

involving the change of r ings exact sequences

$$
\begin{aligned}
& L^{n}(B, \varepsilon) \xrightarrow{\gamma_{f}} L^{n}(f, \varepsilon) \xrightarrow{\partial_{f}} L^{n-1}(A, \varepsilon) \xrightarrow{f} L^{n-1}(B, \varepsilon) \\
& L^{n}\left(B^{\prime}, \varepsilon\right) \xrightarrow{g^{\prime}} L^{n}\left(A^{\prime}, \varepsilon\right) \xrightarrow{\gamma_{g^{\prime}}} L^{n}\left(g^{\prime}, \varepsilon\right) \xrightarrow{\partial^{\prime}} L^{n-1}\left(B^{\prime}, \varepsilon\right) .
\end{aligned}
$$

If such morphisms $\delta, \hat{\delta}$ exist there is defined an exact sequence

$$
\begin{aligned}
& L^{n}(B, \varepsilon) \oplus L^{n}\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(g-g^{\prime}\right)} L^{n}\left(A^{\prime}, \varepsilon\right) \\
& \\
& \xrightarrow{\partial} L^{n-1}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L^{n-1}(B, \varepsilon) \oplus L^{n-1}\left(B^{\prime}, \varepsilon\right)
\end{aligned}
$$

with

$$
\partial=\partial_{f}^{\delta}=\hat{\delta} \gamma_{g},: L^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow L^{n-1}(A, E)
$$

and if $\left(f^{\prime}, g\right): L^{n+1}(f, E) \longrightarrow L^{n+1}\left(g^{\prime}, E\right)$ is onto there is an extension of this sequence to the left by an exact sequence

$$
L^{n}(A, \varepsilon) \xrightarrow{\binom{f}{f^{\prime}}} L^{n}(B, \varepsilon) \oplus L^{n}\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(g-g^{\prime}\right)} L^{n^{n}}\left(A^{\prime}, \varepsilon\right)
$$

Similarly for the ε-quadratic L-groups L_{*}.
Proof: If (f,$G): L^{n}(f, \varepsilon) \longrightarrow L^{n}\left(g^{\prime}, \varepsilon\right)$ is an isomorphism define

$$
\begin{aligned}
& \delta=\left(f f^{\prime}, g\right)^{-1} r_{g^{\prime}}: L^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow L^{n}(f, \varepsilon) \\
& \hat{\delta}=\hat{i}_{f}\left(f f^{\prime}, g\right)^{-1}: L^{n}\left(g^{\prime}, \varepsilon\right) \longrightarrow L^{n-1}(A, \varepsilon)
\end{aligned}
$$

Conversely, given δ, δ we shall verify that (f ', g) is an isomorphism by diagram chasing, as follows.

$$
\begin{gathered}
\text { Let } x \in \operatorname{ker}\left(\left(f^{\prime}, g\right): L^{n}(f, \varepsilon) \longrightarrow L^{n}\left(g^{\prime}, \varepsilon\right)\right) \text {, so that } \\
{ }_{{ }_{f}}(x)=\hat{\delta}\left(f f^{\prime}, g\right)(x)=0 \in L^{n-1}(A, \varepsilon)
\end{gathered}
$$

and $x \in \operatorname{ker}\left(\exists_{f}: L^{n}(f, \varepsilon) \longrightarrow L^{n-1}(A, \varepsilon)\right)=\operatorname{im}\left(\gamma_{f}: L^{n}(B, \varepsilon) \longrightarrow L^{n}(f, \varepsilon\right.$ Let $y \in L^{n}(B, \epsilon)$ be such that

$$
r_{f}(y)=x \in L^{n}(f, \varepsilon)
$$

so that

$$
\gamma_{g}, g(y)=\left(f^{\prime}, g\right) Y_{f}(y)=\left(f^{\prime}, g\right)(x)=0 \in L^{n}\left(g^{\prime}, \varepsilon\right)
$$

and $g(y) \in \operatorname{ker}\left(\gamma_{g},: L^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow L^{n}\left(g^{\prime}, \varepsilon\right)\right)=\operatorname{im}\left(g^{\prime}: L^{n}\left(B^{\prime}, \varepsilon\right) \longrightarrow L^{n}(t\right.$ Let $z \in L^{n}\left(B^{\prime}, \varepsilon\right)$ be such that

$$
g(y)=g^{\prime}(z) \in L^{n}\left(A^{\prime}, E\right),
$$

so that

$$
x=\gamma_{f}(y)=\delta_{g}(y)=\delta g^{\prime}(z)=0 \in L^{n}(f, c)
$$

Thus $\left(f^{\prime}, g\right): L^{n}(f, \varepsilon) \longrightarrow L^{n}\left(g^{\prime}, \varepsilon\right)$ is one-one.

Given an element $u \in L^{n}\left(g^{\prime}, \varepsilon\right)$ we have

$$
f \hat{\delta}(u)=0 \in L^{n-1}(B, \varepsilon)
$$

so that

$$
\begin{aligned}
\hat{\delta}(u) \in \operatorname{ker}\left(f: L^{n-1}(A, E) \longrightarrow\right. & \left.L^{n-1}(B, E)\right) \\
& =i m\left(\partial_{f}: L^{n}(f, \varepsilon) \longrightarrow L^{n-1}(A, \varepsilon)\right) .
\end{aligned}
$$

Let $v \in L^{n}(f, \varepsilon)$ be such that

$$
\hat{\delta}(u)=\partial_{f}(v) \in L^{n-1}(A, \varepsilon),
$$

so that

$$
\begin{aligned}
& \left(u-\left(f^{\prime}, g\right)(v)\right) \in \operatorname{ker}\left(\hat{\delta}: L^{n}\left(g^{\prime}, E\right) \longrightarrow L^{n-1}(A, E)\right) \\
& \subseteq \operatorname{ker}\left(\mathrm{f}_{\mathrm{g}},: \mathrm{L}^{\mathrm{n}}\left(\mathrm{~g}^{\prime}, \varepsilon\right) \longrightarrow \mathrm{L}^{D^{-1}}\left(\mathrm{~B}^{\prime}, \epsilon\right)\right) \\
& =\operatorname{im}\left(\gamma_{g},: L^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow L^{n}\left(g^{\prime}, \varepsilon\right)\right) \text {. }
\end{aligned}
$$

Let $w \in L^{n}\left(A^{\prime}, \varepsilon\right)$ be such that

$$
u-\left(f{ }^{\prime}, g\right)(v)=\gamma_{g}(w) \in L^{n}\left(g^{\prime}, \varepsilon\right)
$$

so that

$$
u=\left(f^{\prime}, g\right)(v+\delta(w)) \in \operatorname{im}\left(\left(f^{\prime}, g\right): L^{n}(f, \varepsilon) \longrightarrow L^{n}\left(g^{\prime}, \varepsilon\right)\right)
$$

Thus $\left(f^{\prime}, g\right): L^{n}(f, \varepsilon) \longrightarrow L^{n}\left(g^{\prime}, \varepsilon\right)$ is onto.
Suppose now that $\delta, \hat{\delta}$ exist.
Given $x \in \operatorname{ker}\left(\binom{f}{f}: L^{n-1}(A, \epsilon) \longrightarrow L^{n-1}(B, \varepsilon) \oplus L^{n-1}\left(B^{\prime}, \varepsilon\right)\right.$:
we have that

$$
\begin{aligned}
x \in \operatorname{ker}\left(f: L^{n-1}(A, \varepsilon) \longrightarrow\right. & \left.L^{n-1}(B, \varepsilon)\right) \\
& \left.=\operatorname{im(}{ }_{f}: L^{n}(f, \varepsilon) \longrightarrow L^{n-1}(A, E)\right)
\end{aligned}
$$

Let $y \in L^{n}(f, \varepsilon)$ be such that

$$
x=\partial_{f}(y) \in L^{n-1}(A, \varepsilon)
$$

so that

$$
J_{g^{\prime}}\left(f^{\prime}, g\right)(y)=f^{\prime} \partial_{f}(y)=f^{\prime}(x)=0 \in L^{n-1}\left(B^{\prime}, \epsilon\right)
$$

and there exists $z \in L^{n}\left(A^{\prime}, \varepsilon\right)$ such that

$$
\left(f^{\prime}, g\right)(y)=\gamma_{g},(z) \in L^{n}\left(g^{\prime}, \varepsilon\right)
$$

Thus

$$
x=\partial_{f}(Y)=\partial_{f}\left(f^{\prime}, g\right)^{-1} \gamma_{g}(z)=\partial(z) \in L^{\dot{n}-1}(A, E)
$$

and we have verified the exactness of

$$
\begin{gathered}
L^{n}\left(A^{\prime}, \varepsilon\right) \xrightarrow{\partial} \xrightarrow{C} L^{n-1}(A, \varepsilon) \longrightarrow L^{n-1}(B, \varepsilon) \oplus L^{n-1}\left(B^{\prime}, \varepsilon\right) \\
\text { Given } x \in \operatorname{ker}\left(\exists: L^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow L^{n-1}(A, \varepsilon)\right) \text { we have that } \\
\gamma_{f} \delta(x)=0 \in L^{n-1}(A, \varepsilon) .
\end{gathered}
$$

Let $y \in L^{n}(B, \varepsilon)$ be such that

$$
\delta(x)=\gamma_{f}(y) \in L^{n}(f, \varepsilon)
$$

so that

$$
\gamma_{g},(x-g(y))=(f, g)\left(\delta(x)-Y_{f}(y)\right)=0 \in L^{n}\left(g^{\prime}, \varepsilon\right)
$$

and there exists $y^{\prime} \in L^{n}\left(B^{\prime}, \varepsilon\right)$ such that

$$
x=q(y)-q^{\prime}\left(Y^{\prime}\right) \in L^{n}\left(A^{\prime}, E\right)
$$

This verifies the exactness of

$$
L^{n}(B, E) \oplus L^{n}\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(g-g^{\prime}\right)} L^{n}\left(A^{\prime}, \varepsilon\right) \xrightarrow{\partial} L^{n-1}(A, \varepsilon)
$$

$$
\text { Assume now that }\left(f^{\prime}, g\right): L^{n+1}(f, E) \longrightarrow L^{n+1}\left(g^{\prime}, E\right) \text { is onto. }
$$

$$
\text { Given }\left(y, y^{\prime}\right) \in \operatorname{ker}\left(\left(g-g^{\prime}\right): L^{n}(B, \varepsilon) \oplus L^{n}\left(B^{\prime}, \varepsilon\right) \longrightarrow L^{n}\left(A^{\prime}, \varepsilon\right)\right)
$$

we have

$$
\gamma_{f}(y)=\delta g(y)=0 \in L^{n}(f, E)
$$

so that there exists $z \in L^{n}(A, \varepsilon)$ such that

$$
y=f(z) \in L^{n}(B, \varepsilon)
$$

Now

$$
g^{\prime}\left(Y^{\prime}-f^{\prime}(z)\right)=g(y)-g f(z)=0 \in L^{n}\left(A^{\prime}, \varepsilon\right),
$$

so that there exists $w \in L^{n+1}\left(g^{\prime}, \varepsilon\right)$ such that

$$
y^{\prime}-f^{\prime}(z)={ }_{j} g^{\prime}(w) \in L^{n}\left(B^{\prime}, \varepsilon\right) .
$$

As (f^{\prime}, g) is onto there exists $v \in L^{n+1}(f, E)$ such that

$$
w=\left(f^{\prime}, g\right)(v) \in L^{n+1}\left(g^{\prime}, \varepsilon\right)
$$

The element

$$
x=z+d_{f}(v) \in L^{n}(A, E)
$$

is such that

$$
\left(y, y^{\prime}\right)=\left(f(x), f^{\prime}(x)\right) \in L^{n}(B, \varepsilon) \oplus L^{n}\left(B^{\prime}, \varepsilon\right),
$$

verifying the exactness of

$$
L^{n}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L^{n}(B, E) \oplus L^{n}\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(q-g^{\prime}\right)} L^{n}\left(A^{\prime}, \varepsilon\right)
$$

6.2 Change of k-theory

We shall now develop the theory of intermediate triad L-groups, that is the analogues of the triad L-groups of $\mathbf{\$ 6 . 1}$ for the intermediate L-groups of $\$ 1.10$. The terminology and and results of $\$ 6.1$ have obvious intermediate L-theory analogues In $\$ 6.3$ the intermediate triad L-groups will be used to obtain excision isomorphisms and Mayer-Vietoris exact sequences in L-theory.

Given a commutative square of rings

let

be a commutative square of *-invariant subgroups, that is a collection of *-invariant subgroups

$$
X \subseteq \tilde{K}_{m}(A), Y \subseteq \tilde{K}_{m}(B) \quad, \quad Y^{\prime} \subseteq \widetilde{K}_{m}\left(B^{\prime}\right), \quad X^{\prime} \subseteq \dddot{K}_{m}\left(A^{\prime}\right)
$$

such that

$$
B \otimes_{A} X \subseteq Y, B^{\prime} \otimes_{A} X \subseteq Y^{\prime}, A^{\prime} \otimes_{B} Y \subseteq X^{\prime}, A^{\prime} \otimes_{B^{\prime}} Y^{\prime} \subseteq X^{\prime} .
$$

The Tate \mathbb{Z}_{2}-cohomology groups of $\kappa \hat{H}^{*}\left(\mathbb{Z}_{2} ; \kappa\right)$ are defined by

$$
\hat{\mathrm{A}}^{\mathrm{n}}\left(\mathbb{Z}_{2} ; k\right)=\frac{\operatorname{ker}\left(d_{n}: G \longrightarrow G\right)}{\operatorname{im}\left(d_{n+1}: G \longrightarrow G\right)} \quad(\operatorname{n}(\bmod 2))
$$

with

$$
d_{n}=\left(\begin{array}{cccc}
1-(-)^{n_{T}} & (-)^{n_{g}} & -(-)^{n_{g}}{ }^{\prime} & 0 \\
0 & 1+(-)^{n_{T}} & 0 & (-)^{n_{f}} \\
0 & 0 & 1+(-)^{n_{T}} & (-)^{n_{f}} \\
0 & 0 & 0 & 1-(-)^{n_{T}}
\end{array}\right)
$$

$$
: G=X^{\prime} \oplus Y \oplus Y^{\prime} \oplus X \longrightarrow G=X^{\prime} \oplus Y \oplus Y^{\prime} \oplus X \quad\left(d_{n} d_{n+1}=0\right)
$$

and are such that there is defined a commutative diagram of abelian groups with exact rows and columns

Given two squares k_{1}, k_{2} such as k, with $k_{1} \subseteq k_{2}$ (i.e. such that $\left.X_{1} \subseteq X_{2}, Y_{1} \subseteq Y_{2}, Y_{1}^{\prime} \subseteq Y_{2}^{\prime}, X_{1}^{\prime} \subseteq X_{2}^{\prime}\right)$, there are also defined relative Tate \mathbb{Z}_{2}-cohomology groups $\hat{H}^{*}\left(\mathbb{Z}_{2} ; \kappa_{2} / \kappa_{1}\right)$, which $f i t$ into an exact sequence

$$
\begin{aligned}
\cdots \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; \kappa_{1}\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; k_{2}\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; \kappa_{2} / k_{1}\right) \longrightarrow & \hat{H}^{n-1}\left(\mathbb{Z}_{2} ; k_{1}\right) \longrightarrow \ldots \\
& (\operatorname{nn}(\bmod 2)) .
\end{aligned}
$$

Given commutative squares Φ, k as above define the
intermediate $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \underline{\varepsilon-q u a d r a t i c ~}\end{array}\right.$ triad L-groups $\left\{\begin{array}{l}L_{K}^{n}(\Phi, \varepsilon) \\ L_{n}^{\kappa}(\Phi, \varepsilon)\end{array}\right.$ (n $\left.\in \mathbb{Z}\right)$
in exactly the same way as the triad L-groups $\left\{\begin{array}{l}L_{*}(\Phi, \varepsilon) \\ L_{\star}(\Phi, \varepsilon)\end{array}\right.$ of $\$ 6.1$

but using only the $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ Poincaré triads over Φ with
K-theory in k. There are then intermediate versions of
Propositions 6.1.1,6.1.2,6.1.3.
Proposition 6.2.1 Given commutative squares Φ, k_{1}, k_{2} such that $k_{1} \subseteq k_{2}$ there is defined an exact sequence of intermediate $\left\{\begin{array}{l}\text { E-symmetric } \\ \text { E-quadratic }\end{array}\right.$ triad L-groups

Proof: By analogy with Proposition 1.10.1.

In $\$ 6.3$ below we shall prove that for certain Φ, k
$\left\{\begin{array}{l}L_{k}^{\star}(\Phi, \varepsilon)=0 \\ L_{\star}^{\kappa}(\Phi, \varepsilon)=0\end{array}\right.$, thus obtaining a Mayer-Vietoris exact sequence
of intermediate $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups
$(n \in \mathbb{Z})$.
In every such case k will satisfy the following condition.
The commutative square of *-invariant subgroups
is cartesian if
i) x contains the *-invariant subgroup

$$
I_{m}=\operatorname{ker}\left(\binom{f}{f^{\prime}}: \widetilde{K}_{m}(A) \longrightarrow \widetilde{K}_{m}(B) \oplus \widetilde{K}_{m}\left(B^{\prime}\right)\right) \subseteq \widetilde{K}_{m}(A)
$$

ii) the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module sequence

is exact.
The Tate \mathbb{Z}_{2}-cohomology groups of such κ are given by

$$
\hat{H}^{\star}\left(\mathbb{Z}_{2} ; \kappa\right)=\hat{H}^{*-2}\left(\mathbb{Z}_{2} ; I_{m}\right)
$$

In Proposition 6.2 .2 below it will be shown that if ϕ is such that there is excision in the associated classical algebraic k-groups then the intermediate $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ triad
L-groups $\left\{\begin{array}{l}L_{K}^{\star}(\Phi, E) \\ L_{\star}^{K}(\Phi, \varepsilon)\end{array}\right.$ of cartesian squares κ are in fact independer
of κ. In particular, if it can be shown that $\left\{\begin{array}{l}L_{k}^{\star}(\phi, \varepsilon)=0 \\ L_{\star}^{\kappa}(\phi, \varepsilon)=0\end{array}\right.$ for
one such k then this is also the case for all other cartesian
Define *-invariant subgroups

$$
J_{m}=\operatorname{im}\left(\left(g g^{\prime}\right): \widetilde{K}_{m}(B) \oplus \widetilde{K}_{m}\left(B^{\prime}\right) \longrightarrow \widetilde{K}_{m}\left(A^{\prime}\right)\right) \subseteq \widetilde{K}_{m}\left(A^{\prime}\right) \quad(m=0 \text { or }
$$

Define abelian group morphisms

$$
\Delta: \hat{H}^{n}\left(\mathbb{Z}_{2} ; I_{0}\right) \longrightarrow \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; \tilde{K}_{1}\left(A^{\prime}\right) / J_{1}\right) \quad(n(\bmod 2))
$$

as follows. An element $\left\{\begin{array}{l}{[P] \in \hat{H}^{O}\left(\mathbb{Z}_{2} ; I_{O}\right)} \\ {[P] \in \hat{H}^{l}\left(\mathbb{Z}_{2} ; I_{O}\right)}\end{array}\right.$ is represented by a
f.g. projective A-module P such that for some $q \geqslant 0$ there exist
i) an A-module isomorphism $\left\{\begin{array}{l}h: P \longrightarrow P * \\ h: P \oplus P * \longrightarrow A\end{array}\right.$
ii) a B-module isomorphism $k: B \otimes_{A} P \longrightarrow B^{q}$
iii) a B^{\prime}-module isomorphism $k^{\prime}: B^{\prime} \otimes_{A} P \longrightarrow B^{\prime} q$.

Let $\left\{\begin{array}{l}\Delta([P]) \in \hat{H}^{1}\left(\mathbb{Z}_{2} ; \overparen{K}_{1}\left(A^{\prime}\right) / J_{1}\right) \\ \Delta([P]) \in \hat{H}^{O}\left(\mathbb{Z}_{2} ; \widehat{K}_{1}\left(A^{\prime}\right) / J_{1}\right)\end{array}\right.$ be the element represented by

Let $\hat{H}^{*}\left(\mathbb{Z}_{2} ; \Delta\right)$ be the relative groups appearing in the exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow \hat{H}^{n-1}\left(\mathbb{Z}_{2} ; I_{0}\right) \xrightarrow{\Delta} \hat{H}^{n}\left(\mathbb{Z}_{2} ; \widetilde{K}_{1}\left(A^{\prime}\right) / J_{1}\right) \longrightarrow \hat{\mathrm{A}}^{n}\left(\mathbb{Z}_{2} ; \Delta\right) \\
& \longrightarrow \hat{A}^{n-2}\left(\mathbb{Z}_{2} ; I_{0}\right) \longrightarrow \ldots
\end{aligned}
$$

The commutative square of rings with involution ϕ is $\hat{\hat{H}}^{\star}$-cartesian if
i) the commutative squares of $* \rightarrow$ invariant subgroups
are cartesian

$$
\text { ii) } \hat{H}^{\star}\left(\mathbb{Z}_{2} ; \Delta\right)=0 .
$$

(See $\mathbf{\$ 6 . 3}$ below for examples of \hat{H}^{\star}-cartesian squares Φ.
In particular, if Φ is such that there is defined an algebraic
K-theory Mayer-Vietoris exact sequence

$$
\widetilde{\mathrm{K}}_{1}(A) \longrightarrow \widetilde{\mathrm{K}}_{1}(\mathrm{~B}) \oplus \widetilde{\mathrm{K}}_{1}\left(\mathrm{~B}^{\prime}\right) \longrightarrow \widetilde{\mathrm{K}}_{1}\left(A^{\prime}\right) \xrightarrow{3} \widetilde{\mathrm{~K}}_{0}(A) \longrightarrow \widetilde{\mathrm{K}}_{0}(B) \oplus \widetilde{\mathrm{K}}_{0}\left(B^{\prime}\right) \longrightarrow \hat{\mathrm{K}}
$$

then Φ is $\hat{\mathrm{H}}^{*}$-cartesian).
Proposition 6.2.2 For an $\hat{H} *$-cartesian square Φ the intermediat
$\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ triad L-groups are such that there are natural

identifications

$$
\left\{\begin{array}{l}
L_{K_{1}}^{\star}(\varphi, \varepsilon)=L_{K_{2}}^{\star}(\varphi, \varepsilon) \\
{ }_{L_{*}{ }_{1}}^{1}(\varphi, \varepsilon)=L_{*}^{K_{2}}(\Phi, \varepsilon)
\end{array}\right.
$$

for any two cartesian squares k_{1}, k_{2}.
Proof: For a fixed Φ and a fixed $m(=0$ or 1$)$ the set of cartesian squares $\kappa \subseteq\binom{\widetilde{K}_{m}(A) \longrightarrow \widetilde{K}_{m}(B)}{\widetilde{K}_{m}\left(B^{\prime}\right) \longrightarrow \widetilde{K}_{m}\left(A^{\prime}\right)}$ is partially ordered by inclusion, with minimal element

$$
I_{m}=\left(\begin{array}{cc}
I_{m} \longrightarrow 0 \\
\downarrow & \downarrow \\
0 \longrightarrow 0
\end{array}\right) \subseteq\binom{\widetilde{K}_{m}(A) \longrightarrow \widetilde{K}_{m}(B)}{\widetilde{K}_{m}\left(B^{\prime}\right) \longrightarrow \widetilde{K}_{m}\left(A^{\prime}\right)}
$$

and maximal element \mathcal{I}_{m}. The Tate Z_{2}-cohomology groups of any cartesian square k are such that

$$
\hat{H}^{\star}\left(\mathbb{Z}_{2} ; \kappa\right)=\hat{H}^{\star-2}\left(\mathbb{Z}_{2} ; I_{m}\right)=\hat{H}^{\star}\left(\mathbb{Z}_{2} ; X_{m}\right),
$$

so that $\hat{H}^{*}\left(\mathbb{Z}_{2} ; k / I_{m}\right)=0$ and by the exact sequence of Proposition 6.2.1 there are natural identifications

$$
\left\{\begin{array}{l}
L_{k}^{\star}(\Phi, \varepsilon)=L_{X}^{\star}(\Phi, \varepsilon) \\
L_{*}^{k}(\Phi, \varepsilon)=L_{\star}^{\tau} m(\Phi, \varepsilon)
\end{array}\right.
$$

Thus for fixed Φ, m the intermediate triad L-groups are independent of κ.

In order to identify the intermediate triad L-groups for $m=0$ with those for $m=1$ consider the commutative diagram of abelian groups with exact rows and columns

in which $\hat{H}^{*}\left(\mathcal{Z}_{2} ; \Delta\right)=0$ (by the hypothesis on ϕ). It follows that

The commutative square of rings with involution Φ
is $\left\{\begin{array}{l}\mathrm{L}^{\star}- \\ \mathrm{L}_{\star^{-}} \text {cartesian if }\end{array}\right.$
i) Φ is $\hat{\mathrm{H}}^{\star}$-cartesian
ii) $\left\{\begin{array}{l}L_{k}^{k}(\Phi, \varepsilon)=0 \\ L_{\star}^{k}(\Phi, \varepsilon)=0\end{array}\right.$ for some cartesian square k of *-invariant subgroups.
(See $\$ 6.3$ below for examples of $\left\{\begin{array}{l}\mathrm{L}^{\star-} \\ \mathrm{L}_{\star^{-}}\end{array}\right.$cartesian squares Φ).
Proposition 6.2.3 Let

be an L^{*}-cartesian square of rings with involution.
i) For any cartesian square of *-invariant subgroups

there are defined excision isomorphisms of relative intermediate e-symmetric I -groups

$$
\left(f^{\prime}, g\right): L_{Y, X}^{n}(f: A \longrightarrow B, \varepsilon) \longrightarrow L_{X}^{n}, Y^{\prime},\left(g^{\prime}: B^{\prime} \longrightarrow A^{\prime}, \varepsilon\right) \quad(n \in \mathbb{Z})
$$

and a Mayer-Vietoris exact sequence of the absolute intermediate
e-symmetric L-groups

$$
\begin{aligned}
& \ldots \longrightarrow L_{X}^{n}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L_{Y^{\prime}}^{n}(B, \varepsilon) \oplus L_{Y^{\prime}}^{n}\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(g^{\left.-g^{\prime}\right)}\right.} L_{X^{\prime}}^{n}\left(A^{\prime}, \epsilon\right) \\
& \xrightarrow{\partial} L_{X}^{n-1}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L_{Y}^{n-1}(B, \varepsilon) \oplus L_{Y^{\prime}}^{n-1}\left(B^{\prime}, \varepsilon\right) \longrightarrow \ldots(n \in
\end{aligned}
$$

in which the connecting maps are given by the composites

$$
\begin{aligned}
\jmath: L_{X}^{n},\left(A^{\prime}, \varepsilon\right) \longrightarrow & L_{X}^{n}, Y^{\prime}\left(g^{\prime}: B^{\prime} \longrightarrow A^{\prime}, \epsilon\right) \\
& \left(f^{\prime}, g\right)^{-1} \\
& \xrightarrow{n} L_{Y, X}^{n}(f: A \longrightarrow B, \varepsilon) \longrightarrow L_{X}^{n-1}(A, \varepsilon) \quad .
\end{aligned}
$$

ii) For cartesian squares of $*$-invariant subgroups k_{1}, k_{2} such that

$$
\begin{aligned}
& (m=0 \text { or } 1)
\end{aligned}
$$

there is defined a commutative diagram of abelian groups with exact rows and columns

iii) The Mayer-vietoris exact sequences associated to the cartesian squares of $*$-invariant subgroups \mathcal{I}_{0} and \mathcal{J}_{1} intertwine in a commutative braid of exact sequences

Similarly for L_{\star}-cartesian squares $\varnothing_{\text {. }}$

Proof: i) It is immediate from Proposition 6.2.1 that

$$
L_{\kappa}^{\star}(\Phi, \varepsilon)=0,
$$

which is precisely the condition for there to be excision isomorphisms and a Mayer-Vietoris exact sequence in the intermediate e-symmetric L-groups associated to k, by the intermediate version of Proposition 6.1.1 ii).
ii) The only parts of the diagram where commutativity is perhaps not quite obvious are those involving the connecting maps ∂. For those parts consider the more obviously commatative diagram

in which the composites of the horizontal maps (inverting the excision isomorphisms (f^{\prime}, g)) are the connecting maps ∂. iii) By analogy with ii).

Madsen $\{2,4.11\}$ makes use of a particular case of the naturality property of Proposition 6.2.3 ii), indicating a proof specific to that case.
6.3 Cartesian 1 -theory

A commutative square of rings

is cartesian if the sequence of abelian groups

$$
0 \longrightarrow A^{\binom{f}{f}} B \oplus B^{\prime} \xrightarrow{\left(g-g^{\prime}\right)} A^{\prime} \longrightarrow 0
$$

is exact.
The cartesian squares of rings with involution ϕ for which we shall obtain excision in L-theory will be such that there is excision in the classical algebraic k-theory of the underlying cartesian square of rings, in the following sense.

A cartesian square of rings Φ is \underline{k}_{\star}-cartesian if
i) Φ is cartesian
ii) the natural map of relative K-groups

$$
\left(f^{\prime}, g\right): K_{1}(f: A \longrightarrow B) \longrightarrow K_{1}\left(g^{\prime}: B^{\prime} \longrightarrow A^{\prime}\right)
$$

is an isomorphism
iii) the sequences of reduced algebraic K-groups

$$
\widetilde{R}_{m}(A) \xrightarrow{\binom{f}{f^{\prime}}} \widetilde{K}_{m}(B) \oplus \widetilde{K}_{m}\left(B^{\prime}\right) \xrightarrow{\left(g-g^{\prime}\right)} \xrightarrow{\longrightarrow} \widetilde{K}_{m}\left(A^{\prime}\right) \quad(m=0,1)
$$

are exact. (For $m=0$ this follows from ii)).
In particular, for a K_{*}-cartesian square Φ there is defined a Mayer-Vietoris exact sequence of reduced algebraic k-groups

$$
\widetilde{\mathrm{K}}_{1}(\mathrm{~A}) \longrightarrow \widetilde{\mathrm{K}}_{1}(\mathrm{~B}) \oplus \widetilde{\mathrm{K}}_{1}\left(\mathrm{~B}^{\prime}\right) \longrightarrow \widetilde{\mathrm{K}}_{1}\left(\mathrm{~A}^{\prime}\right) \xrightarrow{\partial} \widetilde{\mathrm{K}}_{\mathrm{O}}(\mathrm{~A}) \longrightarrow \mathrm{K}_{0}(\mathrm{~B}) \oplus \mathrm{K}_{0}\left(\mathrm{~B}^{\prime}\right) \longrightarrow \widetilde{K}_{\mathrm{O}}(\mathrm{~A}
$$

with the connecting map 3 given by

$$
\partial: \widetilde{K}_{1}\left(A^{\prime}\right) \longrightarrow K_{1}\left(g^{\prime}\right) \xrightarrow{\left(f^{\prime}, g\right)^{-1}} K_{1}(f) \longrightarrow \widetilde{K}_{O}(A) \quad .
$$

A cartesian square of rings Φ with $g: B \longrightarrow A^{\prime}$ (or $g^{\prime}: B^{\prime}$ onto is K_{\star}-cartesian, by Milnor $[4, \$ 4]$. The cartesian square

associated to a cartesian morphism of rings and multiplicativ subsets

$$
\text { (e.g. } \left.(A, S) \longrightarrow(\hat{A}, \hat{S}) \text { with } \hat{A}=\underset{S \in S}{\operatorname{Lim}_{s \in S}} A / s A\right) \text { is } k_{*} \text {-cartesian, by }
$$

Karoubi [2,App.5] (cf. Proposition 3.1.3 i)).
Let then Φ be $a K_{\star}$-cartesian square of $r i n g s$ as above. Given
i) a f.g. projective B-module P
ii) a f.g. projective B^{\prime}-module p^{\prime}
iii) an isomorphism of the induced f.g. projective A^{\prime}-mod

$$
h: A^{\prime} \otimes_{B} P \longrightarrow A^{\prime} \mathbb{E}_{B} P^{\prime}
$$

there are defined
i) the pullback f.q. projective A-module $\left(P, h, P^{\prime}\right)=\left\{\left(x, x^{\prime}\right) \in P \oplus P^{\prime} \mid h\left(1 \otimes_{P} x\right\rangle=1 \otimes_{B}, x^{\prime} \in A^{\prime} \otimes_{B} P^{\prime}\right\}$
$A \times\left(P, h, P^{\prime}\right) \cdots \rightarrow\left(P, h, P^{\prime}\right)$;

$$
\left(a,\left(x, x^{\prime}\right)\right)+\cdots \rightarrow\left(f(a) x, f^{\prime}(a) x^{\prime}\right)
$$

ii) an isomorphism of f.g. projective B-modules $i: B \otimes_{A}\left(P, h, P^{\prime}\right) \longrightarrow P ; b \otimes\left(x, x^{\prime}\right) \longmapsto b x$
iii) an isomorphism of f.g. projective B^{\prime}-modules $i^{\prime}: B^{\prime} \otimes_{A}\left(P, h, P^{\prime}\right) \longrightarrow P^{\prime} ; b^{\prime}\left(x, x^{\prime}\right) \longmapsto b^{\prime} x^{\prime}$
such that there is defined a commutative diagram of f.g. projective A^{\prime}-modules and isomorphisms

The isomorphisms i, i' will be used to identify

$$
B Q_{A}\left(P, h, P^{\prime}\right)=P, B^{\prime} \mathbb{M}_{A}\left(P, h, P^{\prime}\right)=P^{\prime} .
$$

The connecting map in the algebraic k-theory Mayer-Vietoris exact sequence of Φ can be expressed in terms of the pullbas construction by

$$
\partial: \tilde{K}_{1}\left(A^{\prime}\right) \longrightarrow \tilde{K}_{0}(A) ; \tau\left(h: A^{\prime} \underline{\sim} \longrightarrow A^{\prime} q\right) \longmapsto\left(\left(B^{q}, h, B^{\prime}\right)\right]
$$

The pullback construction for modules extends to morphisms: if ($\left.P, h, P^{\prime}\right),\left(Q, k, Q^{\prime}\right)$ are pullback f.g. projective A-modules there is defined a Mayer-Vietoris exact sequence of abelian groups

$$
\begin{array}{r}
0 \longrightarrow \operatorname{Hom}_{A}\left(\left(P, h, P^{\prime}\right),\left(Q, k, Q^{\prime}\right)\right) \longrightarrow \operatorname{Hom}_{B}(P, Q) \oplus \operatorname{Hom}_{B},\left(P^{\prime}, Q^{\prime}\right) \\
\longrightarrow \operatorname{Hom}_{A},\left(A^{\prime} \otimes_{B} P, A^{\prime} \otimes_{B}, Q^{\prime}\right) \longrightarrow \cdots,
\end{array}
$$

so that there is a natural identification

$$
\begin{aligned}
& \operatorname{Hom}_{A}\left(\left(P, h, P^{\prime}\right),\left(Q, k, Q^{\prime}\right)\right) \\
& =\left\{\left(e, e^{\prime}\right) \in \operatorname{Hom}_{B}(P, Q) \oplus \operatorname{Hom}_{B^{\prime}}\left(P^{\prime}, Q^{\prime}\right)\right. \\
& \left.\qquad \quad \mid\left(1 \otimes_{B}, e^{\prime}\right) h=k\left(1 \otimes_{B} e\right) \in \operatorname{Hom}_{A},\left(A^{\prime} \otimes_{B} P, A^{\prime} Q_{B^{\prime}}, Q^{\prime}\right)\right\} .
\end{aligned}
$$

Let now Φ be a K_{*}-cartesian square of rings with involution.
If ($\mathrm{P}, \mathrm{h}, \mathrm{P}$ ') is a pullback f.g. projective A-module there is
defined an isomorphism of f.g. projective A-modules

$$
\begin{aligned}
& \left(P *, h^{-1}, P^{\prime *}\right) \xrightarrow{\sim}\left(P, h, P^{\prime}\right) * ; \\
& \left(e, e^{\prime}\right) \longmapsto\left(\left(x, x^{\prime}\right) \longmapsto\left(e(x), e^{\prime}\left(x^{\prime}\right)\right)\right. \\
& \left.\epsilon \operatorname{ker}\left(\left(g-g^{\prime}\right): B \oplus B^{\prime} \longrightarrow A^{\prime}\right)=A\right)
\end{aligned}
$$

which we shall use to identify

$$
\left(P, h, P^{\prime}\right)^{\star}=\left(P^{\star}, h^{-1}, P^{\prime *}\right)
$$

It follows that the square

is skew-commutative, that is

$$
\text { *) }=-3 \star \text {, }
$$

and hence that the abelian group isomorphisms

$$
\exists: \widehat{\mathrm{K}}_{1}\left(\mathrm{~A}^{\prime}\right) / \mathrm{J}_{1} \xrightarrow{\sim} \mathrm{I}_{\mathrm{O}}
$$

induces isomorphisms in the Tate \mathbb{Z}_{2}-cohomology groups

$$
3: \hat{\mathrm{H}}^{\mathrm{n}}\left(\mathbb{Z}_{2} ; \tilde{\mathrm{K}}_{1}\left(A^{\prime}\right) / J_{1}\right) \xrightarrow{\sim} \hat{H}^{n-1}\left(\mathbb{Z}_{2} ; I_{0}\right) \quad(n(\bmod 2))
$$

inverse to the natural maps

$$
\Delta: \hat{H}^{n-1}\left(\mathbb{Z}_{2} ; I_{0}\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; \widetilde{K}_{1}\left(A^{\prime}\right) / J_{1}\right) \quad(n(\bmod 2))
$$

defined in $\$ 6.2$ above. Thus $\hat{H}^{*}\left(\mathbb{Z}_{2} ; \Delta\right)=0$, and Φ is $\hat{H} *$-cartesian in the sense of $\$ 6.2$.

The first step in proving that a K_{*}-cartesian square of rings with involution Φ is $\left\{\begin{array}{l}L^{*-} \\ L_{*_{-}}\end{array}\right.$cartesian in the sense of $\$ 6.2$ would be to extend the pullback construction of $f . q$. projective A-modules to $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms and formations over A. Unfortunately, such an extension is not always possible. We shall now investigate the extent to which such an extension is in fact possible, in the first instance by considering the behaviour under pullback of the various Q-groups used to define forms in $\$ 1.6$ above.

Let Φ be a K_{*}-cartesian square of rings with involution, and let $\left(P, h, P^{\prime}\right)$ be a pullback f.g. projective A-module.

The split ε-quadratic Q-group

$$
\tilde{Q}_{E}\left(\left(P, h, P^{\prime}\right)\right)=\operatorname{Hom}_{A}\left(\left(P, h, P^{\prime}\right),\left(P, h, P^{\prime}\right)^{\star}\right)
$$

fits into an exact sequence

$$
O \longrightarrow \widetilde{Q}_{E}\left(\left(P, h, P^{\prime}\right)\right) \longrightarrow \widetilde{Q}_{E}(P) \oplus \widetilde{Q}_{E}\left(P^{\prime}\right) \longrightarrow \widetilde{Q}_{E}\left(A^{\prime} B_{B} P\right) \longrightarrow 0
$$

which is in fact an exact sequence of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules with $T \in \mathbb{Z}_{2}$ acting by the ε-duality involution $T_{\varepsilon}: \psi \longmapsto \varepsilon \psi^{*}$ on each \widetilde{Q}-group. Thus the pullback construction of modules generalizes to split ε-quadratic forms, as detailed further below. The ε-symmetric and e-quadratic Q-groups

$$
\begin{aligned}
& Q^{E}(P)=\operatorname{ker}\left(1-T_{E}: \widetilde{Q}_{E}(P) \longrightarrow \widetilde{Q}_{E}(P)\right) \\
& Q_{E}(P)=\operatorname{coker}\left(1-T_{E}: \widetilde{Q}_{E}(P) \longrightarrow Q_{E}(P)\right)
\end{aligned}
$$

are such that there is defined an exact sequence

$$
\begin{aligned}
& 0 \longrightarrow Q^{\varepsilon}\left(\left(P, h, P^{\prime}\right)\right) \longrightarrow Q^{\varepsilon}(P) \oplus Q^{\varepsilon}\left(P^{\prime}\right) \longrightarrow Q^{\varepsilon}\left(A^{\prime} \otimes_{B} P\right) \\
& \cdots \longrightarrow Q_{E}\left(\left(P, h, P^{\prime}\right)\right) \longrightarrow Q_{E}(P) \oplus Q_{E}\left(P^{\prime}\right) \longrightarrow \longrightarrow Q_{E}\left(A^{\prime} \otimes_{B} P\right) \longrightarrow
\end{aligned}
$$

with the connecting map given by

$$
\partial: Q^{\varepsilon}\left(A^{\prime} \mathscr{O}_{B} P\right) \longrightarrow Q_{\varepsilon}\left(\left(P, h, P^{\prime}\right)\right): \phi^{\prime} \longmapsto\left(\phi_{B}-\varepsilon \phi_{B}^{*}, \phi_{B^{\prime}}-\varepsilon \phi_{B}^{*},\right)
$$

expressing ϕ^{\prime} as

$$
\phi^{\prime}=l \otimes \phi_{\mathrm{B}}-h^{*}\left(1 \otimes_{B^{\prime}}, \phi_{B^{\prime}}\right) h \in Q^{E}\left\langle A^{\prime} \|_{B} P\right\rangle
$$

for some $\phi_{B} \in \tilde{Q}_{\varepsilon}(P), \phi_{B} \in \widetilde{Q}_{\varepsilon}\left(P^{\prime}\right)$. The even ε-symmetric Q-group

$$
Q\left\langle v_{O}\right\rangle^{E}(P)=\operatorname{im}\left(1+T_{E}: \widetilde{Q}_{E}(P) \longrightarrow \widetilde{Q}_{E}(P)\right)
$$

is such that there is defined an exact sequence

$$
\begin{aligned}
& O \rightarrow\left(\phi \in Q^{\varepsilon}\left(\left(P, h, P^{\prime}\right)\right) \mid \phi(x)(x) \in \operatorname{im}\left(\hat{\delta}: \hat{H}^{1}\left(Z_{2} ; A^{\prime}, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(Z_{2} ; A, \varepsilon\right)\right)\right. \\
&\text { for all } \left.x \in\left(P, h, P^{\prime}\right)\right\} \\
& \longrightarrow Q\left\langle v_{O}\right\rangle^{\varepsilon}(P) \oplus Q\left\langle v_{O}\right\rangle^{\varepsilon}\left(P^{\prime}\right) \longrightarrow Q\left\langle v_{O}\right\rangle^{\varepsilon}\left(A^{\prime} ⿴_{B} P\right) \longrightarrow 0 .
\end{aligned}
$$

Thus the pullback construction generalizes to ε-symmetric forms, as detailed further below, but not necessarily to even ε-symmetric and ε-quadratic forms. However, if $\hat{\delta}=0: \hat{H}^{O}\left(\mathbb{Z}_{2} ; A^{\prime}, \varepsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)$ then

$$
)=0: Q^{\varepsilon}\left(A^{\prime} \otimes_{B} P\right) \longrightarrow Q_{\varepsilon}\left(\left(P, h, P^{\prime}\right)\right)
$$

and there are defined short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow Q^{\varepsilon}\left(\left(P, h, P^{\prime}\right)\right) \longrightarrow Q^{\varepsilon}(P) \not Q^{\varepsilon}\left(P^{\prime}\right) \longrightarrow Q^{\varepsilon}\left(A^{\prime} \otimes_{B} P\right) \longrightarrow 0 \\
& O \longrightarrow Q_{\varepsilon}\left(\left(P, h, P^{\prime}\right)\right) \longrightarrow Q_{E}(P) \oplus Q_{E}\left(P^{\prime}\right) \longrightarrow Q_{E}\left(A^{\prime} \otimes_{B} P\right) \longrightarrow 0 \\
& 0 \longrightarrow Q\left\langle v_{O}\right\rangle^{-E}\left(\left(P, h, P P^{\prime}\right) \rightarrow Q\left\langle v_{O}\right\rangle^{-\varepsilon}(P) \oplus Q\left\langle v_{O}\right\rangle^{-F}\left(P^{\prime}\right)\right. \\
& \longrightarrow Q\left\langle v_{0}\right\rangle^{-\varepsilon}\left(A^{\prime} B_{B} P\right) \longrightarrow 0,
\end{aligned}
$$

so that the pullback construction generalizes to ε-quadratic
and even $(-\varepsilon)-s y m m e t r i c$ forms. In particular, this is the case for the K_{*}-cartesian "arithmetic" square associated to a ring with involution A

since $\hat{H}^{\star}\left(\mathbb{Z}_{2} ; \hat{\omega} \hat{W}_{Z}{ }^{A}, \varepsilon\right)=0$ (on account of $1 / 2 \in \hat{\mathbb{Q}}$) - the L-theory of such cartesian squares was first studied by Wall [8], [9] as part of his programme for computing the quadratic L-groups $L_{\star}(\mathbb{Z}[\pi]$) of finite groups π. (For torsion-free A, such as $A=\mathbb{Z}[\pi]$ for any group π, this is a localization-completion square as in 53.1 , with $S=\mathbb{Z}-\{0\} \subset A)$. On the other hand, the K_{*}-cartesian square of rings with involution

defined by $\bar{T}=T \in \mathbb{Z}\left\{\mathbb{Z}_{2}\right\}$ and

$$
\begin{gathered}
e_{ \pm}: \mathbb{Z}\left[\mathbb{Z}_{2}\right] \longrightarrow \mathbb{Z} ; a+b T \rightarrow \cdots a \pm b \\
p=\text { projection }: \mathbb{Z} \longrightarrow \mathbb{Z}_{2}
\end{gathered}
$$

is such that there is no pullback construction for skew-quadri forms, since the connecting map

$$
\begin{array}{r}
a: Q^{-1}\left(\mathbb{Z}_{2} \mathbb{Q}_{\mathbb{Z}}\left\{\mathbb{Z}_{2}\right](\mathbb{Z}, 1, \mathbb{Z})\right)=\mathbb{Z}_{2} \longrightarrow Q_{-1}((\mathbb{Z}, 1, \mathbb{Z}))=\mathbb{Z}_{2} \\
\left((\mathbb{Z}, 1, \mathbb{Z})=\mathbb{Z}\left[\mathbb{Z}_{2}\right]\right.
\end{array}
$$

is non-trivial. (For this example I am indehted to W. Pardon).

Given
i) $\left\{\begin{array}{l}\text { an } \varepsilon \text {-symmetric } \\ \text { a split e-quadratic }\end{array}\right.$ form over $B\left\{\begin{array}{l}\left(M, \phi \in Q^{\varepsilon}(M)\right) \\ \left(M, \psi \in \widetilde{Q}_{\varepsilon}(M)\right)\end{array}\right.$
ii) $\left\{\begin{array}{l}\text { an } \varepsilon \text {-symmetric } \\ \text { a split e-quadratic }\end{array}\right.$ form over $B^{\prime}\left\{\begin{array}{l}\left(M^{\prime}, \phi^{\prime} \in Q^{\varepsilon}\left(M^{\prime}\right)\right) \\ \left(M^{\prime}, \psi^{\prime} \in \widetilde{Q}_{\varepsilon}\left(M^{\prime}\right)\right)\end{array}\right.$
iii) an isomorphism of the induced $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$

Forms over ${ }^{\prime}{ }^{\prime}$

$$
\left\{\begin{array}{l}
h: A^{\prime} \otimes_{B}(M, \phi) \longrightarrow A^{\prime} \otimes_{B^{\prime}}\left(M^{\prime}, \phi^{\prime}\right) \\
(h, x): A^{\prime} \otimes_{B}(M, \psi) \longrightarrow A^{\prime} \mathscr{E}_{B^{\prime}}\left(M^{\prime}, \psi^{\prime}\right)
\end{array}\right.
$$

there is defined a pullback $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ form over A

$$
\begin{aligned}
& \left((M, \phi), h,\left(M^{\prime}, \phi^{\prime}\right)\right) \\
& =\left(\left(M, h, M^{\prime}\right),\left(\phi, \phi^{\prime}\right):\left(M, h, M^{\prime}\right) \longrightarrow\left(M^{*}, h^{-1}, M^{\prime *}\right)=\left(M, h, M^{\prime}\right){ }^{*}\right) \\
& \left((M, \psi),(h, x),\left(M^{\prime}, \psi^{\prime}\right)\right) \\
& =\left(\left(M, h, M^{\prime}\right),\left(\psi+X_{B}-\varepsilon X_{B}^{*}, \psi^{\prime}+X_{B},-\varepsilon X_{B}^{*},\right)\right. \\
& \left.:\left(M, h, M^{\prime}\right) \longrightarrow\left(M^{*}, h^{-1}, M^{\prime *}\right)=\left(M, h, M^{\prime}\right) *\right)
\end{aligned}
$$

with $X_{B} \in \operatorname{Hom}_{B}\left(M, M^{*}\right), X_{B}, \in \operatorname{Hom}_{B},\left(M^{\prime}, M^{\prime *}\right)$ such that

$$
x=1 \otimes x_{B}-h *\left(1 \otimes X_{B},\right) h \in Q_{-\varepsilon}\left(A^{\prime} \otimes_{B} M\right)
$$

There are natural identifications

$$
\begin{aligned}
& \left\{\begin{array}{l}
B \otimes_{A}\left((M, \phi), h,\left(M^{\prime}, \phi^{\prime}\right)\right)=(M, \phi) \\
B \otimes_{A}\left((M, \psi),(h, X),\left(M^{\prime}, \psi^{\prime}\right)\right)=(M, \psi)
\end{array}\right. \\
& \left\{\begin{array}{l}
B^{\prime} \otimes_{A}\left((M, \phi), h,\left(M^{\prime}, \phi^{\prime}\right)\right)=\left(M^{\prime}, \phi^{\prime}\right) \\
B{ }^{\prime} \otimes_{A}\left((M, \psi),(h, X),\left(M^{\prime}, \psi^{\prime}\right)\right)=\left(M^{\prime}, \psi^{\prime}\right)
\end{array}\right.
\end{aligned}
$$

Given
i) $\left\{\begin{array}{l}\text { an } \epsilon \text {-symmetric } \\ \text { a split } \quad \text {-quadratic }\end{array}\right.$ formation over $B\left\{\begin{array}{l}(M, \phi ; F, G) \\ \left(F,\left(\left(_{\mu}^{\gamma}\right), \theta\right) G\right)\end{array}\right.$
ii) $\left\{\begin{array}{l}\text { an } \varepsilon \text {-symmetric } \\ \text { a split } \varepsilon \text {-quadratic }\end{array}\right.$ formation over $B^{\prime}\left\{\begin{array}{l}\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \\ \left(F^{\prime},\left(\left(Y_{\mu}^{\prime}\right), \theta^{\prime}\right) G^{\prime}\right)\end{array}\right.$
iii) an isomorphism of the induced $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { split e-quadratic }\end{array}\right.$
formations over A^{\prime}

$$
\left\{\begin{array}{l}
h: A^{\prime} \otimes_{B}(M, \phi ; F, G) \longrightarrow A^{\prime} \otimes_{B^{\prime}}\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right) \\
(\alpha, \beta, \psi): A^{\prime} \otimes_{B}(F, G) \longrightarrow A^{\prime} \otimes_{B^{\prime}}\left(F^{\prime}, G^{\prime}\right)
\end{array}\right.
$$

there is defined a pullback $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ formation over A
with $\psi_{B} \in \operatorname{Hom}_{B}\left(F^{*}, F\right), \psi_{B}, \in \operatorname{Hom}_{B^{\prime}}\left(F^{\prime *}, F^{\prime}\right)$ such that

$$
\psi=1 \otimes \psi_{B}-\alpha^{-1}\left(1 \otimes_{\mathcal{B}^{\prime}}\right) \alpha^{*-1} \in Q_{-\varepsilon}\left(A^{\prime} \otimes_{B^{*}}\right)
$$

and $X_{B} \in \operatorname{Hom}_{B}\left(G, G^{*}\right), X_{B}, \in \operatorname{Hom}_{B},\left(G^{\prime}, G^{\prime *}\right)$ such that

$$
B *\left(1 \otimes_{B} \theta^{\prime}\right) B-1 \otimes_{B} \theta-\left(1 ब_{B}{ }^{\mu}\right) \psi\left(1 \otimes_{B^{\mu}}\right) \in Q_{-\epsilon}\left(A^{\prime} \otimes_{B} G\right) \quad .
$$

There are natural identifications

$$
\begin{aligned}
& \left\{\begin{array}{l}
B \otimes_{A}\left((M, \phi ; F, G), h,\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right)\right)=(M, \phi ; F, G) \\
B \otimes_{A}\left((F, G),(\alpha, B, \phi),\left(F^{\prime}, G^{\prime}\right)\right)=(F, G)
\end{array}\right. \\
& \left\{\begin{array}{l}
B^{\prime} \otimes_{A}\left((M, \phi ; F, G), h,\left(M^{\prime}, \phi^{\prime} ; F^{\prime}, G^{\prime}\right)\right)=\left(M^{\prime}, \phi^{\prime} ; F, G^{\prime}\right) \\
B^{\prime} \otimes_{A}\left((F, G),(\alpha, B, \psi),\left(F^{\prime}, G^{\prime}\right)\right)=\left(F^{\prime}, G^{\prime}\right),
\end{array}\right.
\end{aligned}
$$

Proposition 6.3.1 Given a cartesian square of rings with invol

let k be a cartesian square of *-invariant subgroups

If either i) $g: B \longrightarrow A^{\prime}$ is onto or ii) ${ }_{\star} \Phi$ is the cartesian square

associated to a cartesian morphism of rings with involution ar multiplicative subsets

$$
(A, S) \longrightarrow(B, T)
$$

then Φ is L_{\star}-cartesian

$$
L_{*}^{k}(\Phi, \varepsilon)=0,
$$

and there is defined a Mayer-Vietoris exact sequence of intermediate ε-quadratic L-groups

Define also the conditions
i)* $=$ the maps $g: B \longrightarrow A^{\prime}, g^{\prime}: B^{\prime} \longrightarrow A^{\prime}$ and $g: \hat{H}^{O}\left(\mathbb{Z}_{2} ; B, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A^{\prime}, \varepsilon\right), g^{\prime}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; B^{\prime}, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A\right.$ are all onto

$$
\begin{aligned}
i i) \star= & i i)_{\star} \text { and also } \\
& \hat{\delta}=0: \hat{H}^{\circ}\left(\mathbb{Z}_{2} ; T^{-1} B, \epsilon\right) \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) .
\end{aligned}
$$

$$
\text { Then if }\left\{\begin{array}{l}
i)^{*} \\
i(i)
\end{array} \text { holds } \Phi\right. \text { is }
$$

$$
\left\{\begin{array}{l}
\text { such that } L_{K}^{n}(\Phi, \varepsilon)=0(n \leqslant 1) \\
L^{*} \text {-cartesian, with } L_{K}^{*}(\Phi, \varepsilon)=0
\end{array}\right.
$$

and for $\left\{\begin{array}{l}n \leqslant 1 \\ n \in \mathbb{Z}\end{array}\right.$ there is defined a Mayer-Vietoris exact seque
of intermediate ε-symmetric L -groups

$$
\begin{aligned}
& \left\{\begin{array}{l}
L_{Y}^{1}(B, \varepsilon) \oplus L_{Y}^{1},\left(B^{\prime}, \varepsilon\right) \\
\ldots
\end{array} \longrightarrow \ldots L_{Y}^{n}(B, \varepsilon) \oplus L_{Y}^{n},\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(g-g^{\prime}\right)} L^{\prime}\right. \text { : } \\
& \xrightarrow{\dot{u}} L_{X}^{n-1}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L_{Y}^{n-1}(B, E) \oplus L_{Y^{\prime}}^{n-1}\left(B^{\prime}, \varepsilon\right) \longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \ldots \longrightarrow L_{n}^{X}(A, \varepsilon) \xrightarrow{\binom{f}{f}} L_{n}^{Y}(B, \varepsilon) \oplus L_{n}^{Y^{\prime}}\left(B^{\prime}, \varepsilon\right) \xrightarrow{\left(g-g^{\prime}\right)} L_{n}^{X^{\prime}}\left(A^{\prime}, \varepsilon\right. \\
& \longrightarrow \xrightarrow{\partial} L_{n-1}^{X}(A, \varepsilon) \longrightarrow \ldots
\end{aligned}
$$

Proof: i) Consider first the special case

Assuming condition $\left\{\begin{array}{l}\text { i) * } \\ \text { i) *e shall now define morphisms of }\end{array}\right.$. $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \epsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\begin{aligned}
& \left\{\begin{array}{l}
\delta: V^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow U_{X}^{n}(f, \varepsilon) \\
\delta: V_{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow U_{n}^{X}(f, \varepsilon)
\end{array}\right. \\
& \left\{\begin{array}{l}
\hat{\delta}: V^{n}\left(g^{\prime}, \varepsilon\right) \longrightarrow U_{X}^{n-1}(A, \varepsilon) \\
\hat{\delta}: V_{n}\left(g^{\prime}, \varepsilon\right) \longrightarrow U_{n-1}^{x}(A, \varepsilon)
\end{array}\right.
\end{aligned}
$$

for $\left\{\begin{array}{l}n \leqslant 1 \\ n \in \mathbb{Z}\end{array}\right.$ satisfying the hypotheses of the appropriate
intermediate version of Proposition 6.1.3, thus obtaining the intermediate $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-theory Mayer-Vietoris exact sequence in the special case $k=I_{O}$.

Every element of $\left\{\begin{array}{l}v^{O}\left(A^{\prime}, \varepsilon\right) \\ V_{O}\left(A^{\prime}, E\right)\end{array}\right.$ is represented by a non-singular $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A^{\prime} of the type $\left\{\begin{array}{l}\left(A^{\prime}, q, \phi^{\prime} \in Q^{\varepsilon}\left(A^{\prime}, q\right)\right) \\ \left(A^{\prime}, q, \psi^{\prime} \in Q_{E}\left(A^{\prime},\right)\right.\end{array}(q \geqslant 0)\right.$. As $g: B \longrightarrow A^{\prime}$ is onto $\left\{\begin{array}{l}\text { and } g: A^{\circ}\left(Z_{2} ; B, \varepsilon\right) \longrightarrow \hat{A}^{\circ}\left(\mathcal{Z}_{2} ; A^{\prime}, \varepsilon\right) \text { is onto } \\ -\end{array}\right.$ there exists an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over $B\left\{\begin{array}{l}\left(B^{q}, \phi \in Q^{\varepsilon}\left(B^{q}\right)\right) \\ \left(B^{q}, \psi \in Q_{\varepsilon}\left(B^{q}\right)\right)\end{array}\right.$
such that

$$
\left\{\begin{array}{l}
\left(A^{\prime} q, \phi^{\prime}\right)=A^{\prime} \Phi_{B}\left(B^{q}, \phi\right) \\
\left(A^{\prime} q, \psi^{\prime}\right)=A^{\prime} \Phi_{B}\left(B^{q}, \psi\right)
\end{array}\right.
$$

In the ε-quadratic case define

$$
x^{\prime}=\left(\psi^{\prime}+\varepsilon \psi^{\prime} *\right)^{-1} \psi^{\prime}\left(\psi^{\prime}+\varepsilon \psi^{\prime}\right)^{-1} \in Q_{E}\left(\left(A^{\prime}\right)^{*}\right)
$$

and let $\left(\left(B^{q}\right)^{\star}, x \in Q_{\varepsilon}\left(\left(B^{q}\right)^{\star}\right)\right)$ be an ε-quadratic form over B such that

$$
\left(\left(A^{\prime}\right)^{*}, X^{\prime}\right)=A^{\prime} \otimes_{B}\left(\left(B^{q}\right)^{*}, X\right)
$$

Use the isomorphism of non-singular $\left\{\begin{array}{l}\text { even }(-E) \text {-symmetric } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formations over A^{\prime}

$$
\begin{aligned}
& h=\left(\begin{array}{cc}
1 & -\phi^{\prime-1} \\
0 & 1
\end{array}\right): \\
& A^{\prime} \otimes_{B} ;\left(B^{q}, \phi\right)=\left(A \cdot q \oplus(A \cdot q) *\left(\begin{array}{cc}
0 & 1 \\
-\varepsilon & 0
\end{array}\right) ; A^{\prime} \cdot q,\right. \\
& \left.\operatorname{im}\left(\binom{1}{\phi^{\prime}}: A^{\prime},{ }^{\prime} \longrightarrow A^{\prime} q_{\oplus(A}, q^{\prime} *\right)\right) \\
& \longrightarrow A^{\prime} B_{B},\left(H^{-\varepsilon}\left(B^{\prime} q\right) ; B^{\prime},\left(B^{\prime}\right)^{\prime}\right) \\
& =\left(A \cdot q_{\oplus}(A \cdot q) *,\left(\begin{array}{cc}
0 & 1 \\
-\varepsilon & 0
\end{array}\right) ; A \cdot q,\left(A \cdot q_{1} *\right)\right. \\
& (\alpha, \beta, \sigma)=\left(1, \psi^{\prime}+\varepsilon \psi^{\prime} *,-\bar{\varepsilon} X^{\prime}\right): \\
& \left.A^{\prime} \otimes_{B}{ }^{\partial}\left(B^{q}, \psi\right)=\left(A^{\prime},\left(\binom{1}{\psi^{\prime}+\varepsilon \psi^{\prime} *}, \psi^{\prime}\right) A^{\prime}\right)^{\prime}\right) \\
& \xrightarrow[1]{\sim} A^{\prime} \otimes_{B},\left(B^{\prime},\left(B^{\prime},\right)^{*}\right)=\left(A^{\prime},\left(\binom{0}{1}, 0\right)(A \cdot q) *\right)
\end{aligned}
$$

to define a pullback non-sinqular $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{c}
(N, v ; F, G)=\left(\partial\left(B^{q}, \phi\right), h,\left(H^{-\varepsilon}\left(B^{\prime} q\right) ; B^{\prime} q,\left(B^{\prime} q\right) *\right)\right) \\
(F, G)=\left(\partial\left(B^{q}, \psi\right),(\alpha, B, \sigma),\left(B^{\prime} q,\left(B^{\prime}\right)^{*}\right)\right) \\
=\left(\left(B^{q}, 1, B^{\prime} q\right),\binom{\left(1-\left(X^{+} \varepsilon X^{*}\right)\left(\psi+\varepsilon \psi^{*}\right), O\right)}{\left(\psi+\varepsilon \psi^{*}, 1\right)},\right. \\
\left.\psi-\left(\psi+\varepsilon \psi^{*}\right) x\left(\psi+\varepsilon \psi^{*}\right)\right)\left(B^{q}, \psi^{\prime}+\varepsilon \psi^{\prime *}, B^{\prime}\right.
\end{array}\right. \\
& \left(\left(B^{q}, 1, B^{\prime q}\right)=A^{q}\right)
\end{aligned}
$$

with projective class

$$
\begin{aligned}
{[G]-\left[F^{*}\right] } & =\left[\left(B^{q}, \phi^{\prime}, B^{\prime}, q\right)\right]-\left[A^{q}\right] \\
& =\dot{d}\left(\phi^{\prime}: A^{\prime} q \longrightarrow\left(A^{\prime}\right)^{*}\right) \\
& \in X=I_{O}=\mathbf{i m}\left(A: \widetilde{K}_{1}\left(A^{\prime}\right) \longrightarrow \widetilde{K}_{O}(A)\right) \subseteq \widetilde{K}_{O}(A)
\end{aligned}
$$

(where $\phi^{\prime}=\psi^{\prime}+\varepsilon \psi^{\prime *}$ in the ε-quadratic case). The isomorphi of non-singular $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formations over B

$$
\left\{\begin{array}{l}
1: B \otimes_{A}(N, \cup ; F, G) \longrightarrow \sim\left(B^{q}, \phi\right) \\
(1,1, \bar{E} X): B \otimes_{A}(F, G) \sim \sim \sim a\left(B^{q}, \psi\right)
\end{array}\right.
$$

can now be used to define an abelian group morphism

$$
\left\{\begin{array}{l}
\delta: V^{O}\left(A^{\prime}, \varepsilon\right) \longrightarrow U_{X}^{O}(f, \varepsilon) ;\left(A^{\prime} q, \phi^{\prime}\right) \longmapsto \longrightarrow\left((N, V ; F, G),\left(B^{q}, \phi\right), 1\right. \\
\delta: V_{O}\left(A^{\prime}, \varepsilon\right) \longrightarrow U_{O}^{X}(f, \varepsilon) ;\left(A^{\prime} q, \psi^{\prime}\right) \longmapsto\left((F, G),\left(B^{q}, \psi\right),(1,1, i\right.
\end{array}\right.
$$

The construction of δ in the $(-\varepsilon)$-quadratic case also gives abelian group morphism

$$
\begin{aligned}
& \delta: V^{-2}(A \cdot, \varepsilon)=V\left\langle v_{O}\right\rangle^{O}(A \cdot,-\varepsilon) \longrightarrow U_{X}^{-2}(f, \varepsilon)=U\left\langle v_{O}\right\rangle_{X}^{O}(f,-\varepsilon) \\
&\left(A \cdot q, \psi^{\prime}-\varepsilon \psi \psi^{\prime *} \in Q\left\langle v_{O}\right\rangle^{-\varepsilon}(A, q)\right) \\
&+\cdots\left(\left(H_{E}\left(A^{q}\right) ; A^{q}, G\right),\left(B^{q}, \psi-\varepsilon \psi^{*} \in Q\left\langle v_{O}\right\rangle^{-\varepsilon}\left(B^{q}\right)\right), 1\right)
\end{aligned}
$$

where $\left(H\left(A^{q}\right) ; A^{q}, G\right)$ is the non-singular ε-quadratic formation over A underlying the pullback split f-quadratic formation $(F, G)=\left(i\left(B^{q}, \psi\right),(\alpha, \beta, G),\left(B^{\prime} G,\left(B^{q}\right) \star\right)\right)$.

$$
\text { Every element of }\left\{\begin{array}{l}
v^{1}\left(A^{\prime}, \varepsilon\right) \\
v_{1}\left(A^{\prime}, \varepsilon\right)
\end{array}\right. \text { is represented by a non-si }
$$

$\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ formation over A^{\prime} of the type

$$
\begin{aligned}
& \left\{\begin{array} { l }
{ (H ^ { \epsilon } ((A ^ { \prime } , q) * , 5 ^ { \prime }) ; A ^ { \prime } q , \alpha (A ^ { \prime } q ^ { \prime }) } \\
{ (H _ { E } (\Lambda ^ { \prime q }) ; A ^ { \prime } , \alpha (A ^ { \prime })) }
\end{array} \quad (q \geqslant 0) \text { for some } \left\{\begin{array}{l}
\text { isomorphism } \\
\text { automorphism }
\end{array}\right.\right.
\end{aligned}
$$

of $\left\{\begin{array}{l}- \\ \text { a }\end{array}\right.$ standard hyperbolic $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \text { forms } \\ \text { split } \varepsilon \text {-quadratic form }\end{array}\right.$ over A, by Proposition 1.6.2. In the e-symmetric case we have that maps $g: B \longrightarrow A^{\prime}, g: \hat{H}^{O}\left(\mathbb{Z}_{2} ; B, \varepsilon\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2} ; A^{\prime}, \varepsilon\right)$ are onto, so there exists an ε-symmetric form over $B\left(\left(B^{q}\right) *, \xi \in Q^{\varepsilon}\left(\left(B^{q}\right) *\right.\right.$: such that

$$
\left(\left(A^{\prime}\right)^{*}, \xi^{\prime}\right)=A^{\prime} \otimes_{B}\left(\left(B^{q}\right) *, \xi\right) ;
$$

furthermore, the maps $g^{\prime}: B^{\prime} \longrightarrow A^{\prime}, g^{\prime}: \hat{H}^{O}\left(\mathbb{Z}_{2} ; B^{\prime}, E\right) \longrightarrow \hat{H}^{O}\left(\mathbb{Z}_{2}\right.$ are onto, so that there also exists an e-symmetric form ov ($\left.\left(B^{\prime}\right)^{*}, \zeta \in Q^{\varepsilon}\left(\left(B^{\prime}\right) *\right)\right)$ such that

$$
\left(\left(A^{\prime} q\right) *, \zeta^{\prime}\right)=A^{\prime} \otimes_{B},\left(\left(B^{\prime} q^{\prime}\right)^{*}, \zeta\right)
$$

The pullback non-singular $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ form over A

$$
\left\{\begin{array}{l}
(M, \phi)=\left(H^{\varepsilon}\left(\left(B^{q}\right)^{*}, \xi\right), \alpha, H^{\varepsilon}\left(\left(B^{\prime} q\right) *, \zeta\right)\right) \\
(M, \psi)=\left(\widetilde{H}_{\varepsilon}\left(B^{q}\right),(\alpha, X), \widetilde{H}_{\varepsilon}\left(B^{\prime} q\right)\right)
\end{array}\right.
$$

has projective class

$$
[M]=J \tau\left(\alpha: A^{\prime} q_{\oplus}(A, q) * \longrightarrow A^{\prime} q_{\oplus}\left(A^{\prime} q^{\prime} *\right) \in x=I_{O} \subseteq \widetilde{K}_{O}\right.
$$

Use the isomorphism of non-singular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over B

$$
\left\{\begin{array}{l}
1: B \otimes_{A}(M, \phi) \longrightarrow \hat{\sim}\left(H^{\varepsilon}\left(\left(B^{q}\right) \star, \xi\right) ; B^{q}, O\right)=H^{\varepsilon}\left(\left(B^{q}\right) *, \xi\right) \\
1: B \otimes_{A}(M, \phi) \longrightarrow \partial\left(B^{q}, O\right)=H_{\varepsilon}\left(B^{q}\right)
\end{array}\right.
$$

to define an abelian group morphism

$$
\begin{aligned}
& \left\{\begin{aligned}
\hat{\delta}: & V^{1}\left(A^{\prime}, \varepsilon\right) \longrightarrow U_{X}^{1}(f, \varepsilon) ; \\
& \left(H^{\varepsilon}\left(\left(A^{\prime}, q\right) \star, \zeta^{\prime}\right) ; A^{\prime} q, \alpha\left(A^{\prime} q\right)\right) \longmapsto\left((M, \phi),\left(H^{\varepsilon}\left(\left(B^{q}\right) \star, \xi\right) ; B^{q}, O\right), 1\right) \\
\hat{\delta}: & V_{1}\left(A^{\prime}, \varepsilon\right) \longrightarrow U_{1}^{X}(f, \varepsilon) ;
\end{aligned}\right. \\
& \left(H_{\varepsilon}\left(A^{\prime}\right) ; A^{\prime}, \alpha(A \cdot q)\right) \longmapsto\left((M, \psi),\left(B^{q}, O\right), 1\right) .
\end{aligned}
$$

The construction of $\hat{\delta}$ in the $(-\varepsilon)$-quadratic case also gives an abelian group morphism

$$
\begin{aligned}
\hat{\delta}: & V^{-1}\left(A^{\prime}, \varepsilon\right)=V\left\langle v_{0}\right\rangle^{1}\left(A^{\prime},-\varepsilon\right) \longrightarrow \\
& \left(H^{-\varepsilon}\left(A^{-1}\right) ; A^{-q}, \alpha(A, \varepsilon)=U\left\langle v_{0}\right\rangle_{X}^{1}(f,-\varepsilon)\right) \longmapsto \\
& \left.\left(M, \psi-\varepsilon \psi^{*}\right),\left(H^{-\varepsilon}\left(B^{q}\right) ; B^{q}, 0\right), 1\right),
\end{aligned}
$$

with $\alpha: H^{-\varepsilon}(A, q) \xrightarrow{\sim} H^{-\varepsilon}(A, q)$ an automorphism of a standard hyperbolic even ($-\varepsilon$)-symmetric form over A^{\prime} and

$$
\left(M, \psi-\varepsilon \psi^{*}\right)=\left(H^{-\varepsilon}\left(B^{q}\right), \alpha, H^{-\varepsilon}\left(B, Q^{-}\right)\right)
$$

the pullback non-singular even $(-\varepsilon)$-symmetric form over A.

$$
\text { An element of }\left\{\begin{array}{l}
v^{O}\left(g^{\prime}, \varepsilon\right) \\
v_{O}\left(g^{\prime}, \varepsilon\right)
\end{array}\right. \text { is represented by a non-singular }
$$

$\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formation over B^{\prime} of the type $\left\{\begin{array}{l}\left.\left(H^{-E}\left(B^{\prime}\right)^{\prime}\right) ; B^{\prime}, G\right) \\ \left(B^{\prime}, G\right)\end{array}\right.$ (with $G=B^{\prime}, q$ as a B^{\prime}-module) together with an $\left\{\begin{array}{l}\varepsilon-\text { symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over A^{\prime} of the type $\left\{\begin{array}{l}\left(A^{\prime}, q, \phi^{\prime} \in Q^{\varepsilon}\left(A^{\prime}, q\right)\right) \\ \left(A^{\prime}, \psi^{\prime} \in Q_{\varepsilon}\left(A^{\prime}, q\right)\right)\end{array}\right.$
and an isomorphism of $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formations over A^{\prime}

$$
\left\{\begin{array}{l}
h: \partial\left(A^{\prime} q, \phi^{\prime}\right) \cdots \sim A^{\prime} \otimes_{B},\left(H^{-\varepsilon}\left(B^{\prime}, q\right) ; B^{\prime}, G\right) \\
h: \partial\left(A^{\prime}, q, \psi^{\prime}\right) \cdots \sim A^{\prime} \otimes_{B},\left(B^{\prime}, G\right)
\end{array}\right.
$$

Let $\left\{\begin{array}{l}\left(B^{q}, \phi \in Q^{\varepsilon}\left(B^{q}\right)\right) \\ \left(B^{q}, \psi \in Q_{E}\left(B^{q}\right)\right)\end{array}\right.$ be an $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ E \text {-quadratic }\end{array}\right.$ form over B such that

$$
\left\{\begin{array}{l}
\left(A^{\prime},,^{\prime}\right)=A^{\prime} \otimes_{B}\left(B^{q}, \phi\right) \\
\left(A^{\prime}, \psi^{\prime}\right)=A^{\prime} \otimes_{B}\left(B^{q}, \psi\right)
\end{array}\right.
$$

Use the pullback construction of $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ \text { split }(-\varepsilon) \text {-quadratic }\end{array}\right.$ formations over A to define an abelian group morphism
and define similarly

$$
\begin{aligned}
& \hat{\delta}: V^{-2}\left(g^{\prime}, \varepsilon\right)=V\left\langle v_{O}\right\rangle^{O}\left(g^{\prime},-\varepsilon\right) \longrightarrow U_{X}^{-3}(A, \varepsilon)=U_{1}^{X}(A, \varepsilon) ; \\
& \left(\left(H_{\varepsilon}\left(B^{\prime}\right) ; B^{\prime}, G\right),\left(A^{\prime}, \psi^{\prime}-E \psi^{\prime *}\right),\right. \\
& \left.\left.h: \ni\left(A^{\prime}, \psi^{\prime}-\varepsilon \psi^{\prime *}\right) \sim A^{\prime} \mathcal{B}^{\prime}\left(H_{\varepsilon}\left(B^{\prime}\right)^{\prime}\right) ; B^{\prime}, G\right)\right) \\
& \longrightarrow\left(a\left(B^{q}, \psi-c \psi^{*}\right), h,\left(H_{\varepsilon}\left(B^{\prime}{ }^{q} ; B^{\prime}, G\right)\right)\right.
\end{aligned}
$$

using the pullback construction for e-quadratic formations over A. An element of $\left\{\begin{array}{l}V^{1}\left(q^{\prime}, \varepsilon\right) \\ V_{1}\left(q^{\prime}, \varepsilon\right)\end{array}\right.$ is represented by a non-singular $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ form over B^{\prime} of the type $\left\{\begin{array}{l}\left(B^{\prime}, q \in Q^{\varepsilon}\left(B^{\prime}, q\right)\right) \\ \left.\left(B^{\prime}, q \in \widetilde{Q}_{\varepsilon}\left(B^{\prime}\right)^{\prime}\right)\right)\end{array}\right.$
together with an isomorphism of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ forms over A^{\prime}

In the ε-symmetric case let $\left(\left(\mathrm{B}^{\mathrm{p}}\right)^{*}, \xi \in \mathrm{Q}^{\varepsilon}\left(\left(\mathrm{B}^{\mathrm{p}}\right)^{*}\right)\right)$ be an ε-symmetric form over B such that

$$
\left(\left(A^{\prime} P\right)^{*}, \xi^{\prime}\right)=A^{\prime} \otimes_{B}\left(\left(B^{P}\right)^{*}, \xi\right),
$$

and let $\left(\left(B^{r}\right)^{*}, \zeta \in Q^{\varepsilon}\left(\left(B^{r}\right)^{*}\right)\right)$ be an ε-symmetric form over B^{\prime} such that

$$
\left(\left(A^{\prime}\right)^{*}, \zeta^{\prime}\right)=A^{\prime} \otimes_{B},\left(\left(B^{, r}\right) *, \zeta\right)
$$

Use the pullback construction of $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { split } \varepsilon \text {-quadratic }\end{array}\right.$ forms over A to define an abelian group morphism
and define similarly

$$
\begin{aligned}
& \hat{\delta}: V^{-1}\left(g^{\prime}, \epsilon\right)=V\left\langle v_{O}^{\prime}{ }^{1}\left(g^{\prime},-\varepsilon\right) \longrightarrow U_{X}^{-2}(A, \varepsilon)=U\left\langle v_{O}\right\rangle_{X}^{O}(A,-\varepsilon) ;\right.
\end{aligned}
$$

$$
\begin{aligned}
& \longmapsto\left(H^{-\varepsilon}\left(B^{p}\right), h,\left(B^{\prime} \mathrm{q}, \psi-\varepsilon \psi^{*}\right) \oplus H^{-\varepsilon}\left(B^{\prime}\right)^{\prime}\right)
\end{aligned}
$$

using the pullback construction of even $(-\varepsilon)$-symmetric forms over A.

Having defined maps
$\left\{\begin{array}{l}\delta: V^{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow U_{X}^{n}(f, E) \\ \delta: V_{n}\left(A^{\prime}, \varepsilon\right) \longrightarrow U_{n}^{X}(E, \varepsilon)\end{array},\left\{\begin{array}{l}\hat{\delta}: V^{n}\left(g^{\prime}, \varepsilon\right) \longrightarrow U_{x}^{n-1}(A, \varepsilon) \\ \hat{\delta}: V_{n}\left(g^{\prime}, \varepsilon\right) \longrightarrow U_{n-1}^{X}(A, \varepsilon)\end{array}\right.\right.$
satisfying the hypotheses of the appropriate intermediate ver of Proposition 6.1.3 we have from its conclusion that the nat
maps of relative intermediate $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon-q u a d r a t i c\end{array}\right.$ L-groups

$$
\left\{\begin{array}{ll}
(f, \\
f
\end{array}\right): U_{X}^{n}(f, \varepsilon) \longrightarrow V^{n}\left(g^{\prime}, \varepsilon\right) \quad(n \leqslant 1), ~\left(n \in V_{n}\left(g^{\prime}, \varepsilon\right) \quad(n \in \mathbb{Z})\right.
$$

are excision isomorphisms. Thus

$$
\begin{cases}L_{k}^{n}(\Phi, \varepsilon)=0 & (n \leqslant 0) \\ L_{n}^{k}(\Phi, \varepsilon)=0 & (n \in \mathbb{Z})\end{cases}
$$

for $k=X_{0}$, and hence by Proposition 6.2.2 also for any othe cartesian square of *-invariant subgroups k, giving rise to the Mayer-Vietoris exact sequence of intermediate $\left\{\begin{array}{l}\varepsilon \text {-symmetr } \\ \varepsilon \text {-quadrat }\end{array}\right.$
L-groups

In order to extend the e-symmetric sequence to the left by a exact sequence

$$
\begin{aligned}
L_{Y}^{1}(B, \varepsilon) \oplus L_{Y}^{1},\left(B^{\prime}, \varepsilon\right) \longrightarrow & L_{X}^{1},\left(A^{\prime}, \varepsilon\right) \xrightarrow{\partial} L_{X}^{O}(A, \varepsilon) \\
& \longrightarrow L_{Y}^{O}(B, \varepsilon) \oplus L_{Y}^{O},\left(B^{\prime}, \varepsilon\right) \longrightarrow L_{X}^{O},\left(A^{\prime}, \varepsilon\right)
\end{aligned}
$$

it suffices by Proposition 6.1.3 to prove that the map

$$
\left(f^{\prime}, g\right): L_{Y, X}^{1}(f, \varepsilon) \longrightarrow L_{X}^{1}, Y^{\prime}\left(g^{\prime}, \varepsilon\right)
$$

is an isomorphism for any cartesian square k. For $k=\mathcal{I}_{o}$ this has already been done above, and the construction of the maps $\delta, \hat{\delta}$ used to do this extends to the case $\kappa=\tau_{1}$, so that (f'g) is an isomorphism for $k=I_{1}$ also. Any other cartesian square k is such that $k \geq I_{m}(m=0$ or 1$)$, and applying the 5-lemma to the morphism of exact sequences

it is clear that the middle (f'g) is also an isomorphism.
ii) Excision isomorphisms and a Mayer-Vietoris exact sequence for the intermediate $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups associated to a cartesian square of r ings with involution

satisfying condition $\left\{\begin{array}{l}\text { ii)* } \\ i i) \text {, have already been obtained in }\end{array}\right.$ Proposition 3.6.3 i), in the special case of the cartesian square of *-invariant subqroups

Thus ϕ is $\left\{\begin{array}{l}L^{*}- \\ L_{*^{-}}\end{array}\right.$cartesian in the sense of $\$ 6.2$, and there are defined excision isomorphisms and a Mayer-vietoris exact sequence for any cartesian square of *-invariant subgroups k, by Proposition 6.2.3.

It is possible to give an alternative proof of the L-theory Mayer-Vietoris exact sequence of Proposition 6.3.1 ii) (the localization-completion case) which avoids the localization exact sequence of $\$ 3$, and is closer in spirit to the proof of the Mayer-Vietoris sequences of Proposition 6.3.1 i) (the case of a cartesian square Φ with $g: B \rightarrow A^{\prime}$ onto) involving the explicit construction of the maps $\delta, \hat{\delta}$ for $k=T_{0}$. The main idea here is that even though neither $B \longrightarrow T^{-1} B$ nor $S^{-1} A \longrightarrow T^{-1} B$ is onto for every $x \in T^{-1} B$ there exists $t \in T$ such that $t x \in \operatorname{im}\left(B \longrightarrow T^{-1} B\right)$, so that every $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ form over $T^{-1} B$ of the type $\left\{\begin{array}{l}\left(T^{-1} B^{q}, \phi^{\prime} \in Q^{\varepsilon}\left(T^{-1} B^{q}\right)\right) \\ \left(T^{-1} B^{q}, \psi^{\prime} \in Q_{\varepsilon}\left(T^{-1} B^{q}\right)\right)\end{array}\right.$ is isomorphic
to the form induced over $T^{-1} B$ from an $\left\{\begin{array}{l}\epsilon-\text { symmetric } \\ \epsilon-q u a d r a t i c\end{array}\right.$ form over
of the type $\left\{\begin{array}{l}\left(B^{q}, \phi \in Q^{\varepsilon}\left(B^{q}\right)\right) \\ \left(B^{q}, \psi \in Q_{\epsilon}\left(B^{q}\right)\right)\end{array}\right.$ via an isomorphism

$$
\left\{\begin{array}{l}
t: T^{-1} B \otimes_{B}\left(B^{q}, \phi\right)=\left(T^{-1} B B^{q}, \bar{t} \phi^{\prime} t\right) \longrightarrow\left(T^{-1} B^{q}, \phi^{\prime}\right) \\
t: T^{-1} B \otimes_{B}\left(B^{q}, \psi\right)=\left(T^{-1} B B^{q}, \bar{t} \psi^{\prime} t\right) \longrightarrow\left(T^{-1} B^{q}, \psi^{\prime}\right)
\end{array}\right.
$$

for some T-isomorphism $t \in \operatorname{Hom}_{B}\left(B^{q}, B^{q}\right.$) (e.g. multiplication or the right by an element $t \in T$), and similarly for higher-dimer $\left\{\begin{array}{l}\text { e-symmetric } \\ \text { E-quadratic }\end{array}\right.$ complexes over $T^{-1} B$. Indeed, such was the orig approach adopted by wall [8] in his work on the quadratic L -t of arithmetic squares.

We refer to Madsen [1,p.249] for an application of the Mayer-Vietoris exact sequence of Proposition 6.3.1 i) * to a proof of Theorem l3A. 4 iii) of wall [4], that for a finite group π the transfer map $i^{1}: L_{0}(\mathbb{Z}(\pi)) \longrightarrow L_{O}(\mathbb{Z})$ induced by the inclusion $i: \mathbb{Z} \longrightarrow \mathbb{Z}[\pi]$ is onto. For another application see Cappell and Shaneson [4].

6.4 Ideal L-theory

Given a ring A and a two-sided ideal $I \triangleleft A$ define the double of A along $I D(A, I)$ to be the $r i n g$ consisting of ord pairs (a, b) of elements $a, b \in A$ such that

$$
a-b \in I \triangleleft A
$$

with addition and multiplication by

$$
\begin{aligned}
& (a, b)+\left(a^{\prime}, b^{\prime}\right)=\left(a+a^{\prime}, b+b^{\prime}\right) \in D(A, I) \\
& (a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, b b^{\prime}\right) \in D(A, I)
\end{aligned}
$$

$\left((a, b),\left(a^{\prime}, b^{\prime}\right) \in D(A, I), a a^{\prime}-b b^{\prime}=(a-b) a^{\prime}+b\left(a^{\prime}-b^{\prime}\right) \in I\right.$ exactly as in Milnor $[4,54]$. There is defined a cartesian s of rings

with

$$
\begin{aligned}
& f: D(A, I) \longrightarrow A ;(a, b) \longmapsto a \\
& f^{\prime}: D(A, I) \longrightarrow A^{\prime} ;(a, b) \longmapsto b \\
& g=g^{\prime}=\text { projection }: A \longrightarrow A
\end{aligned}
$$

The diagonal map

$$
\Delta: A \longrightarrow D(A, I) ; a \longmapsto(a, a)
$$

is a ring morphism such that

$$
\mathrm{f} \Delta=1: \mathrm{A} \longrightarrow \mathrm{C} .
$$

Thus the relative K-groups of $(A, I) K_{m}(A, I)(m=0,1)$ defin

$$
K_{m}(A, I)=\operatorname{ker}\left(f: K_{m}(D(A, I)) \longrightarrow K_{m}(A)\right)
$$

are such that there are natural identifications

$$
\begin{aligned}
& K_{m}(D(A, I))=K_{m}(A) \oplus K_{m}(A, I) \\
& K_{m}(A, I)=K_{m+1}(A \longrightarrow A / I)
\end{aligned}
$$

by the excision property of Milnor [4,§4], with an exact sequence

$$
\begin{aligned}
K_{2}(A) \longrightarrow K_{2}(A / I) \longrightarrow K_{1}(A, I) & \longrightarrow K_{1}(A) \longrightarrow K_{1}(A / I) \\
& \longrightarrow K_{0}(A, I) \longrightarrow K_{0}(A) \longrightarrow K_{0}(A / I)
\end{aligned}
$$

There is also defined a cartesian square of rings

where $\mathrm{I}^{+}=\mathbb{Z} \oplus I$ is the ring with addition and multiplication by

$$
\begin{aligned}
(n, i)+\left(n^{\prime}, i^{\prime}\right)= & \left(n+n^{\prime}, i+i^{\prime}\right) \in I^{+} \\
(n, i)\left(n^{\prime}, i^{\prime}\right)= & \left(n n^{\prime}, n i^{\prime}+n^{\prime} i+i i^{\prime}\right) \in I^{+} \\
& \left(n, n^{\prime} \in \mathbb{Z}, i, i^{\prime} \in I\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathrm{F}: \mathrm{I}^{+} \longrightarrow Z Z \text {; }(\mathrm{n}, \mathrm{i}) \longmapsto \mathrm{n} \\
& \mathrm{~F}^{+}: \mathrm{I}^{+} \longrightarrow \mathrm{C} ;(\mathrm{n}, \mathrm{i}) \longmapsto \mathrm{H} \mathrm{l}_{\mathrm{A}}+\mathrm{i} \\
& G: \mathbb{Z} \longrightarrow A / I ; n \longrightarrow 1_{A} \longrightarrow I \\
& G^{\prime}=\text { projection }: A \longrightarrow A / I \text {. }
\end{aligned}
$$

The inclusion

$$
d: \mathbb{Z} \longrightarrow I^{+} ; n \longmapsto(n, 0)
$$

is such that

$$
\mathbf{F d}=1: \mathbb{Z} \longrightarrow \mathbb{Z}
$$

Thus the algebraic K-groups of $I K_{m}(I)(m=0,1)$ defined by

$$
K_{m}(I)=\widetilde{K}_{m}\left(I^{+}\right)=K_{m+1}\left(F: I^{+} \longrightarrow Z\right)
$$

are such that

$$
K_{m}\left(I^{+}\right)=K_{m}(I) \oplus K_{m}(\mathbb{Z})
$$

The natural map

$$
\left(F^{\prime}, G\right): K_{1}(F)=K_{O}(I) \longrightarrow K_{1}\left(G^{\prime}\right)=K_{0}(A, I)
$$

is an isomorphism by the excision property of classical algebraic K -theory, cf . Bass $\{2, I X .1 .2\}$. Swan [1] has constructed examples of pairs (A,I) for which the natural. map

$$
\left(F^{\prime}, G\right): K_{2}(F)=K_{1}(I) \longrightarrow K_{2}\left(G^{\prime}\right)=K_{1}(A, I)
$$

is not an isomorphism, so that excision fails in higher algebraic K-theory.

We shall now investigate analogous results in algebraic L-theory. Roughly speaking, the 4 -periodicity of the e-quadratic L-groups $L_{\star}(A, \varepsilon)=L_{\star+4}(A, \varepsilon)$ of a ring with involution A keeps them sufficiently close to being the L -theory analogues of the classical algebraic K-groups $K_{O}(A), K_{I}(A)$ for there to be excision with respect to the involution-invariant ideals I of A, as will be shown in Proposition 6.4.l below. The e-symmetric L-groups $L^{*}(A, \varepsilon)$ are closer in spirit to the higher algebraic $K_{*}(A)$, and in Proposition 6.4 .2 we shall give an example of the failure of excision in e-symmetric L -theory.

Let then A be a ring with involution. A two-sided ideal I $\triangle A$ is invariant if

$$
\overline{\mathrm{I}}=I \triangleleft \mathrm{~A},
$$

that is $\bar{i} \in I$ for each $i \in I$. The double $D(A, I)$ is then a ring with involution

$$
-D(A, I) \longrightarrow D(A, 1) ;(a, b) \longmapsto(\bar{a}, \bar{b}) \text {, }
$$

and r^{+}is a ring with involution

$$
-: I^{+} \cdots \longrightarrow I^{+} ;(n, i) \longmapsto(n, \bar{i}),
$$ so that the cartesian squares Φ_{I} and Φ_{I}^{+}defined above are in fact cartesian squares of rings with involution. Define the $\left\{\begin{array}{l}\frac{\varepsilon-s y m m e t r i c}{\varepsilon-q u a d r a t i c}\end{array}\right.$ L-groups of (A,I)

$$
\left\{\begin{array}{l}
L^{n}(A, I, \varepsilon)=\operatorname{ker}\left(f: L_{{\underset{K}{K}}_{O}^{n}}^{n}(A)(D(A, I), \varepsilon) \longrightarrow L^{n}(A, E)\right) \\
L_{n}(A, I, \varepsilon)=\operatorname{ker}\left(f: L_{n}^{K_{O}}(A)(D(A, I), \varepsilon) \longrightarrow L_{n}(A, \varepsilon)\right)
\end{array}\right.
$$

The diagonal map $\Delta: A \longrightarrow D(A, I) ; a \longmapsto(a, a)$ is a morphism of rings with involution such that $f \Delta=1: A \longrightarrow A$, so that there are natural identifications

$$
\left\{\begin{array}{l}
L_{\stackrel{K}{K}_{O}^{n}}^{n}(A)(D(A, I), E)=L^{n}(A, \varepsilon) \oplus L^{n}(A, I, \varepsilon) \\
\hat{K}_{n}(A)(D(A, I), \varepsilon)=L_{n}(A, \varepsilon) \oplus L_{n}(A, I, \varepsilon)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

For $\varepsilon= \pm 1$ define the $\left\{\begin{array}{l}\frac{\varepsilon \text {-symmetric }}{\text {--quadratic }}\end{array}\right.$ L-groups of I

$$
\left\{\begin{array}{l}
L^{n}(I, \varepsilon)=\operatorname{ker}\left(F: L^{n}\left(I^{+}, \varepsilon\right) \longrightarrow L^{n}(\mathbb{Z}, \varepsilon)\right) \\
L_{n}(I, \varepsilon)=\operatorname{ker}\left(F: L_{n}\left(I^{+}, \varepsilon\right) \longrightarrow L_{n}(\mathbb{Z}, \varepsilon)\right)
\end{array}(n \in \mathbb{Z}),\right.
$$

so that there are natural identifications

$$
\left\{\begin{array}{l}
L^{n}\left(I^{+}, \varepsilon\right)=L^{n}(I, \varepsilon) \oplus L^{n}(\mathbb{Z}, \varepsilon) \\
L_{n}\left(I^{+}, \varepsilon\right)=L_{n}(I, \varepsilon) \oplus L_{n}(\mathbb{Z}, \varepsilon)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

Proposition 6.4.1 Given a ring with involution \wedge and an invariant ideal $I \triangleleft A$ let

$$
K=\operatorname{im}\left(\breve{K}_{O}(A) \longrightarrow K_{O}(A / I)\right) \subseteq \tilde{K}_{O}(A / I)
$$

$\left\{\begin{array}{l}\text { If } \hat{H}^{O}\left(\mathbb{Z}_{2} ; A, \varepsilon\right) \longrightarrow \hat{\mathrm{H}}^{\mathrm{O}}\left(\mathbb{Z}_{2} ; A / I, \varepsilon\right) \text { is onto } \\ \text { For all } A, I, E\end{array}\right.$ there are natural
identifications

$$
\begin{cases}L^{n}(A, I, \varepsilon)=L_{K}^{n+1}(A \longrightarrow A / I, \varepsilon) & (n \leqslant 0) \\ L_{n}(A, I, \varepsilon)=L_{n+1}^{K}(A \longrightarrow A / I, \varepsilon) & (n \in \mathbb{Z})\end{cases}
$$

and there is defined an exact sequence of $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-gr

$$
\left\{\begin{array}{l}
L^{1}(A, \varepsilon) \longrightarrow L_{K}^{1}(A / I, \varepsilon) \longrightarrow L^{O}(A, I, \varepsilon) \longrightarrow L^{O}(A, \varepsilon) \longrightarrow L_{K}^{O}(A / I, \varepsilon \\
\left.\ldots \longrightarrow L_{n}(A, I, \varepsilon) \longrightarrow L_{n}^{K}(A, \varepsilon) \longrightarrow I, \varepsilon\right) \longrightarrow L_{n-1}(A, I, \varepsilon)-
\end{array}\right.
$$

Furthermore, in the ε-quadratic case for $\varepsilon x \pm 1$ there are \bar{c} natural identifications

$$
L_{n}(A, I, \varepsilon)=L_{n}(I, \varepsilon) \quad(n \in \mathbb{Z})
$$

and the exact sequence can be written as

$$
\ldots \longrightarrow L_{n}(I, \varepsilon) \longrightarrow L_{n}(A, \varepsilon) \longrightarrow L_{n}^{K}(A / I, \varepsilon) \longrightarrow L_{n-1}(I, \varepsilon) \longrightarrow
$$

Proof: Immediate from Proposition 6.3.1 i) applied to Φ_{I} ar

In particular, for the ideal (2) $=2 \mathbb{Z} \triangleleft \mathbb{Z}$ there are defined isomorphisms of rings with involution

$$
\begin{aligned}
& \mathrm{D}(\mathbb{Z},(2)) \longrightarrow \mathbb{Z}\left[\mathbb{Z}_{2}\right] ;(a, b) \longmapsto \frac{1}{2}(a+b)+\frac{1}{2}(a-b) T \\
& (2)^{+} \longrightarrow \mathbb{Z}\left[\mathbb{Z}_{2}\right] ;(n, 2 i) \longmapsto n+i(1-T)
\end{aligned}
$$

(the involution being the identity in each case), so that 1 cartesian squares $\Phi_{(2)}, \Phi_{(2)}^{+}$may be identified with the cal square

previously defined in 56.3. It follows that for $E= \pm 1$ there are natural identifications of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$ L-groups

$$
\left.\begin{array}{l}
\left\{\begin{array}{l}
L^{n}(\mathbb{Z},(2), \varepsilon)=L^{n}((2), \varepsilon)=L^{n+1}\left(e_{+}: \mathbb{Z}\left[\mathbb{Z}_{2}\right] \longrightarrow \mathbb{Z}, \varepsilon\right) \\
L_{n}(\mathbb{Z},(2), \varepsilon)=L_{n}((2), \varepsilon)=L_{n+1}\left(e_{+}: \mathbb{Z}\left[\mathbb{Z}_{2}\right] \longrightarrow \mathbb{Z}, \varepsilon\right)
\end{array} \text { (nध,Z}\right)
\end{array}\right\} \text { Let us write the }\left\{\begin{array}{l}
\text { skew-symmetric } \\
\text { skew-quadratic }
\end{array} .\right.
$$ involution A as

$$
\left\{\begin{array}{l}
L^{n}(A,-1)=\bar{L}^{n}(A) \\
L_{n}(A,-1)=\bar{L}_{n}(A)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

Proposition 6.4.2 Excision fails for the E-symmetric L-theory of the cartesian square

$$
\left\{\begin{array}{l}
\overline{\mathrm{L}}^{\mathrm{O}}\left(\mathbb{Z}\left[\mathbb{Z}_{2}\right] \longrightarrow \mathbb{Z}\right)=0 \\
\overline{\mathrm{~L}}^{\mathrm{O}}\left(\mathbb{Z} \longrightarrow \mathbb{Z}_{2}\right)=\overline{\mathrm{L}}^{\mathbf{O}}(\Phi)=\mathbb{Z}_{2}
\end{array}\right.
$$

There is no Mayer-vietoris exact sequence of e-symmetric L-groups

$$
\overline{\mathrm{L}}^{\mathrm{O}}(\mathbb{Z}) \oplus \overline{\mathrm{L}}^{\mathrm{O}}(\mathbb{Z}) \longrightarrow \overline{\mathrm{L}}^{\mathrm{O}}\left(\mathbb{Z}_{2}\right) \xrightarrow{3} \overline{\mathrm{~L}}^{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{2}\right]\right),
$$

since

$$
\bar{L}^{\mathrm{O}}(\mathbb{Z})=0, \overline{\mathrm{~L}}^{\mathrm{O}}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}, \overline{\mathrm{~L}}^{-1}\left(\mathbb{Z}\left[\mathbb{Z}_{2}\right]\right)=0 .
$$

Proof: As $A^{\circ}\left(\mathbb{Z}_{2} ; \mathbb{Z}\left[\mathbb{Z}_{2}\right],-1\right)=0$ Proposition 1.8 .1 identifies

$$
\left.\overline{\mathrm{L}}^{-1}\left(\mathbb{Z} \mid \mathbb{Z}_{2}\right]\right)=\mathrm{L}_{1}\left(\mathbb{Z}\left[\mathbb{Z}_{2}\right]\right)
$$

The Mayer-Vietoris exact sequence of quadratic L-groups given by Proposition 6.3.1 i)*
$\mathrm{L}_{2}(\mathbb{Z}) \oplus \mathrm{L}_{2}(\mathbb{Z}) \xrightarrow{(11)} \mathrm{L}_{2}\left(\mathbb{Z}_{2}\right) \xrightarrow{\partial} \mathrm{L}_{1}\left(\mathbb{Z}\left[\mathbb{Z}_{2}\right]\right) \longrightarrow \mathrm{L}_{1}(\mathbb{Z}) \oplus \mathrm{L}_{1}(\mathbb{Z})$
shows that $L_{1}\left(\mathbb{Z}\left[\mathbb{Z}_{2}\right]\right)=0$, since $L_{2}(\mathbb{Z})=L_{2}\left(\mathbb{Z}_{2}\right)=\mathbb{Z}_{2}$, $L_{1}(\mathbb{Z})=0$ by Proposition 4.3.1.

Anticipating the splitting theorem

$$
V^{n}\left(A\left[z, z^{-1}\right], \varepsilon\right)=V^{n}(A, \varepsilon) \oplus U^{n-1}(A, \varepsilon) \quad\left(n \in \mathbb{Z}, \bar{z}=z^{-1}\right)
$$

conjectured in SI. 10 and mentioned in the introduction to 57 below it is possible to extend the failure of excision given by Proposition 6.4.2 to the higher-dimensional e-symmetric L-groups, as follows. For each $k \geqslant 0$ let Φ^{k} be the cartesian square of rings with involution

Then

$$
\begin{aligned}
& \overline{\mathrm{L}}^{\mathrm{O}}\left(\Phi^{0}\right)=\mathbb{Z}_{2} \neq 0 \\
& \overline{\mathrm{~L}}^{\mathrm{k}}\left(\Phi^{\mathrm{k}}\right)=\sum_{j=0}^{\mathrm{k}}\binom{\mathrm{k}}{\mathrm{j}} \overline{\mathrm{~L}}^{\mathrm{j}}\left(\Phi^{\mathrm{j}}\right) \neq 0
\end{aligned}
$$

§7. The algebraic theory of codimension g surgery

The Browder-Novikov-Sullivan-Wall surgery theory of topological manifold structures on geometric Poincaré complexes was reformulated in Ranicki [7] in terms of the algebraic Poincare complex theory of I.,II. and the algebraic theory of surgery classifying spaces. This reformulation is recalled in $\$ 7.1$, and in $\$ 7.2$ it is extended to the Browder-Wall surgery theory of topological (manifold, codimension q submanifold) structures on geometric Poincaré (complex, codimension q subcomplex) pairs, with $q \geqslant 1$. In 57.3 the quadratic construction ψ_{F} on a stable map $F: \Sigma^{\infty} X \longrightarrow \Sigma^{\infty} Y$ of SI.l is refined to a "spectral quadratic construction" ψ_{F} on a "semi-stable" map $F: \sum^{\infty} X \longrightarrow Y$ (i.e. a map of spectra with domain a suspension spectrum), for use in 57.4 and beyond. In $\$ 7.4$ we recall and expand the expression due to Quinn of geometric codimension q surgery obstruction theory in terms of geometric Poincaré splittings. The theory is then expressed in terms of algebraic Poincaré splittings in \$7.5. The algebraic theory of codimension 1 surgery is developed in §7.6. In $\$ 7.7$ our methods are extended to surgery with coefficients, such as the Cappell-Shaneson homology surgery obstruction theory. This extension is needed for the algebraic theory of codimension 2 surgery developed in 57.8. Finally, in $\$ 7.9$ we outline the algebraic theory of knot cobordism (the origin of codimension 2 surgery), giving various algebraic characterizations of the high-dimensional knot cobordism groups C_{*}.

As noted in the Introduction $\$ 7$ is only a preliminary account of the alqebraic theory of codimension q surgery, just as Ranicki [7] is only a preliminary account of the total surgery obstruction theory, the full account of both to appear as Ranicki [11],[12]. In particular, Ranicki [11] will carry out the programme set out in $\$ 7.5$ for the algebraic derivation of codimension q splitting theorems for manifolds, such as those of Cappell [i] ($1 \leqslant i \leqslant 9$) for $q=1$, by proving codimension q splitting theorems for quadratic poincaré comple The algebraic methods should also apply to the symmetric L-groups. For example, the splitting theorem for the quadratic L-groups of the Laurent extension $A\left[z, z^{-1}\right]\left(\vec{z}=z^{-1}\right)$ of Shaneson [1], Novikov [1] and Ranicki [2]

$$
V_{n}\left(A\left[z, z^{-1}\right]\right)=V_{n}(A) \oplus U_{n-1}(A) \quad(n \in \mathbb{Z})
$$

should be extended to the splitting theorem for the symmetric L-groups conjectured in $£ \mathrm{I} .10$

$$
v^{n}\left(A\left[z, z^{-1}\right]\right)=v^{n}(A) \oplus U^{n-1}(A) \quad(n \in Z)
$$

7.1 The total surgery obstruction

We shall now recall the total surgery obstruction theory of Ranicki [7], at the same time extending it to geometric Poincaré complexes which may be disconnected and/or nonorientable. Such complexes arise naturally in codimension q surgery obstruction theory, particularly for $q=1$. In the first instance, we develop some terminology with which to handle such complexes.

Given a topological space X with a finite number of path-components $x_{1}, x_{2}, \ldots, x_{m}$ define the fundamental groupoid of $X{ }_{1}(X)$ to be the disjoint union of the fundamental groups of the path-components

$$
\pi_{1}(x)=\pi_{1}\left(x_{1}\right) \cup \pi_{1}\left(x_{2}\right) \cup \ldots \cup \pi_{1}\left(x_{m}\right)
$$

(In dealing with fundamental groups and groupoids we can afford to neglect the effects of the choice of basepoints, since all the algebraic L-functors of groups are such that inner automorphisms induce the identity, cf. Taylor [2] for the quadratic L-qroups). An algebraic Poincaré complex over $\mathbb{Z}[\pi 1(x)] x$ is defined to be a collection $\left\{x_{i} \mid 1 \leqslant i \leqslant m\right\}$ of algebraic Poincaré complexes over $\mathbb{Z}\left[\pi_{1}\left(X_{i}\right)\right] x_{i}$. The $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ L-groups of $\mathbb{Z}\left[\pi 1 \frac{(X)]}{}\left\{\begin{array}{l}L^{\star}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \\ L_{\star}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)\end{array}\right.\right.$ are the cobordism groups of $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ Poincaré complexes over $\mathbb{Z}\left[\pi_{1}(x)\right]$, and are such that

$$
\left\{\begin{array}{r}
L_{\star}^{\star}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)=L^{\star}\left(\mathbb{Z}\left[\pi_{1}\left(X_{1}\right)\right]\right) \oplus L^{\star}\left(\mathbb{Z}\left[\pi_{1}\left(X_{2}\right)\right]\right) \oplus \\
\ldots L^{\star}\left(\mathbb{Z}\left[\pi_{1}\left(X_{m}\right)\right]\right) \\
L_{\star}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)=L_{\star}\left(\mathbb{Z}\left[\pi_{1}\left(X_{1}\right)\right]\right) \oplus L_{\star}\left(\mathbb{Z}\left[\pi_{1}\left(X_{2}\right)\right]\right) \oplus \\
\ldots L_{\star}\left(\mathbb{Z}\left[\pi_{1}\left(X_{m}\right)\right]\right)
\end{array}\right.
$$

 the $\left\{\begin{array}{l}\text { symmetric } \\ \text { guadratic }\end{array}\right.$ signature

$$
\left\{\begin{array}{l}
\sigma^{*}(x) \in L^{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \\
\sigma_{\star}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right)
\end{array}\right.
$$

is defined exactly as in $\$ 1.2$, with components
$\left\{\begin{array}{l}\left\{\sigma^{*}\left(X_{i}\right) \in L^{n}\left(\mathbb{Z}\left[\pi_{1}\left(X_{i}\right)\right]\right) \mid 1 \leqslant i \leqslant m\right\} \\ \left.\left\{\sigma_{*}\left(\left(f_{i}, b_{i}\right)=(f, b) \mid: M_{i}=f^{-1}\left(X_{i}\right) \longrightarrow X_{i}\right) \in L_{n}\left(\mathbb{Z} \mid \pi_{1}\left(X_{i}\right)\right]\right) \mid 1 \leqslant i \leqslant m\right\} .\end{array}\right.$
(The inverse images $M_{i}=f^{-1}\left(X_{i}\right) \subseteq M$ of the path components X_{i} of X need not be connected, cf. Ranicki [8]).

In order to deal with nonorientable geometric poincaré complexes we define generalized homology groups with twisted coefficients in the following manner.

Let (X, w) be a pair consisting of a topological space X and an orientation double covering

$$
w: \bar{x} \longrightarrow x \text {, }
$$

which is classified by a map

$$
w: \pi_{1}(x) \cdots \mathbb{Z}_{2}=\{ \pm 1\}
$$

Let \underline{M} be a spectrum

$$
\underline{M}=\left\{M_{k}, \Sigma M_{k}-\rightarrow M_{k+1} \mid k>0\right\}
$$

which is equipped with an orientation-reversing involution

$$
T: \underline{M} \cdots-\cdots \quad \underline{M}
$$

The w-twisted M-coefficient $\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array} \underline{\text { groups of } x}\right.$ are define،

$$
\left\{\begin{array}{l}
H^{n}(X, w ; \underline{M})=\frac{L i m}{k}\left[\sum^{k} \bar{X}_{+}, M_{n+k}\right]_{Z_{2}} \\
H_{n}(X, w ; \underline{M})=\underset{k}{L i m} \Pi_{n+k}\left(\bar{X}_{+} \wedge \mathbb{Z}_{2}^{M_{k}}\right) \quad(n \in \mathbb{Z})
\end{array}\right.
$$

In particular, for the Eilenberg-Maclane spectrum of \mathbb{Z}

$$
\underline{K}=\{K(\mathbb{Z}, k), \Sigma K(\mathbb{Z}, k) \longrightarrow K(\mathbb{Z}, k+1) \mid k \geqslant 0\}
$$

with the orientation-reversing involution $T: \underline{K} \longrightarrow \underline{K}$ induced by

$$
\mathrm{T}: \mathbb{Z} \longrightarrow \longrightarrow \mathbb{Z} ; z \longmapsto \longrightarrow-z
$$

the w-twisted \underline{K}-coefficient $\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array}\right.$ groups of x are the w-twisted integral $\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array}\right.$ groups of x

$$
\left\{\begin{array}{l}
H^{n}(X, w ; \underline{K})=H^{n}(X, w)=H_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(C(\bar{X}), \mathbb{Z}^{-}\right)\right) \\
H_{n}(X, w ; \underline{K})=H_{n}(X, w)=H_{n}\left(\mathbb{Z}^{-} \mathbb{Z}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]\right.
\end{array} C(\bar{X}) ;\right.
$$

where \mathbb{Z}^{-}denotes the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module with additive group \mathbb{Z} and \mathbb{Z}_{2} acting by T.

An n-dimensional geonetric poincaré complex x has a fundamental class $[x] \in H_{n}(X, w)\left(\cong \mathbb{Z}^{m}\right)$, with orientation map $w=w(x): \pi_{1}(x) \longrightarrow \mathbb{Z}_{2}$. Let $-x$ denote the geometric Poincaré complex with the same underlying CW complex, but with fundamental class

$$
[-X]=-[X] \in H_{n}(X, w)
$$

Homotopy equivalences of geometric Poincaré complexes

$$
\text { f. }: x \cdots x^{\prime}
$$

are required to be orientation-preserving, with

$$
f_{\star}([x])=\left[x^{\prime}\right] \in H_{n}\left(x^{\prime}, w^{\prime}\right)
$$

Every compact n-dimensional topoloqical manifold M is to be equipped with a fundamental class $[M] \in H_{n}(M, W(M))$, so that it has the structure of a simple n-dimensional geometric Poincaré complex.

Given a pair $(x, w: \bar{x} \longrightarrow x)$ let $\Omega_{n}^{S T O P}(x, w)$ denote the bordism group of maps $f: M \longrightarrow X$ from compact n-dimensional topological manifolds M for which the orientation map factors as

$$
w(M): \pi_{1}(M) \xrightarrow{f_{\star}} \pi_{1}(X) \xrightarrow{w} \mathbb{Z}_{2}
$$

Then if the spectrum

$$
\underline{\operatorname{MSTOP}}=\{\operatorname{MSTOP}(k), \Sigma \operatorname{MSTOP}(k) \longrightarrow \operatorname{MSTOP}(k+1) \mid k \geqslant 0\}
$$ of the Thom spaces $T\left(l_{k}\right)=\operatorname{MSTOP}(k)$ of the universal oriented topological k-disc bundles $l_{k}:$ BSTOP $(k) \longrightarrow$ ISTOP (k) is given the orientation-reversing involution

$$
T: M S T O P \longrightarrow \text { MSTOP }
$$

induced by the oppositely oriented bundles $-1_{k}: \operatorname{BSTOP}(k) \longrightarrow$ BST there are natural identifications

$$
\Omega_{n}^{S T O P}(X, w)=H_{n}(X, w ; \underline{M S T O P}) \quad(n \neq 4) .
$$

These follow from the identification

$$
\bar{x}_{+} \wedge_{z_{2}} \operatorname{MSTOP}(k)=T\left(\eta_{k}\right)
$$

with $T\left(\eta_{k}\right)$ the Thom space of the topological bundle η_{k} classified by the map η_{k} appearing in the homotopy-theoretic pullback diagram
and topological transversality in dimensions $\neq 4$.
The pair $(X, w: \bar{x} \longrightarrow X)$ is untwisted if $\bar{X}=X u Y$ is the trivial double covering of x, that is $w(g)=+1$ for each $g \in \pi_{l}(x)$, in which case the w-twisted M-coefficient $\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array}\right.$ groups of X are just the usual M-coefficient $\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array}\right.$ groups of x $\left\{\begin{array}{l}H^{n}(X, w ; \underline{M})=\frac{L i m}{k}\left[\Sigma^{k} \bar{X}_{+}, M_{n+k}\right] \mathbb{Z}_{2}=\frac{L i m}{k}\left[\Sigma^{k} X_{+}, M_{n+k}\right]=H^{n}(X ; \underline{M}) \\ H_{n}(X, w ; \underline{M})=\frac{L i m}{k} \pi_{n+k}\left(\bar{X}_{+}{ }^{\wedge} \mathbb{Z}_{2} M_{k}\right)=\frac{L i m}{k} \pi_{n+k}\left(X X_{+} \wedge M_{k}\right)=H_{n}(X ; \underline{M}),\end{array}\right.$ and the w-twisted integral $\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array}\right.$ groups are just the usual integral $\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array}\right.$ groups

$$
\left\{\begin{array}{l}
H^{n}(x, w)=H_{n}\left(\operatorname{Hom}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]\left(C(\bar{x}), \mathbb{Z}^{-}\right)\right)=H_{n}\left(\operatorname{Hom}_{\mathbb{Z}}(C(x), \mathbb{Z})\right)=H^{n}(x) \\
H_{n}(x, w)=H_{n}\left(\mathbb{Z}^{-} \mathbb{Z}_{\mathbb{Z}\left[Z_{2}\right]} C(\bar{x})\right)=H_{n}(C(x))=H_{n}(x) .
\end{array}\right.
$$

The topological bordism groups of (x, w) are just the usual oriented topological bordism groups of x

$$
\begin{aligned}
\int_{n}^{\operatorname{STOP}}(x, w) & =\Omega_{n}^{\operatorname{STOP}}(x) \\
(& \left.=H_{n}(x ; M S T O P) \text { for } n \neq 4\right) .
\end{aligned}
$$

From now on we shall suppress the explicit reference to w in dealing with w-twisted $\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array}\right.$ groups, writing $\left\{\begin{array}{l}H^{*}(X, W ; \underline{M}) \\ H_{\star}(X, W ; \underline{M})\end{array}\right.$ as $\left\{\begin{array}{l}H^{*}(X ; \underline{M}) \\ H_{\star}(X ; \underline{M})\end{array}\right.$, the contributions of the orientation covering $w: \vec{X} \longrightarrow X$ and the orientation-reversing involution $T: \underline{M} \longrightarrow \underline{M}$ being understood.

An s-triangulation of a simple n-dimensional geometric Poincaré complex x is a simple homotopy equivalence

$$
\mathbf{f}: M \longrightarrow X
$$

from a compact n-dimensional topological manifold M.
A concordance of s-triangulations $f: M \longrightarrow X, f^{\prime}: M^{\prime} \longrightarrow X$ is a simple homotopy equivalence of triads
$\left(\mathrm{g} ; \mathrm{f}, \mathrm{f}{ }^{\prime}\right):\left(\mathrm{N} ; \mathrm{M}, \mathrm{M}^{\prime}\right) \longrightarrow \longrightarrow(\mathrm{X} \times \mathrm{I} ; \mathrm{X} \times 0, \mathrm{X} \times \mathrm{I}) \quad(\mathrm{I}=(0,1])$ from a compact ($n+1$)-dimensional topological manifold triad ($N ; M, M^{\prime}$). The topological manifold structure set $S^{T O P}(X)$ of a simple n-dimensional geometric Poincare complex x is the set (possibly empty) of concordance classes of s-triangulations $f: M \longrightarrow X$. For $n \geqslant 5$ the concordance of $s-t r i a n g u l a t i o n s$ is also the equivalence relation defined by

if there exist a homeomorphism $h: M \xrightarrow{\sim} M^{\prime}$ and a homotopy $q: f \simeq f ' h: M \longrightarrow X$
by the topological s-cobordism theorem, so that $g^{T O P}(X)$ is the topological manifold structure set of X in the sense of Sullivan [l] and wall [4,§l0].

An h-triangulation of a finite n-dimensional geometric Poincaré complex x is a homotopy equivalence

$$
\mathrm{f}: \mathrm{M} \longrightarrow \mathrm{X}
$$

from a compact n-dimensional topological manifold M. Concordance of h-triangulations is defined as for s-triangulations, but using a homotopy equivalence of triads instead of a simple homotopy equivalence.

For the sake of the above application of the s-cobordism theorem we shall be primarily concerned with the s-triangulatiot theory of simple geometric Poincaré complexes. Accordingly, we shall be dealing with the simple quadratic L-groups of group rings

$$
L_{\star}^{S}(\pi, \omega)=V_{\star}^{\{\pi\} \subseteq \widetilde{K}_{1}(\mathbb{Z}[\pi])}(\mathbb{Z}[\pi])
$$

originally defined by wall [4] using based $\mathbb{Z}[\pi]$-modules, simple isomorphisms (with $\left.\tau=O \in W h(\pi)=\mathbb{K}_{1}(\mathbb{Z}[\pi]) /\{\pi\}\right)$ and the w-twisted involution on $\mathbb{Z}[\pi]$ for some orientation map $w: \pi \longrightarrow Z_{2}$. From now on $\left.L_{\star}\{\mathbb{Z} \mid \pi\}\right)$ will stand for the simple L-groups $L_{*}^{S}(\pi, W)$ rather than the projective L-groups $\left.L_{\star}^{P}(\pi, w)=U_{\star}\{\mathbb{Z} \mid \pi\}\right)$ as heretofore, which will be denoted by $L_{*}^{P}\left(Z[\pi j)\right.$. The free $L-g r o u p s L_{*}^{h}(\pi, W)=V_{*}(Z\{\pi])$ are denoted by $L_{*}^{h}(\mathbb{Z}[\pi])$.

The s-trianqulation theory developed here has of course its counterpart in a parallel theory for the h-triangulation of finite geometric Poincaré complexes, involving $L_{\star}^{h}(\mathbb{Z}[\pi])$. (Define a p-trianqulation of a finitely dominated n-dimensional geometric Poincaré complex X to be an h-triangulation of the finite $(n+1)$-dimensional geometric Poincaré complex $x \times s^{1}$.

Following Pedersen and Ranicki $[1]$ there is also a parallel theory for the p-triangulation of finitely dominated geometric Poincaré complexes, involving $\left.L_{\star}^{P}(\mathbb{Z}[\pi])\right)$.

From now on geometric Poincaré complexes are to be taker as simple (unless specified otherwise), and manifolds are to be taken as compact, topological and triangulable. Similarly for geometric Poincaré pairs and manifolds with boundary.

As in Ranicki [7] let $\left\{\begin{array}{l}\underline{\underline{K}}^{0} \\ \underline{\underline{I}}_{0} \\ \underline{\underline{\underline{L}}}^{\mathrm{O}}\end{array}\right.$ denote the spectrum of
$\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic } \\ \text { (symmetric, quadratic) }\end{array} \quad\right.$ Poincaré n-ads over Z with homotopy
groups
and such that there is defined a fibration sequence

$$
\underline{\underline{\amalg}}_{\mathrm{O}} \xrightarrow{1+\mathrm{T}} \underline{\underline{\amalg}}^{\mathrm{O}} \xrightarrow{\mathrm{~J}} \hat{\underline{\tilde{n}}}^{\mathrm{O}} \xrightarrow{\mathrm{H}} \Sigma \underline{\underline{\pi}}_{\mathrm{O}} \xrightarrow{1+\mathrm{T}} \Sigma \underline{\underline{\Pi}}_{\mathrm{O}} \longrightarrow \ldots
$$

(There are defined algebraic π-spectra for any r ing with involution A, using algebraic Poincaré n-ads over A, but only the case $A \Rightarrow \mathbb{Z}$ need concern us here. The general theory will be developed in Ranicki [12]).

For any space x equipped with an orientation double covering $w: \bar{x} \longrightarrow x$ there are defined assembly maps

$$
\left\{\begin{array}{l}
\sigma^{*}: H_{n}\left(x ; \underline{\Pi}^{0}\right) \longrightarrow L^{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \\
\sigma_{\star}: H_{n}\left(x ; \underline{L}_{0}\right) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{I}(x)\right]\right) \quad(n \geqslant 0) \\
\hat{\sigma}^{*}: H_{n}\left(x ; \hat{\underline{U}}^{0}\right) \longrightarrow \hat{L}^{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right)
\end{array}\right.
$$

where the homology groups are defined using w-twisted coefficients and the L-groups are defined using the w-twisted involution on the group r ing $\mathbb{Z}\left[\pi_{1}(x)\right]$. The assembly maps fit together to define a natural transformation of exact sequences

with $\pi=\pi_{1}(X)$. (The hyperquadratic L-groups $\hat{L}^{\star}(A)$ were defined in $\$ 2.3$
The n-ad version of the Browder-Novikov transversality construction of topological normal maps combined with the n-ad version of the quadratic kernel construction of II. and the computation

$$
\pi_{n}(G / T O P)=L_{n}(\mathbb{Z}) \quad(n \geqslant 1)
$$

give a canonical homotopy equivalence

$$
\mathrm{G} / \mathrm{TOP} \xrightarrow{\sim} \Pi_{\mathrm{O}}
$$

with Π_{O} the oth space of the Ω-spectrum $\left.\underline{\Pi}_{O}=\left\{\Pi_{-k}=\Omega \Pi_{-k-1}\right\} k \geqslant 0\right\}$. In fact, the quadratic \mathbb{L}-spectrum \underline{L}_{0} is homotopy equivalent to the O-connective cover of the Quinn [1] spectrum of simply-connected surgery problems ($=$ topological normal maps
of n-ads $(f, b): M \longrightarrow X$ with $\pi_{1}(X)=\{1\}$, corresponding to the infinite loop space structure of G/TOP qiven by the Sullivan characteristic variety addition. The quadratic assembly map $\left.\sigma_{*}: H_{\star}\left(X ; \mathbb{U}_{0}\right) \longrightarrow L_{*}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right)$ is the algebraic version of the geometric assembly map of Quinn [2].

Given $a(k-1)$-spherical fibration $\xi: X \longrightarrow B G(k)$ over a space X let $\vec{X} \longrightarrow X$ be the orientation double covering classified by $w_{1}(\xi) \in H^{1}\left(X ; \mathbb{Z}_{2}\right)$, so that ξ ifts to a \mathbb{Z}_{2}-equivariant $\operatorname{map} \bar{\xi}: \overline{\mathrm{X}} \longrightarrow \mathrm{BSG}(\mathrm{k})$ classifying an oriented $(k-1)$-spherical fibration over \bar{X}. We shall consider spherical fibrations ξ to be equipped with a choice of lift $\bar{\xi}$, letting $-F$ denote the same fibration with the other choice of lift. The base space x will always be taken to be a finitely dominated CW complex. Let $\underline{R}=\left\{R_{j}, \Sigma R_{j} \longrightarrow R_{j+1} \mid j 20\right\}$ be a ring spectrum, as defined by structure maps

$$
\otimes: R_{j} \wedge R_{k} \longrightarrow R_{j+k}, l_{j}: S^{j} \longrightarrow R_{j} \quad(j, k \geqslant 0),
$$

with an orientation-reversing involution $T: R \longrightarrow R$ inducing the additive inverse $T: \pi_{\star}(\underline{R}) \longrightarrow \pi_{\star}(\underline{R}) ; x \longrightarrow-x$.

An R-orientation of a $(k-1)$-spherical fibration $\xi: X \longrightarrow B G(k)$ is a $w_{1}(\xi)$-twisted \underline{R}-coefficient Thom class, i.e. an element

$$
\mathrm{U}_{\xi} \in \dot{B}^{k}(T(\xi) ; \underline{R})=\underset{j}{\operatorname{Lim}}\left[\Sigma \Sigma^{j}(\bar{\xi}), R_{j+k}\right]_{\mathbb{Z}_{2}}
$$

such that for each map $i:\{p t.\} \longrightarrow x \quad i * U_{\zeta} \in \dot{H}^{k}\left(T\left(i * V_{i}\right) ; \underline{R}\right)=\pi_{o}(\underline{R})$ is a unit. \underline{R}-orientations are required to be compatible with the choice of, lift $\bar{\varepsilon}: \bar{x} \longrightarrow \operatorname{BSG}(k)$, so that

$$
U_{-\xi}=-U_{\xi} \in \dot{H}^{k}(T(F) ; \underline{R})
$$

If M is an R-module spectrum there are defined Thom isomorphisms in $M_{\text {-coefficient }}\left\{\begin{array}{l}\text { cohomology } \\ \text { homology }\end{array}\right.$

$$
\left\{\begin{array}{l}
U_{\xi} U-: H^{\star}\left(X, w^{\prime} ; M\right) \longrightarrow \sim \dot{H}^{\star}+k\left(T(\xi), w^{\prime \prime} ; \underline{M}\right) \\
U_{\Sigma} \eta^{-}: \dot{H}_{\star}\left(T(\xi), w^{\prime \prime} ; M\right) \longrightarrow \omega_{\star-k}\left(X ; w^{\prime} ; \underline{M}\right)
\end{array}\right.
$$

for any orientation maps $w^{\prime}, w^{\prime \prime}: \pi_{1}(X) \rightarrow \mathbb{Z}_{2}$ such that $w^{\prime} w^{\prime \prime}=w_{1}$ The whitney sum of oriented $\left\{\begin{array}{l}\text { topological bundles } \\ \text { spherical fibrations }\end{array}\right.$

induces products in the Thom spaces

$$
\left\{\begin{array}{l}
\otimes: \operatorname{MSTOP}(j) \wedge \operatorname{MSTOP}(k) \longrightarrow \operatorname{MSTOP}(j+k) \\
\otimes: \operatorname{MSG}(j) \wedge \operatorname{MSG}(k) \longrightarrow \operatorname{MSG}(j+k)
\end{array} \quad(j, k \geqslant 0)\right.
$$

a ring spectrum. $A\left\{\begin{array}{l}\text { topological bundle } \xi: X \longrightarrow B T O P(k) \\ \text { spherical fibration } E: X \longrightarrow B G(k)\end{array}\right.$ has
a canonical $\left\{\begin{array}{l}\text { MSTOP- } \\ \text { MSG- orientation }\end{array}\right.$

$$
\left\{\begin{array}{l}
U_{\xi} \in \dot{H}^{k}(T(\xi) ; \underline{M S T O P})=\underset{j}{\operatorname{Lim}}\left[\Sigma{ }^{j} T(\bar{\xi}), M S T O P(j+k)\right]_{\mathbb{Z}_{2}} \\
U_{\xi} \in \dot{H}^{k}(T(\xi) ; \underline{M S G})=\underset{j}{\operatorname{Lim}}\left[\Sigma^{j} T(\bar{\xi}), M S G(j+k)\right]_{Z_{2}}
\end{array}\right.
$$

the element represented by the \mathbb{Z}_{2}-map of Thom spaces

$$
\left\{\begin{array}{l}
U_{\xi}: T(\bar{\xi}) \longrightarrow M S T O P(k) \\
U_{\xi}: T(\bar{\xi}) \longrightarrow M S G(k)
\end{array}\right.
$$

induced by the classifying map $\left\{\begin{array}{l}\bar{\xi}: \bar{x} \longrightarrow \operatorname{BSTOP}(k) \\ \bar{\xi}: \bar{X} \longrightarrow \operatorname{BSG}(k)\end{array}\right.$.

The tensor product of algebraic Poincaré n-ads over \mathbb{Z} gives rise to pairings of spectra
$\otimes: \underline{\mathrm{L}}^{O} \wedge \underline{\mathrm{~L}}^{\mathrm{O}} \longrightarrow \underline{\mathrm{I}}^{O}$
$\Delta: \underline{\hat{\underline{L}}}^{0} \wedge \underline{\hat{\boldsymbol{L}}}^{0} \longrightarrow \underline{\hat{\mathbf{L}}}^{0}$
$\alpha: \underline{\underline{\pi}}^{0} \wedge \underline{\underline{Z}}_{\mathrm{O}} \longrightarrow \underline{\underline{I}}_{\mathrm{O}}$
making $\underline{\underline{\Psi}}^{\mathrm{O}}$ and $\underline{\underline{\underline{L}}}^{\mathrm{O}}$ into ring spectra, and $\underline{\underline{\mathbb{K}}}_{\mathrm{O}}$ into an $\underline{\underline{\Pi}}^{\mathrm{O}}$-modul spectrum. The $\left\{\begin{array}{l}\text { symmetric } \\ (\text { symmetric, quadratic })\end{array}\right.$ Poincaré n-ads over \mathbb{Z} of oriented $\left\{\begin{array}{l}\text { manifold } \\ \text { normal space }\end{array}\right.$ n-ads define a map of ring spectr

$$
\left\{\begin{array}{l}
\sigma^{*}: \underline{\text { MSTOP }} \longrightarrow \underline{\underline{L}}^{0} \\
\hat{\sigma}^{*}: \underline{\text { MSG }} \longrightarrow \underline{\hat{G}}^{0}
\end{array}\right.
$$

such that there is defined a commatative square of r ing spe

It follows that a $\left\{\begin{array}{l}\text { topological bundle } \tilde{\xi}: x \longrightarrow B T O P(k) \\ \text { spherical fibration } \xi: x \longrightarrow B G(k)\end{array}\right.$ has

$\left\{\begin{array}{l}\sigma^{\star}: \dot{H}^{k}(T(\xi) ; M S T O P) \longrightarrow \dot{H}^{k}\left(T(\xi) ; \underline{\underline{L}}^{0}\right) \\ \hat{\sigma}^{\star}: \dot{H}^{k}(T(\xi) ; \underline{M S G}) \longrightarrow \dot{H}^{k}\left(T(\xi) ; \underline{\hat{L}}^{O}\right)\end{array}\right.$ of the canonical
$\left\{\begin{array}{l}\underline{\text { MSTOP }} \\ \underline{\text { MSG }}\end{array}\right.$ orientation, $\left\{\begin{array}{l}\text { with } \xi=J \widetilde{\xi}: X \longrightarrow B G(k) \text { such that } \\ -\end{array}\right.$

$$
J U_{\widetilde{\xi}}=\hat{U}_{\xi} \in \dot{H}^{k}\left(T(\xi) ; \hat{\underline{t}}^{O}\right)
$$

We refer to Rourke and Sanderson [1], [2] for the definition and basic properties of topological block bundles.

A t-trianqulation $\tilde{\xi}$ of a spherical fibration $\xi: X \longrightarrow B G(k)$ is a reduction of ξ to a topological block bundle, as defined by a classifying map $\tilde{\xi}: X \rightarrow \operatorname{BTOP}(k)$ together with a homotopy $\mathrm{b}: \mathrm{J} \tilde{\xi} \simeq \xi: \mathrm{X} \longrightarrow \mathrm{BG}(\mathrm{k})$. A concordance of t -triangulations $\vec{\xi}_{\mathrm{O}}, \vec{\xi}_{1}$ is a t-triangulation $(\widetilde{\xi \times I}): X \times I \longrightarrow \mathcal{B T O P}(k)$ of

$$
\xi \times I: X \times I \xrightarrow{\text { projection }} X \xrightarrow{\xi} B G(k)
$$

such that

$$
\left.(\widetilde{\xi \times I})\right|_{\mathrm{X} \times\{0}=\left.\widetilde{\xi}_{\mathrm{O}^{\prime}}(\widetilde{\xi \times I})\right|_{\mathrm{X} \times\{1\}}=\widetilde{\xi}_{1}: \mathrm{x} \longrightarrow \operatorname{BTOP}(\mathrm{k})
$$

(and similarly for the homotopies b_{0}, b_{1}), i.e. an isomorphism $\tilde{\xi}_{\mathrm{O}} \longrightarrow \tilde{\xi}_{1}$ over $1: x \longrightarrow x$ of the $\overparen{T O P}$ reductions. Define the topological structure set of $\xi \mathcal{T}^{\mathrm{TOP}}(\xi)$ to be the set of concordance classes of t-triangulations of ξ. For $k=1,2$ $\hat{B T O P}(k)=\mathrm{BG}(k)$ so that $\mathcal{T}^{\mathrm{TOP}}(\xi)$ consists of a single element, and for $k \geqslant 3 \mathrm{G}(\mathrm{k}) / \widehat{\operatorname{TOP}}(\mathrm{k})=\mathrm{G} / \mathrm{TOP}$ so that $\mathrm{T}^{\mathrm{TOP}}(\xi)$ is the set of stable equivalence classes of stable reductions of ξ to a genuine topological bundle $\widetilde{\xi}: x \longrightarrow \operatorname{BTOP}\left(k^{\prime}\right)\left(k^{\prime}\right.$ large) which is either empty or in unnatural one-one correpondence with [X,G/TOP]. In particular, note that a topological block bundle $\tilde{\xi}: \mathrm{X} \longrightarrow \mathrm{BTOP}(k)$ has a canonical $\underline{\amalg}^{\mathrm{O}}$-orientation $\mathrm{U}_{\tilde{\xi}} \in \dot{\mathrm{H}}^{\mathrm{k}}\left(\mathrm{T}(\xi) ; \underline{\amalg}^{\mathrm{O}}\right)$ such that

$$
J U_{\xi}=\hat{\mathrm{U}}_{\xi} \in \dot{\mathrm{H}}^{\mathrm{k}}\left(\mathrm{~T}(\xi) ; \underline{\hat{\underline{\hat{m}}}}^{\mathrm{O}}\right)
$$

is the canonical $\underline{\underline{\mathrm{L}}}^{\mathrm{O}}$ - orientation of the underlying spherical fibration $\xi=J F: X \rightarrow B G(k)$, namely the canonical \underline{H}°-orientation of any stably equivalent genuine topological bundle.

Proposition 7.1.1 Let $\xi: X \longrightarrow B G(k)$ be a $(k-1)$-spherical
fibration over a space X.
i) The t-triangulability obstruction of ξ

$$
t(\xi)=H\left(\hat{U}_{\xi}\right) \in \dot{H}^{k+1}\left(T(\xi) ; \underline{\Pi}_{O}\right)
$$

is such that $t(\xi)=0$ if and only if ξ admits a t-triangulation, i.e. a $\widetilde{T O P}$ reduction $\tilde{\xi}: x \longrightarrow B \tilde{T O P}(k)$.
ii) Given a subspace $Y \subset X$ and a t-triangulation $\eta: Y \longrightarrow \widehat{\operatorname{TOP}}(k)$ of the restriction $\xi \mid: Y \longrightarrow B G(k)$ there is defined a rela t-triangulability obstruction

$$
t_{2}(\xi, \eta) \in H^{k+1}\left(T(\xi), T(\eta) ; \underline{H}_{0}\right)
$$

such that $t_{j}(\xi, \eta)=0$ if and only if ξ admits a $t-t r i a n g u l a t i o n$ $\tilde{\xi}: X \longrightarrow$ BTOP (k) such that $\widetilde{\xi} \mid=n: Y \longrightarrow B \widetilde{\text { POP }}(k)$. The obstruction has images

$$
\begin{aligned}
& i * t_{\partial}(\xi, \eta)=t(\xi) \in \dot{H}^{k+1}\left(T(\xi) ; \underline{\underline{L}}_{O}\right) \\
& (1+T) t_{\partial}(\xi, \eta)=\delta U_{\eta} \in H^{k+1}\left(T(\xi), T(\eta) ; \underline{\Pi}^{0}\right)
\end{aligned}
$$

with $i=$ inclusion $:(T(\xi), p t.) \longrightarrow(T(\varepsilon), T(n)), U_{\eta} \in \dot{H}^{k}\left(T(\eta) ; \underline{L}^{\mathrm{O}}\right)$ the canonical \underline{L}°-orientation of η and δ the connecting map.
iii) If $k \geqslant 3$ and ξ admits a t-triangulation the topological structure set $\mathcal{J}^{\text {TOP }}(\xi)$ carries a natural affine structure with translation group $\dot{H}^{k}\left(T(\xi) ; \underline{\underline{W}}_{O}\right)$, the difference of two $t-t r i a n g u l a t i o n s \widetilde{\xi}_{0}, \widetilde{\xi}_{1}: x \longrightarrow \widehat{B T O P}(k)$ being the element

$$
\begin{aligned}
& t\left(\tilde{\xi}_{O}, \tilde{\xi}_{1}\right)=t_{\partial}\left(\left(\xi \times I, \tilde{\xi}_{O}^{U-\tilde{\xi}_{1}}\right):(X \times I, X \times\{O, 1)) \longrightarrow(B G(k), \operatorname{BTOP}(k))\right) \\
& \quad \in H^{k+1}\left(T(\xi \times I), T\left(\xi_{O} \cup-\xi_{1}\right) ; \underline{L}_{O}\right)=\dot{H}^{k+1}\left(\Sigma T(\xi) ; \underline{D}_{O}\right)=\dot{H}^{k}\left(T(\xi) ; \underline{U}_{O}\right)
\end{aligned}
$$

with image

$$
(1+\mathrm{T}) \mathrm{t}\left(\tilde{\varepsilon}_{\mathrm{O}}, \tilde{\xi}_{1}\right)=\mathrm{U}_{\mathrm{O}}-\mathrm{U}_{\tilde{\xi}_{1}} \in \dot{\mathrm{H}}^{\mathrm{k}}\left(\mathrm{~T}(r) ; \underline{L}^{\mathrm{O}}\right)
$$

A particular choice of t-triangulation $\widetilde{\xi}: x \rightarrow \cdots \rightarrow B$ TOP (k) determines an isomorphism of abelian groups

$$
\left(U_{\xi} u-\right)^{-1}: \dot{H}^{k}\left(T(\xi) ; \underline{L}_{O}\right) \sim \sim H^{O}\left(X ; \underline{L}_{O}\right)=[x, G / T O P]
$$

with $U_{\tilde{\xi}} \in \dot{H}^{k}\left(T(\xi) ; \underline{\underline{L}}^{\mathrm{O}}\right)$ the canonical $\underline{\underline{L}}^{\mathrm{O}}$-orientation.
Proof: See Ranicki [7], where it was shown that $\xi: x \longrightarrow B G(k)$ admits a t-triangulation $\tilde{\xi}: X \longrightarrow B T(k)$ if and only if there exists an $\underline{\underline{R}}^{\text {O}}$-orientation $U_{\tilde{\xi}} \in \dot{H}^{k}\left(T(\xi) ; \underline{L}^{\text {O }}\right)$ such that

$$
J \mathrm{U}_{\tilde{\xi}}=\hat{\mathrm{U}}_{\xi} \in \dot{\mathrm{H}}^{\mathrm{k}}\left(\mathrm{~T}(\xi) ; \hat{\underline{\underline{L}}}^{\mathrm{O}}\right)
$$

is the canonical $\underline{\underline{L}}{ }^{\circ}$-orientation.

Let X be an n-dimensional qeometric Poincaré complex wit Spivak normal structure ($\left.v_{X}: X \longrightarrow B G(k), \rho_{X}: S^{n+k_{-}} \rightarrow T\left(v_{X}\right)\right)$ and let $w: \bar{x} \longrightarrow x$ be any double covering of x, so that there is defined an SZ_{2}-duality map

$$
\alpha_{x}: s^{n+k} \xrightarrow{\rho_{X}} T\left(v_{X}\right) \xrightarrow{\Delta} \bar{x}_{+}{ }^{\wedge} \mathbb{Z}_{2} T\left(\bar{v}_{X}\right) .
$$

Thus for any coefficient spectrum \underline{M} there are defined $S \mathbb{Z}_{2}$-dua isomorphisms

$$
\begin{aligned}
& \alpha_{X}: \dot{H}^{r}\left(T\left(v_{X}\right) ; \underline{M}\right)=\underset{j}{L_{i} \mathcal{m}_{\mathcal{L}}}\left[\Sigma^{j} T\left(\bar{v}_{X}\right), M_{j+Y}\right]_{\mathbb{Z}_{2}} \\
& \xrightarrow{\sim} H_{n+k-r}(X ; \underline{M})=\underset{j}{\operatorname{Li} T}{ }_{n+j+k}\left(\bar{X}_{+} \wedge_{Z}{ }_{2} M_{j+r}\right) ; \\
& \left(h: \Sigma^{j} T\left(\bar{v}_{X}\right) \longrightarrow M_{j+r}\right) \\
& \longmapsto\left(S^{n+j+k} \xrightarrow{\sum^{j} \alpha_{X}} \xrightarrow{\longrightarrow} \bar{X}_{+}{ }^{\wedge} \mathbb{Z}_{2}{ }^{\left.\sum^{j} T\left(\bar{\nu}_{X}\right) \xrightarrow{1 \wedge h} \bar{X}_{+}{ }^{\wedge} \mathbb{Z}_{2}{ }^{M} j+r\right)}\right.
\end{aligned}
$$

using w-twisted M-coefficients and an involution $T: M \longrightarrow \longrightarrow M$.

An \underline{R} orientation of X is an R-orientation of $v_{X}: X \longrightarrow B G(k)$. or equivalently a $w(X)$-twisted \underline{R}-coefficient fundamental clas $[\mathrm{X}] \in \mathrm{H}_{\mathrm{n}}(\mathrm{X} ; \underline{R})$
such that $U_{v_{X}}=\alpha_{X}^{-1}\left([X \mid) \in \dot{H}^{k}\left(T\left(v_{X}\right) ; \underline{R}\right)\right.$ is an \underline{R}-orientation o For any \underline{R}-module spectrum $\underline{M}=\left\{M_{j}, \Sigma M_{j} \rightarrow M_{j+1}, R_{j} \wedge M_{k} \rightarrow M_{j+k} \mid j\right.$, there are then defined \underline{R}-coefficient poincare duality isomorphisms

$$
[X] \cap-: H^{*}\left(X, w^{\prime} ; \underline{M}\right) \xrightarrow{{ }^{U_{v_{X}}}{ }_{\sim}^{u-}} \dot{H}^{*+k}\left(T\left(v_{X}\right), w^{\prime \prime} ; \underline{M}\right)
$$

for any orientation maps $w^{\prime}, w^{\prime \prime}: \pi_{1}(x) \longrightarrow \mathbb{Z}_{2}$ such that $w^{\prime} w^{\prime \prime}=$ In particular, the canonical $\underline{\underline{\Pi}}^{0}$-orientation $\hat{0}_{v_{X}} \in \dot{H}^{k}\left(T\left(v_{X}\right) ; \hat{\underline{U}}\right.$ of v_{X} determines the canonical $\hat{\underline{L}}^{0}$-orientation of X

$$
(\hat{x})=\alpha_{x}\left(\hat{U}_{v_{X}}\right) \in H_{n}\left(x ; \underline{\underline{L}}^{0}\right)
$$

Proposition 7.1.2 An n-dimensional manifold M has a canonica $\underline{\underline{L}}^{\mathrm{O}}$-orientation

$$
[M]=\alpha_{M}\left(U_{V_{M}}\right) \in H_{n}\left(M ; \underline{\underline{I}}^{O}\right)
$$

with $\left(v_{M}=v_{M} \subset s^{n+k}: M \longrightarrow \widetilde{\operatorname{BTOP}}(k), \rho_{M}: S^{n+k} \longrightarrow T\left(v_{M}\right)\right)$ the canonical topological normal structure, such that
i) $J([M])=\mid \hat{M}] \in H_{n}\left(M ; \hat{\underline{U}}^{O}\right)$ is the canonical $\underline{\underline{\underline{L}}}^{O}$-orienta
ii) $\sigma^{*}([M])=\sigma^{*}(M) \in L^{n}\left(\mathbb{Z}\left[\pi_{1}(M)\right]\right)$, with σ * the symmet assembly map and $\sigma^{*}(M)$ the symmetric signature of M.

Proof: See Ranicki [7].

A t-triangulation of an n-dimensional geometric Poincaré complex X is a topological normal map
$(f, b): M \longrightarrow X$
in the sense of $\$ 1.2$. A concordance of $t-t r i a n g u l a t i o n s$ $\left(f_{0}, b_{0}\right): M_{0} \longrightarrow X,\left(f_{1}, b_{1}\right): M_{1} \longrightarrow X$ is a topological normal map of triads

$$
\left((\mathrm{g}, \mathrm{c}) ;\left(\mathrm{f}_{\mathrm{O}}, \mathrm{~b}_{\mathrm{O}}\right),\left(\mathrm{f}_{1}, \mathrm{~b}_{1}\right)\right):\left(\mathrm{N} ; \mathrm{M}_{\mathrm{O}}, \mathrm{M}_{1}\right) \longrightarrow \mathrm{X} \times(\mathrm{I} ; \mathrm{O}, 1)
$$

The topological normal structure set of $x \mathcal{T}^{\text {TOP }}(x)$ is the set of concordance classes of t-triangulations (f,b):M—X. (Of course, $\mathcal{T}^{T O P}(X)$ may be empty). In dealing with $t-t r i a n q u l a t i o n s$ $(f, b): M \longrightarrow X$ we shall sometimes omit to mention b, writing $f: M \longrightarrow X$ in conformity with the terminology for s-triangulations, even though f does not in general determine b. Proposition 7.1.3 Let x be an n-dimensional geometric Poincaré complex with Spivak normal structure

$$
\left(v_{X}: X \longrightarrow B G(k), \rho_{X}: S^{n+k} \longrightarrow T\left(v_{X}\right)\right)(k \geqslant 3)
$$

i) The Browder-Novikov transversality construction of topological normal maps defines a natural bijection

$$
\begin{aligned}
\alpha_{x}: \mathcal{T}^{\operatorname{TOP}}\left(v_{X}\right) \longrightarrow & \mathcal{J}^{\operatorname{TOP}}(x) ; \\
& \left(\tilde{v}_{X}: x \longrightarrow \operatorname{B\widetilde {TOP}}(k)\right) \longmapsto((f, b): M \longrightarrow x)
\end{aligned}
$$

sending the t-triangulation \tilde{v}_{x} of v_{x} to the t-triangulation (f, b) of X obtained by making $\rho_{X}: s^{n+k} \longrightarrow T\left(v_{X}\right)$ topologically transverse at the zero section $X \subset T\left(v_{X}\right)$ with respect to \tilde{v}_{X} and setting

$$
\mathrm{f}=\rho_{\mathrm{X}} \mid: \mathrm{M}=\rho_{\mathrm{X}}^{-1}(\mathrm{X}) \longrightarrow \mathrm{X}
$$

(For $n=4 \mathrm{M}$ is allowed one singularity, cf. Scharlemann [1]).
ii) The $S 7 Z_{2}$-duality isomorphism

$$
\alpha_{x}: \dot{H}^{k+1}\left(T\left(\nu_{X}\right) ; \underline{\underline{L}}_{0}\right) \Longrightarrow{ }_{n-1}\left(x ; \underline{\Pi}_{0}\right)
$$

sends the t-triangulability obstruction $t\left(v_{x}\right)$ of v_{x} to the t-triangulability obstruction of X

$$
t(x)=\alpha_{x}\left(t\left(v_{x}\right)\right) \in H_{n-1}\left(x ; \underline{I}_{0}\right)
$$

such that $t(X)=0$ if and only if X is t-triangulable. The image of $t(x)$ under the quadratic assembly map is

$$
\begin{aligned}
\sigma_{*}(t(x)) & =\left(\Omega C\left([x] n-: C(\bar{x})^{n-*} \longrightarrow C(\bar{x})\right), \psi\right) \\
& =0 \in L_{n-1}\left(\mathbb{Z}\left[\pi_{1}(x)\right)\right)
\end{aligned}
$$

with \bar{X} the universal cover of X. (See Proposition 7.4.3 iii) for a generalization of this to normal spaces).
iii) A t-trianqulation $(f, b): M \longrightarrow X$ of X determines an $\underline{\Pi}^{\text {O}}$-orientation of x

$$
[x]=f_{*}([M]) \in H_{n}\left(x ; \underline{\Pi}^{0}\right)
$$

such that $J([X])=\{\hat{X}] \in H_{n}\left(X ; \hat{\underline{L}}^{0}\right)$ is the canonical $\underline{\hat{L}}^{0}$-orientation of X, and such that the surgery obstruction $\left.\sigma_{*}(f, b) \in L_{n}\left(\mathbb{Z} \|_{1}(X)\right]\right)$ has symmetrization

$$
\begin{aligned}
(1+T) \sigma_{\star}(f, b) & =\sigma^{*}(M)-\sigma^{*}(X) \\
& =\sigma^{*}([X])-\sigma^{*}(X) \in L^{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) .
\end{aligned}
$$

iv) If x is t-triangulable the set $\mathrm{J}^{\text {TOP }}(\mathrm{X})$ carries a natural affine structure with translation group $H_{n}\left(X ; \underline{L}_{\mathrm{O}}\right)$. the difference of two t-triangulations (f_{0}, b_{0}) : $M_{O} \longrightarrow X$, $\left(f_{1}, b_{1}\right): M_{1} \longrightarrow X$ being the element

$$
t\left(f_{0}, f_{1}\right)=\alpha_{x}\left(t\left(\left(\tilde{v}_{X}\right)_{0},\left(\tilde{v}_{X}\right)_{1}\right)\right) \in H_{n}\left(x ; \underline{\underline{L}}_{0}\right),
$$

with $\left.t\left(\tilde{v}_{X}\right)_{O},\left(\tilde{v}_{X}\right)_{1}\right) \in \dot{H}^{k}\left(T\left(v_{X}\right) ; \underline{I}_{O}\right)$ the difference of the corresponding $t-t r i a n g u l a t i o n s\left(\widetilde{v}_{x}\right)_{0} \cdot\left(\widetilde{v}_{x}\right)_{1}$ of v_{x}.

The difference has images

$$
\begin{aligned}
& (1+T) t\left(f_{O}, f_{1}\right)=f_{O^{\star}}\left(\left[M_{O}\right]\right)-f_{1 \star}\left(\left[M_{1}\right]\right) \in H_{n}\left(x ; \underline{L}^{O}\right) \\
& \sigma_{\star}\left(t\left(f_{O}, f_{1}\right)\right)=\sigma_{\star}\left(f_{O}, b_{O}\right)-\sigma_{\star}\left(f_{1}, b_{1}\right) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right)
\end{aligned}
$$

Proof: See Ranicki [7], where it was shown that X admits an $\underline{\underline{L}}^{\mathrm{O}}$-orientation $[\mathrm{X}] \in \mathrm{H}_{\mathrm{n}}\left(\mathrm{X} ; \underline{\underline{L}}^{\mathrm{O}}\right)$ such that
i) $J([x])=\{\hat{x}] \in H_{n}\left(x ; \underline{\hat{\underline{n}}}^{0}\right)$
ii) $\left.a^{*}([x])=\sigma^{*}(X) \in I^{n}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right)$
iii) the relations i) and ii) are compatible on the W-spectrum level
if (and for $n \geqslant 5$ only if) X admits an s-triangulation.

As they stand the conditions i), ii), iii) listed above are just a restatement in algebraic terms of the Browder-Novikov-Sullivan-Wall two-stage obstruction theory for the s-triangulability of an n-dimensional geometric Poincaré complex X, with i) giving a t-triangulation $(f, b): M \longrightarrow X$ and ii) giving a vanishing of the surgery obstruction $\sigma_{\star}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ up to the (8-torsion) difference between the quadratic and symmetric L-groups which is taken care of by iii). However, the three conditions were united and expressed as the vanishing of a single invariant, as follows.

Given a space x with an orientation double covering $w: \bar{x} \longrightarrow x$ define the quadratic 1 -groups $f_{\star}(x)$ to be the abelian groups appearing in the exact sequence

$$
\begin{aligned}
&\left.\ldots \longrightarrow H_{n}\left(x ; \underline{\underline{\pi}}_{0}\right) \longrightarrow \sigma^{\sigma_{n}} \rightarrow L_{n}\left(\mathbb{Z} \mid \pi_{1}(x)\right]\right) \cdots \rightarrow s_{n}(x) \\
& \longrightarrow H_{n-1}\left(x ; \underline{\underline{H}}_{0}\right) \longrightarrow \ldots,
\end{aligned}
$$

in which the homology groups are defined using w-twisted
$\underline{\mathbb{L}}_{\mathrm{O}}$-coefficients and the L-groups are defined using the w-twister involution on $\mathbb{Z}\left[\pi_{1}(x)\right]$. An orientation-preserving map $f: x \longrightarrow x$ induces abelian group morphisms

$$
\mathrm{f}_{\star}: s_{\star}(x) \longrightarrow s_{\star}\left(x^{\prime}\right)
$$

which are isomorphisms if f is a homotopy equivalence.
The total surgery (or s-triangulability) obstruction of an n-dimensional geometric Poincaré complex x is an element

$$
s(x) \in g_{n}(x)
$$

with the following properties.
Proposition 7.1.4 i) $s(x)=0 \in \xi_{n}(x)$ if (and for $n \geqslant 5$ only if) x is s-triangulable, i.e. has the simple homotopy type of a manifold.
ii) The image of $s(x)$ in $H_{n-1}\left(X ; \underline{H}_{0}\right)$ is the t-triangulability obstruction of x

$$
[s(x)]=t(x) \in H_{n-1}\left(x ; \underline{\Pi}_{0}\right)
$$

If

$$
\begin{aligned}
s(x) \in \operatorname{ker}\left(g_{n}(x) \longrightarrow\right. & \left.H_{n-1}\left(x ; \mathbb{L}_{0}\right)\right) \\
& =\operatorname{im}\left(\sigma_{\star}: L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \longrightarrow g_{n}(x)\right) \subseteq g_{n}(x)
\end{aligned}
$$

(i.e. if X is $t-t i a n g u l a b l e)$ the inverse image of $s(X)$ in $L_{n}\left(\mathbb{Z}\left[{ }_{1}(X)\right]\right)$ is the coset of the subgroup

$$
\operatorname{ker}\left(L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \longrightarrow s_{n}(x)\right)
$$

$$
=i m\left(\sigma_{*}: H_{n}\left(x ; \underline{\underline{L}}_{0}\right) \rightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \subseteq L_{n}\left(\mathbb{Z} \mid \pi_{1}(2\right.\right.
$$

consisting of the surgery obstructions $\sigma_{*}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ of all the t-triangulations $(f, b): M \longrightarrow x$.
iii) If $n \geqslant 5$ and X is s-triangulable the topological manifold structure set $\ell^{T O P}(x)$ carries a natural affine structure with translation group $S_{n+1}(x)$, the difference of two s-triangulation
$\mathrm{f}_{\mathrm{O}}: \mathrm{M}_{\mathrm{O}} \longrightarrow \sim \mathrm{X}, \mathrm{f}_{1}: \mathrm{M}_{1} \longrightarrow \mathrm{X}$ being an element

$$
s\left(f_{0}, f_{1}\right) \in \&_{n+1}(x)
$$

with image

$$
\left[s\left(f_{O}, f_{1}\right)\right]=t\left(f_{O}, f_{1}\right) \in H_{n}\left(x ; \underline{\Pi}_{O}\right)
$$

(See Proposition 7.1.4 (rel3) iv) below for the algebraic surgery exact sequence involving $S^{T O P}(X)$, and for an expression of the difference $s\left(f_{0}, f_{1}\right)$ as a reld s-triangulability obstruction). Proof: See Ranicki [7].
(If π is a group equipped with an orientation map $w: \pi \longrightarrow \mathbb{Z}_{2}$ the Sullivan-Wall homomorphism

$$
\theta: \rho_{n}^{S T O P}(K(\pi, 1) \times G / \operatorname{TOP}, K(\pi, 1) \times \star) \longrightarrow L_{n}(\mathbb{Z}[\pi])
$$

(cf. Wall (4,Thm.13.B.3]) factors through the quadratic assembly map as

$$
\begin{aligned}
& \theta: \Omega_{n}^{\operatorname{STOP}}(K(\pi, 1) \times G / T O P, K(\pi, 1) \times \star)=\dot{H}_{n}(K(\pi, 1) ; \underline{M S T O P} \wedge G / T O P) \\
& \longrightarrow H_{n}\left(K(\pi, l) ; \underline{Z}_{O}\right) \xrightarrow{\sigma} L_{n}(\mathbb{Z}[\pi]),
\end{aligned}
$$

using the composite map of spectra

Thus if π is finitely presented and $n \geqslant 5$ the subgroup

$$
\left.\operatorname{im}\left(\sigma_{\star}: H_{n}\left(K(\pi, 1) ; \underline{K}_{0}\right) \longrightarrow L_{n}(\mathbb{Z}|\pi|)\right) \subseteq L_{n}(\mathbb{Z} \mid \pi]\right)
$$

consists of the surgery obstructions $\sigma_{\star}(f, b)$ of $t-t r i a n g u l a t i o n s$ $(f, b): M \longrightarrow X$ of closed n-dimensional manifolds X equipped with a reference map $x \longrightarrow K(\pi, 1))$.

There are relative and relo versions of total surgery obstruction theory, which we shall now summarize.

Let (X, Y) be an n-dimensional geometric Poincaré pair
$\left\{\begin{array}{l}\text { such that } Y \text { is a manifold }\end{array}\right.$ with Spivak normal structure

$$
\left\{\begin{aligned}
&\left(\left(v_{X}, v_{Y}\right):(X, Y) \longrightarrow\right.\left.B G(k),\left(\rho_{X}, \rho_{Y}\right):\left(0^{n+k}, s^{n+k-1}\right) \longrightarrow\left(T\left(v_{X}\right), T\left(v_{Y}\right)\right)\right) \\
&\left(\left(v_{X}, v_{Y}\right):(X, Y) \longrightarrow(B G(k), B \overparen{T O P}(k)),\right. \\
&\left.\left(\rho_{X}, \rho_{Y}\right):\left(D^{n+k}, s^{n+k-1}\right) \longrightarrow\left(T\left(v_{X}\right), T\left(v_{Y}\right)\right)\right)
\end{aligned}\right.
$$

$A\left\{\begin{array}{l}t- \\ t_{3}-\text { trianqulation of }(X, Y) \text { is a topological normal map of pairs }\end{array}\right.$

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

$\left\{\begin{array}{l}- \\ \text { such that } g: N \longrightarrow Y \text { is a homeomorphism }\end{array}\right.$. The $\left\{\begin{array}{l}t^{-} \text {triangulation } \\ t_{Z^{-}}\end{array}\right.$ obstruction of (X, Y)

$$
\left\{\begin{array}{l}
t(X, Y)=\alpha_{X}\left(t\left(v_{X}\right)\right) \in H_{n-1}\left(X, Y ; \underline{L}_{0}\right) \\
t_{j}(X, Y)=\alpha_{X}\left(t_{z}\left(v_{X}, v_{Y}\right)\right) \in H_{n-1}\left(X ; \underline{\underline{I}}_{0}\right)
\end{array}\right.
$$

is the image of the $\left\{\begin{array}{l}t- \\ t_{J^{-}}\end{array}\right.$triangulability obstruction of $\left\{\begin{array}{l}v_{X} \\ \left(v_{X}, v_{Y}\right)\end{array}\right.$ under the $S \mathbb{Z}_{2}$-duality isomorphism

$$
\left\{\begin{array}{l}
\alpha_{X}: \dot{H}^{k+1}\left(T\left(v_{X}\right) ; \underline{\underline{I}}_{0}\right) \xrightarrow{\sim} H_{n-1}\left(X, Y ; \underline{\underline{H}}_{0}\right) \\
\alpha_{X}: \dot{H}^{k+1}\left(T\left(v_{X}\right), T\left(v_{Y}\right) ; \underline{\underline{L}}_{0}\right) \longrightarrow \mathcal{H}_{n-1}\left(X ; \underline{\underline{L}}_{0}\right) .
\end{array}\right.
$$

$A n\left\{\begin{array}{l}s^{-} \\ s_{a^{-}} \frac{\text { triangulation }}{1} \text { of }(X, Y) \text { is a }\left\{\begin{array}{l}t^{-} \\ t_{y^{-}}\end{array} \text {triangulation }\right.\end{array}\right.$

$$
((f, b),(g, c)):(M, \dot{N}) \longrightarrow(X, Y)
$$

such that $\left\{\begin{array}{l}(f, g):(M, N) \longrightarrow(X, Y) \\ f: M \longrightarrow \cdots X\end{array}\right.$ is a simple homotopy equivalence.

Let $\left\{\begin{array}{l}f^{\text {TOP }}(X, Y) \\ Y_{a}^{T O P}(X, Y)\end{array}\right.$ be the set of concordance classes of $\left\{\begin{array}{l}s^{-} \\ s_{\partial^{-}}\end{array}\right.$triangulations of (X, Y).

The rel total surgery (or s_{3}-triangulability) obstruction of an n-dimensional geometric Poincaré pair (X, Y) with manifold boundary Y is an element

$$
s_{j}(x, y) \in f_{n}(x)
$$

with the following properties.
Proposition 7.1.4 (relo) i) $s_{y}(X, Y)=0 \in \mathcal{I}_{n}(X)$ if (and for $n \geqslant 5$ only if) (X, Y) is s_{j}-triangulable.
ii) The image of $s_{a}(X, Y)$ in $H_{n-1}\left(X ; \underline{L}_{0}\right)$ is the t_{d}-triangulability obstruction of (X, Y)

$$
\left[s_{j}(X, Y)\right]=t_{\partial}(X, Y) \in H_{n-1}\left(X ; \underline{H}_{0}\right) .
$$

iii) If $n \geqslant 5$ and (X, Y) is s_{j}-triangulable the structure set $S_{A}^{T O P}(X, Y)$ carries a natural affine structure with translation group $s_{n+1}(X)$.
iv) For $n \rightarrow 5$ an 5 -triangulation $f: M \longrightarrow X$ of an n-dimensional geometric Poincaré complex x determines an isomorphism between the Sullivan-Wall surgery exact sequence of the manifold M

$$
\begin{aligned}
\cdots & \ell_{j}^{T O P}\left(M \times D^{1}, M \times S^{O}\right) \longrightarrow\left[M \times D^{1}, M \times S^{O} ; G / T O P, *\right] \\
& \left.\xrightarrow{\theta} L_{n+1}\left(Z\left[\pi N_{1}(M)\right]\right) \longrightarrow \delta^{T O P}(M) \longrightarrow[M, G / T O P] \xrightarrow{\theta} L_{n}\left(\mathbb{Z} \mid \pi_{1}(M)\right]\right)
\end{aligned}
$$

and the exact sequerce

$$
\begin{aligned}
& \ldots \longrightarrow \xi_{n+2}(x) \longrightarrow H_{n+1}\left(x ; \underline{I}_{0}\right) \xrightarrow{\sigma_{\star}} L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \\
& \longrightarrow \xi_{n+1}(x) \longrightarrow H_{n}\left(x ; \underline{\underline{I}}_{0}\right) \cdots{ }_{\star}{ }^{\sigma} L_{n}\left(\mathbb{Z} \mid \pi_{1}(x)\right]
\end{aligned}
$$

In particular, f determines a bijection

$$
\begin{aligned}
f_{\#}: & s^{T O P}(X) \xrightarrow[\sim]{\sim} S_{n+1}(X) ; \\
& \left(f^{\prime}: M^{\prime} \longrightarrow X\right) \longmapsto
\end{aligned}
$$

sending f to 0 , with W (resp. W') the mapping cylinder of f (resp. F') and using the homotopy invariance of the $S_{\text {-groups }}$ to identify $s_{n+1}\left(W^{\prime} \cup_{X}-W\right)=s_{n+1}(X)$. Similarly, finduces bijections

$$
f_{\#}: s_{\partial}^{\mathrm{TOP}}\left(M \times D^{k} \cdot \partial\left(M \times D^{k}\right)\right) \longrightarrow s_{n+k+1}(X) \quad(k \geqslant 0)
$$

which are isomorphisms of abelian groups for $k \geqslant 1$.
Proof: See Ranicki [7].

The relative ℓ-groups $f_{\star}(X, Y)$ of a pair of spaces (X, Y) (equipped with an orientation double covering w) are defined to $f i t$ into a commutative diagram of abelian groups with exact rows and columns

The total surgery (or s-triangulability) obstruction
of an n-dimensional geometric Poincaré pair (X, Y) is an element

$$
s(X, Y) \in \&_{\mathrm{n}}(\mathrm{X}, \mathrm{Y})
$$

with the following properties.
Proposition 7.1.4 (rel) i) $s(X, Y)=0 \in \&_{n}(X, Y)$ if (and for $n \geqslant 6$ only if) (X, Y) is s-triangulable.
ii) The image of $s(X, Y)$ in $H_{n-1}\left(X, Y ; \underline{H}_{O}\right)$ is the t-triangulability obstruction of (X, Y)

$$
[s(X, Y)]=t(X, Y) \in H_{n-1}\left(X, Y ; \mathbb{U}_{0}\right) .
$$

The image of $s(X, Y)$ in $\S_{n-1}(Y)$ is the total surgery obstruction $s(Y)$ of Y. If Y is a manifold $s(X, Y)$ is the image of the reld total surgery obstruction $s_{A}(X, Y) \in \delta_{n}(X)$.
iii) If $n \geqslant 6$ and (X, Y) is s-triangulable the structure set $S^{T O P}(X, Y)$ carries a natural affine structure with translation group $\ell_{n+1}(X, Y)$. An s-triangulation $f:(M, N) \longrightarrow(X, Y)$ determines a bijection

$$
\mathrm{f}_{\#}: s^{\mathrm{TOP}}(M, N) \longrightarrow \ell_{\mathrm{n}+1}(\mathrm{X}, \mathrm{Y})
$$

sending f to 0 .

7.2 The geometric theory of codimension gurgery

We shall now extend the total surgery obstruction theory of $\$ 7.1$ to the problem of simultaneously s-triangulating a geometric Poincaré complex x and a codimension q Poincaré subcomplex $Y \subset X$, that is finding an s-triangulation of X

$$
f: M \longrightarrow \sim X
$$

such that
i) f is topologically transverse at $Y \subset Y$ with respect to a t-triangulation $\tilde{\xi}: Y \longrightarrow \widehat{B T O P}(q)$ of the normal fibration $\xi=\nu_{Y \subset X}: Y \longrightarrow B G(q)$, so that in particular $N=f^{-1}(Y) \subset M$ is a codimension q submanifold
ii) the restriction of f defines an s-triangulation of Y

$$
\mathrm{g}=\mathrm{f} \mid: \mathrm{N} \longrightarrow \mathrm{Y}
$$

iii) the restriction of f to the complements defines a simple homotopy equivalence

$$
h=f \mid: M-N \xrightarrow{\sim} X-Y \text {. }
$$

(For $q=2$ there is also a theory for the weaker problem in which f is only required to satisfy i) and ii), so that h need only be a $\mathbb{Z}\left[\pi_{1}(x)\right]$-homology equivalence - see $\left.\$ \$ 7.7,7.8\right)$. This problem is closely related to the obstruction theory for deciding whether a particular $\left\{\begin{array}{l}s^{-} \\ t-\end{array}\right.$ riangulation $f: M \rightarrow X$ of X is concordant to such a simultaneous s-triangulation of X and Y, i.e. can be "split along $Y \subset X$ ". Following the solution by Browder [1], [3] of the splitting problem in the simply-connected case wall [4, \$lll developed an obstruction theory for the codimension q splitting problem in the non-simply-connected case.

The obstruction groups $\left\{\begin{array}{l}L S_{\star}(\Phi) \\ L p_{\star}(\Phi)\end{array}\right.$ were defined geometrically, but shown to depend only on the fundamental group data of the pushout square

with $\left\{\begin{array}{l}\left.L_{\star}(\Phi)=L_{\star}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right) \\ L_{\star}(\Phi)=L_{\star+q}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \oplus L_{\star}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)\end{array}\right.$ for $q \geqslant 3$. In $\$ 7.2$
shall be only concerned with the geometrically defined $\left\{\begin{array}{l}\text { LS- } \\ \text { LP- }\end{array}\right.$ in the non-trivial cases $q=1,2$ using quadratic Poincaré complexes. In $\$ 7.6(q=1)$ and $\$ 7.8(q=2)$ we shall deal individually with the two cases of the algebraic theory of codimension q surgery

In the first instance, we recall the geometric
definition of the $\left\{\begin{array}{l}\text { LS- } \\ \text { LP- }\end{array}\right.$ groups, for any $q \geqslant 1$.
A codimension g CW pair (X, Y) is a CW complex X with
a decomposition

$$
x=E(\xi) \cup S(\xi)^{2}
$$

for some $(q-1)$-spherical fibration $\xi: Y \longrightarrow B G(q)$ over a subcomplex $Y \subset X$, with $Z \subset X$ a disjoint subcomplex and

$$
\left(D^{q}, S^{q-1}\right) \longrightarrow(E(\xi), S(\xi)) \longrightarrow Y
$$

the associated (D^{q}, s^{q-1})-fibration. In dealing with geometri defined L-groups it is assumed that X has a finite 2-skeleto so that $\pi_{1}(X)$ is finitely presented - no such restriction is required for the algebraic definitions in $\xi \S 76,7.8$ bedow Applying the generalized Van Kampen theorem there is obtaine an expression for the fundamental groupoid $\pi_{1}(x)$ as a free product with amalgamation

$$
\pi_{1}(X)=\pi_{1}(E(E)){ }_{\pi_{1}}(S(E,))_{1}(Z),
$$

i.e. there is defined a pushout square in the category of groupoids

(It is not assumed that the maps in Φ are injective).
Giver an orientation map for X

$$
w(x)=w: \pi_{1}(x) \longrightarrow \mathbb{Z}_{2}
$$

define orientation maps for $S(\xi), E(\xi), z$ using the restrictic

$$
\begin{aligned}
& w(S(\xi))=w \mid: \pi_{1}(S(\xi)) \longrightarrow \pi_{1}(X) \xrightarrow{w} \mathbb{Z}_{2} \\
& w(E(\xi))=w \mid: \pi_{1}(E(\xi)) \longrightarrow \pi_{1}(X) \longrightarrow w \mathbb{Z}_{2} \\
& w(Z)=w \mid: \pi_{1}(Z) \longrightarrow \pi_{1}(X) \xrightarrow{w} \mathbb{Z}_{2}
\end{aligned}
$$

and give Y the orientation map

$$
w(Y)=w(E(\xi)) w_{1}(\xi): \pi_{1}(Y)=\pi_{1}(E(\xi)) \longrightarrow \mathbb{Z}_{2}
$$

with $W_{1}(\xi): \pi_{1}(Y) \longrightarrow \mathbb{Z}_{2}$ the orientation map of $\xi_{1}: Y \longrightarrow B G \mid$

Define the transfer maps in quadratic L-theory induced by (X, Y)

$$
\left.p \xi^{!}: L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \longrightarrow L_{n+q}\left(\mathbb{Z} \mid \pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(X)\right]\right) \quad(n \geqslant 0)
$$

to be the composites of the transfer maps induced by ξ

$$
\left.\xi^{!}: L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \longrightarrow L_{n+q}\left(\mathbb{Z} \mid \pi_{1}(S(\xi))\right] \rightarrow \mathbb{Z}\left[\pi_{1}(E(\xi))\right]\right)
$$

and the maps naturally induced by Φ

$$
\begin{aligned}
p: L_{n+q}\left(\mathbb{Z}\left\{\pi_{1}(S(\xi))\right]\right. & \left.\longrightarrow \mathbb{Z}\left[\pi_{1}(E(\xi))\right]\right) \\
& L_{n+q}\left(\mathbb{Z}\left[\pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(X)\right]\right),
\end{aligned}
$$

with ξ^{\prime} sending the quadratic signature $a_{*}(f, b)$ of a normal map of n-dimensional geometric Poincaré complexes

$$
(f, b): M \longrightarrow N
$$

equipped with a reference map $g: N \longrightarrow Y$ to the relative quadratic signature $\xi^{!} \sigma_{\star}(f, b)=\sigma_{\star}\left((f, b)^{!}\right)$of the induced normal map of ($n+q$)-dimensional geometric Poincaré pairs

$$
(f, b)^{!}:(E((g f) \star \xi), S((g f) \star \xi)) \longrightarrow\left(E\left(g^{*} \xi\right), S\left(g^{\star} \xi\right)\right)
$$

which is equipped with a reference map of pairs $g^{!}:\left(E\left(g^{*} \xi\right), S\left(g^{*} \xi\right)\right) \longrightarrow(E(\xi), S(\xi))$.

Following wall [4,p. $\left\{\begin{array}{l}127 \\ 252\end{array}\right.$ define the quadratic
$\left\{\begin{array}{l}\text { LS- } \\ \text { LP- }\end{array}\right.$ appearing in the exact sequence

$$
\left\{\begin{array}{l}
\left.\ldots \longrightarrow L_{n+q+1}\left(\mathbb{Z} \mid \pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(X)\right]\right) \longrightarrow \operatorname{LS}_{n}(\Phi) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \\
\left.\longrightarrow L_{n+q}\left(\mathbb{Z}\left[\pi_{1}(Z)\right]\right) \longrightarrow L_{n+q}\left(\mathbb{Z} \mid \pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(X)\right]\right) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \\
\left.\ldots \longrightarrow L_{n+q-1}\left(\mathbb{Z} \mid \pi_{1}(Z)\right]\right) \longrightarrow \ldots
\end{array}\right.
$$

and satisfying the following properties:

Proposition 7.2.1 i) The quadratic $\left\{\begin{array}{l}\text { LS- } \\ \text { LP- }\end{array}\right.$ groups are 4-periodic

$$
\left\{\begin{array}{l}
L S_{n}(\phi)=I S_{n+4}(\phi) \\
L \cdot P_{n}(\phi)=I, P_{n+4}(\phi)
\end{array}(n \geqslant 0)\right.
$$

ii) The LS-groups are related to the LP-groups by a commutative braid of exact sequences

iji) The LS-groups are related to the triad L-groups $L_{*}(2 Z[\Phi \|)$ by a commutative braid of exact sequences

with $L S_{\star}(\Psi)$ the LS-groups of the pushout square of groupoids

associated to the codimension q CW pair (E(ξ), Y).

An ($n, n-q$)-dimensional (or codimension g) geometric

 Poincaré pair (X, Y) is a codimension q CW pair such thati) x is an n-dimensional geometric Poincaré complex
ii) Y is an ($n-q$)-dimensional geometric Poincaré complex iii) $(Z, S(\xi))$ is an n-dimensional geometric Poincaré pair. (Actually, iii) implies ii)). Then $Y \subset X$ is a "codimension q Poincaré embedding" with complement Z and normal fibration

$$
v_{Y} \subset X=\xi: Y \longrightarrow B G(q)
$$

The prescribed Spivak normal structure of X

$$
\left(v_{x}: x \longrightarrow B G(k), \rho_{x}: S^{n+k} \longrightarrow T\left(v_{x}\right)\right)
$$

determines a Spivak normal structure of Y

$$
\begin{aligned}
\left(v_{Y}=\right. & \left.\xi \oplus v_{X}\right|_{Y}: Y \longrightarrow B G(q+k), \\
& \left.\rho_{Y}: S^{n+k} \xrightarrow{\rho_{X}} T\left(v_{X}\right) \xrightarrow{\text { collapse }} T\left(v_{X}\right) / T\left(\left.v_{X}\right|_{Z}\right)=T\left(v_{Y}\right)\right)
\end{aligned}
$$

A normal map of ($n, n-q$)-dimensional geometric Poincaré pairs

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

is a normal map of n-dimensional geometric Poincaré complexes

$$
(f, b): M \longrightarrow X
$$

with a decomposition

$$
(f, b)=(g, c)^{!} \cup(h, d): M=F(v) \cup_{S(v)} P \longrightarrow X=E(\xi) \cup_{S(\xi)^{z}}
$$

where $(g, c): N \longrightarrow Y$ is a normal map of $(n-q)$-dimensional geometric Poincaré complexes such that

$$
v=v_{N \subset M}: N \xrightarrow{g} Y \xrightarrow{\xi} B G(k)
$$

and $(h, d):(P, S(\nu)) \longrightarrow(Z, S(\xi))$ is a normal map of n-dimensional geometric Poincaré pairs such that

$$
(h, d)\left|=(g, c)^{!}\right|: S(v) \longrightarrow S(\xi) .
$$

Proposition 7.2.2 Given a normal map of ($n, n-q$)-dimensional geometric Poincaré pairs

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

$\left\{\begin{array}{l}\text { such that } f: M \longrightarrow X \text { is a simple homotopy equivalence } \\ -\end{array}\right.$ there is defined a codimension q quadratic signature

$$
\left\{\begin{array}{l}
\sigma_{*}((f, b),(g, c)) \in L S_{n-q}(\Phi) \\
\sigma_{*}((f, b),(g, c)) \in L P_{n-q}(\Phi)
\end{array}\right.
$$

with image $\left\{\begin{array}{l}\sigma_{*}((f, b),(g, c)) \in L P_{n-q}(\Phi) \\ \left.\sigma_{\star}(f, b), \sigma_{*}(g, c)\right) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \oplus L_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)\end{array}\right.$ such that $\sigma_{*}((f, b),(g, c))=0$ if $((f, b),(g, c))$ is normal bor $\begin{cases}\text { by a geometric Poincaré } s \text {-cobordism of }(f, b) \\ - & \text { to a normal } m\end{cases}$
of pairs such that the maps $f: M \longrightarrow X, g: N \longrightarrow Y, h: P \longrightarrow Z$ are all simple homotopy equivalences.

For $q \geqslant 3 \pi_{1}(S(\xi))=\pi_{1}(E(\xi)), \pi_{1}(Z)=\pi_{1}(X)$ and

$$
\left\{\begin{aligned}
\sigma_{\star}((f, b),(g, c)) & =\sigma_{\star}(g, c) \in L S_{n-q}(\phi)=L_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \\
\sigma_{\star}((f, b),(g, c)) & =\left(\sigma_{\star}(f, b), \sigma_{\star}(g, c)\right) \\
& \left.\left.\in L P_{n-q}(\phi)=L_{n}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right) \oplus L_{n-q}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right)
\end{aligned}\right.
$$

Proof: The normal maps of n-dimensional geometric Poincaré pairs $(f, b):(M, \varnothing) \longrightarrow(X, \varnothing),(g, c)^{!}:(E(v), S(v)) \longrightarrow(E(\xi), S(\xi))$ are normal bordant via the normal map

$$
\begin{aligned}
((F, B) & =(f, b) \times i d . ;(f, b),(g, C)! \\
& :((M \times I, P \times 1) ;(M, \varnothing) \times 0,(E(v), S(v)) \times 1) \\
& \longrightarrow((X \times 1, Z \times 1) ;(X, \emptyset) \times 0,(E(\xi), S(\xi)) \times 1) \quad(I=[0,1]),
\end{aligned}
$$

so that in particular the restriction

$$
(F, B) \mid=(h, d):(P, S(V)) \times 1 \longrightarrow(Z, S(\xi)) \times 1
$$

defines a normal null-bordism of $(\mathrm{G}, \mathrm{c})^{!} \mid: S(v) \longrightarrow S(\xi)$.

This gives a particular reason for

$$
\left\{\begin{array}{l}
\left.\mathrm{p} \xi_{\sigma_{\star}}(g, c)=0 \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(Z)\right] \longrightarrow \mathbb{Z} \mid \pi_{1}(x)\right]\right) \\
\partial p \xi^{!} \sigma_{\star}(g, c)=0 \in L_{n-1}\left(\mathbb{Z}\left[\pi_{1}(z)\right]\right)
\end{array}\right.
$$

and so determines an element $\begin{cases}\sigma_{*}((f, b),(g, c)) \in L S_{n-q}(\Phi) \\ \sigma_{*}((f, b),(g, c)) \in L P_{n-q}(\Phi)\end{cases}$
with image $\sigma_{*}(g, c) \in L_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)$.

An ($n, n-q$)-dimensional t-normal geometric Poincaré pair $(X, Y, \tilde{\xi})$ is an ($n, n-q$)-dimensional geometric Poincaré pair (X, Y) together with a choice of t-triangulation $\tilde{\xi}: Y \longrightarrow$ BTOP (q) of the normal fibration $E_{s}=v_{Y \subset X}: Y \longrightarrow B G(q)$. We shall be primarily concerned with the cases $q=1,2$, for which $B G(q)=B \widetilde{T O P}(q)$ so that the t-normal structure $\widetilde{\xi}$ is redundant. An ($n, n-g$)-dimensional (or codimension q) manifold pair (M, N) is an n-dimensional manifold M together with a locally flat codimension q submanifold $N \subset M$. The normal block bundle

$$
v=v_{N} \subset M: N \longrightarrow \hat{B_{T O P}^{(q)}}(\mathrm{q})
$$

is such that

$$
M=E(v) U_{S(v)^{M \backslash E(v)}} .
$$

In particular, (M, N) has an underlying structure of an ($\mathrm{n}, \mathrm{n}-\mathrm{q}$)-dimensional t-normal geometric Poincaré pair.

Let $(X, Y, \tilde{\xi})$ be an ($n, n-q$)-dimensional t-normal geometric Poincaré pair. A topological normal map (or a t-triangulation of (X,Y, $\bar{\xi})$)

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

is a t-triangulation of x (i.e. a topological normal map)

$$
(f, b): M \longrightarrow X
$$

which is topologically transverse at $Y \subset X$ with respect to $\bar{\xi}$. so that $\left(M, N=f^{-1}(Y)\right)$ is an ($n, n-q$)-dimensional manifold pair with normal block bundle

the restriction of (f,b)

$$
(f, b) \mid=(a, c): N-\cdots+Y
$$

is a t-triangulation of Y, the restriction

$$
(f, b)=(h, d) \mid:(P, S(v)) \cdots(Z, S(\xi)) \quad(P=\overline{M \backslash F(v)})
$$

is a t-triangulation of $(Z, S(\xi))$ such that

$$
(h, d)\left|=(q, c)^{!}\right|: S(v) \longrightarrow S(\xi)
$$

and

$$
(f, b)=(g, c)^{!} \cup(h, d): M=E(v) \cup_{S(v)} p \longrightarrow X=E(\xi) \cup_{S(\xi)}
$$

In particular, $((f, b),(q, C))$ has an underlying structure of a normal map of codimension q geometric poincaré pairs. Let $\mathcal{Y}^{\mathrm{TOP}}(\mathrm{X}, \mathrm{Y}, \tilde{\xi})$ be the set of concordance classes of $t-t r i a n g u l a t i o n s$ of $(X, Y, \tilde{\xi})$.

Proposition 7.2.3 The forgetful map

$$
\mathcal{T}^{\operatorname{TOP}}(X, Y, \breve{\xi}) \longrightarrow \mathcal{T}^{\operatorname{TOP}}(X) ;((f, b),(g, c)) \longmapsto \longmapsto(f, b)
$$

is a bijection. Thus if X is t-trianqulable $\mathcal{J}^{\left.\operatorname{TOP}^{(} X, Y, \tilde{\xi}\right) \text { carries }, ~}$ a natural affine structure with translation group $H_{n}\left(X ; \underline{\boldsymbol{I}}_{0}\right)$. Proof: Topological transversality.

Let $(X, Y, \tilde{\xi})$ be an $(n, n-q)$-dimensional t-normal geometric Poincaré pair. An s-triangulation of ($X, Y, \vec{\xi}$) is a t-triangulat

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

such that each of the constituent t-triangulations

$$
\begin{aligned}
(f, b): M & \longrightarrow X \\
(g, c): N \longrightarrow & \longrightarrow \\
(h, d):(P, S(v)) & \longrightarrow(Z, S(\xi))
\end{aligned}
$$

is an s-triangulation. Let $g^{\operatorname{TOP}}(X, Y, \tilde{\varepsilon})$ be the set of concordano classes of s-trianqulations. The forqetful map

$$
g^{\operatorname{TOP}}(x, Y, \tilde{\varepsilon}) \longrightarrow s^{\operatorname{TOP}}(X) ;((f, b),(g, c)) \longrightarrow(f, b)
$$

is in general neither injective nor surjective.

An s-triangulation $f: M \longrightarrow X$ is split along $Y \subset X$ if f actua defines an s-triangulation of ($X, Y, \tilde{\xi}$)

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

Given an $\left\{\begin{array}{l}s- \\ t-\end{array}\right.$ triangulation $(f, b): M \longrightarrow X$ make f topologically transverse at $Y \subset X$ with respect to $\tilde{\xi}$, and use the codimension quadratic signature of the resulting t-triangulation of $(X, Y$,

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

(as given by Proposition 7.2.2) to define the codimension g splitting obstruction of f along $Y \subset X$

$$
\left\{\begin{array}{l}
s(f, Y)=\sigma_{*}((f, b),(q, c)) \in L S_{n-q}(\phi) \\
t(f, Y)=\sigma_{*}((f, b),(q, c)) \in L P_{n-q}(\phi) .
\end{array}\right.
$$

The following is essentially a restatement of the obstruction theory of Wall [4,§ll] for the "smoothing of codimension q Poincaré embeddings", by a method of proof going back to Browder \{31.

Proposition 7.2.4 The $\left\{\begin{array}{l}s- \\ t- \\ t r i a n g u l a t i o n ~\end{array}(f, b): M \rightarrow X\right.$ is suct that $\left\{\begin{array}{l}s(f, Y)=0 \in L S_{n-q}(\Phi) \\ t(f, y)=0 \in L P_{n-q}(\Phi)\end{array}\right.$ if (and for $n-q \geqslant 5$ only if) (f,b) is concordant to an s-triangulation of X which is split alonc Proof: The codimension q splitting obstruction $\left\{\begin{array}{l}s(f, Y) \in L S_{n-c} \\ t(f, Y) \in L P_{n-c}\end{array}\right.$ has image

$$
\left\{\begin{array}{l}
{[s(f, Y)]=\sigma_{*}(g, c) \in L_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)} \\
I t(f, Y)]=\sigma_{*}(g, c) \in L_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right),
\end{array}\right.
$$

the surgery obstruction of the t-triangulation $(G, C): N$ \qquad

Now $\sigma_{*}(q, c)=0$ if (and for $n-q \geqslant 5$ only if) there exists an ($n-q+1$)-dimensional topological normal map of triads

$$
(G, C):\left(L ; N, N^{\prime} ; \varnothing\right) \longrightarrow Y \times([1,2] ; 1,2 ; \varnothing)
$$

such that
i) $(G, C) \mid=(g, c): N \longrightarrow Y \times 1$
ii) $(G, C) \mid=\left(G^{\prime}, C^{\prime}\right): N^{\prime} \longrightarrow Y \times 2$ is an s-triangulation. Given such an extension (G, C) of (g, c) let

$$
\begin{aligned}
& \left(\lambda ; \nu, v^{\prime}\right):\left(L ; N, N^{\prime}\right) \xrightarrow{G} Y \times([1,2] ; 1,2) \\
& \xrightarrow{\text { projection }} y \xrightarrow{\tilde{\xi}} \underset{\text { BTOP }(q)}{ }
\end{aligned}
$$

and define an $(n+1)$-dimensional topological normal map of triads

$$
\begin{aligned}
& \left(F^{\prime}, B^{\prime}\right)=(F, B) \cup_{(G, C)}!(G, C)! \\
& =\left(V ; j_{+} V, \jmath_{-} V ; \partial \partial_{+} V\right)
\end{aligned}
$$

$$
\begin{aligned}
& \longrightarrow\left(W ; \partial_{+} W, \partial_{-} W ; \partial_{+} W\right) \\
& =\left(X \times[0,1] U_{E(\xi) \times 1^{E(\xi)} \times[1,2] ; 2 \times 1 U_{S(\xi)} \times 1^{S(\xi) \times[1,2]} \text {, }, ~}^{\text {(}}\right. \\
& X \cup E(\xi) \times 2 ; S(\xi) \times 2)
\end{aligned}
$$

such that the restriction
is an s-triangulation, by alueing toqether topological normal maps of triads as in the picture

The surgery obstruction

$$
\left\{\begin{array}{l}
\left.\sigma_{\star}\left(F^{\prime}, B^{\prime}\right) \in L_{n+1}\left(\mathbb{Z} \mid \pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left\{\pi_{1}(X)\right)\right) \\
\left.\sigma_{*}\left(\left.\left(F^{\prime}, B^{\prime}\right)\right|_{\partial+}\right) \in L_{n}\left(\mathbb{Z} \mid \pi_{1}(Z)\right]\right)
\end{array}\right.
$$

is 0 if (and for $n \geqslant 5$ only if) $\left\{\begin{array}{l}\left(F^{\prime}, B^{\prime}\right) \\ \left.\left(F^{\prime}, B^{\prime}\right)\right|_{A_{+}},\end{array}\right.$is topologically normal bordant rel $\left\{\begin{array}{l}\left.\left(F^{\prime}, B^{\prime}\right)\right|_{\Omega_{-}} V \\ \left.\left(F^{\prime}, B^{\prime}\right)\right|_{\partial \sigma_{+} V}\end{array}\right.$ to an $s-t r i a n q u l a t i o n$ of an $\left\{\begin{array}{l}(n+1)- \\ n-\end{array}\right.$ dimensional geometric Poincaré $\left\{\begin{array}{l}\text { triad } \\ \text { pair }\end{array}\right.$

Such an (H,D) (if it exists) can be reqarded as a concordance of $\left\{\begin{array}{l}s^{-} \\ t-\end{array}\right.$ trianquatations of x

$$
\left(H ; f, f^{\prime}\right):\left(Q ; M, M^{\prime}\right) \longrightarrow X \times(I ; O, 1)
$$

with $\mathrm{f}^{\prime}: M^{\prime}=E\left(U^{\prime}\right) U_{S\left(U^{\prime}\right)} P \longrightarrow X=E(\xi) \cup_{S(\xi)} Z$ an s-trianqulation of X which is split along $Y \subset X$.

Thus if $\left.\sigma_{*}(g, C)=0 \in L_{n-q}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right)$ there exists an extension (G, C) of (g, C) satisfying i) and ii), and the corresponding $(n+1)$-dimensional topological normal map of triad $\left(F^{\prime}, B^{\prime}\right):\left(V ; 3_{+} V, 0_{+} V ; 33_{+} V\right) \longrightarrow\left(W ; j_{+} W, 3_{-} W ; 3 J_{+} W\right)$ is such that

If $(f, b): M \rightarrow-\rightarrow X$ is an $s-t r i a n q u l a t i o n ~ o f ~ X h i c h ~ i s ~$ split along $Y \subset X$ then $(g, c): N \longrightarrow Y$ is an $s-t r i a n g u l a t i o n$ of Y, so that $\sigma_{*}(g, c)=0 \in L_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)$. Taking

$$
(G, C)=(g, C) \times \text { id. }: N \times(I ; 0,1 ; \emptyset) \longrightarrow Y \times(1 ; 0,1 ; \emptyset)
$$

we have that

$$
\begin{array}{r}
\left(F^{\prime}, B^{\prime}\right)=(f, b) \times i d \cdot[0,1] \cup_{(g, c)}!\times 1^{(g, c)}!\times i d \cdot[1,2\} \\
:\left(V ; \partial_{+} V, f_{-} V ; \partial_{+} V\right) \cdots\left(W ; \partial_{+} W, J_{-} W ; \partial \partial_{+} W\right)
\end{array}
$$

is an s-trianqulation of triads, so that $\left\{\begin{array}{l}\sigma_{\star}\left(F^{\prime}, B^{\prime}\right)=0 \\ \sigma_{\star}\left(\left.\left(F^{\prime}, B^{\prime}\right)\right|_{\partial_{+}} V^{\prime}\right)=0\end{array}\right.$ and by the above remark $\left\{\begin{array}{l}s(f, Y)=0 \\ t(f, Y)=0\end{array}\right.$.

$$
\text { Conversely, if } n-q \geqslant 5 \text { and }\left\{\begin{array}{l}
s(f, Y)=0 \\
t(f, Y)=0
\end{array} \text { then } \sigma_{\star}(g, c)=0\right.
$$

and there exists an extension (G, C) of (G, C) satisfying i) and

Now
$\left\{\begin{aligned} & \sigma_{\star}\left(F^{\prime}, B^{\prime}\right) \epsilon \operatorname{ker}\left(L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(X)\right]\right) \longrightarrow L_{n-q}(\Phi)\right) \\ &= i m\left(p \xi^{!}: L_{n-q+1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \longrightarrow L_{n+1}\left(\mathbb{Z} \mid \pi_{1}(Z)\right] \longrightarrow \mathbb{Z} \mid \pi_{1}(X):\right. \\ & \sigma_{\star}\left(\left.\left(F^{\prime}, B^{\prime}\right)\right|_{\partial_{+} V^{\prime}}\right) \epsilon \operatorname{ker}\left(L_{n}\left(\mathbb{Z}\left[\pi_{1}(Z)\right]\right) \longrightarrow L P_{n-q}(\Phi)\right) \\ &= i m\left(\partial p \xi^{!}: L_{n-q+1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \longrightarrow L_{n}\left(\mathbb{Z} \mid \pi_{1}(Z)\right]\right)\end{aligned}\right.$
so that there exists an element a $\in L_{n-q+1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)$ such that

$$
\left\{\begin{array}{l}
\sigma_{\star}\left(F^{\prime}, B^{\prime}\right)=p \xi^{!}(a) \in L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(X)\right]\right) \\
\sigma_{\star}\left(\left.\left(F^{\prime}, B^{\prime}\right)\right|_{a_{+} V^{\prime}}\right)=\exists p \xi^{!}(a) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(Z)\right]\right) .
\end{array}\right.
$$

By the surgery obstruction realization theorems of wall $14,5 \mathrm{~s}$ there exists an $(n-q+1)$-dimensional topological normal map of triads

$$
\left(G^{\prime}, C^{\prime}\right):\left(L^{\prime} ; N^{\prime}, N^{\prime \prime} ; \varnothing\right) \longrightarrow Y \times(I ; 0,1 ; \varnothing)
$$

such that

$$
\begin{aligned}
& \text { i) }{ }^{\prime}\left(G^{\prime}, C^{\prime}\right) \mid=\left(g^{\prime}, C^{\prime}\right): N^{\prime} \longrightarrow Y \times O \\
& \text { ii)' (G', } \left.C^{\prime}\right) \mid=\left(g^{\prime \prime}, c^{\prime \prime}\right): N^{\prime \prime} \longrightarrow Y \times 1 \text { is an s-triangula } \\
& \text { iiii)' } \sigma_{*}\left(G^{\prime}, C^{\prime}\right)=-a \in L_{n-q+1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \text {. }
\end{aligned}
$$

Replacing (G, C) by the extension of (q, C) defined by

$$
\begin{aligned}
&\left(G^{\prime \prime}, C^{\prime \prime}\right)=(G, C) \cup\left(g^{\prime}, C^{\prime}\right)\left(G^{\prime}, C^{\prime}\right) \\
&:\left(L U_{N}, L^{\prime} ; N, N^{\prime \prime} ; \emptyset\right) \longrightarrow Y \times(I ; O, 1 ;
\end{aligned}
$$

we have that (F^{\prime}, B^{\prime}) is replaced by an $(n+1)$-dimensional topological normal map of triads

$$
\begin{aligned}
\left(F^{\prime \prime}, B^{\prime \prime}\right) & =\left(F^{\prime}, B^{\prime}\right) \cup\left(g^{\prime}, C^{\prime}\right)!\left(G^{\prime \prime}, C^{\prime \prime}\right) \\
& :\left(V^{\prime} ; \partial_{+} V^{\prime}, \partial_{+} V^{\prime} ; \partial_{+} V^{\prime}\right) \longrightarrow\left(W ; \partial_{+} W, \partial_{-} W ; \partial_{+} W\right)
\end{aligned}
$$

such that

$$
\left\{\begin{aligned}
\sigma_{\star}\left(F^{\prime \prime}, B^{\prime \prime}\right) & =\sigma_{\star}\left(F^{\prime}, B^{\prime}\right)+\sigma_{\star}\left(\left(G^{\prime}, C^{\prime}\right)^{!}\right) \\
& =p \xi^{\prime}(a)+p \xi^{!}(-a)=0 \in L_{n+1}\left(\mathbb { Z } [\pi _ { 1 } (Z)] \longrightarrow \mathbb { Z } \left[\pi_{1}(X\right.\right.
\end{aligned}\right.
$$

$\left\{\begin{aligned} \sigma_{\star}\left(\left.\left(F^{\prime \prime}, B^{\prime \prime}\right)\right|_{a_{+} V^{\prime}}\right) & =\sigma_{\star}\left(\left.\left(F^{\prime}, B^{\prime}\right)\right|_{\sigma_{+} V^{\prime}}+\sigma_{\star}\left(\left.\left(G^{\prime}, C^{\prime}\right)!\right|_{S\left(\lambda^{\prime}\right)}\right)\right. \\ & =3 p \xi^{!}(a)+\hat{c}^{p} \xi^{!}(-a)=0 \in L_{n}\left(\mathbb{Z} \mid \pi_{1}(z)!\right),\end{aligned}\right.$ so that the coresponding s-triangulation $f ": M^{\prime \prime} \simeq X$ is split along $Y \subset X$.

For $q \geqslant 3$ Proposition 7.2 .2 gives

$$
\left\{\begin{array}{l}
s(f, Y)=\sigma_{\star}(q, c) \in L S_{n-q}(\Phi)=L_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \\
t(f, Y)=\left(\sigma_{\star}(f, b), \sigma_{*}(q, c)\right) \\
\in\left[P_{n-q}(\Phi)=L_{n}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right) \operatorname{L}_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)
\end{array}\right.
$$

The following is essentially a restatement of wall 14, Cor.11.3.11: Proposition 7.2 .5 For $q \geqslant 3$ an $(n, n-q)$-dimensional geometric Poincaré pair (X, Y) is such that the geometric Poincaré complexes X and Y are individually s-triangulable if (and for $n-q \geqslant 5$ only if) (X, Y) admits a t-normal structure $\tilde{\xi}: Y \longrightarrow \operatorname{BTP}(q)$ such that $(X, Y, \tilde{\xi})$ is s-triangulable.

Proof: It is clear that if $(X, Y, \widetilde{\xi})$ is s-triangulable then so are X and Y.

Conversely, suppose that $n-q \geqslant 5$ and that there are given s-triangulations $(f, b): M \longrightarrow X,(g, c): N \longrightarrow \sim$ Let

$$
\begin{aligned}
& \left(x, \widetilde{v}_{X}: x \longrightarrow B \widehat{\operatorname{TOP}}(k), \rho_{X}: s^{n+k} \longrightarrow T\left(v_{X}\right)\right) \\
& \left(Y, \widetilde{v}_{Y}: Y \longrightarrow \mathcal{T O P}(q+k), \rho_{Y}: s^{n+k} \longrightarrow T\left(v_{Y}\right)\right)
\end{aligned}
$$

be corresponding topological normal structures, with

$$
\rho_{Y}: S^{n+k} \xrightarrow{\rho_{X}} T\left(v_{X}\right) \xrightarrow{\text { projection }} T\left(v_{X}\right) / T\left(\left.v_{X}\right|_{Z}\right)=T\left(v_{Y}\right) .
$$

The t-trianqulations \tilde{v}_{X} and \tilde{v}_{Y} of $v_{X}: X \longrightarrow B G(k)$ and $v_{Y}: Y \rightarrow B G(q+k)$ determine a unique t-triangulation $\bar{\xi}$ of

$$
\begin{aligned}
& \xi=v_{Y \subset X}: Y \longrightarrow B G(q), \text { since } \\
& v_{Y}=\left.\xi \oplus v_{X}\right|_{Y}: Y \longrightarrow B G(q+k) .
\end{aligned}
$$

Making f topologically transverse at $Y \subset X$ with respect to $\tilde{\xi}$ note that the $t-t r i a n g u l a t i o n ~(f, b): f^{-1}(Y) \longrightarrow Y$ corresponds to the same topological normal structure $\left(\tilde{\nu}_{Y}, \rho_{Y}\right)$ as $(g, c): N \longrightarrow Y$, so that

$$
s(f, Y)=\sigma_{*}(g, c)=0 E L S_{n-q}(\Phi)=L_{n-q}\left(\mathbb{Z}\left[\Pi_{1}(Y)\right]\right)
$$

and (f, b) is concordant to an s-triangulation of x (also denoted by $(f, b): M \longrightarrow X)$) which is split along $Y \subset X$, with the restriction
 $(\mathrm{g}, \mathrm{c}): \mathrm{N} \longrightarrow \mathrm{Y}$. (In fact, the proof of Proposition 7.2.4 gives an embedding $N \subset M$ such that $\left.(f, b) \mid=(q, C): f^{-1}(Y)=N \longrightarrow Y\right)$.

Moreover, Wall [4,Cor,11.3.4] proved that if (W, CW) is an n-dimensional manifold with boundary such that W is an h-triangulable ($n-q$)-dimensional geometríc Poincaré complex and $q \geqslant 3$ then every h-triangulation $v \longrightarrow W$ is homotopic to an embedding, the non-simply-connected Browder-Casson-Sullivan theorem.

We shall now extend the total surgery obstruction theory of $\$ 7.1$ to codimension q t-normal qeometric poincare pairs $(X, Y, \tilde{\varepsilon})$. (See Levitt and Ranicki [l] for an extension to the s-trianqulatior theory of "stratified geometric poincaré complexes" - the pair (X, Y) is the case of one stratum). In the first instance we have to define transfer maps in the 9 -groups

$$
p \tilde{\xi}^{!}: \&_{n}(Y) \cdots s_{n+q}(X, z) \quad(n \geqslant 0)
$$

A codimension q t-normal $C W$ pair (X, Y, ξ) is a codimensic CW pair (X, Y) together with a t-triangulation $\tilde{\xi}: Y \rightarrow \longrightarrow \underset{\text { BTOP }}{(q)}$ of the normal fibration $\xi: Y \longrightarrow B G(q)$. For example, a codimension q t-normal geometric Poincaré pair is such an obje The composite of the transfer isomorphisms

$$
\tilde{\xi}^{!}=\left(U_{\tilde{\xi}} \cap-\right)^{-1}: H_{\star}\left(Y ; \underline{\Pi}_{0}\right) \longrightarrow \sim H_{0+q}\left(E(\xi), S(\xi) ; \underline{\underline{H}}_{0}\right)
$$

(with $U_{\xi} \in \dot{H}^{q}\left(T(\xi) ; \underline{L}^{\circ}\right.$) the canonical $\underline{L}^{\text {O}}$-orientation of $\bar{\xi}$) and the excision isomorphisms

$$
P: H_{*+q}\left(E(\xi), S(\xi) ; \underline{\Pi}_{0}\right) \longrightarrow \sim H_{\star+q}\left(X, Z ; \underline{L}_{0}\right)
$$

define transfer isomorphisms

$$
\mathrm{p} \tilde{\xi}^{!}: \mathrm{H}_{\star}\left(\mathrm{Y} ; \underline{\underline{L}}_{\mathrm{O}}\right) \longrightarrow \sim \mathrm{H}_{\star+\mathrm{q}}\left(\mathrm{X}, \mathrm{Z} ; \underline{\underline{L}}_{\mathrm{O}}\right)
$$

These are compatible via the assembly maps with the transfer maps in the quadratic L-groups

$$
\mathrm{p} \xi^{!}: \mathrm{L}_{\star}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \longrightarrow \mathrm{L}_{\star+\mathrm{q}}\left(\mathbb{Z}\left[\pi_{1}(Z)\right] \rightarrow \mathbb{Z}\left[\pi_{1}(X)\right]\right)
$$

Thus there are defined transfer maps in the S-groups

$$
p \xi^{!}: S_{*}(Y) \longrightarrow S_{\star+q}(X, Z)
$$

which are composites

$$
\mathrm{p} \xi^{!}: S_{\star}(Y)-\tilde{\xi}^{!} \rightarrow J_{\star+q}(E(\xi), S(\xi)) \stackrel{p}{\rightarrow}^{p} \beta_{\star+q}(X, Z)
$$

and fit into a natural transformation of exact sequences

Proposition 7.2 .6 Let $(x, Y, \tilde{\xi})$ be a codimension g t-normal $C W$ with pushout square of fundamental groupoids

i) The LS-groups of Φ are related to the f-groups by a commutative braid of exact sequences

ii) There are defined $S_{\text {-groups }} \mathcal{S}_{\star}(X, Y, \bar{\xi})$ which fit intc commutative braid of exact sequences

iii) The LP-qroups of Φ are related to the δ-groups by a commutative diagram with exact rows and columns

iv) The maps $u_{\xi,}, v_{\xi,}$ are related to each other by a commutative braid of exact sequences

The total surgery (or s-triangulability) obstruction of an $(n, n-q)$-dimensional t-normal codimension queometric poincare pair $\{X, Y, \widetilde{\xi}\}$ is an element

$$
s(X, Y, \tilde{\xi}) \in S_{n}(X, Y, \tilde{\xi})
$$

with the following properties.
Proposition 7.2 .7 i) $s(X, Y, \tilde{\xi})=0$ if (and for $n-q \geqslant 5$ only if) $(X, Y, \tilde{\xi})$ is s-triangulable.
ii) The obstruction has images

$$
\begin{aligned}
& {[s(X, Y, \tilde{\xi})]=s(X) \in g_{n}(X)} \\
& {[s(X, Y, \tilde{\xi})]=s(Y) \in Y_{n-q}(Y)}
\end{aligned}
$$

 difference $\left\{\begin{array}{l}s\left(f_{O}, f_{l}\right) \in \ell_{n+1}(X) \\ t\left(f_{O}, f_{1}\right) \in H_{n}\left(x ; \underline{H}_{O}\right)\end{array}\right.$ tho splitting obstiuctions
along $y \subset X$ differ by

$$
\left\{\begin{array}{l}
s\left(f_{O}, Y\right)-s\left(f_{1}, Y\right)=u_{\tilde{\xi}}\left(s\left(f_{O}, f_{l}\right)\right) \in L_{n-q}(\Phi) \\
t\left(f_{O}, Y\right)-t\left(f_{1}, Y\right)=v_{\widetilde{\xi}}\left(t\left(f_{O}, f_{1}\right)\right) \in L P_{n-q}(\phi)
\end{array}\right.
$$

Thus if
$\left\{\begin{aligned} s(X, Y, \tilde{\xi}) \in \operatorname{ker}\left(S_{n}(X, Y, \tilde{\xi})\right. & \left.\longrightarrow 夕_{n}(X)\right) \\ & =i m\left(S_{n-q}(\Phi) \cdots \xi_{n}(X, Y, \tilde{\xi})\right) \subseteq \xi_{n}(X, Y, \xi) \\ s(X, Y, \tilde{\xi}) \in \operatorname{ker}\left(\wp_{n}(X, Y, \tilde{\xi})\right. & \left.\longrightarrow H_{n-1}\left(X ; \underline{L}_{0}\right)\right) \\ & =i m\left(L P_{n-q}(\Phi) \longrightarrow \ell_{n}(X, Y, \tilde{\xi})\right) \subseteq \ell_{n}(X, Y, \widetilde{\xi})\end{aligned}\right.$
(i.e. if X is $\left\{\begin{array}{l}s- \\ t-\end{array}\right.$ triangulable) the inverse image of $s(X, Y, \tilde{\xi})$ in
$\left\{\begin{array}{l}L S_{n-q}(\Phi) \\ L P_{n-q}(\phi)\end{array}\right.$ is the coset of the subgroup
$\left\{\begin{array}{l}\operatorname{ker}\left(L S_{n-q}(\phi) \rightarrow \delta_{n}(X, Y, \tilde{\xi})\right)=i m\left(u_{\tilde{\xi}}: \delta_{n+1}(X) \rightarrow L S_{n-q}(\phi)\right) \subseteq L S_{n-c} \\ \operatorname{ker}\left(L P_{n-q}(\phi) \rightarrow \delta_{n}(X, Y, \tilde{\xi})\right)=i m\left(v_{\tilde{\xi}}: H_{n}\left(X ; \underline{E}_{O}\right) \rightarrow L P_{n-q}(\Phi)\right) \subseteq L P_{n-c}\end{array}\right.$
consisting of the splitting obstructions along $Y \subset X$ $\left\{\begin{array}{l}s(f, Y) \\ t(f, Y)\end{array}\right.$ of all the $\left\{\begin{array}{l}s- \\ t-\end{array}\right.$ triangulations $f: M \longrightarrow X$ of X.
iv) If $n-q \geqslant 5$ and (x, y) is an ($n, n-q$)-dimensional manifold pair
there is a natural identification

$$
\rho^{\operatorname{TOP}}(X, Y, \tilde{\xi})=\delta_{n+1}(X, Y, \tilde{\xi})
$$

and the commutative exact braid of Proposition 7.2 .6 iv) has a natural expression as a braid of surgery exact sequences

with

$$
[X, G / T O P]=\mathcal{T}^{T O P}(X)=\mathcal{J}^{T O P}(X, Y, \tilde{\xi})=H_{n}\left(X ; \underline{I}_{0}\right)
$$

[]
(According to Ranicki [7] the topological manifold struct set $f^{T O P}(X)$ of an n-dimensional geometric Poincaré complex x wi $n \geqslant 5$ is in natural one-one correspondence with the set of \underline{L}^{O}-orientations $[\mathrm{X}] \in \mathrm{H}_{\mathrm{n}}\left(\mathrm{X} ; \underline{L}^{\mathrm{O}}\right)$ such that
i) $J([X])=[\hat{X}] \in H_{n}\left(X ; \underline{\hat{\mu}}^{O}\right)$ is the canonical $\underline{\hat{\mu}}^{o}$-orientatic
ii) $\sigma^{*}([x])=\sigma^{*}(x) \in L^{n}\left(\mathbb{Z}\left(\pi_{1}(x)\right]\right)$
iii) the relations i) and ii) are compatible on the H -spect level.

In view of this proposition 7.2 .7 can be interpreted as stating that the structure set $S^{T O P}(X, Y, \tilde{E})$ of an $(n, n-q)$-dimensional geometric Poincaré pair (X, Y) for $n-q \geqslant 5$ is in natural one-one correspondence with the set of \underline{L}°-orientations $[x] \in H_{n}\left(X ; \underline{L}^{\circ}\right)$ satisfying i), ii), iii) and also
iv) the composite

$$
H_{n}\left(x ; \underline{\Pi}^{O}\right) \longrightarrow H_{n}\left(X, 2 ; \underline{\underline{\Pi}}^{O}\right) \xrightarrow[\left(p \tilde{\xi}^{!}\right)^{-1}]{ } H_{n-q}\left(Y ; \underline{\underline{\Pi}}^{O}\right)
$$

sends $[X]$ to an $\underline{\underline{L}}^{\mathrm{O}}$-orientation $[\mathrm{Y}] \in \mathrm{H}_{\mathrm{n}-\mathrm{q}}\left(\mathrm{Y} ; \underline{\mathrm{L}}^{\mathrm{O}}\right)$ satisfying analogous conditions i), iil, iii) determining an s-triangulation of the ($n-q$)-dimensional geometric Poincaré complex y
v) the composite

sends $[X]$ to an \underline{L}^{0}-orientation $[Z] \in H_{n}\left(Z, S(E) ; \mathbb{L}^{\text {O}}\right)$ satisfying analogous conditions i), ii), iii) determining an s-triangulation of the n-dimensional qeometric Poincaré pair $(Z, S(\xi))$ which on the boundary is the s-triangulation of $S(\xi)$ induced by $\tilde{\xi}$ from the s-triangulation of Y given by iv)).

In dealing with the geometric theory of codimension g surgery we have only considered the simplest case of geometric Poincaré complexes and closed manifolds. More generally, suppose given
i) an n-dimensional geometric Poincaré pair (X, aX)
ii) an ($n-q$)-dimensional geometric Poincaré pair (Y, ay)
iii) a geometric Poincaré embedding

$$
(Y, J Y) \subset(X, j X)
$$

with normal fibration

$$
(\xi, \mathcal{F}):(Y, Y) \longrightarrow B G(q),
$$

so that

$$
(X, X)=\left(E(\xi) \cup_{S(E)} 2, E(\cap \xi) \cup_{\left.S(O \xi)^{3}+2\right)}\right.
$$

for some n-dimensional qeometric Poincaré triad (Z;it $Z, S(\xi) ; S(i) \xi))$

together with a t-triangulation

$$
(\tilde{\xi}, \widetilde{\sigma} \tilde{\xi}):(\mathrm{Y}, \partial \mathrm{Y}) \longrightarrow \operatorname{BTOP}(\mathrm{q}),
$$

iv) an $\left\{\begin{array}{l}s^{-} \\ t^{-}\end{array}\right.$triangulation of pairs

$$
(f, j f):(M, y M) \longrightarrow(X, \partial x)
$$

such that $\partial \mathrm{f}: \mathrm{am} \longrightarrow \partial \mathrm{X}$ is an s-triangulation which is split along $\partial \mathrm{Y} \subset \mathrm{X}$
there is defined a reld codimension g splitting obstruction along $Y \subset X$

$$
\left\{\begin{array}{l}
s_{j}(f, Y) \in L S_{n-q}(\Phi) \\
t_{j}(f, Y) \in L P_{n-q}(\Phi)
\end{array}\right.
$$

with Φ the pushout square of fundamental groupoids

such that $\left\{\begin{array}{l}s_{j}(f, Y)=0 \\ t_{\partial}(f, y)=0\end{array}\right.$ if (and for $n-q \geqslant 5$ only if) f is concordant rel if to an s-trianqulation of $(x, j x)$ which is
split along $(Y, Y Y) \subset(X, \partial X)$. By the realization theorem of Wall $\{4, \S 11]$ every element of $\left\{\begin{array}{l}L P_{n-q}(\Phi) \\ L S_{n-q}(\Phi)\end{array}\right.$ is a rela codimension q splitting obstruction $\left\{\begin{array}{l}S_{\partial}(f, Y) \\ t_{\partial}(f, Y)\end{array}\right.$. The total surgery obstruction theory for codimension q geometric Poincaré pairs also has a relo version.

7.3 The spectral quadratic construction

The quadratic construction of $\wp 1 I .1$ (recalled in §l.2) associates to a stable π-map $F: \Sigma^{\infty} X \longrightarrow \Sigma^{\infty} Y$ of π-spaces X, Y a natural transformation

$$
\dot{\psi}_{F}: \dot{H}_{*}(X / T) \longrightarrow Q_{*}(\dot{C}(Y))
$$

such that
 with $f: \dot{C}(X) \longrightarrow \dot{C}(Y)$ a $\mathbb{Z}[\pi]$-module chain map induced by F and $\dot{\phi}_{X}: \dot{H}_{*}(X / \pi) \longrightarrow Q^{*}(\dot{C}(X))$ the symmetric construction on X. The quadratic construction is an equivariant chain level generalization of the functional Steenrod square method used by Browder [5] to define the quadratic function needed to define the Arf invariant of a normal map of even-dimensional geometric Poincaré complexes.

The spectral quadratic construction which we shall now be considering associates to a semi-stable π-map $F: X \longrightarrow \sum^{\infty} Y$ of π-spaces X, Y a natural transformation

$$
\dot{\psi}_{\mathrm{F}}: \dot{\mathrm{H}}_{\star+\infty}(\mathrm{X} / \pi) \longrightarrow Q_{\star}(C(f))
$$

with $f: \Omega^{\infty} \dot{C}(X) \longrightarrow \dot{C}(Y)$ a $\mathbb{Z}[\pi]$-module chain map induced by F. The spectral quadratic construction is an equivariant chain level generalization of the functional steenrod square method used by Browder [4] to define the quadratic function needed t define the Arf invariant of a Wu-oriented even-dimensional geometric Poincaré complex. The name derives from the use of the spectra of stable homotopy theory, which are only implici in our terminology.

Let π be a group, and let $w: \pi \longrightarrow \mathbb{Z}_{2}=\{ \pm 1\}$ be an orientation map.

A semi-stable π-map is a π-map

$$
F: X \longrightarrow \Sigma^{P_{Y}}
$$

from a π-space X to the p-fold suspension of a π-space Y, for some $p \geqslant 0$. In the first instance, we shall only be concerned with the case when p is large, which is signified by writing

$$
p=\infty, \quad F: X \longrightarrow \Sigma^{\infty} Y .
$$

The chain level method used to define the quadratic construction in SII.l (taking into account the correction on p.30) applies equally well to define the spectral quadratic construction on a semi-stable π-map $F: X \longrightarrow \sum^{\infty} Y$ inducing the $\mathbb{Z}[\pi]$-module chain map $\mathrm{f}: \Omega^{\infty} \dot{\mathrm{C}}(\mathrm{X}) \longrightarrow \dot{\mathrm{C}}(\mathrm{Y})$, as abelian group morphisms

$$
\psi_{F}: \dot{H}_{n+\infty}(x / \pi) \longrightarrow Q_{n}(C(f)) \quad(n \geqslant 0)
$$

defined using w-twisted coefficients and the w-twisted involution on $\mathbb{Z}[\pi]$.

Proposition 7.3.1 The spectral quadratic construction has the following properties:
i) $(1+T) \psi_{F}=e^{8} \dot{\phi}_{Y} f_{\star}: \dot{H}_{\star+\infty}(X / \pi) \longrightarrow Q^{*}(C(f))$
with $e: \dot{C}(Y) \longrightarrow C(f)$ the inclusion,
ii) $q_{g} \psi_{F}=\dot{H}_{X}: \dot{H}_{\star+\infty}(X / \pi) \longrightarrow Q_{*}\left(\Omega^{\infty-1} \dot{C}(X)\right)$
with $g: C(f) \longrightarrow \Omega^{\infty-1} \dot{C}(X)$ the projection and

$$
H: \hat{Q}^{\star+\infty}(\dot{\mathrm{C}}(\mathrm{X}))=\hat{Q}^{\star+1}\left(\Omega^{\infty-1} \dot{\mathrm{C}}(\mathrm{x})\right) \longrightarrow Q_{\star}\left(\Omega^{\infty-1} \dot{\mathrm{C}}(\mathrm{x})\right)
$$

as in Proposition 1.1.2,

$$
\text { iiii) } \psi_{\Sigma F}=\psi_{F}: \dot{H}_{\star+\infty+1}(\Sigma X / \pi)=\dot{H}_{\star+\infty}(X / \pi) \longrightarrow Q_{\star}(C(f))
$$

$$
\begin{gathered}
\text { iv) if } x=\sum^{\infty} x_{O} \text { for some } \pi \text {-space } x_{O} \\
\psi_{F}: \dot{H}_{\star+\infty}(X / \pi)=\dot{H}_{*}\left(X_{O} / \pi\right) \xrightarrow{\psi_{F_{O}}} Q_{*}(\dot{C}(Y)) \xrightarrow{e_{q}} Q_{*}(C(f))
\end{gathered}
$$

with $\psi_{F_{0}}$ the spectral quadratic construction of §II.l on the stable π-map

$$
F_{O}=F: X=\Sigma^{\infty} X_{O} \longrightarrow Y
$$

v) if there are given π-spaces X, X, Y, Y^{\prime} and a commutative diagram of (semi-) stable π-maps

inducing the commutative diagram of $\mathbb{Z}[\pi]$-module chain complexes and chain maps

then

$$
\psi_{F}, g_{\star}=(h, g)_{\&} \psi_{F}+e_{g}^{\prime} \psi_{H} f_{\star}: \dot{H}_{*+\infty}(x / \pi) \longrightarrow Q_{\star}\left(C\left(f^{\prime}\right)\right)
$$

with $\psi_{F}: \dot{H}_{\star+\infty}(X / \pi) \longrightarrow Q_{*}(C(f))\left(r e s p . \psi_{F}:^{\prime} \dot{H}_{*+\infty}\left(X^{\prime} / \pi\right) \longrightarrow Q_{\star}\left(C\left(f^{\prime}\right)\right)\right)$
the spectral quadratic construction on $F\left(r e s p . F^{\prime}\right)$ and $\Psi_{H}: \dot{H}_{\star}(Y) \longrightarrow Q_{\star}\left(\dot{C}\left(Y^{\prime}\right)\right)$ the quadratic construction on H.

By analogy with the unstable quadratic construction of SII.1 on an unstable π-map $F: \Sigma P_{X} \longrightarrow \sum_{Y}(p \geqslant 0)$

$$
\psi_{F}: \dot{H}_{\star}(X / \pi) \longrightarrow Q_{\star}^{[O, P-1]}(\dot{\mathrm{C}}(\mathrm{Y}))
$$

we also have:
Proposition 7.3.2 Given π-spaces X, Y and a semi-stable π-map $\mathrm{F}: \mathrm{X} \longrightarrow \boldsymbol{\Sigma}^{\mathrm{P}} \mathrm{Y}$
for some $p \geqslant 0$ there is defined an unstable spectral quadratic construction

$$
\psi_{F}: \dot{H}_{\star+p}(x / \pi) \longrightarrow Q_{\star}^{[O, p-1]}(C(f))
$$

with $\mathrm{f}: \Omega_{\mathrm{P}}{ }^{\mathrm{C}} \dot{\mathrm{C}}(\mathrm{X}) \longrightarrow \dot{\mathrm{C}}(\mathrm{Y})$ a $\mathbb{Z}\{\pi]$-module chain map induced by F . If $p=0$ then $\psi_{F}=0$.

Given a commutative ring R let the group $r i n g ~ R[\pi]$ have the w-twisted involution

$$
\longrightarrow R[\pi] \longrightarrow R[\pi] ; \sum_{g \in \pi} r_{g} g \longmapsto \longrightarrow \sum_{g \in \pi} w(g) r_{g} g^{-1} \quad\left(r_{g} \in R\right)
$$

Given a π-space X and a r ing with involution A equipped with a morphism

$$
\mathrm{R}[\pi] \longrightarrow \mathrm{C}
$$

define the A-coefficient chain complex of x to be the A-module chain complex

$$
C(X ; A)=A \mathbb{E}_{R[\pi]} C(X ; R)
$$

with $C(X ; R)=R \mathbb{Z}_{\mathbb{Z}}^{C}(X)$, and similarly for the reduced complex $\dot{C}(X ; A)=A \otimes_{R[\pi]} \dot{C}(X: R)$. Define the A-coefficient symmetric construction on X to be the natural transformation

$$
\dot{\Phi}_{X}: \dot{H}_{\star}(X / \pi ; R) \longrightarrow Q^{\star}(\dot{C}(X ; A))
$$

obtained from the $\mathbb{Z}[\pi]$-module chain level symmetric constructi

$$
\dot{\phi}_{X}: \dot{\mathrm{C}}(x) \longrightarrow \operatorname{Hom}_{\mathbb{Z}}\left[\mathbb{Z}_{2}\right]^{\left(w, \dot{\mathrm{C}}(x) \mathbb{Z}_{\mathbb{Z}} \dot{\mathrm{C}}(x)\right)}
$$

(i.e. the underlying diagonal chain approximation) by applying $K \mathbb{K}_{\mathbb{Z}[\pi]^{-}}$and composing with the R -module chain map induced by $R[\pi] \longrightarrow A$

$$
\begin{aligned}
& \dot{C}(X / \pi ; R)=R \mathbb{Z}_{\mathbb{Z}} \dot{C}(X / \pi)=R \mathbb{Z}_{\mathbb{Z}}[\pi] \quad \dot{C}(X)
\end{aligned}
$$

$$
\begin{aligned}
& =\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(\mathrm{W}^{\operatorname{Hom}_{R}[\pi]}(\mathrm{C}(\mathrm{X} ; \mathrm{R}[\pi]) *, \mathrm{C}(\mathrm{X} ; \mathrm{R} \mid \pi \mathrm{J})\right. \\
& \longrightarrow \operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{A}(\dot{C}(X ; A) *, \dot{C}(X ; A))\right)
\end{aligned}
$$

Define similarly the A-coefficient quadratic construction on a stable π-map $F: \Sigma^{\infty} X \longrightarrow \Sigma^{\infty} Y$

$$
\psi_{F}: \dot{\mathrm{H}}_{\star}(\mathrm{X} / \pi ; R) \longrightarrow Q_{\star}(\dot{C}(\mathrm{Y} ; \mathrm{A}))
$$

and the A-coefficient spectral quadratic construction on a semi-stable π-map $F: X \longrightarrow \Sigma^{\infty} Y$

$$
\psi_{F}: \dot{H}_{\star+\infty}(X / \pi ; R) \longrightarrow Q_{\star}(C(f ; A))
$$

with $C(f ; A)=C\left(f: \Omega^{\infty} \dot{C}(X ; A) \xrightarrow{F} \dot{C}(Y ; A)\right)$.
Recall from §II.l that the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ wu classes $\left\{\begin{array}{c}v_{*} \\ v^{*}\end{array}\right.$
of the $\bmod 2\left(=\mathbb{Z}_{2}\right.$-coefficient $)\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ construction $\left\{\begin{array}{l}\dot{\phi}_{X}: \dot{H}_{\star}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow Q^{\star}\left(\dot{C}\left(X ; \mathbb{Z}_{2}\right)\right) \\ \dot{\psi}_{F}: \dot{H}_{\star}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow Q_{\star}\left(\dot{C}\left(Y ; \mathbb{Z}_{2}\right)\right)\end{array}\right.$ on a $\left\{\begin{array}{l}\{1\} \text {-space } X \\ \text { stable }\{1)-\text { map } F: \Sigma^{\infty} X \longrightarrow \Sigma\end{array}\right.$ have an expression in terms of $\left\{\begin{array}{l}- \\ \text { functional }\end{array}\right.$ Steenrod squares

with $\left\{\begin{array}{l}v_{r}=0 \\ v^{r}=0\end{array}\right.$ for $\left\{\begin{array}{l}n<2 r \\ n>2 r\end{array}\right.$. The intersection pairing of the complex $\left(\dot{C}\left(x ; \mathbb{Z}_{2}\right), \dot{\Phi}_{X}(x) \in Q^{n}\left(\dot{C}\left(x ; \mathbb{Z}_{2}\right)\right)\right)$ is just the evaluation on $x \in \dot{H}_{n}\left(X ; \mathbb{Z}_{2}\right)$ of the cup product

$$
\dot{\phi}_{X}(x)_{O}: \dot{H}^{r}\left(x ; \mathbb{Z}_{2}\right) \times \dot{H}^{n-r}\left(x ; \mathbb{Z}_{2}\right) \longrightarrow \mathbb{Z}_{2} ;
$$

$$
(y, z) \longmapsto \longrightarrow\langle y \cup z, x\rangle
$$

and it follows from the relation

$$
(1+T) \dot{\psi}_{F}=f^{\ell} \dot{\phi}_{X}-\dot{\phi}_{Y} f_{*}: \dot{H}_{n}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow Q^{n}\left(\dot{C}\left(Y ; \mathbb{Z}_{2}\right)\right)
$$

that

$$
\begin{aligned}
v^{r}\left(\psi_{F}(x)\right) & \left(y_{1}+y_{2}\right)-v^{r}\left(\psi_{F}(x)\right)\left(y_{1}\right)-v^{r}\left(\psi_{F}(x)\right)\left(y_{2}\right) \\
= & \left\{\begin{array}{l}
\left\langle f * y_{1} \cup f^{\star} y_{2}-f *\left(y_{1} \cup y_{2}\right), x\right\rangle \\
0 \quad \text { if }\left\{\begin{array}{l}
n=2 r \\
n \neq 2 r
\end{array}\right. \\
\left(x \in \dot{H}_{n}\left(x ; \mathbb{Z}_{2}\right), y_{1}, y_{2} \in \dot{H}^{n-r}\left(Y ; \mathbb{Z}_{2}\right)\right) .
\end{array}\right.
\end{aligned}
$$

Proposition 7. 3. 3 The quadratic wu classes v^{*} of the mod 2 spectral quadratic construction $\psi_{F}: \dot{H}_{\star+\infty}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow Q_{*}\left(C\left(f ; \mathbb{Z}_{2}\right)\right)$ on a semi-stable $\{1\}$-map $F: X \longrightarrow \sum^{\infty} Y$ inducing the $Z Z$-module chain map $f: \Omega^{\infty} \dot{C}(X) \longrightarrow \dot{C}(Y)$ are such that
i) the r th quadratic $W u$ class $V^{r}\left(\psi_{F}\right)$ has an expression in terms of functional Steenrod squares

$$
\begin{aligned}
& \dot{H}_{n+\infty}\left(X ; \mathbb{Z}_{2}\right) \xrightarrow{\Psi_{F}} Q_{n}\left(C\left(f ; \mathbb{Z}_{2}\right)\right) \xrightarrow{v^{r}} \operatorname{Hom}_{\mathbb{Z}_{2}}\left(H^{n-r}\left(f ; \mathbb{Z}_{2}\right), \mathbb{Z}_{2}\right) ; \\
& \left.x \longmapsto\left\langle<\operatorname{Sq}_{h}^{r+1}\left(\Sigma^{\infty} 1\right), x\right\rangle\right) \\
& \left(x \in \dot{H}_{n}\left(x ; \mathbb{Z}_{2}\right), y \in H^{n-r}\left(f ; \mathbb{Z}_{2}\right)\right. \text {, } \\
& h=\left(\varepsilon^{\infty}\left(e^{*} y\right)\right) F \in\left[x, \Sigma^{\infty} K\left(\mathbb{Z}_{2}, n-r\right)\right], \\
& e=\text { inclusion }: \dot{C}\left(Y ; \mathbb{Z}_{2}\right) \longrightarrow C\left(f ; \mathbb{Z}_{2}\right) \text {, } \\
& e^{*} y \in \dot{H}^{n-r}\left(Y ; \mathbb{Z}_{2}\right)=\left\{Y, K\left(\mathbb{Z}_{2}, n-r\right) \mid\right)
\end{aligned}
$$

with $v^{r}\left(\Psi_{F}\right)=0$ if $n>2 r$,
ii) $v^{r}\left(\psi_{F}(x)\right)\left(y_{1}+y_{2}\right)-v^{r}\left(\psi_{F}(x)\right)\left(y_{1}\right)-v^{r}\left(\psi_{F}(x)\right)\left(y_{2}\right)$

$$
\begin{array}{r}
=\left\{\begin{array} { l }
{ \langle e ^ { \star } y _ { 1 } \cup e ^ { \star } y _ { 2 } , f _ { \star } x \rangle } \\
{ 0 }
\end{array} \text { if } \left\{\begin{array}{l}
n=2 r \\
n \neq 2 r
\end{array}\right.\right. \\
\left(x \in \dot{H}_{n+\infty}\left(x ; \mathbb{Z}_{2}\right), y_{1}, y_{2} \in H^{n-r}\left(f ; \mathbb{Z}_{2}\right)\right),
\end{array}
$$

iiii) $v^{r}\left(\psi_{F}(x)\right)\left(q^{*} z\right)=\left\langle S q^{r+1}(z), x\right\rangle \in \mathbb{Z}_{2}$

$$
\begin{aligned}
& \left(x \in \dot{H}_{n+\infty}\left(x ; \mathbb{Z}_{2}\right), z \in \dot{H}^{n+\infty-r-1}\left(x ; \mathbb{Z}_{2}\right)\right. \\
& \left.g=\text { projection }: c\left(f ; \mathbb{Z}_{2}\right) \longrightarrow \Omega^{\infty-1} \dot{C}\left(x ; \mathbb{Z}_{2}\right)\right) .
\end{aligned}
$$

(The identity of Proposition 7.3.3 $\left\{\begin{array}{l}\text { ii) } \\ \text { iii) }\end{array}\right.$ is a direct consequer of the identity $\left\{\begin{array}{l}(1+T) \psi_{F}=e^{q^{2} \phi_{Y}} f^{\prime} \\ g_{8} \psi_{F}=H \phi_{X}\end{array}\right.$ of Proposition 7.3.1 $\left\{\begin{array}{l}i) \\ (i)\end{array}\right.$).

Recall from SII. 9 the hyperquadratic construction ${ }^{\theta} x$ on π-space X, which is the composite natural transformation

$$
\begin{align*}
& \theta_{X}: \dot{H}^{k}(X / \pi) \xrightarrow{\alpha} \dot{H}_{N-k}(Y / \pi) \xrightarrow{\dot{\phi}_{Y}} Q^{N-k}(\dot{C}(Y)) \\
& \xrightarrow{Q} \xrightarrow{N} Q^{N-k}\left(\dot{C}(X)^{N-*}\right) \xrightarrow[J]{ } \rightarrow \hat{Q}^{N-k}\left(C(X)^{N-*}\right)=\hat{Q}^{-k}\left(\mathcal{C}(X)^{-*}\right)
\end{align*}
$$

defined using any π-space $Y \operatorname{Si}$-dual to X and any $S \pi$-duality ma $\alpha: S^{N} \longrightarrow X \wedge_{\pi} Y$ (but which is independent of the choice of Y a with J as in Proposition 1.1.2. There is also an A-coefficient hyperquadratic construction

$$
\theta_{x}: \dot{H}^{k}(x / \pi ; R) \longrightarrow \hat{Q}^{-k}\left(\dot{C}(X ; A)^{-*}\right) \quad(k \geqslant 0)
$$

The hyperquadratic wu classes \hat{v}_{\star} of the mod 2 hyperquadratic construction $\theta_{X}: \dot{H}^{k}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow \hat{Q}^{-k}\left(\dot{C}\left(X ; \mathbb{Z}_{2}\right)^{-\pi}\right)$ on a $\{1\}$-space X have an expression in terms of the dual Steenrod squares

$$
\begin{aligned}
& \dot{H}^{k}\left(x ; \mathbb{Z}_{2}\right) \xrightarrow{\theta_{X}} \hat{\mathrm{Q}}^{-k}\left(\dot{C}\left(x ; \mathbb{Z}_{2}\right)^{-*}\right) \xrightarrow{\hat{v}_{r}} \xrightarrow{\longrightarrow \operatorname{Hom}_{\mathbb{Z}_{2}}\left(\dot{H}_{k+r}\left(x ; \mathbb{Z}_{2}\right), \mathbb{Z}_{2}\right) ;} \\
& x \mapsto(y r \longrightarrow
\end{aligned}
$$

Given a spherical fibration $\xi: X \longrightarrow B G(k)$ over a space we shall say that a covering \widetilde{X} of X is oriented with respect t if the group of covering translations π is equipped with a map $w: \pi \longrightarrow \mathbb{Z}_{2}$ such that the orientation map of ξ factors as

$$
w_{1}(\xi): \pi_{1}(x) \longrightarrow \pi \xrightarrow{w} \mathbb{Z}_{2}
$$

in which case the composite $\tilde{E}: \tilde{X} \xrightarrow{\text { projection }} \mathrm{X}-\stackrel{\xi}{\longrightarrow} \mathrm{BG}(\mathrm{k})$ is an oriented spherical fibration over \widetilde{x}. The formally n-dimens hyperquadratic complex of ξ is the pair

$$
\hat{\sigma} *(\xi)=\left(C(\widetilde{X})^{n-*}, \theta_{T \pi(}\right)^{\left.\left(U_{\xi}\right) \in Q^{n}\left(C(\widetilde{X})^{n-*}\right)\right), ~}
$$

defined for any $n \in \mathbb{Z}$, with $U_{\xi} \in \dot{H}^{k}(T(\xi))$ the w-twisted coeff Thom class of ξ and

$$
\theta_{T \pi(\xi)}: \dot{A}^{k}(T(\xi)) \longrightarrow \hat{Q}^{-k}\left(\dot{C}(T \pi(\xi))^{-*}\right)=\hat{Q}^{n}\left(\dot{C}(T \pi(\xi))^{n+k-}\right.
$$

the hyperquadratic construction on the T hom π-space $T \pi(\zeta)$, u the $\mathbb{Z}[\pi]$-module chain equivalence

$$
u_{\xi} n-: \dot{c}(T \pi(\xi)) \sim s^{k} c(\tilde{x})
$$

to identify

$$
\hat{Q}^{n}\left(\dot{C}(T \pi(\xi))^{n+k-*}\right)=\hat{Q}^{n}\left(C(\tilde{x})^{n-*}\right) \text {. }
$$

If A is a ring with involution which is equipped with a more $\mathbb{Z}[\pi] \longrightarrow A$ the A-coefficient Wu classes of $5 v_{*}(\xi)$ are defi to be the hyperquadratic $W u$ classes of $A N_{Z[\pi]} \hat{\sigma}^{\star}(\xi)$, the $A-m C$ morphisms

$$
v_{r}(\xi)=\hat{v}_{r}\left(\theta_{T \pi(\xi)}\left(U_{\xi}\right)\right): H_{r}(\tilde{X} ; A) \longrightarrow \hat{H}^{r}\left(\mathbb{Z}_{2} ; A\right) \quad(r \neq 0) .
$$

The mod 2 Wu classes defined in this way

$$
v_{r}(\varepsilon): H_{r}\left(X ; \mathbb{Z}_{2}\right) \longrightarrow \hat{H}^{r}\left(\mathbb{Z}_{2} ; \mathbb{Z}_{2}\right)=\mathbb{Z}_{2} \quad(r \geqslant 0)
$$

agree with the usual mod 2 wu classes $v_{*}(\xi) \in H^{*}\left(x ; \mathbb{Z}_{2}\right)$, whicl characterized by

$$
\begin{aligned}
v_{r}(\xi) \cup U_{\xi}=x\left(S q^{r}\right)\left(U_{\xi}\right) & \in \dot{H}^{k+r}\left(T(\xi) ; \mathbb{Z}_{2}\right) \\
& \left(r \geqslant 0, U_{\xi} \in \dot{H}^{k}\left(T(\xi) ; \mathbb{Z}_{2}\right)\right) .
\end{aligned}
$$

Let x be an n-dimensional geometric Poincaré complex
with Spivak normal structure

$$
\left(v_{X}: x \longrightarrow B G(k), D_{x}: S^{n+k} \longrightarrow T\left(v_{X}\right)\right)
$$

and let \tilde{x} be an oriented covering of X with group of covering translations π. With A as above there is defined an n-dimensional symmetric Poincaré complex over A

$$
\sigma^{*}(x)=\left(C(\tilde{X} ; A), \phi_{\tilde{X}}([x]) \in Q^{n}(C(\tilde{X} ; A))\right)
$$

and as in Proposition II.9.6 it is possible to use the ST-duality between \widetilde{X}_{+}and the Thom π-space $T \pi\left(v_{X}\right)$ defined by

$$
\alpha_{X}: S^{n+k} \xrightarrow{\rho_{X}} T\left(v_{X}\right) \xrightarrow{\Delta} \tilde{\mathrm{X}}_{+} \wedge_{\pi} T \pi\left(v_{X}\right)
$$

and the Poincare duality A-module chain equivalence

$$
\phi_{X}([x])_{O}=[x] n-: C(\tilde{X} ; A)^{n-*} \xrightarrow{\sim} C(\tilde{X} ; A)
$$

to identify

$$
J \sigma^{*}(x)=\hat{\sigma}^{*}\left(v_{X}\right)
$$

Thus the A-coefficient Wu classes of x defined by

$$
\begin{aligned}
v_{r}(X): H^{n-r}(\tilde{X} ; A) \xrightarrow{v_{r}\left(\phi_{\tilde{X}}([X])\right)} \\
\xrightarrow{\text { J }} \xrightarrow{n-2 r} \hat{H}^{r}\left(\mathbb{Z}_{2} ; A\right)
\end{aligned}
$$

(with J an isomorphism for $n \neq 2 r$) can be identified with the A-coefficient wu classes of v_{X}

$$
v_{r}(X)=v_{r}\left(v_{X}\right): H^{n-r}(\widetilde{X} ; A)=H_{r}(\widetilde{X} ; A) \longrightarrow \hat{A}^{r}\left(\mathbb{Z}_{2} ; A\right) \quad(r \geqslant 0) .
$$

In particular, for $A=\mathbb{Z}_{2}$ this recovers the usual identification of the mod 2 wu classes $v_{*}(X) \in H^{*}\left(X: \mathbb{Z}_{2}\right)$ characterized by

$$
\begin{aligned}
& v_{r}(x) \cup x=S q^{r}(x) \in H^{n}\left(x ; \mathbb{Z}_{2}\right) \\
& \left(r \geqslant 0, x \in H^{n-r}\left(x ; \mathbb{Z}_{2}\right)\right)
\end{aligned}
$$

with the mod 2 wu classes of $v_{X}: x \longrightarrow B G(k)$

$$
v_{*}(x)=v_{\star}\left(v_{X}\right) \in H^{*}\left(x ; \mathbb{Z}_{2}\right)
$$

A formally n-dimensional normal space $\left(X, \nu_{X}, \rho_{X}\right)$ (or x for short) consists of
i) a finitely dominated CW complex X
ii) a spherical fibration $v_{x}: X \longrightarrow B G(k)$ over x
iii) a map $\rho_{x}: S^{n+k} \longrightarrow T\left(\nu_{x}\right)$.
(Normal spaces were introduced by Quinn [31). The orientation map of x is the orientation map of v_{x}

$$
w(X)=w_{1}\left(v_{X}\right): \pi_{1}(x) \longrightarrow \mathbb{Z}_{2}
$$

The fundamental class of X is the $w(x)$-twisted integral homology class

$$
[x]=h\left(\rho_{x}\right) \cap u_{v_{x}} \in H_{n}(x) \text {, }
$$

with $h: \pi_{n+k}\left(T\left(\nu_{X}\right)\right) \longrightarrow \dot{H}_{n+k}\left(T\left(U_{X}\right)\right)$ the Hurewicz map and $u_{v_{X}} \in \dot{H}^{k}\left(T\left(v_{X}\right)\right)$ the $w(X)$-twisted integral cohomology Thom class of v_{x}.

An n-dimensional geometric Poincaré complex X is a
formally n-dimensional normal space such that the $\mathbb{Z}\left[\pi_{1}(x)\right]$-module chain level cap product with the fundamental class $\{X$]

$$
[x] \cap-: C(\tilde{x})^{n-*} \xrightarrow{\sim} C(\bar{x})
$$

is a chain equivalence, with \tilde{x} the universal cover of x.

A formally n-dimensional degree 1 map

$$
\mathrm{f}: \mathbf{M} \longrightarrow \ldots X
$$

is a map from an n-dimensional geometric Poincaré complex M to a formally n-dimensional normal space X such that

$$
f_{*}(|M|)=\left\{X \mid \in H_{n}(X) .\right.
$$

A formally n-dimensional normal map

$$
(f, b): M \longrightarrow x
$$

is a formally n-dimensional degree 1 map $f: M \rightarrow X$ together with a map of the normal fibrations $b: v_{M} \longrightarrow v_{X}$ covering f such that

$$
T(b)_{\star}\left(\rho_{M}\right)=\rho_{X} \in \pi_{n+k}\left(T\left(v_{X}\right)\right) .
$$

Formally n-dimensional normal maps arise in codimension q surgery theory - see $\$ 7.5$ below, particularly proposition 7.5 .4

$$
\text { An n-dimensional }\left\{\begin{array} { l }
{ \text { degree } 1 } \\
{ \text { normal } }
\end{array} \text { map } \left\{\begin{array}{l}
f: M \longrightarrow x \\
(f, b): M \longrightarrow x
\end{array}\right.\right. \text { of geometr }
$$

Poincaré complexes is a formally n-dimensional $\left\{\begin{array}{l}\text { degree } 1 \\ \text { normal map }\end{array}\right.$ mater such that x is an n-dimensional geometric Poincaré complex.

We shall now generalize the construction in $\$ 1.2$ of the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ kernel $\left\{\begin{array}{l}\sigma^{*}(f) \\ \sigma_{\star}(f, b)\end{array}\right.$ from an actually to a formally n-dimensional $\left\{\begin{array}{l}\text { degree } 1 \\ \text { normal }\end{array} \quad \operatorname{map}\left\{\begin{array}{l}f: M \longrightarrow X \\ (f, b): M \longrightarrow X\end{array}\right.\right.$.

Let A be a ring with involution.
A formally n-dimensional $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ complex over A
$\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is a finite chain complex C of $f . g$. projective
A-modules

$$
c: \ldots \rightarrow c_{r+1}-\cdots{ }^{d} \rightarrow c_{r}
$$

together with an element

$$
\left\{\begin{array}{l}
\phi \in Q^{n}(C)=H_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]}\left(W, \operatorname{Hom}_{A}(C *, C)\right)\right) \\
\psi \in Q_{n}(C)=H_{n}\left(W \mathbb{X}_{\mathbb{Z}\left[\mathbb{Z}_{2}\right]} \operatorname{Hom}_{A}\left(C^{*}, C\right)\right)
\end{array}\right.
$$

If C is an n-dimensional A-module chain complex (i.e. if $H_{r}(C)=0$ for $r<0$ and $H^{r}(C)=0$ for $\left.r>n\right)$ then $\left\{\begin{array}{l}(C, \phi) \\ (C, \psi)\end{array}\right.$ is the same as an n-dimensional $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ complex over A in the sense of $\$ 1.1$. The manipulations of finite-dimensional $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ complexes (such as the algebraic surgery of $\$ 1.5$) carry over to formally finite-dimensional $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ complexes

Given a formally n-dimensional degree 1 map

$$
\mathbf{f}: \mathbf{M} \longrightarrow X
$$

and an oriented covering \tilde{x} of X with group of covering translations π let \tilde{M} be the induced oriented covering of M, and let $\tilde{\mathrm{f}}: \tilde{\mathrm{M}} \longrightarrow \widetilde{\mathrm{X}}$ be a π-equivariant map coverinq f . The Umkehr chain map of f is the composite $\mathbb{Z}[\pi]$-module chain map

$$
\mathrm{f}^{!}: C(\widetilde{\mathrm{X}})^{\mathrm{n}-\star} \xrightarrow{\widetilde{\mathrm{f}}^{\star}} C(\widetilde{M})^{n-\star} \xrightarrow{[M] \stackrel{n}{\longrightarrow}} C(\widetilde{M}) .
$$

There are natural identifications

$$
\left\{\begin{array}{l}
H^{*}(f!)=H_{n-\star+1}(\widetilde{f}) \\
H_{\star}(f!)=H^{n-\star}(\widetilde{f})
\end{array}\right.
$$

so that the $\mathbb{Z}[\pi]$-module chain maps

$$
\begin{aligned}
& e=\text { inclusion }: C(\tilde{M}) \rightarrow \cdots C(f!) \\
& g=\text { projection }: C\left(f^{!}\right) \cdots \cdots C(\bar{X})^{n-\star}
\end{aligned}
$$

are such that there are defined long exact sequences

$$
\left\{\begin{array}{l}
\ldots \longrightarrow H_{r+1}(\widetilde{M}) \xrightarrow{\widetilde{f}_{\star}} H_{r+1}(\widetilde{X}) \xrightarrow{q^{\star}} H^{n-r}\left(f^{!}\right) \xrightarrow{e^{\star}} H_{r}(\widetilde{M}) \xrightarrow{\widetilde{f}_{\star}} H_{r}(\widetilde{X}) \longrightarrow H^{r}(\widetilde{X}) \xrightarrow{\widetilde{f}^{\star}} H^{r}(\widetilde{M}) \xrightarrow{e_{\star}} H_{n-r}\left(f^{!}\right) \xrightarrow{q_{\star}} H^{r+1}(\widetilde{X}) \xrightarrow{\widetilde{f}^{\star}} H^{r+1}(\tilde{M}) \longrightarrow \ldots,
\end{array}\right.
$$

identifying $H^{*}(\widetilde{M})=H_{n-\bullet}(\widetilde{M})$ by the Poincare duality of M.
Proposition 7.3.4 Given a formally n-dimensional normal space X and an oriented covering \tilde{x} of x with group of covering translations π the following complexes are defined.
i) The symmetric complex of X is a formally n-dimensional symmetric complex over $Z[\pi]$

$$
\sigma^{\star}(X)=\left(C(\widetilde{x}), \phi \in Q^{n}(C(\tilde{x}))\right)
$$

such that

$$
\phi_{0}=\left[x \ln -: c(\tilde{x})^{n-\star} \longrightarrow c(\tilde{x})\right.
$$

ii) The quadratic Poincaré complex of X is a formally (n-l)-dimensional quadratic Poincaré complex over $\mathbb{Z}[\pi]$

$$
\sigma_{\star}(x)=\left(\Omega C\left(\{x] n-: C(\tilde{x})^{n-*} \longrightarrow C(\tilde{x})\right), \psi \in \varepsilon_{n-1}(\Omega C([x] \cap-))\right)
$$

such that

$$
\begin{aligned}
& (1+T) \sigma_{\star}(X)=\partial \sigma^{*}(X) \\
& q_{g} \sigma_{*}(X)=H \hat{\sigma} *\left(v_{X}\right)
\end{aligned}
$$

where $\sigma^{*}(X)$ is the boundary of the symmetric complex $\sigma *(X)$ and $\mathrm{g}=$ projection $: \Omega \mathrm{C}\left([\mathrm{X}] \mathrm{n}^{-1} \longrightarrow \mathrm{C}(\tilde{\mathrm{X}})^{\mathrm{n}-*}\right.$.
iii) The symmetric kernel of a formally n-dimensional degree $1 \operatorname{map} f: M \longrightarrow X$ is a formally n-dimensional symmetric complex over $\mathbb{Z}[\pi]$

$$
\sigma^{*}(f)=\left(C\left(f^{l}\right), \phi \in Q^{n}\left(C\left(f^{l}\right)\right)\right)
$$

such that there are defined homotopy equivalences

$$
\begin{aligned}
& h: \partial \sigma^{*}(f) \xrightarrow{\sim}-1 \sigma^{\star}(X) \\
& \sigma^{*}(M) \longrightarrow \sigma^{*}(f) \cup{h^{*}}^{\sigma^{*}}(X) .
\end{aligned}
$$

iv) The quadratic kernel of a formally n-dimensional
normal map $(f, b): M \longrightarrow X$ is \longrightarrow formally n-dimensional quadratic complex over $\mathbb{Z}[\pi]$

$$
\sigma_{*}(f, b)=\left(C\left(f^{!}\right), \psi \in Q_{n}\left(C\left(f^{!}\right)\right)\right)
$$

such that

$$
(1+i) a_{\star}(f, b)=\sigma^{\star}(f)
$$

and such that there is defined a homotopy equivalence
$h: 3 \sigma_{\star}(\mathrm{f}, \mathrm{b}) \longrightarrow \sim-\sigma_{\star}(\mathrm{X})$
v) If $\left\{\begin{array}{l}F: M_{1} \longrightarrow M_{2} \\ (F, F): M_{1} \longrightarrow M_{2}\end{array}\right.$ is a $\left\{\begin{array}{l}\text { degree } 1 \\ \text { normal }\end{array}\right.$ map of n-dimensional
geometric poincaré complexes and $\left\{\begin{array}{l}f_{i}: M_{i} \longrightarrow \longrightarrow \\ \left(f_{i}, b_{i}\right): M_{i}\end{array}(i=1,2)\right.$ are formally n-dimensional $\left\{\begin{array}{l}\text { degree } 1 \\ \text { normal maps such that there is defined }\end{array}\right.$ a commutative diagram

the $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ kernel $\left\{\begin{array}{l}\sigma^{*}(F) \\ \sigma_{*}(F, B)\end{array}\right.$ is canonically cobordant to the union formally n-dimensional $\left\{\begin{array}{l}s y m m e t r i c \\ \text { quadratic }\end{array}\right.$ Poincaré complex over $\mathbb{Z}[\pi]$
$\left\{\begin{array}{l}\sigma \star\left(f_{1}\right) u_{h_{2}}^{-1} h_{1}^{-\sigma \star}\left(f_{2}\right) \\ \sigma_{\star}\left(f_{1}, b_{1}\right) U_{h_{2}}^{-1} h_{1}^{-\sigma}{ }_{\star}\left(f_{2}, b_{2}\right)\end{array}\right.$ obtained by qlueing along the composite homotopy equivalence

$$
\left\{\begin{array}{l}
h_{2}^{-1} h_{1}: a \sigma^{*}\left(f_{1}\right) \xrightarrow{\stackrel{h_{1}}{\sim}-1 \sigma^{*}(x) \xrightarrow{h_{2}^{-1}} \exists \sigma^{*}\left(f_{2}\right)} \\
h_{2}^{-1} h_{1}: 3 \sigma_{\star}\left(f_{1}, b_{1}\right) \xrightarrow{\stackrel{h_{1}}{\sim}}-\sigma_{\star}(x) \xrightarrow{h_{2}^{-1}} 3 \sigma_{\star}\left(f_{2}, b_{2}\right) .
\end{array}\right.
$$

Thus on the L-group level

$$
\left\{\begin{array}{l}
\sigma^{*}(F)=\sigma^{*}\left(f_{1}\right) \cup_{h_{2}}^{-1} h_{1}-\sigma^{*}\left(\xi_{2}\right) \in L^{n}(\mathbb{Z}[\pi]) \\
\left.\sigma_{\star}(F, B)=\sigma_{\star}\left(f_{1}, b_{1}\right) \cup_{h_{2}^{-1}}^{-1} h_{1}-\sigma_{\star}\left(f_{2}, b_{2}\right) \in L_{n}(\mathbb{Z} \mid \pi]\right)
\end{array}\right.
$$

Proof: i) Define $\sigma^{*}(X)=(C(\widetilde{X}), \phi)$ by

$$
\phi=\phi_{\widetilde{X}}([x]) \in Q^{n}(C(\widetilde{x}))
$$

ii) See Proposition 7.4.1 iv) below for the definition of iii) Define $\sigma^{*}(f)=(C(f), \phi)$ by

$$
\phi=e^{\ell} \phi_{\widetilde{M}}([M]) \in Q^{n}\left(C\left(f^{!}\right)\right)
$$

with $e=$ inclusion $: C(\widetilde{M}) \longrightarrow C(f)$.
iv) Define $o_{\star}(f, b)=\left(C\left(f^{!}\right), \psi\right)$ as follows.

Let $T \pi\left(v_{X}\right)$ * be a π-space $S_{\pi} \pi$-dual to the Thom π-space $T \pi\left(v_{X}\right)$.
The 5π-dual of the induced π-map of Thom π-spaces

$$
\mathrm{T} \pi(\mathrm{~b}): \mathrm{T} \pi\left(v_{M}\right) \longrightarrow \mathrm{T} \pi\left(v_{X}\right)
$$

is the geometric Umkehr semi-stable π-map

$$
T \pi(b) *: T \pi\left(v_{X}\right)^{*} \longrightarrow T \pi\left(v_{M}\right)^{*}=\Sigma^{\infty} \widetilde{M}_{+}
$$

inducing the Umkehr chain map

$$
\mathrm{f}^{!}: \mathrm{C}(\overline{\mathrm{X}})^{\mathrm{n-*}} \longrightarrow \mathrm{C}(\overline{\mathrm{M}})
$$

Evaluating the spectral quadratic construction

$$
\theta_{T \pi(b) *}: \dot{H}^{k}\left(T\left(v_{x}\right)\right) \cdots Q_{n}(C(f!))
$$

on the Thom class $U_{V_{X}} \in \dot{H}^{k}\left(T\left(v_{X}\right)\right)$ set

$$
\psi=\theta_{T \pi}(b) *\left(U_{v_{X}}\right) \in Q_{n}\left(C\left(f^{!}\right)\right)
$$

v) This is a generalization of the sum formula of Propositio
$\left\{\begin{array}{l}\text { II. } 2.5 \\ \text { II. } 4.3\end{array}\right.$ for the composition of $\left\{\begin{array}{l}\text { degree } 1 \\ \text { normal maps of geometric }\end{array}\right.$
Poincaré complexes, and may be proved similarly.

There are evident A-coefficient versions of the constructions of Proposition 7.3.4, for any ring with involution A equipped with a morphism $\mathbb{Z}[\pi] \rightarrow A$.

A formally n-dimensional topological normal map

$$
(f, b): M \longrightarrow X
$$

(or a t-triangulation of X) consists of:
i) an n-dimensional manifold M and an embedding $M \subset S^{n+}$ with consequent topological normal structure

$$
\begin{aligned}
\nu_{M}= & v_{M C} S^{n+k}: M \longrightarrow B \widehat{\operatorname{TOP}}(k) \\
& \rho_{M}: S^{n+k} \xrightarrow{\text { collapse }} S^{n+k} / S^{n+k}-E\left(v_{M}\right)=E\left(v_{M}\right) / S\left(v_{M}\right)=
\end{aligned}
$$

ii) a formally n-dimensional normal space X with a topological normal structure

$$
\left(\tilde{v}_{x}: x \longrightarrow \operatorname{BrOP}^{\circ}(k), \rho_{x}: S^{n+k} \longrightarrow T\left(v_{x}\right)\right)
$$

iii) a degree 1 map $f: M \longrightarrow X$
iv) a map of topological block bundles

$$
b: v_{M} \longrightarrow \tilde{v}_{X}
$$

covering f, such that

$$
T(b)_{\star}\left(\rho_{M}\right)=\rho_{X} \in \pi_{n+k}\left(T\left(v_{X}\right)\right) .
$$

(The Browder-Novikov transversality construction applies equally well to formally n-dimensional topological normal maps. Thus the set $\mathcal{J}^{\text {TOP }}(\mathrm{X})$ of concordance classes of t-triangulations of a formally n-dimensional normal space X is in natural one-one correspondence with the set $\mathcal{T}^{T O P}\left(v_{x}\right)$ of concordance classes of $t-t r i a n g u l a t i o n s \tilde{v}_{x}: X \longrightarrow \widehat{B T O P}(k)$ of a normal fibration $v_{X}: X \longrightarrow B G(k)(k \geqslant 3)$, in the non-empty case carrying natural affine structure with translation group $\dot{H}^{k}\left(T\left(v_{X}\right) ; \underline{\Pi}_{O}\right)$, exactly as for the $t \rightarrow t r i a n q u l a t i o n s ~ o f ~ a ~ g e o m e t r i c ~ P o i n c a r e ~ c o m p l e x ~ X ~$ considered in Proposition 7.1.3). The usual notion of a geometric surgery on an n-dimensional topological normal map $((f, b): M \longrightarrow X)$

$$
\longmapsto\left(\left(f{ }^{\prime}, b^{\prime}\right): M^{\prime}=\overline{M \backslash S^{r} \times D^{n-r}} \cup D^{r+1} \times S^{n-r-1} \longrightarrow X\right)
$$

carries over to a formally n-dimensional topological normal map. Indeed, the assertion of Milnor $\{1, p .46\}$ that every compact, smooth and oriented n-dimensional manifold M is cobordant to one for which the classifying map of the tangent bundle ${ }^{\top}{ }_{M}: M \longrightarrow B S O(n)$ induces monomorphisms

$$
\tau_{M^{*}}: \pi_{r}(M) \longrightarrow \pi_{r}(\operatorname{BSO}(n)) \quad\left(1 \leqslant r \leqslant \frac{\pi}{2}-1\right)
$$

concerns geometric surgery in the smooth category on the formally n-aimensional topoloqical normal map

$$
\left(\tau_{M}, b\right): M \longrightarrow B S O(n)
$$

(replacing BSO(n) by some high-dimensional skeleton).
Proposition 7.3.5 A qeometric surgery on a formally n-dimensional topoloqical normal map $(f, b): M \rightarrow X$ determines an alqebraic surgery on the quadratic kernel $\sigma_{*}(f, b)$.

Proof: By analogy with Proposition II.7.3.

If $(f, b): M \longrightarrow X$ is a formally $2 i-d i m e n s i o n a l$ normal map then the quadratic kernel over \mathbb{Z}_{2}

$$
\sigma_{\star}(f, b)=\left(C\left(f^{!}\right), \phi \in O_{2 i}\left(C\left(f^{!}\right)\right)\right)
$$

determines a quadratic sejf-intersection form over \mathbb{Z}_{2}

$$
\begin{aligned}
\left(H^{i}\left(f^{!} ; \mathbb{Z}_{2}\right)=\right. & H_{i+1}\left(f ; \mathbb{Z}_{2}\right), \\
& \lambda \\
& =(1+T) \psi_{O}: H_{i+1}\left(f ; \mathbb{Z}_{2}\right) \times H_{i+1}\left(f ; \mathbb{Z}_{2}\right) \longrightarrow \mathbb{Z}_{2} \prime \\
\mu & \left.=v^{i}(\psi): H_{i+1}\left(f ; \mathbb{Z}_{2}\right) \longrightarrow \mathbb{Z}_{2}\right)
\end{aligned}
$$

such that

$$
\begin{gathered}
\text { i) } \lambda(x, y)=\left\langle e^{\star} x \cup e^{\star} y,[M]\right\rangle \in \mathbb{Z}_{2} \\
\left(x, y \in H_{i+1}\left(f ; \mathbb{Z}_{2}\right), e^{\star} x, e^{\star} y \in H_{i}\left(M ; \mathbb{Z}_{2}\right)=H^{i}\left(M_{;} \mathbb{Z}_{2}\right)\right. \\
\text { ii) } \mu\left(g^{\star} z\right)=v_{i+1}\left(v_{x}\right)(z) \in \mathbb{Z}_{2} \\
\left(z \in H_{i+1}\left(x ; \mathbb{Z}_{2}\right), g^{\star} z \in H_{i+1}\left(f ; \mathbb{Z}_{2}\right)\right) .
\end{gathered}
$$

This generalizes the functional Steenrod square construction due to Browder $[4]$ of a quadratic self-intersection form over \mathbb{Z}_{2}

$$
\left(\operatorname{ker}\left(f_{*}: H_{i}\left(M ; \mathbb{Z}_{2}\right) \longrightarrow H_{i}\left(X ; \mathbb{Z}_{2}\right)\right), \lambda, \mu\right)
$$

in the case $v_{i+1}\left(v_{X}\right)=0 \in H^{i+l}\left(X ; \mathcal{Z}_{2}\right)$. (See Proposition 7.3.7 i i) below for the connection between the two forms). The latter form was given a geometric interpretation by Browder [9] in the case of the formally $2 i-d i m e n s i o n a l$ topological normal map $(f, b): M \longrightarrow X$ defined by a framed embedding $f: M^{2 i} \subset x^{2 i+k} \quad(k \geqslant 0)$ of a $2 i$-manifold M in a (2i+k)-manifold X (possibly with boundar y) such that $v_{i+1}(X)=O \in H^{i+1}\left(x ; \mathbb{Z}_{2}\right)$.

In general, the above self-intersection forms over \mathbb{Z}_{2} (K, λ, μ) are sinqular and $\mu: K \longrightarrow \mathbb{Z}_{2}$ does not vanish on $\operatorname{ker}\left(\lambda: K \longrightarrow K^{*}\right) \subseteq K$, so that the Arf invariant is not defined for (K, λ, μ). We shall now give an interpetation in terms of
of the condition
our theory/for the Arf invariant to be defined, in the more general context of e-quadratic forms over any semisimple ring with involution A, extending the results of Browder [8, $\$ 2]$ for $A=Z_{2}$.

Let then A be a ring with involution which is semisimple, i.e. O-dimensional in the sense of $\S 1.2$, so that every A -module is projective and every submodule of an A-module is a direct summand.

The radical of an ε-symmetric form over $A\left(M, \phi \in Q^{\varepsilon}(M)\right)$ is the annihilator of M

$$
M^{\perp}=\operatorname{ker}\left(\phi: M \longrightarrow M^{\star}\right) \subseteq M .
$$

The induced ε-symmetric form on the quotient A-module $M / M+$

$$
\left(M / M^{\perp}, \phi / \phi^{\perp} \in Q^{F}\left(M / M^{\perp}\right)\right)
$$

is non-singular and such that

$$
(M, \phi)=\left(M / M^{\perp}, \phi / \phi^{\perp}\right) \oplus\left(M^{\perp}, 0\right)
$$

(up to non-canonical isomorphism). The witt class of (M, ϕ) is defined by

$$
\sigma *(M, \phi)=\left(M / M^{\perp}, \phi / \phi+\right) \in L^{E}(A) .
$$

If (M, ϕ) is an even ε-symmetric form then so is ($M / M^{\perp}, \phi / \phi^{\perp}$), allowing the definition

$$
\sigma^{*}(M, \phi)=\left(M / M^{2}, \phi / \phi^{1}\right) \in L\left\langle v_{0}\right\rangle^{\varepsilon}(A) .
$$

An ε-quadratic form over $A\left(M, \psi \in Q_{\varepsilon}(M)\right)$ is eradicable if

$$
\left.\psi\right|_{M^{+}}=0 \in Q_{E}\left(M^{+}\right)
$$

with $M^{+}=\operatorname{ker}\left(\psi+\varepsilon \psi^{*}: M \longrightarrow M^{*}\right)$ the radical of the ε-symmetrizati $\left(M, \psi+\varepsilon \psi^{\star} \in Q^{\epsilon}(M)\right)$, or equivalently if for each $x \in M+$

$$
\psi(x)(x)=0 \in Q_{\varepsilon}(A)=A /\{a-\varepsilon \bar{a} \mid a \in A\} .
$$

There is induced an ε-quadratic form on the quotient A-module M / N

$$
\left(M / M^{\perp}, \psi / \psi^{\perp} \in Q_{E}\left(M / M^{\perp}\right)\right)
$$

which is non-singular and such that

$$
(M, \psi)=\left(M / M^{\perp}, \psi / \psi^{\perp}\right) \oplus\left(M^{\perp}, O\right)
$$

(up to non-canonical isomorphism). The Witt class of an eradicable ε-quadratic form over $A(M, \Psi)$ is defined by

$$
\sigma_{\star}(M, \psi)=\left(M / M^{\perp}, \psi / \Psi^{\perp}\right) \in L_{E}(A)
$$

We have the following algebraic version of the Novikov additivity property for the signature, involving the glueing of forms defined in 51.7.

Proposition 7.3 .6 Given $\left\{\begin{array}{l}\text { any } \varepsilon-s y m m e t r i c \\ \text { any even e-symmetric forms over a } \\ \text { eradicable e-quadratic }\end{array}\right.$ semisimple ring with involution $A\left\{\begin{array}{l}(M, \phi) \\ (M, \phi), \\ (M, \psi)\end{array}\left\{\begin{array}{l}\left(M^{\prime}, \phi^{\prime}\right) \\ \left(M^{\prime}, \phi^{\prime}\right) \text { and a stat } \\ \left(M^{\prime}, \psi^{\prime}\right)\end{array}\right.\right.$ isomorphism of boundary $\left\{\begin{array}{l}\text { even }(-\epsilon)-s y m m e t r i c \\ (-\varepsilon)-q u a d r a t i c \\ \text { split }(-\epsilon) \text {-quadratic }\end{array}\right.$ formations over

the witt class of the union non-sinqular $\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \text { even } \varepsilon \text {-symmetric } \\ \varepsilon \text {-quadratic }\end{array}\right.$
form over $A\left\{\begin{array}{l}(M, \phi) U_{f}\left(M^{\prime}, \phi^{\prime}\right) \\ (M, \phi) U_{f}\left(M^{\prime}, \phi^{\prime}\right) \text { is qiven by } \\ (M, \psi) U_{f}\left(M^{\prime}, \psi^{\prime}\right)\end{array}\right.$

$$
\left\{\begin{array}{l}
\sigma^{*}\left((M, \phi) \cup_{f}\left(M^{\prime}, \phi^{\prime}\right)\right)=\sigma^{*}(M, \phi)+\sigma^{*}\left(M^{\prime}, \phi^{\prime}\right) \in L^{\varepsilon}(A) \\
\sigma^{*}\left((M, \phi) \cup_{f}\left(M^{\prime}, \phi^{\prime}\right)\right)=\sigma^{*}(M, \phi)+\sigma^{*}\left(M^{\prime}, \phi^{\prime}\right) \in L^{L}\left(v_{O^{\prime}}{ }^{\epsilon}(A)\right. \\
\sigma_{\star}\left((M, \psi) \cup_{f}\left(M^{\prime}, \psi^{\prime}\right)\right)=\sigma_{\star}(M, \psi)+\sigma_{\star}\left(M^{\prime}, \psi^{\prime}\right) \in L_{E}(A) .
\end{array}\right.
$$

Proof: As in the proof of Proposition 1.7.1 there is defined in isomorphism of $\left\{\begin{array}{l}\varepsilon \text {-symmetric } \\ \text { even } \varepsilon \text {-symmetric forms over } A \\ \varepsilon \text {-quadratic }\end{array}\right.$

$$
\left\{\begin{array}{l}
(M,-\phi) \oplus\left((M, \phi) \cup_{f}\left(M^{\prime}, \phi^{\prime}\right)\right) \longrightarrow \simeq\left(M^{\prime}, \phi^{\prime}\right) \oplus(\text { hyperbolic }) \\
(M,-\phi) \oplus\left((M, \phi) \cup_{f}\left(M^{\prime}, \phi^{\prime}\right)\right) \longrightarrow \simeq\left(M^{\prime}, \phi^{\prime}\right) \oplus(\text { hyperbolic }) \\
(M,-\psi) \oplus\left((M, \psi) \cup_{f}\left(M^{\prime}, \psi^{\prime}\right)\right) \longrightarrow \simeq\left(M^{\prime}, \psi^{\prime}\right) \oplus(\text { hyperbolic }) .
\end{array}\right.
$$ Passing to the quotients by the radicals gives r ise to the Witt class sum formula.

It follows from the proof of Proposition 7.3.6 that the eradicability of an ε-quadratic form over $A(M, \psi)$ depends only on the boundary split $(-\varepsilon)$-quadratic formation over $A(M, \psi)$. This dependence has a concise expression in terms of the associated $\pm \mathrm{E}$-quadratic complexes. For any $i \geqslant 1$ let. $\left(C, \psi \in Q_{2 i}\left(C,(-)^{i} \varepsilon\right)\right)$ be the $2 i$-dimensional $(-)^{i} \varepsilon$-quadratic complex over A defined by

$$
\psi_{O}=\psi: C^{i}=M \longrightarrow C_{i}=M^{*}, C_{r}=O(r \neq i),
$$

so that the boundary

$$
\therefore(C, \psi)=\left(\sim C, \psi \in Q_{2 i-1}\left(C,(-)^{i} \varepsilon\right)\right)
$$

is the (2i-1)-dimensional (-) ${ }^{i} \varepsilon$-quadratic Poincaré complex over A defined by

$$
\begin{aligned}
& d_{\partial C}=\psi+\varepsilon \psi^{*}: \partial C_{i}=M \longrightarrow \partial C_{i-1}=M^{*} \\
& \partial \psi_{O}=\left\{\begin{array}{l}
1: \partial C^{i-1}=M \longrightarrow \partial C_{i}=M \\
0: \partial C^{i}=M^{*} \longrightarrow \partial C_{i-1}=M^{*}
\end{array}\right. \\
& \partial \psi_{1}=\psi: \partial C^{i-1}=M \longrightarrow \partial C_{i-1}=M^{\star}
\end{aligned}
$$

with ith $(-)^{i}$ equadratic wu class

$$
v^{i}(\partial \psi): H^{i-1}(d C)=M^{\perp} \longrightarrow \hat{H}^{1}\left(\mathbb{Z}_{2} ; A, E\right) ; x \longmapsto \longrightarrow \psi(x)(x)
$$

The ε-quadratic form (M, ψ) is eradicable if and only if $v^{i}(\psi)=0$.
Proposition 7.3.7 Let $\left\{\begin{array}{l}f: M \longrightarrow X \\ (f, b): M \longrightarrow X\end{array}\right.$ be a formally 2i-dimensional

$$
\left\{\begin{array}{l}
\sigma^{\star}(f)=\left(C\left(f^{!} ; A\right), \phi \in Q^{2 i}\left(C\left(f^{!} ; A\right)\right)\right) \\
\sigma_{\star}(f, b)=\left(C\left(f^{!} ; A\right), \psi \in Q_{2 i}(C(f!; A))\right)
\end{array}\right.
$$

for some semisimple ring with involution A equipped with a morphism $\mathbb{Z}\left[\pi_{1}(X)\right] \longrightarrow A$.

$$
\begin{gathered}
\text { The }\left\{\begin{array}{l}
(-)^{i} \text {-symmetric intersection } \\
(-)^{i} \text {-quadratic self-intersection }
\end{array} \quad\right. \text { form on } \\
H^{i}(f!; A)=H_{i+1}(f ; A) \text { determined by }\left\{\begin{array}{l}
\sigma^{*}(f) \\
\sigma_{\star}(f, b)
\end{array}\right. \\
\left\{\begin{array}{l}
\left(H_{i+1}(f ; A), \lambda=\Phi_{O}: H_{i+1}(f ; A) \times H_{i+1}(f ; A) \longrightarrow A\right) \\
\left(H_{i+1}(f ; A), \lambda=(1+T) \psi_{O}: H_{i+1}(f ; A) \times H_{i+1}(f ; A) \longrightarrow A,\right. \\
\left.\mu=v^{i}(\psi): H_{i+1}(f ; A) \longrightarrow Q_{(-)} i(A)\right)
\end{array}\right.
\end{gathered}
$$

has the following properties.
i) The natural n-module morphism

$$
e^{\star}=j: H_{i+1}(f ; A) \longrightarrow H_{i}(M ; A)
$$

defines a morphism of (-) $\mathbf{i}^{\mathbf{i}}$-symmetric forms over A

$$
e^{\star}:\left(H_{i+1}(f ; A), \lambda\right) \longrightarrow\left(H_{i}(M ; A), \theta\right)
$$

with $\left(H_{i}(M ; A), \theta=[M] \cap-H_{i}(M ; A)=H^{i}(M ; A) \xrightarrow{\sim} H_{i}(M ; A)=H^{i}(M ; A)\right.$ the non-singular $(-)^{i}$-symmetric intersection form over A of M. The radical of $\left(H_{i+1}(f ; A), \lambda\right)$ is the submodule

$$
\left.H_{i+1}(f ; A) \perp=i m\left(H_{i+1}(\mid X] \cap-; A\right) \longrightarrow H_{i+1}(f ; A)\right) \subseteq H_{i+1}(f ; A),
$$

and is such that

$$
\begin{aligned}
& \operatorname{ker}\left(e^{\star}: H_{i+1}(f ; A) \longrightarrow H_{i}(M ; A)\right)=1 m\left(g^{\star}: H_{i+1}(X ; A) \longrightarrow H_{i+1}(f ; A)\right) \\
& \subseteq H_{i+1}(f ; A)^{1} .
\end{aligned}
$$

The quotient A-module

$$
\begin{aligned}
H_{i+l}(f ; A) / \operatorname{ker}\left(e^{\star}: H_{i+1}(f ; A)\right. & \left.\longrightarrow H_{i}(M ; A)\right) \\
& =\operatorname{im}\left(e^{\star}: H_{i+1}(f ; A) \longrightarrow H_{i}(M ; A)\right) \\
& =\operatorname{ker}\left(f_{\star}: H_{i}(M ; A) \longrightarrow H_{i}(X ; A)\right)
\end{aligned}
$$

supports a (-) ${ }^{i}$-symmetric form over A induced from $\left(H_{i+1}(f ; A), \lambda\right)$
which is also a subform of $\left(H_{i}(M ; A), \theta\right)$

$$
\left(\operatorname{ker}\left(f_{*}: H_{i}(M ; A) \longrightarrow H_{i}(X ; A)\right),[\lambda]=\theta \mid\right)
$$

with annihilator

$$
\operatorname{im}\left(f^{!}: H^{i}(X ; A) \longrightarrow H_{i}(M ; A)\right)=\operatorname{ker}\left(e_{\star}: H_{i}(M ; A) \longrightarrow \underset{H_{i}}{ }(M ; A)\right.
$$

and radical

$$
\begin{aligned}
\operatorname{im}\left(f^{!}: H^{i}(X ; A) \longrightarrow H_{i}(M ; A)\right) & \cap \operatorname{ker}\left(f_{\star}: H_{i}(M ; A) \longrightarrow H_{i}(X ; A)\right) \\
& \subseteq \operatorname{ker}\left(f_{\star}: H_{i}(M ; A) \longrightarrow H_{i}(X ; A)\right) .
\end{aligned}
$$

ii) The restriction of $\mu: H_{i+1}(f ; A) \longrightarrow Q_{(-)} i(A)$ to the submodule

$$
\begin{array}{r}
\operatorname{im}\left(g^{*}: H_{i+1}(X ; A) \longrightarrow H_{i+1}(f ; A)\right)=\operatorname{ker}\left(e^{*}: H_{i+1}(f ; A) \longrightarrow H_{i}(M ; A)\right. \\
\subseteq H_{i+1}(f ; A)
\end{array}
$$

is given by the $(i+1)$ th A-coefficient $W u$ class of $v_{X}: X \longrightarrow B G$

$$
v_{i+1}\left(v_{X}\right): H_{i+1}(X ; A) \xrightarrow{g^{*}} H_{i+1}(f ; A) \longrightarrow Q_{(-)} i(A)=H_{O}\left(\mathbb{Z}_{2} ; A\right.
$$

Thus there is induced a $(-)^{i}$-quadratic form over A

$$
\left(\operatorname{ker}\left(f_{\star}: H_{i}(M ; A) \longrightarrow H_{i}(X ; A)\right),[\lambda],[\mu]\right)
$$

if and only if $v_{i+1}\left(v_{X}\right)=0$. In particular, if $\left(H_{i+1}(f ; A), \lambda, \mu\right)$ is eradicable then $v_{i+1}\left(v_{X}\right)=0$.
iii) The (-$)^{i}$-quadratic form over $A\left(H_{i+1}(f ; A), \lambda, \mu\right)$ is eradicable if and only if the boundary formally (2i-1)-dimensi quadratic Poincare complex over A

$$
\begin{aligned}
\partial \sigma_{*}(f, b) & =-\sigma_{*}(X) \\
& =\left(\Omega C\left([X] \cap-: C(X ; A)^{2 i-\star} \longrightarrow C(X ; A)\right), \xi \in Q_{2 i-1}(\Omega) C([X]\right.
\end{aligned}
$$

is such that

$$
v^{i}(\xi)=0: H_{i+1}([X] \cap-; A) \longrightarrow H_{0}\left(\mathbb{Z}_{2} ; A,(-)^{i}\right)
$$

In any case, the restriction of $v^{i}(\xi)$ to the submodule im $\left(H_{i+1}(X ; A) \longrightarrow H_{i+1}([X] \cap-; A)\right) \subseteq H_{i+1}([X] \cap-; A)$ is given by

$$
v_{i+1}\left(v_{X}\right): H_{i+1}(X ; A) \longrightarrow H_{i+1}(|X| n-; A) \xrightarrow{v^{+}(\xi)} H_{0}\left(\mathbb{Z}_{2} ; A, 1-\right.
$$

Proof: i) Consider the commutative braid of exact sequences of A-modules

identifying $H^{i}(X ; A)=H_{i}(X ; A) *$ by the universal coefficient theorem and $H^{i}(M ; A)=H_{i}(M ; A)$ by the Poincare duality of M. Note that $e_{*} \in \operatorname{Hom}_{A}\left(H_{i}(M ; A), H_{i+1}(f ; A) *\right)$ has a factorization

$$
e_{\star}: H_{i}(M ; A) \longrightarrow i m\left(e^{\star}: H_{i+1}(f ; A) \longrightarrow H_{i}(M ; A)\right)^{*} \xrightarrow{j *} H_{i+1}(f ; A)^{*}
$$ with j^{*} the split injection dual to the natural projection

$$
j: H_{i+1}(f ; A) \longrightarrow i m\left(e_{\star}: H_{i+1}(f ; A) \longrightarrow H_{i}(M ; A)\right)
$$

ii), iii) These follow from Proposition 7.3.4 ii), iv)
and the commutative diagram

$$
\mathrm{H}_{i+1}(\mathrm{X} ; \mathrm{A}) \longrightarrow \mathrm{H}_{\mathrm{i}+1}\left([x \mid n-; A) \longrightarrow H_{i+1}^{(f ; A) \perp}=\operatorname{ker}(\lambda)\right.
$$

in which the $\operatorname{map}^{H_{i+1}}(|X| \cap-: A) \rightarrow \cdots H_{i+1}(F ; A)^{1}$ is onto.

Combining the sum formulae of Propositions 7.3.4 v), 7.3.6 with the eradicability condition of Proposition 7.3.7 there is obtained a sum formula for the quadratic signature over a semisimple ring with involution A of a normal map of 2i-dimensional geometric poincaré complexes

$$
(F, B): M_{1} \longrightarrow M_{2}
$$

which appears in a commutative diagram of formally 2 i-dimensional normal maps

with the formally 2 i -dimensional normal space x such that the quadratic complex over A of x

$$
\sigma_{*}(x)=\left(\Omega C\left([x] n-: C(x ; A)^{2 i-*} \longrightarrow C(X ; A)\right), \xi \in O_{2 i-1}(\Omega C([x] \cap-; A))\right)
$$

satisfies

$$
\left.v^{i}(\xi)=0: H_{i+1}(\mid X] \cap-; A\right) \longrightarrow n^{i+1}\left(\mathbb{Z}_{2} ; A\right),
$$

namely

$$
\begin{aligned}
v_{\star}(F, B) & =\sigma_{*}\left(f_{1}, b_{1}\right) u-\sigma_{*}\left(f_{2}, b_{2}\right) \\
& =\sigma_{\star}\left(f_{1}, b_{1}\right)-o_{*}\left(f_{2}, b_{2}\right) \\
& \in I_{2 i}(A)=L_{(-)} i(A) .
\end{aligned}
$$

7.4 Geometric Poincaré splitting

Geometric Poincaré surgery is not logically necessary for the development of the alqebraic theory of codimension q surgery in $\$ 7.5$ below. However, it is a convenient halfway point between manifold and algebraic surgery, just as homotopy theory is halfway between geometry and algebra. We refer to Browder [7], Levitt [1], Jones [1], Quinn [3], Lannes, Latour and Morlet [1] and Hodgson [1] for various expositions of geometric Poincaré surgery theory. In particular, Quinn reformulated the codimension q manifold surgery theory in terms of surgery on geometric Poincaré complexes and normal spaces. We shall now recall and extend this reformulation, taking into account the total surgery obstruction theory of Ranicki 171 and replacing geometric Poincaré surgery with algebraic Poincaré surgery as far as possible.

An n-dimensional normal space X is a formally
n-dimensional normal space $\left(X, \nu_{X}: X \longrightarrow B G(k), \rho_{X}: S^{n+k} \longrightarrow T\left(v_{X}\right)\right)$ in the sense of $\$ 7.3$ such that X is a finite n-dimensional CW complex. In dealing with normal spaces we shall assume a certain minimal amount of Poincaré duality (which can be achieved by surgery on o-cells), namely
i) cap product with the fundamental class $[x] \in H_{n}(X)$ defines a $\mathbb{Z}\left[\pi_{1}(x)\right]$-module epimorphism

$$
[x] \cap: H^{n}(\widetilde{x}) \longrightarrow H_{0}(\widetilde{x})
$$

with \ddot{x} the universal cover of x, so that $\Omega C\left([x] \cap-: C(x)^{n-*} \longrightarrow C\right.$ is an ($n-1$)-dimensional $Z\left[\pi_{1}(X) 1\right.$-module chain complex,
ii) slant product with $\alpha_{X}=\Delta \rho_{X} \in \pi_{n+k}\left(\bar{x}_{+} \wedge_{\mathbb{Z}_{2}} T\left(\bar{v}_{X}\right)\right)$ defines abelian group isomorphisms

$$
\begin{aligned}
& \alpha_{X}: \dot{H}^{k}\left(T\left(v_{X}\right) ; \underline{\underline{L}}^{0}\right) \longrightarrow H_{n}\left(X ; \underline{\underline{L}}^{0}\right) \\
& \alpha_{X}: \dot{H}^{k}\left(T\left(v_{X}\right) ; \underline{\hat{L}}^{0}\right) \longrightarrow \sim H_{n}\left(X ; \hat{\underline{L}}^{0}\right),
\end{aligned}
$$

where the homology and cohomology groups are defined using $w(X)$-twisted coefficients. It then follows from the commutati diagram of abelian groups with exact rows

that the restriction

$$
\begin{aligned}
& \alpha_{X} \mid: \operatorname{im}\left(H: \dot{H}^{k}\left(T\left(v_{X}\right) ; \underline{\hat{H}}^{o}\right) \longrightarrow \dot{H}^{k+1}\left(T\left(v_{X}\right) ; \underline{\Pi}_{0}\right)\right) \\
& \xrightarrow{\longrightarrow} \operatorname{im}\left(H: H_{n}\left(x ; \underline{\underline{L}}^{0}\right) \longrightarrow H_{n-1}\left(x ; \underline{\underline{\underline{L}}}_{0}\right)\right)
\end{aligned}
$$

is an isomorphism. Thus the t-trianqulability obstruction of $t\left(v_{X}\right)=H\left(\hat{U}_{v_{X}}\right) \in \dot{H}^{k+1}\left(T\left(v_{X}\right) ; \underline{\Pi}_{O}\right)$ is such that $t\left(v_{X}\right)=0$ if and only if $\alpha_{X}\left(t\left(v_{x}\right)\right)=0 \in H_{n-1}\left(X ; \underline{\amalg}_{0}\right)$. The t-triangulability obstruction of $x t(x)=\alpha_{x}\left(t\left(v_{X}\right)\right) \in H_{n-1}\left(x ; \underline{I}_{0}\right)$ is therefore s that $t(x)=0$ if and only if x (i.e. v_{X}) is $t-t r i a n g u l a b l e$.

An n-dimensional normal pair (X, Y) consists of
i) a finite $C W$ pair (X, Y) with X-dimensional and Y ($n-1$)-dimensional
ii) a spherical fibration $v_{X}: X \longrightarrow B G(k)$
iii) a map of pairs

$$
\left(\rho_{X}, \rho_{Y}\right):\left(D^{n+k}, S^{n+k-1}\right) \longrightarrow\left(T\left(v_{X}\right), T\left(v_{Y}\right)\right)
$$

with $v_{Y}=\left.v_{X}\right|_{Y}: Y \rightarrow B G(k)$, such that $\left(Y, v_{Y}, \rho_{Y}\right)$ is an ($n-1$)-dimensional normal space.

The orientation map of (X, Y) is the orientation map of v_{X}

$$
w(x)=w_{1}\left(\nu_{X}\right): \pi_{1}(x) \longrightarrow \mathbb{Z}_{2}
$$

and the fundamental class of (X,Y) is the $w(X)$-twisted integral homology class defined by

$$
[X]=h\left(\rho_{X}, \rho_{Y}\right) \cap U_{V_{X}} \in H_{n}(X, Y)
$$

with $h: \pi_{n+k}\left(T\left(\nu_{X}\right), T\left(v_{Y}\right)\right) \longrightarrow H_{n+k}\left(T\left(\nu_{X}\right), T\left(\nu_{Y}\right)\right)$ the Hurewicz map and $U_{\nu_{X}} \in \dot{H}^{k}\left(T\left(\nu_{X}\right)\right)$ the $w(X)$-twisted integral Thom class of v_{X}. In dealing with normal pairs (X,Y) we shall assume that
i) cap product with $[X] \in H_{n}(X, Y)$ defines a $\mathbb{Z}\left[\pi_{1}(X)\right]$-module epimorphism

$$
[X] n-: H^{n}(\widetilde{X}) \longrightarrow H_{o}(\widetilde{X}, \widetilde{Y})
$$

with \widetilde{X} the universal cover of X and \widetilde{Y} the induced cover of y, so that $\Omega C\left([X] n-: C(\tilde{X})^{n-*} \longrightarrow C(\tilde{X}, \tilde{y})\right)$ is an $(n-1)$-dimensional $Z\left[\pi_{1}(x)\right]$-module chain complex,
ii) slant product with $\alpha_{X}=\Delta\left(\rho_{X} / \rho_{Y}\right) \in \pi_{n+k}\left(\bar{X} / \bar{Y} \wedge_{Z_{2}} T\left(\bar{v}_{X}\right)\right)$ defines abelian group isomorphisms

$$
\begin{aligned}
& \alpha_{X}: \dot{H}^{k}\left(T\left(v_{X}\right): \underline{\underline{L}}^{0}\right) \longrightarrow \mathcal{H}_{n}\left(X, Y ; \underline{\Pi}^{O}\right) \\
& \alpha_{X}: \dot{H}^{k}\left(T\left(v_{X}\right) ; \underline{\hat{L}}^{0}\right) \longrightarrow H_{n}\left(X, Y ; \underline{\underline{\Pi}}^{O}\right)
\end{aligned}
$$

The element $t(X, Y)=\alpha_{X}\left(t\left(v_{X}\right)\right) \in H_{n-1}\left(X, Y ; \underline{I}_{O}\right)$ is the $t-t r i a n g u l a b i l i t y ~ o b s t r u c t i o n ~ o f ~(X, Y) . ~$

A finite n-dimensional geometric Poincaré pair (X, Y) is an n-dimensional normal pair such that the $\mathbb{Z}\left[\pi_{1}(x)\right]$-module chain map

$$
[x] \cap-: c(x)^{n-*} \rightarrow C(x, y)
$$

is a chain equivalence.

An n-dimensional (normal, geometric poincaré) pair (X, Y) is an n-dimensional normal pair such that Y is an (n-l)-dimensional geometric Poincaré complex.

Given a space k with an orientation double covering $w: \vec{K} \longrightarrow K$ let $\Omega_{n}^{N}(K), \Omega_{n}^{p}(K)$ (resp. $\Omega_{n}^{N, P}(K)$) denote the bordism group of n-dimensional normal spaces x (resp. geometric poincaré complexes X, (normal, geometric Poincaré) pairs (X,Y)) which are equipped with a map $x \rightarrow K$ such that the orientation map factors as

$$
w(X): \pi_{1}(X) \longrightarrow \pi_{1}(K) \xrightarrow{w} \mathbb{Z}_{2}
$$

There is thus defined an exact sequence

$$
\ldots \longrightarrow \Omega_{n}^{P}(K) \longrightarrow \Omega_{n}^{N}(K) \longrightarrow \Omega_{n}^{N, P}(K) \longrightarrow \Omega_{n-1}^{P}(K) \longrightarrow
$$

We shall only be concerned with the case when K is a $C W$ complex with a finite 2-skeleton, for which the Levitt-Jones-Quinn geometric Poincaré surgery theory identifies

$$
\Omega_{n}^{N, P}(K)=L_{n-1}\left(Z\left[\pi_{1}(K)\right]\right) \quad(n \geqslant 5)
$$

We shall now use algebraic Poincaré surgery and the spectral quadratic construction to define quadratic signature maps

$$
\sigma_{*}: \Omega_{n}^{\left.N, P_{(K)} \longrightarrow L_{n-1}\left(\mathbb{Z} \mid \pi_{1}(K)\right]\right) \quad(n \geqslant 1), ~(n)}
$$

which the theory implies are isomorphisms for $n \geqslant 5$. (It follows from the surgery obstruction realization theorems of wall [4] that they are split surjections, at any rate).

Proposition 7.4.1 i) Given an n-dimensional (normal, geometric Poincaré) pait (X, Y) and an oriented covering ($\tilde{X}, \tilde{Y})$ with group of covering translations π there is defined in a natural way an ($n-1$)-dimensional quadratic Poincaré complex over $Z \pi /$, the quadratic loincare complex of (X, Y)

$$
\sigma_{\star}(X, Y)=\left(\Omega C\left([x] \cap-: C(\tilde{X})^{n-*} \longrightarrow C(\tilde{X}, \widetilde{Y})\right), \psi \in Q_{n-1}(\operatorname{sc}([X] n-1)) .\right.
$$

The quadratic signature of (X, Y) is the cobordism class

$$
\sigma_{*}(X, Y) \in L_{n-1}(\mathbb{Z}[\pi])
$$

ii) The symmetrization of the quadratic complex $(1+T) \sigma_{*}(X, Y)$ is canonically cobordant to the symmetric Poincare complex $\sigma^{*}(Y)$, so that on the L-group level

$$
\left.(1+T) \sigma_{\star}(X, X)=\sigma *(Y) \in L^{n-1}(Z \mid \pi]\right)
$$

iii) The $\mathbb{Z}[\pi]$-module chain map

$$
g=\text { projection }: \Omega C([x] n-) \longrightarrow C(\tilde{x})^{n-*}
$$

is such that

$$
g_{8} \sigma_{\star}(X, Y)=H \hat{\sigma}^{\star}\left(v_{X}\right)
$$

where $\hat{\sigma} *\left(v_{X}\right)=\left(C(\widetilde{X})^{n-*}, \theta_{T \pi}\left(v_{X}\right){ }^{\left.\left(U_{v_{X}}\right) \in \hat{Q}^{n}\left(C(\tilde{X})^{n-*}\right)\right) \text { is the }, ~}\right.$ hyperquadratic complex of $v_{X}: X \longrightarrow B G(k)$.
iv) If $Y=\emptyset$ (i.e. given an n-dimensional normal space X) the quadratic Poincare complex of X is the ($n-1$)-dimensional quadratic poincaré complex over $\mathbb{Z}[\pi]$

$$
\sigma_{\star}(x, \emptyset)=\sigma_{\star}(x)=\left(\Omega C\left([x] \cap-: C(\tilde{x})^{n-\star} \rightarrow C(\tilde{x})\right), \psi \in Q_{n-1}(\Omega C([x] \cap-))\right) .
$$

The hyperquadratic signature of x is the element

$$
\hat{\sigma} *(x) \in \hat{L}^{n}(\mathbb{Z}[\pi])
$$

defined by $\sigma_{\star}(X, \varnothing)$ together with the canonical null-cobordism of the symmetrization $(1+T) \sigma_{\star}(X, \varnothing)$. The quadratic signature of X is the quadratic signature of (x, ϕ), i.e. the element

$$
H \hat{\sigma}^{*}(x)=a_{*}(x) \in L_{n-1}(\mathbb{Z}[\pi]) .
$$

If X is an n-dimensional geometric Poincaré complex then $\sigma_{*}(X, \varnothing)$ is contractible and

$$
\hat{o}^{\star}(x)=J_{\sigma}(x) \in \hat{L}^{n}(\mathbb{Z}[\pi]), \sigma_{*}(x)=0 \in L_{n-1}(\mathbb{Z}[\pi])
$$

with $\sigma^{*}(X) \in L^{n}(\mathbb{Z}[\pi)$ the symmetric signature.

Proof: Let $\left(C, \Phi \in Q^{n-1}(C)\right)$ be the symmetric Poincaré complex over $\mathbb{Z}[\pi]$ of Y

$$
\sigma^{*}(Y)=\left(C(\widetilde{Y}), \phi_{\widehat{Y}}([Y])\right)=(C, \phi),
$$

and define a $\mathbb{Z}[\pi]$-module chain map

$$
\mathrm{f}=\text { inclusion }: C=C(\widetilde{Y}) \longrightarrow D=C(\widetilde{X}) .
$$

The evaluation of the relative symmetric construction of $\$ 11.6$

$$
\Phi_{\tilde{X}, \tilde{y}}: H_{n}(X, Y) \longrightarrow Q^{n}(f)
$$

on the fundamental class $[X] \in H_{n}(X, Y)$ gives a connected n-dimensional symmetric pair over $\mathbb{Z}\{\pi\}$

$$
\begin{aligned}
\sigma^{*}(X, Y) & \left.=\left(f: C(\tilde{X}) \longrightarrow C(\widetilde{Y}), \phi_{\widetilde{X}}, \widetilde{Y}^{(}(X]\right) \in Q^{n}(f)\right) \\
& =\left(f: C \longrightarrow D,(\delta \phi, \phi) \in Q^{n}(f)\right) .
\end{aligned}
$$

Let ($\left.C^{\prime}, \phi^{\prime} \in Q^{n-1}\left(C^{\prime}\right)\right)$ be the ($n-1$-dimensional symmetric Poincaré complex over $\mathbb{Z}[\pi]$ obtained from (C, ϕ) by surgery on the pair ($\mathrm{f}: \mathrm{C} \longrightarrow \mathrm{D},(\delta \phi, \phi)$), so that

$$
\begin{aligned}
C^{\prime} & =\Omega C\left([X] \cap-: C(\widetilde{X})^{n-*} \longrightarrow C(\widetilde{X}, \tilde{Y})\right) \\
& =\Omega C\left(g: D^{n-*} \longrightarrow C(f)\right)
\end{aligned}
$$

with $g: D^{n-*} \longrightarrow C(f)$ the $\mathbb{Z}[\pi]$-module chain map defined by

$$
g=\binom{(-)^{r} \delta \phi_{O}}{(-)^{n} \phi_{O} f *}=[X] \cap-: D^{n-r} \longrightarrow C(f)_{r}=D_{r} \oplus C_{r-1}
$$

Proposition 1.5 .1 ii) (or rather its proof in Proposition 1.4.l)
gives a canonical symmetric Poincaré cobordism between (C, ϕ) and ($C^{\prime}, \phi^{\prime}$). Let

$$
\left(D^{\prime}, \delta \phi^{\prime}\right)=\left(C(f), \delta \phi / \phi \in Q^{n}(C(f))\right)
$$

be the n-dimensional symmetric complex over $\mathbb{Z}\{\pi\}$ obtained from the pair $(f: C \longrightarrow D,(\delta \phi, \phi))$ by the algebraic Thom complex
construction of $\$ 1.4$. Equivalently, ($\mathrm{D}^{\prime}, \delta \phi^{\prime}$) is the complex defined by the evaluation on $[X] \in H_{n}(X, Y)=\dot{H}_{n}(X / Y)$ of the absolute symmetric construction on \bar{X} / \tilde{Y}

$$
\dot{\Phi}_{\tilde{X} / \tilde{Y}}: \dot{H}_{n}(X / Y) \longrightarrow Q^{n}(\dot{C}(\tilde{X} / \widetilde{Y}))
$$

identifying

$$
D^{\prime}=C(f)=C(\widetilde{X}, \widetilde{Y})=C(\widetilde{X} / \widetilde{Y}), \delta \phi^{\prime}=\phi \tilde{X} / \widetilde{Y}([X]) .
$$

The inclusion $C(f) \longrightarrow C\left(q: D^{n-\star} \longrightarrow C(f)\right)$ defines a $\quad \longrightarrow[\pi]$-module chain map

$$
\mathrm{e}: D^{\prime}=C(f) \longrightarrow C(q)=S C^{\prime}
$$

such that

$$
e^{q}\left(\delta \phi^{\prime}\right)=S\left(\phi^{\prime}\right) \in Q^{n}\left(C^{\prime}\right),
$$

where $S: Q^{n-1}\left(C^{\prime}\right) \longrightarrow Q^{n}\left(S C^{\prime}\right)$ is the algebraic suspension map of \$1.l. Let $T \pi\left(v_{X}\right)^{*}$ be a π-space S_{π}-dual to the Thom π-space $T \pi\left(v_{X}\right)$, so that the $S \pi$-duality theory of SII. 3 applied to the composite \{l\}-map

$$
\begin{aligned}
& \alpha_{X / Y}: S^{n+k}=D^{n+k} / S^{n+k-1} \xrightarrow{\rho_{X} / \rho_{Y}} T\left(v_{X}\right) / T\left(v_{Y}\right) \\
& \xrightarrow{\Delta} T \pi\left(v_{X}\right) \wedge \pi \bar{x} / \tilde{Y}
\end{aligned}
$$

gives a semi-stable π-map

$$
G: T \pi\left(v_{X}\right) * \longrightarrow \Sigma^{\infty}(\widetilde{X} / \widetilde{Y})
$$

inducing the $\mathbb{Z}[\pi]$-module chain map

$$
g=[x] \cap-: D^{n-\star}=C(\tilde{x})^{n-*} \cdots C(f)=C(\widetilde{x}, \widetilde{Y})
$$

Evaluating the spectral quadratic construction

$$
\psi_{G}: \dot{H}^{k}\left(T\left(v_{X}\right)\right) \cdots Q_{n}(C(g))
$$

on the w-twisted coefficient Thom class $U_{v_{X}} \in \dot{H}^{k}\left(T\left(v_{X}\right)\right)$ there
is obtained an element

$$
\psi^{\prime}=\psi_{G}\left(U_{v_{x}}\right) \in Q_{n}(C(g))
$$

such that

$$
(1+T) \psi^{\prime}=e^{q}\left(\delta \phi^{\prime}\right) \in Q^{n}\left(S C^{\prime}\right)=Q^{n}(C(q))
$$

by Proposition 7.3.1 i). Considering the exact sequence

$$
Q_{n-1}\left(C^{\prime}\right) \xrightarrow{\binom{1+T}{S}} Q^{n-1}\left(C^{\prime}\right) \oplus_{Q_{n}}\left(\left(S^{\prime}\right)-\cdots Q^{(S-(1+T))}\left(S C^{\prime}\right)\right.
$$

(or rather the underlying short exact sequence of chain complexes, cf. Proposition I.l.3) there is obtained an element $\psi \in Q_{n-1}\left(C^{\prime}\right)$ such that

$$
\begin{aligned}
& (1+T) \psi=\phi^{\prime} \in Q^{n-1}\left(C^{\prime}\right) \\
& S \psi=\psi^{\prime} \in Q_{n}\left(S C^{\prime}\right)
\end{aligned}
$$

with $\sigma_{\star}(X, Y)=\left(C^{\prime}, \psi\right)$ an $(n-1)$-dimensional quadratic Poincaré complex over $\mathbb{Z}[\pi]$.

If $(f, b): M \longrightarrow X$ is a normal map of n-dimensional geometric Poincaré complexes and W is the mapping cylinder of $f: M \longrightarrow X$ then $(W, M \cup-X)$ is an $(n+1)$-dimensional (normal, geometric Poincaré) pair (cf. Quinn [3]) with quadratic signature

$$
\sigma_{\star}(W, M \cup-X)=\sigma_{\star}(f, b) \in L_{n}(\mathbb{Z}[\pi]),
$$

that is the quadratic signature of (f, b) in the sense of $\$ 1.2$.

Proposition 7.4.2 The various signature maps fit together to define a natural transformation of long exact sequences

with $\pi=\pi_{1}(k), n \geqslant 0$.

As noted above, it follows from the Levitt-Jones-Quinn geometric Poincare surgery theary that the quadratic signature map

$$
\sigma_{\star}: \Omega_{n+1}^{N, P}(K) \longrightarrow L_{n}\left(\mathbb{Z}\left\{\pi_{1}(K)\right]\right) \quad(n \geqslant 4)
$$

are isomorphisms. In general, neither the symmetric signature maps

$$
\sigma^{*}: \Omega_{n}^{P}(K) \longrightarrow L^{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right]\right)
$$

nor the hyperquadratic signature maps

$$
\hat{\sigma}^{*}: \Omega_{n}^{N}(K) \longrightarrow \hat{i}^{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right]\right)
$$

are isomorphisms. See Ranicki [7,p.306] for an example in which $\hat{\sigma}^{*}$ is not onto, and see proposition 7.6 .8 below for an example in which σ^{*} is not onto.

An ($n, n-q$)-dimensional (or codimension g) normal pair (X, Y) consists of:
i) an n-dimensional normal space

$$
\left(x, v_{X}: x \longrightarrow B G(k), \rho_{X}: S^{n+k} \longrightarrow T\left(\nu_{X}\right)\right)
$$

ii) an ($n-q$)-dimensional subcomplex $Y \subset X$
iii) a (q-l)-spherical fibration over Y

$$
v_{Y \subset X}=\xi: Y \longrightarrow B G(q)
$$

and a subcomplex $z \subset x$ disjoint from Y such that

$$
X=E(\xi) \cup_{S(\xi)^{2}}
$$

and such that Y is an $(n-q)$-dimensional normal space with

$$
\begin{aligned}
& \left(v_{Y}=\left.\xi \oplus v_{X}\right|_{Y}: Y \longrightarrow B G(q+k),\right. \\
& \rho_{Y}: s^{(n-q)+(q+k)}=s^{n+k} \xrightarrow{\rho} T\left(v_{X}\right) \longrightarrow T\left(v_{X}\right) / T\left(\left.v_{X}\right|_{Z}\right)=T\left(v_{Y}\right)
\end{aligned}
$$

In particular, (X, Y) is a codimension q CW pair in the sense of $\$ 7.2$. A codimension q geometric Poincare pair (X, Y) is a codimension q normal pair with X and Y geometric poincare complexes and $(2, S(\xi))$ a geometric Poincaré pair.

Let (X, Y) be a codimension $q(C W$ pair with

$$
x=E(\xi) \cup_{S(\xi)^{2}}, \xi: Y \longrightarrow B G(q) .
$$

A map $f: M \longrightarrow X$ from an n-dimensional $\left\{\begin{array}{l}\text { normal space } \\ \text { geometric Poincaré comple }\end{array}\right.$
 $(n, n-q)$-dimensional $\left\{\begin{array}{l}\text { normal } \\ \text { geometric Poincaré }\end{array}\right.$ pair with $v_{N \subset M}=v: N+\xrightarrow{g=f \mid} Y \xrightarrow{\xi} B G(q), M=E(\xi) \cup S(\xi)^{P}, P=$ $f=g^{!} \cup h: M=F(v) \cup_{S(v)} P \longrightarrow X=F(\xi) \cup_{S(\xi)^{Z} .}$

According to the normal transversality theory of Quinn [3] every map $f: M \longrightarrow X$ from a normal space M is normal transuerse $Y \subset X$, for any codimension $q C W$ pair (X, Y), so that in particulal there is an analogue for the normal bordism groups $\Omega_{\star}^{N}(K)$ of the Pontrjagin-Thom isomorphisms $\Omega_{\star}^{\operatorname{STOP}}(K) \cong H_{\star}(K ; \underline{M S T O P})(\star \neq 4)$ for topoloqical bordism, as follows.

Given an n-dimensional normal space

$$
\left(M, v_{M}: M \longrightarrow B G(k), o_{M}: S^{n+k} \longrightarrow T\left(v_{M}\right)\right)
$$

use the canonical MSG-orientation $U_{V_{M}} \in \dot{H}^{k}\left(T\left(V_{M}\right) ; \underline{M S G}\right)$ to define the canonical MSG-fundamental class

$$
[M]=a_{M}\left(U_{\nu_{M}}\right) \in H_{n}(M ; \underline{M S G})
$$

using w(M)-twisted coefficients. (The cap products

$$
[M] n-: H^{*}(M ; \underline{M S G}) \longrightarrow H_{n-\star}(M ; \underline{M S G})
$$

are not in general isomorphisms).
The normal space Pontrjagin-Thom isomorphisms are defined by noting that $\bar{K}_{+}{ }^{\wedge} \mathbb{Z}_{2} \operatorname{MSG}(k)=T\left(n_{k}\right)$ is the Thom space of the ($k-1$)-spherical fibration classified by the map η_{k} appeaing in the homotopy-theoretic pullback square

and setting

$$
\begin{aligned}
& \left.\left(F: S^{n+k} \longrightarrow \bar{K}_{+}{ }^{\wedge} \mathbb{Z}_{2} M S G^{M S}\right)=T\left(\eta_{k}\right)\right) \\
& \longmapsto\left(f: M=F^{-1}\left(K \times{ }_{K\left(\mathbb{Z}_{2}, 1\right)} B G(k)\right) \xrightarrow{F \mid} K \times_{K\left(\mathbb{Z}_{2}, 1\right)} B G(k) \longrightarrow K\right) \text {, }
\end{aligned}
$$

using normal transversality. The inverse isomorphisms are defined by

$$
\Omega_{n}^{N}(K) \longrightarrow H_{n}(K ; M S G) ;(f: M \longrightarrow K) \longmapsto f_{*}([M]) \text {, }
$$

with $[M] € H_{n}(M ; M S G)$ the canonical MSG-fundamental class.

Proposition 7.4.3 An n-dimensional normal space X has a canonical $\hat{\mathrm{L}}^{\mathrm{O}}$-fundamental class

$$
[\hat{x}] \in H_{n}\left(x ; \hat{\underline{\underline{L}}}^{o}\right)
$$

such that
i) the map $H: H_{n}\left(X ; \underline{\underline{\underline{H}}}^{O}\right) \longrightarrow H_{n-1}\left(X ; \underline{I}_{O}\right)$ sends $[\hat{X}]$ to the t-trianqulability obstruction of x

$$
H([\hat{x}])=t(x) \in H_{n-1}\left(x ; \underline{\Pi}_{O}\right)
$$

ii) the hyperquadratic assembly map $\left.\hat{\sigma}^{*}: H_{n}\left(x ; \hat{\underline{L}}^{0}\right) \longrightarrow \hat{L}^{n}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right)$ sends $\{\hat{x}]$ to the hyperquadratic signature of x

$$
\hat{\sigma}^{\star}([x])=\hat{\sigma}^{\star}(x) \in \hat{L}^{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right)
$$

iii) the quadratic assembly map $\sigma_{\star}: H_{n-1}\left(X ; \underline{\Pi}_{0}\right) \longrightarrow L_{n-1}\left(\mathbb{Z}\left\{\pi_{1}(x)\right]\right\}$ sends $H([\hat{X}])=t(X)$ to the quadratic signature of X

$$
\sigma_{*}(H(|\hat{X}|))=\sigma_{*}(t(X))=\sigma_{*}(x) \in\left[_{n-1}\left(\mathbb{Z} \mid \pi_{1}(x)\right]\right)
$$

Proof: Use the canonical $\underline{\underline{\underline{H}}}^{0}$-orientation $\hat{\mathrm{U}}_{\nu_{X}} \in \dot{\mathrm{H}}^{\mathrm{k}}\left(\mathrm{T}\left(\nu_{\mathrm{X}}\right) ; \hat{\underline{\underline{U}}}^{\mathrm{O}}\right)$ to define

$$
[\hat{x}]=\alpha_{x}\left(\hat{U}_{v_{X}}\right) \in H_{n}\left(x ; \hat{\underline{U}}^{0}\right)
$$

with $\left(\nu_{X}: X \longrightarrow B G(k), \rho_{X}: S^{n+k} \longrightarrow T\left(v_{X}\right)\right)$ the normal structure and $\alpha_{X}=\Delta \rho_{X}$
Alternatively, regard MSG as the spectrum of oriented normal space n-ads and use the n-ad version of the (symmetric, quadratic) Poincaré complex construction of Proposition 7.4.1 i) to define a morphism of ring spectra

$$
\hat{\sigma}^{*}: \underline{\text { MSG }} \longrightarrow \underline{\hat{\underline{I}}}^{0}
$$

and use the canonical MSG-fundamental class $\left[X \mid \in H_{n}(X ; M S G)\right.$ to define

$$
[\hat{x}]=\hat{o}^{*}[x] \in H_{n}\left(x ; \hat{\underline{U}}^{o}\right)
$$

The hyperquadratic signature map on the normal bordism groups factorizes throuqh the hyperquadratic assembly maps

$$
\begin{aligned}
& \hat{\sigma}^{*}: \Omega_{n}^{N}(K)=H_{n}(K ; \underline{M S G}) \xrightarrow{\hat{\sigma}^{*}} \longrightarrow H_{n}\left(K ; \hat{\underline{\underline{L}}}^{O}\right) \\
& \hat{\sigma}^{*}
\end{aligned} \hat{L}^{n}\left(\mathbb{Z}\left\{\pi_{1}(K)\right\}\right)
$$

by Proposition 7.4.3 i).
A t-triangulable n-dimensional normal space x has quadratic signature

$$
\sigma_{*}(x)=\sigma_{*}(t(x))=0 \in L_{n-1}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right),
$$

by Proposition 7.4.3 iii). The vanishing of che quadratic signature for t-triangulable normal spaces has a simple geomet interpretation: given a t-triangulation

$$
(f, b): M \longrightarrow x
$$

(i.e. a formally n-dimensional topological normal map) note th. the mapping cylinder W of $f: M \longrightarrow X$ defines a normal space cobordism (W; M, X) between the manifold M and the normal space with a reference map

$$
(g ; f, 1):(W ; M, X) \longrightarrow X,
$$

so that

$$
\sigma_{\star}(X)=\sigma_{\star}(M)=H J \sigma^{*}(M)=0 e L_{n-1}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)
$$

by Proposition 7.4.2. In fact, the quadratic kernel $\sigma_{\star}(f, b)$ is a connected n-dimensional quadratic complex over $\mathbb{Z}\left[\pi_{1}(x)\right]$ such that the quadratic Poincaré complex $\sigma_{*}(x)$ used to define the quadratic signature is homotopy equivalent to the boundary $3\left(-\sigma_{*}(f, b)\right)$, by Proposition 7.3.4 iv).

$$
\begin{aligned}
\text { Given } & \text { a codimension } q \text { CW pair }(X, Y) \text { with } \\
& X=E(\xi) \cup_{S(\zeta)^{Z}}, \xi: Y \longrightarrow B G(q)
\end{aligned}
$$

there are defined transfer maps in the $\left\{\begin{array}{l}\text { normal space } \\ \text { geometric poincare }\end{array}\right.$ bordism groups
with

$$
\xi^{!}(f: M \longrightarrow Y)=((E(f * \xi), S(f \star \xi)) \longrightarrow(E(\xi), S(\xi)))
$$

and p the natural maps induced by the inclusion

$$
(E(\xi), s(\xi)) \longrightarrow(x, z)
$$

The normal space bordism transfer maps $\mathrm{p} \xi{ }^{!}$are isomorphisms, with $\xi^{!}: \Omega_{n}^{N}(Y) \xrightarrow{\sim} \Omega_{n+q}^{N}(E(\xi), S(\xi))$ the inverses of the MSG-coefficient Thom isomorphisms

$$
\begin{aligned}
& U_{\xi} \cap-: \Omega_{n+q}^{N}(E(\xi), S(\xi))= H_{n+q}(E(\xi), S(\xi) ; \underline{M S G})=\dot{H}_{n+q}(T(\xi) ;! \\
& \sim \\
& \sim
\end{aligned}
$$

(with $U_{\xi} \in \dot{H}^{q}(T(\xi) ; M S G)$ the canonical MSG-orientation of ξ) al

$$
\begin{aligned}
p: \Omega_{n+q}^{N}(E(\xi), S(\xi)) & =H_{n+q}(E(\xi), S(\xi) ; M S G) \\
& \simeq \Omega_{n+q}^{N}(x, z)=H_{n+q}(x, z ; M S G)
\end{aligned}
$$

the MSG-coefficient homology excision isomorphisms.
Let $\left\{\begin{array}{l}\Omega_{n}^{N}\left(\partial \mathrm{p} \xi^{!}\right) \\ \Omega_{n}^{\mathrm{P}}\left(\partial \mathrm{p} \xi^{!}\right)\end{array} \quad(\mathrm{n} \geqslant 0)\right.$ be the relative $\left\{\begin{array}{l}\text { normal space } \\ \text { qeometric Poincare }\end{array}\right.$ bor, groups appearing in the exact sequence

$$
\left\{\begin{array}{l}
\cdots \longrightarrow \Omega_{n-q+1}^{N}(Y) \xrightarrow{j p \xi}!\Omega_{n}^{N}(Z) \longrightarrow \Omega_{n}^{N}\left(\partial p \xi^{!}\right) \longrightarrow \Omega_{n-q}^{N}(Y) \longrightarrow \Omega_{n-q+1}^{P}(Y) \longrightarrow \xrightarrow{P} \Omega_{n}^{P}(Z) \longrightarrow \Omega_{n}^{P}\left(3 p \xi^{!}\right) \longrightarrow \Omega_{n-q}^{P}(Y) \longrightarrow \ldots
\end{array}\right.
$$

the bordism groups of pairs of maps

$$
(\mathrm{g}: \mathrm{N} \longrightarrow Y, \mathrm{~h}:(\mathrm{P}, \mathrm{~S}(\mathrm{f} * \xi)) \longrightarrow(\mathrm{Z}, \mathrm{~S}(\xi)))
$$

such that N is an $(n-q)$-dimensional $\left\{\begin{array}{l}\text { normal space } \\ \text { geometric Poincaré complex }\end{array}\right.$ and $(P, S(f * \zeta))$ is an n-dimensional $\left\{\begin{array}{l}\text { normal } \\ \text { geometric Poincaré }\end{array}\right.$ pair, with

$$
\mathrm{h}\left|=\mathrm{g}^{!}\right|: S\left(\mathrm{f}^{\star} \xi\right) \longrightarrow \mathrm{S}(\xi)
$$

There are defined maps

$$
\left\{\begin{array}{l}
\Omega_{n}^{N}\left(\partial p \xi^{!}\right) \longrightarrow \Omega_{n}^{N}(x) ;(g, h) \longmapsto f \\
\Omega_{n}^{p}\left(\partial p \xi^{!}\right) \longrightarrow \Omega_{n}^{p}(x) ;(g, h) \longmapsto f \quad(n \geqslant 0)
\end{array}\right.
$$

with

$$
f=g!\cup h: M=E(f * \xi) \cup_{S(f * \xi)} P \longrightarrow X=E(\xi) \cup_{S(\xi)} z
$$

A map $f: M \longrightarrow X$ from an n-dimensional $\left\{\begin{array}{l}\text { normal space } \\ \text { geometric Poincaré complex }\end{array}\right.$ M is bordant to one which is $\left\{\begin{array}{l}\text { normal } \\ \text { Poincare }\end{array}\right.$ transverse at $Y \subset X$ if and only if

$$
\left\{\begin{array}{l}
(f: M \longrightarrow x) \in \operatorname{im}\left(\Omega_{n}^{N}\left(O p \xi^{!}\right) \longrightarrow \Omega_{n}^{N}(x)\right) \subseteq \Omega_{n}^{N}(x) \\
\left(f: M \longrightarrow \operatorname{im}\left(\Omega_{n}^{P}\left(\partial p \xi^{!}\right) \longrightarrow \Omega_{n}^{P}(x)\right) \subseteq \Omega_{n}^{P}(x)\right.
\end{array}\right.
$$

The maps $\Omega_{\star}^{N}\left(\partial p \xi^{!}\right) \longrightarrow \Omega_{\star}^{N}(x)$ are isomorphisms, by normal transversality. Recall from $\$ 7.2$ that the analogously defined relative quadratic L-groups $L_{\star}\left({ }^{\prime} p \xi^{\prime}\right.$) appearing in the exact
sequence

$$
\begin{aligned}
& \left.\ldots \longrightarrow L_{n-q+1}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right) \xrightarrow{p \xi^{!}} L_{n}\left(\mathbb{Z}\left\{\pi_{1}(Z) \mid\right)\right. \\
& \longrightarrow \mathrm{L}_{\mathrm{n}}\left(\mathrm{p} \xi^{!}\right) \longrightarrow \mathrm{L}_{\mathrm{n}-\mathrm{q}}\left(\mathbb{Z}\left[\pi_{\mathrm{l}}(\mathrm{Y})\right]\right) \longrightarrow \ldots
\end{aligned}
$$

are the codimension q surgery obstructions $L_{P_{*}}(\$)$ of Wall [4]

$$
L_{n}(a p \xi!)=L P_{n-q}(\Phi)
$$

and such that the analogously defined maps $L P_{n-q}(\phi) \longrightarrow L_{n}\left(\mathbb{Z}\left\{\pi_{1}(x) \|\right)\right.$ fit into the exact sequence

$$
\left.\cdots \longrightarrow L_{n-q}(\Phi) \longrightarrow \mathrm{LP}_{\mathrm{n}-\mathrm{q}}(\Phi) \longrightarrow \mathrm{I}_{\mathrm{n}}\left(\mathbb{Z} \mid \pi_{1}(\mathrm{X})\right]\right) \longrightarrow \mathrm{LS}_{\mathrm{n}-\mathrm{q}-1}(\Phi) \longrightarrow \ldots
$$

Proposition 7.4.4 Given a codimension q CW pair (X, Y) with the fundamental groupoid pushout square

there is defined a commutative braid of exact sequences for $n-q \geqslant 5$

Thus $\left\{\begin{array}{l}L_{n-q-1}(\$) \\ L_{n-q-1}(\$)\end{array}(n-q \geqslant 5)\right.$ is the bordism group of maps

$$
(f, 3 f):(M, \partial M) \longrightarrow X
$$

from n-dimensional $\left\{\begin{array}{l}\text { qeometric Poincaré } \\ \text { (normal, geometric poincaré) }\end{array}\right.$ pairs (M, วM)
such that $f: j M \longrightarrow X$ is Poincare transverse at $Y \subset X$.

Again, let (X, Y) be a codimension $q(W$ pair.
A map $f: M \longrightarrow X$ from an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré complex } \\ \text { normal space }\end{array}\right.$ M is Poincaré split along $Y \subset X$ if f is $\left\{\begin{array}{l}\text { Poincaré } \\ \text { normal bordant to a }\end{array}\right.$, map $f^{\prime}: M^{\prime} \rightarrow X$ from an n-dimensional geometric Poincaré complex M^{\prime} which is Poincaré transuerse at $Y \subset X$. The Poincaré splitting obstruction of f along $Y \subset X$ is the element

$$
\left\{\begin{aligned}
s^{p}(f, Y) & =u_{\xi}(f: M \rightarrow X) \in L S_{n-q-1}(\Phi) \\
t^{P}(f, Y) & =v_{\xi}(f: M \rightarrow-\longrightarrow X) \in L P_{n-q-1}(\Phi)
\end{aligned}\right.
$$

with $\left\{\begin{array}{l}u_{\xi} \\ v_{\xi}\end{array}\right.$ as in Proposition 7.4.4. (For $n-q \leqslant 4$ define $\left\{\begin{array}{l}s^{P}(f, Y) \\ t^{P}(f, Y)\end{array}\right.$ using periodicity, by

for any $k \geqslant 1$ such that $n+4 k-q \geqslant 5)$.
The Poincaré splittinq obstruction $s^{P}(f, Y) \in L S_{n-q-1}(\Phi)$ was first obtained by Quinn [3].

For $q \geqslant 3$ the two Poincaré splitting obstructions along $Y \subset X$ for a map $f: M \longrightarrow X$ from an n-dimensional geometric Poincaré comple M coincide, with

$$
\begin{aligned}
& s^{P}(f, Y) \in L S_{n-q-1}(\Phi)=L_{n-q-1}\left(\mathbb{Z [\pi _ { 1 } (Y)])}\right. \\
& t^{P}(f, Y)=\left(S^{P}(f, Y), O\right) \in L P_{n-q-1}(\Phi)=L_{n-q-1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \oplus L_{n-1}\left(\mathbb { Z } \left[\pi_{1}()\right.\right.
\end{aligned}
$$

Proposition 7.4.5 The poincare splitting obstruction along $\mathrm{y} \subset \mathrm{X}$ map $f: M \longrightarrow X$ from an n-dimensional $\left\{\begin{array}{l}\text { geometric poincaré complex } \\ \text { normal space }\end{array}\right.$ such that $\left\{\begin{array}{l}s^{p}(f, Y)=0 \in L S_{n-q-1}(\Phi) \\ t^{P}(f, Y)=0 \in \operatorname{LP}_{n-q-1}(\phi)\end{array}\right.$ if (and for $n-q \geqslant 5$ only if) f is Poincaré split along $y \subset x$.

It is reasonable to expect an expression for the Poincaré splitting obstruction along $Y \subset X\left\{\begin{array}{l}s^{P}(f, Y) \in L S_{n-q-1}(\phi) \\ t^{P}(f, Y) \in L P_{n-q-1}(\Phi)\end{array}\right.$ of a map $\mathrm{f}: \mathrm{M} \longrightarrow \mathrm{X}$ from an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré complex } \\ \text { normal space }\end{array} \mathrm{M}\right.$ in terms of the t-triangulability obstruction $t(\xi) \in \dot{H}^{q+1}(T(\xi) ; \underline{I}$ of $\xi: Y \longrightarrow B G(q)$ and the $\left\{\begin{array}{l}s- \\ t-\end{array}\right.$ $\left\{\begin{array}{l}s(M) \in \mathcal{S}_{n}(M) \\ t(M) \in H_{n-1}\left(M ; \underline{I}_{0}\right)\end{array}\right.$, for if ξ is $t-t r i a n q u l a b l e$ and M is $\left\{\begin{array}{l}s_{-}^{-} t r i a n g u l a b l e ~ t h e n ~ \\ t-\end{array} M \longrightarrow X\right.$ is $\left\{\begin{array}{l}\text { Poincaré } \\ \text { normal }\end{array}\right.$ bordant to a map $f^{\prime}: M^{\prime} \longrightarrow X$ from a manifold M^{\prime} which is topologically (and a fortiori geometric Poincaré) transverse at $Y \subset X$. We shall obt such an expression in Proposition 7.4 .6 below.

The product of spherical fibrations $\alpha: X \longrightarrow B G(j)$, $B: Y \longrightarrow B G(k)$ is the spherical fibration $\alpha \times \beta: X \times Y \longrightarrow B G(j+k)$ defined by

$$
\begin{aligned}
&\left(D^{j} \times D^{k}, D^{j} \times S^{k-1} \cup S^{j-1} \times D^{k}\right) \longrightarrow(E(\alpha) \times E(\beta), E(\alpha) \times S(\beta) \cup S(\alpha) \times E(\beta)) \\
&\left(=\left(D^{j+k}, S^{j+k-1}\right)\right)(=(E(\alpha \times \beta), S(\alpha \times \beta)))
\end{aligned}
$$

with Thom space

$$
\begin{aligned}
T(\alpha \times \beta) & =E(\alpha \times \beta) / S(\alpha \times \beta) \\
& =(E(\alpha) \times E(\beta)) /(E(\alpha) \times S(\beta) \cup S(\alpha) \times S(\beta)) \\
& =(E(\alpha) / S(\alpha)) \wedge(F(\beta) / S(\beta))=T(\alpha) \wedge T(\beta) .
\end{aligned}
$$

The canonical $\underline{\underline{\underline{L}}}^{0}$-orientation of $\alpha \times \beta$ is the product of the canonical $\hat{\underline{\underline{L}}}^{0}$-orientations of α and β

$$
\hat{\mathrm{U}}_{\alpha \times \beta}=\hat{\mathrm{U}}_{\alpha} \otimes \hat{\mathrm{U}}_{\beta} \in \dot{\mathrm{H}}^{j+\mathrm{k}}\left(\mathrm{~T}(\alpha) \wedge \mathrm{T}(\beta) ; \underline{\mathrm{L}}^{\mathrm{O}}\right)
$$

defined using the multiplicative structure of the ring spectrum $\underline{\hat{I}}^{\circ}$. The Whitney sum of spherical fibrations $\alpha: X \longrightarrow B G(j)$, $B: X \longrightarrow B G(k)$ over the same base space X is the fibration $\alpha A^{A} B: X \longrightarrow B G(j+k)$ obtained from the product $\alpha \times \beta$ by pullback along the diagonal map $\Delta: x \longrightarrow x \times x ; x \longmapsto(x, x)$

$$
\alpha \oplus \beta: x \longrightarrow X \times X \xrightarrow{\alpha \times \beta} B G(j+k) .
$$

The canonical $\underline{\underline{\Pi}}^{O}$-orientation of $\alpha \oplus \beta$ is the product of the canonical $\hat{\underline{n}}^{\text {O}}$-orientations of α and B

$$
\hat{\mathrm{U}}_{\alpha \oplus \beta}=\Delta^{*} \hat{\mathrm{U}}_{\alpha \times \beta}=\hat{\mathrm{U}}_{\alpha} \otimes \hat{\mathrm{t}}_{\beta} \in \dot{\mathrm{H}}^{\mathrm{j}+\mathrm{k}}\left(T(\alpha \oplus \beta) ; \underline{\hat{L}}^{\mathrm{O}}\right)
$$

defined using the multiplicative structure of the ring spectrum $\underline{\underline{\underline{m}}}^{0}$ and the induced map of T hom spaces $\Delta: T(\propto \oplus \beta) \longrightarrow T(\alpha \times \beta)=T(\alpha) \wedge T(\beta)$. The t-triangulability obstruction of $\alpha \oplus \beta$ is thus given by

$$
\begin{aligned}
& t(\alpha \oplus R)= H\left(\hat{U}_{\gamma \oplus R}\right) \\
&\left.\in \dot{H}^{j+k+1}\left(T(\alpha \oplus B) ; \hat{U}_{\alpha}\right) \quad \hat{U}_{B}\right)
\end{aligned}
$$

In particular, if $B: X \longrightarrow B G(k)$ admits a t-triangulation $\tilde{B}: X \longrightarrow B$ BTOP (K) and $U_{\tilde{\beta}} \in \dot{H}^{k}\left(T(\beta) ; \underline{L}^{\circ}\right)$ is the canonical $\underline{\underline{L}}^{\circ}$-orientation then $\hat{U}_{B}=J U_{\tilde{B}} \in \dot{H}^{k}\left(T(B) ; \hat{L}^{O}\right)$ and the t-triangulability obstruction of $\alpha \oplus \beta$ is the product

$$
t(\alpha \oplus \beta)=t(\alpha) \otimes U_{\tilde{B}} \in \dot{\mathrm{H}}^{j+\mathrm{k}+1}\left(\mathrm{~T}(\alpha \oplus \beta) ; \underline{\mathrm{X}}_{\mathrm{O}}\right)
$$

defined using the structure of $\underline{\Pi}_{0}$ as an $\underline{\underline{\Pi}}^{\circ}$-module spectrum.
Proposition 7.4.6 Let (X, Y) be a codimension $q C W$ pair, and let $f: M \longrightarrow X$ be a map from an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré complex } \\ \text { normal space }\end{array}\right.$ M which is normal transverse at $Y \subset X$. Let

$$
g=f \mid: N=f^{-1}(M) \longrightarrow Y, i=\text { inclusion }: N \longrightarrow M
$$

and let $v_{M}: M \longrightarrow B G(k)$ be the normal fibration of M.
i) The image of the Poincare splitting obstruction of f along $Y \subset X\left\{\begin{array}{l}s^{P}(f, Y) \in L S_{n-q-1}(\Phi) \\ t^{P}(f, Y) \in L F_{n-q-1}(\Phi)\end{array}\right.$ in $L_{n-q-1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)$ is given by

$$
\left\{\begin{array}{l}
{\left[s^{P}(f, Y)\right]} \\
{\left[t^{P}(f, Y)\right]}
\end{array}=g_{\star} \sigma_{\star}(N)=q_{\star} \sigma_{\star}(t(N)) \in L_{n-q-1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)\right.
$$

with $\left.\sigma_{*}(N) \in L_{n-q-1}\left(\mathbb{Z} \mid \pi_{1}(N)\right]\right)$ the quadratic signature of the ($n-q$)-dimensional normal space N and $t(N) \in H_{n-q-1}\left(N ; \underline{I}_{O}\right)$ the t-trianqulability obstruction of N, and hence also of

$$
v_{N}=q^{*} \zeta \oplus i * v_{M}: N \longrightarrow B G(q+k) .
$$

In particular, for $q \geqslant 3$

$$
\left\{\begin{aligned}
s^{P}(f, Y) & \left.=\left\{s^{P}(f, Y)\right] \in L S_{n-q-1}(A)=L_{n-q-1}\left(Z \mid \pi_{1}(Y)\right]\right) \\
t^{P}(f, Y) & \left.=\left(\mid t^{P}(f, Y)\right], O\right) \\
& \left.\in L_{n-P}^{n-q-1}(D)=I_{n-q-1}\left(Z\left|\|_{1}(Y)\right|\right) \oplus L_{n-1}\left(Z Z \mid \pi_{1}(X)\right]\right)
\end{aligned}\right.
$$

ii) If $q=1$ or 2 and M is $\left\{\begin{array}{l}s^{-} \text {triangulable then } \\ t-\end{array}\right.$

$$
\left\{\begin{array}{l}
s^{P}(f, Y)=0 \in L S_{n-q-1}(\Phi) \\
t^{P}(f, Y)=0 \in L P_{n-q-1}(\Phi)
\end{array}\right.
$$

(since $\widehat{\operatorname{BTOP}}(q)=B G(q))$.
If $q \geqslant 3$ and $M\left\{\begin{array}{l}\text { is a manifold with normal bundle } \\ \text { admits a } t-t r i a n g u l a t i o n ~ \\ \tilde{v}_{M}: M \longrightarrow B \widehat{T O P}\end{array}\right.$
the Poincaré splitting obstruction of $f: M \rightarrow X$ along $Y \subset X$ is given by

$$
\text { iii) If } \xi: Y \longrightarrow B G(q) \text { admits a } t \text {-triangulation } \tilde{\xi}: Y \longrightarrow B \widehat{T C}
$$ the maps $\left\{\begin{array}{l}u_{\zeta} \\ v_{\xi}\end{array}\right.$ appearing in the braid of Proposition 7.4.4 factor as

$$
\left\{\begin{aligned}
& u_{\xi}: \Omega_{n}^{P}(x) \longrightarrow \delta_{n}(x) \longrightarrow{ }^{u_{\xi}} \longrightarrow H_{n-1}\left(x ; \underline{L}_{0}\right) \xrightarrow{v_{\overparen{\xi}}}{ }^{v_{\xi-1}}(\Phi) \\
&{ }_{v_{\xi}}: \Omega_{n-q-1}(\Phi)
\end{aligned}\right.
$$

with $\left\{\begin{array}{l}u_{\widetilde{\xi}} \\ v_{\widetilde{\xi}}\end{array}\right.$ the maps appearing in the natural transformation of exact sequences; given by Proposition 7.2.6 iv)

$$
\begin{aligned}
& \left\{\begin{aligned}
s^{P}(f, Y)=g_{\star} \sigma_{\star}(t(N)) & =g_{*} \sigma_{\star}\left(g^{\star} t(\xi) \otimes i * U_{\tilde{v}_{M}}\right) \\
& \in L S_{n-q-1}(\Phi)=L_{n-q-1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \\
{\left[t^{P}(f, Y)\right]=g_{\star} \sigma_{\star}(t(N)) } & =g_{\star} \sigma_{\star}\left(g^{*} t(\xi) \otimes i * U_{\tilde{v}_{M}}\right) \\
& \in L_{n-q-1}\left(\mathbb{Z}\left[\pi_{1}(Y]\right)\right.
\end{aligned}\right. \\
& \text { with } t^{P}(f, Y)=\left(\left[t^{P}(E, Y)\right], 0\right) \text { as in i) and } U_{\tilde{v}_{M}} \in \dot{H}^{k}\left(T\left(U_{M}\right) ; \underline{I}^{0}\right) \\
& \text { the canonical } \underline{\underline{L}}^{0} \text {-orientation of } \widetilde{v}_{M} \text {. }
\end{aligned}
$$

Thus the Poincare splitting obstruction along $Y \subset X$ of $f: M \longrightarrow$ is given by

$$
\left\{\begin{array}{l}
s^{P}(f, Y)=u_{\tilde{\xi}}\left(f_{\star} s(M)\right) \in L S_{n-q-1}(\Phi) \\
t^{P}(f, Y)=v_{\tilde{\xi}}\left(f_{\star} t(M)\right\} \in L P_{n-q-1}(\phi)
\end{array}\right.
$$

with $\left\{\begin{array}{l}s(M) \in \mathcal{S}_{n}(M) \\ t(M) \in H_{n-1}\left(M ; \underline{I}_{O}\right)\end{array}\right.$ the $\left\{\begin{array}{l}s- \\ t-\end{array}\right.$ riangulability obstruction of

In fact, the t-triangulations $\bar{\xi}: Y \longrightarrow \mathcal{B T O P}(q)$ of a spherical fibration $\xi: Y \longrightarrow B G(q)$ over a space Y are in a natural one-one correspondence with the geometric poincare transversality structures along the zero section $Y \subset T(\xi)$ for maps $f: M \longrightarrow T(\xi)$ from manifolds M, i.e. ways of making them Poincaré transverse at $Y \subset X-$ see Levitt and Morgan [1], Brumfiel and Morgan [1] for the simply-connected case, Levitt and Ranicki [1] for the non-simply-connected case. Dually, th manifold structures on an n-dimensional geometric poincare complex M are in a natural one-one correspondence (at least for $n \geqslant 5$) with certain geometric Poincare transversality structures for maps $f: M \longrightarrow T(\xi)$ to the Thom spaces of topological block bundles $\tilde{\xi}: Y \longrightarrow \mathcal{B C O P}(q)$ - see Levitt and Ranicki [1]. From the point of view of Ranicki 17] such a geometric poincaré transversality structure on
$\left\{\begin{array}{l}\text { a }(\mathrm{q}-1) \text {-spherical fibration } \xi: Y \longrightarrow \mathrm{BG}(\mathrm{q}) \\ \text { an } \mathrm{n} \text {-dimensional geometric Poincaré complex } M\end{array}\right.$ is an $\underline{\Omega}^{P}$-orientation $\left\{\begin{array}{l}U_{\xi} \in \dot{H}^{q}\left(T(\xi) ; \stackrel{R}{2}^{P}\right) \\ {[M] \in H_{n}\left(M ; \underline{\Omega}^{\mathrm{P}}\right)}\end{array}\right.$ with image the canonical
\underline{n}^{N}-orientation $\left\{\begin{array}{l}U_{\xi} \in \dot{H}^{G}\left(T(\xi) ; \underline{R}^{N}\right) \\ {[M] \in H_{n}\left(M ; \underline{\Omega}^{N}\right)}\end{array},\left\{\begin{array}{l}- \\ \text { with } \sigma *([M])=(1: M \rightarrow M) \in \Omega_{n}^{p}(M)\end{array}\right.\right.$,
where f^{p} is the spectrum of oriented geometric Poincare n-ads and $\underline{\Omega}^{N}=$ MSG is the spectrum of oriented normal space n-ads (so that $\pi_{\star}\left(\underline{\Omega}^{\mathrm{P}}\right)=\Omega_{\star}^{\mathrm{P}}(\mathrm{pt}),. \pi_{\star}\left(\underline{\rho}^{\mathrm{N}}\right)=\pi_{\star}(\underline{\mathrm{MSG}})=\Omega_{\star}^{\mathrm{N}}$ (pt.) and there is defined a cofibration sequence of spectra

$$
\underline{\mathrm{I}}_{\mathrm{O}} \longrightarrow \underline{\underline{\rho}}^{\mathrm{P}} \longrightarrow \underline{\underline{\beta}}^{\mathrm{N}} \longrightarrow \Sigma^{-1} \underline{\Pi}_{\mathrm{O}} \longrightarrow \longrightarrow 1 .
$$

The geometric Poincaré assembly maps

$$
\sigma^{*}: H_{n}\left(X ; \underline{\Omega}^{p}\right) \longrightarrow \Omega_{n}^{P}(x) \quad(n \geqslant 0)
$$

are defined for any space X, and fit into a commutative braid of exact sequences

There are evident relative and rel versions of the geometric Poincaré splitting obstruction theory. In particular, given a codimension $q(W$ pair (X, Y) and a map

$$
(f, \partial f):(M, J M) \longrightarrow x
$$

from an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré } \\ \text { (normal, geometric Poincaré) }\end{array}\right.$ pair ($M, \partial M$) such that $\partial f: \partial M \longrightarrow X$ is Poincare transverse at $Y \subset X$ there is defined a relz Poincaré splitting obstruction of f along $Y \subset X$

$$
\left\{\begin{array}{l}
s_{\partial}^{P}(f, Y) \in L S_{n-q-1}(\Phi) \\
t_{\lambda}^{P}(f, Y) \in L P_{n-q-1}(\Phi)
\end{array}\right.
$$

such that the following reld version of Proposition 7.4 .5 holds. Proposition 7.4.7 The reld Poincaré splitting obstruction is such that $\left\{\begin{array}{l}s_{j}^{P}(f, Y)=0 \in \operatorname{LS}_{n-q-1} \\ t_{\partial}^{p}(f, Y)=0 \in \operatorname{LP}_{n-q-1}\end{array}\right.$ if) (and for $n-q \geqslant 5$ only if)
there exists a relative $\left\{\begin{array}{l}\text { geometric Poincaré } \\ \text { (normal, geometric poincaré })\end{array}\right.$ bordism

between $(f, \partial f):(M, j M) \longrightarrow X$ and $\longrightarrow \operatorname{map}\left(f^{\prime}, f^{\prime}\right):\left(M^{\prime}, i M^{\prime}\right) \longrightarrow X$ from an n-dimensional geometric Poincaré pair (M', jM') which is Poincaré transverse at $Y \subset X$, and such that the ($n-1$ - -dimensional geometric poincaré bordism
is Poincaré transverse at $Y \subset X$.

The manifold codimension q splitting obstruction theory described in $\$ 7.2$ has a natural expression in terms of reld qeometric Poincaré splitting obstruction theory, as follows. Proposition 7.4.8 Let ($X, Y, \tilde{\xi}$) be an ($n, n-q$)-dimensional t-nor geometric Poincaré pair, and let $f: M \longrightarrow X$ be an $\left\{\begin{array}{l}s- \\ t-\end{array}\right.$ triangulat of X which is topologically transverse at $Y \subset X$ with respect t The manifold codimension q splitting obstruction along $Y \subset X \quad o$ is the rel: Poincare splitting obstruction along $Y \subset X$ of the evident map

$$
(g, f \cup 1):(W, M \cup-X) \longrightarrow x
$$

from the $(n+1)$-dimensional $\left\{\begin{array}{l}\text { qeometric Poincaré } \\ \text { (normal, geometric Poincaré) }\end{array}\right.$ pair
$(W, M U-X)$ defined by the mapping cylinder W of $f: M \longrightarrow X$

$$
\left\{\begin{array}{l}
s(f, Y)=s_{\partial}^{P}(g, Y) \in L S_{n-q}(\Phi) \\
t(f, Y)=t_{\partial}^{P}(q, Y) \in L P_{n-q}(\Phi)
\end{array}\right.
$$

7.5 Algebraic Poincaré splitting

From now on we shall only be dealing with codimension surgery theory for $q=1,2$, since for $q \geqslant 3$ the obstruction gr are just the quadratic L-groups already dealt with in $\subseteq \mathbb{I}$.

Let (X, Y) be a codimension q CW pair with

$$
X=E(\xi) \cup_{S(\xi)}{ }^{2}, \xi: Y \longrightarrow B G(q)=B \underset{T O p}{ }(q) \quad(q=1,2
$$

and let $\$$ be the corresponding pushout square of fundamental groupoids

We wish to give an algebraic account of the codimension q surgery obstruction groups $\left\{\begin{array}{l}L S_{\star}(\phi) \\ L P_{\star}(\Phi)\end{array}\right.$ defined geometrically in to fit into the exact sequence

In $\$ 7.6(q=1)$ and $\$ 7.8(q=2)$ we shall construct algebraic transfer functors $p \xi^{!}:(n-d i m e n s i o n a l$ quadratic (Poincare) complexes over : $\longrightarrow((n+q)-$ dimensional quadratic (Poincaré) pair over $\left.Z\left[\pi_{1}(Z)\right] \longrightarrow \pi\left[\pi_{1}(X)\right]\right)$
allowing $\left\{\begin{array}{l}L S_{\star}(\phi) \\ I, P_{\star}(\phi)\end{array}\right.$ to be identified with the relative quadratic
L-groups $\left\{\begin{array}{l}L_{\star+q+1}\left(p E^{!}\right) \\ L_{\star+q}\left(\partial p \xi^{!}\right)\end{array}\right.$defined in the style of $\$ 2.3$ using appropriately relative quadratic Poincaré cobordism. We shall now assume the existence of such algebraic transfers, leaving the details of the construction to $\$ \$ 7.6,7.8$. Instead, we go beyond such a direct algebraic definition of $\left\{\begin{array}{l}L_{\star}(\Phi) \\ L P_{\star}(\Phi)\end{array}\right.$ to a formulation in terms of algebraic Poincare splittings with respect to $\$$ of quadratic Poincaré complexes over $\mathbb{Z}\left[\pi_{1}(X)\right]$, making use of an algebraic analogue of codimension q topological transversality, which we shall need in $\$ \$ 7.6,7.8$ to recover the existing algebraic interpretations of the LS-groups in particular cases and also to obtain some new ones. However, the proof of this algebraic formulation will still involve some geometry. A purely algebraic proof will be obtained in Ranicki [11] - this will also apply to rings other than group rings, and also to symmetric L-theory.

In the first instance we extend to pushout squares such as ϕ the notion of algebraic Poincare splitting already developed in $\$ 6.1$. We continue with the terminology that for $n \in \mathbb{Z}$ an n-dimensional quadratic Poincaré complex x over a ring with involution A is a closed object x of the category $\mathcal{L}_{n}(A)$ of $\$ 1.8$. In particular, given an n-dimensional quadratic Poincaré complex y over $\mathbb{Z}\left[\pi_{1}(Y)\right]$ there is defined an $(n+q)$-dimensional quadratic Poincaré pair $\left(p \xi^{!} y, \partial p \xi^{!} y\right)$ over $\mathbb{Z}\left[\pi_{1}(z)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(x)\right]$.

Ar n-dimensional quadratic Poincaré splitting over $\phi(y, z)$ consists of
i) an $(n-q)-d i m e n s i o n a l$ quadratic poincaré complex y over $\mathrm{Z}_{\mathrm{Z}}\left[\mathrm{H}_{1}(\mathrm{Y})\right]$
ii) an n-dimensional quadratic Poincaré pair (z,jp,! y) over $\mathbb{Z}\left[\pi_{1}(Z)\right]$.
In keeping with the convention that we are considering simple geometric poincaré complexes (unless specified otherwise) y and $\left\{z, \exists p \xi^{!} y\right)$ are to be taken as simple - as usual, there are also free and projective versions of the theory, which are compared to each other in Proposition 7.5 .2 below.

It follows from the above that the union
is a (simple) n-dimensional quadratic Poincaré complex over $\mathbb{Z}\left[\pi_{1}(X)\right]$ which we shall abbreviate to $p \xi^{\prime} y \cup z$. The splitting is contractible if the union is contractible.

A Poincaré splitting (with respect to Φ) (y, z) of an n-dimensional quadratic Poincaré complex x over $\mathbb{Z} \mid \pi,(x) \|$ is an n-dimensional quadratic Poincaré splitting over ϕ together with a simple homotopy equivalence

$$
\mathrm{p} \xi^{!} y \cup z \longrightarrow \sim \sim
$$

For example, if (X, Y) is an ($\mathrm{n}, \mathrm{n}-\mathrm{q}$) -dimensional geometric Poincaré pair and (f,b) $M \longrightarrow X$ is a normal map from an n-dimensional geometric Poincaré complex M which is Poincaré transuerse at $Y \subset X$ so that

$$
(f, b)=(g, c)!\cup(h, d): M=E(v) \cup_{S(v)} P \rightarrow x=E(\xi) \cup_{S(\xi)}
$$

then the quadratic kernel $\sigma_{\star}(f, b)$ over $\mathbb{Z}\left[\pi_{l}(X)\right]$ admits a Poinca splittinq, since

$$
\sigma_{\star}(f, b)=\sigma_{\star}(g, c)^{!} \cup \sigma_{\star}(h, d) .
$$

The splitting is contractible if and only if fis a simple $\mathbb{Z}\left[\pi_{1}(x)\right]$-homology equivalence.

An n-dimensional relative quadratic Poincaré splitting over $\Phi((y, y),(z, d+z))$ consists of
i) an ($n-q$)-dimensional quadratic Poincaré pair ($y, j y$)
over $\mathbb{Z}\left[\pi_{1}(Y)\right]$
ii) an n-dimensional quadratic Poincaré triad

It follows that the union
is an n-dimensional quadratic Poincaré pair over $\mathbb{Z}\left\{\pi_{1}(x)\right]$ which we shall abbreviate to ($p E^{!} y \cup z, p E^{\prime} y \cup{ }_{f} z$).

A Poincaré splitting (with respect to Φ) $\left((y, j y),\left(z, y_{+} z\right)\right)$
of an n-dimensional quadratic poincaré pair ($x, 3 x$) is an n-dimensional relative quadratic Poincaré splitting over \varnothing together with a simple homotopy equivalence of pairs

$$
\left(p \xi^{!} Y \cup z, p \xi^{!} y \cup{ }_{+} z\right) \longrightarrow(x, \delta x)
$$

A normal splitting (with respect to $\Phi)((y, d y),(z, a, z))$ of an n-dimensional quadratic poincaré complex x over $\mathbb{Z} \mid \pi_{1}(x)$ is a Poincare splitting of the n-dimensional quadratic Poincal pair $(x, \partial x)$ over $Z\left[\pi_{1}(x)\right]$. Note that $\left(\partial y, y_{t} z\right)$ is then a contractible Poincaré splitting (of $3 x$).

Proposition 7.5 .1 Let (X, Y) be a codimension $q C W$ pair, and 1 , $\$$ be the associated pushout square of fundamental groupoids.
i) Every quadratic Poincaré complex x over $\mathbb{Z}\left\lceil\pi_{1}(x) \mid\right.$ is cobordant to one which admits a normal splitting $((y, d y),(z, 3$.
ii) The codimension q surgery obstruction group $\left\{\begin{array}{l}L S_{n-q}(\phi \text { : } \\ L P_{n-q}(\phi \text { : }\end{array}\right.$ is the cobordism group of $\left\{\begin{array}{l}\text { contractible } \\ -\quad n \text {-dimensional }\end{array}\right.$ quadratic Poincaré splittings over Φ. The maps appearing in tl exact sequence

$$
\ldots \longrightarrow L_{n-q}(\Phi) \longrightarrow L_{n-q}(\Phi) \longrightarrow L_{n}\left(\mathbb{R}\left[\pi_{1}(x)\right]\right) \longrightarrow L_{n-q-1}(\phi)
$$

are given by

$$
\begin{aligned}
& \mathrm{LS}_{\mathrm{n}-\mathrm{q}}(\Phi) \longrightarrow \mathrm{LP}_{\mathrm{n}-\mathrm{q}}(\Phi) ;(y, z) \longmapsto(y, z) \\
& L P_{n-q}(\Phi) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) ;(y, z) \longmapsto p \xi^{!} y \cup z \\
& L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \longrightarrow L_{n-q-1}(\Phi) ; x \longmapsto\left(x y,{ }_{+}\right) \\
& \text {(if } \left.\left((y, y),\left(z, \partial_{t} z\right)\right) \text { is a normal splitting of } x\right) \text {. }
\end{aligned}
$$

In particular, the image of an element $\left.x \in L_{n}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right)$ in $L_{n-q^{-1}}(\Phi)$ is the obstruction to x having a Poincarésplitting. iii) If $f: M \longrightarrow X$ is map from an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré complex } \\ \text { normal space }\end{array}\right.$ M which is normal transverse at $Y \subset X$ with

$$
\begin{aligned}
& v: N=f^{-1}(Y) \longrightarrow \underline{q}=\mathbf{f} \mid \xrightarrow{\xi} B G(q), \\
& h=f \mid: P=f^{-1}(Z) \longrightarrow Z
\end{aligned}
$$

then the codimension q Poincaré splitting obstruction of f along $Y \subset X$ $\left\{\begin{array}{l}s^{P}(f, Y) \in L S_{n-q-1}(\Phi) \\ t^{P}(f, Y) \in L P_{n-q-1}(\Phi)\end{array}\right.$ is represented by the $\left\{\begin{array}{l}\text { contractible } \\ -\end{array}\right.$ ($n-1$)-dimensional quadratic Poincaré splitting over Φ

$$
\sigma_{\star}(N)=\sigma_{\star}(N)^{!} \cup \sigma_{\star}(P, S(V))
$$

of the ($n-1$)-dimensional quadratic Poincare complex over $\mathbb{Z} \mid \pi_{1}(X)$) of M

$$
\sigma_{\star}(M)=\left(\Omega C\left([M] \cap-: C(M)^{n-\star} \longrightarrow C(\tilde{M})\right), \Psi\right)
$$

with

$$
\sigma_{\star}(N)=\left(\Omega C\left([N] \cap-: C(\tilde{N})^{n-q^{-*} \ldots} C(\tilde{N})\right), \psi\right)
$$

the $(n-q-1)$-dimensional quadratic Poincare complex over $\mathbb{Z}\left[\pi_{1}(Y)\right]$ of the ($n-q$)-dimensional normal space N and

$$
\begin{aligned}
\alpha_{\star}(P, S(v))= & \left(S C\left([S(v)] \cap-i C(S(v))^{n-1-\star} \rightarrow C(S(v))\right)\right. \\
& -\cdots C\left([P] n-: C\left(\widetilde{P}, S(v)^{n-\star} \rightarrow C(\widetilde{P})\right),\left(\delta \psi, \partial p \xi^{!} \psi\right)\right)
\end{aligned}
$$

the $(n-1)$-dimensional quadratic Poincare pair over $\mathbb{Z}\left[\pi_{1}(Z)\right]$ of the n-dimensional normal pair (P, S(v)).
iv) If (X, Y) is an $(n, n-q)$-dimensional geometric Poincaré pair and $(f, b): M \rightarrow X$ is an $\left\{\begin{array}{l}s^{-} \\ t- \\ t r i a n g u l a t i o n ~ o f ~\end{array} X\right.$ which is topologically transverse at $Y \subset X$, with

$$
\begin{aligned}
& (f, b)=(g, c) \cdot \cup(h, d): M=E(\nu) U_{S(\nu)} P \longrightarrow X=E(\xi) \cup_{S(\xi)} Z \\
& v: N=f^{-1}(Y) \xrightarrow{q=f \mid} Y \longrightarrow B G(q)=\hat{B T O P}(q)(q=1 \text { or } 2) \\
& h=f \mid: p=f^{-1}(Z) \longrightarrow Z,
\end{aligned}
$$

then the codimension q manifold splitting obstruction of f along $Y \subset X\left\{\begin{array}{l}S(f, Y) \in L S_{n-G}(\Phi) \\ t(f, Y) \in L P_{n-q}(\Phi)\end{array}\right.$ is represented by the $\left\{\begin{array}{l}\text { contractible } \\ -\end{array}\right.$ n-dimensional quadratic Poincaré splitting over \downarrow

$$
\sigma_{\star}(f, b)=\sigma_{\star}(g, c)^{\prime} \cup \sigma_{\star}(h, d)
$$

of the n-dimensional quadratic kernel of (f, b) over $\mathbb{Z}\left[\pi_{1}(x)\right]$, with $\sigma_{*}(g, c)$ the $(n-q)-d i m e n s i o n a l$ quadratic kernel of $(\mathrm{g}, \mathrm{c}): \mathrm{N} \longrightarrow Y$ over $\mathbb{Z}\left|\pi_{L}(Y)\right|$ and $O_{*}(h, d)$ the n-dimensional quadratic kernel of $(h, d):(P, S(v)) \rightarrow(Z, S(\xi))$ over $\mathbb{Z}\left[\pi_{1}(Z)\right]$. Proof: In the first instance note that iil, iii) and iv) are immediate consequences of i) and its relative version.

To prone i) use the realization theorem of wall [4] to identify $x \in L_{n}\left(\mathbb{Z} \mid \pi_{1}(x) \|\right)$ with the rel surgery obstruction $\sigma_{*}(f, b)$ of a t-triangulation of an n-dimensional manifold with boundary $\left(X_{1}, i X_{1}\right) \quad(n \geqslant 5)$

$$
((f, b),(0 f, \partial b)):(M, a M) \longrightarrow\left(x_{1}, a x_{1}\right)
$$

such that $(o f, a b): 3 M \longrightarrow X_{1}$ is an s-triangulation of X_{1}, with respect to a reference map $(r, a r):\left(X_{1}, x_{1}\right) \cdots \cdots$. Make (r,jr) topologically transverse at $Y \subset X$, so that

$$
\left(x_{1}, \dot{x} x_{1}\right)=\left(E\left(\xi_{1}\right) U_{S\left(\xi_{1}\right)} z_{1}, E\left(\partial \xi_{1}\right) U_{\left.S\left(\partial \xi_{1}\right)^{\partial}+{ }_{1}\right)}\right)
$$

with

$$
\begin{aligned}
& \left(\xi_{1}, \xi_{1}\right):\left(Y_{1},!Y_{1}\right)=\left(\mathrm{r}^{-1}(\mathrm{Y}), \dot{\mathrm{or}}{ }^{-1}(\mathrm{Y})\right) \xrightarrow{(\mathrm{r}, \mathrm{Br}) \mid} \mathrm{Y} \\
& \longrightarrow B G(q)=\widehat{B T O P}(q) \quad(q=10 \\
& \left(z_{1}, d+z_{1}\right)=\left(r^{-1}(z), \partial r^{-1}(z)\right) .
\end{aligned}
$$

Also, make (f,f) togologically transverse at $\left(Y_{1}, \partial Y_{1}\right) \subset\left(X_{1}, \partial X\right.$ so that

$$
\begin{aligned}
& ((f, b),(f, f b))=((a, c),() g, a c))^{!} \cup((h, d),(a+h, j+d)) \\
& :(M, \partial M)=\left(E(v) \cup_{\left.S(\nu)^{p}, E(\partial v) u_{S(\partial v)^{3}+} P\right) \longrightarrow\left(X_{1}, a X_{1}\right)}\right.
\end{aligned}
$$

with

$$
\begin{aligned}
& ((g, c),(f, g, c))=((f, b),(f, a b)) \mid \\
& :(N, O N)=\left(f^{-1}\left(Y_{1}\right), j f^{-1}\left(O Y_{1}\right)\right) \longrightarrow\left(Y_{1}, \partial Y\right. \\
& (v, v):(N, ? N) \xrightarrow{(g, \lambda)}\left(Y_{1}, Y_{1}\right) \xrightarrow{\left(\xi_{1}, \xi_{1}\right)} \rightarrow B G(q)=B T O P(q) \\
& \left((h, d),\left(y_{+} h,{ }_{+} d\right)\right)=((f, b),(0 f, j b)) \mid \\
& \left.:\left(P,{ }^{1}+P\right)=\left(E^{-1}\left(Z_{1}\right), f^{-1}\left(3+Z_{1}\right)\right) \longrightarrow(Z,)^{2}\right)
\end{aligned}
$$

This decomposition of ($(f, b),(f, f))$ determines an n-dimensio relative quadratic Poincaré splitting over ϕ

$$
\left(\sigma_{\star}((g, c),(, g, i c)), \sigma_{*}\left((h, d),\left(a_{+} h, \sigma_{+} d\right)\right)\right)
$$

of the n-dimensional quadratic poincaré pair $\left(\sigma_{\star}(f, b), j \sigma_{\star}(f, b)\right.$ over $\mathbb{Z}\left[\pi_{1}(x)\right]$, i.e. a normal splitting of $x=\sigma_{*}(f, b)$. Note that in general the s-triangulation $i f: \partial M \xrightarrow{\sim} \partial X_{1}$ is not split along $Y_{1} C i X_{1}$; in fact, the splitting obstruction
$s\left(\partial f, j Y_{1}\right) \in L S_{n-q-1}(\phi)$ is the image of $x=\sigma_{*}(f, b) \in L_{n}\left(\mathbb{Z} \mid \pi_{1}(i\right.$ under the canonical map.

Alternatively, it is possible to prove i) using the normal space transversality of Quinn 13$]$. Consider $x \in L_{n}(\mathbb{Z}[\pi$ as the quadratic signature $\sigma_{*}(W, 3 W)$ of an ($n+1$)-dimensional (normal, geometric Poincaré) pair (W, ∂W) equipped with a reference map $(x, y):(W, \partial W) \longrightarrow X$. Making $(r, \partial r)$ normal transverse at $Y \subset X$ note that the constructions of Proposition translate the consequent normal splitting of (W, W W) into a normal splitting of $x=\sigma_{\star}(W, d W)$. In general, $\mathrm{ir}: \mathrm{j} W \longrightarrow \mathrm{X}$ is not Poincaré split along $Y \subset X$; in fact, the splitting obstruc $s^{P}(\partial r, Y) \in L S_{n-q-1}(\phi)$ is the image of $x=\sigma_{*}(W, j W) \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X\right.\right.$ under the canonical map.
(The two methods of proof of i) are related to each oth by the mapping cylinder construction, cf. Proposition 7.4.8).

An algebraic proof of Proposition 7.5.1 i) requires an L-theoretic version of the linearization trick of Higman [l] - see the introduction to $\$ 7.6$ below for a brief survey of th corresponding algebraic $k-t h e o r y$ for $q=1$.

There are evident analogues of Proposition 7.5.1 for th versions of the groups $\left\{\begin{array}{l}L S_{\star}(\phi) \equiv L S_{\star}^{S}(\phi) \\ L P_{\star}(\phi) \equiv L S_{\star}(\phi)\end{array}\right.$ appropriate to the free and projective quadratic L-theory, which we denote by $\left\{\begin{array}{l}L S_{\star}^{\mathrm{h}}(\Phi) \\ L P_{\star}^{\mathrm{h}}(\Phi)\end{array}\right.$ and $\left\{\begin{array}{l}L S_{\star}^{\mathrm{p}}(\Phi) \\ L P_{\star}^{\mathrm{p}}(\Phi)\end{array}\right.$.

Proposition 7.5.2 Let (X, Y) be a codimension $q(C W$ pair, and let Φ be the associated pushout square of fundamental groupoids. The simple groups $\left\{\begin{array}{l}L S_{\star}(\phi) \\ L P_{\star}(\phi)\end{array}\right.$ are related to the free qroups $\left\{\begin{array}{l}L S_{\star}^{h}(\phi) \\ L P_{\star}^{h}(\phi)\end{array}\right.$ by a commutative diagram with exact rows and columns

with $\left\{\begin{array}{l}\text { WhS }_{\star}(\Phi) \\ \mathrm{WhP}_{\star}(\Phi)\end{array}\right.$ the relative groups appearing in the exact sequence
 Similarly for the relation between the free groups $\left\{\begin{array}{l}\operatorname{LS}_{\star}^{\mathrm{h}}(\Phi) \\ \operatorname{LP}_{\star}^{\mathrm{h}}(\Phi)\end{array}\right.$ and the projective groups $\left\{\begin{array}{l}L S_{\star}^{P}(\phi) \\ I, P_{\star}^{P}(\phi)\end{array}\right.$, with the Whitehead groups

Wh (π) replaced by the reduced projective class groups $\widetilde{\mathrm{K}}_{\mathrm{O}}(\mathbb{\mathbb { Z }}[\pi j)$.

Furthermore, the splitting theorems for the quadratic L-groups of Shaneson \{1\}, Novikov \{1\} and Ranicki (2)

$$
\begin{align*}
& \left.L_{n}(\mathbb{Z} \mid \pi \times \mathbb{Z}]\right)=L_{n}(\mathbb{Z}[\pi]) \notin L_{n-1}^{h}(\mathbb{Z}[\pi]) \\
& L_{n}^{h}(\mathbb{Z}[\pi \times \mathbb{Z}])=L_{n}^{h}(\mathbb{Z}\{\pi]) \notin L_{n-1}^{p}(\mathbb{Z}\{\pi\})
\end{align*}
$$

extend to the $\left\{\begin{array}{l}L S- \\ L P-_{-} \text {groups }\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{l}
L S_{n}(\Phi \times \mathbb{Z})=L S_{n}(\Phi) \oplus L S_{n-1}^{h}(\Phi) \\
L P_{n}(\Phi \times \mathbb{Z})=L P_{n}(\Phi) \oplus L P_{n-1}^{h}(\Phi)
\end{array}\right. \\
& \left\{\begin{array}{l}
L S_{n}^{h}(\phi \times \mathbb{Z})=L S_{n}^{h}(\phi) \oplus L S_{n-1}^{p}(\Phi) \\
L P_{n}^{h}(\Phi \times \mathbb{Z})=L P_{n}^{h}(\Phi) \oplus L P_{n-1}^{p}(\phi)
\end{array}\right.
\end{aligned}
$$

with ϕ the fundamental groupoid pushout square of a codimension q $C W$ pair (X, Y) and $\Phi \times \mathbb{Z}$ the pushout square of $\left(X \times S^{1}, Y \times S^{1}\right)$.

The codimension q splitting obstruction theory for t-triangulations (the LP-theory) was developed as a tool for understanding the obstruction theory for s-trianqulations (the LS-theory) - from now on wo shall be mainly concerned with the latter.

Let (M, N) be an $(n, n-q)-d i m e n s i o n a l$ manifold pair ($q \geqslant 1$).
Ambient surgery on N inside M is the operation

$$
(M, N) \longmapsto \longrightarrow\left(M, N^{\top}\right)
$$

determined by an embedding

$$
e:\left(D^{r+1}, S^{r}\right) \times D^{n-q-r} \longleftrightarrow(M, N)
$$

such that $e^{-1}(N)=s^{r} \times D^{n-q-r}$, with

$$
N^{\prime}=\bar{N}\left(e\left(S^{r} \times D^{n-q-r}\right) \cup D^{r+1} \times S^{n-q-r-1} \subset M\right.
$$

obtained from N by an ordinary surgery. The trace of the surgery on N embeds in $M \times I$ as a codimension q submanifold, defining an ambient cobordism inside $M \times I$ between $N \subset M \times\{O\}$ and $N^{\prime} \subset M \times\{1\}$

Conversely, every ambient cobordism inside $M \times I$ can be broken up into a finite sequence of ambient surgeries.

A formally ($n, n-q$)-dimensional normal pair (X, Y) is a codimension q CW pair such that
i) X is a formally n-dimensional normal space (in the sense of §7.3) with normal structure

$$
\left(v_{x}: x \longrightarrow B G(k), \rho_{X}: S^{n+k} \longrightarrow T\left(v_{X}\right)\right)
$$

ii) Y is a formally $(n-q)$-dimensional normal space with normal structure

$$
\begin{aligned}
\left(v_{Y}=\right. & \left.\xi \oplus v_{X}\right|_{Y}: Y \longrightarrow B G(q+k) \\
& \rho_{Y}: S^{n+k} \longrightarrow \rho_{X} \\
& \left.T\left(v_{X}\right) \longrightarrow T\left(v_{X}\right) / T\left(\left.v_{X}\right|_{Z}\right)=T\left(v_{Y}\right)\right)
\end{aligned}
$$

Such a pair is t-normal if there is given a t-triangulation $\widetilde{\xi}: Y \longrightarrow \operatorname{BTOP}(q)$ of $\zeta: Y \longrightarrow B G(q)$. In particular, a formally ($n, n-q$)- dimensional (t-normal) qeometric Poincaré pair (X, Y) is a formally ($n, n-q$)-dimensional (t-normal) normal pair.

Let (X, Y) be a formally ($n, n-q$)-dimensional t-normal pair. A formally ($n, n-g$)-dimensional topological normal map

$$
(f, b):(M, N) \longrightarrow(X, Y)
$$

is a formally n-dimensional topological normal map (f, b): $M \longrightarrow$ (in the sense of $\$ 7.3$) which is topologically transverse at $Y \subset$ so that the restriction

$$
(f, b) \mid=(g, c): N=f^{-1}(Y) \longrightarrow Y
$$

is a formally (n-q)-dimensional topological normal map and the restriction

$$
(f, b) \mid=(h, d):(P, S(V))=f^{-1}(Z, S(\xi)) \longrightarrow(Z, S(\xi))
$$

is a formally n-dimensional topological normal map of pairs such that

$$
\begin{aligned}
(f, b)= & (g, c)^{\prime} \cup(h, d) \\
& : M=E(v) \cup_{S(v)^{P}} \longrightarrow X=E(\xi) \cup_{S(\xi)^{2}}
\end{aligned}
$$

with

$$
v=v_{N \subset M}: N \xrightarrow{\mathrm{~g}} \mathrm{M} \xrightarrow{\tilde{\xi}} \text { BTOP }(q) \text {. }
$$

The notion of ambient surgery on codimension q submanifolds carries over in the obvious way to such topologic normal maps. Given a formally ($n, n-q$)-dimensional topological normal map

$$
(f, b):(M, N) \longrightarrow(X, Y)
$$

with restriction

$$
(f, b) \mid=(g, c): N \cdots Y
$$

define an ambient surgery on (g, c) inside (f, b) to be a surgery on (g, c) such that the trace normal bordism

$$
(G, C):\left(N \times I \cup D^{r+1} \times D^{n-q-r} ; N, N^{\prime}\right) \longrightarrow Y \times(I ; O, 1)
$$

is a restriction of the normal map of ($n+1$)-dimensional triads

$$
(f, b) \times 1: M \times(I ; O, 1) \longrightarrow X \times(I ; O, 1) .
$$

There is a corresponding algebraic notion of ambient surgery on a pair of the type
(a formally ($\mathrm{n}-\mathrm{q}$)-dimensional quadratic complex over $\mathbb{Z}\left[\pi_{1}(\mathrm{Y})\right]$ (C, $\psi)$, a formally n-dimensional quadratic pair over $\mathbb{Z}\left[\pi_{1}(Z)\right]$ $\left(\partial \mathrm{p} \xi^{!} \mathrm{C} \longrightarrow \mathrm{D},\left(\delta \psi, \mathrm{p} \xi^{!} \psi\right)\right)$ with boundary $\left.\partial \mathrm{p} \xi^{!}(\mathrm{C}, \psi)\right)$
which preserves the (homotopy type of) the union formally n-dimensional quadratic complex over $\mathbb{Z}\left[\pi_{1}(x)\right]$

$$
\mathrm{p} \xi^{!}(\mathrm{C}, \psi) \cup \mathbb{Z}\left[\pi_{1}(\mathrm{X})\right] \otimes_{\mathbb{Z}\left[\pi_{1}(Z)\right]}\left(\partial \mathrm{p} \xi^{!} \mathrm{C} \longrightarrow \mathrm{D},\left(\delta \psi, \partial \mathrm{p} \xi^{!} \psi\right)\right) .
$$

Algebraic ambient surgery will be developed further in Ranicki [11], By analogy with Proposition 7.3 .5 (the case $Y=\varnothing$) it is possible to describe the algebraic effect of geometric ambient surgery on the quadratic kernels defined using the spectral quadratic construction:

Proposition 7.5.3 Given a formally ($n, n-q$)-dimensional topological normal map

$$
(f, b):(M, N) \longrightarrow(X, Y)
$$

there is defined a quadratic kernel pair
$\sigma_{\star}((\mathrm{g}, \mathrm{c}),(\mathrm{h}, \mathrm{d}))=$ (the formally ($\left.n-\mathrm{q}\right)$-dimensional quadratic kernel complex over $\mathbb{Z}\left[\pi_{1}(Y)\right] \sigma_{*}(g, C)=\left(C\left(q^{!}\right), \psi\right)$ of the restriction $(g, c)=(f, b) \mid: N \longrightarrow Y$, the formally n-dimensional quadratic kernel pair over $\mathbb{Z}\left[\pi_{1}(Z)\right\} \quad \sigma_{\star}(h, d)=\left\{\partial p \xi^{!} C\left(g^{!}\right) \longrightarrow C\left(h^{!}\right),\left(\delta \psi, \partial p \xi^{!} \psi\right)\right)$ of the restriction $(h, d)=(f, b) \mid:(P, S(v)) \longrightarrow(Z, S(\xi))$ with boundary $\mathrm{p}^{!}(\mathrm{C}, \psi)$)
with union

$$
p \xi^{!} \sigma_{\star}(q, c) \cup \sigma_{\star}(h, d)=\left(C\left(f^{!}\right), p \xi^{!} \psi \cup \delta \psi\right)=\sigma_{\star}(f, b)
$$

the formally n-dimensional quadratic kernel complex over $\not \approx\left[\pi_{1}(x)\right]$
of $(f, b): M \longrightarrow X$.
Geometric ambient surgery on ($9, c$) inside (f,b) has the algebraic effect of ambient surgery on the quadratic kernel $\sigma_{*}((g, c),(h, d))$, i.e. of algebraic surgery on $\sigma_{\star}(g, c)$ inside $a_{\star}(f, b)$.

In particular, if (X, Y) is an ($n, n-q$)-dimensional t-normal geometric Poincaré pair and $(f, b):(M, N) \longrightarrow(X, Y)$ is an $(n, n-q)$-dimensional normal map such that $f: M \longrightarrow X$ is an s-triangulation of X then the quadratic kernel $\sigma_{*}((g, c),(h, d))$ is a contractible n-dimensional quadratic Poincaré splitting over the associated pushout square of fundamental groupoids Φ. By Proposition 7.5.1 iv) the splitting obstruction of f along $Y \subset X$ is the cobordism class of this kernel

$$
s(f, Y)=\sigma_{\star}((g, c),(h, d)) \in L S_{n-q}(\phi)
$$

(with $s(f, Y)=\sigma_{*}(g, c) \in \operatorname{LS} n_{n-q}(\Phi)=L_{n-q}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)$ for $\left.q \geqslant 3\right)$, which is thus the obstruction to making f concordant to an s-triangulation of (X, Y) by a finite sequence of ambient surgeries on (g, c) inside (f, b).

For $q=1,2$ ambient surgery on a codimension q submanifold can be related to ambient surgery on a normal map, as follows.

Let ($M, \partial M$) be an n-dimensional with boundary (which may be empty), and let $N \subset M$ be a codimension q submanifold such that $N \cap \partial M=\varnothing$ with

$$
\begin{aligned}
v_{N} \subset M & =v_{1}: N \longrightarrow \\
& \overparen{B T O P}(q)=B G(q), M=E(v) \\
& p=\bar{M} \widehat{E(v)} .
\end{aligned}
$$

Let $g: N \longrightarrow M$ be the inclusion, and assume given a factorization of the orientation map of N through $\pi_{1}(M)$

$$
w(N): \pi_{1}(N) \xrightarrow{g_{\star}} \pi_{1}(M) \xrightarrow{w(N)} Z_{2}
$$

(which is automatic for $q=1$) so that $v: N \longrightarrow B G(q)$ has orientat

$$
w_{1}(v): \pi_{1}(N) \xrightarrow{q_{*}} \pi_{1}(M) \xrightarrow{w(M) w(N)} \mathbb{Z}_{2} .
$$

The Poincaré dual of $g_{\star}[N] \in H_{n-q}(M, w(N))$ is an element $\xi \in H^{q}(M, \partial M, w(M) w(N))$ classifying a (q-1)-spherical fibration over M

$$
\xi: M \longrightarrow B G(q)
$$

with a section of E in such that

$$
\begin{aligned}
& \text { i) }\left.\xi\right|_{N}=v: N \longrightarrow B G(q) \\
& \text { ii) }\left.\xi\right|_{P}=\left\{\begin{array}{l}
1 \\
u \notin E
\end{array}\right]: p \longrightarrow B G(q) \text { if }\left\{\begin{array}{l}
q=1 \\
q=2
\end{array}\right.
\end{aligned}
$$

with $w: P \longrightarrow B G(1)$ the S^{0}-fibration $(=1$ ine bundle) over P classified by

$$
w: \pi_{1}(P) \longrightarrow \pi_{1}(M) \xrightarrow{w(M) w(N)} \mathbb{Z}_{2}
$$

The inclusion of the zero section $M \subset E(\xi)$ of ξ can be perturbe to define a formally n-dimeneional topological normal map of p

$$
(f, b):(M, \partial M) \longrightarrow(E(\xi), E(\xi))
$$

such that $f: M \longrightarrow E(\xi)$ is a simple homotopy equivalence, which is topologically transverse at $M \subset E(\xi)$ with $f^{-1}(M)=N \subset M$. The restrictions of (f, b) define a formally ($n-q$)-dimensional topological normal map

$$
(f, b) \mid=(g, c): N \longrightarrow M
$$

with $c: v_{N} \longrightarrow v_{M} \oplus \zeta$ and a formally $n-d i m e n s i o n a l$ normal map of triads

$$
(f, b) \mid=(h, d):(P ; S(v), \partial M) \longrightarrow S(\xi) \times(I ; 0,1) .
$$

Proposition 7.5.4 Ambient surgery on N inside M corresponds ambient surgery on $(g, c): N \longrightarrow M$ inside $(f, b):(M, \partial M) \longrightarrow(E($ The algebraic effect is an ambient surgery on the quadratic kernel pair
(the formally ($n-q$)-dimensional quadratic complex over 2 $\sigma_{*}(g, c)=\left(C\left(g^{!}\right), \psi\right)$, the formally n-dimensional quadrati triad over $\mathbb{Z}\left[n_{1}(S(\xi))\right] \sigma_{*}(h, d)$ with boundary component: $a \xi^{!} \sigma_{\star}(q, c)$ and $\left.\sigma_{\star}(a f, 3 b)\right)$
preserving the union formally n-dimensional quadratic pair over $\mathbb{Z}\left[\pi_{1}(M)\right]$

$$
\begin{aligned}
& \xi^{!} \sigma_{\star}(g, c) \cup \mathbb{Z}\left[\pi_{1}(M)\right] \mathbb{Z}_{\mathbb{Z}}\left[\pi_{1}(S(\xi))\right]_{\star}(h, d) \\
& \quad=\sigma_{\star}(f, b)=\left(0, \mathbb{Z}_{1}\left[\pi_{1}(M)\right] \sigma_{\mathbb{Z}}\left[\pi_{1}(S(\xi,))\right]_{*}^{\sigma_{*}}(Э f, \partial b)\right)
\end{aligned}
$$

[1]
A codimension g spine of an n-dimensional manifold wit boundary ($M, \partial M$) is a codimension q submanifold $N \subset M$ such tha the inclusion defines an s-triangulation

$$
\mathrm{g}: \mathrm{N} \longrightarrow \sim \mathrm{M}
$$

The problem of finding a codimension q spine is a typical application of ambient surgery obstruction theory. As alread noted in the remark following Proposition 7.2 .5 for $q \geqslant 3$ an n-dimensional manifold with boundary ($M, \partial M$) admits a codimension q spine if and only if M is an s-triangulable ($\mathrm{n}-\mathrm{q}$)-dimensional geometric Poincaré complex, at least if n -

If ($M, \partial M$) is an n-dimensional manifold with boundary such that M is an ($n-q$)-dimensional geometric Poincaré complex $(q=1$ or 2$)$ then the fundamental class $[M] \in H_{n-q}(M, w)$ is represented by a codimension q submanifold $N \subset M$ with normal bundle $v: N \longrightarrow B G(q)$. The corresponding n-dimensional topological normal map

$$
(f, b):(M, G M) \longrightarrow(E(\xi), S(\xi))
$$

is a simple $\left\{\begin{array}{l}\text { homotopy } \\ Z\left[\pi_{1}(M)\right] \text {-homology }\end{array}\right.$ equivalence of pairs (assuming
$\left.\pi_{1}(G M) \cong \pi_{1}(S(E)),\right)$ such that the restriction

$$
(f, b) \mid=(g, c): N \longrightarrow M
$$

is an ($n-q$)-dimensional topological normal map. The quadratic kernel pair $\left(\sigma_{*}(g, c), \sigma_{\star}(h, d) / \sigma_{*}(\partial f, \partial b)\right)$ consists of an ($n-q$)-dimensional quadratic Poincaré complex over $\mathbb{Z}\left[\pi_{1}(M)\right]$ $\sigma_{*}(g, c)$ and the n-dimensional quadratic $\left\{\begin{array}{l}\text { Poincaré } \\ \mathbb{Z}\left[\pi_{1}(M)\right] \text {-Poincaré }\end{array}\right.$ pair over $\mathbb{Z}\left[\pi_{1}(S(\xi))\right] \sigma_{\star}(h, d) / \sigma_{\star}(\forall f, g b)$ with boundary $\partial \xi^{\prime} \sigma_{*}(g, c)$ obtained from $\sigma_{\star}(h, d)$ by collapsing $\sigma_{\star}(\exists f, \partial b)$. The union

$$
\begin{aligned}
&\left.\xi^{!} \sigma_{\star}(g, c) \cup \mathbb{Z}\left[\pi_{1}(M)\right] \mathbb{Z}_{\mathbb{Z}\left[\pi_{1}\right.}(S(\xi))\right]^{\left(\sigma_{*}(h, d) / \sigma_{*}(G f, \partial b)\right)} \\
&=\sigma_{\star}(f, b) / \mathbb{Z}\left[\pi_{1}(M)\right] \mathbb{Z}_{\mathbb{Z}}\left\{\pi_{1}(S(\xi))\right]_{*}(\partial f, \partial b)
\end{aligned}
$$

is a contractible n-dimensional quadratic Poincaré complex over $\left.Z \| \pi_{1}(M)\right]$. Let ϕ be the pushout square of fundamental groups associated to the codimension q CW pair (E($\xi), M$)

For $q=1$ Proposition 7.5 .1 iv) gives the splitting obstruction rel ∂M of f along $M \subset E(\xi)$ to be the element

$$
s(f, Y)=\left(\sigma_{*}(g, c), \sigma_{*}(h, d) / \sigma_{*}(i f, 3 b)\right) \in \operatorname{LS}_{n-1}(\phi),
$$

so that by Propositions 7.2.4, 7.5.4 s(f,Y) $=0$ if (and for $n \geqslant 6$ only if) ($M, \partial M$) admits a codimension 1 spine $N \subset M$. The map $L S_{n-1}(\Phi) \longrightarrow S_{n-1}(M)$ appearing in the exact sequence of Proposition 7.2.6 i)

$$
\ldots \operatorname{LS}_{n-1}(\Phi) \longrightarrow \ell_{n-1}(M) \xrightarrow{\xi!} \rho_{n}(E(\xi), S(\xi)) \longrightarrow S_{n-2}(\Phi) \longrightarrow \ldots
$$

sends $s(f, Y)$ to $s(M) \in S_{n-1}(M)$. For $q=2$ it is necessary to use the algebraic theory of codimension 2 surgery developed in 57.8 below (generalizing the original theory of Cappell and Shaneson [1]) in which only the homology type of the complement of the codimension 2 submanifold is taken into account, not the homotopy type. In terms of that theory proposition 7.8.6 gives for $q=2$ the weak splitting obstruction rel ∂M of f along $M \subset E(\xi)$ to be the element

$$
w s(f, Y)=\left(\sigma_{\star}(g, c), \sigma_{\star}(h, d) / \sigma_{\star}(3 f, \beta b)\right) \in \Gamma S_{n-2}(\phi),
$$

so that by Propositions 7.8.2 i). 7.5.4 ws(f,y) $=0$ if (and for $n \geqslant 7$ only if) ($M, \partial M$) admits a codimension 2 spine $N \subset M$. The map $\Gamma S_{n-2}(\Phi) \longrightarrow s_{n-2}(M)$ appearing in the exact sequence of Proposition 7.8.3 i)

$$
\begin{aligned}
& \ldots \longrightarrow S_{n-2}(\Phi) \longrightarrow \ell_{n-2}(M) \longrightarrow \xi^{!} \\
& \longrightarrow \ell_{n}\left(E(\xi), S(\xi) ; \mathbb{Z}\left[\pi_{1}(M)\right]\right) \\
& \Gamma S_{n-3}(\Phi) \longrightarrow \ldots
\end{aligned}
$$

sends ws (f, Y) to the total surgery obstruction $s(M) \in f_{n-2}(M)$.

Following Wall $\{4, \mathrm{p}, 138$) denote the LS-groups of a codimension q CW pair $(X, Y)(q=1$ or 2$)$ such that

$$
\begin{gathered}
\pi_{1}(X)=\pi_{1}(Y)=\pi, \pi_{1}(Z)=\pi_{1}(S(\xi))=\pi^{\prime} \\
w(X)=w: \pi_{1}(X)=\pi \longrightarrow \mathbb{Z}_{2}
\end{gathered}
$$

by

$$
L S_{\star}(\phi)=L N_{\star}\left(\pi^{\prime} \longrightarrow \eta, w\right) .
$$

In $\S 7.8$ the terminology will be extended to the Γ S-groups, with

$$
\Gamma S_{*}(\Phi)=\Gamma N_{*}\left(\pi^{\prime} \longrightarrow \pi, w\right) .
$$

$\left\{\begin{array}{l}\text { Wall }[4,512 \mathrm{C}] \\ \text { Matsumoto }[1]\end{array}\right.$ expressed the codimension $\left\{\begin{array}{l}1 \\ 2\end{array}\right.$ ambient
surgery obstruction groups $\left\{\begin{array}{l}L N_{\star}(\pi, \longrightarrow \pi, w) \\ \Gamma N_{\star}(\pi, \longrightarrow \pi, w)\end{array}\right.$ as the rela
obstruction groups for the existence of codimension $\left\{\begin{array}{l}1 \\ 2\end{array}\right.$ spines, and obtained an algebraic formulation as a variant of the ordinary surgery obstruction groups $L_{*}(\mathbb{Z}[\pi])$ by a development of codimension $\left\{\begin{array}{l}1 \\ 2\end{array}\right.$ ambient surgery analogous to that of ordinary surgery in $\$ \$ 5,6$ of Wall [4]. In $\left\{\begin{array}{l}\$ 7.6 \\ \$ 7.8\end{array}\right.$ we shall show how the language of algebraic Poincaré splittings can be used to obtain this formulation algebraically, subject only to the (provisional) use of topological transversality in the proof of Proposition 7.5.1 i).

7. 6 The algebraic theory of codimension l surgery

We start with a brief account of codimension 1 CW surger: and the related algebraic K-theory.

A codimension q CW pair (X, Y) is finite if X is a finite CW complex.

A homotopy equivalence of finite $C W$ complexes $f: M \longrightarrow \sim$ has a Whitehead torsion $t(f) \in W h\left(\pi_{I}(X)\right)$. Two such homotopy equivalences $f: M \longrightarrow \sim X, f^{\prime}: M^{\prime} \leadsto X$ are concordant if $f^{-1} f: M \longrightarrow M^{\prime}$ is a simple homotopy equivalence, that is if $\tau(f)=\tau\left(f^{\prime}\right) \in W h\left(\pi_{1}(X)\right)$.

Let (X, Y) be a finite codimension $q C W$ pair, so that

$$
X=E(\xi) \cup_{S(\xi)^{2}}
$$

with $\xi: Y \longrightarrow B G(q)$. A homotopy equivalence $f: M \longrightarrow X$ Erom a finite $C W$ complex M is split along $Y \subset X$ if f is concordant to a homotopy equivalence (also denoted by f) with a decomposition

$$
f=g^{\prime} \cup h: M=E(v) \cup_{S(v)} P \longrightarrow x=E(\xi) \cup_{S(\xi)^{2}}
$$

such that the restrictions

$$
\begin{aligned}
& \mathrm{g}=\mathrm{f} \mid: N=\mathrm{f}^{-1}(\mathrm{Y}) \longrightarrow \mathrm{Y} \\
& \mathrm{~h}=\mathrm{f} \mid: \mathrm{P}=\mathrm{f}^{-1}(\mathrm{Z}) \longrightarrow \mathrm{Z}
\end{aligned}
$$

are both homotopy equivalences, where

$$
v: N \longrightarrow Y \xrightarrow{g} \mathrm{~V} \xrightarrow{\xi}(q)
$$

and such that (M, N) is a finite codimension q CW pair.
A codimension q CW pair (X, Y) is connected if X and Y (but not necessarily Z) are connected $C W$ complexes. We shall be mainly concerned with splitting obstruction theory for connected pairs.

The splitting obstruction theory for finite connected codimension 1 CW pairs (X, Y) divides into three cases:
A) Y is 2 -sided in X (i.e. ξ is trivial) and the complement Z is disconnected, with components $\mathrm{z}_{1}, \mathrm{Z}_{2}$ say, so that

$$
\begin{aligned}
X & =Y \times D^{1} U_{Y} \times S^{o\left(Z_{1} \sqcup Z_{2}\right)} \\
(& \left.=Z_{1} \cup_{Y} Z_{2} \text { adding collars to } Z_{1}, Z_{2}\right)
\end{aligned}
$$

The fundamental group of X is the free product with amalgamation

$$
\pi_{1}(X)=\pi_{1}\left(Z_{1}\right) *_{\pi_{1}}(Y) \pi_{1}\left(Z_{2}\right)
$$

determined by the maps $i_{1}: \pi_{1}(Y) \longrightarrow \pi_{1}\left(Z_{1}\right), i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}\left(Z_{2}\right)$ induced by the inclusions $Y \longleftrightarrow Z_{1}, Y \longleftrightarrow Z_{2}$.
B) Y is 2 -sided in X and the complement Z is connected, so that

$$
X=Y \times D^{1} u_{Y \times S^{0} Z}
$$

The fundamental group of X is the HNN extension

$$
\pi_{1}(X)=\pi_{1}(Z) *_{\pi_{1}}(Y)\{t\}
$$

determined by the maps $i_{1}, i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}(Z)$ induced by the inclusions $Y \times\{+1\} \longrightarrow Z, Y \times\{-1\} \longrightarrow Z$.
C) Y is l-sided in X (i.e. E is non-trivial).

Actually, the codimension 1 CW splitting obstruction theory has only been worked out in the two-sided cases A) and B), under the additional hypothesis that the maps i_{1}, i_{2} are injective. Following the results in special cases of Higman [1], Bass, Heller and Swan [1], Stallings [2], Gersten [1], Farrell and Hsiang [2], Casson [1], waldhausen [2],[3] obtained a very
general splitting theorem in the algebraic K-theory of such cases, as follows. There are defined higher/lower whitehead groups $W_{*}(x)$ for any space X, to $f i t$ into an exact sequence of abelian groups

$$
\ldots \longrightarrow H_{n}(x ; K) \longrightarrow K_{n}\left(\mathbb{Z}\left[r_{1}(x)\right]\right) \longrightarrow W h_{n}(x) \longrightarrow H_{n-1}(x ; \underline{\underline{K}}) \longrightarrow \ldots \text { (r }
$$

with $\underset{=}{ }$ the spectrum of the algebraic K-theory of \mathbb{Z}, such that $\pi_{*}(\underline{K})=K_{*}(\mathbb{Z})$. (Note the analogy with the exact sequence used to define the δ-groups $\ell_{*}(x)$ in $\left.\S 7.1\right)$. The higher/lower

Whitehead groups of a group n are the higher/lower Whitehead groups of the Eilenberg-MacLane space $K(\pi, 1)$

$$
W h_{\star}(\pi)=W h_{\star}(K(\pi, 1)),
$$

with $\mathrm{Wh}_{\mathrm{O}}(\pi)=\widetilde{\mathrm{K}}_{\mathrm{O}}(\mathbb{Z}[\pi])$ the reduced projective class group of the group r ing $\mathbb{Z}\{\pi\}$ and $W_{1}(\pi)=W h(\pi)=\widetilde{K}_{1}(\mathbb{Z}\{\pi\}) /\{ \pm \pi\}$ the usual Whitehead group of π. For a finite connected codimension 1 CW pair (X, Y) of type $\left\{\begin{array}{l}A) \\ B)\end{array}\right.$ with the maps i_{1}, i_{2} one-one there are defined exotic K-groups $\widetilde{\mathrm{Nil}_{\star}}(\Phi)$ of nilpotent objects depending on the pushout square of groupoids

with ∇ the connected groupoid with two vertices and trivial vertex groups (which is such that $W_{*}(\pi \times \nabla)=W_{*}(\pi)$ for any group π). There are defined splít surjections $W_{\star}(\pi) \cdots \cdots \mathcal{N i I}_{\star}(\phi)$ which fit into an exact sequence of abelian groups $(\pi<\pi(X))$

The two main ingredients of the proof of this splitting theore were:
i) the translation into a generalized Higman linearizatj trick of the geometric transversality argument in the CW cater by which every homotopy equivalence of finite CW complexes $f: M \longrightarrow X$ can be made concordant to a map of codimension 1 CW pairs

$$
f:(M, N) \longrightarrow(X, Y),
$$

i.e. such that $\left(M, N=f^{-1}(Y)\right)$ is a codimension l CW pair with

$$
f=g^{!} \cup h: M=E(v) \cup S(v)^{p} \longrightarrow X=E(\xi) \cup S(\varepsilon)^{Z}
$$

involving the restrictions

$$
\begin{aligned}
\mathrm{g}=\mathrm{f} \mid: \mathrm{N} \\
\mathrm{~h}=\mathrm{f} \mid: \mathrm{P}=\mathrm{f}^{-1}(Z,) \longrightarrow \mathrm{Y} \\
\longrightarrow \mathrm{Z}
\end{aligned}
$$

and the pullback

$$
v: N \longrightarrow Y \longrightarrow B G(1) \quad(\varepsilon=E)
$$

ii) an analysis in terms of nilpotent objects of the obstruction to further deforming the map $f:(M, N) \rightarrow-\longrightarrow(X, Y)$ to one for which g and h are homotopy equivalences, i.e. to splitting $f: M \longrightarrow X$ along $Y \subset X$, by a finite sequence of "cell exchange" $C W$ surgeries on N inside M.

A homotopy equivalence of finite $C W$ complexes $f: M \longrightarrow X$ (with ξ trivial and i_{1}, i_{2} injective) can be split along $Y \subset X$ if and only if
$\tau(f) \epsilon \operatorname{ker}\left(\mathrm{Wh}\left(\pi_{1}(\mathrm{X})\right) \longrightarrow \tilde{\mathrm{K}}_{\mathrm{O}}\left(\mathrm{ZZ}\left[\pi_{1}(\mathrm{Y})\right]\right) \oplus \widetilde{\mathrm{Ni}}_{1}(\Phi)\right)$

$$
=\operatorname{im}\left(\operatorname{Wh}\left(\pi_{1}(z)\right) \longrightarrow \operatorname{Wh}\left(\pi_{1}(x)\right)\right) \leq \operatorname{Wh}\left(\pi_{1}(x)\right) .
$$

If $f=g^{!} \cup h$ is split along $Y \subset X$ then $T(f)$ is the image of $\tau(h) \in W_{h}\left(\pi_{l}(2)\right)$. In fact, $\tilde{N i I}_{\star}(\phi)=0$ in many cases, and $W_{\star}(\pi)=0$ for any infinite torsion-free group π built up out of the trivial group \{l\} by successive free products with amalgamation and/or HNN extensions (e.q. $\pi=\mathbb{Z}$). In particular, the fundamental groups of irreducible sufficiently large 3-manifolds (the "Haken manifolds") are of this type - it will be recalled from the introduction to Waldhausen [3] that the original motivation for this splitting theorem was the absence of whitehead torsion in the earlier result of Waldhausen [1] that every homotopy equivalence of such 3 -manifolds is homotopic to a homeomorphism.

We now turn to the codimension 1 manifold splitting obstruction theory.

Let (X, Y) be a connected ($n, n-1$)-dimensional geometric Poincaré pair. The obstruction theory for splitting $s-t r i a n g u l a t i o n s f: M \longrightarrow X$ along $Y \subset X$ divides into the same three cases as the codimension 1 CW splitting obstruction theory:
A) Y is 2 -sided in X and the complement Z is disconnected, so that

$$
z=Z_{1} \sqcup z_{2}, \quad X=z_{1} \cup_{Y} Z_{2}, \quad \pi_{1}(X)=\pi_{1}\left(Z_{1}\right) *_{\pi_{1}}(Y)^{\pi_{1}}\left(Z_{2}\right) .
$$

Codimension 1 splitting obstruction theory for A) was first studied by Browder [1] in the simply-connected case

$$
\pi_{1}(X)=\pi_{1}(Y)=\pi_{1}\left(Z_{1}\right)=\pi_{1}\left(Z_{2}\right)=\{1\},
$$

for which every s-triangulation $f: M \longrightarrow X$ can be split along $Y \subset X$, at least if $n \geqslant 6$. Lee [1] obtained such a splitting theorem in some further special cases. The expression for the splitting obstruction with arbitrary (X, Y) of type A) as an element

$$
s(€, Y) \in L S_{n-1}(\Phi)
$$

of a geometrically defined LS-group is due to wall [4,§ll]. Cappell [i] ($1 \leqslant i \leqslant 9$) has made an extensive study of the obstruction theory for A) in the case when the maps $i_{1}: \pi_{1}(Y) \longrightarrow \pi_{1}\left(Z_{1}\right), i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}\left(Z_{2}\right)$ are injective, introducing exotic algebraic L-aroups UNil ${ }_{\star}(\$)$ of nilpotent objects such that

$$
I S_{n-1}(\phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I\right) \oplus U N i l_{n+1}(\phi)
$$

with

$$
I=\operatorname{ker}\left(\binom{i_{1}}{i_{2}}: \operatorname{Wh}\left(\pi_{1}(Y)\right) \cdots \operatorname{Wh}\left(\pi_{1}\left(Z_{1}\right)\right) \oplus \operatorname{Wh}\left(\pi_{1}\left(Z_{2}\right)\right)\right) \subseteq \text { Wh }\left(\pi_{1}(Y)\right.
$$

and defining split surjections $\left.L_{n+1}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right) \longrightarrow$ UNil $_{n+1}(\Phi)$ (geometrically) to fit into an exact sequence

$$
\begin{aligned}
\cdots \longrightarrow & \left.\left.L_{n+1}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right) \longrightarrow L_{n}^{I}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right) \text { ©UNi } I_{n+1}(\Phi) \\
& \left(\begin{array}{cc}
i_{1} & 0 \\
i_{2} & 0
\end{array}\right) \\
& \\
& \left.\cdots L_{n}\left(\mathbb{Z} \mid \pi_{1}\left(Z_{1}\right)\right]\right) \oplus L_{n}\left(\mathbb{Z}\left[\pi_{1}\left(Z_{2}\right)\right]\right) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)
\end{aligned}
$$

There is a parallel splitting obstruction theory ror h-triangulations, with

$$
L S_{n-1}^{h}(\Phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right) \notin U N i 1_{n+1}^{h}(\Phi)
$$

$$
\begin{aligned}
I^{h}=\operatorname{ker}\left(\binom{i_{1}}{i_{2}}: \widetilde{K}_{O}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)\right. & \longrightarrow \tilde{K}_{O}\left(\mathbb{Z}\left[\pi_{1}\left(Z_{1}\right)\right]\right) \oplus \widetilde{K}_{O}\left(\mathbb{Z}\left[\pi_{1}\left(Z_{2}\right)\right]\right): \\
& \subseteq \widetilde{K}_{O}\left(\mathbb{Z}\left\{\pi_{1}(Y)\right]\right)
\end{aligned}
$$

and the corresponding exact sequence involving L^{h}-groups. IThere is also a parallel splitting obstruction theory for p-trianqulations, as usual). In fact, Cappell showed that in many cases $\left\{\begin{array}{l}L S_{\star-1}(\Phi)=0 \\ L S_{\star-1}^{h}(\Phi)=0\end{array}\right.$ by geometrically proving codimension 1 splitting theorems, in which case the above sequences are quadratic L-theory Mayer-Vietoris sequences of the general type considered in $\$ 6.2$. We shall now use the algebraic characterization of the LS-groups given in $\$ 7.5$ to provide an algebraic connection between such splitting theorems, Mayer-Vietor is sequences, and the decompositions $\left\{\begin{array}{l}L S_{\star-1}(\phi)=\hat{H} *\left(Z_{2} ; I\right) \oplus \text { UNil }{ }_{\star+1}(\phi) \\ L S_{\star-1}^{h}(\phi)=\hat{H}^{\star}\left(\mathbb{Z}_{2} ; I^{h}\right) \oplus \text { UNi } 1_{\star+1}^{h}(\phi)\end{array}\right.$.

Proposition 7.6.1 A Let (X, Y) be a connected codimension 1 CW pair of type A), with associated pushout square of fundamental groupoids

and let θ be the pushout square of rings with involution

i) The LS-groups of Φ are naturally isomorphic to the triad L-groups of $\mathbb{Z}[\Phi]$

$$
L S_{n-1}(\phi)=L_{n+1}(\mathbb{Z}[\phi]) \quad(n \in \mathbb{Z})
$$

ii) The LS-groups of ϕ are also naturally isomorphic to the triad L-groups of θ

$$
L S_{n-1}(\Phi)=L_{n+1}(\theta) \quad(n \in \mathbb{Z})
$$

Proof: i) This identification (which was first observed by Wall [4, Cor. 12.4 .1$]$) is immediate from the definition of the LS-groups on noting that the transfer maps are given by

$$
\begin{aligned}
& p \xi^{!}: I_{n}\left(\mathbb{Z}\left[\pi_{1}(Y) \times \nabla\right]\right)= L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right)\right) \\
& \longrightarrow L_{n+1}\left(\mathbb{Z}\left[\pi_{1}\left(Z_{1}\right) \cup \pi_{1}\left(Z_{2}\right)\right] \longrightarrow \mathbb{Z}\left(\pi_{1}(X)\right]\right) ; \\
& Y\left(0,\left(i_{1} Y,-i_{2} y\right)\right) \quad(n \in \mathbb{Z}) .
\end{aligned}
$$

Alternatively, it may be deduced from the braid of
Proposition 7.2.1 iii), sinen $L N_{\star}(\pi \cup \pi \longrightarrow \pi \times V, w)=0\left(\pi=\pi_{1}{ }^{\prime}\right.$
ii) This identification (which is also originally due to Wall (4,p.138]) follows from a comparison of the notion of algebraic Poincare splitting used to define the triad L-groups in $\$ 6$ with the alqebraic Poincare splitting used to qive an algebraic characterization of the LS-groups in $\$ 7.5$, as follows.

To conform with the terminology of $\oint 6$ write the square θ as

The triad L-qroup $L_{n+1}(\theta)$ was defined in $\$ 6.1$ to be the cobordism qroup of ($n+1$)-dimensional quadratic Poincarétriads ($x ; z_{1}, z_{2} ; y$) over θ, consisting of an ($n+1$)-dimensional quadratic Poincare pair $(x, \partial x)$ over $A^{\prime}=\mathbb{Z}\left\{\pi_{1}(x)\right]$ such that the boundary Ax is Poincaré split with respect to θ

$$
\partial x=A^{\prime} \otimes_{B_{1}} z_{1} \cup_{A^{\prime} \otimes_{A}} Y^{A^{\prime} \otimes_{B_{2}}\left(-z_{2}\right)}
$$

for some n - dimensional quadratic Poincaré pairs ($\left.z_{k}, y\right)(k=1,2)$ over $i_{k}: A=Z Z\left[\pi_{1}(Y)\right] \longrightarrow B_{k}=\mathbb{Z}\left\{\pi_{1}\left(Z_{k}\right)\right]$. By the relative version of the alqebraic normal transversality of Proposition 7.5.1 i) it can be shown that every such triad is cobordant to one with the pair $(x, y x)$ contractible, in which case $\left(y, z_{1} \cup-z_{2}\right)$ is a contractible n-dimensional quadratic Poincaré splitting over Φ in the sense of 57.1 . Now $L S_{n-1}(\$)$ was characterized in Proposition 7.5.l ii) as the cobordism group of such splittings, so that the natural identification is given by

$$
\operatorname{LS}_{\mathrm{n}-\mathrm{I}}(\phi) \longrightarrow \mathrm{L}_{\mathrm{n}+1}(0) ;\left(y, z_{1} \cup-z_{2}\right) \longmapsto \longrightarrow\left(O, z_{1}, z_{2}, Y\right)
$$

[1
In particular, Proposition 7.6.1 A i) identifies the condition $L_{*-1}(4)=0$ for there to be type A) codimension 1 splitting with the condition $L_{*+1}(0)=0$ of Proposition 6.1 .1 il For there to be a Mayer-vietoris exact sequence of quadratic L-groups

$$
\ldots L_{n}(A) \xrightarrow{\binom{i_{1}}{i_{2}}} L_{n}\left(B_{1}\right) \oplus L_{n}\left(B_{2}\right) \longrightarrow L_{n}(A,) \rightarrow L_{n-1}(A) \rightarrow \cdots \quad(n \in \mathbb{Z})
$$

Proposition 7.5 .1 ii) characterizes the type A)
codimension 1 splitting obstruction group for $\left\{\begin{array}{l}s^{-} \\ h-r i a n g u l a t i o n s ~\end{array}\right.$ $\left\{\begin{array}{l}L S_{n-1}(\phi) \\ L S_{n-1}^{h}(\phi)\end{array}\right.$ as the cobordism group of triples (a\{ $\left\{\begin{array}{l}\text { simple } \\ \text { finite }\end{array}(n-1)\right.$-dimensional quadratic Poincaré complex over A $\left(C, \psi \in Q_{n-1}(C)\right)$,
a\{d $\begin{aligned} & \text { simple } \\ & \text { finite }\end{aligned} \quad n$-dimensional quadratic Poincaré pair over B_{1}

$$
\left(j_{1}: B_{1} \otimes_{A} C \longrightarrow D_{1},\left(\delta \psi_{1}, 1 \otimes_{A} \psi\right) \in \Omega_{n}\left(j_{1}\right)\right)
$$

a\{ $\left\{\begin{array}{l}\text { simple } \\ \text { finite }\end{array}\right.$ n-dimensional quadratic Poincaré pair over B_{2}

$$
\left.\left(j_{2}: B_{2} \otimes_{A} C \longrightarrow D_{2},\left(\delta \psi_{2}, 1 \otimes_{A} \psi\right) \in Q_{n}\left(j_{2}\right)\right)\right)
$$

such that the A^{\prime}-module chain map

$$
\left(\begin{array}{ll}
l \otimes_{B} & j_{1} \\
& \otimes_{1} \\
j_{2}
\end{array}\right): A^{\prime} \otimes_{A} C \longrightarrow A^{\prime} \otimes_{B_{1}} D_{1} \oplus A^{\prime} \otimes_{B_{2}} D_{2}
$$

is a $\left\{\begin{array}{c}\text { simple } \\ - \\ \text { chain equivalence, and similarly for } \\ i, s_{n-1}^{p}\end{array}(\Phi)\right.$.

Proposition 7.5 .1 iii) shows that if M is an ($n+1$)-dimensional geometric Poincaré complex the Poincaré splitting obstruction along $Y \subset X=Z_{1} U_{Y} Z_{2}$ of a map $f: M \rightarrow X$ normal transverse at $Y \subset X$ is given by

$$
s^{P}(f, Y)=\left(\sigma_{*}\left(f^{-1}(Y)\right), \sigma_{*}\left(f^{-1}\left(Z_{1}, Y\right)\right), \sigma_{*}\left(f^{-1}\left(Z_{2}, Y\right)\right)\right) \in L S_{n-1}(\Phi) .
$$

Proposition 7.5 .1 iv) shows that if (X, Y) is an ($n, n-1$)-dimension geometric poincare pair (of type A)) the manifold splitting obstruction aleng $Y \subset X$ of an $s-t r i a n g u l a t i o n ~ f: M \longrightarrow X$ topologica transverse at $Y \subset X$ is given by

$$
\begin{array}{r}
s(f, Y)=\left(\sigma_{\star}\left((f, b) \mid: f^{-1}(Y) \longrightarrow Y\right), \sigma_{\star}\left((f, b) \mid: f^{-1}\left(Z_{1}, Y\right) \longrightarrow\left(Z_{1}, Y\right.\right.\right. \\
\left.\sigma_{\star}\left((f, b) \mid: f^{-1}\left(Z_{2}, Y\right) \longrightarrow\left(Z_{2}, Y\right)\right)\right) \in L S_{n-1}(\Phi)
\end{array}
$$

We shall now interpret in terms of our theory Cappell's
decompositions

$$
\left\{\begin{array}{l}
L S_{n-1}(\Phi)^{*}=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I\right) \oplus U N i 1_{n+1}(\Phi) \\
L S_{n-1}^{h}(\Phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right) \oplus U N i 1_{n+1}^{h}(\Phi)
\end{array}\right.
$$

for a codimension 1 CW pair (X, Y) of type A) with the maps $i_{1}: \pi_{1}(Y) \longrightarrow \pi_{1}\left(Z_{1}\right), i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}\left(Z_{2}\right)$ injective. As before, let

$$
A=\mathbb{Z}\left\{\pi_{1}(Y)\right], B_{k}=\mathbb{Z}\left\{\pi_{1}\left(2_{k}\right)\right](k=1,2) \quad, A \cdot=\mathbb{Z}\left[\pi_{1}(X)\right] .
$$

The induced morphisms of rings with involution $i_{1}: A \longrightarrow B_{1}$, $i_{2}: A \longrightarrow B_{2}$ are also injective, and A ' is the free product of B_{1} and B_{2} amalgamated along A

$$
A^{\prime}=B_{1}{ }^{*} A^{B}{ }_{2}
$$

The (A, A)-bimodules defined by

$$
\widetilde{B}_{k}=\mathbb{Z}\left[\pi_{1}\left(Z_{k}\right)-i_{k} \pi_{1}(Y)\right] \quad(k=1,2)
$$

are such that

$$
B_{k}=A \oplus \ddot{B}_{k},
$$

so that A^{\prime} can be expressed as a direct sum of (A, A-bimodules

$$
A^{\prime}=A \oplus \widetilde{B}_{1} \oplus \widetilde{\mathrm{~B}}_{2} \oplus\left(\widetilde{\mathrm{~B}}_{1} \otimes_{\mathrm{A}} \widetilde{\mathrm{~B}}_{2}\right) \oplus\left(\widetilde{\mathrm{B}}_{2} \otimes_{\mathrm{A}} \widetilde{\mathrm{~B}}_{1}\right) \oplus\left(\widetilde{\mathrm{B}}_{1} \otimes_{A} \widetilde{\mathrm{~B}}_{2} \otimes_{A} \widetilde{\mathrm{~B}}_{1}\right) \oplus\left(\widetilde{\mathrm{B}}_{2} \otimes_{\mathrm{A}} \widetilde{\mathrm{~B}}_{1} \otimes_{A} \widetilde{\mathrm{~B}}_{2}\right) \oplus \ldots .
$$

Before dealing with the elements of $L S_{n-1}(\Phi)$ and $L S_{n-1}^{h}(\Phi)$ let us consider a triple

$$
c=\left((C, \psi),\left(j_{1}: B_{1} \otimes_{A} C \longrightarrow D_{1},\left(\delta \psi_{1}, 1 \otimes_{A} \psi\right)\right),\left(j_{2}: B_{2} \otimes_{A} C \longrightarrow D_{2},\left(\delta \psi_{2}, 1 \otimes_{A}\right.\right.\right.
$$

consisting of a projective ($n-1$)-dimensional quadratic Poincaré complex $\left(C, \psi \in Q_{n-1}(C)\right)$ over A together with projective null-cobordisms $\left(j_{k}: B_{k} \otimes_{A} C \longrightarrow D_{k},\left(\delta \psi_{k}, l \otimes_{A}\right) \in Q_{n}\left(j_{k}\right)\right)$ over B_{k} of $B_{k} \|_{A}(C, \psi)(k=1,2)$ such that the A^{\prime}-module chain map

$$
\binom{1 \otimes_{B_{1}}^{j} 1}{1 \otimes_{B_{2}}^{j}}: A^{\prime} \otimes_{A} C \longrightarrow A^{\prime} \otimes_{B_{1}} D_{1} \oplus A^{\prime} \otimes_{B_{2}} D_{2}
$$

is a chain equivalence, i.e. a representative of an element $c \in L S_{n-1}^{p}(\Phi)$ of the projective LS-group. The restriction of the B_{k}-action to $A \subset B_{k}$ allows $j_{k} \in \operatorname{Hom}_{B_{k}}\left(B_{k} \Phi_{A} C, D_{k}\right)$ to be reqarded as an A-module morphism

$$
i_{k}^{!} j_{k}: C \oplus\left(\widetilde{B}_{k} \mathscr{O}_{A} C\right) \longrightarrow i_{k}^{!} D_{k} \quad,
$$

and to regard $\left(j_{k}: B_{k} \otimes_{A} C \longrightarrow\left(\delta \psi_{k}, l \otimes_{A} \psi\right)\right)$ as an n-dimensional quadratic Poincaré "cobordism" over A from (C, ψ) to $B_{k} ⿴_{A}(C,-\psi)$

$$
c_{k}=\left(i_{k}^{!} j_{k}: C \oplus\left(\widetilde{B}_{k} \otimes_{A} C\right) \longrightarrow i_{k}^{!} D_{k},\left(i_{k}^{!} \delta \psi_{k}, \psi \oplus\left(1 \otimes_{A} \psi\right)\right) \in Q_{n}\left(i_{k}^{!} j_{k}\right)\right)(k=1,
$$

The quotation marks refer to the possibility that $i_{k}{ }^{\pi} l^{(Y)}$ may be a subgroup of infinite index in $\pi_{1}\left(Z_{k}\right)$, in which case \widetilde{B}_{k} is an infinitely generated free (A, A)-bimodule and the projective A-module chain complexes $\widetilde{B}_{k} \mathcal{V}_{A} C,{ }_{i}!_{k} D_{k}$ are not finite-dimensional in the sense of $\mathbf{S l}$.l (i.e. not finitely generated). The quadratid Poincaré "cobordism" category defined using possibly infinitely generated projective chain complexes enjoys all the formal
properties of the quadratic Poincaré cobordism category of sl defined using finite-dimensional chain complexes; in particular, the glueing of "cobordisms" may be defined as in $\$ 1.7$. Use this glueing operation to define two n-dimensional quadratic poincaré "null-cobordisms" over A of (C, ψ)

$$
\begin{aligned}
& =\left(j_{+}: C \longrightarrow D_{+},\left(\delta \psi_{+}, \psi\right) \in Q_{n}\left(j_{+}\right)\right) \\
& c_{-}=c_{1} \cup \widetilde{B}_{1} \otimes_{A}(C, \psi) \widetilde{B}_{1} \otimes_{A} c_{2} \cup_{\tilde{B}_{1}} \otimes_{A} \widetilde{B}_{2} \mathbb{Z}_{A}(C, \psi) \widetilde{B}_{1} \otimes_{A} \widetilde{B}_{2} \otimes_{A} c{ }_{1} \cup \ldots \\
& =\left(j_{-}: C \longrightarrow D_{-},\left(\delta \psi_{-}, \psi\right) \in Q_{n}\left(j_{-}\right)\right)
\end{aligned}
$$

such that the A-module chain complex

$$
C\left(\binom{j_{+}}{j_{-}}: C \longrightarrow D_{+} D_{-}\right)=C\left(\binom{1 \otimes_{B_{1}} j_{1}}{1 \otimes_{B_{2}} j_{2}}: A^{\prime} \otimes_{A} C \longrightarrow A^{\prime} \otimes_{B_{1}} D_{1}^{\left.\oplus A^{\prime} \otimes_{B_{2}} D_{2}\right)}\right.
$$

is chain contractible, restricting the action of A^{\prime} on the right hand side to $A \subset A^{\prime}$. It follows that the A-module chain map

$$
\binom{j_{+}}{j_{-}}: c \longrightarrow D_{+} \oplus D_{-}
$$

is a chain equivalence, and hence that the A-module chain complexes D_{+}, D_{-}have the chain homotopy types of n-dimensional A-module chain complexes. Thus up to homotopy equivalence c_{+}and c_{-}are qenuine quadratic Poincaré null-cobordisms over A of (C, ψ). The union of c_{+}and c_{-}can be written as

$$
\begin{aligned}
& C_{+}{ }^{\nu}(C, \psi)^{C_{-}}=A^{\prime} \otimes_{B_{1}}\left(j_{1}: C \rightarrow D_{1},\left(\delta \psi_{1}, l \otimes_{A} \psi\right)\right) \\
& U_{A^{\prime} \otimes_{A}}(C, \psi) A^{\prime} \otimes_{B_{2}}\left(j_{2}: C \longrightarrow D_{2},\left(\delta \psi_{2}, 1 \otimes_{A} \psi\right)\right) \text {, }
\end{aligned}
$$

and so can be regarded as a contractible n-dimensional quadratic Poincare complex over N^{\prime}. Also, the union can be expressed as
a union of null-cobordisms over ${ }^{B_{1}}$ of $B_{1} \mathbb{A}_{A}(C, \psi)$
so that the B_{1}-module chain map

$$
\binom{j_{1}}{1 \otimes_{A} j_{+}}: B_{1} \otimes_{A} C \longrightarrow D_{1} \oplus B_{1} \otimes_{A} D_{+}
$$

is a chain equivalence. Similarly, over B_{2}

$$
c_{+} v_{(C, \psi)^{c_{-}}}=c_{2} v_{B_{2} \otimes_{A}(c, \psi)^{c_{-}}}
$$

so that the B_{2}-module chain map

$$
\binom{j_{2}}{1 \otimes_{A} j_{-}}: B_{2} \otimes_{A} C \longrightarrow D_{2} \oplus B_{2} \otimes_{A} D_{-}
$$

is also a chain equivalence. Thus in the (reduced) projective class groups

$$
\begin{aligned}
{[C]=\left[D_{+}\right]+\left[D_{-}\right] } & =\left[D_{+}\right]+(-)^{n-1}\left[D_{+}\right]^{*} \\
& =\left[D_{-}\right]+(-)^{n-1}\left[D_{-}\right]^{*} \in \widetilde{K}_{O}(A) \\
{\left[D_{1}\right] } & =B_{1} Q_{A}\left[D_{-}\right] \in \widetilde{K}_{O}\left(B_{1}\right) \\
{\left[D_{2}\right] } & =B_{2} \otimes_{A}\left[D_{+}\right] \in \widetilde{K}_{O}\left(B_{2}\right) .
\end{aligned}
$$

Define an ($n+1$)-quadratic Poincaré relative null-cobordism of the n-dimensional quadratic Poincaré pair over A

$$
\left((1 \quad 1): C \oplus C \longrightarrow C,(0, \psi \oplus-\psi) \in Q_{n}((11))\right)
$$

(i.e. an $(n+1)$-dimensional quadratic Poincaré triad over A in the sense of $\$ 1.3$) by

and define also an ($n+1$)-dimensional quadratic Poincaré null-cobordism of the n-dimensional quadratic Poincare pair over B_{k}

$$
\left(j_{k}: B_{k} \otimes_{A} C \longrightarrow D_{k},\left(\delta \psi_{k}, 1 \otimes_{A} \psi\right) \in O_{n}\left(j_{k}\right)\right) \quad(k=1,2)
$$

by

$$
\begin{aligned}
& B_{k} \otimes_{A} C \xrightarrow{1 \otimes_{A}^{j}(-)^{k+1}} B_{k} \otimes_{A} D(-)^{k+1}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left(0, \delta \psi_{k}, 1 \otimes_{A} \delta \psi_{(-)}{ }^{k+1}, 1 \otimes_{A} \psi\right) \in Q_{n+1}\left(\Gamma_{B_{k}}\right)\right)
\end{aligned}
$$

The union of the induced cobordisms over A^{\prime} is an ($n+1$)-dimensio quadratic Poincaré triad over A^{\prime} which can be expressed up to homotopy equivalence as

$$
\begin{aligned}
& A^{\prime} \otimes_{B_{1}} b_{1} \cup A^{\prime} \otimes_{A} D_{+} A^{\prime} \otimes_{A} a \cup_{A^{\prime}} \otimes_{A} D_{-} A^{\prime} \otimes_{B_{2}} b_{2} \\
& \left.=\left.\left.1\right|_{0} ^{0} \Gamma_{A^{\prime}}\right|_{A^{\prime}} ^{0} \quad,\left(\psi_{A}, 0,0,0\right) \in Q_{n+1}\left(\Gamma_{A},\right)\right),
\end{aligned}
$$

defining an $(n+1)$-dimensional quadratic Poincaré complex over A^{\prime}

$$
c_{L}=\left(A^{\prime} \otimes_{A} S C, \psi^{\prime} \in Q_{n+1}\left(A^{\prime} \otimes_{A} S C\right)\right)
$$

The construction of c_{L} is the algebraic analogue of the "unitary nilpotent cobordism construction" of Cappell 17, §II.l

If $[C]=0 \in \widetilde{K}_{O}(A)$ and $\left[D_{k}\right]=0 \in \widetilde{K}_{O}\left(B_{k}\right)(k=1,2)$, so that $c \in L S_{n-1}^{h}(\Phi)$, then

$$
c_{L} \in I_{n+1}^{h}\left(A^{\prime}\right)
$$

Furthermore, the projective class $\left[D_{+}\right] \in \widetilde{K}_{O}(A)$ is such that

$$
\left[D_{+}\right]=(-)^{n}\left[D_{+}\right]^{*} \in I^{h} \subseteq \widetilde{K}_{o}(A)
$$

and the element defined by

$$
c_{k}=\left[D_{+}\right] \in \hat{\mathrm{H}}^{\mathrm{n}}\left(\mathbb{Z}_{2} ; \mathrm{I}^{\mathrm{h}}\right)
$$

is such that the natural map

$$
\hat{H}^{n+1}\left(\mathbb{Z}_{2} ; \operatorname{Wh}\left(\pi_{1}(X)\right)\right) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right) \oplus \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; \mathcal{N i l}_{1}(\Phi)\right)
$$

sends the element

$$
\left.\tau(c)=\tau\binom{1 \otimes_{B_{1}}^{j} 1}{1 \otimes_{B_{2}} j_{2}}: A^{\prime} \otimes_{A} C \longrightarrow A^{\prime} \otimes_{B_{1}} D_{1} \oplus A^{\prime} \otimes_{B_{2}} D_{2}\right) \in W h\left(\pi \pi_{1}(x)\right)
$$

(for arbitrary choices of bases for C, D_{1}, D_{2} which may be assum to be free) to the element $\left(c_{K}, \tau\left(c_{L}\right)\right)$.

If C is a based $f . g$. free A-module chain complex and $D_{k}(k=1$, is a based f.g. free B_{k}-module chain complex, and all the chain equivalences appearing in c are simple so that $c \in L S_{n-1}$ (then

$$
c_{L} \in I_{n+1}\left(\Lambda^{\prime}\right)
$$

and there is defined an element

$$
c_{K}=\tau\left(\mathrm{f}_{+}: \mathrm{C} \longrightarrow \mathrm{D}_{+},\left(\delta \psi_{+}, \psi\right)\right) \in \hat{H}^{n}\left(\mathbb{Z}_{2} ; I\right) .
$$

The map

$$
L S_{n-1}^{q}(\Phi) \longrightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{q}\right) ; c r c_{K} \quad\left(q=s, h \quad I^{s} \equiv I\right)
$$

is a naturally split surjection: the construction of the map $\hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{q}\right) \longrightarrow L_{n-1}^{q}(A)$ appearing in the exact sequence of Proposition 1.10.1

$$
\ldots \longrightarrow L_{n}^{I^{q}}(A) \longrightarrow \hat{H}^{n}\left(Z_{2}: I^{q}\right) \longrightarrow L_{n-1}^{q}(A) \longrightarrow L_{n-1}^{I^{q}}(A) \longrightarrow
$$

readily extends to define a natural riqht inverse

$$
\hat{\mathrm{H}}^{\mathrm{n}}\left(\mathbb{Z}_{2} ; \mathrm{I}^{\mathrm{q}}\right) \longmapsto \mathrm{LS}_{\mathrm{n}-1}^{\mathrm{q}}(弓)
$$

From the present point of view it is convenient to define the unil-groups of Cappell [4] by

$$
\operatorname{uNi1}_{n+1}^{q}(\phi)=\operatorname{ker}\left(\operatorname{LS}_{n-1}^{q}(\phi) \rightarrow \hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{q}\right)\right) \quad(q=s, h n \in \mathbb{Z})
$$

(In Ranicki fll] the UNil-groups will be expressed as the cobordism qroups of quadratic poincaré complexes with a nilpotent structure, generalizing their original formulation in terms of UNil-forms). The map

$$
\text { UNil }{ }_{n+1}^{q}(\phi) \longrightarrow L_{n+1}^{q}\left(A^{\prime}\right) ; c \longmapsto c
$$

is a naturally split
injection $L_{n+1}^{q}\left(A^{\prime}\right) \longrightarrow L S_{n-1}^{q}(\phi)$ maps onto UNil $n_{n+1}^{q}(\phi) \subseteq L S_{n-1}^{q}(\phi)$, defining a left inverse. Thus every element ce LS $\mathrm{S}_{\mathrm{n}-1}^{\mathrm{q}}(\phi)$ can be expressed as

$$
\begin{gathered}
c=\left(c_{K}, c_{L}\right) \in L S_{n-1}^{q}(\Phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{q}\right) \oplus U N i l_{n+1}^{q}(\Phi) \\
(q=s, h) .
\end{gathered}
$$

In particular, if $c=S^{P}(f, Y) \in L S_{n-1}^{h}(\phi)$ is the Poincare splitting obstruction along $Y \subset X$ of a map $f: M \rightarrow X$ from a finite ($n+1$)-dimensional geometric Poincaré complex M then $c_{K} \in \hat{A}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right)$ is the image under the natural map

$$
\hat{n}^{n+1}\left(\pi_{2} ; w h\left(\pi_{1}(x)\right)\right) \longrightarrow \hat{\mathrm{H}}^{n}\left(\mathbb{Z}_{2} ; 1^{h}\right)
$$

of the element roprosented by the Whitehead torsion of M

$$
\tau(M)=\tau\left([M] n-: C(\tilde{M})^{n+1-\star} \longrightarrow C(\tilde{M})\right) \in W h\left(\pi_{1}(M)\right)
$$

(or rather its imaqe $f_{\star} \tau(M) \in W h\left(\pi_{1}(X)\right)$), with \widetilde{M} the universal cover. If (X, Y) is a finite $(n, n-1)$-dimensional geometric Poincaré pair (of type A) with i_{1}, i_{2} injective) and $c=s(f, Y) \in L, S_{n-1}^{h}(\phi)$ is the splitting obstruction along $Y \subset x$ of an h-triangulation $f: M \xrightarrow{\rightarrow} x$ then $c_{K} \in \hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right)$ is the image under the natural map of the element $\tau(c)=\tau(f) \in \hat{H}^{n+1}\left(\mathbb{T}_{2} ; W h\left(\pi_{1}(X)\right)\right)$ represented by the Whitehead torsion $T(f) \in W h\left(\pi_{1}(X)\right)$. Furthermore, in this case $c_{K} \in \hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right)$. is the obstruction to modifying c (resp. f) by a finite sequence of algebraic (resp. geometric) "handle exchanges" to a triple c^{\prime} (resp. concordant h-triangulation f') which is cobordant to O (resp. topologically normal bordant to an h-triangulation of X which is split along $Y(X)$, and if $c_{K}=0$ then $c_{L} \in \operatorname{UNil}_{n+1}^{h}(\Phi) \subseteq L_{n+1}^{h}\left(A^{\prime}\right)$ is the surgery obstruction of such an algebraic (resp. geometric) cobordism, which in the geometric case is the Capplll unitary nilpotent cobordism. The decomposition $L S_{n-1}^{q}(\phi)=\hat{H}^{n}\left(Z_{2} ; I^{q}\right)$ ©UNi1 $1_{n+1}^{q}(\Phi) \quad(q=s, h)$ of the LS-groups gives rise to a corresponding decomposition of the L -groups

$$
\left.L_{n+1}^{q}\left(A^{\prime}\right)=L_{n+1}^{T^{q}}\binom{i_{1}}{i_{2}}: A \rightarrow \cdots B_{1} \oplus B_{2}\right) \oplus U N i 1_{n+1}^{q}(\phi) \quad(n \in \mathbb{Z})
$$

with $L_{*}^{I^{q}}\binom{i_{1}}{i_{2}}$, the relative L-qroups appearing in the exact sequence

$$
\begin{aligned}
& \ldots \longrightarrow L_{n+1}^{I^{q}}(A) \xrightarrow{\binom{i_{1}}{i_{2}}} L_{n+1}^{q}\left(B_{1}\right) \oplus L_{n+1}^{q}\left(B_{2}\right) \longrightarrow L_{n+1}^{I^{q}}\left(\binom{i_{1}}{i_{2}}\right) \\
& \cdots I_{n}^{I^{q}}(A) \rightarrow \ldots .
\end{aligned}
$$

Proposition 7.6.2 A Let (X, Y) be a finite codimension 1 CW pair of type A) with i_{1}, i_{2} injective. The exact sequence relating associated free and simple LS-groups

$$
\ldots \longrightarrow W h S_{n}(\Phi) \rightarrow L S_{n-1}(\Phi) \longrightarrow S_{n-1}^{h}(\Phi) \longrightarrow W h S_{n-1}(\phi) \longrightarrow \ldots \text { (n) }
$$

is naturally isomorphic to the direct sum of the exact sequeno

$$
\begin{aligned}
\ldots \longrightarrow \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; I^{h}\right) \oplus \hat{H}^{n}\left(\mathbb{Z}_{2} ; I\right) \xrightarrow{(01)} \xrightarrow{(0} \hat{H}^{n}\left(\mathbb{Z}_{2} ; I\right) \xrightarrow{0} \hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right) \\
\binom{1}{0}
\end{aligned}
$$

and the exact sequence

$$
\begin{aligned}
& \ldots \rightarrow \hat{H}^{n+2}\left(\mathbb{Z}_{2} ; \overparen{N i l}_{1}(\Phi)\right) \rightarrow \mathrm{UNil}_{n+1}(\Phi) \rightarrow \mathrm{UNil}_{n+1}^{h}(\phi) \\
& \cdots \hat{H}^{n+1}\left(2_{2} ; \overparen{N i l}_{1}(\phi)\right) \xrightarrow{\longrightarrow}
\end{aligned}
$$

Similarly for the exact sequence relating the associated proje and free LS-aroups, with \tilde{K}_{O} in place of wh.
Proof: Immediate from the decompositions of the LS-groups and the comparison exact sequence of Proposition 7.5.2.
B) Y is $2-s i d e d$ in X and the complement Z is connected, so that

$$
X=Y \times D^{1} U_{Y \times s^{O Z}, \pi_{1}(X)=\pi_{1}(Z) * \pi_{1}(Y)\{t\} .}
$$

Codimension 1 splitting obstruction theory for B) first appeared in the work of Stallings [1], Browder and Levine [1], Farrel1 [1] and 5iebenmann (1] on the characterization of manifolds which fibre over S^{1}, since a fibre is then a codimension 1 submanifold of type (B). A general result was first obtained by Browder (21, who showed that if (X,Y) is an ($n, n-1$)-dimensional geometric Poincaré pair of type B) with

$$
\pi_{1}(X)=\mathbb{Z}, \pi_{1}(Y)=\pi_{1}(Z)=\{1\}
$$

then every s-triangulation $f: M \longrightarrow X$ can be split along $Y \subset X$, at least if $n \geqslant 6$. The expression for the splitting obstructio with arbitrary (X, Y) of type B) as an element

$$
s(f, Y) \in \operatorname{LS}_{n-1}(\Phi)
$$

is due to Wall $[4, \$ 11]$, the general obstruction theory being the same for B) as for A).

If the maps $i_{1}, i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}(Z)$ are isomorphisms (e.g. if $Y \longrightarrow X \longrightarrow S^{1}$ is a fibre bundle) the automorphism

$$
\alpha=i_{2}^{-1} i_{1}: \pi_{1}(Y) \longrightarrow \pi_{1}(Y)
$$

is such that the group $\pi_{1}(x)$ is the α-twisted extension of $\pi_{1}(Y)$ by \mathbb{Z}

$$
\pi_{1}(X)=\pi_{1}(Y) x_{\alpha} \mathbb{Z},
$$

with

$$
g t=t \alpha(g) \quad\left(g \in \pi_{1}(Y), t=1 \in \mathbb{Z}\right)
$$

The group r ing $\mathbb{Z}\left[\pi_{1}(X)\right]$ is the α-twisted Laurent extension of $\mathbb{Z}\left[\pi_{1}(Y)\right]$

$$
Z Z\left[\pi_{1}(X)\right]=Z Z\left[\pi_{1}(Y)\right]_{\alpha}\left[t, t^{-1}\right],
$$

with

$$
\text { at } \left.=t \alpha(a) \quad\left(a \in \mathbb{Z} \mid \pi_{1}(Y)\right]\right)
$$

and the $w(X)$-twisted involution

$$
\left(\overline{g t^{j}}\right)=w(X)\left(q t^{j}\right)\left(g t^{j}\right)^{-1}=w(Y)(q) t^{-j} q^{-1} \quad\left(q \in \pi_{1}(Y), j\right.
$$

In this case Wall [4, Thm. 12.5] used a generalization of the work of Farrell [1] to identify

$$
\operatorname{LS}_{\mathrm{n}-1}(\Phi)=\hat{H}^{\mathrm{n}}\left(\mathbb{Z}_{2} ; 1\right)
$$

with

$$
I=\operatorname{Wh}\left(\pi_{1}(Y)\right)^{\alpha}=\operatorname{ker}\left(1-\alpha: \operatorname{Wh}\left(\pi_{1}(Y)\right) \rightarrow \operatorname{Wh}\left(\pi_{1}(Y)\right)\right) \subseteq \operatorname{Wh}\left(\pi_{1}\right.
$$

Farrell and Hsiang [1],[3] studied the splitting obstruction theory for h-trianqulations in this case, in effect identifying

$$
L S_{n-1}^{h}(\Phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right)
$$

with

$$
\begin{aligned}
I^{h} & \left.=\widetilde{K}_{\mathrm{O}}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right)^{\alpha} \\
& \left.\left.=\operatorname{ker}\left(1-\alpha: \widetilde{K}_{O}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right) \longrightarrow \widetilde{K}_{O}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right)\right) \subseteq \widetilde{\mathrm{K}}_{\mathrm{O}}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) .
\end{aligned}
$$

In particular, they showed that every s-triangulation $f: M \xrightarrow{\sim} X$ is concordant to one for which $f \mid: f^{-1}(Y) \longrightarrow Y$ is an h-triangulation, i.e. regarded as an h-trianqulation f can be split along $Y \subset X$, at least if $n \geqslant 6$. Shaneson $[1]$ used the Farrell-Hsiang splitting theorem in the case $\alpha=i d .: \pi_{1}(Y) \longrightarrow \pi_{1}(Y)$

$$
\left.\pi_{1}(X)=\pi_{1}(Y) \times \mathbb{Z}, \quad Z_{1} \mid \pi_{1}(X)\right]=\mathbb{Z}\left|\pi_{1}(Y)\right|\left[t, t^{-1} \mid\right.
$$

(e.g. if $X=Y \times S^{l}$) to give a geometric proof of the splitting theorem for the quadratic L-groups of a Laurent extension

$$
\left.L_{n+1}(\mathbb{Z}|\pi \times \mathbb{Z}|)=L_{n+1}(\mathbb{Z}|\pi|) \oplus L_{n}^{h}(\mathbb{Z} \mid \pi]\right) \quad\left(\pi=\pi_{1}(Y)\right),
$$

which was then proved algebraically by Novikov [1] and Ranicki [2]. For arbitrary α the identification $L_{n-1}(\phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I\right)$ is equivalent to the exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \longrightarrow L_{n}^{I}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \xrightarrow{l-\alpha} L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \\
& \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \longrightarrow \cdots(n \in \mathbb{Z})
\end{aligned}
$$

obtained geometrically by Cappell [1] and algebraically by Ranicki [3].

The codimension 1 splitting obstruction theory of Cappell [i] (l $1 \leqslant 9$) includes the case B) with the maps $i_{1}, i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}(Z)$ injective. As for $\left.A\right)$ there are defined exotic algebraic L-groups $\mathrm{UNil}_{\star}(\$)$ of nilpotent objects such that

$$
\operatorname{LS}_{n-1}(\Phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I\right) \oplus \operatorname{UNi} I_{n+1}(\Phi)
$$

with

$$
I=\operatorname{ker}\left(i_{1}-i_{2}: \operatorname{Wh}\left(\pi_{1}(Y)\right) \longrightarrow W h\left(\pi_{1}(Z)\right)\right) \subseteq \operatorname{Wh}\left(\pi_{1}(Y)\right)
$$

and there are defined split surjections $L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right) \longrightarrow U N i l_{n+1}(\Phi)$ (geometrically) to fit into an exact sequence

$$
\begin{aligned}
\left.\cdots \longrightarrow L_{n+1}\left(\mathbb{Z} \mid \pi_{1}(X)\right]\right) \longrightarrow & L_{n}^{I}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \text { ФUNi } 1_{n+1}(\oplus) \\
& \left(i_{1}-i_{2} 0\right)
\end{aligned}
$$

Again, there is a parallel theory for h-triangulations, with

$$
\begin{gathered}
\operatorname{LS}_{n-1}^{h}(\phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; 1^{h}\right) \notin U N i I_{n+1}^{h}(\phi), \\
\left.\left.I^{h}=\operatorname{ker}\left(i_{1}-i_{2}: \widetilde{K}_{O}\left(\mathbb{Z} \mid \pi_{1}(Y)\right]\right) \longrightarrow \widetilde{K}_{O}\left(\mathbb{Z} \mid \pi_{1}(Z)\right]\right)\right) \\
\subseteq \widetilde{K}_{O}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)
\end{gathered}
$$

and similarly for p-triangulations. If the maps $i_{1}, i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}(Z)$ are isomorphisms then UNil $_{\star}^{q}(\phi)=0$ for $q=s, h, p$.

Proposition 7.6.1 Let (X, Y) be a connected codimension 1 $C W$ pair of type $B)$, with associated pushout square of fundamental groupoids

The LS-groups of are naturally isomorphic to the triad L-groups of $\mathbb{Z}|\Phi|$

$$
\left.L S_{n-1}(\phi)=L_{n+1}(\mathbb{Z} \mid \Phi]\right) \quad(n \in \mathbb{Z})
$$

Proof: By analogy with Proposition 7.6.1 A i). The identificati (which was also first observed by Wall [4,Cor.12.4.l]) is immediate from the definition of the LS-groups on noting that the transfer maps in this case are given by

$$
\begin{aligned}
&\left.p \xi: L_{n}\left(\mathbb{Z} \mid \pi_{1}(Y) \times \nabla\right]\right)=L_{n}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right. \\
& \longrightarrow L_{n+1}\left(\mathbb{Z}\left[\pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(X)\right]\right) ; \\
& y \vdash \longrightarrow\left(O, i_{1} Y \oplus-i_{2} y\right) \quad(n \in \mathbb{Z}) .
\end{aligned}
$$

Alternatively, it may be deduced from the braid of Proposition 7.2 .1 iii), since $L N_{\star}(\pi \cup \pi \longrightarrow \pi \times \nabla, w)=0\left(\pi=\pi_{1}\right.$

There is also a case $B)$ version of the identification of Proposition 7.6.1 A i), with an analogous algebraic characterization of the LS-groups, as follows.

Given a codimension 1 CW pair (X, Y) of type B) let

$$
A=Z Z\left[\pi_{1}(Y)\right], \quad B=\mathbb{Z}\left[\pi_{1}(Z)\right], \quad A^{\prime}=\mathbb{Z}\left[\pi_{1}(X)\right],
$$

so that $A^{\prime}=B A_{A}\{t\}$ is the generalized Laurent extension of B determined by the morphisms of rings with involution $i_{1}, i_{2}: A \longrightarrow B$ induced by the group morphisms $i_{1}, i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}$ with t an indeterminate over B such that

$$
\bar{t}=t^{-1}, \quad i_{1}(a) t=t i_{2}(a) \in A^{\prime} \quad(a \in A) .
$$

Let $B_{k}(k=1,2)$ be the (B, A)-bimodule with additive qroup B ar

$$
B \times B_{k} \times A \longrightarrow B_{k} ;(b, x, a) \longmapsto b . x \cdot i_{k}(a)
$$

It follows from Proposition 7.6.1 B_{B} and the algebraic normal transversality of proposition 7.5 .1 ii) that the type B) codimension 1 splittinq obstruction group for $\left\{\begin{array}{l}5- \\ h-\end{array}\right.$ triangulatior

$$
\begin{aligned}
& \left\{\begin{array}{l}
L_{n-1}(\Phi) \\
L S_{n-1}^{h}(\Phi)
\end{array}\right. \text { is the cobordism group of pairs } \\
& \text { (a }\left\{\begin{array}{l}
\text { simple } \\
\text { finite }
\end{array} \text { (} n-1\right. \text {-dimensional quadratic poincaré complex o } \\
& \left(C, \psi \in Q_{n-1}(C)\right) \text {, } \\
& \text { a }\left\{\begin{array}{l}
\text { simple } \\
\text { finite }
\end{array} \text { n-dimensional quadratic Poincaré pair over } B\right. \\
& \left(\left(f_{1} f_{2}\right): B_{1} \otimes_{A} C \oplus B_{2} \otimes_{A} C \longrightarrow D_{1}\left(\delta \psi, 1 \otimes_{i_{1}} \psi \oplus-1 \otimes_{i_{2}} \psi\right) \in Q_{n}\left(f_{1}\right.\right.
\end{aligned}
$$

such that the A^{\prime}-module chain map

$$
1 \otimes f_{1}-t \otimes f_{2}: A^{\prime} \otimes_{A} C \longrightarrow A^{\prime} \otimes_{B} D
$$

is a $\left\{\begin{array}{l}\text { simple } \\ -\end{array}\right.$ chain equivalence, regarding A^{\prime} as an ($\left.A^{\prime}, A\right)$-bin via the composite $A \xrightarrow{i_{1}} B C A$. Similarly for $L S_{n-1}^{p}(\phi)$. Proposition 7.5.1 iii) shows that if M is an ($n+1$)-dimension geometric Poincaré complex the Poincaré splitting obstructior along $Y \subset X=Y \times D^{1} U_{Y} \times S^{O Z}$ of a map $f: M \rightarrow X$ normal transverse at $Y \subset X$ is $g i v e n$ by

$$
s^{P}(f, Y)=\left(\sigma_{\star}\left(f^{-1}(Y)\right), \sigma_{\star}\left(f^{-1}\left(Z, Y \times S^{O}\right)\right)\right) \in \operatorname{LS}_{n-1}(\Phi)
$$

Proposition 7.5.1 iv) shows that if (X, Y) is an ($n, n-1$)-dimen geometric Poincaré pair (of type B)) the manifold splitting obstruction along $Y \subset X$ of an s-triangulation $f: M \xrightarrow{\sim} X$ topologically transverse at $\mathrm{Y} \subset \mathrm{X}$ is given by

$$
\begin{aligned}
s(f, Y)= & \left(\sigma_{*}\left((f, b) \mid: f^{-1}(Y) \longrightarrow Y\right)\right. \\
& \left.\sigma_{\star}\left((f, b) \mid: f^{-1}\left(Z, Y \times S^{O}\right) \longrightarrow\left(Z, Y \times S^{O}\right)\right)\right) \in L_{n-}
\end{aligned}
$$

Note that Proposition 7.6.1 B identifies the condition LS*-1 ${ }^{(\Phi)}=0$ for there to be type B) codimension 1 splitting with the condition $\left.L_{*+1}(\mathbb{Z} \mid \Phi]\right)=0$ for there to be a Mayer-vietoris exact sequence of quadratic L-groups

$$
\ldots \longrightarrow L_{n}(A) \xrightarrow{i_{1} i_{2}} L_{n}(B) \longrightarrow L_{n}\left(A^{\prime}\right) \longrightarrow L_{n-1}(A) \longrightarrow \ldots(n \in \mathbb{Z}) .
$$

If (X, Y) is a codimension 1 CW pair of type B) such that the maps $i_{1}, i_{2}: \pi_{1}(Y) \longrightarrow \pi_{1}(Z)$ are injective there are defined Cappell decompositions

$$
\left\{\begin{array}{l}
L S_{n-1}(\phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I\right) \oplus U N i 1_{n+1}(\phi) \\
L S_{n-1}^{h}(\phi)=\hat{H}^{n}\left(\mathbb{Z}_{2} ; I^{h}\right) \oplus U N i 1_{n+1}^{h}(\phi)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

which may be interpreted in terms of our theory as for the case A) above. In particular, Proposition 7.6.2 ${ }_{\mathrm{A}}$ carries over word for word to its type B) analogue, proposition 7.6.2 ${ }^{\text {B }}$.
A) or $B) Y$ is $2-s i d e d$ in X (i.e. $\xi=v_{Y} \subset X$ is trivial)

Cappell [7] has shown that in many cases $\mathrm{UNil}{ }_{*}(\Phi)=0$ both for A) and B), by obtaining the equivalent codimension 1 splitting theorems (under the hypothesis $\left.\hat{H}^{\star}\left(\mathbb{Z}_{2} ; I\right)=0\right)$. In effect, Cappell proved that the assembly maps

$$
\left.\sigma_{\star}: H_{\star}\left(K(\pi, 1) ; \mathbb{K}_{0}\right) \longrightarrow L_{\star}(\mathbb{Z} \mid \pi]\right)
$$

are isomorphisms and hence that $\ell_{\star}(K(\pi, 1))=0$ for any infinite torsion-free group π built up out of the trivial group \{1\} by successive free products with amalgamation $\pi_{1}{ }^{*} \rho_{2} \pi_{2}$ and/or HNN extensions $\pi_{1}{ }^{*}{ }_{\rho}\{t\}$ along subgroups $\rho \subset \pi_{k}$ satisfying the "square root closed" condition: if $g \in \pi_{k}$ is such that $g^{2} \in \rho \subset \pi_{k}$ then $g \in \rho \subset \pi_{k}(e . g . \pi=\mathbb{Z})$. However, it is not known if $S_{\star}(K(\pi, 1))=0$ for the fundamental groups π of irreducible sufficiently large 3 -manifolds (except when the square root
closed condition is satisfied), although the results of Waldhausen [1], [2],[3] that every homotopy equivalence of such manifolds is homotopic to a homeomorphism and that $\mathrm{Wh}_{*}(\pi)=0$ do suggest that such ought to be the case.

Let R be a ring such that $\mathbb{Z} \subseteq R \subseteq \mathbb{Q}$. The groups

$$
\left.\Gamma_{\star}(\mathbb{Z} \mid \pi] \longrightarrow R[\pi]\right)=L_{*}^{S}(R[\pi]) \quad\left(R=S^{-1} \mathbb{Z}\right)
$$

are the obstruction groups for surgery on normal maps up to R-homotopy equivalence (see 57.7 below for further details of surgery with coefficients). In particular, for $R=\mathbb{Z}$ this is the ordinary surgery theory up to homotopy equivalence dealt with above. Cappell [4] extended his codimension lifiting obstruction theory to surgery with R-coefficients, introducing the appropriate UNil-groups UNil* $(R \mid \Phi])$ with all the formal properties of UNil ${ }_{\star}(\Phi) \equiv U N i l_{\star}(\mathbb{Z}[\Phi J)$. Furthermore, he proved that the groups UNil $(R[\Phi \|)$ are 2 -primary for any R, and that UNil ${ }_{*}(\mathrm{R}[\Phi])=0$ if $1 / 2 \in \mathrm{R}$. Farrell [2] has shown that the groups UNil* (\varnothing) are in fact of exponent 4 - as pointed out in the introduction to that paper it follows from the localization exact sequence of $\$ 3$ above that the exponent of UNil ${ }_{\star}(R[\$])$ is at most 8 (using the result of Proposition 3.6.4 that the localization maps $\left.L_{\star}(Z[\pi]) \longrightarrow L_{\star}^{S}(R \mid \pi]\right)$ are isomorphisms modulo 8 -torsion).
C) Y is $1 \sim$ sided in $X\left(i . e . \varepsilon=v_{Y \subset X}: Y \rightarrow B G(1)\right.$ is non-trivi

Codimension 1 splitting obstruction theory for C) was first studied by Browder and Livesay [1] for the codimension 1 geometric Poincaré pairs $(x, y)=\left(\mathbb{R} P^{n}, \mathbb{R} P^{n-1}\right)(n \geqslant 1)$, in connection with the classification of fixed point free involutio on manifolds which are homotopy spheres. López de Medrano [1], [2 extended the Browder-Livesay theory to fixed point free involutions on arbitrary simply-connected manifolds, thus describing the splitting obstruction theory for codimension 1 geometric Poincaré pairs (X,Y) of type C) with

$$
\pi_{1}(X)=\pi_{1}(Y)=\mathbb{Z}_{2}, \pi_{1}(S(\xi))=\pi_{1}(Z)=\{1\}
$$

The expression for the splitting obstruction along $Y \subset X$ of an s-triangulation $f: M \rightarrow x$ for an arbitrary $(n, n-1)-d i m e n s i o n a l$ geometric poincaré pair (X, Y) of type C) as an element $s(f, Y) \in L S_{n-1}(\Phi)$
is due to Wall $\{4,511]$, the general obstruction theory being the same for C) as for A) and B). Furthermore, in the case $\pi_{1}(X)=\pi_{1}(Y)$ Wall $[4,512 C]$ qave an algebraic expression for the obstruction qroups $L S_{\star}(\Phi)$, by realizing each element of $L_{n-1}(\Phi)$ as the relo obstruction to finding a codimension 1 spine $M \subset V$ for an n-dimensional manifold with boundary ($V, V V$) such that V is an $(n-1)$-dimensional geometric Poincaré complex, and developing a non-simply-connected Browder-Livesay theory. We shall now recover this expression from the general algebraic formulation of the $\mathrm{L} S$-groups in 57.5 above.

We start by extending the formulation of the quadratic L-groups in terms of chain complexes to the quadratic L-groups of rings with antistructure in the sense of wall [5].

Let A be an associative ring with 1 . An antistructure on $A(\alpha, E)$ consists of a function

$$
\alpha: A \longrightarrow A: a \longmapsto \alpha(a)
$$

and a unit $\in \in A$ such that $\alpha(\varepsilon)=E^{-1} \in A$ and also

$$
\begin{aligned}
& \text { i) } \alpha(a+b)=\alpha(a)+\alpha(b) \\
& \text { ii) } \alpha(a b)=\alpha(b) \alpha(a) \\
& \text { iii) } \alpha(1)=1 \\
& \text { iv) } \alpha^{2}(a)=\varepsilon^{-1} a \varepsilon
\end{aligned}
$$

for all $a, b \in A$. (In particular, if $\varepsilon \in A$ is a central unit then $\alpha: a \longmapsto \bar{a}$ is an involution as in §l.l). Given a f.g. projective A-module M let A act on the dual $M^{*}=\operatorname{Hom}_{A}(M, A)$ by

$$
A \times M^{\star} \longrightarrow M^{*} ;(a, f) \longmapsto(x \longmapsto f(x) a(a)),
$$

and use the natural A-module isomorphism

$$
M \longrightarrow M^{* *} ; x \longmapsto(f \longmapsto \alpha(f(x)))
$$

to identify $M=M^{* *}$. Given also a f.g. projective A-module N define a duality isomorphism
$\operatorname{Hom}_{A}(M, N) \longrightarrow \operatorname{Hom}_{A}\left(N^{\star}, M^{*}\right) ; f \longmapsto(g \longmapsto(x \longmapsto g(f(x)))$.
Let $T \in Z_{2}$ act on $\operatorname{Hom}_{A}(M, M *)$ by the (α, E)-duality involution

$$
\begin{aligned}
T_{\alpha, \varepsilon}: \operatorname{Hom}_{A}\left(M, M^{*}\right) \longrightarrow & \operatorname{Hom}_{A}\left(M, M^{*}\right) ; \\
& \left(\varepsilon \Phi^{*}: x \longmapsto(y \longmapsto \longmapsto \varepsilon \alpha(\phi(y)(x)))\right) .
\end{aligned}
$$

Given a finite-dimensional A-module chain complex C let $T \in \mathbb{Z}_{2}$ act on $\operatorname{Hom}_{A}\left(C^{*}, C\right)$ by

$$
T_{\alpha, E}: \operatorname{Hom}_{A}\left(C^{\mathrm{P}}, \mathrm{C}_{\mathrm{q}}\right) \longrightarrow \operatorname{Hom}_{A}\left(\mathrm{C}^{\mathrm{q}}, \mathrm{C}_{\mathrm{p}}\right) ; \phi \longmapsto(-)^{\mathrm{pq}} \mathrm{Eq}^{\star}
$$

and define the (a, E)-quadratic Q-groups of C

$$
\left.Q_{n}(C, \varepsilon)=H_{n}\left(\operatorname{Hom}_{\mathbb{Z}\left[Z_{2}\right]}\right]\left(W, \operatorname{Hom}_{A}(C *, C)\right)\right) \quad(n \in \mathbb{Z})
$$

The (α, ε) quadratic L-qroups of $A L_{n}\left(A^{\alpha}, E\right)(n \geqslant 0)$ are defined be the cobordism qroups of n-dimensional (α, ε)-quadratic poincaré complexes over $A\left(C, \psi \in Q_{n}(C, \varepsilon)\right)$, exactly as in the case of central ε. All the results of $\$ \$ 1-6$ in the central case have evident generalizations to rings with antistructure. (There are also defined (α, ε)-symmetric $\mathrm{L}-\mathrm{groups} \mathrm{L}^{*}\left(\mathrm{~A}^{\alpha}, \varepsilon\right)$ we shall be mainly concerned with the (α, E)-quadratic L-groups here). In particular, the (α, ε)-quadratic L-groups are 4-periodic

$$
L_{n}\left(A^{\alpha}, \varepsilon\right)=L_{n+2}\left(A^{\alpha},-\varepsilon\right)=L_{n+4}\left(A^{\alpha}, E\right) \quad(n>0)
$$

and $L_{O}\left(A^{\alpha}, E\right)$ is the witt group of non-singular (α, E)-quadratic forms over $A(M, \psi)$, as defined by a f.g. projective A-module M together with an element

$$
\psi \in Q_{\alpha, \varepsilon}(M)=\operatorname{coker}\left(1-T_{\alpha, \varepsilon}: \operatorname{Hom}_{A}\left(M, M^{*}\right) \longrightarrow \operatorname{Hom}_{A}\left(M, M^{*}\right)\right)
$$

such that $\phi=\psi+\varepsilon \psi^{*} \in \operatorname{Hom}_{A}\left(M, M^{*}\right)$ is an isomorphism. Note that ϕ can be viewed as an (α, E)-sesquilinear pairing

$$
\phi: M \times M \longrightarrow A:(x, y) \longmapsto \phi(x)(y)
$$

such that

$$
\begin{aligned}
& \text { i) } \phi(a x, b y)=b \phi(x, y) \alpha(a) \\
& \text { ii) } \phi(y, x)=E \alpha(\phi(x, y))
\end{aligned}
$$

for $a l l a, b \in A, x, y \in M$.
In keeping with our previous convention we shall now assume that $A=\mathbb{Z}[\pi]$ is a group ring and that the (α, E)-quadratic L-groups $L_{\star}\left(A^{\alpha}, \varepsilon\right) \equiv L_{\star}^{S}\left(A^{\alpha}, \varepsilon\right)$ are the simple L-groups defined using based A-modules and simple isomorphisms (with $\tau=0 \in W h(\pi)$), although there are versions of the theory for arbitrary rings with antistructure and for the free and projective L-groups $L_{\star}^{h}, L_{\star}^{P}$. As we shall be dealing with various antistructures on the same
group ring $\mathbb{Z}[\pi]$ we shall write M^{*}, α for the dual of an A-module M with respect to an antistructure (α, E), and $Q_{*}^{\pi, \alpha}(C, \epsilon)$ for the (α, ε)-quadratic 0 -qroups of an A-module chain complex C, abbreviating to $Q_{*}^{\pi, \alpha}(C)$ if $\epsilon=1$. If α is the w-twisted involution on $\mathbb{Z}[\pi\}$ for some orientation map $w: \pi \longrightarrow \mathbb{Z}_{2}=\{ \pm 1\}$, that is

$$
\left.\alpha(g)=w(g) g^{-1} \in \mathbb{Z} \mid \pi\right] \quad(q \in \pi),
$$

the dual A-module $M^{\star, \alpha}$ is denoted by $M^{\star, W}$, the Q-groups $Q_{*}^{\pi, \alpha}(C, \varepsilon)$ are denoted by $Q_{*}^{\pi, \omega}(C, \varepsilon)$, and the L-qroups $\left.L_{\star}(\mathbb{Z} \mid \pi]^{\alpha}, E\right)$ are denoted by $L_{*}\left(\mathbb{Z}\left[\pi^{w}\right], \varepsilon\right)$, with $Q_{*}^{\pi}{ }^{w}(C), L_{*}\left(\mathbb{Z}\left\{\pi^{W}\right]\right)$ if $\varepsilon=1$. Let now (X, Y) be a connected codimension 1 CW pair of type C) with $\pi_{1}(X)=\pi_{1}(Y)$. As $\xi: Y \longrightarrow B G(1)$ is non-trivial the double covering $S(\xi)$ of Y is determined by a group extension

which we shall write as

Denote the orientation map of X by

$$
w(x)=w: \pi_{1}(x)=\pi \longrightarrow \mathbb{Z}_{2},
$$

so that the other orientation maps are given by

$$
w(Y)=w \xi: \pi_{1}(Y)=\pi \longrightarrow \mathbb{Z}_{2}
$$

$$
w(Z)=w(S(\xi))=w^{\prime}: \pi_{1}(Z)=\pi_{1}(S(\varepsilon))=\pi^{\prime} \xrightarrow{p} \pi \longrightarrow \xrightarrow{w} \mathbb{Z}_{2}
$$

As before, denote the LS-qroups of (X, Y)

by $\mathrm{LN}_{\star}\left(\pi^{\prime} \longrightarrow \pi\right.$, w). By Proposition 7.2 .1 ii)
the $L N$-aroups fit into the exact sequence

$$
\begin{aligned}
\cdots \longrightarrow L_{n+1}\left(\mathbb{Z}\left\{\pi^{w}\right\}\right) & \longrightarrow L_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right) \\
& \left.\longrightarrow L_{n}\left(\cap \xi^{!}: \mathbb{Z}!\pi^{w \xi}\right] \longrightarrow \mathbb{Z}\left[\pi^{w^{\prime}}\right]\right) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \longrightarrow
\end{aligned}
$$

By Proposition 7.5 .1 ii) $\operatorname{LN}_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right)(n \geqslant 1)$ is the cobordism group of contractible n-dimensional quadratic Poincaré splittings over 1 , i.e. of pairs

$$
\left.\left(\left(C, \psi \in Q_{n-1}^{\pi, w \delta}(C)\right),(f:) \xi^{!} C \longrightarrow D,\left(\delta \psi, j \xi^{!} \psi\right) \in Q_{n}^{\pi^{\prime}, w^{\prime}}(f)\right)\right)
$$

consisting of an ($n-1$)-dimensional quadratic Poincaré complex (C, ψ) over $Z\left[\pi^{w \xi}\right]$ and an n-dimensional quadratic poincaré pair $\left(\mathrm{f}: \xi^{!} \mathrm{C} \longrightarrow \mathrm{D},\left(\delta \psi, \cdot \xi^{!} \psi\right)\right)$ over $\mathbb{Z}\left|\pi^{\prime} W^{\prime}\right|$ such that the $\mathbb{Z}[\pi]$-modul chain map

$$
\left.\binom{i}{1 \otimes f}: \mathscr{Z} \mid \pi\right] \otimes_{\mathbb{Z}\left\{\pi^{\prime}\right]^{i \xi}!} C \longrightarrow C \oplus \mathbb{Z}\{\pi] \mathbb{\otimes}_{\mathbb{Z}\left[\pi^{\prime}\right]^{D}}
$$

is a (simple) chain equivalence, where i is the $\mathbb{Z}[\pi]$-module chain map appearing in the n-dimensional quadratic poincaré pair over $\mathbb{Z}\left[\pi^{W}\right]$

$$
\left.\left.\xi^{!}(C, \psi)=\left(i: \mathbb{Z}[\pi\} Q_{Z Z[\pi},\right]^{!} \mathrm{C} \longrightarrow \mathrm{C},\left(\xi^{!} \psi, 1 \otimes\right) \xi^{!} \psi\right) \in Q_{\mathrm{n}}^{\pi, w}(\mathrm{i})\right)
$$

We now have to give an algebraic definition of $\xi^{!}(C, \psi)$.
Choose an element $t \in \pi$ such that $\xi(t)=-1$, 50 that as a set π is the disjoint union

$$
\pi=\pi^{\prime} u t \pi^{\prime} .
$$

Given $a=\sum_{q \in \pi} n_{q} q \in \mathbb{Z}|\pi|$ let

$$
\left.|a|=\int_{q^{\prime} \in \pi} n_{q}, q^{\prime} \in \mathbb{Z}\left[\pi^{\prime}\right] \subset \mathbb{Z} \mid \pi\right],
$$

so that

$$
a=|a|+\left[a t\left|t^{-1} \in \pi\right| \pi \mid\right.
$$

and as an additive group $\mathbb{Z}[\pi]$ has a direct sum decomposition

$$
\mathbb{Z}[\pi]=\mathbb{Z}\left[\pi^{\prime}\right] \oplus t \mathbb{Z}\left[\pi^{\prime}\right]
$$

Define a ring automorphism

$$
\lambda: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi] ; a \longmapsto[a]-[a t] t^{-1}
$$

such that $\lambda^{2}=1$. The induced functor

$$
\begin{gathered}
\lambda: \underline{\underline{P}}(\mathbb{Z}[\pi])=(\mathrm{f} \cdot \mathrm{~g} \cdot \text { projective } \mathbb{Z}[\pi] \text {-modules }) \longrightarrow \underline{\underline{P}}(\mathbb{Z}[\pi]) \\
M \longmapsto \longrightarrow M
\end{gathered}
$$

sends $M \in \mid \underline{\underline{p}}(\mathbb{Z} \mid \pi]) \mid$ to the $f \cdot g$. projective $\mathbb{Z}[\pi]$-module λM witl the same additive group and

$$
\mathbb{Z}[\pi] \times \lambda M \longrightarrow \lambda M ;(a, x) \longmapsto \lambda(a) \times .
$$

The inclusion $p: \pi^{\prime} \longrightarrow \pi$ induces an inflation functor

$$
\begin{aligned}
P_{!}: \underline{\underline{P}}\left(\mathbb{Z}\left[\pi^{\prime}\right]\right) \longrightarrow & \underline{=}(\mathbb{Z}[\pi]) ; \\
& N \longrightarrow P_{!} N=\mathbb{Z}[\pi] \mathbb{X}_{\mathbb{Z}}\left[\pi^{\prime}\right]^{N},
\end{aligned}
$$

and there is also defined a restriction functor

$$
\left.p^{!}: \underline{\underline{P}}(\mathbb{Z}\{\pi\}) \longrightarrow p^{\underline{P}}(\mathbb{Z}(\pi)\}\right) ; M \longmapsto
$$

sending $M E \mid \underline{\underline{p}}(\mathbb{Z} \mid \pi]) \mid$ to the $f . g$. projective $\left.\mathbb{Z}[\pi]^{\prime}\right]$-module $p^{!} M$ with the same additive group and

$$
\mathbb{Z}\left[\pi^{\prime}\right] \times p^{!} M \longrightarrow p^{!} M ;(a, x) \longmapsto a x .
$$

The two functors are related by a short exact sequence

$$
0 \longrightarrow \lambda M \xrightarrow{k} p_{!} p^{!} M \xrightarrow{i} M \longrightarrow
$$

which is split (non-canonically), with

$$
\begin{aligned}
& i: p_{!} p^{!} M \longrightarrow M \text {; } a \Delta x \longmapsto a x \\
& k: \lambda M \longrightarrow P_{!} P^{!} M ; x \longmapsto \longrightarrow x-t \Delta t^{-1} x .
\end{aligned}
$$

Given $\operatorname{ME}|\underline{\underline{P}}(\mathbb{Z}[\pi])|$ use the $\mathbb{Z}\left|\pi^{\prime}\right|$-module isomorphism

$$
\left(p^{!} M\right)^{\star}, w^{\prime} \longrightarrow p^{!}\left(M^{\star}, w\right) ; f \longmapsto\left(x \longmapsto P(x)+t f\left(t^{-1} x\right)\right)
$$

as an identification, and define a $Z\left\{\mathbb{Z}_{2} \mid\right.$-module morphism

$$
\begin{aligned}
p^{!}: \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(M, M^{*}, w\right) & \longrightarrow \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(p^{!} M,\left(p^{!} M\right)^{*}, w^{\prime}\right) ; \\
\phi t \cdots\left(p^{!} \phi: x \longmapsto\right. & \longrightarrow(y \vdash+\mid \phi(x)(y)]),
\end{aligned}
$$

with $T \in \mathbb{Z}_{2}$ acting by the duality involution $T: \phi \longmapsto \phi^{*}$ on both sides. Given $N \in\left|\underline{P}\left(\mathbb{Z}\left[\mathbb{H}^{\prime}\right]\right)\right|$ use the $\mathbb{Z}[\pi]$-module isomorphism

$$
p_{!}\left(N^{\star, w^{\prime}}\right) \longrightarrow\left(p_{!} N\right)^{*}, w ; a \otimes f \longmapsto(b \otimes x \longmapsto b f(x) \bar{a})
$$

as an identification, and define a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module morphism

$$
\begin{aligned}
\left.\left.p_{!}: \operatorname{Hom}_{\mathbb{Z}} \mid \pi^{\prime}\right]^{\left(N, N^{*}, w^{\prime}\right.}\right) & \longrightarrow \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(p_{!} N,\left(p_{!} N\right)^{*, w}\right) ; \\
\theta & \longmapsto\left(p_{!} \theta: x \longmapsto(Y \longmapsto(1 \otimes \theta)(x)(y))\right) .
\end{aligned}
$$

The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module morphisms $p^{!}, p_{1}$ can also be defined using the orientation map $w \mathcal{L}$ instead of w. Note that

$$
M^{*}, w \xi=\lambda\left(M^{*}, w\right)
$$

Given a finite-dimensional $\mathbb{Z}[\pi]$-module chain complex C
use the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
\mathrm{p}^{!}: \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(\mathrm{C}^{*, w \xi}, \mathrm{C}\right) \longrightarrow \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(\left(\mathrm{p}^{!} \mathrm{C}\right)^{*, w^{\prime}}, \mathrm{p}^{!} \mathrm{C}\right)
$$

to define restriction maps in the Q-groups

$$
p^{!}: Q_{*}^{\pi, w \xi}(C) \longrightarrow Q_{*}^{\pi{ }^{\prime}} w^{\prime}\left(p^{!} C\right) .
$$

Given a finite-dimensional $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex D use the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
p_{!}: \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(D^{\star, w^{\prime}}, D\right) \longrightarrow \operatorname{Hom}_{\mathcal{Z}[\pi]}\left(\left(p_{1} D\right)^{\star, w}, p_{!} D\right)
$$

to define inflation maps in the Q-groups

$$
p_{!}: Q_{*}^{\pi '}, w^{\prime}(D) \longrightarrow Q_{*}^{\pi, w}(P, D) .
$$

The short exact sequence of finite-dimensional $\mathbb{Z}[\pi]$-module chain complexes

is split when regarded as an exact sequence of graded $\mathbb{Z}[\pi]$-modules. Thus applying $\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C^{*}, W,-\right)$ there is obtained a short exact sequence of \mathbb{Z}-module chain complexes

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{Hom}_{\mathbb{Z}\{\pi]}\left(C^{\infty, w}, \lambda C\right) \xrightarrow{p^{!}} \operatorname{Hom}_{\mathbb{Z} \mid \pi j}\left(C^{\star}, w, p_{i} p^{!} C\right) \\
& \begin{array}{l}
i \\
\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C^{\star}, w, C\right) \longrightarrow 0
\end{array}
\end{aligned}
$$

Using the natural isomorphisms of \mathbb{Z}-module chain complexes
as identifications there is obtained a sequence
which is in fact a short exact sequence of $\mathbb{Z}\left\{\mathbb{Z}_{2}\right\}$-module chain complexes inducing a long exact sequence of Q-groups

$$
\ldots \longrightarrow Q_{n}^{\pi, w \xi}(C) \xrightarrow{p^{!}} Q_{n}^{\pi^{\prime}, w^{\prime}}\left(p^{!} C\right) \xrightarrow{i} Q_{n}^{\pi, w}(C) \longrightarrow Q_{n-1}^{\pi, w \xi}(C) \longrightarrow \ldots
$$

$$
(n \in \mathbb{Z})
$$

Define a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map
so that there is defined a natural transformation of long exact sequences of Q-groups

$$
\begin{aligned}
& \left.\xi^{!}: \operatorname{Hom}_{\mathbb{Z}\{\pi)\left(C^{*}, w \xi\right.}, C\right) \\
& \longrightarrow \Omega_{\Omega}\left(i_{q}: \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(\left(p_{!} p^{!} C\right)^{*}, w, p_{1} p^{!} C\right) \longrightarrow \operatorname{Hom}_{Z[\pi \mid}\left(C^{*}, w, C\right)\right) ; \\
& \phi \longmapsto\left(0, p, p^{!} \phi\right) \text {, }
\end{aligned}
$$

$$
\begin{aligned}
& O \longrightarrow \operatorname{Hom}_{\mathbb{Z} \mid \pi]}\left(C^{\star, \omega \xi}, C\right) \xrightarrow{p^{!}} \operatorname{Hom}_{\left.\mathbb{Z}\left\{\pi^{\prime}\right\}^{(}\left(p^{\prime} C\right)^{*,} w^{\prime}, p^{\prime} C\right)} \\
& \xrightarrow{i} \operatorname{Hom}_{\mathbb{Z}|\pi|}\left(C^{*, \omega}, C\right) \longrightarrow 0
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{Z} \mid \pi]}\left(C^{\star}, w \xi, C\right) \longrightarrow \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C^{*}, w, \lambda C\right) ; \phi \longmapsto(x \longmapsto \phi(x)) \\
& \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(\left(p^{\prime} \mathrm{C}\right)^{\star, w^{\prime}}, p^{!} \mathrm{C}\right) \longrightarrow \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(\mathrm{C}^{\star, w}, \mathrm{p}, \mathrm{p}^{!} \mathrm{C}\right) ; \\
& \theta \longmapsto\left(x \longmapsto 1 \theta \theta(x)+\operatorname{ta\theta }\left(t^{-1} x\right)\right)
\end{aligned}
$$

An element $\psi \in Q_{n}^{\pi, w}{ }^{\prime}(C)$ is sent by $\xi^{!}$to the element

$$
\varepsilon^{!}(\psi)=\left(\delta \psi, p_{1} p^{!} \psi\right) \in Q_{n+1}^{n, w}(i)
$$

Proposition 7.6.3 The transfer maps in quadratic L-theory associated to a connected codimension 1 CW pair (X, Y) of type C) with $\pi_{l}(X)=\pi_{1}(Y)=\pi$ are qiven algebraically by

$$
\left.\xi^{!}: L_{n}\left(\mathbb{Z} \mid \pi^{w \xi}\right]\right) \rightarrow L_{n+1}\left(p: \mathbb{Z}\left[\pi^{, w^{t}}\right] \rightarrow \mathbb{Z}\left[\pi^{w}\right]\right):
$$

$$
\left(\mathrm{C}, \psi \in \mathrm{Q}_{\mathrm{n}}^{\pi, w \varepsilon_{.}}(\mathrm{C})\right) \vdash \longrightarrow
$$

$$
\left(\left(p^{!} c, \stackrel{l}{\mathrm{p}} \mathcal{H}_{\mathrm{C}} Q_{n}^{\pi \cdot, w^{\prime}}\left(\mathrm{p}^{!} \mathrm{c}\right)\right),\left(\mathrm{i}: p_{!} \mathrm{p}^{!} \mathrm{C} \longrightarrow \mathrm{c}, \xi^{!}(\psi) \in Q_{n+1}^{\pi, w}(i)\right)\right)
$$

$$
\left(\pi_{1}(z)=\pi_{1}(S(\xi))=\pi^{\prime}, w(X)=w, w^{\prime}=w p\right)
$$

(This qeneralizes the algebraic expression for $a \xi^{!}=p^{!}$of Thomas Continuing with the previous terminology define

$$
\mu: \mathbb{Z}\left[\pi^{\prime}\right] \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right] ; \sum_{q^{\prime} \epsilon_{\pi}} n_{q}, q^{\prime} \longmapsto q_{\prime^{\prime} \epsilon^{n}} n_{g} \cdot t^{-1} g^{\prime} t
$$

an automorphism of the ring $\mathbb{Z}\left[\pi^{\prime}\right]$. The induced functor

$$
\mu: \underline{\underline{p}}\left(\mathbb{Z}\left[\pi^{\prime} 1\right) \longrightarrow \mu N\right.
$$

sends a f.g. projective $\mathbb{Z}\left[\pi^{\prime}\right]$-module N to the f.g. projective $\mathbb{Z}\left[\pi^{\prime \prime}\right]$-module $\mu \mathrm{N}$ with the same additive group and

$$
Z 2 \cdot\left|\pi^{\prime}\right| \times \mu N \longrightarrow \mu N ;(a, x) \longrightarrow \mu(a) x \quad .
$$

Define an antistructure $\left(\beta, t^{2}\right)$ on $\mathbb{Z}\left|\pi^{\prime}\right|$ by

Then for any $\left.N E \mid \underline{\underline{p}}\left(\mathbb{Z} \mid \pi^{\prime}\right]\right) \mid$ there are defined natural isomorphisms in $\underset{\underline{P}\left(\mathbb{Z}\left[\pi^{\prime}\right]\right)}{ }$

$$
\begin{aligned}
& N \oplus \mu N \xrightarrow{\sim} p^{!} p!N ;(x, y) \longmapsto 1 \otimes x+t \otimes y \\
& N^{*}, B \xrightarrow[\longrightarrow]{\sim} \mu\left(N^{*}, w^{\prime}\right) ; f \longmapsto\left(x \longmapsto \mu^{-1}(f(x))\right)
\end{aligned}
$$

which we shall use as identifications. In particular, we have identifications of \mathbb{Z}-modules

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(p_{!} N,\left(p_{!} N\right)^{*, W}\right)=\operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(N, p^{!} p_{!}\left(N^{*}, w^{\prime}\right)\right) \\
& =\operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(N, N^{*, w^{\prime}} \oplus \mu\left(N^{*}, W^{\prime}\right)\right)
\end{aligned}
$$

and hence an identification of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(\mathrm{P}_{1} \mathrm{~N},\left(\mathrm{P}_{\mathrm{l}} \mathrm{~N}\right)^{*, w}\right)
\end{aligned}
$$

with $T \in \mathbb{Z}_{2}$ acting by the duality involution $T: \phi \longmapsto \phi^{*}$ on the left and by $T \oplus T_{w(t)}{ }^{2}$ on the right.

Given a finite-dimensional $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex D we thus have an identification of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complexes

$$
\begin{aligned}
& \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(\left(p_{!}\right)^{*, w}, p_{!} D\right) \\
& \quad=\operatorname{Hom}_{\left.\left.\mathbb{Z}\left[\pi^{\prime}\right]^{\left(D^{*}, w^{\prime}\right.}, D\right) \oplus \operatorname{Hom}_{\mathbb{Z}}\left(\pi^{\prime}\right)^{\left(D^{*}, \beta\right.}, D\right)},
\end{aligned}
$$

so that

$$
Q_{*}^{\pi, w}\left(P_{1} D\right)=Q_{*}^{\pi^{\prime}, w^{\prime}}(D) \oplus Q_{*}^{\pi^{\prime}}, \beta\left(D, w(t) t^{2}\right)
$$

Replacing w by wh we also have

$$
Q_{\star}^{\pi, w \varepsilon}\left(P_{!} D\right)=O_{\star}^{\Pi^{\prime}, w^{\prime}}(D) \oplus Q_{\star}^{\pi^{\prime}}, B^{B}\left(D,-w(t) t^{2}\right)
$$

since $\varepsilon(t)=-1$.

Assume now that the underlying codimension 1 CW pair (X, Y) is a formally ($n, n-1$)-dimensional normal pair (in the sense of $\$ 7.5$) and that there is given a formally $(n, n-1)$-dimensional topological normal map

$$
(f, b):(M, N) \longrightarrow(X, Y),
$$

denoting the restriction normal maps by

$$
\begin{gathered}
(f, b) \mid=(g, c): N=f^{-1}(Y) \longrightarrow Y \\
(f, b) \mid=(h, d):(P, S(v))=f^{-1}(Z, S(\xi)) \longrightarrow(Z, S(\xi)) .
\end{gathered}
$$

According to Proposition 7.5.4 ambient surgery on (g, c) inside (f,b) has the algebraic effect of surgery on the quadratic kernel pair $\left(\sigma_{\star}(q, c), \sigma_{\star}(h, d)\right)$ preserving the union $\xi^{!} \sigma_{*}(q, c) \cup p \sigma_{*}(h, d)=\sigma_{*}(f, b)$. We shall now associate to the pair $\left(\sigma_{\star}(g, c), \sigma_{\star}(h, d)\right)$ a formally $(n-l)$-dimensional ($\beta,-w(t) t^{2}$)-quadratic complex over $\mathbb{Z}\left[\pi^{\prime}\right] \quad \sigma ;(f, b)$ such that surgery on the pair determines surgery on the complex, and such that if $f: M \longrightarrow X$ is an $s-t r i a n g u l a t i o n ~ a l g e b r a i c ~$ surgery determines geometric surgery, generalizing the treatment of type C) codimension l surgery due to wall $[4,512 C]$.

$$
\text { The quadratic kernel of }\left\{\begin{array}{l}
(f, b): M \longrightarrow X \\
(g, c): N \longrightarrow Y \\
(h, d):(P, S(v)) \longrightarrow(Z, S(\zeta))
\end{array}\right.
$$

is the formally $\left\{\begin{array}{l}n- \\ (n-1) \text {-dimensional quadratic }\left\{\begin{array}{l}\text { complex } \\ \text { complex } \\ \text { pair }\end{array}\right.\end{array}\right.$
over $\left\{\begin{array}{l}\mathbb{Z}\left[\pi^{w}\right] \\ \mathbb{Z}\left[\pi^{w}\right] \\ \mathbb{Z}\left[\pi^{w}\right]\end{array}\right.$

$$
\begin{aligned}
& \left\{\begin{array}{l}
\sigma_{\star}(f, b)=\left(C\left(f^{!}\right), \psi \in Q_{n}^{\pi, w}\left(C\left(f^{!}\right)\right)\right) \\
\sigma_{*}(g, c)=\left(C\left(g^{!}\right), \psi \in Q_{n-1}^{\pi, w \xi}\left(C\left(g^{!}\right)\right)\right)=(C, \psi) \\
\sigma_{\star}(h, d)=\left(e: p^{!} C\left(g^{!}\right) \longrightarrow C\left(h^{!}\right),\left(\delta \psi \cdot P^{!} \psi\right) \in Q_{n}^{\pi \prime}, w^{\prime}(e)\right\}
\end{array}\right. \\
& =\left(e: p^{!} \mathrm{C} \longrightarrow \mathrm{D},\left(\delta \psi, \mathrm{p}^{!} \psi\right)\right) \\
& \text { with }\left\{\begin{array} { l }
{ C (f !) } \\
{ C = C (g ^ { ! }) } \\
{ D = C (h ^ { ! }) }
\end{array} \text { the algebraic mapping cone of the } \left\{\begin{array}{l}
\mathbb{Z} \mid \pi]- \\
\mathbb{Z}[\pi]-\text { module } \\
\mathbb{Z}[\pi!]-
\end{array}\right.\right.
\end{aligned}
$$

Umkehr chain map
where $\left\{\begin{array}{l}\tilde{X} \\ \widetilde{Y} \\ (\bar{Z}, \overparen{S(\xi)})\end{array}\right.$ is the universal cover of $\left\{\begin{array}{l}x \\ y \\ (Z, S(\xi))\end{array}\right.$ and

$$
\left\{\begin{array} { l }
{ \widetilde { M } } \\
{ \widetilde { N } } \\
{ (\widetilde { P } , \overparen { S (v) }) }
\end{array} \text { is the induced cover of } \left\{\begin{array}{l}
M \\
N \\
(P, S(v))
\end{array}\right.\right. \text {. It follows from }
$$

the geometric decomposition of the normal map

$$
(f, b)=(g, c)!\cup(h, d): M=E(v) \cup_{S(v)} P \longrightarrow X=E(\xi) \cup_{S(\xi,)^{2}}
$$

that there is an algebraic decomposition of the quadratic kernel

$$
\sigma_{*}(f, b)=f^{!} \sigma_{*}(g, c) \cup p \sigma_{*}(h, d) .
$$

Define the antiquadratic kernel of (f, b) to be the formally ($n-1$)-dimensional $\left(\beta,-w(t) t^{2}\right)$-quadratic complex over $Z\left[\pi{ }^{\prime}\right]$

$$
\sigma_{k}^{\prime}(f, b)=\left(D, e_{f} p^{!} t(\psi) \in Q_{n-1}^{\pi^{\prime}, \beta}\left(D,-w(t) t^{2}\right)\right) .
$$

The function $\left(\sigma_{\star}(q, c), \sigma_{*}(h, d)\right)+\longrightarrow \sigma_{*}^{*}(f, b)$ will now be used to recover the expression of the type C) codimension l LN-groups $L_{*}\left(\pi^{\prime} \longrightarrow \pi^{\prime}, w\right)$ as the $L-g r o u p s$ of a ring with antistructure due to Wall [4, Thm.12.9]. The identification of of an exact sequence characterizing the $L N-g r o u p s$ with a relative L-theory exact sequence was first obtained by Wall $\left\{4\right.$, Cor.12.9.2] in the special case $\pi=\pi^{\prime} \times \mathbb{Z}_{2}^{-}$and by Cappell and Shaneson [3] (implicitly) and Hambleton [1] in gel Proposition 7.6.4 Given a group extension
$\{1\} \longrightarrow \pi \xrightarrow{\prime} \longrightarrow \pi^{\prime} \longrightarrow \mathbb{Z}_{2} \longrightarrow$ \{1\}
and an orientation map $w: \pi \longrightarrow \mathbb{Z}_{2}$ there is defined a natural isomorphism of exact sequences of abelian groups
 with $t \in \pi$ an element such that $\xi(t)=-1,\left(\alpha, t^{2}\right)$ the antistruct on $Z Z\{\pi\}$ defined by

$$
\alpha: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi] ; \sum_{g \in_{\pi} n_{g} g \longrightarrow \sum_{g \in \pi} w(g) n_{g} t^{-1} g^{-1} t .}
$$

and $\left(\beta, t^{2}\right)$ the antistructure on $\mathbb{Z}\left[\pi^{\prime}\right]$ defined by

$$
B=\alpha \mid: \mathbb{Z}\left[\pi^{\prime}\right] \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right]
$$

Proof: Given a f.g. projective $\mathbb{Z}[\pi]$-module M use the scaling isomorphism of the dual $\mathbb{Z}[\pi]$-modules

$$
\mathrm{t}: \mathrm{M}^{\star}, \mathrm{w} \ldots \simeq \mathrm{M}^{\star}, \alpha ; \mathrm{f} \longmapsto(\mathrm{x} \longmapsto \mathrm{f}(\mathrm{x}) \mathrm{t})
$$

to define a scaling isomorphism of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-modules

$$
t:\left(\operatorname{Hom}_{\left.\left.\mathbb{Z}[\pi]^{\left(M, M^{*}, W\right.}\right), T_{w, 1}\right) \longrightarrow\left(\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(M, M^{*}, \alpha\right), T_{\alpha, w(t)} t^{2)}, ~\right.}^{\sim}\right.
$$

Given a finite-dimensional $\mathbb{Z}[\pi]$-module chain complex C there
is thus defined a scaling isomorphism of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complexes
$t:\left(\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C^{*, w}, C\right), T_{w, 1}\right) \xrightarrow{\sim}\left(\operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C^{\star, \alpha}, C\right), T_{\alpha, w(t)} t^{2)}\right.$ inducing scaling isomorphisms of 0 -groups

$$
t: Q_{n}^{\pi, w}(C) \longrightarrow Q_{n}^{\pi, \alpha}\left(C, w(t) t^{2}\right)
$$

and hence also of L-groups

$$
t: L_{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \longrightarrow L_{n}\left(\mathbb{Z}[\pi]^{\alpha}, w(t) t^{2}\right) ;(C, \psi) \longmapsto(C, t \psi)
$$

Note that the morphisms induced in the Q-groups by the $\mathbb{Z}[\pi]$-module chain map

$$
\lambda k: c \longrightarrow p_{!} p^{!} c ; x \longmapsto 1 \otimes x+t \geqslant t^{-1} x
$$

are given by

$$
\binom{p^{!}}{p^{!} t}: Q_{n}^{\pi, w}(c)
$$

$$
\longrightarrow Q_{n}^{\pi, w}\left(P_{1} p^{\prime} C\right)=Q_{n}^{\pi^{\prime}, w^{\prime}}\left(p^{\prime} C\right) \oplus Q_{n}^{\pi^{\prime}, B}\left(p^{\prime} C, w(t) t^{2}\right)
$$

sending the element

$$
\psi=\left\{\psi_{s}: c^{r, w_{*}} \times C^{n-r-s, w} \longrightarrow \mathbb{Z}[\pi] \mid r \in \mathbb{Z}, s \geqslant 0\right\} \in Q_{n}^{\pi, w}(C)
$$

to the element

$$
\begin{aligned}
&\left(p^{!} \psi, p^{!} t \psi\right)=\left(\left\{p^{!} \psi_{s}: C^{r, w} \times C^{n-r-s, w} \xrightarrow{\psi_{S}} \mathbb{Z}\{\pi] \xrightarrow{p^{!}} \mathbb{Z}\left[\pi^{\prime} 1\right\}\right.\right. \\
&\left.\left\{p^{!} t \psi_{S}: C^{r, w} \times C^{n-r-s, w} \xrightarrow{\psi_{S}} \mathbb{Z}[\pi] \xrightarrow{p^{!} t} \mathbb{Z}\left[\pi^{\prime}\right]\right\}\right) \\
& \in Q_{n}^{\pi \prime}, w^{\prime}\left(p^{!} C\right) \oplus Q_{n}^{\pi^{\prime}, \beta}\left(p^{!} C, w(t) t^{2}\right)
\end{aligned}
$$

defined using the abelian group morphisms

$$
\begin{aligned}
& \mathrm{p}^{!}: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right] ; a \longmapsto[a] \\
& \mathrm{p}^{!} \mathrm{t}: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right] ; a \longmapsto \longrightarrow \ldots[a t]
\end{aligned}
$$

and identifying

$$
\left.\operatorname{Hom}_{\mathbb{Z} \mid \pi]}\left(C_{r}, \mathbb{Z}[\pi]\right)=C^{r, w}=\left(p^{!} C\right)^{r, w^{\prime}}=\left(p^{!} C\right)^{r, \alpha}=\operatorname{Hom}_{\mathbb{Z}[\pi}\right]^{\left(p^{!} C_{r}, \mathbb{Z}\left[\pi^{r}\right.\right.}
$$ as abelian groups.

Next, we shall define the natural isomorphisms

$$
L_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right) \longrightarrow L_{n-1}\left(Z\left[\pi^{\prime}\right]^{\beta},-w(t) t^{2}\right) ; s \longmapsto \longrightarrow s^{\prime} \quad(n \geqslant 1)
$$

(identifying $L_{n-1}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta},-w(t) t^{2}\right)=L_{n+1}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right)$ by the skew-suspension isomorphisms).

Given an element
$s=\left(\left(C, \psi \in Q_{n-1}^{\pi, w}(C)\right),\left(e: p^{!} C \longrightarrow D,\left(\delta \psi, p^{!} \psi\right) \in Q_{n}^{\left.\left.\pi^{\prime}, w^{\prime}(e)\right)\right)}\right.\right.$

$$
\in L N_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right)
$$

observe that the composite $\mathbb{Z}[\pi]$-module chain map

$$
j: C \xrightarrow{\lambda k} p_{!} p^{!} \mathrm{C} \xrightarrow{\lambda p_{!}^{\in}} p_{!} D
$$

is a (simple) chain equivalence, since it is given that the $\mathbb{Z}[\pi]$-module chain map

$$
\binom{i}{p!e}: p_{!} p^{!} c \longrightarrow C \oplus p_{!} D
$$

is a (simple) chain equivalence, p, p ' f its into the short exact sequence of $\mathbb{Z}[\pi]$-module chain complexes

and the ring morphisms $p: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi], \lambda: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi \mid$ are such that $\lambda p=p$. The induced isomorphism of 0 -groups

$$
j_{z}=\binom{e_{q} p^{!}}{e_{8} p^{\prime} t}:
$$

$$
Q_{n-1}^{\pi, w \xi}(C) \longrightarrow Q_{n-1}^{\pi, w \xi}(p, D)=Q_{n-1}^{\pi^{\prime}, w^{\prime}}(D) \oplus Q_{n-1}^{\pi \prime}, B\left(D,-w(t) t^{2}\right)
$$

sends $\psi \in Q_{n-1}^{\pi, w \xi}(C)$ to the element

$$
j_{g}(\psi)=\left\{0, e_{g_{0}} p^{!} t(\psi)\right) .
$$

Now $\left(D, e_{f} p^{\prime} t(\psi) \in Q_{n-1}^{\pi^{\prime}, \beta}\left(D,-w(t) t^{2}\right)\right.$; is an $(n-1)$-dimensional $\left(-w(t) t^{2}\right)$-quadratic Poincaré complex over $\left.\mathbb{Z}[\pi]^{\prime}\right]$, and the element corresponding to s is

$$
s^{\prime}=\left(D, e_{f} p^{!} t(\psi)\right) \in L_{n-1}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta},-w(t) t^{2}\right) .
$$

Conversely, suppose given an element

$$
s^{\prime}=\left(D, \psi^{\prime}\right) \in L_{n-1}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta},-w(t) t^{2}\right) .
$$

Define an ($n-1$)-dimensional quadratic Poincaré complex (C, ψ) over $Z\left[\pi^{w \xi}\right]$ by

$$
C=P_{1} D, \psi=\left(O, \psi^{\prime}\right) \in Q_{n-1}^{\pi, w \xi}(C)=Q_{n-1}^{\pi^{\prime}, w^{\prime}}(D) \oplus Q_{n-1}^{\pi \prime, B}\left(D,-w(t) t^{2}\right) .
$$

Define a $Z\left[\pi^{\prime}\right\}$-module chain map

$$
e=(10): p^{!} C=D \oplus \mu D \longrightarrow D
$$

and let

$$
\begin{aligned}
\left(\delta \psi, Q^{!} \psi\right) & =\left(O,\left(1+T_{-w}(t) t^{2)} \psi_{O}^{\prime}\right.\right. \\
& \left.\in Q_{n}^{\pi^{\prime}, w^{\prime}}(e)=Q_{n-1}^{\pi^{\prime}, w^{\prime}}(D) \oplus H_{n-1}\left(\operatorname{Hom}_{Z}\left[\pi^{\prime}\right]^{\left(D^{\star}, B\right.}, D\right)\right) .
\end{aligned}
$$

(The expression for $Q_{n}^{\prime \prime \prime} w^{\prime}(e)$ follows from the identification of the exact sequence

$$
\ldots \longrightarrow Q_{n}^{\pi, w}(C) \longrightarrow Q_{n-1}^{\pi, w}(C) \xrightarrow{p^{!}} Q_{n-1}^{\pi \prime} w^{\prime}\left(p^{!} C\right) \xrightarrow{i} Q_{n-1}^{\pi, w}(C) \longrightarrow \ldots
$$

with direct sum of the exact sequence

$$
\begin{array}{r}
\ldots \longrightarrow Q_{n}^{\prime^{\prime}, w^{\prime}}(D) \xrightarrow{0} Q_{n-1}^{\pi^{\prime}, w^{\prime}}(D) \xrightarrow{\binom{1}{0}} \xrightarrow{(O \quad 1)} Q_{n-1}^{I^{\prime}, w^{\prime}}(D) \oplus Q_{n-1}^{\pi^{\prime}, w^{\prime}}(\mu D) \\
Q_{n-1}^{\pi \prime}, w^{\prime}(D) \longrightarrow \ldots \tag{*}
\end{array}
$$

and the exact sequence

$$
\begin{align*}
\cdots \longrightarrow & Q_{n}^{\pi^{\prime}, \beta}\left(D, w(t) t^{2}\right) \xrightarrow{S} Q_{n-1}^{\pi^{\prime}, \beta}\left(D,-w(t) t^{2}\right) \\
& \longrightarrow H_{n-1}\left(\operatorname{Hom}_{\left.\left.\mathbb{Z}\left[\pi^{\prime}\right)^{\left(D^{\star}, \beta\right.}, D\right)\right) \longrightarrow Q_{n-1}^{\pi \prime}, \beta}\left(D, w(t) t^{2}\right) \longrightarrow \ldots\right. \tag{**}
\end{align*}
$$

The isomorphisms $1: Q_{*}^{\pi^{\prime}, w^{\prime}}(\mu D) \longrightarrow Q_{*}^{\pi^{\prime}, w^{\prime}}(D)$ appearing in $\left({ }^{*}\right)$ are those induced by the isomorphism of $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$－module chain complexes
$1: \operatorname{Hom}_{\mathbb{Z}\left[\pi^{+}\right]}\left((\mu D)^{*, w^{\prime}}, \mu \mathrm{D}\right) \longrightarrow \operatorname{Hom}_{\left.\mathbb{Z}\left[\pi^{\prime}\right]^{\left(D^{*}, w^{\prime}\right.}, D\right) ; h \longmapsto \mu^{-1} h}$, using the automorphism $\mu: \mathbb{Z}\left[\pi^{\prime \prime}\right] \longrightarrow \mathbb{Z}\left[\pi^{\prime} w^{\prime}\right]$ of the ring $\mathbb{Z}\left[\pi^{\prime}\right]$
 The sequence（＊＊）is a special case of the sequence of

Proposition l．l．3（ $\mathrm{p}=1$ ），using the skew－suspension isomorphisms

$$
\bar{S}: Q_{n-2}^{\pi^{\prime}, \beta}\left(\Omega D,-w(t) t^{2}\right) \longrightarrow \sim Q_{n}^{\pi^{\prime}, \beta}\left(D, w(t) t^{2}\right)
$$

as identifications）．The element corresponding to s^{\prime} is defined by

$$
s=\left((C, \psi),\left(e: p^{!} C \longrightarrow D,\left(\delta \psi, p^{\prime} \psi\right)\right)\right) \in L_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right) .
$$

In order to verify that the diagram

$$
\begin{aligned}
& L_{n+1}\left(\pi\left\{\pi^{W} 1\right) \longrightarrow L_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right)\right. \\
& L_{n+1}\left(\mathbb{Z}[\pi]^{w}, w(t) t^{2}\right) \longrightarrow L_{n+1}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{B}, w(t) t^{2}\right)
\end{aligned}
$$

commutes consider an ($n+1$)-dimensional quadratic Poincaré complex over $\mathbb{Z}\left[\pi^{W}\right]\left(C, \psi \in Q_{n+1}^{\pi, w}(C)\right)$. The composite

$$
L_{n+1}\left(\mathbb { Z } [\pi ^ { w }) \xrightarrow { \stackrel { t } { \sim } } L _ { n + 1 } (\mathbb { Z } (\pi] ^ { \alpha } , w (t) t ^ { 2 }) \xrightarrow { p ^ { ! } } L _ { n + 1 } \left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t)\right.\right.
$$

sends (C, ψ) to $\left(p^{\prime} C, p^{!} t \psi \in Q_{n+1}^{\pi \prime,}\left(p^{!} C, w(t) t^{2}\right)\right)$. Let
$\left(\left(g: \partial D \longrightarrow D,(\theta, \partial \theta) \in Q_{n}^{\pi, w \xi}(g)\right)\right.$,
be a normal splitting of (C, ψ) , as given by Proposition 7.5.1 i) so that up to (simple) homotopy equivalence

$$
(C, \psi)=\left(D \cup_{p_{!}} p^{!} p_{!} E, \xi^{!} \theta \cup p_{!} \cup\right)
$$

The composite
$L_{n+1}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \longrightarrow L_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right) \longrightarrow L_{n+1}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{B}, w(t) t^{2}\right.$ sends (C, ψ) to $\bar{S}\left(\partial+E, \partial+{ }_{q} p^{l} t(\partial \theta) \in Q_{n-1}^{\pi}, \beta\left(\partial+E,-w(t) t^{2}\right)\right)$. Define a $\mathbb{Z}[\pi]$-module chain map $j: p{ }^{\prime} C \longrightarrow E^{\prime}=C(f)$

$$
\begin{aligned}
& j^{\prime}: p^{!} C_{r}=p^{!} D_{r} \oplus p!p_{1} p^{!} D_{r-1} \oplus p^{!} p_{1} E_{r} \longrightarrow E_{r}^{\prime}=p^{\prime} \cdot D_{r-1} \oplus E_{r} \\
& (x, a \otimes y, b \otimes z) \longrightarrow([a] y,[b] z)\left(a, b \in \mathbb{Z}[r], x \in D_{r}, y \in D_{r-1}\right)
\end{aligned}
$$

Surgery on ($p^{!} c, p^{!} t \psi$) by the connected ($n+2$)-dimensional ($B, W(t) t^{2}$)-quadratic pair over $\mathbb{Z}\left[\pi^{\prime}\right]$

$$
\left(j^{\prime}: p^{\prime} C \longrightarrow E^{\prime},\left(O, p^{!} t \psi\right) \in Q_{n+2}^{\pi^{\prime}, \beta}\left(j, w(t) t^{2}\right)\right)
$$

results in the $(n+1)$-dimensional $\left(\beta, w(t) t^{2}\right)$-quadratic Poincare complex over $\mathbb{Z}\left[\pi^{\prime}\right] \vec{S}\left(y_{+} F,{ }_{+} f_{f} p^{\prime} t(\lambda \theta)\right)$, so that the above diagram does indeed commute. Moreover, if (C, ψ) is such that it admits a Poincaré splitting it is possible to set $\mathrm{f}=0$, ${ }_{+} E=O$, and the above procedure defines abelian group morphisms

$$
\begin{aligned}
I_{n+1}\left(p^{!}: \mathbb{Z}\left[\pi^{w E}\right]\right. & \left.\longrightarrow \mathbb{Z}\left[\pi^{\prime} w^{\prime}\right)\right) \longrightarrow \\
\quad\left((D, \theta),\left(f: p^{!} D\right.\right. & \left.\left.\longrightarrow E,\left(u, p^{!} \theta\right)\right)\right) \\
& \longrightarrow\left(p^{!}: \mathbb{Z}[\pi]^{\alpha} \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right]^{B}, w(t) t^{2}\right) ; \\
& \left((C, t \psi),\left(j^{\prime}: p^{\prime} C \longrightarrow E^{\prime},\left(0, p^{!} t \psi\right)\right)\right)
\end{aligned}
$$

such that there are defined commutative diagrams

$$
\begin{aligned}
& L_{n+1}\left(p^{!}: \mathbb{Z}\left[\pi^{w \xi}\right] \longrightarrow \mathbb{Z}\left[\pi^{\prime w^{\prime}}\right]\right) \longrightarrow L_{n+1}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \\
& \downarrow \downarrow \downarrow 2 \mathrm{l} \\
& L_{n+2}\left(p^{\prime}: \mathbb{Z}[\pi]^{\alpha} \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right) \longrightarrow L_{n+1}\left(\mathbb{Z}[\pi]^{\alpha}, w(t) t^{2}\right) \\
& L N_{n}\left(\pi^{\prime} \longrightarrow \pi, w\right) \longrightarrow L_{n+1}\left(p^{\prime}: \mathbb{Z}\left\{\pi^{w \xi}\right] \longrightarrow \mathbb{Z}\left[\pi^{\prime} w^{\prime}\right]\right) \\
& \downarrow 2 \\
& L_{n+2}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right) \longrightarrow L_{n+2}\left(p^{!}: \mathbb{Z}[\pi]^{\alpha} \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right]^{B}, w(t) t^{2}\right) .
\end{aligned}
$$

It now follows from a 5-lemma arqument that these morphisms are also isomorphisms.
(The natural isomorphism of exact sequences of Proposition 7.6.4 extends to a natural isomorphism of commutative braids of exact sequences, from

to

The isomorphism of exact sequences obtained by Hambleton [1] is the one involving the sequences \qquad

The LN-groups have been used by Cappell and Shaneson [3], and Hambleton [l] to detect which elements of the quadratic L-groups $\left.L_{\star}(\mathbb{Z} \mid \pi]\right)$ of finite groups π are the surgery obstructio of topological normal maps of closed manifolds (i.e. belong to $\left.\left.\operatorname{im}\left(\sigma_{\star}: H_{\star}\left(K(\pi, 1) ; \underline{\underline{L}}_{0}\right) \longrightarrow I_{\star}(\mathbb{Z}[\pi])\right) \subseteq L_{\star}(\mathbb{Z} \mid \pi]\right)\right)$. In effect, they were making use of a special case of the natural transformation of exact sequences given by Proposition 7.4.6 iii)

$$
\begin{aligned}
& \ldots \longrightarrow \ell_{n+1}(K(\pi, 1)) \longrightarrow H_{n}\left(K(\pi, 1), \omega ; \underline{\underline{U}}_{0}\right) \\
& \mathrm{u}_{\xi} \downarrow \quad \mathrm{v}_{\xi} \\
& \ldots \longrightarrow L_{n-1}\left(\pi^{\prime} \xrightarrow{\downarrow} \pi, w\right) \longrightarrow L_{n}\left(i^{!}: \mathbb{Z}\left[\pi^{w \xi}\right] \longrightarrow \mathbb{Z}\left\{\pi^{\prime w^{\prime}}\right]\right) \\
& \left(=L S_{n-1}(\Phi)\right) \quad\left(=L P_{n-1}(\Phi)\right)
\end{aligned}
$$

which is defined for any group extension

(at least if the groups are finitely presented) and any orientation map $w: \pi \longrightarrow \mathbb{Z}_{2}$, with $w^{\prime}=w p: \pi^{\prime} \longrightarrow \mathbb{Z}_{2}$ as before In connection with their work on pseudo-free group actions Cappell and Shaneson [3] associated to a non-trivial line bundle $\xi: M \longrightarrow B G(1)$ over an n-dimensional manifold M a surgery exact sequence

$$
\begin{aligned}
\cdots \longrightarrow & {\left[M \times D^{1}, M \times S^{O} ; G / T O P, \star\right] \oplus L N_{n+1}(\pi ' \longrightarrow \pi, w) } \\
& L_{n+1}\left(\mathbb{Z}\left[\pi^{w E}\right]\right) \longrightarrow S^{T O P}(F(\xi), S(\xi)) \\
& \longrightarrow[M, G / T O P] \oplus L_{n}\left(\pi^{\prime} \longrightarrow \pi, w\right) \longrightarrow L_{n}\left(\mathbb{Z} \mid \pi^{w \xi}\right.
\end{aligned}
$$

with

$$
\left(\pi_{1}(M), W(M)\right)=(\pi, w \xi), \quad \pi_{1}(S(\xi))=\pi
$$

From the point of view of 57.2 this is just a part of the Mayer-vietoris exact sequence

$$
\begin{aligned}
& \ldots \longrightarrow H_{n+1}\left(M, w \xi ; \underline{\Pi}_{O}\right) \oplus L N_{n+1}\left(\pi^{\prime} \longrightarrow \pi, w\right) \\
& \\
& L_{n+1}\left(Z Z\left[\pi^{w \xi}\right]\right) \longrightarrow S_{n+2}(E(\xi), S(\xi)) \\
& H_{n}\left(M, w \varepsilon ; \underline{\Pi}_{0}\right) \oplus L N_{n}\left(\pi^{\prime} \longrightarrow \pi, w\right) \longrightarrow L_{n}\left(\mathbb{Z I} \pi^{w \xi}\right.
\end{aligned}
$$

associated to the commutative braid of exact sequences of abelian groups

which is a special case of Proposition 7.2.6 i).

The proof of proposition 7.6 .4 can be used to relate the type C) codimension 1 splitting obstruction theory of Browder and Livesay [l] and López de Medrano [l] in the special case $\pi_{1}(X)=\pi_{1}(Y)=\mathbb{Z}_{2}$ to the theory of Wall $[4,512 C]$ in the more general case $\pi_{1}(X)=\pi_{1}(Y)$, by expressing both in terms of our alqebraic theory, as follows.

In the first instance, let us recall from II. the connection between the quadratic construction and the self-intersections of immersed manifolds. Let $f: M^{m} \leadsto \longrightarrow N^{n}(m \leqslant n)$ be an oriented immersion in general position of an m-manifold M in an n-manifold N. Let \tilde{N} be an oriented cover of N with group of covering translations π and orientation map $w: \pi \longrightarrow \mathbb{Z}_{2}$, such the pullback of \widetilde{N} along f is the trivial cover $\widetilde{M}=\pi \times M$ of M, and let $\tilde{f}: \tilde{M} a \longrightarrow \tilde{N}$ be a π-equivariant lift of f. The double point set of f

$$
\begin{aligned}
S_{2}(f) & =\{(x, y) \in M \times M \mid f(x)=f(y), x \neq y\} / \Sigma_{2} \\
& =\left\{(\widetilde{x}, \tilde{y}) \in \tilde{M} x_{\Pi} \tilde{M} \mid \widetilde{f}(\widetilde{x})=\widetilde{f}(\widetilde{y}), \widetilde{x} \neq \widetilde{Y}\right\} / \Sigma_{2}
\end{aligned}
$$

is then a $(2 m-n)$-dimensional manifold (which may be empty, e.g. if $2 \mathrm{~m}<n)$, with $T \in \Sigma_{2}$ acting by $T:(\tilde{x}, \tilde{y}) \longrightarrow(\tilde{y}, \tilde{x})$.

Let $S_{2}(f)$ ' be the evident double cover of $S_{2}(f)$, and let $c^{\prime}: S_{2}(f)^{\prime} \longrightarrow E \Sigma_{2}$ be a Σ_{2} equivariant map lifting a classifying map $c: S_{2}(f) \longrightarrow B \Sigma_{2}$, so that $S_{2}(f)$ is equipped with a map

$$
\begin{aligned}
& Y: S_{2}(f) \longrightarrow F \Sigma_{2} \times \Sigma_{2}\left(\tilde{M} \times{ }_{\pi} \tilde{M}\right) ; \\
& {\left[\widetilde{x}, \widetilde{y}|\vdash \longrightarrow \longrightarrow| c^{\prime}(\tilde{x}, \tilde{y}), \widetilde{x}, y\right] . }
\end{aligned}
$$

Let $v_{f}: M \longrightarrow B \underset{O P}{ }(n-m)$ be the normal block bundle of the immersion f, so that applying the Pontrjagin-Thom construction to an embedding $f_{m}: M \hookrightarrow \longrightarrow M \times \mathbb{R}^{\infty}$ approximating f there is
defined a stable π-map

$$
\begin{aligned}
\mathrm{F}: \sum^{\infty} \tilde{\mathrm{N}}_{+}=\widetilde{\mathrm{N}} \times \mathbb{R}^{\infty} / \tilde{\mathrm{N}} \times \mathrm{S}^{\infty-1} \xrightarrow{\text { collapse }} & \widetilde{\mathrm{N}} \times \mathbb{R}^{\infty} / \overline{\mathrm{N}} \times \mathbb{R}^{\infty}-\mathrm{nbhd} \text {. of } \tilde{\mathbf{f}}_{\infty}(\mathrm{M})
\end{aligned}
$$

inducing the Umkehr $\mathbb{Z}[\pi]$-module chain map

$$
f^{!}: C(\widetilde{N}) \simeq C(\tilde{N})^{n-\star, w} \xrightarrow{\widetilde{\mathrm{f}}^{\star}} C(\widetilde{M})^{n-*, w} \simeq s^{n-m_{C}} C(\widetilde{M}) \simeq \dot{C}\left(T_{\pi}\left(v_{f}\right)\right)
$$

The quadratic construction on F

$$
\psi_{F}: H_{n}(N, w) \longrightarrow Q_{n}^{\pi, w}\left(\dot{C}\left(T \pi\left(v_{f}\right)\right)\right)=Q_{n}^{\pi, w}\left(S^{n-m} C(\tilde{M})\right)
$$

sends the fundamental class $[N] \in H_{n}(N, W)$ to the image under γ of the fundamental class $\left[S_{2}(f)\right] \in H_{2 m-n}\left(S_{2}(f)\right)$ defined using the appropriately twisted coefficients

$$
\psi_{F}([N])=r_{*}\left(\left[S_{2}(f)\right]\right) \in Q_{n}^{\pi, w}\left(S^{n-m} c(\tilde{M})\right)=H_{2 m-n}\left(E \Sigma_{2} \times \Sigma_{2}\left(\tilde{M} \times x_{\pi} \tilde{M}\right), w\right)
$$

by the argument outlined on pp.279-282 of II. (The reference there to the work of Koschorke and Sanderson should be augmented by a reference to the earlier work of Vogel [l] on the interpretation of the approximation theorem $\Omega^{\infty} \Sigma^{\infty} X=\left(\bigsqcup_{k \geqslant 1} E \Sigma_{k} \times \Sigma_{k}\left(\Gamma_{k} x\right)\right) / \sim$ for connected spaces x in terms of immersion theory).
In particular, if $n=2 \mathrm{~m}, \mathrm{M}^{\mathrm{m}}=\mathrm{S}^{\mathrm{m}}$ then

$$
\psi_{F}([N])=\mu(f) \in H_{O}\left(\mathbb{Z}_{2} ; \mathbb{Z}\left[\pi^{w}\right],(-)^{m}\right)
$$

is the self-intersection number defined geometrically by wall $\{4,55$] for an immersion $f: S^{m} \rightarrow N^{2 m}$, with $\mu(f)=0$ if (and for $m \geqslant 3, \pi=\pi_{1}$ (only if) f is regularly homotopic to an embedding $f: S^{m} \longleftrightarrow N^{2 m}$. In the subsequent applications we shall be concerned with a double covering $p=$ projection $: N^{\prime}=\hat{N} / \eta^{\prime} \longrightarrow N$ defined by a subgroup $\pi=\pi$ of index 2 , so that as before there is defined a group extension

and there is an element $t \in \pi$ such that $\zeta(t)=-1$. Furthermore, the immersion $f: M \cap \longrightarrow N$ will be assumed to lift to an embedding $f^{\prime}: M \longrightarrow N^{\prime}$, in which case the double point set of f can be expressed as

$$
S_{2}(f)=\left\{(x, y) \in M \times M \mid f^{\prime}(x)=T f^{\prime}(y)\right\} / \Sigma_{2}
$$

with $T: N^{\prime} \longrightarrow N^{\prime}$ the covering translation. The commutative diagram

gives rise to a commutative diagram of stable π-maps

inducing the Umkehr $\mathbb{Z}[\pi]$-module chain maps

with \tilde{N}^{\prime} the pullback of \hat{N} along $p: N^{\prime} \longrightarrow N$ and

$$
p^{!}: C(N) \longrightarrow C\left(N^{\prime}\right)=p_{1} p^{!} C(N) ; x \longmapsto 1 \otimes x+t \otimes t^{-1} x .
$$

The stable π-map $P: \Sigma^{\infty} \tilde{N}_{+} \longrightarrow \sum^{\infty} \tilde{N}_{+}^{\prime}$ can be defined in one of two (equivalent) ways, either in the same way as F using a framed embedding $N^{\prime} c \longrightarrow N \times \mathbf{R}^{\infty}$ such that

lifting to the covers and applying the Pontrjagin-Thom constr

$$
\begin{aligned}
P: \Sigma^{\infty} \tilde{N}_{+}=\widetilde{N} \times \mathbb{R}^{\infty} / \widetilde{N} \times S^{\infty-1} \xrightarrow{\text { collapse }} & \widetilde{\mathbf{N}} \times \mathbb{R}^{\infty} / \widetilde{\tilde{N}} \times \mathbb{R}^{\infty}-\text { nbhd. of } \tilde{N}
\end{aligned}
$$

(i.e. using the fact that $p: N \longrightarrow N$ is an immersion with normal bundle $v_{p}=O: N^{\prime} \longrightarrow B G(O)$, although the constructi of P is valid for any double covering $p: N^{\prime} \longrightarrow N$), or using t Dyer-Lashof map \mathcal{D} (cf. Brumfiel and Milgram [l]) with the adjoint of P given by

$$
\operatorname{adj}(P): \widetilde{N}_{+} \longrightarrow\left(E \Sigma_{2} \times \Sigma_{2}\left(\tilde{N}^{\prime} \times \widetilde{N}^{\prime}\right)\right)_{+} \xrightarrow{\infty} \Omega^{\infty} \Sigma^{\infty} \tilde{N}_{+}^{\prime}
$$

with

$$
\tilde{N} \longrightarrow E \Sigma_{2} \times \Sigma_{2}\left(\tilde{N}^{\prime} \times \tilde{N}^{\prime}\right) ;\left[\tilde{x}^{\prime}\right] \longmapsto\left(P^{\prime}\left(x^{\prime}\right), \tilde{x}^{\prime}, T \tilde{x}^{\prime}\right]
$$

defined using a Σ_{2}-equivariant lift $p^{\prime}: N^{\prime} \longrightarrow E \Sigma_{2}$ of a classifying map $p: N \longrightarrow B \Sigma_{2}$. The quadratic construction on P

$$
\psi_{P}: H_{\star}(N, w) \longrightarrow Q_{\star}^{\pi, w}\left(C\left(\tilde{N}^{\prime}\right)\right)=Q_{\star}^{\pi^{\prime}, w^{\prime}}\left(p^{!} C(\tilde{N})\right) \oplus Q_{\star}^{\pi^{\prime}, B}\left(p^{!} C(\tilde{N}), w(\right.
$$

has symmetrization

$$
\begin{aligned}
& (1+T) \psi_{P}=\phi_{\bar{N}}, P^{!}-p^{!\%} \phi_{\widetilde{N}} \\
& \quad: H_{\star}(N, w) \longrightarrow Q_{\pi, w^{*}}\left(C\left(\tilde{N}^{\prime}\right)\right)=Q_{\pi^{\prime}, w^{\prime}}^{*}\left(P^{!} C(\widetilde{N})\right) \oplus Q_{\pi^{\prime}, B^{*}}\left(p^{!} C(\bar{N}), w(\right.
\end{aligned}
$$

Let $\phi_{\stackrel{\rightharpoonup}{\mathrm{N}}}: H_{\star}\left(N^{\prime}, w^{\prime}\right) \rightarrow Q_{\Pi^{\prime}}^{*}, w^{\prime}\left(p^{\prime} \mathrm{C}(\overline{\mathrm{N}})\right)$ be the symmetric construct on $\tilde{\mathrm{N}}$ with respect to the restriction of the $\pi-\operatorname{action}$ on $\tilde{\mathrm{N}}$ to $\pi^{\prime} \subset \pi$ (noting that $\left.\tilde{N} / \pi^{\prime}=N^{\prime}\right)$, so that the symmetric construc on \tilde{N}^{\prime} with respect to the π-action is qiven by

$$
\begin{aligned}
& \Phi_{\tilde{N}}^{\prime}=\binom{\phi \frac{1}{N}}{0} \\
& \qquad: H_{\star}\left(N^{\prime}, w^{\prime}\right) \rightarrow Q_{\pi}^{\star}, w^{\prime}\left(C\left(\tilde{N}^{\prime}\right)\right)=Q_{\pi}^{\star}, w^{\prime}\left(p^{!} C(\tilde{N})\right) \oplus Q_{\pi}^{\star},, \beta\left(p^{!} C(\tilde{N}), w(t) t^{2}\right) \\
& \text { since } \tilde{p}: \tilde{N}^{\prime} \longrightarrow \widetilde{N} \text { is a trivial double cover. It now follows } \\
& \text { from the chain level commutativity of the diagram }
\end{aligned}
$$

that the first component of ψ_{p} is 0

$$
\begin{aligned}
\psi_{P} & =\binom{0}{\psi_{P}^{\prime}} \\
& \left.: H_{*}(N, w) \longrightarrow Q_{\star}^{\pi,}, w^{\prime} C\left(\tilde{N}^{\prime}\right)\right)=Q_{\star}^{\pi^{\prime}, w^{\prime}}\left(p^{\prime} C(\tilde{N})\right) \oplus Q_{\star}^{\pi^{\prime}}, B\left(P^{\prime} C(\tilde{N}), w(t) t^{2}\right) .
\end{aligned}
$$

The second component defines a natural transformation

$$
\psi_{P}^{\prime}: H_{*}(N, w) \longrightarrow O_{*}^{\pi^{\prime}, B}\left(p^{\prime} C(\widetilde{N}), w(t) t^{2}\right),
$$

the antiquadratic construction associated to the double covering $p: N^{\prime} \longrightarrow N$, such that

$$
\begin{aligned}
& -\left(1+T_{w}(t) t^{2)} \psi_{p}^{\prime}=p^{!} t \phi_{\tilde{N}}\right. \\
& : H_{\star}(N, w) \xrightarrow{\Phi_{\widetilde{N}}} Q_{\pi, w}^{\star}(C(\widetilde{N})) \xrightarrow{t} Q_{\pi, \alpha}^{\star}\left(C(\widetilde{N}), w(t) t^{2}\right) \\
& \xrightarrow{p^{!}} Q_{\pi}^{\star}, B^{\left(p^{!} C(\tilde{N}), w(t) t^{2}\right) .}
\end{aligned}
$$

The quadratic construction on F in this case is given by

$$
\begin{aligned}
\psi_{F}=f_{q}^{!} \psi_{P}= & \binom{0}{f_{8}^{\prime}!\psi_{P}^{\prime}}: H_{n}(N, w) \cdots Q_{n}^{\pi, w^{\prime}}\left(S^{n-m} C(\pi \times M)\right) \\
& =Q_{n}^{\pi \prime}, w^{\prime}\left(S^{n-m} C\left(\pi^{\prime} \times M\right)\right) \oplus Q_{n}^{\pi \prime} \cdot \beta\left(S^{n-m} C\left(\pi^{\prime} \times M\right), w(t) t^{2}\right),
\end{aligned}
$$

and

$$
\gamma_{\star}\left(\left[S_{2}(f)\right]\right)=\psi_{F}([N])=\left(0, f_{g}^{\prime}!\psi_{P}^{\prime}([N])\right) .
$$

In particular, if $n=2 m$ the non-trivial component is the equivariant self-intersection of $\left(f: M^{m} \longrightarrow N^{2 m}, f,: M^{m} c \longrightarrow N^{2 m}\right.$)

$$
\begin{aligned}
& \mu_{O}(f)=f_{g}^{\prime} \psi_{P}^{\prime}([N]) \in Q_{2 m}^{\pi^{\prime}, B}\left(S^{m_{C}}\left(\pi^{\prime} \times M\right), w(t) t^{2}\right) \\
&=H_{O}\left(\mathbb{Z}_{2} ; \mathbb{Z}\left[\pi^{\prime}\right]^{B},(-)^{m}{ }_{w}(t) t^{2}\right)
\end{aligned}
$$

such that $\mu(f)=\mu_{O}(f) t^{-1}$, measuring the number of pairs of points in the intersection $f^{\prime}(M) \cap T f^{\prime}(M) \subset N^{\prime}$, which is a o-dimensional manifold with a free Σ_{2}-action. (If (α, ε) is an antistructure on a ring A then $H_{0}\left(\mathbb{Z}_{2} ; A, \varepsilon\right)=A /\{a-\varepsilon \alpha(a) \mid a \in A\}$, by definition). Wall [4, §12C] defined $\mu_{O}(f)$ geometrically. In the oriqinal work of Browder and Livesay [1] $\mu_{O}(f)$ was expressed in the case $\pi^{\prime}=\{1\}$ in terms of a mod2 cohomology operation, which was expressed as a functional Steenrod square in Ranicki [8] and which has been extensively studied by Conner and Miller [1].

Let (M, N) be an ($n, n-1$)-dimensional manifold pair of type C), i.e. such that the normal bundle $v=v_{N \subset M}: N \longrightarrow B G(1)$ is non-trivial. Let $P_{N}: N^{*}=S(v) \longrightarrow N$ be the associated double cover of N, and let $P=\overline{M \backslash \overline{E(v)}}$ so that

$$
M=E(v) u_{S(v)}^{P} .
$$

The double covering of M

$$
P_{M}: M^{\prime}=P_{+} U_{N^{\prime}} P_{-} \longrightarrow M
$$

defined using two copies P_{+}, P_{-}interchanged by the covering translation $T: M^{\prime} \longrightarrow M^{\prime}$ is such that

$$
p_{M} \mid=p_{N}: p_{M}^{-1}(N)=N^{\prime} \longrightarrow N
$$

A one-sided handle exchange on N inside M is the ambient surg

$$
(M, N) \longmapsto\left(M, N \backslash s^{r} \times D^{n-r-1} \cup D^{r+1} \times S^{n-r-2}\right)
$$

determined by an embedding $\left(D^{r+1}, S^{r}\right) \times D^{n-r-1} C(M, N)$ which lif to an embedding $\left(D^{r+1}, S^{r}\right) \times D^{n-r-1} \subset\left(P_{+} N^{\prime}\right)$ such that

$$
\left(S^{r} \times D^{n-r-1}\right) \cap T\left(S^{r} \times D^{n-r-1}\right)=\emptyset C N^{\prime} .
$$

This operation is equivalent to an equivariant hancle exchang on N^{\prime} inside M^{\prime}

$$
\begin{aligned}
\left(M^{\prime}, N^{\prime}\right) \longmapsto & \longmapsto\left(M^{\prime}, N^{\prime} \backslash\left(S^{r} \times D^{\overline{n-r}-1} \cup T \cdot\left(S^{r} \times D^{n-r-1}\right)\right.\right. \\
& \cup\left(D^{r+1} \times S^{n-r-2} \cup T\left(D^{r+1} \times S^{n-r}\right.\right.
\end{aligned}
$$

(cf. López de Medrano $[1, \$ 1.1 .2]$).

Proposition 7.6.5 Let (X, Y) be a formally ($n, n-1$)-dimensioni normal pair of type c) with

$$
\pi_{1}(X)=\pi_{1}(Y)=\pi, \pi_{1}(Z)=\pi_{1}(S(\xi))=\pi^{\prime}, w(X)=w: \pi-
$$

i) If $(f, b):(M, N) \longrightarrow(X, Y)$ is a formally $(n, n-1)$-dit topological normal map a one-sided handle exchange on $(g, c)=(f, b) \mid: N \longrightarrow X$ inside $(f, b): M \longrightarrow X$ has the alge effect of surgery on the antiquadratic kernel $\sigma_{\star}^{\prime}(f, b)$.
ii) If (X, Y) is an ($n, n-1$)-dimensional geometric Polnca
pair and $(f, b):(M, N) \longrightarrow(X, Y)$ is an $(n, n-1)$-dimensional topological normal map such that $f: M \longrightarrow X$ is an s-triangul of X the antiquadratic kernel $\sigma_{*}^{\prime}(f, b)$ is an ($n-l$)-dimensiona $\left(-w(t) t^{2}\right)$-quadratic poincaré complex over $\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}$. The spli obstruction of f along $Y \subset X$ is given by

$$
s(f, Y)=\sigma_{\star}^{\prime}(f, b) \in L N_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right)=L_{n-1}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{B},-w(\right.
$$

Proof: i) The antiquadratic kernel $\sigma_{\star}^{\prime}(f, b)$ was defined usinc the quadratic kernel $\sigma_{*}(g, c)$. We shall now obtain it using the antiquadratic construction associated to the double cove of N classified by $v=v_{N \subset M}: N \longrightarrow B G(1)$, thus relatinc $\sigma_{\star}^{\prime}(f, b)$ to the equivariant self-intersections which are the obstructions to individual one-sided handle exchanges.

Let

$$
P_{X}: X^{\prime}=Z_{+} v_{Y^{\prime}}{ }^{2} \longrightarrow X
$$

be the double covering of X defined using two copies Z_{+}, Z_{Z} o interchanged by the covering translation $T: X^{\prime} \longrightarrow X^{\prime}$, with

$$
p_{X} \mid=p_{Y}: p_{X}^{-1}(Y)=Y^{\prime}=S(z) \longrightarrow Y
$$

the double covering of Y associated to $\varepsilon: Y \longrightarrow B G(1)$.

The formally n-dimensional topological normal map $(f, b): M \rightarrow X$ has a decomposition

$$
(f, b)=(q, c)!\cup(h, d): M=E(\nu) \cup_{S(\nu)} P \longrightarrow X=E(\xi) \cup_{S(\xi)^{z}}
$$

with

$$
\begin{aligned}
& (g, C)=(f, b) \mid: N=f^{-1}(Y) \longrightarrow Y \\
& (h, d)=(f, b) \mid:(P, S(v))=f^{-1}(Z, S(\xi)) \longrightarrow(Z, S(\xi)) \\
& v=v_{N \subset M}: N \xrightarrow{G} Y(1) .
\end{aligned}
$$

Let \widetilde{Y} be the universal cover of Y, and let $\tilde{g}: \widetilde{N} \longrightarrow \mathcal{Y}$ be a π-equivariant lift of $g: N \longrightarrow Y$, so that the Umkehr $\mathbb{Z}\{\pi\}$-module chain map of g is defined by

$$
g^{!}: C(\widetilde{Y})^{n-1-*, w \xi} \xrightarrow{\tilde{g}^{\star}} C(\widetilde{N})^{n-1-*, w \xi} \xrightarrow{[N] \tilde{\sim}^{-}} C(\tilde{N}) .
$$

The quadratic kernel of the formally ($n-1$)-dimensional topological normal map $(\mathrm{g}, \mathrm{c}): \mathrm{N} \longrightarrow \mathrm{Y}$ is the formally $(\mathrm{n}-1)$-dimensional quadratic complex over $\mathbb{Z}\left[\pi^{w \xi_{s}}\right]$

$$
\sigma_{\star}(g, c)=\left(C\left(g^{!}\right), \psi_{G}([Y]) \in Q_{n-1}^{\pi, w \xi_{5}}\left(C\left(g^{!}\right)\right)\right)=(C, \psi)
$$

with $\psi_{G}: H_{n-1}(Y, W \xi) \longrightarrow Q_{n-1}^{\pi, w}\left(C\left(g^{!}\right)\right)$the spectral quadratic construction on the geometric Umkehr semi-stable π-map $G: T \pi\left(\nu_{Y}\right)^{\star} \longrightarrow \Sigma^{\infty} N_{+}$obtained by equivariant S-duality as in $\varsigma 7.3$. The quadratic kernel of the formally ($n-1$)-dimensional topological normal induced from $(g, c): N \longrightarrow Y$ by $P_{Y}: Y^{\prime} \longrightarrow Y$

$$
\left(g^{\prime}, c^{\prime}\right): N^{\prime} \longrightarrow Y^{\prime}
$$

is the restriction of the quadratic kernel of (q, c)

$$
\sigma_{\star}\left(q^{\prime}, c^{\prime}\right)=p^{!} \sigma_{\star}(g, c)
$$

with $p: \pi^{\prime}=\pi_{1}\left(Y^{\prime}\right) \longrightarrow \pi=\pi_{1}(Y)$ the inclusion.
The quadratic kernel of the formally n-dimensional topological normal map of pairs

$$
(h, d):\left(P, N^{\prime}\right) \longrightarrow\left(Z, Y^{\prime}\right)
$$

is a formally n-dimensional quadratic pair over $\mathbb{Z}\left[\pi^{\prime \prime}{ }^{\prime \prime}\right.$)

$$
\sigma_{\star}(h, d)=\left(e: p^{!} c \longrightarrow D,\left(\delta \psi, p^{!} \psi\right) \in Q_{n}^{\pi^{\prime}, w^{\prime}}(e)\right)
$$

defined using the relative spectral quadratic construction, with $D=C\left(h^{\prime}\right)$ the algebraic mapping cone of the Umkehr $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain map

$$
h^{!}: C(\widetilde{Z}, \tilde{Y})^{n-\star, w^{\prime}} \xrightarrow{\widetilde{h}^{\star}} C(\widetilde{P}, \tilde{N})^{n-\star, w^{\prime} \xrightarrow{[P] n-} C(\widetilde{P}) .}
$$

with \tilde{Z} the universal cover of 2 and $\tilde{h}:(\tilde{P}, \tilde{N}) \longrightarrow(\tilde{Z}, \tilde{Y})$ a π^{\prime}-equivariant lift of $h:(P, N) \longrightarrow(Z, Y)$. Let $\tilde{p}_{Y}: \widetilde{Y}^{\prime} \longrightarrow \widetilde{Y}$ be the π-equivariant (trivial) double cover of Y obtained from $\widetilde{p}_{Y}: \widetilde{Y}^{\prime} \longrightarrow \widetilde{Y}$ by pullback along the covering projection $\widetilde{Y} \longrightarrow Y$, inducing the $\mathbb{Z}[\pi]$-module chain map

$$
\begin{array}{r}
\tilde{p}_{Y}: C(\tilde{Y} \cdot)=p_{!} p^{!} c(\tilde{Y}) \longrightarrow C(\tilde{Y}) ; a \otimes x \longmapsto \\
(a \in \mathbb{Z}[\pi], x \in C(\tilde{Y})),
\end{array}
$$

and similarly for N. The $\mathbb{Z}[\pi]$-module chain map

$$
i: p_{!} p^{!} c\left(g^{!}\right)=p_{!} p^{!} c \longrightarrow c: a \otimes x \longmapsto a x
$$

fits into a commutative diagram

The $\mathbb{Z}[\pi]$-module chain map

$$
p_{!} e: p_{!} p^{!} c \longrightarrow p_{!} D
$$

fits into a commutative diaqram

$$
\begin{aligned}
& \text { with } q_{N}: N \longrightarrow P \text { the inclusion. It is thus possible to identify } \\
& C\left(\binom{i}{p, e}: p_{!} p^{!} C \longrightarrow C \oplus p_{!} D\right)=\xi^{!} C\left(q^{!}\right) \cup p_{!} C\left(h^{!}\right) \\
& =C\left(f^{!}: C(\widetilde{X})^{n-*, w} \longrightarrow C(\widetilde{M})\right) .
\end{aligned}
$$

The quadratic kernel of the formally n-dimensional topological normal map $(f, b): M \longrightarrow X$ is the formally n-dimensional quadratic complex over $\mathbb{Z}\left[\pi^{w}\right]$

$$
\begin{aligned}
\sigma_{*}(f, b)=\left(C(f!), \psi_{F}\right. & \left.([X]) \in Q_{n}^{\pi, W}\left(C\left(f^{!}\right)\right)\right) \\
& =\xi^{!} \sigma_{\star}(g, c) \cup p_{!} \sigma_{\star}(h, d)
\end{aligned}
$$

with $\psi_{F}: H_{n}(X, w) \longrightarrow Q_{n}^{\pi, w}\left(C\left(f^{!}\right)\right)$the spectral quadratic construction on geometric Umkehr semi-stable π-map $F: T \pi\left(v_{X}\right)^{*} \longrightarrow \sum^{\infty} \widetilde{M}_{+}$inducing the Umkehr $\mathbb{Z}[\pi]$-module chain map

$$
\mathrm{f}^{\prime}: C(\widetilde{\mathrm{X}})^{n-\star, w} \xrightarrow{\mathrm{f}^{\star}} C(\widetilde{M})^{n-\star, w} \xrightarrow{[M] \cap-} C(\widetilde{M})
$$

with \widetilde{X} the universal cover of X and $\widetilde{f}: \widetilde{M} \longrightarrow \longrightarrow \widetilde{X}$ a π-equivariant lift of $f: M \rightarrow \cdots X$. Define a $\mathbb{Z}[\pi]$-module chain map

$$
j: c-{ }^{\lambda k} \rightarrow p_{!} p^{!} C \xrightarrow{p_{!}^{e}} p_{1} D
$$

with

$$
\lambda k: C \longrightarrow P_{!} \rho^{!} C ; x t \longrightarrow 1 \otimes x+t \otimes t^{-1} x
$$

the $\mathbb{Z}[\pi]$-module chain map appearing in the short exact sequenc

$$
0 \longrightarrow c \longrightarrow \xrightarrow{ } \mathrm{c} \longrightarrow \mathrm{p}_{1} p^{!} \mathrm{c} \xrightarrow{\lambda \mathbf{k}} \lambda c \longrightarrow
$$

(Recall that k was defined by

$$
k: \lambda C \longrightarrow p_{!} p^{!} C ; x+\longrightarrow 1 \otimes x-t \otimes t^{-1} x,
$$

It follows that the $\mathbb{Z}[\pi]$-module chain map

$$
\left(\binom{0}{1}, \lambda k\right): C(j) \longrightarrow C\left(\binom{\lambda i}{p, e}\right)=\lambda C(f!)
$$

appearing in the commutative diagram

is a simple chain equivalence. The $\mathbb{Z}[\pi]$-module chain map $\lambda k: C \longrightarrow p_{!} p^{!} C$ fits into a commutative diagram

The double covering of $(f, b): M \longrightarrow X$ induced from the double covering $p_{X}: X^{\prime} \longrightarrow X$ is a formally n-dimensional topological normal map

$$
\begin{aligned}
&\left(f^{\prime}, b^{\prime}\right)=\left(h_{+}, d_{+}\right) U_{\left(g^{\prime}, c^{\prime}\right)^{\left(h_{-}, d_{-}\right)}} \\
&: M^{\prime}=P_{+} U_{N}, P_{-} \longrightarrow X^{\prime}=Z_{+} U_{Y}, z_{-}
\end{aligned}
$$

for two copies ($\left.h_{+}, d_{+}\right),\left(h_{-}, d_{-}\right)$of (h,d). Regarded as a $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain map j can be written as

$$
\begin{gathered}
p^{!}{ }_{j}=\binom{j_{+}}{j_{-}}: p^{!} C=C\left(p^{!} g^{!}: p^{!}\left(C(\widetilde{Y})^{n-1-\star, w E_{2}}\right) \longrightarrow p^{!} C(\tilde{N})\right) \\
\longrightarrow p^{!} p_{!} D=C\left(h_{+}^{!}\right) \oplus C\left(h_{-}^{!}\right)
\end{gathered}
$$

with $j_{+}: p^{!} C \longrightarrow D$ a copy of the inclusion $p^{!} C\left(q^{!}\right) \longrightarrow C\left(h^{!}\right)$ and $j_{-}=\mu j_{+}$.

The antiquadratic kernel of $(f, b):(M, N) \longrightarrow(X, Y)$ is the formally $(n-1)$-dimensional $\left(B,-w(t) t^{2}\right)$-quadratic complex over $\mathbb{Z}\left[\pi^{\prime}\right]$

$$
\sigma_{\star}^{\prime}(f, b)=\left(D, e_{f} p^{!} t(\psi) \in Q_{n-1}^{\pi^{\prime}, \beta}(D)\right)
$$

In order to relate this to the antiquadratic construction $\psi_{P_{N}}^{\prime}: H_{\star}(N, w \xi) \longrightarrow Q_{\star}^{\pi{ }^{\prime}, B}\left(p^{\prime} C(\tilde{N}),-w(t) t^{2}\right)$ on the geometric Umkehr $\pi-$ map $p_{N}: \Sigma^{\infty} N_{+} \longrightarrow \Sigma^{\infty} N_{+}^{\prime}$ of the double covering $p_{N}: N^{\prime} \longrightarrow N$ consider the commutative diagram of normal maps

The equivariant S-dual of the induced diagram of maps of Thom π-spaces is a commutative diagram of (semi-)stable π-maps

By the sum formula for the spectral quadratic construction of Proposition 7.3.1 v)

$$
\begin{aligned}
\psi_{G}, p_{Y}^{!}=(\lambda k)_{\delta} \psi_{G} & +\left(p_{!} p^{!} a\right)_{\delta} \psi_{P_{N}} q^{!} \\
& : H_{n-1}(Y, w \xi) \longrightarrow Q_{n-1}^{\pi, w \xi}(C(q,!))
\end{aligned}
$$

where $a=$ inclusion $: C(\tilde{N}) \longrightarrow C\left(q^{!}\right)=C$ and

$$
Q_{n-1}^{\pi, w \xi}\left(C\left(q^{\prime!}\right)\right)=Q_{n-1}^{\pi, w \xi}\left(p_{!} p^{!} C\right)=Q_{n-1}^{\pi^{\prime}, w^{\prime}}\left(p^{!} C\right) \oplus Q_{n-1}^{\pi} \beta^{\beta}\left(p^{\prime} C,-w(t) t^{2}\right) .
$$

The antiquadratic construction $\psi_{\mathrm{P}_{\mathrm{N}}}^{\prime}$ is such that $\psi_{\mathrm{P}_{\mathrm{N}}}=\binom{0}{\psi_{\mathrm{P}_{\mathrm{N}}}}$
and $\psi_{G} \cdot p_{Y}^{!}=\binom{p^{!} \Psi_{G}}{0}$ (since the double covering $\tilde{p}_{Y}: \widetilde{Y}^{\prime} \longrightarrow \tilde{Y}$ is trivial), so that

$$
p^{\prime} t(\psi)=p^{!} t \psi_{G}([Y])=-\left(p^{!} a\right)_{8} \psi_{P_{N}}^{\prime}([N]) \in Q_{n-1}^{\pi} \beta^{\beta}\left(p^{!} C,-w(t) t^{2}\right)
$$

and

$$
\begin{aligned}
& \sigma_{\hbar}^{\prime}(f, b)=\left(D, e_{8} p^{!} t(\psi)\right) \\
&=\left(D,-j_{+8}\left(p^{!} a\right)_{\delta} \psi_{P_{N}}^{\prime}([H)) \in Q_{n-1}^{\pi \prime}, R\right. \\
&\left.\left(D,-w(t) t^{2}\right)\right)
\end{aligned}
$$

The verification that a one-sided handle exchange on $(g, c): N \longrightarrow Y$ inside $(f, b): M \longrightarrow X$ determines an algebraic surgery on σ (f, b) now proceeds as for ordinary surgery in Proposition II.7.3, with the equivariant self-intersection μ_{0} playing the role of μ. ii) The natural isomorphism of Proposition 7.6.4

$$
L_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right) \longrightarrow L_{n-1}\left(\mathbb{Z} \mid \pi^{\prime} 1^{\beta},-w(t) t^{2}\right)
$$

sends the splitting obstruction $s(f, Y)=\left(\sigma_{*}(q, c), \sigma_{*}(h, d)\right)$ to the cobordism class of the antiquadratic kernel $\sigma_{\star}^{\prime}(f, b)$.

In the original example of Browder and Livesay [1] $(X, Y)=\left(\mathbb{R} P^{n}, \mathbb{R} P^{n-1}\right)$ and the splitting obstruction along $Y \subset X$ of an s-triangulation $f: M \longrightarrow \longrightarrow$ (for $n \geqslant 5$) is an element $s(f, Y) \in L_{n-1}\left(\{1\} \longrightarrow \mathbb{Z}_{2^{\prime}}(-)^{n-1}\right)=L_{n-1}\left(\mathbb{Z},(-)^{n}\right)$.

Thus the obstruction is O if $n \equiv O(\bmod 2)$, and is
$\left\{\begin{array}{l}\text { the Arf invariant } \\ \frac{1}{8}(t h e s i g n a t u r e)\end{array}\right.$ of a non-singular $\left\{\begin{array}{l}\text { skew-quadratic } \\ \text { quadratic }\end{array}\right.$ form over \mathbb{Z} if $\left\{\begin{array}{l}n \equiv 1(\bmod 4) \\ n \equiv 3(\bmod 4)\end{array}\right.$. López de Medrano [1] studied the splitting obstruction theory for arbitrary type C) ($n, n-1$)-dimensional geometric poincaré pairs (X, Y) with $\pi_{1}(X)=\pi_{1}(Y)=Z_{2}$, for which the splitting obstruction along $Y \subset X$ of an $s-t r i a n g u l a t i o n ~ f: M \longrightarrow X$ is an element

$$
s(f, Y) \in I N_{n-1}\left(\{1\} \longrightarrow \mathbb{Z}_{2}, w(X)(t)\right)=L_{n+1}(\mathbb{Z}, \varepsilon)
$$

with $\epsilon=w(X)(t)=+1$ if $T: X^{\prime} \longrightarrow X^{\prime}$ is orientation-preservin (i.e. if X is orientable) and $\varepsilon=-1$ otherwise.

If ($M, M M$ is an n-dimensional manifold with boundary such that M is an $(n-1)$-dimensional geometric Poincaré complex the Poincaré-Lefschetz dual of the mod 2 fundamental class $[M] \in H_{n-1}\left(M ; \mathbb{Z}_{2}\right)$ is an element $\xi \in H^{1}\left(M, \partial M ; \mathbb{Z}_{2}\right)$ classifying an S°-fibration $\xi: M \longrightarrow B G(1)$ such that
i) $\left.\xi\right|_{N}=v=v_{N \subset M}: N \longrightarrow B G(1)$ is the non-trivial normal bundle of a codimension 1 submanifold $N C M$ such that $N \cap \partial M=\emptyset$ and $g_{*}[N]=[M] \in H_{n-1}(M, w \xi) \quad(w=w(M, \partial M))$, with $g: N \longrightarrow M$ the inclusion
ii) $\xi,\left.\right|_{P}=\epsilon: P \longrightarrow B G(1)$, with $P=\overline{M \backslash E(v)}$.

Let $(f, b):(M, \partial M) \longrightarrow(E(\xi), S(\xi))$ be an $s-t r i a n g u l a t i o n ~ o f ~$ the n-dimensional geometric Poincaré pair (E(E),S(F)) topolc transverse at the zero section $M \subset E(\xi)$ with $f^{-1}(M)=N \subset M$, as in the discussion at the end of 57.5 . The rel ∂M splittin obstruction of f along $M \subset E(\xi)$

$$
\begin{aligned}
s_{\partial}(f, M) & =\sigma_{\star}^{\prime}(f, b)=\left(D, \psi^{\prime} \in Q_{n-1}^{\pi^{\prime}, \beta}\left(D,-w(t) t^{2}\right)\right) \\
& \in \operatorname{LN}_{n-1}\left(\pi^{\prime} \longrightarrow \pi, w\right)=L_{n-1}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta},-w(t) t^{2}\right)
\end{aligned}
$$

is the obstruction to the existence of a codimension 1 spine $\mathrm{N} \subset \mathrm{M}$ obtained by wall [4,512C]. In particular, if $\mathrm{n}-1=2 \mathrm{~m}$ and $(f, b) \mid=(g, C): N \longrightarrow M$ is $(m-1)$-connected (as can b achieved by preliminary one-sided handle exchanges helow the middle dimension) it is possible to represent every element

$$
x \in H_{m}(D)=H_{m}\left(h_{t}^{!}\right)=\operatorname{ker}\left(H_{m}(\tilde{N}) \longrightarrow H_{m}(\tilde{M})\right) \cap \operatorname{ker}\left(H_{m}(\tilde{N}) \longrightarrow H_{m}\right.
$$ by a framed immersion $x_{1}: S^{m} \alpha \longrightarrow N^{2 m}$ with a lift to an embedd $x_{1}^{\prime}=x_{2}: S^{m} \longrightarrow N^{\prime 2 m}$ in the double cover $N^{\prime}=S(v)$ which extends to a framed embedding $\left(x_{3}, x_{2}\right):\left(D^{m+1}, S^{m}\right) \longleftrightarrow\left(P_{+}, N^{\prime}\right)$ together with a null-homotopy $\left(x_{4}, g x_{1}\right):\left(D^{m+1}, S^{m}\right) \longrightarrow M$ of g The antiquadratic kernel $\sigma_{\star}^{\prime}(f, b)$ is given in this case by th non-singular $\left(\beta,(-)^{m+1}{ }_{w}(t) t^{2}\right)$-quadratic form over $\left.Z I^{\prime}\right]^{\prime}$

$$
\begin{aligned}
\left(H_{m}\left(h_{+}^{!}\right), \lambda_{O}\right. & \left.=\left(1+T(-)^{m+1} w(t) t^{2}\right) \psi_{O}^{\prime}: H_{m}\left(h_{+}^{!}\right) \times H_{m}\left(h_{+}^{!}\right) \longrightarrow \mathbb{Z} \mid \pi^{\prime}\right] \\
\mu_{O} & =v^{m}\left(\psi^{\prime}\right): H_{m}\left(h_{+}^{!}\right) \longrightarrow H_{O}\left(\mathbb{Z}_{2} ; \mathbb{Z}\left[\pi^{\prime}\right]^{B},(-)^{m+1} w(t)\right.
\end{aligned}
$$

defined geometrically by wall $[4, \S 12 C]$, with $\mu_{O}(x)$ the equivariant self-intersection of $\left(x_{1}, x_{j}\right)$. An element $x \in H_{m}(h$ is such that $\mu_{O}(x)=0$ if (and for $m \neq 3$ only if) it can be k by a one-sided handle exchange on $(\mathrm{g}, \mathrm{c}): N \longrightarrow \mathrm{M}$ inside $(f, b):(M, \partial M) \longrightarrow(E(\xi), S(\xi))$.

$$
\begin{gathered}
\text { If }(X, Y) \text { is a codimension } 1 \text { CW pair of type } C) \text { with } \\
\pi_{1}(X)=\pi_{1}(Y)=\pi, \pi_{1}(Z)=\pi_{1}(S(E))=\pi n, w(X)=w: \pi \longrightarrow \mathbb{Z}_{2}
\end{gathered}
$$

and $f: M \longrightarrow X$ is a map from an n-dimensional geometric poincaré complex M the Poincare splitting obstruction of f along $y \subset x$ is given by Propositions 7.5.1 iii), 7.6.4 to be an element

$$
s^{P}(f, y) \in L_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right)=L_{n}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{B}, w(t) t^{2}\right) .
$$

As it stands the construction of this invariant requires f to be normal transverse at $Y \subset X$. However, in the case $\pi=\mathbb{Z}_{2}, \pi^{\prime}=\{1\}$, $\mathrm{n}=2 \mathrm{~m}$ Hambleton and Milgram [l] identified this Poincaré splitting obstruction with the Arf invariant of the non-singular quadratic form over \mathbb{Z}_{2}

$$
\begin{gathered}
\left(H^{m}\left(M^{\prime} ; \mathbb{Z}_{2}\right), \lambda_{0}: H^{m}\left(M^{\prime} ; \mathbb{Z}_{2}\right) \times H^{m}\left(M^{\prime} ; \mathbb{Z}_{2}\right) \longrightarrow \mathbb{Z}_{2} ;(x, y) \longmapsto\left\langle x \cup T Y,\left[M^{\prime}\right]\right\rangle,\right. \\
\left.H_{0}=v^{m}\left(\psi_{P}^{\prime}((M))\right): H^{m}\left(M^{\prime} ; \mathbb{Z}_{2}\right) \longrightarrow \mathbb{Z}_{2}\right),
\end{gathered}
$$

with $p_{M}: M^{\prime} \longrightarrow M$ the double cover of M induced along from the double cover $P_{X}: X^{\prime}=Z_{+}{ }^{U} S_{(\xi)^{2}} \longrightarrow X$ of X, which is defined without normal transversality. We shall now use the antiquadratic construction to express the non-simply-connected Poincaré splitting obstruction in terms of a generalization of this form, which is also defined intrinsically (i.e. without appealing to normal transversality).

Let M be an n-dimensional normal space, and let \widetilde{M} be an oriented covering of M with group of covering translations π and orientation map $w: \pi \rightarrow \mathbb{Z}_{2}$ such that π is equipped with a subgroup π 'c π of index 2 , so that

$$
p=\text { projection }: \widetilde{M} / \pi^{\prime}=M^{+} \longrightarrow M
$$

is a non-trivial double covering of M with a geometric Umkehr stable $\pi-$ map

$$
P: \Sigma^{\infty} \bar{M}_{+} \longrightarrow \varepsilon^{\infty} \bar{M}_{+}^{\prime}
$$

As before, write the group extension as

$$
\{1\} \longrightarrow \pi^{\prime} \xrightarrow{\mathrm{p}} \pi \xrightarrow{\xi} \mathbb{Z}_{2} \longrightarrow\{1\},
$$

choose an element $t \in \pi-\pi^{\prime}$ and define an antistructure (β, t^{2}) on $\mathbb{Z}\left[\pi^{\prime}\right]$ by

$$
\begin{aligned}
& \beta: \mathbb{Z}\left[\pi^{\prime}\right] \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right] ; \sum_{g^{\prime} \in \pi^{\prime}} n_{g^{\prime}} g^{\prime} \longmapsto \sum_{g} \sum_{\pi^{\prime}} w^{\prime}\left(g^{\prime}\right) n_{g}, t^{-1} g^{\prime}{ }^{-1} t \\
& \left(w^{\prime}=\omega p: \pi^{\prime} \longrightarrow Z_{2}\right) \text {. }
\end{aligned}
$$

Use the antiquadratic construction on P

$$
\left.\psi_{p}^{\prime}: H_{n}(M, w) \longrightarrow Q_{n}^{\pi \prime,} \beta_{(p}!\subset(\tilde{M}), w(t) t^{2}\right)
$$

to define the antiquadratic complex of (M, p), the n-dimensional $\left(B, w(t) t^{2}\right)$-quadratic complex over $\mathbb{Z}\left[\pi^{\prime}\right]$

$$
\sigma_{\star}(M, p)=\left(p^{\prime} C(\widetilde{M}), \psi_{p}^{\prime}([M])\right)
$$

with antisymmetrization

$$
\begin{aligned}
\left(1+T_{w}(t)\right. & t^{2) \sigma_{\star}(M, p)} \\
& =\left(p^{!} C(\tilde{M}), p^{\prime} t \phi_{\widetilde{M}}((M)) \in Q_{\pi}^{n}, \beta\right. \\
& =p^{\prime} t \sigma^{*} C(M) .
\end{aligned}
$$

Proposition 7.6 .6 i) The antiquadratic complex $\sigma_{\star}(M, p)$ is such that

$$
\begin{gathered}
\left(1+T_{w}(t) t^{2) O_{*}(M, p)=p^{!} t \sigma^{*}(M)}\right. \\
g_{g} \sigma_{\star}(M, p)=S p^{!} t \sigma_{\star}(M)
\end{gathered}
$$

where $\sigma^{*}(M)=\left(C(\bar{M}), \Phi_{M}([M]) \in Q_{\pi, W}^{n}(C(\hat{M}))\right)$ is the symmetric complex of $M, \sigma_{*}(M)=\left\{\Omega C\left([M] n-1, \psi \in Q_{n-1}^{\pi, W}(\Omega C([M] \cap-))\right\}\right.$ is the quadratic Poincaré complex of M and

$$
g=\text { inclusion }: p^{!} C(M) \longrightarrow p^{!} C\left([M] \cap-: C(\tilde{M})^{n-*, w} \xrightarrow{i} C(\tilde{M})\right)
$$

ii) If M is an n-dimensional geometric Poincare complex then $o_{*}(M, p\rangle$ is an n-dimensional $\left\{\beta, w(t) t^{2}\right)$-quadratic Poincaré complex over $\mathbb{Z}\left[\pi^{\prime}\right)$. The antiquadratic signature of (M, p) is the cobordism class

$$
\left.\sigma_{\star}(M, p) \in L_{n}\left(Z \Gamma \pi^{\prime}\right)^{B}, w(t) t^{2}\right)
$$

iii) The antiquadratic signature vanishes if (M, p) is the boundary of an $(n+1)-d i m e n s i o n a l$ geometric poincaré pair $(\delta M, M)$ equipped with a double cover $(\delta \nu, p):\left(\delta M^{\prime}, M^{\prime}\right) \cdots(\delta M, M)$ such that \tilde{M} extends to a cover $(\widetilde{\delta M}, \widetilde{M})$ of $(\delta M, M)$, in which case the antiquadratic complex $\sigma_{*}(M, p)$ is the boundary of the $(n+1)$-dimensional $\left(B, t^{2}\right)$-quadratic Poincaré pair over $\mathbb{Z}\left[\pi^{\prime}\right]$

$$
o_{*}(\delta M, \delta p)=\left(f: p^{!} C(\tilde{M}) \longrightarrow p^{!} C(\overparen{\delta M}), \psi_{\delta P, p}^{\prime}([\delta M]) \in Q_{n+1}^{\pi^{\prime}, \beta}(f)\right)
$$

so that

$$
\sigma_{\star}(M, p)=0 \in L_{n}\left(Z 2\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right)
$$

iv) The antiquadratic signature vanishes if (M,p) admits a characteristic geometric Poincaré subcomplex, that is if the classifying map $p: M \rightarrow B G(1)=\mathbb{R P}^{\circ 0}$ is Poincaré transverse at $\mathbb{R P}^{\infty-1} \subset \mathbb{R} P^{\infty}$, so that $\left(M, N=p^{-1}\left(R P^{\infty-1}\right)\right)$ is an $(n, n-1)-d i m e n s i o n a l$ geometric Poincaré pair of type C) with $\bar{M}=P_{+} U_{N} \tilde{p}_{-}$.

More precisely, the antiquadratic signature vanishes

$$
\sigma_{*}(M, p)=0 \in L_{n}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right)
$$

since the antiquadratic complex $\sigma_{\star}(M, p)$ is the boundary of the $(n+1)$-dimensional $\left(\beta, W(t) t^{2}\right)$-quadratic Poincaré pair over $\mathbb{Z}\left[\pi{ }^{\prime}\right.$

$$
\sigma_{\star}(M, N)=\left(j_{+}: p^{\prime} c(\widetilde{M}) \longrightarrow C\left(\widetilde{M}, \widetilde{P}_{+}\right),\left(0, \psi_{p}^{\prime}([M])\right) \in Q_{n+1}^{\pi^{\prime}, \beta}\left(j_{+}\right)\right) .
$$

Proof: i) Let $\left(v_{M}: M \longrightarrow B G(k), \rho_{M}: S^{n+k} \longrightarrow T\left(v_{M}\right)\right.$) be the normal structure of M. As in the proof of Proposition 7.4.1 i) let $F: T \pi\left(v_{M}\right) \longrightarrow \Sigma^{\infty} M_{+}$be a semi-stable π-map inducing the $\mathbb{Z}[\pi]$-modide chain map

$$
[M] \cap-: C(\tilde{M})^{n-*, w} \longrightarrow C(\tilde{M}) .
$$

The projection $p: M^{\prime} \longrightarrow M$ is covered by a map of $(k-1)$-spher i fibrations $b: p^{*} v_{M} \longrightarrow v_{M}$, with a commutative diagram S (b)

in which both p and $S(b)$ are double coverings. The geometric Umkehr \{l\}-maps P and $S(B)$ induced by P and $S(b)$ fit into the commutative diagram

so that there is induced a stable \{l\}-map of Thom spaces
$T(B)=P / S(B)$

$$
: \Sigma^{\infty} T\left(v_{M}\right)=\Sigma^{\infty} M_{+} / \Sigma^{\infty} S\left(v_{M}\right)+\Sigma^{\infty} T\left(p^{\star} v_{M}\right)=\Sigma^{\infty} M_{+}^{1} / \Sigma^{\infty} S\left(p^{\star} v_{M}\right)_{+} .
$$

Define a normal structure for the double covering M^{\prime} of M by

$$
\begin{aligned}
& \left(v_{M}{ }^{\prime}=p^{*} v_{M} \oplus \varepsilon^{\infty}: M^{\prime} \longrightarrow B G(k+\infty),\right. \\
& \left.\rho_{M^{\prime}}: S^{n+k+\infty} \xrightarrow{\Sigma^{\infty} \rho_{M}} \Sigma^{\infty} T\left(\nu_{M}\right) \xrightarrow{T(B)} \Sigma^{\infty} T\left(p^{\star} \nu_{M}\right)=T\left(\nu_{M},\right)\right),
\end{aligned}
$$

so that the corresponding semi-stable $\pi-\operatorname{map} F^{\prime}: T \pi\left(\nu_{M}\right)^{*} \longrightarrow \Sigma^{\infty} \tilde{M}^{\prime}+$ fits into the commutative diaqram of (semi-)stable π-maps

inducing the commutative diagram of $\mathbb{Z}[\pi]$-module chain maps

By the sum formula for the spectral quadratic construction
of Proposition 7.3.1 v)

$$
\begin{aligned}
& \psi_{F}, T(b)^{*}=\left(p^{!}, p^{*}\right){ }_{8} \psi_{F}+\left(P_{!} p^{!} g\right)_{g} \psi_{P}([M] \cap-) \\
& : \dot{H}^{k}\left(T\left(\nu_{M}\right), w\right)=H^{O}(M) \longrightarrow Q_{n}^{\pi, w}\left(C\left(\left[M^{\prime}\right] \cap-\right)\right) \\
& =Q_{n}^{\pi \prime}, w^{\prime}\left(p^{!} C([M] \cap-)\right) \oplus Q_{n}^{\pi \prime}, B\left(p^{!} C([M] \cap-), w(t) t^{2}\right)
\end{aligned}
$$

with

$$
\begin{aligned}
& g=\text { inclusion }: C(\tilde{M}) \longrightarrow C([M] \cap-) \\
& p_{!} p^{\prime} g=\text { inclusion }: p_{!} p^{\prime} C(\tilde{M})=C(\tilde{M} \cdot) \\
& \longrightarrow p_{!} p^{!} C([M] \cap-)=C\left(\left[M^{\prime}\right] \cap-\right) \\
& \left(p^{!} \cdot p^{*}\right)=\lambda k: C([M] \cap-)
\end{aligned}
$$

$$
\longrightarrow C\left(\left[M^{\prime}\right] \cap-\right)=p_{!} p^{!} C([M) \cap-)
$$

As $\tilde{\mathrm{p}}: \tilde{\mathrm{M}}^{\prime} \longrightarrow \tilde{\mathrm{M}}$ is a trivial double covering $\mathrm{p}^{!} \mathrm{t} \psi_{\mathrm{F}^{\prime}}=0$, and $p^{!} \psi_{p}=0$, so that

Evaluating the second component on the Thom class $U_{v_{M}} \in \dot{H}^{k}\left(T\left(v_{M}\right), w\right)$ and rearranging we thus have

$$
-g_{\theta_{b}} \psi^{\prime}{ }_{P}([M])=p^{!} t \psi_{F}\left(U_{v_{M}}\right) \in Q_{n}^{\pi \cdot} \cdot B_{(p}!^{\prime}\left([M] \cap-1, w(t) t^{2}\right)
$$

and

$$
g_{g} \sigma_{\star}(M, p)=p^{!} t S \sigma_{\star}(M)
$$

(with $\mathrm{So}_{\star}(\mathrm{M})$ the suspension of the ($\mathrm{n}-1$)-dimensional quadratic Poincaré complex over $Z\left[\pi^{W}\right]$

$$
\sigma_{*}(M)=\left(\Omega C([M] \cap-), \psi \in Q_{n-1}^{\pi, w}(\Omega C([M] \cap-))\right)
$$

defined in Proposition 7.4.1 i)l.
ii), iii), iv) are direct consequences of the definitions.
(The definition in Proposition 7.6.6 ii) of the antiquadratic signature $\sigma_{*}(M, p) \in L_{n}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right)$ of an n-dimensional geometric Póincaré complex M with a non-trivial double covering $p: M^{\prime} \longrightarrow M$ corrects the definition of $\sigma_{\star}(M, p)$ in Ranicki $\left.[8, p .566]\right)$.

$$
\begin{aligned}
& \psi_{F}, T(b) *=\binom{p^{!} \psi_{F}, T(b)^{*}}{0}=\binom{\psi_{P}!{ }_{F}}{p!t \psi_{F}+q_{q} \psi_{P}^{\prime}([M] \cap-)} \\
& : \dot{H}^{k}\left(T\left(U_{M}\right), w\right) \longrightarrow Q_{n}^{\pi, w}\left(C\left(\left[M^{\prime}\right] \cap-\right)\right) \\
& =Q_{n}^{\pi^{\prime}}, w^{\prime}\left(p^{\prime} C([M] \cap-)\right) \oplus Q_{n}^{\pi^{\prime}, B}\left(p{ }^{\prime} C([M] \cap-), w(t) t^{2}\right) .
\end{aligned}
$$

In particular, it follows from proposition 7.6.5 iii) that for any space X equipped with an orientation map $w: \pi_{1}(X)=\pi \longrightarrow \mathbb{Z}_{2}$ and a non-trivial map $\xi: \pi \longrightarrow \mathbb{Z}_{2}$ the antiquadratic signature defines abelian group morphisms

$$
\sigma_{\star}^{\xi}: \Omega_{n}^{P}(X, w) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right) ;
$$

$$
(f: M \longrightarrow X) \longmapsto \sigma_{\star}\left(M, P_{M}\right) \quad(n>0)
$$

with $\pi^{\prime}=\operatorname{ker}\left(\varepsilon: \pi \longrightarrow \mathbb{Z}_{2}\right), \mathrm{P}_{\mathrm{M}}=\mathrm{f} * \xi: M \longrightarrow \mathrm{BG}(1)$. If $P_{M}: M^{\prime} \longrightarrow M$ is a trivial double covering then $\sigma_{*}\left(M, P_{M}\right)=0$, by a special case of Proposition 7.6 .6 iv) (with $N=\emptyset$). The antiquadratic signature maps σ_{\star}^{ξ} are related to the symmetric signature maps σ^{*} by a commutative diagram

Proposition 7.6.7 Let (X, Y) be a codimension 1 CW pair of type C) with

$$
\pi_{1}(X)=\pi_{1}(Y)=\pi_{1}, \pi_{1}(Z)=\pi_{1}(S(\xi))=\pi^{\prime}, W(X)=W .
$$

i) The Poincaré splitting obstruction function $u_{\xi}: f \longmapsto S^{P}(f, Y)$ on $\Omega_{\star}^{P}(X, w)$ coincides with the antiguadratic signature map

$$
\begin{gathered}
\left.u_{\xi}=\sigma_{\star}^{\xi}: \Omega_{n}^{P}(X, w) \longrightarrow L_{n-2}\left(\pi^{\prime} \longrightarrow \rightarrow \pi, w\right)=L_{n}\left(\mathbb{Z} \mid \pi^{\prime}\right]^{\beta}, w(t) t^{2}\right) \\
(f: M \longrightarrow X) \longmapsto s^{P}(f, Y)=\sigma_{\star}\left(M, p_{M}\right) .
\end{gathered}
$$

ii) The hyperquadratic signature map \hat{o}^{*} on $\Omega_{\star}^{N}(X, w)$ is such that

$$
p^{!} t \hat{\sigma}^{\star}=0: \Omega_{n}^{N}(x, w) \xrightarrow{\hat{\sigma}^{\star}} \hat{L}^{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \xrightarrow{p^{!} t} \hat{L}^{n}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{B}, w(t) t^{2}\right)
$$

$$
\text { iii) If }(f, \partial f):(M, \partial M) \longrightarrow X \text { is a map from an n-dimens }
$$ geometric Poincaré pair (M,jM) which is (normal, Poincaré) transverse at $Y \subset X$ with $(f, \partial f)^{-1}(Y)=(N, J N) \subset(M, O M)$ then th relz Poincaré splitting obstruction of f along $Y \subset X$ is given

$$
\begin{aligned}
s_{\partial}^{P}(f, Y) & =\sigma_{\star}\left(M, p_{M}\right) U_{\sigma_{\star}}\left(\partial M, p_{7 M}\right)^{-\sigma_{\star}}(\partial M, \partial N) \\
& \in L_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right)=L_{n}\left(\mathbb{Z}\left[n^{\prime}\right]^{\beta}, w(t) t^{2}\right) .
\end{aligned}
$$

Proof: i) In the first instance we shall combine Proposition 7.5.1 iii), 7.6.4 to give an explicit description of the Poincaré splitting obstruction of f along $Y \subset X$

$$
s^{P}(f, Y) \in \operatorname{LN}_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right)=L_{n}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right),
$$

assuming that $f: M \longrightarrow X$ is normal transverse at $Y \in X$. Let

$$
f=g^{!} \cup h: M=E(v) u_{S(v)} p \longrightarrow x=E(\xi) u_{S(\xi)^{2},}
$$

with

$$
\begin{aligned}
& \mathrm{g}=\mathrm{f} \mid: \mathrm{N}=\mathrm{f}^{-1}(\mathrm{Y}) \longrightarrow \mathrm{Y} \\
& \mathrm{~h}=\mathrm{f} \mid: P=\mathrm{f}^{-1}(\mathrm{Z}) \longrightarrow \mathrm{Z} \\
& v: N \longrightarrow \mathrm{Q} \longrightarrow \mathrm{Y} \longrightarrow \mathrm{E} \\
& \mathrm{~V}(1) .
\end{aligned}
$$

Let \widetilde{M} be the covering of M obtained from the universal cover \tilde{x} of x by pullback along f, so that $\tilde{N} \subset \tilde{M}$ is the covering of 1 obtained from the universal covering \widetilde{Y} of Y by pullback alone and

$$
\widetilde{\mathrm{M}}=\widetilde{\mathrm{P}}_{+} u \widetilde{\mathrm{~N}}_{-}^{\widetilde{\mathrm{P}}_{-}}
$$

for two copies $\widetilde{\mathrm{P}}_{+}, \widetilde{\mathrm{P}}_{-}$of the covering $\widetilde{\mathrm{P}}$ of P obtained from the
universal covering \tilde{z} of Z by pullback along h . The construction of Proposition 7.4.1 i) associates to the ($n-1$)-dimensional normal space N an ($n-2$)-dimensional quadratic Poincaré complex over $\mathbb{Z}\left[\pi^{\omega \xi}\right]$

$$
\begin{aligned}
\sigma_{\star}(N) & =(C, \psi) \\
& =\left(\Omega C\left([N] n-: C(\tilde{N})^{n-1-*, w \xi} \longrightarrow C(\tilde{N})\right), \psi \in Q_{n-2}^{\pi, w \xi}(C)\right) .
\end{aligned}
$$

Denote the double covering $\tilde{N} / \pi^{\prime}=S(v)$ of N by N^{\prime}, so that (P, N^{\prime}) is an n-dimensional normal pair. The relative version of the construction of Proposition 7.4.1 i) associates to (P, N ') an ($n-1$)-dimensional quadratic Poincaré pair over $\mathbb{Z}\left[\pi^{\prime \prime}{ }^{\prime \prime}\right]$

$$
\begin{aligned}
\sigma_{\star}\left(P, N^{\prime}\right)= & \left\langle e: p^{!} C \longrightarrow D,\left(\delta \psi, p^{!} \psi\right)\right) \\
= & \left(e: \Omega C\left([N] \cap-: p^{!} C(\widetilde{N})^{\left.n-1-*, w^{\prime} \longrightarrow p^{!} C(\tilde{N})\right)}\right.\right. \\
& C\left([P]_{n}-: C(\widetilde{P}, \widetilde{N})^{\left.n-{ }^{*}, w^{\prime} \longrightarrow C(\widetilde{P})\right),}\right. \\
& \left.\left(\delta \psi, p^{!} \psi\right) \in Q_{n-1}^{\pi \prime}, w^{\prime}(e)\right) .
\end{aligned}
$$

Define a $\mathbb{Z}[\pi]$-module chain map

$$
i: p_{!} p^{!} c \longrightarrow c ; q \Omega x \longrightarrow g x \quad(g \in \pi) \text {, }
$$

so that

$$
C\left(\binom{i}{p_{!} e}: p_{!} p^{!} C \longrightarrow C \oplus p_{!} D\right)=C\left([M] n-: C(\tilde{M})^{n-*}, w \longrightarrow C(\tilde{M})\right)
$$

is a simple chain contractible (based) $\mathbb{Z}[\pi]$-module chain complex and $\binom{i}{p_{!} e}$ is a simple chain equivalence. The expression for the Poincaré splitting obstruction given by Proposition 7.5 .1 iii) is

$$
\begin{aligned}
S^{P}(E, Y) & =\left(\sigma_{\star}(N), \sigma_{\star}\left(P, N^{\prime}\right)\right) \\
& =\left((C, \psi),\left(\epsilon: P^{!} C \longrightarrow D,\left(\delta \phi, P^{!} \psi\right)\right)\right. \\
& \in L_{n-2}(\Phi)=L N_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right) .
\end{aligned}
$$

As in the proof of Proposition 7.6 .4 we have that the composite $\mathbb{Z}[\pi]$-module chain map

$$
j: C \longrightarrow \xrightarrow{\lambda k} p_{!} p^{!} C \xrightarrow{p_{!}^{e}} p_{!} D
$$

is a simple chain equivalence, with

$$
\lambda k: c \longrightarrow p_{!} p^{!} C ; x+\cdots 1 \otimes x+t \otimes t^{-1} x .
$$

The restriction of the $\mathbb{Z} \mid \pi]$-action to $\mathbb{Z}[\pi] \subset \mathbb{Z}[\pi]$ defines a simple $\mathbb{Z}[\pi$ ']-module chain equivalence

$$
p^{!} j=\binom{j_{+}}{j_{-}}: p^{!} c \longrightarrow \longrightarrow p^{!} p_{!} D=D_{+} \oplus D_{-}
$$

with D_{+}a copy of D and $D_{-}=\mu D_{+}$. It now follows from Proposition 7.6 .4 that the Poincare splitting obstruction of f along $Y \subset X$ is given by

$$
\begin{aligned}
s^{P}(f, Y) & =\left(D_{+}, \psi^{\prime}\right) \\
& \in \mathrm{LN}_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right)=L_{n-2}\left(\pi\left[\pi^{\prime}\right]^{\beta},-w(t) t^{2}\right)
\end{aligned}
$$

with ψ^{\prime} defined by

$$
\psi^{\prime}=j_{+8} p^{\prime} t(\psi) \in Q_{n-2}^{\pi \prime \prime}\left(D_{+},-w(t) t^{2}\right)
$$

As it stands $\psi \in Q_{n-2}^{\pi, w \xi}(C)$ is defined using the spectral
quadratic construction ψ_{F} on a semi-stable π-map $F: T \pi\left(U_{N}\right)^{\star} \longrightarrow \Sigma^{\infty} \widetilde{N}_{+}$inducing the $\mathbb{Z}[\pi]$-module chain map

$$
[N] \cap-: C(\widetilde{N})^{n-1-*, w \xi} \longrightarrow C(\tilde{N}) .
$$

Working as in the proof of Proposition 7.6 .6 i) it is possible to express $\Gamma^{!} t(\psi) \in Q_{n-2}^{\pi \prime, \beta}\left(p^{!} C,-w(t) t^{2}\right)$ and hence also ψ^{\prime} in terms of the antiquadratic construction $\psi_{P_{N}}^{\prime}$. It follows from
this expression that surgery on the connected $(n+1)$-dimensional ($\beta, w(t) t^{2}$)-quadratic pair over $\mathbb{Z}\left[\pi^{\prime}\right]$
$\left(g_{+}=\right.$projection : $p^{!} \mathrm{C}(\widetilde{M}) \longrightarrow C\left(\widetilde{M}, \widetilde{P}_{+}\right)$,
$\left.\left(0, \psi_{\mathrm{P}_{M}}^{\prime}([M])\right) \in Q_{n^{\prime \prime}+1}^{\prime^{\prime}, \beta}\left(q_{+}, w(t) t^{2}\right)\right)$
results if the sker-suspension $\bar{S}\left(D_{+}, \psi^{\prime}\right)$ of $\left(D_{+}, \psi^{\prime}\right)$. Thus the skew-suspension isomorphism

$$
\bar{s}: L_{n-2}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta},-w(t) t^{2}\right) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right)
$$

sends the Poincare splitting obstruction $s^{P}(f, Y)=\left(D_{+}, \psi^{\prime}\right)$ to th antiquadratic signature $\bar{S}\left(D_{+} \cdot \psi^{\prime}\right)=\sigma_{*}\left(M, P_{M}\right)=\left(p^{!} C(\bar{M}), \psi_{P_{M}}^{\prime}([M])\right)$.
ii) Working as in the proof of Proposition 7.6.4 it may be verified that the composite

$$
\hat{L}^{n}\left(p^{!}: \mathbb{Z}\left|\pi^{w \xi}\right| \longrightarrow \mathbb{Z}\left[\pi^{\prime w^{\prime}}\right]\right) \longrightarrow \hat{L}^{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \xrightarrow{p^{!} t} \hat{L}^{n}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, w(t) t^{2}\right)
$$

is 0 . (This does not require any algebraic transversality).
If $f: M \longrightarrow X$ is a map from an n-dimensional normal space M which is normal transverse at $Y \subset X$, with $N=f^{-1}(Y), P=f^{-1}(Z)$, $N^{\prime}=f^{-1}\left(Y^{\prime}\right)$ as in i), then the hyperquadratic signature $\hat{o}^{\star}(M) \in \mathbb{L}^{n}\left(\mathbb{Z}\left(\pi^{W} 1\right)\right.$ is the image of $\left(\hat{\sigma}^{\star}(N), \hat{\sigma} \star\left(P, N^{\prime}\right)\right) \in \hat{L}^{n}\left(i^{!}\right)$. It follows that $\mathrm{P}^{!}$tô* $(M)=0$.
iii) This is a direct generalization of i), and may be proved similarly.

The expression for the rel, Poincare splitting obstruction as a union given by Proposition 7.6.7 iii)

$$
s{ }_{\cdot}^{P}(f, Y)=\sigma_{\star}\left(M, P_{M}\right) \cup_{\sigma_{\star}}\left(\partial M, P_{\partial M}\right)^{-\sigma_{\star}}(\partial M, j N)
$$

can be combined with the sum formula of Proposition 7.3.6 to
recover the result of Mann and Miller [1] that for $n \equiv O(\bmod 2)$ the Arf invariant of $\mathbb{Z}_{2} \sigma_{*}\left(M, P_{M}\right)$ is defined (i.e. the middledimensional self-intersection form is eradicable) if and only if the Arf invariant of $\mathbb{Z}_{2} \mathbb{Z a}_{\star}(\mathrm{M}, \mathrm{N})$ is defined, and that if such is the case the difference of Arf invariants is the mod2
 Proposition 7.6.8 , et $k \geqslant 0$, and let

$$
x_{k}=\bar{s}^{k}\left(\mathbb{Z}\left[\mathbb{Z}_{2}^{(-)^{k}}\right\}, t\right)=\left\{C, \phi \in Q_{\left.\mathbb{Z}_{2},(-)^{2 k}(C)\right)}\right.
$$

be the $2 k$-dimensional symmetric Poincaré complex over $\mathbb{Z}\left[\mathbb{Z}_{2}^{(-)^{k}}\right.$] ($=$ the group ring $\mathbb{Z}\left\{\mathbb{Z}_{2}\right\}$ with the involution $\left.\bar{t}=(-)^{k} t\right)$ defines by the k-fold skew-suspension of the non-singular $(-)^{k}$-symmetr form $\left(\mathbb{Z}\left[\mathbb{Z}_{2}\right], t\right)$ over $\mathbb{Z}\left[\mathbb{Z}_{2}^{(-)^{k}}\right]$. Then
i) $\left.\quad x_{k} \notin \operatorname{im}\left(\sigma^{*}: \Omega_{2 k}^{P}\left(K\left(\mathbb{Z}_{2}, 1\right),(-)^{k}\right) \longrightarrow L^{2 k}\left(\mathbb{Z} \mid \mathbb{Z}_{2}^{(-)^{k}}\right]\right)\right)$
ii) $J x_{k} \notin \operatorname{im}\left(\hat{\sigma}^{\star}: \Omega_{2 k}^{N}\left(K\left(\mathbb{Z}_{2}, 1\right),(-)^{k}\right) \longrightarrow \hat{\mathrm{L}}^{2 k}\left(\mathbb{Z}\left(\mathbb{Z}_{2}^{(-)^{k}}\right)\right)\right)$.

Proof: i) Let $\xi: K\left(\mathbb{Z}_{2}, 1\right) \longrightarrow B G(1)\left(=K\left(\mathbb{Z}_{2}, 1\right)\right)$ be the univers line bundle, and consider the commutative diagram

The $2 k$-dimensional $(-)^{k}$-symmetric Poincaré complex over \mathbb{Z}

$$
p^{!} t\left(x_{k}\right)=\bar{S}^{k}\left(\mathbb{Z} \oplus \mathbb{Z},\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)
$$

is the k-fold skew-suspension of the non-singular symmetric
form over $\left.\mathbb{Z} p^{!} t\left(\mathbb{Z}\left[\mathbb{Z}_{2}^{(-)}\right)^{k}\right], t\right)=\left(\mathbb{Z} \oplus \mathbb{Z},\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right)$ of signature 2 .
As $2 \not \equiv O(\bmod 8)$ it follows that $x_{k} \notin \operatorname{im}\left(\sigma^{*}\right)$.

$$
\begin{aligned}
& \text { ii) By i) } \\
& p^{!} t J x_{k}=J_{p}!_{x_{k}}=2 \neq 0 \in \hat{\mathrm{~L}}^{2 k}\left(\mathbb{Z},(-)^{k}\right)=\hat{\mathrm{L}}^{\mathrm{O}}(\mathbb{Z})=\mathbb{Z}_{8},
\end{aligned}
$$

so that $\left.\mathrm{Jx}_{\mathrm{k}} \notin \operatorname{im(ô}{ }^{*}\right)$ by Proposition 7.6 .6 ii).
[]
In conclusion, we shall use the LN-groups to give a geometric interpretation of the exact sequence of Proposition 5.2.2 for the simple ε-quadratic L_{1}-groups $L_{\star}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \quad(\varepsilon= \pm 1)$ of the α-twisted Laurent polynomial extension $A_{\alpha}\left(x, x^{-1}\right\} \quad\{a x=x a(a))$ of a group ring $A=\mathbb{Z}[\pi]$ with the involution extended by $\bar{x}=x$

$$
\begin{aligned}
& \cdots \longrightarrow L_{n}(A, \varepsilon) \oplus L_{n}\left(A^{\alpha}, \varepsilon\right) \longrightarrow L_{n}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right) \\
& \longrightarrow \overparen{L N i 1}_{n}(A, \alpha, \varepsilon) \oplus \hat{H}^{n}\left(\mathbb{Z}_{2} ; \operatorname{Wh}(\pi)^{\alpha}\right) \oplus \overparen{\operatorname{LNi} 1_{n}(A, \alpha, E)} \\
& \longrightarrow L_{n-1}(A, \varepsilon) \oplus L_{n-1}\left(A^{\alpha}, \varepsilon\right) \longrightarrow \cdots
\end{aligned}
$$

with $\alpha: A \longrightarrow A$ the ring automorphism induced by a group automorphism $\alpha: \pi \longrightarrow \pi$ such that $\alpha^{2}=i d . . Y=\{\pi\} \subseteq \widetilde{K}_{1}(A)$, $Z_{ \pm}=\{0\} \subseteq \widetilde{N i l}_{1}\left(A, \alpha^{ \pm 1}\right)$. The key idea here is due to
Tom Farrell and Sylvain Cappell (independently) - I am particularly indebted to the former for a helpful letter. The idea is to express the infinite dihedral group

$$
D_{\infty}=\left\{x, y \mid(x y)^{2}=y^{2}=1\right\}
$$

in two different ways:
i) as the free product of two copies of \mathbb{Z}_{2}

$$
D_{\infty}=Z_{2} * \mathbb{Z}_{2}=\left\{t_{1}, t_{2} \mid t_{1}^{2}=t_{2}^{2}=1\right\}
$$

with generators $t_{1}=x y, t_{2}=y$
ii) as an extension of \mathbb{Z} by \mathbb{Z}_{2}
$\{1\} \longrightarrow \mathbb{Z} \longrightarrow D_{\infty} \xrightarrow{\mathrm{E}} \mathbb{Z}_{2} \longrightarrow \longrightarrow\{1\}$
with $p(1)=x \in D_{\infty}, \xi(x)=1, \xi(y)=-1 \in \mathbb{Z}_{2}=\{ \pm 1\}$,
and to compare the codimension l splitting obstruction theory of type A) associated to i) with the codimension l splitting obstruction theory of type C) associated to ii). This can be done using either the manifold splitting theory of $\$ 7.2$, or the geometric Poincare splitting theory of 57.4 , or the algebraic Poincaré splitting theory of 57.5 - we shall stick to manifolds.

Let then π be a finitely presented group which is equipped with an orientation map $w: \pi \rightarrow \mathbb{Z}_{2}$ and an automorphism $\alpha: \pi \longrightarrow \pi$ such that

$$
\alpha^{2}=\text { id. }: \pi \longrightarrow \pi, w a=w: \pi \longrightarrow \mathbb{Z}_{2} .
$$

Give the group ring $A=\mathbb{Z}[\pi]$ the w-twisted involution

$$
-A \longrightarrow A: \sum_{g \in \pi} n_{g} g \longmapsto \longrightarrow \sum_{g \in \pi} w(g) n_{g} g^{-1} \quad\left(n_{g} \in \mathbb{Z}\right)
$$

and note that the automorphism

$$
\alpha: A \longrightarrow A ; \sum_{q \in \pi} n_{g}{ }^{g} \longmapsto \sum_{q \in \pi} n^{\alpha}{ }^{\alpha}(g)
$$

is such that

$$
\overline{\alpha(a)}=\alpha(a)=\alpha^{-1}(\bar{a}) \in A \quad(a \in A),
$$

so that A, α satisfy the hypotheses of $\$ 5.1$ and the α-twisted polynomial extensions $A_{\alpha}[x], A_{\alpha}\left[x, x^{-1}\right]$ of A are defined as rings with involution ($a x=x \alpha(a), \bar{x}=x)$. For each element $s \in L_{L_{1}}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right)(\varepsilon= \pm 1)$ write the image of s as

$$
\begin{aligned}
{[s]=} & \left([s]_{1},[s]_{2},[s]_{3}\right) \\
& \left.\in \operatorname{LNi}{ }_{n}(A, \alpha, \varepsilon) \oplus \hat{H}^{n}\left(\mathbb{Z}_{2} ; \text { Wh(} \pi\right)^{\alpha}\right) \oplus L N i 1_{n}(A, \alpha, \varepsilon) .
\end{aligned}
$$

and if $[s \mid=0$ denote $a n$ inverse image of s by

$$
[[s])=\left([[s]]_{1},([s]]_{2}\right) \in L_{n}(A, \varepsilon) \oplus L_{n}\left(A^{\alpha}, \varepsilon\right)
$$

We seek a geometric interpretation of these decompositions.
Let $\pi \times \alpha_{\infty}$ be the extension of π by D_{∞} defined by

$$
g t_{1}=t_{1} g, \quad q t_{2}=t_{2}^{\alpha(g)}(g \in \pi) .
$$

As for D_{∞} above (the special case $\pi=\{1\}$) there are two different ways of expressing $\pi \times{ }_{\alpha} D_{\infty}$:
i) as the free product with amalgamation

$$
D_{\infty}=\left(\pi \times \mathbb{Z}_{2}\right) *_{\pi}\left(\pi \times{ }_{\alpha} \mathbb{Z}_{2}\right)
$$

with $\pi \times \alpha_{\mathbb{Z}_{2}}$ the extension of π by \mathbb{Z}_{2} defined by $g t_{2}=t_{2} \alpha(g)$
ii) as an extension of $\pi \times \alpha_{\alpha} \mathbb{Z}$ by \mathbb{Z}_{2}

with $i(g)=g, p(1)=x, \quad,(g)=1, \xi(x)=1, \xi(y)=-1$.
Note that $x=t_{1} t_{2}$ (by definition) so that

$$
g x=g t_{1} t_{2}=t_{1} g t_{2}=t_{1} t_{2}^{\alpha(g)}=x \alpha(g) \in \pi x_{\alpha} D_{\infty}
$$

Fix numbers $k \geqslant 3, n \geqslant k+7$ and let $\left(M^{n-k-2}, \partial M^{n-k-3}\right)$ be an ($n-k-2$)-dimensional manifold with boundary such that

$$
\pi_{1}(M)=\pi_{1}(J M)=\pi, w(M)=w: \pi \longrightarrow \mathbb{Z}_{2} .
$$

Let $P_{1}^{k} \# P_{2}^{k}$ be the connected sum of two copies P_{1}^{k}, P_{2}^{k} of the real projective k-space $\mathbb{R} P^{k}$, and let

$$
\left(D^{1}, s^{0}\right) \longrightarrow\left(N^{k+1}, s^{k-1} \times S^{1}\right) \longrightarrow P P_{1}^{k} P_{2}^{k}
$$

be the $\left(D^{1}, S^{\circ}\right)$-bundle over $P_{1}^{k} \# P_{2}^{k}$ classified by

$$
r: \pi_{1}\left(P_{1}^{k} \Gamma_{2}^{k}\right)=Z_{2}^{*} \mathbb{Z}_{2}=D_{\infty} \longrightarrow \mathbb{Z}_{2}
$$

Let $\left(Q_{i}^{n-2} ; Q_{i}^{n-3}, Q_{i}^{n-3}\right)(i=1,2)$ be $(n-2)-d i m e n s i o n a l$ manifold triads such that there are defined fibre bundles

$$
(M,: M) \longrightarrow\left(Q_{i},{ }_{+}{ }_{+} Q_{i}\right) \longrightarrow \xrightarrow{q_{i}} \overline{P_{i}^{k}-D^{k}}
$$

with

$$
\begin{aligned}
& d_{-} Q_{i}=q_{i}^{-1}\left(S^{k-1}\right)=M \times S^{k-1} \\
& \pi_{1}\left(Q_{1}\right)=\pi_{1}\left(\theta_{+} Q_{1}\right)=\pi \times \mathbb{Z}_{2} \\
& \pi_{1}\left(Q_{2}\right)=\pi_{1}\left(\hat{o}_{+} Q_{2}\right)=\pi \times \alpha_{2}
\end{aligned}
$$

(e.g. $\left.\left(Q_{1} ;{ }_{+} Q_{1},{ }_{-} Q_{1}\right)=\left(M \times N ; M \times N, M \times S^{k-1}\right)\right)$. The $(n-2)$-dimei manifold with boundary defined by
is then such that

$$
\pi_{1}(Q)=\pi_{1}(Q)=\pi_{1}\left(Q_{1}\right) \star_{\pi_{1}}(M) \pi_{1}\left(Q_{2}\right)=\pi x_{a} D_{\infty},
$$

and there is defined a fibre bundle $q=q_{1} \cup q_{2}$ over $P_{1}^{k} P_{2}^{k}=\overline{P_{1}^{k}-D^{k}} u_{S}^{k-1} \overline{P_{2}^{k}-D^{k}}$

$$
(M, \partial M) \longrightarrow(Q, \partial Q) \xrightarrow{(q, \partial q)} p_{1}^{k} \# p_{2}^{k}
$$

Define also an ($n-1$)-dimensional manifold triad $\left(x^{n-1} ; 3_{+} x^{n-2}\right.$, by

$$
\begin{aligned}
& X=\left\{(u, v) \in N \times Q \mid p(u)=q(v) \in P_{1}^{k} P_{2}^{k}\right\} \\
& \dot{\partial}_{+} X=\{(u, v) \in X \mid v \in \partial Q \subset Q\} \\
& o_{-} X=\left\{(u, v) \in X \mid u \in S^{k-1} \times S^{1}=\jmath N \in N\right\}
\end{aligned}
$$

so that $\left(x, y_{2} x\right)$ is the total space of a $\left(D^{1}, S^{0}\right)$ bundle ξ over

$$
\left.\left(D^{1}, s^{0}\right) \longrightarrow(x,)_{-}\right) \xrightarrow{(\xi, j-\xi)} 0
$$

(namely the pullback of p along q, with classifying map the group morphism $\xi: \pi_{1}(Q)=\pi \times{ }_{\alpha} D_{\infty} \longrightarrow \mathbb{Z}_{2}$ defined above), and $\left(i{ }_{+} x, j{ }_{+} x\right)$ is the total space of the restriction of ξ to a $\left(D^{1}, S^{0}\right)$-bundle t^{ξ} over io

$$
\left(D^{1}, S^{0}\right) \longrightarrow\left({ }^{0} x, a \theta+X\right) \xrightarrow{{ }^{2} \xi=\xi \mid} \text { 20 }
$$

(namely the pullback of p along iq). Define also the manifold triads and manifolds with boundary

$$
\begin{aligned}
& \left(x_{i}^{n-1} ; \dot{u}_{+} x_{i}^{n-2}, 3_{-} x_{i}^{n-2}\right) \\
& =\left(\xi^{-1}\left(Q_{i}\right) ; \xi^{-1}\left(Z_{i}\right) \cup Q_{+} \xi^{-1}\left(Q_{+} Q_{i}\right), O_{-} \xi^{-1}\left(Q_{i}\right)\right) \quad(i=1,2) \\
& \left.\left(Y^{n-2},\right) Y^{n-3}\right)=\text { the zero section of }\left(\xi, \partial_{+} \xi\right)=(Q, \lambda Q) \times O \subset(X, \partial+X) \\
& \left.\left(Y_{i}^{n-2} ;{ }_{+} Y_{i}^{n-3},\right)_{-} Y_{i}^{n-3}\right) \\
& =\left(X_{i} \cap Y ;{ }_{+} X_{i} \cap Y,{ }_{+} X_{1} \cap{ }_{+} X_{2} \cap Y\right)=\left(Q_{i} ;{ }_{+} Q_{i},{ }^{\partial}{ }_{-} Q_{i}\right) \times 0 \quad(i=1,2) \\
& \left(2^{n-2} ; y^{2} 2^{n-3}, z_{2} z^{n-3}\right) \\
& =\left(\xi^{-1}\left(M \times S^{k-1}\right) ;{ }_{+} \xi^{-1}\left(M M \times S^{k-1}\right), \partial_{-} \xi^{-1}\left(M \times S^{k-1}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(M \times S^{k-1} \times D^{1} ; M \times S^{k-1} \times D^{1}, M \times S^{k-1} \times S^{O}\right) \\
& \left(W^{n-3},\left\langle W^{n-4}\right)=(Y \cap Z, \exists Y \cap Z)=\left(M \times S^{k-1}, \partial M \times S^{k-1}\right) \times 0\right.
\end{aligned}
$$

such that

$$
\begin{aligned}
& (Y, H Y)=\left(Y_{1} \cup_{W} Y_{2},{ }_{+}+Y_{1} \cup_{J W}{ }^{3}+Y_{2}\right) .
\end{aligned}
$$

For $\varepsilon=(-)^{k+1}$ let $\mathbb{Z}_{2}^{\varepsilon}$ (resp. $D_{\infty}^{\varepsilon}=\mathbb{Z}_{2}^{\varepsilon} \star \mathbb{Z}_{2}^{\varepsilon}$) denote the group \mathbb{Z}_{2} (resp. D_{∞}) with the orientation map $w_{\varepsilon}(t)=\varepsilon$ (resp. $\left.w_{E}\left(t_{i}\right)=\varepsilon(i=1,2)\right)$, and write $L N_{*}\left(\pi \rightarrow \pi x_{\alpha} Z_{2}, w \times w_{\varepsilon}\right)$ (resp. $L N_{\star}\left(\pi x_{\alpha} Z \mathbb{Z} \rightarrow \pi \times_{\alpha} D_{\infty^{\prime}},{ }^{w \times W_{E}}\right)$) as $L N_{\star}\left(\pi \cdots \rightarrow \pi x_{\alpha} Z_{2}^{\varepsilon}\right.$) (resp. $\left.\mathrm{LN}_{\star}\left(\pi x_{\alpha} \mathbb{Z} \longrightarrow \pi x_{\alpha} D_{\infty}^{E}\right)\right)$.

By Wall [4,Thms.11.7,12.9] every element

$$
s \in \operatorname{LN}_{n-2}\left(\pi \times{ }_{\alpha} \mathbb{Z} \longrightarrow \pi \times{ }_{\alpha} D_{\infty}^{\varepsilon}\right)
$$

is the rel splitting obstruction along $Y \subset X$ of an s-triangulation of the $(n-1)$-dimensional manifold triad $\left(x ;{ }_{+} x_{0},{ }_{-} x\right)$

$$
\left.f:\left(v^{n-1} ;\right)_{+} v^{n-2}, v_{-} v^{n-2}\right) \longrightarrow\left(x ; y_{+} x, a_{-} x\right)
$$

such that $\gamma_{+} f=f \mid: \partial_{+} V \longrightarrow y_{+} X$ is split along $\partial Y \subset \partial_{+} X$, and the LN-group may be expressed as an L-group

$$
L_{n-2}\left(\pi \times \alpha_{\alpha}^{Z Z} \longrightarrow \pi \times \alpha^{D_{\infty}^{E}}\right)=L_{n}\left(A_{\alpha}\left|x, x^{-1}\right|, \varepsilon \mid\right.
$$

with $t=t_{2} \in \pi x_{\alpha} D_{\infty}$ here (cf. Proposition 7.6.4). The image of $\left.s=s_{j}(f, Y) \in L_{n}\left(A_{\alpha} \mid x, x^{-l}\right], E\right)$ in $L_{n-2}\left(\mathbb{Z} \mid \pi x_{\alpha} D^{-\varepsilon} j\right)$ is the rel surgery obstruction $\sigma_{\star}(g, c)$ of the ($n-2$)-dimensional normal map of pairs

$$
(\mathrm{g}, \mathrm{c})=(\mathrm{f}, \mathrm{~b}): \mathrm{f}^{-1}(\mathrm{Y}, \mathrm{O} \mathrm{Y}) \longrightarrow(\mathrm{Y}, \mathrm{BY})
$$

which restricts to an s-triangulation of ∂Y. The image of $\sigma_{*}(g, c) \in L_{n-2}\left(\mathbb{Z}\left(\pi x_{\alpha} D^{-\varepsilon}\right]\right)$ in the group
is the splitting obstruction $s(\cdot g, 7)$ along $i^{n-4}<Y^{n-3}$ of the s-triangulation

$$
g=g \mid: f^{-1}(Y) \longrightarrow \simeq Y .
$$

It is thus possible to identify

$$
[s]_{1}=s(\because g, j W) \in \widetilde{\operatorname{LNi}}_{n}(\Lambda, \alpha, \varepsilon)=\operatorname{UNil}_{n-2}\left(\phi^{-\varepsilon}\right) .
$$

By the unitary nilpotent cobordism construction of Cappell [7] it is possible to replace f by a normal bordant s-triangulation of ($\mathrm{X} ; \mathrm{u}_{+} \mathrm{X}, \mathrm{y}_{\mathrm{H}} \mathrm{X}$) with ig split along $\mathrm{W} \subset \mathrm{ay}$. By the Browder-Wall $\pi-\pi$ theorem it is possible to extend this splitting of $3 g$ to a splitting of the s-triangulation $y_{+} f: \partial_{+} V \sim 0_{+} X$ along $3_{+} 2 \mathrm{C}, x$. The obstruction to extending the splitting of
 splitting of the s-triangulation $y_{-} f: \partial_{-} V \longrightarrow \partial_{-} X$ along $s_{-} Z c$. X is the element

Applying the unitary nilpotent cobordism construction again, it is possible to replace f by a normal bordant s-triangulation
 to extending the splitting of the s-triangulation

$$
i f=i_{+} f u:_{-} f: \quad V=j_{+} V u_{-} v \xrightarrow{\sim} a x=a_{+} x \cup J_{-} x
$$

along $Z=, Z u, z \subset X$ to a splitting of f along $z \in X$ is the element

$$
|s|_{3}=s(f, Z) \in \widehat{\operatorname{LNi~}}_{n}(A, \alpha, \varepsilon)=\operatorname{LS} S_{n-2}\left(\Phi^{\varepsilon}\right)=\operatorname{UNi1_{n}}\left(\Phi^{\varepsilon}\right) .
$$

Applying the unitary nilpotent cobordism construction once more, it is possible to replace f by a normal bordant s-triangulation
 so that f restricts to s-triangulations

$$
\begin{aligned}
\left.\left.f_{i}=f \mid:\left(v_{i}^{n-1}:\right)_{+} v_{i}^{n-2},\right)_{-} v_{i}^{n-2}\right)= & \left.f^{-1}\left(x_{i} ; x_{+}, x_{i}\right)_{-} x_{i}\right) \\
& \left.\longrightarrow\left(x_{i} ; a_{+} x_{i},\right)_{-} x_{i}\right) \quad(i=1,2)
\end{aligned}
$$

such that $\partial_{+} f_{i}=f_{i} \mid:{ }_{+} V_{i} \longrightarrow \simeq{ }_{+} X_{i}$ is split along $\partial Y_{i}=\partial_{+} Y_{i} \cup_{\partial W} W \subset \partial_{+} X_{i}$. Thus if
$[s]=\left([s]_{1},[s]_{2},[s]_{3}\right)=0$

$$
\boldsymbol{\epsilon} \overparen{\mathrm{LNil}}_{n}(A, \alpha, \varepsilon) \oplus \hat{\mathrm{H}}^{\mathrm{n}}\left(\mathbb{Z}_{2} ; \operatorname{Wh}(\pi)^{\alpha}\right) \oplus \overparen{\mathrm{LNI}}_{\mathrm{n}}(A, \alpha, \varepsilon)
$$

the original s-triangulation f of $\left.\left(x ; \hat{r}_{+} x,\right\}_{-} x\right)$ is concordant to one which is split along $\left.\left.\left(2 ; y_{+},\right)_{-} Z\right) \subset(X ;]_{+} X, A_{-} X\right)$, in which cas a choice of concordance (which is unique up to $\hat{H}^{n+l}\left(Z_{2} ;\right.$ Wh $\left.(\pi)^{\alpha}\right)$) determines an inverse image of $s \in L_{n}\left(A_{\alpha}\left[x, x^{-1}\right], \varepsilon\right)$

$$
[[s])=\left([[s]]_{1},[[s]]_{2}\right) \in L_{n}(A, E) \oplus L_{n}\left(A^{\alpha}, E\right) .
$$

The obstruction to extending the splitting of ${ }^{3}+{ }_{f}$ along $\partial Y_{1} \subset 3$ to a splitting of f_{1} along $\mathrm{Y}_{1} \subset \mathrm{X}_{1}$ is

$$
s_{3}\left(f_{1}, Y_{1}\right)=\left[[s]_{1} \in L N_{n-2}\left(\pi \longrightarrow \pi \times \mathbb{Z}_{2}^{\varepsilon}\right)=L_{n}(A, \varepsilon),\right.
$$

and the obstruction to extending the splitting of ${ }^{3}+f_{2}$ along $\partial Y_{2} \subset \partial_{+} X_{2}$ to a splitting of f_{2} along $Y_{2} \subset X_{2}$ is

$$
s_{\partial}\left(f_{2}, Y_{2}\right)=[[s]]_{2} \in \operatorname{LN}_{n-2}\left(\pi \longrightarrow \pi \times \alpha_{\alpha} \mathbb{Z}_{2}^{E}\right)=L_{n}\left(A^{\alpha}, \varepsilon\right) .
$$

From the point of view of the algebraic theory of codimension l surgery the above decompositions of the elements $s \in L_{n}\left(A_{\alpha}\left(x, x^{-1}\right], \varepsilon\right)$ may be deduced from the following commutative diagram of exact sequences of abelian qroups, in which the horizontal sequences are of types A) and B), the vertical sequences are of type C), and $L_{*}(\pi) \equiv L_{*}(\mathbb{Z}[\pi])$ (as

7.7 Surgery with coefficients

In the original theory of Wall [4] quadratic L-groups $L_{\star}(A)$ were defined for all rings with involution A, but only the quadratic L-groups $L_{*}(\mathbb{Z}[\pi])=L_{*}(\pi)$ of integral group rings $\mathbb{Z}\{\pi\}$ were $g i v e n$ a geometric interpretation as surgery obstruction groups. Since then many authors have developed analogues of the theory for surgery with various types of coefficients, giving geometric interpretations of the quadratic L-groups $L_{\star}\left(S^{-1} \mathbb{Z}[\pi]\right)$ of the localizations away from appropriate multiplicative subsets $S \subset \mathbb{Z} \mid r]$. We shall now list these analogues, after which we shall develop the algebraic theory of the Cappell-Shaneson homology surgery which is needed for the algebraic theory of codimension 2 surgery of $\$ 7.8$.

1) Q-coefficients

Even prior to the theory of Wall [4] it was clear from the work of Kervaire and Milnor [1] and wall [2] that quadratic linking forms over $(\mathbb{Z}[\pi], \mathbb{Z}-\{0\})$ play an important role in surgery obstruction theory, in the first instance as a computational tool for finite groups π. Later, Passman and Petrie [l] and Connolly [l] obtained special cases of the localization exact sequence

$$
\begin{gathered}
\left.\ldots \longrightarrow L_{n}(\mathbb{Z}[\pi]) \longrightarrow L_{n}^{S}(\mathbb{R}[\pi]) \longrightarrow L_{n}(\mathbb{Z}[\pi\}, S) \cdots L_{n-1}(\mathbb{Z} \mid \pi\}\right) \longrightarrow \ldots \\
(S=\mathbb{Z}-\{0\} \subset \mathbb{Z}[\pi], n \in \mathbb{Z})
\end{gathered}
$$

using a mixture of geometry and algebra. Pardon [1],[2],[3] obtained the sequence in general, purely algebraically fat least for finite $\pi)$, and interpreted $L_{n}(2[\pi], S)$ as the obstruction group for the problem of making an ($n-1$)-dimensional topolorical
normal map $(f, b): M \rightarrow X$ which is a rational homotopy equivale $\left(\pi_{\star}(f) \otimes Q=0\right)$ normal bordant to a homotopy equivalence $\left(f^{\prime}, b^{\prime}\right): M^{\prime} \longrightarrow X\left(\pi_{\star}\left(f^{\prime}\right)=0\right)$ by a normal bordism $(g, C):\left(N ; M, M^{\prime}\right) \longrightarrow X \times(I ; O, l)$ which is also a rational homotopy equivalence.
II) $\underline{Z}_{\mathrm{P}}$-coefficients

Let $p \subseteq\{a l l$ primes in $\mathbb{Z}\}$ be a subset (possibly empty), so that there is defined a multiplicative subset

$$
\begin{array}{r}
S_{p}=\left\{q_{1}{ }^{i_{1}} q_{2}^{i_{2}} \ldots q_{k}^{i_{k}} \mid q_{1}, q_{2}, \ldots, q_{k} \in\{\text { all primes in } \mathbb{Z}\}-p,\right. \\
\left.i_{1}, i_{2}, \ldots, i_{k} \geqslant 0\right\} \subset \mathbb{Z}
\end{array}
$$

and the localization of \mathbb{Z} at P

$$
z_{\mathrm{p}}=\mathrm{s}_{\mathrm{p}}^{-1} z_{1} \subseteq 0
$$

is defined as usual. Every $r i n g \mathbb{R}$ such that $\mathbb{Z} \varsigma R \subseteq Q$ is of the type $R=\mathbb{Z}_{p}$ for some P. A map of finite $C W$ complexes $f: M \longrightarrow X$ such that $f_{*}: \pi_{1}(M) \cdots \pi_{1}(X)$ is a $p-l o c a l$ homotopy equivalence $\left(\pi_{\star}(f) \otimes Z_{p}=0\right)$ if and only if it is a $Z_{p}\left[\pi_{1}(X)\right]$-coefficient homology equivalence $\left(H_{\star}\left(f ; \mathbb{Z}_{p}\left[\pi_{l}(X)\right]\right)=0\right)$, by the $p-l o c a l$ Whitehead theorem. The theory of Wall [4] is the case $P=\{a l l$ primes in $\mathbb{Z}\}$, when $\mathbb{Z}_{p}=\mathbb{Z}$; the theory of $\left.I\right)$ is the case $P=\emptyset$, when $\mathbb{Z}_{P}=Q$.

Surgery on topological normal maps up to $\mathbb{Z}_{p}[\pi]$-coefficien homology equivalence was first studied by jones [1], in connection with hiswork on the fixed point sets of semi-free actions of cyclic groups on manifolds (Smith theory). In particular, the theory of Wall [4] was extended there to surgery on formally n-dimensional topoloqical normal maps $(f, b): M \cdots X$ to n-dimensional $\mathbb{Z}_{p}\left|\pi_{1}(X)\right|$-coefficient qnometric

Poincaré complexes X. It was shown that such a map is normal bordant to a p-local homotopy equivalence if (and for $n \geqslant 5$ only if) $\sigma_{*}(f, b)=0 \in L_{n}\left(\mathbb{Z}_{p}\left\{\pi_{1}(x)\right]\right)$. Quinn $\{4\}$ extended this theory to surgery on \mathbb{Z}_{p}-homology manifolds.

The original application of surgery to the classificatic of manifolds which are homotopy spheres due to Kervaire and Milnor [1] was generalized by Barge, Lannes, Latour and Vogel to the classification of manifolds which are \mathbb{Z}_{p}-homology sphe
G. A. Anderson [1] developed an analoque of the Browder-N. Sullivan-Wall theory (the special case $P=\{$ all primes in $\mathbb{Z}\}$ for the classification of spaces with the p -local homotopy types of manifolds. The theory was reformulated by Taylor and Williams [2], and applied there to the classification of embeddings of manifolds in p-local homotopy spheres, the p-local version of some of the results of Browder (3). This theory deals with p-local Spivak normal structure; we shall only be concerned with normal spaces $\left(X, v_{X}: X \longrightarrow B G(k), \rho_{X}: S^{n+k} \longrightarrow T\left(v_{X}\right)\right)$ with P-local Poincare duality, i.e. such that the $\mathbb{Z}_{p}\left[\pi_{1}(x)\right]$-module chain map

$$
[x] n-: c\left(\tilde{x} ; \mathbb{Z}_{p}\right)^{n-*} \longrightarrow c\left(\tilde{x} ; \mathbb{Z}_{p}\right)
$$

is a chain equivalence with \tilde{X} the universal cover of X and

$$
\left.C\left(\tilde{x} ; \mathbb{Z}_{p}\right)=\mathbb{Z}_{p} \otimes_{Z Z} C(\tilde{x})=\mathbb{Z}_{p} \mid \pi_{1}(x)\right] \otimes_{Z Z}\left[\pi_{1}(x)\right] C(\tilde{x})
$$

Pardon [4] used local surqery theory to extend the work of Madsen, Thomas and Wall on the classification of free acti of finite groups on spheres ("the topological spherical space form problem") to the classification of free actions of finit groups on manifolds which are \mathbb{Z}_{p}-homoloay spheres.

III) \quad-coefficients

Cappell and Shaneson [1] developed an obstruction theory for the problem of making a topological normal map $(f, b): M \longrightarrow X$ to an n-dimensional f-coefficient geometric Poincaré complex X normal bordant to a A-coefficient homology equivalence, for any locally epic morphism of rings with involution $\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda$, in connection with their work on codimension 2 surgery.

In particular, the theory introduced the Γ-groups Γ_{\star} and the A-coefficient homology surgery obstruction was expressed as an element $\sigma_{*}(f, b) \in \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right)$. The homology surgery theory of I) (resp. II) is essentially the special case $\Lambda=\Phi\left[\pi_{1}(x)\right]\left(\right.$ resp. $\left.\Lambda=\mathbb{Z}_{\mathrm{p}}\left[\pi_{1}(X)\right]\right)$, with $\Gamma_{*}\left(\mathbb{Z}\left[\pi_{1}(X)\right] \longrightarrow \Lambda\right)=L_{*}(\Lambda)$.

As already noted in $\$ 3.2$ above Smith $[1]$ expressed the Γ-groups $\Gamma_{*}(\mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\rho])$ for certain surjective group morphisms $\pi \longrightarrow \rho$ as the L-groups $L_{\star}\left(S^{-1} \mathbb{Z}[\pi]\right)$ of the localization of $\mathbb{Z}[\pi]$ away from the multiplicative subset

$$
S=\{1+i \mid i \in \operatorname{ker}(\mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[0])\} \subset \mathbb{Z}[\pi],
$$

and that more generally vogel [1] has expressed the $[$-groups $\Gamma_{*}(\mathbb{Z}[\pi] \longrightarrow \Lambda)$ of any locally epic morphism $\mathbb{Z}[\pi] \longrightarrow \Lambda$ as the L-grousp $L_{*}(A)$ of an appropriate ring with involution A. Furthermore, Smith [2] developed an obstruction theory for the problem of making a topological normal map (f, b) $: M \longrightarrow X$ which is a -coefficient homology equivalence normal bordant to a homotopy equivalence by a normal bordism which is also a Λ-coefficient homology equivalence, expressing the obstruction

(This theory will be described and generalized further below).
IV) \underline{Z}_{m}-coefficients

As already noted in $\$ 2.3$ above there is an obstruction theory for surgery on \mathbb{Z}_{m}-manifolds $\left(=\right.$ manifolds with \mathbb{Z}_{m}-type singularities), going back to Sullivan [2], for which the obstruction groups are the relative L-groups $\left.L_{*}(\mathbb{Z} \mid \pi] ; \mathbb{Z}_{m}\right)$ appearing in the exact sequence

$$
\ldots \longrightarrow L_{n}(\mathbb{Z}[\pi]) \longrightarrow L_{n}(\mathbb{Z}[\pi]) \longrightarrow L_{n}\left(\mathbb{Z}[\pi] ; \mathbb{Z}_{m}\right) \longrightarrow L_{n-1}(\mathbb{Z}[\pi]) \longrightarrow \ldots
$$

Again, we refer to Morgan and Sullivan [1], Wall [13], Jones [2], Taylor and Williams [l] for applications of surgery on \mathbb{Z}_{m}-manifolds to ordinary surgery.

An n-dimensional geometric Λ-Poincaré complex x is an n-dimensional normal space such that the $\mathbb{Z}\left|\pi_{1}(x)\right|$-module chain level cap product

$$
[x] \cap-: c(\tilde{x})^{n-*} \longrightarrow c(\tilde{x})
$$

is a Λ-equivalence for some locally epic morphism of rings with involution $\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda$, with \widetilde{x} the universal cover. (For id. : $\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda=\mathbb{Z}\left[\pi_{1}(x)\right]$ this is just the usual notion of a geometric Poincaré complex). If X is a finite n-dimensional $C W$ complex with a fundamental class $[X] \in H_{n}(X)$ such that $[X] n-: H^{n-*}(X ; N) \cdots H_{*}(X ; N)$ is an isomorphism for some locally epic morphism $\left.\mathbb{Z} \mid \pi_{1}(x)\right] \longrightarrow \Lambda$ and there exists a ring morphism $\Lambda \longrightarrow \mathbb{Z}$ then X is an n-dimensional geometric Λ-Poincaré complex. In keeping with our previous conventions we shall assume that the geometric A-poincaré complexes x we are dealinq with are finite and such that $\left[x\left|\cap-: C(X ; \Lambda)^{n-*} \rightarrow C(X ; \Lambda)=\Lambda \otimes_{Z \mid \eta_{1}}(X)\right|^{C(X)}\right.$ is a simple

A-module chain equivalence. (As usual, there are also versions for finite and finitely-dominated complexes).

Recall from Proposition 2.4.6 that the relative quadratic Γ-group $\Gamma_{n}\left(\begin{array}{cc}A \rightarrow A \\ \downarrow & \downarrow \\ A & \downarrow\end{array}\right)$ is the cobordism group of ($n-1$)-dimensional B-acyclic quadratic Poincaré complexes over A, for any locally epic morphism $A \longrightarrow B$. In particular, if X is an n-dimensional geometric Λ-poincaré complex the construction of Proposition 7.4.1 i) associates to X an ($n-1$)-dimensional (simple) N-acyclic quadratic Poincaré complex over $\mathbb{Z}\left\{\pi_{1}(x)\right\}$ $\sigma_{*}^{\Lambda}(X)=H \hat{\sigma}^{*}(X)=\left(\Omega C\left([x] \cap-: C(\tilde{x})^{n-*} \longrightarrow C(\tilde{x})\right), \psi \in Q_{n-1}(\Omega C([X] \cap-))\right)$ such that $(1+T) \sigma_{*}^{\Lambda}(X)=j \sigma^{*}(X)$, representing the quadratic signature

An ($n+1$)-dimensional (normal, A-Poincaré) pair (X, Y) is an ($n+1$)-dimensional normal pair such that the boundary Y is an n-dimensional geometric 1 -poincaré complex, with respect to a locally epic morphism $\left.\mathbb{Z} \mid \pi_{1}(x)\right] \cdots \rightarrow-\cdots$. Proposition 7.4.1 i) associates to such a pair (X, Y) an n -dimensional quadratic A-Poincaré complex over $Z\left[\pi_{1}(x)\right]$ $\sigma_{\star}^{n}(X, Y)=\left(\Omega C\left([X] \cap-: C(X)^{n+1-\star} \longrightarrow C(\tilde{X}, \tilde{Y}), \psi \in Q_{n}(\Omega C([X] \cap-))\right)\right.$ such that $\left(1+T^{\prime}\right) O_{\star}^{\Lambda}(X, Y)$ is symmetric Λ-Poincaré cobordant to $O_{A}^{*}(Y)=\left(C(Y), \phi_{Y}(|Y|) \in O^{n}(C(Y))\right)$,
representing the quadratic signature of (X, Y)

$$
\left.\hat{0_{\star}}(X, Y) \in \Gamma_{n}\left(Z \int_{n_{1}}(X)\right) \rightarrow \cdots \rightarrow A\right)
$$

with \widetilde{X} the universal cover of X and Y the induced cover of Y.

Given a space K and a locally epic morphism of rings with involution $\mathbb{Z}\left[\pi_{l}(K)\right] \longrightarrow \Lambda$ let $\Omega_{n}^{\Lambda P}(K)$ denote the bordism group of maps $f: X \longrightarrow K$ from n-dimensional geometric A-Poincaré complexes X, and let $\Omega_{n}^{N, A P}(K)$ denote the bordism qroup of maps $f:(X, Y) \longrightarrow K$ from n-dimensional (normal, Λ-Poincaré) pairs (X, Y), so that there is defined a long exact sequence

$$
\cdots \longrightarrow \Omega_{n}^{\Lambda P}(K) \longrightarrow \Omega_{n}^{N}(K) \longrightarrow \Omega_{n}^{N, \Lambda P}(K) \longrightarrow \Omega_{n-1}^{A P}(K) \longrightarrow \ldots
$$

It is tacitly assumed that K is equipped with an orientation map $w: \pi_{1}(K) \longrightarrow \mathbb{Z}_{2}$, so that $\mathbb{Z}\left[\pi_{1}(K)\right]$ is given the w-twisted involution, and $w(X)=W f_{\star}$. Also, it is assumed that K is a CW complex with a finite 2-skeleton, so that in particular $\pi_{1}(k)$ is finitely presented. In the special case id. $: \mathbb{Z}\left[\pi_{1}(K)\right] \longrightarrow \Lambda=\mathbb{Z}\left[\pi_{1}(K)\right]$

$$
\Omega_{\star}^{\Lambda P}(K)=\Omega_{\star}^{P}(K), \Omega_{\star}^{N}, \Lambda \mathrm{P}(K)=\Omega_{\star}^{N, P}(K),
$$

using the geometric Poincaré surgery of Browder [7] to ensure that $f_{\star}: \pi_{1}(X) \longrightarrow \pi_{1}(K)$ is an isomorphism.

Proposition 7.7.1 The various quadratic signature maps fit together to define a natural transformation of long exact sequences

$$
\begin{aligned}
& \ldots \Omega_{n+1}^{N}(K) \longrightarrow \Omega_{n+1}^{N, \Lambda P}(K) \longrightarrow \Omega_{n}^{\Lambda P}(K) \longrightarrow \Omega_{n}^{N}(K) \longrightarrow \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.\left.\ldots \rightarrow L_{n}(\mathbb{Z} \mid \pi]\right) \rightarrow \Gamma_{n}(\mathbb{Z} \mid \pi] \rightarrow n\right) \rightarrow \Gamma_{n}\left(\left.\underset{\mathbb{Z}|\pi| \longrightarrow n}{\downarrow}\right|_{\downarrow} ^{\downarrow}\right) \rightarrow L_{n-1}(\mathbb{Z} \mid \pi]\right) \rightarrow
\end{aligned}
$$

where $\pi=\pi_{1}(k)$.

In dealing with geometric Λ-Poincaré complexes we shall assume that the Λ-coefficient analogue of the Levitt-Jones-Quinn geometric Poincaré surgery sequence

$$
\ldots \rightarrow \Omega_{n+1}^{N}(K) \longrightarrow \Gamma_{n}\left(\mathbb{Z}\left\{\pi_{1}(K)\right] \longrightarrow \Lambda\right) \longrightarrow \Omega_{n}^{\Lambda P}(K) \longrightarrow \Omega_{n}^{N}(K) \longrightarrow \ldots
$$

is exact (at least for $n \geqslant 5$, which we shall also assume).
It follows that the quadratic siqnature maps

$$
\sigma_{\star}^{\Lambda}: \Omega_{n+1}^{N, \Lambda P}(K) \longrightarrow \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right] \longrightarrow \Lambda\right)
$$

are isomorphisms. Note that if $1 / 2 \in A$ the composites

$$
1+T: \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right] \longrightarrow \Lambda\right) \longrightarrow \Omega_{n}^{\Lambda P}(K) \xrightarrow{\sigma_{\Lambda}^{\star}} \Gamma^{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right] \longrightarrow \Lambda\right)
$$

are isomorphisms, so that there are defined natural direct sum decompositions

$$
\Omega_{n}^{\Lambda P}(K)=\Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(K)\right] \longrightarrow \Lambda\right) \oplus \Omega_{n}^{N}(K) .
$$

An n-dimensional geometric ($\Lambda, \Lambda^{\prime}$)-Poincaré pair (X, Y) is an n-dimensional normal pair such that the $\mathbb{Z}\left[{ }^{\pi}{ }_{1}(x)\right]$-module chain level cap product

$$
[X] n-: C(\tilde{X})^{n-*} \longrightarrow C(\tilde{X}, \tilde{Y})
$$

is a Λ-equivalence, and such that Y is an ($n-1$-dimensional geometric Λ^{\prime}-Poincaré complex, for some locally epic morphisms $\left.Z Z \pi_{1}(X)\right] \longrightarrow \Lambda^{\prime}, \Lambda^{\prime} \longrightarrow \Lambda$. Given a space K and locally epic morphisms $\mathbb{Z}\left[\pi_{1}(K)\right] \longrightarrow \Lambda^{\prime}, \Lambda^{\prime} \longrightarrow \Lambda$ let $\Omega_{n}^{\Lambda P, \Lambda^{\prime} P(K)}(K)$ denote the bordism group of maps $f:(X, Y) \longrightarrow K$ from \longrightarrow-dimensional geometric ($\left.\Lambda, \Lambda^{\prime}\right)$-Poincaré pairs, so that there is defined an exact sequence

$$
\ldots \longrightarrow \Omega_{n}^{\Lambda^{\prime} P}(K) \longrightarrow \Omega_{n}^{\Lambda^{P}}(K) \longrightarrow \Omega_{n}^{\Lambda P}, \Lambda^{\prime} P(K) \longrightarrow \Omega_{n-1}^{\Lambda^{\prime} P}(K) \longrightarrow \ldots
$$

Recall from Proposition 2.4.6 that the relative quadratic Γ-group $\Gamma_{n}\left(\begin{array}{l}A \longrightarrow \Gamma \\ \downarrow \\ B^{\prime} \longrightarrow \\ \downarrow\end{array}\right)$ is the cobordism group of $(n-1)$-dimensional B-acyclic quadratic B^{\prime}-Poincaré complexes over A, for any locally epic morphisms $A \longrightarrow B^{\prime}, B^{\prime} \longrightarrow B$. In particular, if (X,Y) is an n-dimensional geometric ($\left.\Lambda, \Lambda^{\prime}\right)$-Poincaré pair the construction of Proposition 7.4.1 i) gives an ($n-1$)-dimensional Λ-acyclic quadratic Λ^{\prime}-Poincaré complex over $\mathbb{Z}\left[\pi_{1}(X)\right]$

$$
{ }_{0}^{A} A^{\prime}(X, Y)=\left(\Omega C\left([X] \cap-: C(\tilde{X})^{n-\star} \longrightarrow C(\tilde{X}, \tilde{Y})\right), \psi \in Q_{n-1}(\Omega C([X] \cap-))\right)
$$

representing the quadratic signature

Proposition 7.7.2 i) The quadratic signature maps

are isomorphisms, where $\pi=\pi_{1}(K)$.
ii) There is defined a natural transformation of exact sequences

iii) There is defined a commutative braid of exact sequences

Given a formally n-dimensional normal map

$$
(f, b): M \longrightarrow x
$$

from an n-dimensional geometric Poincaré complex M to an n-dimensional qeometric Λ-Poincaré complex x there is defined a quadratic kernel as iris7.3

$$
\sigma_{\star}^{\Lambda}(f, b)=\left(C\left(f^{!}\right), \psi_{F}([x]) \in Q_{n}\left(C\left(f^{!}\right)\right)\right)
$$

using the spectral quadratic construction $\psi_{F}: H_{n}(X) \longrightarrow Q_{n}\left(C\left(E^{!}\right)\right.$ on the geometric Umkehr semi-stable π-map

$$
F=T \pi(b)^{*}: T \pi\left(v_{X}\right) * \longrightarrow T \pi\left(v_{M}\right) *=\varepsilon^{\infty} \widetilde{M}_{+} \quad(\pi=\pi r(X)
$$

inducing the Umkehr $\mathbb{Z}\{\pi j$-module chain map

The quadratic kernel is an n-dimensional quadratic Λ-Poincaré complex over $\mathbb{Z}[\pi]$ representing the quadratic signature

$$
\sigma_{\star}^{\Lambda}(f, b) \in \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \cdots n\right)
$$

such that

$$
\left(1+T^{n}\right)\left(n_{\star}^{n}(f, b)=n *(M)-n_{\Lambda}^{\star}(x) \in \Gamma^{n}\left(Z \|_{1}(x) \mid \rightarrow \cdots \rightarrow n\right) .\right.
$$

The quadratic signature of (f,b) can be interpreted as the quadratic signature $\sigma_{*}^{\prime}(W, M \cup-X)$ of the $(n+1)$-dimensional (normal, A-Poincaré) pair ($W, M \cup-X$) defined by the mapping cylinder W of $\mathrm{f}: \mathrm{M} \longrightarrow \mathrm{X}$.

The quadratic signature of a formally n-dimensional topological normal map

$$
(f, b): M \longrightarrow X
$$

from a manifold M to a geometric Λ-Poincare complex X is the A-homology surgery obstruction

$$
\sigma_{*}^{\Lambda}(f, b) \in \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right)
$$

as originally defined by Cappell and Shaneson $\{11$ by a direct generalization of the method of wall [4], which is the specia case $\Lambda=\mathbb{Z}\left[\pi_{1}(x)\right]$. The obstruction vanishes $\sigma_{\star}^{\Lambda}(f, b)=0$ if (and for $n \geqslant 5$ only if) (f,b) is bordant to a simple A-homoloc equivalence.

More generally, given a formally n-dimensional topologi normal map of pairs

$$
(f, b):(M, 3 M) \cdots(X, \partial X)
$$

such that $\partial \mathrm{f}=\mathrm{f} \mid: \partial \mathrm{M} \longrightarrow \partial \mathrm{X}$ is a simple Λ-homology equivalenc there is defined a reld A-homology surgery obstruction

$$
\sigma_{\star}^{\Lambda}(f, b) \in \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right)
$$

such that $\sigma_{*}^{\Lambda}(f, b)=0$ if (and for $n \geqslant 5$ only if) (f, b) is bord rel $\exists f$ to a simple Λ-homology equivalence of pairs. In this c the quadratic kernel is an n-dimensional quadratic A-poincaré pair over $\mathbb{Z}\left[\pi_{1}(x)\right]$

$$
\begin{aligned}
\sigma_{\star}^{\Lambda}(f, \partial f ; b, \partial b)= & \left(i: C\left(\partial f^{!}\right) \longrightarrow C\left(f^{!}\right),\left(\psi_{F}\left([x \mid), \psi_{, F}([\partial x])\right) \in Q_{n}(\right.\right. \\
& (i=\text { inclusion })
\end{aligned}
$$

such that the boundary ($n-1$)-dimensional quadratic Λ-Poincaré complex

$$
\sigma_{*}^{A}(\exists f, H b)=\left(C(\partial f), \psi_{j F}(|\partial x|) \in Q_{n-1}(C(\partial f!))\right)
$$

is simple Λ-acyclic. The rel Λ-homology surgery obstruction is the cobordism class of the n-dimensional quadratic Λ-poincaré complex over $\mathbb{Z}\left\|\pi_{1}(x)\right\|$

$$
\left.\sigma_{\star}^{\Lambda}(f, b)=\left(C(i), \psi_{F}([x]) / \psi_{d F}(\mid \partial x]\right) \in Q_{n}(C(i))\right)
$$

obtained from $\sigma_{*}^{\wedge}(f, j f ; b, i b)$ by applying the algebraic Thom complex construction of $\$ 1.2$ to collapse the boundary $\sigma_{\star}^{\wedge}(\partial f, \partial b)$.

Given a commutative square of locally epic morphisms of rings with involution

there are defined relative quadratic Γ-groups $\Gamma_{\star}(\Phi)$ to fit into the exact sequence

$$
\cdots \Gamma_{n}\left(\mathbb{Z}\left[\pi^{\prime}\right] \longrightarrow \Lambda^{\prime}\right) \longrightarrow \Gamma_{n}(\mathbb{Z}[\pi] \longrightarrow \Lambda)
$$

$$
\left.\longrightarrow \Gamma_{n}(\Phi) \longrightarrow \Gamma_{n-1}\left(\mathbb{Z} \mid \pi^{\prime}\right] \longrightarrow \Lambda^{\prime}\right) \longrightarrow \ldots
$$

either geometrically as in Cappell and Shaneson [l] or algebraically as in $\$ 2.4$ above. Given an n-dimensional geometric ($\Lambda, \Lambda^{\prime}$)-Poincaré triad $\left(X ; X^{\prime}, Y ; Y^{\prime}\right)$ with $\pi_{1}(X)=\pi, \pi_{1}\left(X^{\prime}\right)=\pi^{\prime}$ and a topological normal map of triads

$$
(f, b):\left(M ; M^{\prime}, N ; N^{\prime}\right) \longrightarrow\left(X ; X^{\prime}, Y ; Y^{\prime}\right)
$$

(with $\partial M^{\prime}=\partial N=N^{\prime}, \quad \partial M=M^{\prime} U_{N^{\prime}}{ }^{-N}$) such that the restriction

$$
(\mathrm{g}, \mathrm{c})=(\mathrm{f}, \mathrm{~b}) \mid:\left(\mathrm{N}, \mathrm{~N}^{\prime}\right) \longrightarrow\left(\mathrm{Y}, \mathrm{Y}^{\prime}\right)
$$

is a simple ($\Lambda, \Lambda^{\prime}$)-homology equivalence of pairs there is defined

$$
\sigma_{*}^{\Lambda, \Lambda^{\prime}}(f, b) \in \Gamma_{n}(\phi)
$$

such that $a_{*} \Lambda^{\prime} \Lambda^{\prime}(f, b)=0$ if (and for $n \geqslant 6$ only if) (f, b) is normal bordant rel (g, c) to a simple $\left(\Lambda, \Lambda^{\prime}\right)$-homoloqy equivalence of triads. The image of $\sigma_{\star} \Lambda_{*}^{\prime}(f, b) \in \Gamma_{n}(\phi)$ in $\Gamma_{n-1}\left(\mathbb{Z}\left(\pi^{\prime}\right] \longrightarrow \Lambda^{\prime}\right)$ is the rell Λ^{\prime}-homology surgery obstruction of the restriction $(f, b) \mid:\left(M^{\prime}, N^{\prime}\right) \longrightarrow\left(X^{\prime}, Y^{\prime}\right)$.

In the applications of homology surgery theory to codimension 2 surgery due to Cappell and Shaneson [1] the obstruction groups arising are actually the relative r-groups $\Gamma_{\star}\left(\Phi_{O}\right)$ of commutative squares of the type

(cf. the algebraic theory of codimension 2 surgery of $\$ 7.8$). Pardon [1] (for $\Lambda=Q \mid \pi]$) and Smith [2] (for arbitrary Λ) have interpreted the groups $\Gamma_{*}\left(\Phi_{0}\right)$ as the obstruction groups for making a topological normal map $(f, b): M \longrightarrow X\left(\pi_{1}(X)=\pi\right)$ which is a simple A-homology equivalence normal bordant to an s-triangulation of X by normal bordism which is also a simple Λ-homology equivalence - we shall generalize this interpretation in Proposition 7.7.3 below. In particular, for $A=\mathbb{Q}|\pi|$ the r-group exact sequence

$$
\begin{aligned}
\ldots \longrightarrow & \left.\left.\Gamma_{n}(1: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z} \mid \pi]\right) \longrightarrow \Gamma_{n}(\mathbb{Z}[\pi] \longrightarrow Q \mid \pi]\right) \\
& \longrightarrow \Gamma_{n}\left(\Phi_{0}\right) \longrightarrow \Gamma_{n-1}(1: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi]) \longrightarrow 一 \cdots
\end{aligned}
$$

coincides with the quadratic L-theory localization exact sequence for the multiplicative subset $S=\mathbb{Z}-\{0\} \subset \mathbb{Z}\{\pi]$
$\left.\ldots \rightarrow L_{n}(\mathbb{Z}\{\pi])-\cdots L_{n}^{S}(\mathbb{Q} \mid \pi]\right)-\rightarrow L_{n}(\mathbb{Z}\{\pi], S) \cdots L_{n-1}(\mathbb{Z}[\pi]) \rightarrow$ obtained by Pardon [1],[2],[3] and in $\$ 3$ above.

Let

be a commutative square of locally epic morphisms of x ings with involution. Given an n-dimensional geometric (Λ, Λ)-Poincaré pair $(X, d X)$ with $\pi_{1}(X)=\pi$ and a topological normal map of pairs $(f, b):\left(M, M^{\prime}\right) \longrightarrow(X, \partial X)$
such that $f: M \longrightarrow X$ is a simple Λ-homology equivalence and $d f=f \mid: M^{\prime} \rightarrow \longrightarrow \quad X$ is a simple $\Lambda^{\prime}-$ homology equivalence, so that the quadratic kernel $\sigma_{*}(f, \partial f ; b, j b)=\left(i: C\left(\partial f^{1}\right) \longrightarrow C(f!),(\psi, \partial \psi)\right)$ is an n-dimensional Λ-acyclic quadratic Λ^{\prime}-Poincaré pair over $\mathbb{Z}[\pi$ with a Λ^{\prime}-acyclic boundary $\sigma_{\star}(, f, a b)=(C(a f), O \psi)$. Collapsing the boundary by the algebraic Thom complex construction \{as before) there is obtained an n-dimensional n-acyclic quadratic Λ^{\prime}-Poincaré complex over $\mathbb{Z}[\pi] \sigma_{*}^{\Lambda}, \Lambda^{\prime}(f, b)=(C(i), \psi / \omega \psi)$ representing the quadratic signature

$$
\sigma_{\star}^{\Lambda, \Lambda^{\prime}(f, b) \in \Gamma_{n+1}\left(\Phi_{O}\right)}
$$

Proposition 7.7.3 i) The quadratic signature is such that $\sigma_{\star}^{\Lambda_{\star} \Lambda^{\prime}}(f, b)=0 \in \Gamma_{n+1}\left(\Phi_{O}\right)$ if (and for $n \geqslant 5$ only if) (f,b) extends to a topological normal map of $(n+1)$-dimensional triads

$$
(F, B):\left(N ; N^{+}, M ; M^{\prime}\right) \longrightarrow(X \times I ; X \times 0, X \times 1 ; \pm \times I) \quad(I=\{0,1]
$$

such that $F: N \longrightarrow X \times I$ is a simple A-homology equivalence and $F \mid: N^{\prime} \longrightarrow X \times O$ is a simple Λ^{\prime}-homology equivalence. ii) Let $(F, B):\left(N ; N^{\prime}, M ; M^{\prime}\right) \longrightarrow(X \times I ; X \times 0, X \times 1 ; \partial X \times I)$ be a topological normal map of $(n+1)$-dimensional triads such that the restriction $(f, b)=(F, B) \mid:(M, M) \longrightarrow(X \times 1, \exists X \times I)(=(X, d X$ is a simple $\left(A, \Lambda^{\prime}\right)$-homology equivalence of pairs. Then the relative ($\Lambda, \Lambda^{\prime}$)-homology surgery obstruction of (F, B) is the quadratic signature of (f, b)

$$
\sigma_{\star}^{\Lambda, \Lambda^{\prime}}(F, B)=\sigma_{*}^{\Lambda, \Lambda^{\prime}}(f, b) \in \Gamma_{n+1}\left(\Phi_{O}\right)
$$

Proof: i) The image of $\sigma_{*}^{n, A^{\prime}(f, b) \in \Gamma_{n+1}\left(\Phi_{O}\right) \text { in } \Gamma_{n}\left(\mathbb{Z}\{\pi\} \longrightarrow A^{\prime}\right), ~(f)}$ is the obstruction to extending (f, b) to a topological normal map of $(n+1)$-dimensional triads

$$
(F, B):\left(N ; N^{\prime}, M ; M^{\prime}\right) \longrightarrow(X \times I ; X \times 0, X \times 1 ; 3 X \times I)
$$

such that $F \mid: N^{\prime} \longrightarrow \longrightarrow X \times O$ is a simple Λ^{\prime}-homology equivalence. Such an extension (F, B) determines a quadratic Λ^{\prime}-poincaré null-cobordism of the quadratic kernel $\sigma_{*}(f, b)$, and conversely every such null-cobordism determines such an extension (F,B). The null-cobordism is A-acyclic precisely when $F: N \longrightarrow X \times I$ is a (simple) Λ-homology equivalence.
ii) There is a canonical topological normal bordism rel f:M \longrightarrow, of topological normal maps of ($n+1$)-dimensional triads, from $(F, B):\left(N ; N^{\prime} ; M ; M^{\prime}\right) \longrightarrow(X \times I ; X \times 0, X \times 1 ; \partial X \times I)$ to

$$
(f, b) \times 1:\left(M \times I ; M \times 0, M \times 1 ; M^{\prime} \times I\right) \longrightarrow(X \times I ; X \times 0, X \times 1 ; \partial X \times I)
$$

(essentially given by $N \times I$, involving a copy of N from N^{\prime} to $M \times 0$) so that

$$
\sigma_{\star}^{n, \Lambda^{\prime}}(F, B)=\sigma_{\star}^{\Lambda, \Lambda^{\prime}}((f, b) \times 1) \in \Gamma_{n+1}\left(\Phi_{O}\right)
$$

The relative ($\Lambda, \Lambda^{\prime}$)-homology surgery obstruction $\sigma_{*}^{\Lambda, \Lambda^{\prime}}((f, b) \times 1) \in \Gamma_{n+1}^{\Lambda, \Lambda^{\prime}}\left(\Phi_{0}\right)$ is represented by the pair (the n-dimensional quadratic Λ^{\prime}-Poincaré complex over $\mathbb{Z}[\pi]$ $\sigma_{\star}(f, b)$, the quadratic Λ-Poincaré null-cobordism of $\sigma_{*}(f, b)$ determined by its Λ-acyclicity),
which is just the Λ-acyclic quadratic Λ^{\prime}-Poincare cobordism class $\sigma_{\star}^{\Lambda, \Lambda^{\prime}}(f, b) \in \Gamma_{n+1}\left(\Phi_{O}\right)$ appearing in i).

The total surgery obstruction theory of $\$ 7.1$ extends to homology surgery as follows.

Given a topological space X (equipped with an orientation map $w: \pi_{1}(X) \longrightarrow \mathbb{Z}_{2}$) and a locally epic morphism of rings with involution $\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda$ define the Λ-coefficient \mathcal{S}-groups $s_{\star}(X ; N)$ to fit into the exact sequence

where σ_{\star}^{Λ} is the composite

$$
\sigma_{\star}^{\Lambda}: H_{n}\left(X ; \underline{\underline{L}}_{0}\right) \longrightarrow \xrightarrow{\sigma_{\star}} L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right) \longrightarrow \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right) .
$$

For id. $: \mathbb{Z}\left[\pi_{1}(X)\right] \longrightarrow \Lambda=\mathbb{Z}\left[\pi_{1}(X)\right]$ these are just the S-groups of $\$ 7.1$

$$
S_{\star}\left(x ; \mathbb{Z}\left[\pi_{1}(x)\right]\right)=S_{\star}(x) .
$$

Proposition 7.7.4 Given a space X and a commutative square of locally epic morphisms

there is defined a commutative braid of exact sequences

I]
An $s^{\Lambda}-t r i a n g u l a t i o n ~ o f ~ a n ~ n-d i m e n s i o n a l ~ g e o m e t r i c ~$ A-Poincaré complex x is a formally n-dimensional topological normal map

$$
(f, b): M \longrightarrow X
$$

such that $f: M \longrightarrow X$ is a simple Λ-homology equivalence. (If there exists a ring morphism $\Lambda \longrightarrow \mathbb{Z}$ every Λ-homology equivalence $f_{:}: M \longrightarrow X$ from a manifold M can be given the structure of an s^{Λ}-triangulation $(f, b): M \longrightarrow X$, since integral homology equivalences induce isomorphisms in topological K-theory). Let $S^{T O P}(X ; \Lambda)$ denote the set of
concordance classes of s^{Λ}-triangulations of x.
The total A-homology surgery (or s $^{\Lambda}$-triangulability) obstruction of an n-dimensional geometric Λ-Poincaré complex X is an element

$$
s^{\Lambda}(x) \in \xi_{n}(x ; \Lambda)
$$

with the following properties. Yroposition 7.7.5 i) $s^{\wedge}(x)=0 \in s_{n}(x ; A)$ if (and for $n \geqslant 5$ only if x is s^{Λ}-triangulable.
ii) The image of $s^{\wedge}(x)$ in $H_{n-1}\left(x ; \mathbb{L}_{0}\right) \not \operatorname{In}_{n}^{n}\binom{\mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi]}{\mathbb{Z}[\pi] \longrightarrow \downarrow} \quad\left(\pi=\pi_{1}()\right.$
is given by

$$
\left[s^{A}(x)\right]=\text { (the } t \text {-triangulability obstruction } t(x),
$$

the quadratic signature $\left.\sigma_{\star}^{\Lambda}(x)\right)$
If

$$
\begin{aligned}
s^{A}(x) \in \operatorname{ker}\left(S_{n}(x ; \Lambda)\right. & \left.\longrightarrow H_{n-1}\left(x ; \underline{\underline{I}}_{0}\right)\right) \\
& =\operatorname{im}\left(r_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right) \longrightarrow S_{n}(x ; \Lambda)\right)
\end{aligned}
$$

(i.e. if x is $t-t r i a n g u l a b l e)$ the inverse image of $s^{\Lambda}(x)$ in $\Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \rightarrow N\right)$ is the coset of the subgroup

$$
\operatorname{ker}\left(r_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right) \longrightarrow f_{n}(x ; \Lambda)\right)
$$

$$
=\operatorname{im}\left(\sigma_{\hbar}^{\Lambda}: H_{n}\left(x ; \underline{\Pi}_{0}\right) \longrightarrow \Gamma_{n}\left(\mathbb{Z}\left[{ }_{1}(x)\right] \longrightarrow \Lambda\right)\right)
$$

consisting of the Λ-homology surgery obstructions $\sigma_{\star}^{\Lambda}(f, b) \in \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right] \rightarrow \Lambda\right)$ of all the topological normal maps $(f, b): M \rightarrow X$.
iii) If $n \geqslant 5$ and x is s^{Λ}-triangulable the structure set $s^{T O P}(x ; A)$ carries a natural affine structure with translation group $\ell_{n+1}\left(X_{i}\right.$ If X is an n-dimensional manifold there is a natural identification

$$
s^{T O P}(x ; \Lambda)=s_{n+1}(x ; \Lambda)
$$

and the Λ-homology surgery exact sequence

$$
\begin{aligned}
& \cdots \longrightarrow \Gamma_{n+1}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right) \longrightarrow s^{T O P}(x ; \Lambda) \\
& \longrightarrow[x, G / T O P] \longrightarrow \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right)
\end{aligned}
$$

can be identified with the exact sequence of abelian groups

$$
\begin{aligned}
&\left.\cdots \longrightarrow \Gamma_{n+1}\left(\mathbb{Z} \mid \pi_{1}(x)\right] \longrightarrow \Lambda\right) \longrightarrow s_{n+1}(x ; \Lambda) \\
& \longrightarrow H_{n}\left(x ; \underline{L}_{0}\right) \longrightarrow \sigma_{\#}^{\Lambda}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right)
\end{aligned}
$$

Furthermore, if $\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda$ factors throuqh a locally epic morphism $\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda^{\prime}$ the canonical map

$$
S^{\mathrm{rOP}}(x ; \Lambda)=\&_{n+1}(x ; \Lambda) \longrightarrow \Gamma_{n+1}\left(\begin{array}{ccc}
\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \mathbb{Z}\left[\pi_{1}(x)\right] \\
\downarrow_{\Lambda^{\prime}} \longrightarrow \Phi_{0} & \downarrow
\end{array}\right)
$$

sends an s^{Λ}-triangulation $(f, b): M \xrightarrow{\sim} x$ to the obstruction $\sigma_{\star}^{\Lambda, \Lambda^{\prime}}(f, b) \in \Gamma_{n+1}\left(\Phi_{O}\right)$ to making (f, b) concordant $(=$ topological normal bordant by an s^{Λ}-triangulation of triads $\left.\left((F, B) ;(f, b),\left(f^{\prime}, b^{\prime}\right)\right):\left(N ; M, M^{\prime}\right) \longrightarrow X \times(I ; O, l)\right)$ to an $s^{A^{\prime}}$-triangulation $\left(f^{\prime}, b^{\prime}\right): M^{\prime} \longrightarrow x$.

The total 1 -homology surgery obstruction defines abelian group morphisms

$$
s^{\wedge}: \Omega_{n}^{\Lambda P}(K) \longrightarrow \ell_{n}(K ; \Lambda) ;(f: x \longrightarrow K) \longmapsto f_{\star} s^{\Lambda}(X)
$$

for any space k equipped with a locally epic morphism $\mathbb{Z}\left[\pi_{1}(K)\right] \longrightarrow \Lambda$, which f it into a commutative braid of exact sequences

involvina the geometric Λ-Poincaré assembly maps

$$
\sigma_{\Lambda}^{\star}: H_{n}\left(K ; \underline{\eta}^{P}\right) \xrightarrow{\sigma^{\star}} \Omega_{n}^{P}(K) \longrightarrow \Omega_{n}^{A P}(K)
$$

with $\underline{\Omega}^{P}$ the geometric Poincaré bordism spectrum $\left(\pi_{\star}\left(\underline{\Omega}^{P}\right)=\Omega_{\star}^{P}(p t).\right)$.
Thus an n-dimensional geometric Λ-Poincare complex x is s^{Λ}-triangulable if (and for $n \geqslant 5$ only if) there exists an \underline{s}^{P}-orientation $[X] \in H_{n}\left(X ; q^{P}\right)$ such that

$$
\sigma_{\Lambda}^{\star}([x])=(1: x \longrightarrow x) \in \Omega_{n}^{\Lambda P}(x) .
$$

If $1 / 2 \in \Lambda$ then $\Gamma_{*}\left(\mathbb{Z}\left[\pi_{1}(X)\right] \longrightarrow \Lambda\right)=\Gamma^{*}\left(\mathbb{Z}\left[\pi_{1}(X)\right] \longrightarrow \Lambda\right)$ and

$$
\begin{aligned}
(1: x \longrightarrow x)= & \left((1: x \longrightarrow x), \sigma \Lambda_{n}^{*}(x)\right) \\
& \in \Omega_{n}^{\Lambda P}(x)=\Omega_{n}^{N}(x) \oplus \Gamma^{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \longrightarrow \Lambda\right)
\end{aligned}
$$

Also, in this case the Λ-coefficient s-qroups $s_{*}(X ; \Lambda)$ fit into the exact sequence

$$
\begin{aligned}
& \ldots \cdots H_{n}\left(x ; \underline{\Psi}^{O}\right) \xrightarrow{\binom{J}{\sigma}} H_{n}\left(x ; \hat{\underline{L}}^{0}\right) \oplus \Gamma^{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right] \rightarrow \Lambda\right) \longrightarrow s_{n}(x ; \Lambda) \\
& \longrightarrow \mathrm{H}_{\mathrm{n}-1}\left(\mathrm{X} ; \mathrm{H}^{\mathrm{O}}\right) \longrightarrow \ldots
\end{aligned}
$$

and $s^{\wedge}(X) \in \ell_{n}(x ; \Lambda)$ is the image of $\left([\hat{X}], \sigma{ }_{\Lambda}^{\star}(X)\right)$, so that x is s^{Λ}-triangulable if (and for $n \geqslant 5$ only if) there exists an
$\underline{L}^{\mathrm{O}}$-orientation $[X] \in H_{n}\left(X ; \underline{L}^{0}\right)$ such that
i) $J([X])=[\hat{X}] \in H_{n}\left(X ; \underline{\hat{H}}^{o}\right)$ is the canonical $\underline{\hat{\underline{H}}}^{0}$-orientation of X
ii) $\sigma_{\hat{\Lambda}}^{*}([X])=\sigma_{\Lambda}^{\star}(X) \in \Gamma^{n}\left(Z_{1}\left[\pi_{1}(X)\right] \longrightarrow \Lambda\right)$ is the symmetric signature of X.

Thus if $1 / 2 \in \Lambda$ it is not necessary to consider the delicate ㅍ.-spectrum level compatibility condition needed for $\Lambda=\mathbb{Z}\left[\pi_{1}(x)\right]$.

7.8 The algebraic theory of codimension 2 surgery

Codimension 2 surgery goes back to knot theory, which i the classification theory of embeddings $k: s^{1} \subset S^{3}$. The applica of surgery methods to the classification of high-dimensional knots $k: S^{n} \subset s^{n+2}(n \geqslant 1)$ was initiated by Kervaire [1] and Levine [2],[4]. (We shall discuss high-dimensional knot theor: in $\$ 7.9$ below). Non-simply-connected codimension 2 surgery fi occurred in the work of Browder [5] on free \mathbb{Z}_{p}-actions on homotopy spheres. The general codimension q surgery obstructil theory of wall [4,§ll] applies equally well for $q=2$, provid it is generalized to take into account "the general philosoph for dealing with surgery problems in codimension 2: do not insist on obtaining homotopy equivalences when you are doing surgery on the complement of a submanifold, be happy if you c obatin the correct homology conditions" suggested by López de Medrano [1], and the homology surgery theory developed for th purpose by Cappell and Shaneson [l]. Codimension 2 surgery ha also been studied by Matsumoto [1] and Freedman [1], by consiv ambient surgery on the submanifold instead of homology surger: on the complement. We shall now specialize the algebraic theo of codimension q surgery of 57.5 to the case $q=2$, making us the algebraic homology surgery theory of 57.7 . In particular, enables us to compare the previous approaches to each other.

To start with we shall modify the geometric theory of codimension q surgery of $\$ 7.2$ for $q=2 s 0$ as to only take thi homology type of the complement into account.

A weak ($n, n-2$)-dimensional (or codimension 2) geometri Poincaré pair (X, Y) is a codimension 2 CW pair (X, Y) such th
i) X is an n-dimensional geometric Poincaré complex
ii) Y is an ($\mathrm{n}-2$)-dimensional geometric foincaré comple Then $\pi_{1}(Z) \longrightarrow \pi_{1}(X)$ is onto, and $(Z, S(\xi))$ is an n-dimensiona geometric $\mathbb{Z}\left[\pi_{1}(X)\right]$-Poincaré pair, with $X=E(\xi) u_{S(\xi)}{ }^{2}$, $\xi: Y \longrightarrow B G(2)=B T O P(2)$.

A t-trianqulation of a weak codimension 2 geometric Poincaré pair (X, Y)

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

is a t-triangulation (f,b):M $\longrightarrow \mathrm{X}$ of X (i.e. a topological normal map) which is topologically transverse at $Y \subset X$, so th $\left(M, N=f^{-1}(Y)\right)$ is a codimension 2 manifold pair with normal block bundle

The restrictions of (f, b) define topological normal maps

$$
\begin{gathered}
(f, b) \mid=(q, c): N \cdots(V) \\
(f, b) \mid=(h, d):(P, S(v)) \longrightarrow(Z, S(\xi)) \quad(P=\overline{M \backslash E(v)}
\end{gathered}
$$

so that

$$
(f, b)=(g, c)!\cup(h, d): M=E(v) \cup_{S(v)^{p} \longrightarrow X=E(\xi) \cup_{S}, ~}^{\longrightarrow}
$$

As for a strong codimension 2 qeometric poincaré pair (X, Y)
(Proposition 7.2.3) the set of concordance classes $Y^{T O P}(X, Y, \ell$ of t-triangulations of (X, Y) is naturally identified with $\mathcal{T}^{\mathrm{TOP}}(\mathrm{X})$, and hence also with $\mathcal{J}^{T O P}\left({ }^{\mathrm{T}} \mathrm{X}\right)$, by topoloqical transversality.

A weak s-triangulation of a weak codimension 2 geometric Poincaré pair (X, Y) is a t-triangulation

$$
((f, b),(g, c)):(M, N) \longrightarrow(X, Y)
$$

such that $(f, b): M \longrightarrow X$ is an s-triangulation of X and $(\mathrm{g}, \mathrm{c}): \mathrm{N} \longrightarrow \mathrm{Y}$ is an s-triangulation of Y , in which case

$$
(h, d)=(f, b) \mid:(p, S(\nu)) \longrightarrow(z, S(\xi))
$$

is an s^{Λ}-triangulation of $(\mathbb{Z}, S(\xi))$ with $\Lambda=\mathbb{Z}\left[\pi_{1}(X)\right]$. Let $W S^{\text {TOP }}(X, Y, \xi)$ denote the set of concordance classes of weak s-triangulations of (X, Y). An s-triangulation $(f, b): M \longrightarrow X$ of X is weakly split along $Y \subset X$ if f actually defines a weak s-trianqulation of (X, Y).

The weak splitting obstruction theory for $\left\{\begin{array}{l}s- \\ t-\end{array}\right.$ triangulations involves the following analogues of the $\left\{\begin{array}{l}\text { LS- } \\ \text { LP- }\end{array}\right.$ in the strong splitting obstruction theory of $\$ 7.2$.

Given a (connected) codimension 2 CW pair (X,Y) let Φ denote the associated pushout square of fundamental groups

and let Φ_{7}, Φ_{X} denote the commutative squares of group rings

Define the transfer maps in quadratic Γ-theory induced by (X, Y) to be the composites

$$
p \xi^{!}: L_{n}\left(\mathbb{Z}\left[\pi_{1}(Z)\right]\right) \xrightarrow{p \xi^{!}} L_{n+2}\left(\mathbb{Z} \mid \pi_{1}(Z)\right] \longrightarrow \mathbb{Z}\left\{\pi_{1}(X) \mid\right)
$$

$$
\longrightarrow \Gamma_{n+2}\left(\Phi_{X}\right)
$$

Define the quadratic $\left\{\begin{array}{l}\Gamma S- \\ \Gamma P-\end{array}\right.$ groups of $(X, Y)\left\{\begin{array}{l}\Gamma S_{n}(\phi) \\ \Gamma P_{n}(\phi)\end{array}(n \geqslant 0)\right.$ to be the relative groups appearing in the exact sequence

Proposition 7.8.1 i) The quadratic $\left\{\begin{array}{l}\mathrm{rS}-\mathrm{groups} \text { are } 4 \text {-periodic } \\ \mathrm{rP-}\end{array}\right.$

$$
\left\{\begin{array}{l}
\Gamma S_{n}(\phi)=\Gamma S_{n+4}(\Phi) \\
\Gamma P_{n}(\phi)=\Gamma P_{n+4}(\Phi)
\end{array} \quad(n \geqslant 0)\right.
$$

ii) The 「S-groups are related to the I,S-groups by the commutative braid of exact sequences

iii) The Γ-groups are related to the $\mathrm{L} P$-groups by the commutative braid of exact sequences

iv) The 「P-groups are related to the 「S-groups by the commutative braid of exact sequences

v) The LS-, ГS-,LP-, ГP-groups are related to each other by the commutative braid of eaxct sequences

Given a weak ($n, n-2$)-dimensional geometric Poincaré pair (X, Y) and an $\left\{\begin{array}{l}s^{-} \text {triangulation }(f, b): M \longrightarrow X \text { topologically } \\ t-\end{array}\right.$ transverse at $Y \in X$ there is defined a weak codimension 2 splitting obstruction along $Y \subset X$

$$
\left\{\begin{array}{l}
w s(f, Y) \in \Gamma S_{n-2}(\Phi) \\
w t(f, Y) \in \Gamma P_{n-2}(\Phi)
\end{array}\right.
$$

with image the surgery obstruction $\sigma_{*}(g, C) \in L_{n-2}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)$ of the ($\mathrm{n}-2$)-dimensional topological normal map

$$
(g, c)=(f, b) \mid: N=f^{-1}(Y) \longrightarrow Y
$$

by analogy with the strong splitting obstruction of $\$ 7.2$.
The canonical map $I^{\prime} S_{n-2}(\Phi) \longrightarrow \Gamma_{n-2}(\phi)$ sends ws (f, Y) to wt (f, Y)

Proposition 7.8.2 i) The $\left\{\begin{array}{l}s- \\ t-\end{array}\right.$
that $\left\{\begin{array}{l}w s(f, Y)=0 \in \Gamma S_{n-2}(\Phi) \\ w t(f, Y)=0 \in \Gamma P_{n-2}(\Phi)\end{array}\right.$ if (and for $n \geqslant 7$ only if) (f,b) is concordant to an s-triangulation of X which is weakly split along YC X .
ii) The canonical map $\Gamma P_{n-2}(\Phi) \cdots \Gamma_{n}\left(\Phi_{Z}\right)$ sends wt (f, Y) to the cobordism class of the $(n-1)$-dimensional $\mathbb{Z}\left[\pi_{1}(x)\right]$-acyclic quadratic Poincaré complex over $\mathbb{Z}\left[\pi_{1}(Z)\right]$ obtained from the quadratic kernel $\sigma_{\star}((f, b) \mid=\partial(g, c)!: S(v) \longrightarrow S(\xi))$ by surgery on the n-dimensional quadratic $\mathbb{Z}\left(\pi_{1}(X)\right]$-Poincaré pair over $\mathbb{Z}\left[\pi_{1}(Z)\right)$ $\sigma_{\star}((f, b) \mid=(h, d):(P, S(v)) \longrightarrow(Z, S(\xi)))$, with $\nu=v_{N \subset M}: N \xrightarrow{\mathrm{~g}} \mathrm{Y} \longrightarrow \stackrel{\xi}{\longrightarrow} \underset{\mathrm{TOP}}{ }(2), \mathrm{P}=\mathrm{f}^{-1}(\mathrm{Z})=\widetilde{M \backslash E(v)}$.

The weak codimension 2 splitting obstruction of Cappell
and Shaneson $[1,58]$ for an $s-t r i a n g u l a t i c n(f, b): M \longrightarrow X$
such that $\sigma_{*}(g, c)=0 \in L_{n-2}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)$ (for some weak ($\mathrm{n}, \mathrm{n}-2$)- - imensional geometric Poincaré pair (X, Y), with $\left.(\mathrm{g}, \mathrm{c})=(\mathrm{f}, \mathrm{b}) \mid: \mathrm{N}=\mathrm{f}^{-1}(\mathrm{Y}) \longrightarrow \mathrm{Y}\right)$ is the preimage of

$$
\begin{aligned}
\text { ws }(f, Y) \in \operatorname{ker}\left(\Gamma S_{n-2}(\Phi) \longrightarrow\right. & \left.\left.L_{n-2}\left(\mathbb{Z Z} \mid \pi_{1}(Y)\right]\right)\right) \\
& =\operatorname{im}\left(\Gamma_{n+1}\left(\Phi_{X}\right) \longrightarrow \Gamma S_{n-2}(\Phi)\right)
\end{aligned}
$$

in the group

$$
\begin{aligned}
\Gamma_{\mathrm{n}+1}\left(\Phi_{\mathrm{X}}\right) / \operatorname{ker}\left(\Gamma_{\mathrm{n}+1}\left(\Phi_{\mathrm{X}}\right) \longrightarrow\right. & \left.\Gamma S_{\mathrm{n}-2}(\phi)\right) \\
& =\operatorname{coker}\left(p \xi^{!}: L_{\mathrm{n}-1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right)\right) \longrightarrow \Gamma_{\mathrm{n}+1}\left(\Phi_{\mathrm{X}}\right)\right)
\end{aligned}
$$

as is clear from the exact sequence

$$
\begin{aligned}
& \ldots \longrightarrow I_{n-1}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right)-\stackrel{p \varepsilon}{ }{ }^{!} \Gamma_{n+1}\left(\oplus_{x}\right) \longrightarrow \Gamma_{n-2}(\Phi) \\
& \longrightarrow L_{n-2}\left(\mathbb{Z}\left[\pi_{1}(Y)\right]\right) \longrightarrow \longrightarrow \ldots .
\end{aligned}
$$

The total codimension q surgery obstruction theory of $\$ 7.2$ extends to weak codimension 2 geometric Poincaré pairs as follows.

Given a codimension 2 CW pair (X, Y) define the $W \$$-groups $W S_{*}(X, Y, \xi)$ by analogy with the groups $S_{*}(X, Y, \xi)$ of $\$ 7.2$, to fit into the commutative braid of exact sequences

with $\Lambda=\mathbb{Z}\left\{\pi_{1}(x)\right], p \xi^{!}$the composite

$$
p \xi^{!}: s_{n-2}(Y)-p \xi^{!} \rightarrow s_{n}(x, 2) \cdots \rightarrow s_{n}(x, z ; 1)
$$

$s_{*}(x, z ; \Lambda)$ the relative Λ-coefficient 1 -groups appearing in the exact sequence

$$
\cdots f_{n}(z ; n) \rightarrow f_{n}(x) \longrightarrow s_{n}(x, z ; n) \cdots s_{n-1}(2 ; \Lambda) \cdots \ldots
$$

and $f_{*}(\% ; \Lambda)$ the Λ-coefficient 1 -qroups appearing in the exact sequence

$$
\begin{aligned}
\ldots \rightarrow H_{n}\left(Z ; \underline{\underline{I}}_{0}\right) \xrightarrow{O_{\star}^{\Lambda}} & \longrightarrow \Gamma_{n}\left(\mathbb{Z}\left[\pi_{1}(Z)\right] \cdots \Lambda\right) \\
& \longrightarrow \Lambda_{n}(Z ; \Lambda) \cdots H_{n-1}\left(Z ; \underline{L}_{0}\right) \cdots \cdots \cdots
\end{aligned}
$$

Proposition 7.8. 3 i) The Γ S-groups are related to the 3 -groups by the commutative braid of exact sequences

ii) The W-qroups of (X, Y, ξ) are related to the l-groups by the commutative raid of exact sequences

The total weak surgery obstruction of a weak ($n, n-2$)-dimensional geometric Poincaré pair (X, Y) is an element

$$
\text { ws }(X, Y, \xi) \in W s_{n}(X, Y, \xi)
$$

with the following properties.
Proposition 7.8.4 i) ws $(X, Y, 5)=0$ if (and for $n \geqslant 7$ only if) (X, Y) is weakly s-triangulable.
ii) The obstruction has image
$[w s(X, Y, \xi)]=$ (the total surgery obstructions $(S(X), S(Y))$, the quadratic signature
$\sigma_{*}^{n}(Z, S(\xi))=\left(\Omega \mathrm{C}\left([Z] n-: C(\tilde{Z})^{n-*} \longrightarrow C(\tilde{Z}, \overparen{S(\tilde{\xi})}\right.\right.$
$\in \jmath_{\mathrm{n}}(\mathrm{X}) \oplus \int_{\mathrm{n}-2}(\mathrm{Y}) \oplus \Gamma_{\mathrm{n}}\left(\Phi_{2}\right) \quad\left(\Lambda=\mathbb{Z}\left[\pi_{1}(\mathrm{X})\right]\right)$
iii) If $n \geqslant 7$ and (X, Y) is an ($n, n-2$)-dimensional manifold pair there is a natural identification

$$
W s^{T O P}(X, Y, \xi)=W s_{n+1}(X, Y, \xi) \text {. }
$$

The codimension q geometric Poincaré splitting theory of 57.4 extends to weak codimension 2 geometric Poincaré splitting, as follows.

Let (X, Y) be a codimension 2 CW pair.
A map $f: M \longrightarrow X$ from an n-dimensional geometric Poincaré complex M is weakly Poincaré transverse at $Y \subset X$ if $\left(M, N=f^{-1}(Y)\right.$ is a weak ($n, n-2$)-dimensional qeometric Poincaré pair. Let $\Omega_{n}^{\Lambda P, P}\left(\Omega p \xi^{!}\right)(n \geqslant 0)$ be the relative geometric Poincare bordism groups appearing in the exact sequence

$$
\begin{aligned}
\ldots \rightarrow \Omega_{n-1}^{p}(Y)-\stackrel{a p \xi^{!}}{\longrightarrow} \Omega_{n}^{\Lambda P}(Z) \quad, & \left.\Omega_{n}^{\Lambda P, p_{(} p^{r}!}\right) \longrightarrow \Omega_{n-2}^{p}(Y) \longrightarrow \rightarrow \\
& \left.\left(\Lambda=\mathbb{Z} \mid \pi_{1}(X)\right]\right)
\end{aligned}
$$

There are defined maps

$$
\begin{aligned}
& \Omega_{n}^{A P, P}\left(3 p \xi^{!}\right) \longrightarrow \Omega_{n}^{P}(x) ; \\
& \\
& \quad((h, g):(P, N) \longrightarrow(Z, Y)) \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

A map $f: M \longrightarrow X$ from an n-dimensional geometric Poincaré complex M is bordant to one which is weakly poincaré transverse at $Y \subset X$ if and only if

$$
(f: M \longrightarrow x) \in \operatorname{im}\left(\Omega_{\mathrm{n}}^{\Lambda \mathrm{P}, \mathrm{P}}\left(\mathrm{p} \xi^{!}\right) \longrightarrow \Omega_{\mathrm{n}}^{\mathrm{P}}(\mathrm{X})\right) \subseteq \Omega_{\mathrm{n}}^{\mathrm{P}}(\mathrm{x})
$$

Proposition 7.8.5 Given a codimension 2 CW pair (X, Y) there is defined a commutative braid of exact sequences

$$
(n \geqslant 7)
$$

Thus $\left\{\begin{array}{l}\Gamma S_{n-3}(\phi) \\ \Gamma P_{n-3}(\Phi)\end{array}\right.$ is the bordism group of maps $(f, \exists f):(M, \partial M) \longrightarrow x$ from n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré } \\ \text { (normal, geometric Poincaré) }\end{array}\right.$ pairs such that à $f: a M-\longrightarrow \mathcal{O}$ is weakly Poincaré transverse at $Y \subset X$.

If $f: M \rightarrow X$ is a map from an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré complex } \\ \text { normal space }\end{array}\right.$ M the weak Poincaré splitting obstruction of along $Y \subset X$

$$
\left\{\begin{array}{l}
w S^{P}(f, Y)=w U_{\xi}(f) \in \Gamma S_{n-3}(\Phi) \\
w t^{P}(f, Y)=w V_{\xi}(f) \in \Gamma P_{n-3}(\Phi)
\end{array}\right.
$$

is therefore such that $\left\{\begin{array}{l}W S^{P}(f, Y)=0 \\ w t^{P}(f, Y)=0\end{array}\right.$ if (and for $n \neq 7$ only if) f is $\left\{\begin{array}{l}\text { Poincaré } \\ \text { normal }\end{array}\right.$ bordant to a map from an n-dimensional geometric Poincaré complex which is weakly Poincaré transverse at $Y \subset X$. The codimension q algebraic poincaré splitting theory of $\$ 7.5$ also extends to weak codimension 2 algebraic poincaré splitting, as follows.

A weak n-dimensional quadratic Poincaré splitting over Φ (y, z) consists of
i) an $(n-2)$-dimensional quadratic Poincaré complex y over $\mathbb{Z}\left[\pi_{1}(Y)\right]$
ii) an n-dimensional quadratic $\mathbb{Z}\left[\pi_{1}(X)\right]$-Poincaré pair $\left(z, \exists p \xi^{!} y\right)$ over $\not Z\left[\pi_{1}(Z)\right]$.
The union
is an n-dimensional quadratic poincaré complex over $Z\left(\pi_{1}(X)\right)$, which we shall abbreviate to $p E^{\prime} y \cup z$. The splitting is contractible if the union is contractible.

The normal splitting over $\$$ of quadratic Poincaré complexes over $\mathbb{Z}\left[{ }_{1}(x)\right]$ given by Proposition 7.5.1 i) provides the following extension to $\left\{\begin{array}{l}\Gamma S_{\star}(\Phi) \\ \Gamma P_{\star}(\Phi)\end{array}\right.$ of the expression
 splittings over ϕ given by Proposition 7.5.1 ii).

Proposition 7.8.6 The weak codimension 2 surgery obstruction group $\left\{\begin{array}{l}\Gamma S_{n-2}(\Phi) \\ \Gamma P_{n-2}(\phi)\end{array}(n \in \mathbb{Z})\right.$ is the cobordism group of $\left\{\begin{array}{l}\text { contractible } \\ -\end{array}\right.$ weak n-dimensional quadratic Poincaré splittings over Φ. The maps appearing in the exact sequence

$$
\ldots \longrightarrow \Gamma S_{n-2}(\Phi) \longrightarrow \Gamma P_{n-2}(\Phi) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi_{1}(x)\right]\right)-\cdots S_{n-3}(\phi) \longrightarrow \ldots
$$

are given by

$$
\begin{aligned}
& \Gamma S_{n-2}(\phi) \longrightarrow \Gamma P_{n-2}(\phi) ;(y, z) \longmapsto L_{n}\left(\mathbb{Z}\left|\pi_{1}(x)\right|!;(y, z) \longmapsto p\right) \\
& \Gamma P_{n-2}(\Phi) \longrightarrow \Gamma \xi^{\prime} y \cup z \\
& \left.L_{n}\left(\mathbb{Z} \mid \pi_{1}(x)\right]\right) \longrightarrow \Gamma S_{n-3}(\Phi) ; x \longmapsto(y y, j+z)
\end{aligned}
$$

$$
\text { (if } \left.\left((y, y y),\left(z, a_{+} z\right)\right) \text { is a normal splitting of } x\right)
$$

In particular, the image of an element $x \in L_{n}\left(\mathbb{Z}\left[\pi_{1}(X)\right]\right)$ in $\Gamma S_{n-3}(\Phi)$ is the obstruction to x having a weak Poincare splitting.

Moreover, the weak codimension 2 geometric Poincaré splitting obstruction $\left\{\begin{array}{l}W^{P}(f, Y) \in \Gamma S_{n-3}(\Phi) \\ w t^{P}(f, Y) \in \Gamma P_{n-3}(\Phi)\end{array}\right.$ of a map $f: M \longrightarrow x$ from an n-dimensional $\left\{\begin{array}{l}\text { geometric Poincaré complex } \\ \text { normal space }\end{array} \quad M\right.$
(resp. the weak codimension 2 manifold splitting obstruction $\left\{\begin{array}{l}w s(f, Y) \in \Gamma S_{n-2}(\phi) \\ w t(f, Y) \in \Gamma P_{n-2}(\phi)\end{array}\right.$ of an $\left\{\begin{array}{l}s- \\ t- \\ t r i a n g u l a t i o n ~\end{array}(f, b): M \longrightarrow x\right.$ if (X, Y) is a weak ($\mathrm{n}, \mathrm{n}-2$)-dimensional geometric Poincaré pair) can be expressed in terms of a $\left\{\begin{array}{l}\text { contractible } \\ \text { weak quadratic }\end{array}\right.$ Poincaré splitting over Φ using normal (resp. topological) transversality, exactly as was done for the strong case in Proposition 7.5.1 iii) (resp. iv)).

For a codimension 2 CW pair (X, Y) with

$$
\pi_{1}(X)=\pi_{1}(Y)=\pi \cdot \pi_{1}(Z)=\pi_{l}(S(\xi))=\pi^{\prime}, w(X)=w
$$

the LS-qroups are written

$$
L S_{\star}(\Phi)=\operatorname{LN}_{\star}\left(\pi{ }^{\prime} \longrightarrow \pi, w\right)
$$

as before, and the Γ S-groups are written

$$
\Gamma S_{\star}(\phi)=\Gamma N_{\star}\left(\pi{ }^{\prime} \longrightarrow \pi, w\right) .
$$

We shall now investigate the algebraic properties of the $\left\{\begin{array}{l}- \\ \text { weak }\end{array}\right.$
codimension 2 surgery obstruction groups $\left\{\begin{array}{l}\operatorname{LN}_{\star}\left(\pi^{\prime} \longrightarrow \pi, w\right) \\ \Gamma N_{\star}\left(\pi^{\prime} \longrightarrow \pi, w\right)\end{array}\right.$, by analogy with the algebraic investiqation in $\$ 7.6$ of the type C) codimension 1 surgery obstruction groups $L N_{\star}\left(\pi^{\prime} \longrightarrow \pi, \omega\right)$. In the first instance we have to qive an algebraic description of the transfer maps induced in quadratic L-theory

$$
\left.\left.\xi^{!}: L_{n}(\mathbb{Z} \mid \pi]\right) \longrightarrow L_{n+2}\left(\mathbb{Z} \mid \pi^{\prime}\right] \longrightarrow \mathbb{Z}|\pi|\right) \quad(n \geqslant 0)
$$

by the s^{1}-fibration $\varepsilon: Y \longrightarrow B G(2)(=B O(2))$.

Let (Π, ω) be a pair consisting of
i) an exact sequence of groups

$$
\Pi: \mathbb{Z} \longrightarrow \stackrel{i}{\longrightarrow} \pi^{+} \xrightarrow{P} \pi \xrightarrow{\longrightarrow}(1)
$$

ii) a group morphism

$$
\omega: \pi \longrightarrow \mathbb{Z}_{2}=\{ \pm 1\}
$$

such that

$$
g^{\prime} t q^{-1}=t^{w^{\prime}\left(g^{\prime}\right)} \quad\left(g^{\prime} \in \pi^{\prime}\right)
$$

where $t=i(1) \in \pi^{\prime}$, and $\omega^{\prime}=\omega p: \pi^{\prime} \longrightarrow \mathbb{Z}_{2}$.
Wall $[4$, Prop.11.4] has shown that associated to (II, ω) there is an S^{l}-fibration

$$
\mathrm{S}^{1} \xrightarrow{\longrightarrow} \mathrm{x}^{\prime} \xrightarrow{\mathrm{P}_{\mathrm{X}}} \mathrm{x}
$$

with fundamental group exact sequence

$$
\pi_{X}: \pi_{1}\left(S^{1}\right) \longrightarrow \pi_{1}\left(x^{\prime}\right) \xrightarrow{P_{X}} \pi_{1}(X) \longrightarrow\{1\}
$$

isomorphic to $\Pi, X^{\prime}=K\left(\pi^{\prime}, 1\right)$ and with orientation map

$$
w_{1}\left(P_{X}\right)=\omega: \pi_{1}(X)=\pi \longrightarrow \mathbb{Z}_{2}
$$

which has the following universal property: given an $\mathrm{S}^{\mathbf{l}}$-fibration
and a map of exact sequences of groups

such that

$$
{ }^{w_{1}}\left(P_{Y}\right): \pi_{1}(Y) \xrightarrow{\mathrm{f}} \longrightarrow \mathbb{Z}_{2}
$$

there exists a map of s^{1}-fibrations

inducing the morphism

$$
f:\left(\pi_{Y}, w_{1}\left(p_{Y}\right)\right) \longrightarrow\left(\pi_{X}, w_{1}\left(p_{X}\right)\right)=(I I, \omega) .
$$

An S^{1}-fibration $S^{1} \longrightarrow Y^{\prime} \xrightarrow{P_{Y}} Y$ has data (Π, w) if it is equipped with such a morphism $f:\left(\Pi_{Y}, W_{1}\left(P_{Y}\right)\right) \longrightarrow(\Pi, \omega)$. Note that p_{Y} is orientable if (and for $f: \pi_{1}(Y) \xrightarrow{\sim} \pi$ only if) $t \in \pi^{\prime}$ is a central element. We shall be only concerned with S^{1}-fibrations p_{Y} over finite $C W$ complexes Y, although the theory may easily be extended to $S^{l_{-}}$fibrations over finitely dominated CW complexes.

Given an S^{1}-fibration $S^{1} \longrightarrow Y^{\prime} \longrightarrow \mathrm{P}$ with data $\left(\pi: \mathbb{Z} \longrightarrow \pi^{\prime} \longrightarrow \pi \longrightarrow(1), \omega: \pi \longrightarrow \mathbb{Z}_{2}\right)$ let $s^{1} \longrightarrow X^{\prime} \longrightarrow X$ be the universal S^{1}-fibration with data (Π, ω). We shall now introduce the category of "pseudo chain complexes over (Π, ω)" to help explain the relationship between the $\mathbb{Z}[\pi]$-module chain complex $C(\widetilde{Y})$ of the cover \widetilde{Y} of Y classified by $Y \longrightarrow X \longrightarrow K(\pi, 1)$ and the $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex $C\left(\bar{Y}^{\prime}\right)$ of the cover \tilde{Y}^{\prime} of Y^{\prime} classified by $Y^{\prime} \longrightarrow X^{\prime}=K\left(\pi^{\prime}, 1\right)$. (In the special case of the universal data $\left(\pi_{Y}: Z \longrightarrow \pi_{1}\left(Y^{\prime}\right) \longrightarrow \quad \mathrm{P} \pi_{1}(Y) \longrightarrow\{1\}, \omega_{1}(p): \pi_{1}(Y) \longrightarrow Z_{2}\right)$ \widetilde{Y} is the universal cover of Y and \widetilde{Y}^{\prime} is the universal cover of Y^{\prime}). This relationship is considerably more complicated than that between the universal covers of the total and base space of an S^{O}-fibration (= double cover), for in that case the universal covers coincide as spaces.

Given data (11, w) define ring automorphisms

$$
\begin{aligned}
& \alpha: \mathbb{Z}[\pi] \longrightarrow \mathbb{Z}[\pi] ; \sum_{g \in \pi} n_{g} g \longmapsto \mathbb{Z}\left[\pi^{\prime}\right] ;
\end{aligned}
$$

$$
\begin{aligned}
& \omega^{\prime}\left(g^{\prime}\right)=+1 \quad \omega^{\prime}\left(g^{\prime}\right)=-1 \\
& \left(n_{g}, n_{g}, \in \mathbb{Z}\right) \text {. }
\end{aligned}
$$

Given a $\mathbb{Z} I \pi]$-module M let αM denote the $\mathbb{Z}[\pi]$-module with the same additive group and $\mathbb{Z}[\pi]$ acting by
$\mathbb{Z}[\pi] \times \alpha M \longrightarrow \alpha M ;(a, x) \longmapsto \alpha(a) x$.
Similarly, given a $\mathbb{Z}\left[\pi^{\prime}\right]$-module M^{\prime} let $\alpha^{\prime} M^{\prime}$ denote the $\mathbb{Z}\left[\pi^{\prime}\right]$-module with the same additive group and $\mathbb{Z}[\pi ']$ acting by

$$
\mathbb{Z}\left[\pi^{\prime}\right] \times \alpha^{\prime} M^{\prime} \longrightarrow \alpha^{\prime} M^{\prime} ;(a, x) \longmapsto \alpha^{\prime}(a) \times .
$$

For any such M^{\prime} there is defined a $\mathbb{Z}\left[\pi^{\prime}\right]$-module morphism

$$
1-t: \alpha^{\prime} M^{\prime} \longrightarrow M^{\prime} ; x \longmapsto x-t x
$$

which is natural in the sense that for any $\mathbb{Z}\left[\pi^{\prime}\right]$-module morphism $f^{\prime} \in \operatorname{Hom}_{\mathbb{Z}}\left\{\pi^{\prime}\right]^{\prime}\left(M^{\prime}, N^{\prime}\right)$ there is defined a commutative diagram

with $\alpha^{\prime} \mathrm{f}^{\prime} \in \operatorname{Hom}_{Z}\left[\pi^{\prime}\right]\left(\alpha^{\prime} M^{\prime}, \alpha^{\prime} N^{\prime}\right)$ defined by

$$
\alpha^{\prime} f^{\prime}: \alpha^{\prime} M^{\prime} \longrightarrow \alpha^{\prime} N^{\prime} ; x \longmapsto f^{\prime}(x) \text {. }
$$

Also, for any such M^{\prime} there is defined a natural $\mathbb{Z}\left\{\pi^{\prime}\right\}$-module isomorphism

$$
t: \alpha^{\prime 2} M^{\prime} \longrightarrow M^{\prime} ; x \longrightarrow t x .
$$

A pseudo chain complex over $\mathbb{Z}[\boldsymbol{H}] \mathcal{C}=\left(C^{\prime}, d^{\prime}, e^{\prime}\right)$ is a collection of $\mathbb{Z}\left[\pi^{\prime}\right]$-modules

$$
C^{\prime}=\left\{C_{r}^{\prime} \mid r \in \mathbb{Z}\right\}
$$

and $\mathbb{Z}[\pi ']$-module morphisms

$$
\begin{aligned}
& d^{\prime}=\left\{d^{\prime} \in \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(C_{r}^{\prime}, C_{r-1}^{\prime}\right) \mid r \in \mathbb{Z}\right\} \\
& e^{\prime}=\left\{e^{\prime} \in \operatorname{Hom}_{\mathbb{Z}\left[n^{\prime}\right]}\left(C_{r}^{\prime}, \alpha^{\prime} C_{r-2}^{\prime}\right) \mid r \in \mathbb{Z}\right\}
\end{aligned}
$$

such that

$$
\begin{aligned}
& \text { i) } d^{\prime 2}=(1-t) e^{\prime}: C_{r}^{\prime} \longrightarrow C_{r-2}^{\prime} \\
& \text { ii) }\left(\alpha^{\prime} d^{\prime}\right) e^{\prime}=e^{\prime} d^{\prime}: C_{r}^{\prime} \longrightarrow \alpha^{\prime} C_{r-3}^{\prime}
\end{aligned}
$$

($r \in \mathbb{Z})$

The projection of \mathcal{Z} is the (genuine) $\mathbb{Z}[\pi]$-module chain compl C defined by

$$
\left.d_{C}=1 \otimes d^{\prime}: C_{r}=\mathbb{Z}[\pi] \otimes_{\mathbb{Z}}\left[\pi^{\prime}\right]_{r}^{C} \longrightarrow C_{r-1}=\mathbb{Z}[\pi] \mathbb{\theta}_{\mathbb{Z}[\pi}\right]^{C_{r-1}^{\prime}} .
$$

The induction of \mathbb{C} is the $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex $C^{!}$defi

$$
\begin{aligned}
d_{C}!=\left(\begin{array}{cc}
d^{\prime} & (-)^{r}(1-t) \\
(-)^{r} e^{\prime} & \alpha^{\prime} d^{\prime}
\end{array}\right) \\
: C_{r}^{!}=C_{r}^{\prime \oplus \alpha^{\prime} C_{r-1}^{\prime}} \longrightarrow C_{r-1}^{!}=C_{r-1}^{\prime} \oplus \alpha^{\prime} C_{r-2}^{\prime} .
\end{aligned}
$$

The projection and induction are related by the identity

$$
\mathbb{Z}[\pi] \mathbb{Z}_{\mathbb{Z}\left[\pi^{\prime}\right]^{C^{\prime}}=C(e: \Omega C \longrightarrow \alpha S C), ~}^{\longrightarrow}
$$

with e the $\mathbb{Z}[\pi]$-module chain map

$$
e=1 \otimes e^{\prime}: \Omega C_{r}=\mathbb{Z}[\pi] \otimes_{\mathbb{Z}}[\pi]^{C_{r+1}^{\prime}} \longrightarrow \alpha S C_{r}=\mathbb{Z}[\pi] \otimes_{\mathbb{Z}[\pi]^{\prime}}
$$

The pseudo chain complex \mathcal{Y} is $\underline{n-d i m e n s i o n a l ~ i f ~} C_{r}^{\prime}=0$ for $r<$ and $r>n$, and each $C_{r}^{\prime}(O \leqslant r \leqslant n)$ is a f.g. free $\mathbb{Z}\left[\pi^{\prime}\right]$-module, in which case C is an n-dimensional $\mathbb{Z}[\pi]$-module chain comple and $C^{!}$is an $(n+1)$-dimensional $\mathbb{Z}\left\{\pi^{\prime}\right\}$-module chain complex. The pseudo chain complex \mathcal{E} is contractible if the projection is chain contractible.

A pseudo chain map of pseudo chain complexes over $\mathbb{Z}[\pi]$

$$
\mathcal{F}=\left(f^{\prime}, g^{\prime}\right): \mathcal{Y}=\left(C^{\prime}, d_{C^{\prime}}^{\prime} e_{C}^{\prime}\right) \longrightarrow \mathcal{D}=\left(D^{\prime}, d_{D}^{\prime}, e_{D}^{+}\right)
$$

consists of collections of $\mathbb{Z}\left[\pi{ }^{\prime}\right]$-module morphisms

$$
\begin{aligned}
& \mathfrak{f}^{\prime}=\left\{f^{\prime} \in \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(C_{r}^{\prime}, D_{r}^{\prime}\right) \mid r \in \mathbb{Z}\right\} \\
& g^{\prime}=\left\{g^{\prime} \in \operatorname{Hom}_{\mathbb{Z}}\left\{\pi^{\prime}\right]^{\left.\left(C_{r}^{\prime}, \alpha^{\prime} D_{r-1}^{\prime}\right) \mid r \in \mathbb{Z}\right\}}\right.
\end{aligned}
$$

such that

$$
\begin{aligned}
& \text { i) } d_{D^{\prime}}^{f^{\prime}}-f^{\prime} d_{C}^{\prime}=(1-t) g^{\prime}: C_{r}^{\prime} \longrightarrow D_{r-1}^{\prime} \\
& \text { ii) } e_{D^{\prime}}^{\prime \prime}-\left(\alpha^{\prime} f^{\prime}\right) e_{C}^{\prime}=\left(\alpha^{\prime} d_{D^{\prime}}^{\prime} g^{\prime}+g^{\prime} d_{C}^{\prime}: C_{r}^{\prime} \longrightarrow a^{\prime} D_{r-2}^{\prime}\right. \\
& (r \in \mathbb{Z}) .
\end{aligned}
$$

The projection of \mathcal{F} is the $\mathbb{Z}[\pi]$-module chain map

$$
f=f^{\prime} \mathbb{N} 1: C=\mathbb{Z}[\pi] \mathbb{Z}_{\mathbb{Z}}\left[\pi^{\prime}\right]^{C^{\prime}} \longrightarrow D=\mathbb{Z}[\pi] \mathbb{X}_{\mathbb{Z}}\left[\pi^{\prime}\right]^{D^{\prime}} .
$$

The induction of F is the $\mathbb{Z}[\pi ']$-module chain map

$$
\mathrm{f}^{!}: \mathrm{C}^{!} \longrightarrow \mathrm{D}^{!}
$$

defined by

The pseudo chain map $\mathcal{F}: \mathcal{C} \longrightarrow \mathcal{D}$ is an equivalence if the projection $f: C \longrightarrow D$ is a chain equivalence.

A pseudo chain complex $\ell=\left(C^{\prime}, d^{\prime}, e^{\prime}\right)$ is untwisted if $e^{\prime}=0$, so that C^{\prime} is a $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex and

$$
C^{!}=C\left(1-t: \alpha^{\prime} C^{\prime} \longrightarrow C^{\prime}\right) .
$$

Similarly, a pseudo chain map $\mathcal{F}=\left(f^{\prime}, g^{\prime}\right): \mathcal{E} \longrightarrow \mathcal{D}$ is untwisted if \mathscr{C}, \mathcal{D} are untwisted and $q^{\prime}=0$, so that $f^{\prime}: C^{\prime} \longrightarrow D^{\prime}$ is a $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain map.

Proposition 7.8.7 i) The induction $\mathrm{c}^{!}$of a finite-dimensional pseudo chain complex \mathcal{Z} is chain contractible if (and for untwisted \mathcal{Y} only if) \mathcal{T} is contractible $(=C$ is chain contractible). ii) The induction $f^{!}: C^{!} \longrightarrow D^{!}$of a pseudo chain map $\mathcal{F}: \mathcal{Y} \longrightarrow \mathcal{D}$ of finite-dimensional pseudo chain complexes is a chain equivalence if (and for untwisted \mathcal{F} only if) \mathcal{F} is an equivalence ($=f: C \longrightarrow D$ is a chain equivalence).
iii) A finite-dimensional $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex C^{\prime} is $\mathbb{Z}[\pi]$-acyclic if and only if $1-t: \alpha^{\prime} C^{\prime} \longrightarrow C^{\prime}$ is a chain equivalence.

Proof: i) If the projection C of \mathcal{G} is chain contractible let

$$
\Delta=\left\{\Delta \in \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C_{r}, C_{r+1}\right) \mid r \in \mathbb{Z}\right\}
$$

be a chain contraction, so that

$$
d \Delta+\Delta d=1: C_{r} \longrightarrow C_{r}
$$

As $\left.p: \mathbb{Z} \mid \pi^{\prime}\right] \longrightarrow \mathbb{Z}[\pi]$ is onto with $\left.\operatorname{ker}(p)=i m\left(1-t: \mathbb{Z} \mid \pi^{\prime}\right] \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right]\right)$ there exist $\Delta^{\prime} \in \operatorname{Hom}_{\mathbb{Z}}\left[\pi^{\prime}\right]^{\left(C_{r}^{\prime}, C_{r+1}^{\prime}\right), ~} E^{\prime} \in \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}{ }^{\left(C_{r}^{\prime}, \alpha^{\prime} C_{r}^{\prime}\right)}$ such that $1 \otimes \Delta^{\prime}=\Delta$ and

$$
d^{\prime} \Delta^{\prime}+\Delta^{\prime} d^{\prime}-1=(1-t) E^{\prime}: C_{r}^{\prime} \longrightarrow C_{r}^{\prime} \quad(r \in \mathbb{Z}) .
$$

The $\mathbb{Z}[\pi$ 'l-module morphisms

$$
\Delta^{\prime}=\left(\begin{array}{cc}
\Delta^{\prime} & 0 \\
(-)^{r} E^{\prime} & \alpha^{\prime} \Delta^{\prime}
\end{array}\right): C_{r}^{!}=C_{r}^{\prime} \oplus \alpha^{\prime} C_{r-1}^{\prime} \longrightarrow C_{r+1}^{!}=C_{r+1}^{\prime} \longrightarrow \alpha^{\prime} C_{r}^{\prime}
$$

are such that for each $x \in \mathbb{Z}$

$$
\begin{aligned}
& d^{!} \Delta^{!}+\Delta^{\prime} d^{!}=\left(\begin{array}{cc}
1 & 0 \\
(-)^{r}\left(\left(\alpha^{\prime} d^{\prime}\right) E^{\prime}-E^{\prime} d^{\prime}+\left(\alpha^{\prime} \Delta^{\prime}\right) e^{\prime}-e^{\prime} \Delta^{\prime}\right) & 1
\end{array}\right) \\
&!\quad: C_{r}^{!}=C_{r}^{\prime \oplus \alpha^{\prime} C_{r-1}^{\prime}} \longrightarrow C_{r}^{!}=C_{r}^{\prime \oplus \alpha^{\prime} C_{r-1}^{\prime}}
\end{aligned}
$$

is a (simple) $\mathbb{Z} \mid \pi$ ']-module automorphism. Thus the automorphism of the induction $c^{!}$of ℓ defined by

$$
d^{!} \Delta^{!}+\Delta^{!} d^{!}: C^{!} \longrightarrow C^{!}
$$

is null chain homotopic, and $C^{!}$is chain contractible.
ii) Define the algebraic mapping cone of the pseudo chain map $x=\left(f^{\prime}, g^{\prime}\right): \mathcal{C} \longrightarrow \infty$ to be the pseudo chain complex

$$
C(F)=\left(D_{r}^{\prime} \oplus C_{r-1}^{\prime},\left(\begin{array}{cc}
d_{D}^{\prime} & (-)^{r-1} f^{\prime} \\
0 & d_{C}^{\prime}
\end{array}\right),\left(\begin{array}{cc}
e_{D}^{\prime} & (-)^{r-1} g^{\prime} \\
0 & e_{C}^{\prime}
\end{array}\right)\right)
$$

with projection $C(f: C \longrightarrow D)$ and induction $C(f)^{!}=C\left(f^{!}: C^{!} \longrightarrow D\right.$ Now apply i) to そ(f).
iii) Apply i) to the untwisted pseudo chain complex (C',d',0).

Pseudo chain complexes arise from $S^{\mathbf{1}}$-fibrations as follo proposition 7.8.8 Given an S^{1}-fibration $S^{1} \longrightarrow Y^{\prime} \xrightarrow{P} Y$
with data $\left(\Pi: \mathbb{Z} \longrightarrow \pi^{\prime} \longrightarrow \pi \longrightarrow\{1\}, \omega: \pi \longrightarrow \mathbb{Z}_{2}\right)$ over a
 way an n-dimensional pseudo chain complex over (Π, ω)

$$
\tau(\widetilde{Y}, p)=\left(C^{\prime}, d^{\prime}, e^{\prime}\right)
$$

such that
i) the projection $C=C(\tilde{Y})$ is the n-dimensional $\mathbb{Z} \mid \pi]$-module chain complex of the cover \tilde{Y} of Y classified by $Y \longrightarrow K(\pi, 1)$
ii) the induction $C^{!}=C\left(\bar{Y}^{\prime}\right)$ is the $(n+1)$-dimensional $\left.\mathbb{Z} \mid \pi^{\prime}\right]$-module chain complex of the cover \widetilde{Y}^{\prime} of Y^{\prime} classified by $\mathrm{Y}^{\prime} \longrightarrow K\left(\pi^{\prime}, 1\right)$
iii) the $\mathbb{Z}[\pi]$-module chain map

$$
e: \Omega C=\Omega C(\hat{Y}) \longrightarrow \alpha S C=\alpha S C(\widetilde{Y})
$$

is the chain level cap product $e=e(p) \cap-$ with the ω-twisted

Euler class $e(p) \in H^{2}(Y, \omega)$ (which together with the orientatio map $w_{1}(\mathrm{p}): \pi_{1}(\mathrm{Y}) \longrightarrow \pi \xrightarrow{\omega} \mathbb{Z}_{2}$ classifies $\mathrm{p}: Y \longrightarrow \mathrm{YG}(2)$) iv) if $p=\omega \oplus \in: Y \longrightarrow B G(2)$ (i.e. if $e(p)=O \in H^{2}(Y, \omega$ then $\mathcal{P}(\widetilde{Y}, P)=\left(C^{\prime}, d^{\prime}, O\right)$ is the untwisted pseudo chain complex defined by the n-dimensional $\mathbb{Z}\left[\pi{ }^{\prime}\right]$-module chain complex $\left(C^{\prime}, d^{\prime}\right)=C(\bar{Y})$ of the covering \bar{Y} of Y classified by the compo $Y \longrightarrow Y^{\prime} \longrightarrow K\left(\pi^{\prime}, 1\right)$ with s the section of p given

Furthermore, a map of S^{1}-fibrations with data (Π, ω)

determines a pseudo chain map

$$
\mathcal{F}=\left(f{ }^{\prime}, g^{\prime}\right): \ell\left(\widetilde{Y}_{1}, p_{1}\right) \longrightarrow \mathcal{Z}\left(\widetilde{Y}_{2}, p_{2}\right)
$$

with projection

$$
f=\widetilde{F}: c_{1}=c\left(\widetilde{Y}_{1}\right) \longrightarrow c_{2}=c\left(\widetilde{Y}_{2}\right)
$$

and induction

$$
f^{!}=\tilde{F}^{\prime}: C_{1}^{!}=c\left(\tilde{Y}_{1}^{\prime}\right) \longrightarrow C_{2}^{!}=c\left(\tilde{Y}_{2}^{\prime}\right) .
$$

Proof: The construction of $\mathcal{E}(\tilde{Y}, p)$ is by induction on the numb of cells in Y, starting with $Y=\varnothing$ for which $\mathcal{Y}(\widetilde{Y}, p)=0$. Assume inductively that $\mathcal{Y}(\widetilde{Y}, p)$ has already been defined for $\mathrm{p}: \mathrm{Y} \longrightarrow \mathrm{BG}(2)$ and let

$$
p_{1}=p \cup q: Y_{1}=Y \cup_{f^{\prime}} D^{r} \longrightarrow B G(2)
$$

be an extension of p to the complex Y_{1} obtained from Y by attaching an r-cell. The attaching map $f: S^{r-1} \longrightarrow Y$ defines a map of S^{l}-fibrations

using the trivialization of $\mathrm{F}^{*} \mathrm{p}: \mathrm{S}^{\mathrm{r}-1} \xrightarrow{\mathbf{f}} \mathrm{Y} \xrightarrow{\mathrm{P}} \mathrm{BG}(2)$ given by $g: D^{r} \longrightarrow B G(2)$ to identify it with the trivial S^{1}-fibration $E=$ projection $: S^{r-1} \times S^{1} \longrightarrow S^{r-1}$ over S^{r-1}. The covering \bar{S}^{r-1} of S^{r-1} classified by the composite

$$
\mathrm{S}^{\mathrm{r}-1} \longleftrightarrow \mathrm{~S}^{\mathrm{r}-1} \times \mathrm{S}^{1} \xrightarrow{\mathrm{f}^{\prime}} \mathrm{Y}^{\prime} \longrightarrow \mathrm{K}\left(\pi^{\prime}, 1\right)
$$

is $t r i v i a l$, so that $C\left(\bar{S}^{r-1}\right)=\mathbb{Z}\left[\pi^{\prime}\right] \mathbb{Z}_{\mathbb{Z}} C\left(S^{r-1}\right)$. The $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain map

$$
q^{\prime}=\binom{1}{0}: S^{r-1} \mathbb{Z}\left[\pi^{\prime}\right] \longrightarrow C\left(\bar{S}^{r-1}\right)=S^{r-1} \mathbb{Z}\left[\pi^{\prime}\right] \oplus \mathbb{Z}\left\{\pi^{\prime}\right\}
$$

determines an (untwisted) pseudo chain map

$$
G=\left(g^{\prime}, 0\right):\left(S^{r-1} Z\left[\pi^{\prime}\right], 0,0\right) \longrightarrow \mathcal{C}\left(\tilde{S}^{r-1}, E\right)=\left(C\left(\bar{S}^{r-1}\right), 0,0\right)
$$

Define the pseudo chain complex $\boldsymbol{\mho}_{1}\left(\widetilde{\mathrm{Y}}_{1}, \mathrm{P}_{1}\right)$ to be the algebraic mapping cone of the composite pseudo chain map

$$
\left.\mathcal{F G}:\left(S^{r-1} \mathcal{Z} \mid \pi^{\prime}\right], 0,0\right) \xrightarrow{G} \mathcal{C}\left(\widetilde{S}^{\mathrm{r}-1}, E\right) \xrightarrow{\mathcal{F}} P(\widetilde{Y}, p)
$$

that is

$$
\ell\left(\stackrel{Y}{Y}_{1}, p_{1}\right)=c(f G) .
$$

* For $r=1$ let $g^{\prime}=\binom{1}{-1}: \mathbb{Z}\left[\pi^{\prime}\right] \rightarrow C\left(\bar{S}^{0}\right)=\mathbb{Z}\left[n^{\prime}\right] \oplus \mathbb{Z}\left[n^{\prime}\right]$. 11

Given an S^{l}-fibration $S^{l} \longrightarrow Y^{\prime} \longrightarrow P$ with data $\left(\pi: \mathbb{Z} \longrightarrow \pi^{\prime} \longrightarrow \pi \longrightarrow\{1\}, \omega: \pi \longrightarrow \mathbb{Z}_{2}\right)$ there is defined a transfer map in the Whitehead groups

$$
\begin{aligned}
\mathrm{p}^{\prime}: \text { Wh }(\pi) \longrightarrow & \text { Wh }\left(\pi^{\prime}\right) ; \\
& \left.\tau(f: M \longrightarrow X) \longmapsto \mathrm{M}^{\longrightarrow} \longrightarrow f^{\prime}: M^{\prime} \longrightarrow \longrightarrow X^{\prime}\right)
\end{aligned}
$$

sending the Whitehead torsion $T(f)$ of a homotopy equivalence of finite $C W$ complexes $f: M \longrightarrow X$ equipped with a reference map $X \longrightarrow Y$ to the Whitehead torsion $\tau(f$ ') of the homotopy equivalence $f^{\prime}: M^{\prime} \xrightarrow{\sim} X^{\prime}$ of the total spaces of the S^{l}-fibrations induced from p. This transfer was first defined geometrically by D.R.Anderson [1], and an algebraic description was first obtained by Munkholm and Pedersen [1]. From the point of view of Proposition 7.8 .8 the transfer map sends the Whitehead torsion $\tau(C) \in W h(\pi)$ of a based acyclic f.g. free $\mathbb{Z}[\pi]$-module chain complex C which is the projection of a based pseudo chain complex $\mathcal{V}=\left(C^{\prime}, d^{\prime}, e^{\prime}\right)$ over (Π, ω) to the Whitehead torsion $P^{!} \tau(C)=t\left(C^{!}\right) \in W h\left(\pi^{\prime}\right)$ of the induction $C^{!}$. In particular, if C is 1 -dimensional $\left(C_{r}=0\right.$ for $\left.r \neq 0,1\right)$ then any lift of the $\mathbb{Z}[\pi]$-module isomorphism $d: C_{1} \simeq C_{O}$ to a $\mathbb{Z}\left[n^{\prime}\right]$-module morphism $d^{\prime}: C_{i} \longrightarrow C_{\dot{O}}^{\prime}$ defines a based pseudo chain complex $\mathcal{Y}=\left(C^{\prime}, d^{\prime}, 0\right)$ with projection C, and in this case the induction

$$
C^{!}: \ldots \rightarrow 0 \rightarrow \alpha^{\prime} C_{1}^{\prime} \xrightarrow{\binom{1-t}{a^{\prime} d^{\prime}}} C_{1} \oplus \alpha^{\prime} C_{0}^{\prime} \xrightarrow{\left(A^{\prime}-(1-t)\right)} C_{0}^{\prime} \rightarrow 0 \rightarrow \ldots \rightarrow \rightarrow
$$

is the algebraic description of $P^{!}+(C)=\tau\left(C^{!}\right)$due to Munkholm and Pedersen [1].

Next, we shall construct the Q-groups of pseudo chain complexes, allowing the definition of "algebraic Poincaré pseudo complexes".

Given data $\xi=\left(\pi: \mathbb{Z} \longrightarrow \pi^{\prime} \longrightarrow \underline{p} \pi\{1\}, \omega: \pi \longrightarrow \mathbb{Z}_{2}\right)$ and an orientation map $w: \pi \longrightarrow \mathbb{Z}_{2}$ define orientation maps by

$$
\begin{aligned}
& w^{\xi}=w \omega: \pi \longrightarrow \mathbb{Z}_{2} \\
& w^{\prime}=w p: \pi^{\prime} \xrightarrow{p} \pi \xrightarrow{w} \mathbb{Z}_{2} \\
& w^{\prime} \xi=w^{\xi} p: \pi^{\prime} \xrightarrow{p} \pi \xrightarrow{w^{\xi}} \mathbb{Z}_{2}
\end{aligned}
$$

Define the w-twisted dual $\varphi^{n-\star, w}$ of an n-dimensional pseudo chain complex $\mathcal{Z}=\left(C^{\prime}, d^{\prime}, e^{\prime}\right)$ to be the n-dimensional pseudo chain complex $\beta^{n-*, w}=\left(D^{\prime}, d_{D}^{\prime}, e_{D}^{\prime}\right)$ with

$$
\begin{aligned}
& d_{D}^{\prime}=(-)^{r} \alpha^{\prime} d^{\prime *}: D_{r}^{\prime}=a^{\prime} C^{\prime n-r, w^{\prime} \xi} \longrightarrow D_{r-1}^{\prime}=a^{\prime} C^{\prime n-r+1, w^{\prime}} \\
& \begin{aligned}
& e_{D}^{\prime}=t^{-1} e^{\prime *}: D_{r}^{\prime}=\alpha^{\prime} C^{, n-r}, w^{\prime \xi} \xrightarrow[e^{\prime *}]{t^{-1}} \\
& \xrightarrow{\sim} C^{\prime n-r+1, w^{\prime} \xi} \\
& \alpha^{\prime 2} C^{n-r+1, w^{\prime \xi}}=\alpha^{\prime} D_{r-1}^{\prime}
\end{aligned}
\end{aligned}
$$

The projection D of $\mathcal{e}^{n-*, w}$ is the w-twisted dual of the project c of ϑ

$$
D=c^{n-*, w}
$$

The induction $D^{!}$of $\varphi^{n-*, w}$ may be identified with the $w^{\xi \xi}$-twist dual of the induction $c^{!}$of \mathcal{P}

$$
D^{!}=\left(C^{!}\right)^{n+1-*, w^{\prime}}
$$

since the $\mathbb{Z}\left[\pi \pi^{\prime}\right]$-module isomorphisms

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & t \\
1 & 0
\end{array}\right): D_{r}^{!} & =\alpha^{\prime} C^{n-r, w^{\prime \xi}} \oplus \alpha^{\prime} c^{\prime}{ }^{n-r+1, w^{\prime} \xi} \\
& \sim \longrightarrow\left(\left(C^{!}\right)^{n+1-\star, w^{\prime} \xi}\right)_{r}=c^{n-r+1, w^{\prime} \xi} \oplus \alpha^{\prime} C^{, n-r}
\end{aligned}
$$

define a canonical isomorphism of $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex

$$
D^{!} \longrightarrow \sim\left(C^{!}\right)^{n+1-*, w^{\prime}} .
$$

Given a finite-dimensional pseudo chain complex $\mathcal{U}=\left(C^{\prime}, d^{\prime}, e^{\prime}\right)$ define a $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex $\operatorname{Hom}_{H}\left(と^{*, w}, \zeta\right)$ by
$d: \operatorname{Hom}_{\pi}\left(\varphi^{*, \omega}, \varphi\right)_{r}$

$$
\left(\phi^{\prime}, \theta^{\prime}\right) \longmapsto\left(d^{\prime} \phi^{\prime}+(-)^{q^{\prime}}\left(\alpha^{\prime} d^{\prime}\right)^{*}+(-)^{r}(1-t) \theta^{\prime},\right.
$$

$$
\left(\alpha^{\prime} d^{\prime}\right) \theta^{\prime}+(-)^{q-1} \theta^{\prime}\left(\alpha^{\prime} d^{\prime}\right) *+(-)^{r}\left(e^{\prime} \phi^{\prime}-\left(\alpha^{\prime} \phi^{\prime}\right)\right.
$$

$$
T: \operatorname{Hom}_{\Pi}\left(\varphi^{*}, \omega, \varphi\right)_{r} \longrightarrow \operatorname{Hom}_{\Pi}\left(\boldsymbol{e}^{*, w}, \varphi\right)_{r} ;
$$

$$
\left(\phi^{\prime}, \theta^{\prime}\right) \longmapsto\left(\mathrm{T}_{t^{\prime}} \phi^{\prime}, \mathrm{T} \theta^{\prime}\right)=\left((-)^{\mathrm{pq}} \mathrm{t}\left(\alpha^{\prime} \Phi^{\prime}\right) *,(-)^{\mathrm{P}(\mathrm{q}-1}\right.
$$

$$
\text { Define the }\left\{\begin{array} { l }
{ \text { pseudosymmetric } } \\
{ \text { pseudoquadratic } }
\end{array} \text { w-twisted Q-groups of } \tau \left\{\begin{array}{l}
Q_{\Pi}^{\star}, w(\mathcal{F}) \\
Q_{\star}^{\Pi, w}(\vartheta)
\end{array}\right.\right.
$$

An element $\left\{\begin{array}{l}\left(\phi^{\prime}, \theta^{\prime}\right) \in Q_{\Pi, w}^{n}(\psi) \\ \left(\psi^{\prime}, x^{\prime}\right) \in Q_{n}^{\Pi}, w(\gamma)\end{array}\right.$ is represented by a collection chains

$$
\begin{aligned}
& \operatorname{Hom}_{\pi}\left(\boldsymbol{e}^{*, w}, \varphi_{k-1} ;\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left(\int d^{\prime} \phi_{s}^{\prime}+(-)^{r} \phi_{s}^{\prime}\left(\alpha^{\prime} d^{\prime}\right) *+(-)^{n+s-1}\left(\phi_{s-1}^{\prime}+(-)^{s} T_{t} \phi_{s-1}^{\prime}\right)+(-)^{n+s}(1-t) \theta_{s}^{\prime}\right. \\
& =0: \alpha^{\prime} C^{n-r+s-1, w^{\prime}} \longrightarrow C_{r}^{\prime} \\
& \left(\alpha^{\prime} d^{\prime}\right) \theta_{s}^{\prime}+(-)^{r_{i}^{\prime}}\left(\alpha^{\prime} d^{\prime}\right)^{*}+(-)^{n+s}\left(\theta_{s-1}^{\prime}+(-)^{s} T \theta_{s-1}^{\prime}\right) \\
& +(-)^{n+s-1}\left(e^{\prime} \phi_{s}^{\prime}-\left(\alpha^{\prime} \phi_{s}^{\prime}\right) t^{-1} e^{\prime *}\right) \\
& =0: \alpha^{\prime} C^{n-r+s-2, w^{\prime}} \longrightarrow \alpha^{\prime} C_{r}^{\prime} \quad\left(s \geqslant 0, \phi_{-1}^{\prime}=0, \theta_{-1}^{\prime}=0\right) \\
& \left(d^{\prime} \psi_{s}^{\prime}+(-)^{r} \psi_{s}^{\prime}\left(\alpha^{\prime} d^{\prime}\right)^{*}+(-)^{n-s-1}\left(\psi_{s+1}^{\prime}+(-)^{s+1} T_{t} \psi_{s+1}^{\prime}\right)+(-)^{n-s}(1-t) x_{s}^{\prime}\right. \\
& =0: \alpha^{\prime} C^{n-r-s-1, w^{\prime}} \longrightarrow C_{r}^{\prime} \\
& \left\{\left(\alpha^{\prime} d^{\prime}\right) x_{s}^{\prime}+(-)^{r} x_{s}^{\prime}\left(\alpha^{\prime} d^{\prime}\right)^{*}+(-)^{n-s}\left(x_{s+1}^{\prime}+(-)^{s+1} T x_{s+1}^{\prime}\right)\right. \\
& +(-)^{n-s-1}\left(e^{\prime} \psi_{s}^{\prime}-\left(\alpha^{\prime} \psi_{s}^{\prime}\right) t^{-1} e^{\prime *}\right) \\
& =0: \alpha^{\prime} C^{\prime n-r-s-2, w^{\prime},} \alpha^{\prime} C_{r}^{\prime} \quad(s \geqslant 0) \text {. }
\end{aligned}
$$

The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
\begin{array}{r}
p_{!}: \operatorname{Hom}_{\Pi}\left(\ell^{*, w}, \tau\right) \longrightarrow \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(C^{\star, w}, C\right) ; \\
\left(\phi^{\prime}, \theta^{\prime}\right) \longmapsto
\end{array}
$$

defines the projection maps in the Q-groups

$$
\left\{\begin{aligned}
& p_{i}: Q_{\Pi, w^{n}}^{n}(t) \longrightarrow Q_{\pi, w}^{n}(C) ;\left(\phi^{\prime}, \theta^{\prime}\right) \longmapsto \longmapsto Q_{n}^{\pi, w}(C) ;\left(\psi^{\prime}, \chi^{\prime}\right) \longmapsto \longmapsto \\
& p_{!}: Q_{n}^{\Pi, w}(\ell) \longrightarrow \psi
\end{aligned}\right.
$$

(If $t \in \pi^{\prime}$ is of infinite order and $e^{\prime}=0$ these maps are isomorphisms). The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map

$$
\begin{array}{r}
p^{!}: \operatorname{Hom}_{\Pi}\left(\varphi^{*}, w, \varphi\right) \longrightarrow \Omega \operatorname{Hom}_{\mathbb{Z}}\left\{\left.\pi^{\prime}\right|^{\left(\left(C^{!}\right)^{*}, w^{\prime \xi}, c^{!}\right) ;}\right. \\
\left(\phi^{\prime}, \theta^{\prime}\right) \longmapsto
\end{array}
$$

with

$$
\begin{aligned}
& \phi^{\prime}=\left(\begin{array}{cc}
0 & \phi^{\prime} \\
\left(\alpha^{\prime} \phi^{\prime}\right) t^{-1} & (-)^{p_{\theta}}
\end{array}\right) \\
&: c^{\prime p, w^{\prime \xi} \oplus \alpha^{\prime} C^{\prime} p^{-1}, w^{\prime},} \longrightarrow C_{q^{\prime} \oplus \alpha^{\prime} C_{q^{-1}}^{\prime}}
\end{aligned}
$$

defines the induction maps in the Q-groups

$$
\left\{\begin{array}{l}
p^{!}: Q_{\Pi, w^{\prime}}^{n}(z) \longrightarrow Q_{\pi^{\prime}, w^{\prime}, \xi\left(C^{!}\right) ;\left(\phi^{\prime}, \theta^{\prime}\right) \longmapsto Q_{n+1}^{n+1}\left(C^{!}\right) ;\left(\psi^{\prime}, x^{\prime}\right) \longmapsto}^{p^{!}: Q_{n}^{\Pi, w}(z) \longrightarrow \psi^{!}}
\end{array}\right.
$$

Replacing w by w^{ξ} there are also defined w^{ξ}-twisted Q-groups $\left\{\begin{array}{l}Q_{\Pi}^{\star}, w^{\xi(\})} \\ \left.Q_{*}, w^{\xi}(\}\right)\end{array}\right.$ with projection maps

$$
\left\{\begin{array}{l}
P_{!}: Q_{\Pi}^{\star}, w^{\xi}(e) \longrightarrow Q_{\pi}^{*}, w^{\xi}(C) \\
P_{!}: Q_{\star}^{\Pi, w^{\xi}}(C) \longrightarrow Q_{\star}^{\pi, w^{\xi}}(C)
\end{array}\right.
$$

and induction maps

$$
\left\{\begin{array}{l}
p^{!}: Q_{\Pi, w^{*}}^{\xi}(()) \longrightarrow Q_{\pi^{\prime}, w^{\prime}}^{*+1}\left(C^{!}\right) \\
p^{\prime}: Q_{*}^{\Pi, w^{K}}(Z) \longrightarrow Q_{*+1}^{\pi^{\prime}, w^{\prime}}\left(C^{!}\right)
\end{array}\right.
$$

(Both the w-twisted and the w^{ξ}-twisted Q-groups arise in the applications).

A pseudo chain map of finite dimensional pseudo chain complexes over $\mathbb{Z}\{\Pi \mid$

$$
\mathcal{F}=\left(f^{\prime}, g^{\prime}\right): \mathcal{C}=\left(C^{\prime}, d_{C}^{\prime}, e_{C}^{\prime}\right) \longrightarrow \mathcal{M}=\left(D^{\prime}, d_{D}^{\prime}, e_{D}^{\prime}\right)
$$

induces the $\mathbb{Z}\left[\mathbb{Z}_{2}\right)$-module chain map

$$
\operatorname{Hom}_{\Pi}\left(F^{\star, w}, F\right): \operatorname{Hom}_{\Pi}\left(\eta^{\star, w}, \vartheta\right) \longrightarrow \operatorname{Hom}_{\Pi}\left(\mathcal{D}^{\star}, w, 0\right)
$$

defined by

$$
\begin{aligned}
& \operatorname{Hom}_{\Pi}\left(F^{*}, w, F\right): \operatorname{Hom}_{\Pi}\left(\varphi^{\star}, w, \psi\right)_{r} \\
& =\sum_{p+q=r} \operatorname{Hom}_{Z\left[\pi^{\prime}\right]^{\prime}\left(\alpha^{\prime} C^{, p, w^{\prime}}, C_{q}^{\prime}\right) \operatorname{Hom}_{Z Z\left[\pi^{\prime}\right]}\left(\alpha^{\prime} C^{\prime p, w^{\prime \xi}}, \alpha^{\prime} C_{q-1}^{\prime}\right)} \\
& \longrightarrow \operatorname{Hom}_{\Pi}\left(\infty^{\star}, W,\right)_{r} ; \\
& \left(\phi^{\prime}, \theta^{\prime}\right) \cdots \\
& \left(f^{\prime} \phi^{\prime}\left(\alpha^{\prime} f^{\prime}\right) \star,\left(\alpha^{\prime} f^{\prime}\right) * \theta^{\prime}\left(\alpha^{\prime} f^{\prime}\right)+(-)^{q-1}\left(q^{\prime} \phi^{\prime}\left(\alpha^{\prime} f^{\prime}\right) *-\alpha^{\prime}\left(f^{\prime} \phi^{\prime} g^{\prime *}\right) t^{-}\right.\right.
\end{aligned}
$$

Thus there are induced morphisms in the Q-qroups

$$
\left\{\begin{array}{l}
x^{q}: Q_{\Pi, w}^{n}(x) \cdots Q_{\Pi, w}^{n}(D) \\
F_{\%}: Q_{n}^{\Pi, w}(\ell) \longrightarrow Q_{n, w}^{\Pi, w}(D)
\end{array} \quad(n \in \mathbb{Z})\right.
$$

(which are isomorphisms if $\mathcal{F}: \ell \rightarrow \mathcal{D}$ is an equivalence) which are compatible with the projection and induction maps in the Q-groups.

An n-dimensional $\left\{\begin{array}{l}\text { pseudosymmetric } \\ \text { pseudoquadratic }\end{array}\right.$ complex over $Z\left[\Pi^{w}\right\}$
$\left\{\begin{array}{l}\left(\Psi,\left(\phi^{\prime}, \theta^{\prime}\right)\right) \\ \left(\Psi,\left(\psi^{\prime}, \chi^{\prime}\right)\right)\end{array}\right.$ is an n-dimensional pseudo chain complex over $\mathbb{Z}[$ [I] $]$
$\psi=\left(C^{\prime}, d^{\prime}, e^{\prime}\right)$ together with an element $\left\{\begin{array}{l}\left(\phi^{\prime}, \theta^{\prime}\right) \in Q_{\Pi, w^{n}}^{(\xi)} \\ \left(\psi^{\prime}, x^{\prime}\right) \in Q_{n}^{\Pi, w}(p)\end{array}\right.$.
Such a complex is Poincaré if the projection $\left\{\begin{array}{l}\left(C, \phi \in Q_{\pi, w}^{n}(C)\right) \\ \left(C, \psi \in Q_{n}^{\pi, w}(C)\right)\end{array}\right.$
is an n-dimensional $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ Poincaré complex over $\mathbb{Z}\left[\pi^{w}\right]$, that is if the pseudo chain map

$$
\left\{\begin{array}{l}
\left(\phi_{O}^{\prime}, \theta_{O}^{\prime}\right): \psi^{n-\star, w} \ldots \mathcal{O} \\
(1+T)\left(\psi_{O}^{\prime}, x_{O}^{\prime}\right): \psi^{n-\star, w} \ldots \mathcal{L}
\end{array}\right.
$$

is an equivalence, since it has projection
in which case the induction $\left\{\begin{array}{l}\left(C^{!}, \phi^{!} \in Q_{n^{\prime}, w^{\prime}}^{n+1} \xi\left(C^{!}\right)\right) \\ \left(C^{!}, \psi^{!} \in Q_{n+1}^{\pi!}, w^{\prime!}\left(C^{!}\right)\right)\end{array}\right.$is an $(n+1)$-dimensional $\left\{\begin{array}{l}\text { symmetric } \\ \text { quadratic }\end{array}\right.$ Poincaré complex over $\mathbb{Z}\left[\pi, w^{, \xi}\right]$, by Proposition 7.8 .7 ii).

$$
\text { Define the }\left\{\begin{array}{l}
\frac{\text { pseudosymmetric }}{\text { pseudoquadratic }}
\end{array} \text { L-groups of } \mathbb{Z} \mid \pi^{w}\right]\left\{\begin{array}{l}
L^{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \\
L_{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right)
\end{array}\right. \text { (i) }
$$

to be the cobordism groups of n-dimensional $\left\{\begin{array}{l}\text { pseudosymmetric } \\ \text { pseudquadratic }\end{array}\right.$ Poincaré complexes over $\mathbb{Z}\left[I^{W}\right]$. Pseudoquadratic surgery below the middle dimension gives the periodicity

$$
L_{n}\left(\mathbb{Z}\left[\Pi^{W}\right]\right)=L_{n+4}\left(\mathbb{Z}\left[\Pi^{W}\right]\right) \quad(n \geqslant 0)
$$

and identifies $L_{2 i}\left(\mathbb{Z}\left[\Pi^{W}\right]\right)$ (resp. $L_{2 i+1}\left(\mathbb{Z} \mid \Pi^{W} \|\right)$ with the witt group of non-singular (-$)^{\mathbf{i}}$-pseudoquadratic forms (resp. formatior over $\mathbb{Z}\left[\|^{W}\right]$, by analogy with the usual quadratic L-groups $L_{\star}\left(\mathbb{Z} \mid \pi^{W}\right.$ Every (-) ${ }^{i}$-quadratic form (resp. formation) over $\mathbb{Z}\left[\pi^{W}\right]$ lifts to a (-) ${ }^{\mathbf{i}}$-pseudoquadratic form (resp. formation) over $\mathbb{Z}\left[\mathrm{m}^{\mathrm{w}} 1\right.$, and the projection maps in the quadratic L-groups

$$
P_{!}: L_{n}\left(\mathbb{Z}\left[\pi^{W}\right]\right) \longrightarrow L_{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right):\left(\mathbb{C},\left(\psi^{\prime}, x^{\prime}\right)\right) \longmapsto(C, \psi) \quad(n \geqslant 0)
$$

are isomorphisms, which we shall use as identifications.
(It is not clear if the projection maps in the symmetric L-groups

$$
P_{!}: L^{n}\left(\mathbb{Z}\left[\Pi^{W}\right]\right) \longrightarrow L^{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right) ;\left(\mathcal{H},\left(\phi^{\prime}, \theta^{\prime}\right)\right) \longmapsto(C, \phi) \quad(n \geqslant 0)
$$

are also isomorphisms, except in special cases, e.g. if $t \in \pi^{\prime}$ is of infinite order so that $\left.1-t: \mathbb{Z}\left[\pi{ }^{\prime}\right] \longrightarrow \mathbb{Z}[\pi]^{\prime}\right]$ is injective, or if there exists a group morphism $s: \pi \longrightarrow \pi$ ' such that $p s=1: \pi \longrightarrow \pi$)

There are defined induction maps in the $\left\{\begin{array}{l}\text { (pseudo) symmetric } \\ \text { (pseudo) quadratic }\end{array}\right.$-groups

In terms of forms and formations the induction ($=$ transfor) map in quadratic L-theory $\left\{\begin{array}{l}p^{!}: L_{2 i}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \longrightarrow L_{2 i+1}\left(\mathbb{Z}\left[\pi^{\prime w} w^{\prime} 1\right)\right. \\ \left.p^{!}: L_{2 i+1}\left(\mathbb{Z} \mid \pi^{w}\right]\right) \longrightarrow L_{2 i+2}\left(\mathbb{Z}_{2}\left[\pi^{\prime} w^{\xi}\right]\right)\end{array}(i(\bmod 2))\right.$ sends a non-singular $(-)^{i}$-quadratic $\left\{\begin{array}{l}\text { form } \\ \text { formation }\end{array}\right.$ over $Z\left[\pi^{w}\right]$ $\left\{\begin{array}{l}(M, \psi) \\ \left.\left(H(-) i(F) ; F, i m\binom{Y}{\mu}: G \longrightarrow F \oplus F^{*}, w_{1}\right)\right)\end{array}\right.$ to the non-singular

$\left(\begin{array}{c}\left(H(-)^{i\left(M^{\prime}\right)}\right) ; M^{\prime}, i m(\end{array}\left(\begin{array}{c}1-t \\ \alpha^{\prime} \psi^{\prime}+(-)^{i} t\end{array} \quad \psi^{\prime} *\right): \alpha^{\prime} M^{\prime} \longrightarrow M^{\prime} \oplus M^{\prime *}, w^{\prime \xi} \prime\right)$
$\left\{\left(\operatorname{coker}\left(\left(\begin{array}{c}1-t \\ \alpha^{\prime} \gamma^{\prime} \\ \alpha^{\prime} \mu^{\prime}\end{array}\right): \alpha^{\prime} G^{\prime} \longrightarrow G^{\prime} \oplus \alpha^{\prime} F^{\prime} \oplus F^{\prime *, w^{\prime}}{ }^{\ell}\right),\left(\begin{array}{ccc}x^{\prime} & 0 & 0 \\ t^{-1} \mu^{\prime} & 0 & 0 \\ \gamma^{\prime} & 1-t & 0\end{array}\right)\right.\right.$)
with $\left\{\begin{array}{l}\psi^{\prime} \in \operatorname{Hom}_{Z\left[\pi^{\prime}\right]}\left(M^{\prime}, M^{\prime \star}, w^{\prime}\right) \\ \binom{\gamma^{\prime}}{\mu^{\prime}} \in \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(G^{\prime}, F^{\prime} \oplus F^{\prime}{ }^{\star, w^{\prime}}\right), X^{\prime} \in \operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(G^{\prime}, G^{\prime *}, w^{\prime} \xi\right.\end{array}\right)$
such that
$\left\{\begin{array}{l}1 \otimes \psi^{\prime}=\psi \in \operatorname{Hom}_{\mathbb{Z}[\pi]}\left(M, M^{*}, W^{\prime}\right) \\ \left\{\begin{array}{l}1 \otimes\binom{\gamma^{\prime}}{\mu^{\prime}}=\binom{Y}{\mu} \in \operatorname{Hom}_{\left.\mathbb{Z}[\pi]^{\left(G, F \oplus F^{*}, w\right.}\right)} \\ \left.\gamma^{\prime *}\left(\alpha^{\prime} \mu^{\prime}\right)=\theta^{\prime}+(-)^{i} t\left(\alpha^{\prime} \theta^{\prime}\right)^{*}+(-)^{i+1} X^{\prime}(1-t) \in \operatorname{Hom}_{\mathbb{Z}}\left[\pi^{\prime}\right]^{\left(\alpha^{\prime} G^{\prime}, G^{\prime}{ }^{\prime}, w^{\prime} \xi\right.}\right) \\ \text { for some } \theta^{\prime} \in \operatorname{Hom}_{\left.\mathbb{Z} \mid \pi^{\prime}\right]}\left(\alpha^{\prime} G^{\prime}, G^{\prime *}, w^{\prime}\right) .\end{array}\right.\end{array}\right.$
(Munkholm and Pedersen have also obtained an algebraic description of the transfer maps $\left.p^{!}: L_{*}\left(\mathbb{Z} \mid \pi^{W}\right]\right) \longrightarrow L_{*+1}\left(\mathbb{Z} \mid \pi^{\prime} w^{\prime \xi} j\right)$ in terms of forms and formations, extending their algebraic description of $p^{!}:$Wh $(\pi) \longrightarrow$ Wh($\left.\left.\pi^{\prime}\right)\right)$. For $\pi^{\prime}=\pi \times \mathbb{Z} p^{!}: L_{\star}(\mathbb{Z}[\pi]) \longrightarrow L_{*+1}(\mathbb{Z}[\pi \times \mathbb{Z} \|)$ is just the splitting map $\bar{B}=\sigma^{*}\left(S^{l}\right)-$ appearing in the splitting theorem of Novikov [1] and Ranicki [2]. We shall now relate the algebraic L-theory induction maps p ' to geometric transfer maps.

Let

$$
\mathrm{S}^{\mathrm{l}} \longrightarrow \mathrm{X}^{\prime} \xrightarrow{\mathrm{p}} \mathrm{X}
$$

be an S^{l}-fibration over a finite CW complex X with data $\left(\pi: \mathbb{Z} \xrightarrow{i} \pi^{\prime} \longrightarrow \underline{p} \quad \pi \longrightarrow\{1\}, \omega: \pi \longrightarrow \mathbb{Z}_{2}\right)$. Let $\mathcal{P}(\tilde{x}, p)=\left(C^{\prime}, d^{\prime}, e^{\prime}\right)$
be the finite-dimensional pseudo chain complex over $\mathbb{Z}[\pi]$ associated to $\mathrm{p}: \mathrm{X} \longrightarrow \mathrm{BG}(2)$ by Proposition 7.8.8, with projection $C=C(\widetilde{x})$ the chain complex of the cover \tilde{x} of x classified by $X \longrightarrow K(\pi, 1)$ and induction $C!=C\left(\widetilde{X}^{\prime}\right)$ the chain complex of the cover \tilde{X}^{\prime} of X^{\prime} classified by $X^{\prime} \longrightarrow K\left(\pi^{\prime}, 1\right)$. Let \tilde{X}^{\prime} / t be the quotient of \widetilde{x}^{\prime} by the action of $i(\mathbb{Z}) \subset \pi^{\prime}$, which is the cover of X^{\prime} classified by $X^{+} \longrightarrow K\left(\pi^{\prime}, 1\right) \xrightarrow[P]{P}(\pi, 1)$.

Define the Umkehr $\mathbb{Z}[\pi]$-module chain map

$$
p^{!}: \alpha \operatorname{asc}(\tilde{x}) \longrightarrow C\left(\tilde{x}^{\prime} / t\right)
$$

by

$$
\left.p^{!}=\binom{0}{1}: \alpha \operatorname{aSC}(\tilde{x})_{r}=\alpha C_{r-1} \longrightarrow C(\tilde{x}, / t)_{r}=(\mathbb{Z} \mid \pi] \otimes_{\mathbb{Z}}[\pi]^{C}\right)_{r}=c_{r} \oplus \alpha C_{r-1} .
$$

(There is also defined a geometric Umkehr stable r-map $P: \Sigma^{\infty} T \pi(\omega) \longrightarrow \Sigma^{\infty}(\tilde{x} \cdot / t)+$ inducing p^{\prime} on the chain level). The definition of $\mathcal{Q}(\tilde{x}, \mathrm{p})$ by the algebraic glueing of the untwisted pseudo chain complexes of the restrictions of $p: x \longrightarrow B G(2)$ to the cells of x extends to the symmetric construction:

Proposition 7.8.9 There is defined a natural transformation of abelian groups, the pseudosymmetric construction on (x, p)

$$
\phi_{\tilde{x}, p}: H_{n}(x, w) \longrightarrow Q_{I I, w}^{n}(\varepsilon(\tilde{x}, p)) \quad(n \geqslant 0)
$$

for any orientation map $w: \pi \rightarrow \mathbb{Z}_{2}$, which is related to the symmetric constructions on \widetilde{x} and \widetilde{x}^{\prime} by a commutative diagram

Given an n-dimensional geometric Poincaré complex M and map $f: M — X$ such that $w(M)=f^{\star} W$ the pullback $S^{l}-f$ ibratio $\mathrm{f}^{*} \mathrm{P}: \mathrm{M} \longrightarrow \mathrm{f} \longrightarrow \mathrm{X} \rightarrow \stackrel{\mathrm{P}}{\longrightarrow} \mathrm{BG}(2)$ over M $S^{1} \ldots \cdots M^{\prime} \longrightarrow f^{*} \mathbf{P}$
has total space M^{\prime} an $(n+1)$-dimensional geometric Poincaré complex with orientation map $w\left(M^{\prime}\right)=f^{\prime *} W^{\prime} \xi$ and fundamental class $\left[M^{\prime}\right]=p^{!}[M] \in H_{n+1}\left(M^{\prime}, w^{\prime} \xi\right) \quad\left([M] \in H_{n}(M, w)\right)$. The n-dimensional pseudosymmetric Poincaré complex over $\mathbb{Z}\left[\pi^{W}\right.$

$$
\sigma^{*}(M, p)=\left(\varphi\left(\hat{M}, f^{*} p\right), \phi_{M, f{ }^{*} p}([M]) \in Q_{\Pi, w}^{n}\left(\supsetneq\left(\hat{M}, f^{\star} p\right)\right)\right)
$$

has projection the n-dimensional symmetric Poincaré complex over $\mathbb{Z}\left[\pi^{W}\right]$

$$
P_{!} \sigma^{*}(M, p)=\sigma^{*}(M)=\left(C(\tilde{M}), \phi_{\widetilde{M}}([M]) \in Q_{\pi, w}^{n}(C(\tilde{M}))\right)
$$

and induction the $(n+1)$-dimensional symmetric Poincaré comp over $\mathbb{Z}\left[\pi^{\prime} w^{\prime \xi}\right]$

$$
p^{!} \sigma^{*}(M, p)=\sigma^{*}\left(M^{\prime}\right)=\left(C\left(\widetilde{M}^{\prime}\right), \phi_{\widetilde{M}^{\prime}}\left(\left[M^{\prime}\right]\right) \in Q_{\pi^{\prime}, w^{\prime}}^{n+1} \xi\left(C\left(\tilde{M}^{\prime}\right)\right)\right)
$$

The pseudosymmetric signature map

$$
\left.\sigma_{\hat{p}}^{\star}: \Omega_{n}^{P}(x, w) \longrightarrow L^{n}\left(\not Z_{1} \mid \Pi^{W}\right]\right):(f: M \longrightarrow x) \longmapsto \sigma^{*}(M, p)
$$

fits into a commutative diagram

$$
\begin{aligned}
& \Omega_{n+1}^{P}\left(x^{\prime}, w^{\prime} \xi\right) \xrightarrow{a^{*}} L^{n+1}\left(Z\left[\pi, w^{\prime, \xi}\right)\right. \\
& \underset{\Omega_{n}^{P}(x, w) \longrightarrow L^{n}\left(\mathbb{Z}\left|n^{w}\right|\right)}{\sigma_{p}^{*}}
\end{aligned}
$$

with

$$
p^{!}: \Omega_{n}^{P}(X, w) \longrightarrow \Omega_{n+1}^{P}\left(X^{\prime}, w^{\prime} \xi\right) ;(f: M \longrightarrow X) \longmapsto\left(f^{\prime}: M \cdot\right.
$$

The pullback of a formally n-dimensional normal map $(f, b): M \longrightarrow X$ along an S^{1}-fibration $p: X \rightarrow B(2)$ is a formally $(n+1)$-dimensional normal map $\left(f^{\prime}, b^{\prime}\right): M^{\prime} \longrightarrow X^{\prime}$. The Umkehr $\mathbb{Z}[\pi]$-module chain map of f

$$
\mathrm{f}^{!}: c(\tilde{\mathrm{X}})^{n-\star, w} \xrightarrow{\tilde{\mathrm{f}}^{\star}} c(\tilde{M})^{n-*, w} \xrightarrow{[M] \underline{n}^{-}} c(\tilde{M})
$$

is the projection of the Umkehr pseudo chain map and the Umkehr $\mathbb{Z}[\pi$ ']-module chain map of f,

$$
f^{\prime!}: C\left(\tilde{X}^{\prime}\right)^{n+1-*}, w^{\prime} \xrightarrow{\tilde{f}^{\prime *}} C\left(\tilde{M}^{\prime}\right)^{n+1-*, w} \xrightarrow{\left[M^{\prime}\right] n-} C\left(\tilde{M}^{\prime}\right)
$$

is the induction of $\mathcal{F}!$. The quadratic kernel of (f, b) is the formally n-dimensional quadratic complex over $\mathbb{Z}\left[\pi^{W}\right]$

$$
a_{*}(f, b)=\left(C\left(f^{!}\right), \psi_{F}([x]) \in Q_{n}^{\pi, w}\left(C\left(f^{!}\right)\right)\right)
$$

with $\psi_{F}: H_{n}(X, w) \longrightarrow Q_{n}^{\pi, w}\left(C\left(f^{\prime}\right)\right)$ the spectral quadratic construction on a geometric Umkehr semi-stable π-map $F: T \pi\left(\nu_{X}\right) \bullet \longrightarrow \Sigma^{\infty} \tilde{M}_{+}$ inducing f !. The quadratic kernel of (f ', b^{\prime}) is the formally $(n+1)$-dimensional quadratic complex over $\mathbb{Z}\left[\pi,^{, w^{\xi}}\right]$

$$
\left.\sigma_{\star}\left(f^{\prime}, b^{\prime}\right)=\left(C(f,!), \psi_{F},\left(1 X^{\prime}\right]\right) \in Q_{n+1}^{\pi^{\prime}, w^{\prime \xi}}\left(C\left(f^{\prime},\right)\right)\right)
$$

with $\psi_{F^{\prime}}: H_{n+1}\left(X^{\prime}, w^{\prime} E\right) \longrightarrow Q_{n+1}^{\pi^{\prime}, w^{\prime \xi}}\left(C\left(f^{\prime \prime}\right)\right)$ the spectral quadratic construction on a geometric Umkehr semi-stable $\pi^{\prime-}$-map $F^{\prime}: T \pi^{\prime}\left(v_{X},\right)^{*} \longrightarrow \Sigma^{\infty} \widetilde{M}_{+}^{\prime}$ inducing $f^{\prime!}$, with $v_{X^{\prime}}=p^{*}\left(v_{X} \oplus \omega\right)$ (involving the orientation line bundle $\omega=w_{1}(p): x \longrightarrow B G(1)$ of $p: X \longrightarrow B G(2))$. The definition of $\{(\tilde{x}, p)$ also extends to the quadratic construction:

Proposition 7.8.10 There is defined a natural transformation of abelian aroups, the spectral pseudoquadratic construction

$$
\psi_{F, p}: H_{n}(X, w) \longrightarrow Q_{n}^{\Pi, w}\left(C\left(F^{!}\right)\right)
$$

with symmetrization

$$
\begin{aligned}
(1+T) \psi_{F, p}= & \varepsilon^{\ell} \phi_{\widetilde{M}} \cdot, p^{f^{!}}: H_{n}(x, w) \longrightarrow \\
& Q_{\Pi, w}^{n}\left(C\left(\mathcal{F}^{!}\right)\right) \\
& \left(\varepsilon=\text { projection }: \tau(\widetilde{M}, f * \underline{D}) \longrightarrow C\left(\mathcal{F}^{!}\right)\right),
\end{aligned}
$$

and such that there is defined a commutative diagram

The pseudoquadratic kernel of $((f, b), F)$ is the formally n-dimensional pseudoquadratic complex over $\mathbb{Z}\left[\Pi^{W}\right]$

$$
\sigma_{\star}^{P}(f, b)=\left(C\left(F^{!}\right), \psi_{F, P}([x]) \in \mathbb{Q}_{n}^{\Pi, w}\left(C\left(F^{!}\right)\right)\right)
$$

with projection the quadratic kernel of (f,b)

$$
p_{!} \sigma_{\star}^{P}(f, b)=\sigma_{\star}(f, b)
$$

and induction the quadratic kernel of (f', b^{\prime})

$$
p^{!} \sigma_{\star}^{p}(f, b)=\sigma_{\star}\left(f^{\prime}, b^{\prime}\right)
$$

If $(f, b): M \longrightarrow X$ is a genuine normal map, that is if X is an n-dimensional geometric Poincaré complex, then $\sigma_{\star}{ }_{\star}(f, b)$ is an n-dimensional pseudoquadratic Poincaré complex over $Z\left[\pi^{W}\right]$ with cobordism class

$$
\sigma_{\star}^{\mathrm{p}}(f, b)=\sigma_{\star}(f, b) \in L_{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right)=L_{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right) .
$$

(Moreover, in this case the spectral pseudoquadratic construction is a composite
$\psi_{F, p}: H_{n}(X, w) \xrightarrow{\psi_{F, p}} Q_{n}^{\pi, w}(\mathcal{L}(\tilde{M}, f * p)) \xrightarrow{\varepsilon_{q}} Q_{n}^{\pi, w^{*}}\left(C\left(\mathcal{F}^{!}\right)\right)$.

Let (X, Y) be a connected codimension 2 CW pair with $\pi_{1}(X)=\pi_{1}(Y)$, and let Φ be the pushout square of fundamental groups

Denote the universal data of $\xi_{1}: Y \longrightarrow B G(2)$

$$
\begin{aligned}
&\left(\pi_{1}\left(S^{1}\right) \longrightarrow \pi_{1}(S(\xi)) \longrightarrow \pi_{1}(Y) \longrightarrow\right.\{1\}, \\
&\left.w_{1}(\xi): \pi_{1}(Y) \longrightarrow \mathbb{Z}_{2}\right)
\end{aligned}
$$

by $\left\{\pi: \mathbb{Z} \longrightarrow \pi^{\prime} \xrightarrow{p} \pi \longrightarrow\{1\}, \omega: \pi \longrightarrow \longrightarrow \mathbb{Z}_{2}\right)$, and write the orientation map of X as

$$
w(x)=w: \pi_{1}(x)=\pi \longrightarrow \mathbb{Z}_{2}
$$

so that the other orientation maps are given by

$$
\begin{gathered}
w(Y)=w^{\xi}: \pi_{1}(Y)=\pi \longrightarrow \mathbb{Z}_{2}, \\
w(Z)=w(S(\zeta))=w^{\prime}: \pi_{1}(Z)=\pi_{1}(S(\zeta))=\pi^{\prime} \longrightarrow \mathbb{Z}_{2} .
\end{gathered}
$$

By Proposition $\left\{\begin{array}{l}7.2 .1 \text { ii) } \\ 7.8 .1 \text { iv) }\end{array}\right.$ the $\left\{\begin{array}{l}\text { LS- } \\ \Gamma S-\end{array}\right.$ groups of (X, Y)
$\left\{\begin{array}{l}L S_{\star}(\phi)=L N_{\star}(\pi \cdots \pi, w) \\ \Gamma S_{\star}(\phi)=\Gamma N_{\star}\left(\pi^{\prime} \longrightarrow \pi, w\right)\end{array}\right.$ fit into the exact sequence
$\left\{\begin{aligned} &\left.\cdots \rightarrow L_{n+1}\left(\mathbb{Z} \mid \pi^{w}\right]\right) \longrightarrow L_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right) \\ &\left.L_{n}\left(, \xi^{\prime}: \mathbb{Z} \mid \pi^{w}\right] \longrightarrow \mathbb{Z}^{\prime} w^{\prime} 1\right) \longrightarrow L_{n}\left(\mathbb{Z} \mid \pi^{w} 1\right) \longrightarrow \ldots\end{aligned}\right.$

By Proposition $\left\{\begin{array}{l}7.5 .1 \text { ii) } \\ 7.8 .6\end{array}\right.$ the codimension $2\left\{\begin{array}{l}- \\ \text { weak }\end{array}\right.$ splitting obstruction group $\left\{\begin{array}{l}L_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right) \\ \Gamma N_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right)\end{array}(n \geqslant 2)\right.$ is the cobordism group of contractible $\left\{\begin{array}{l}- \\ \text { weak }\end{array}\right.$-dimensional quadratic Poincaré splittings over Φ, i.e. of pairs $\left(\left(C, \psi \in Q_{n-2}^{\pi, w^{\xi}}(C)\right),\left(f: \partial \xi^{!} C \longrightarrow D,\left(\delta \psi, \delta \xi^{!} \psi\right) \in Q_{n}^{\left.\left.\pi ', w^{\prime}(f)\right)\right)}\right.\right.$ consisting of an ($n-2$)-dimensional quadratic Poincaré complex (C, ψ) over $\mathbb{Z}\left[\pi^{w^{5}}\right]$ and a $\left\{\begin{array}{l}- \\ \text { weak }\end{array}\right.$-dimensional quadratic Poincaré pair $\left(f: \partial \xi^{\prime} \mathrm{C} \longrightarrow \mathrm{D}_{\mathrm{C}}\left(\delta \psi, \partial \xi^{\prime} \psi\right)\right)$ over $\mathbb{Z}\left[\pi^{\prime} \boldsymbol{W}^{\prime}\right]$ such that the $\mathbb{Z}!\pi!$-module chain map
is a (simple) chain equivalence, where i is the $\mathbb{Z}[\pi]$-module chain map appearing in the n-dimensional quadratic poincaré pair over $\mathbb{Z}\left[\pi^{W}\right]$

We now have to give an algebraic definition of $\xi^{!}(C, \psi)$.

Proposition 7.8.11 The transfer maps in quadratic $L-t h e o r y$ associated to a codimension 2 CW pair (X, Y) with $\pi_{1}(X)=\pi_{1}(Y)=\pi$, $\pi_{1}(Z)=\pi_{1}(S(\xi))=\pi^{\prime}, w(X)=w: \pi \longrightarrow \mathbb{Z}_{2}$ are given algebraically by

$$
\begin{aligned}
\xi^{!}: & \left.\left.L_{n}!\mathbb{Z} \mid \pi^{w^{\xi}}\right)\right) \longrightarrow L_{n+2}\left(p: \mathbb{Z}\left[\pi^{\prime w^{\prime}}\right] \longrightarrow \mathbb{Z}\left[\pi^{w}\right]\right) ; \\
& (C, \psi) \longmapsto\left(\left(C^{!}, \psi^{!}\right),\left(i: \mathbb{Z}[\pi] \mathbb{Q}_{\mathbb{Z}}\left[\pi^{\prime}\right]^{C^{!}} \longrightarrow C,\left(0,1 \otimes \psi^{!}\right)\right)\right) \quad(n \geqslant 0 \mid
\end{aligned}
$$

with $\left(C, \psi \in Q_{n}^{\pi, w^{\xi}}(C)\right)$ the projection of an n-dimensional pseudoquadratic poincaré complex (e, ($\left.\psi^{\prime}, x^{\prime}\right) \in Q_{n}^{\Pi, w^{\xi}}(\underline{L})$) over $\mathbb{Z}\left[\pi^{w^{\varepsilon}}\right.$) and $\left(i: \mathbb{Z}[\pi] \otimes_{\mathbb{Z}\left[\pi^{\prime}\right]^{\prime}} C^{!} C,\left(0,1 \otimes \psi^{1}\right) \in Q_{n+2}^{\pi, w}(i)\right)$ the $(n+2)$-dimensional quadratic Poincaré pair over $\mathbb{Z}\left[\pi^{w}\right]$ with

$$
i=(10):\left(\mathbb{Z}[\pi] \otimes_{\mathbb{Z}\left[\pi^{\prime}\right]} C^{!}\right)_{r}=C_{r} \oplus \alpha C_{r-1} \longrightarrow C_{r}
$$

Proof: Immediate from the pseudoquadratic kernel construction.

Continuing with the previous terminology define an antistructure (B, t) on $\mathbb{Z}\left[\pi^{\prime}\right]$ by
$B: \mathbb{Z}\left[\pi^{\prime}\right] \longrightarrow \mathbb{Z}\left[\pi^{\prime}\right]$;
so that there is defined a morphism of rings with antistructure

$$
p:\left(\mathbb{Z}\left[\pi^{\prime}\right], B, t\right) \longrightarrow\left(\mathbb{Z}[\pi], w^{\xi}, 1\right) .
$$

In the oriented case $w_{1}(\xi)=\omega=+1$ the unit $t \in \mathbb{Z}\left[\pi^{\prime}\right]$ is central and $\left.\beta: \mathbb{Z}\left[\pi^{\prime}\right] \longrightarrow \mathbb{Z} \mid \pi^{\prime}\right]$ is the w^{\prime}-twisted involution.

Assume now that the underlying codimension 2 CW pair (X, Y) is a formally ($n, n-2$) -dimensional normal pair (in the sense of $\$ 7.5$) and that there is given a formally ($n, n-2$)-dimensional topological normal map

$$
(E, b):(M, N) \longrightarrow(X, Y) \text {, }
$$

denoting the restriction normal maps by

$$
\begin{gathered}
(f, b) \mid=(a, c): N=f^{-1}(Y) \longrightarrow Y \\
(f, b) \mid=(h, d):(P, S(v))=f^{-1}(Z, s(\xi)) \longrightarrow(Z, S(\xi)),
\end{gathered}
$$

with

According to Proposition 7.5.4 ambient surgery on (g, c) inside (f,b) has the algebraic effect of surgery on the (pseudo) quadratic kernel pair $\left(\sigma_{*}^{P}(g, C), \sigma_{*}(h, d)\right)$ preserving the union $\xi^{!} \sigma_{\star}^{p}(g, c) \cup p \sigma_{\star}(h, d)=\sigma_{\star}(f, b)$. We shall now associate to the pair $\left(\sigma_{\star}^{P}(g, c), \sigma_{\star}(h, d)\right)$ a formally $(n-2)$-dimensional (β, t)-quadratic complex over $\mathbb{Z}\left[\pi^{\prime}\right] \sigma_{\star}^{\prime}(f, b)$ such that surgery on the pair determines surgery on the complex, and such that if $f: M \longrightarrow X$ is an s-triangulation algebraic surgery determines geometric surgery, generalizing the treatment of codimension 2 surgery due to Matsumoto (1] and Freedman [1].

The pair $\left(\sigma_{\star}^{p}(g, c), \sigma_{\star}(h, d)\right)$ consists of a formally $(n-2)$-dimensional pseudoquadratic complex over $\mathbb{Z}\left[\Pi^{w^{\xi}}\right]$ which we shall write as

$$
{ }_{o}^{p}(g, c)=\left(C\left(G^{\prime}\right), \psi_{G, p}([Y])\right)=\left(\varphi=\left(c^{\prime}, d^{\prime}, e^{\prime}\right),\left(\psi^{\prime}, x^{\prime}\right) \in Q_{n-2}^{\pi, w^{\xi}}(\varphi)\right)
$$

and a formally n-dimensional quadratic pair over $\left.\mathbb{Z} \mid \pi^{\prime \prime}\right)$ which we shall write as

$$
\begin{aligned}
\sigma_{\star}(h, d) & =\left\{f_{O}: C\left(g^{!}\right) \longrightarrow C\left(h^{!}\right), \psi_{H}(|P|)\right\} \\
& =\left(f_{O}: C^{!} \longrightarrow \alpha^{\prime} S D^{\prime},\left(\delta \psi^{\prime}, \psi^{!}\right) \in Q_{n}^{\pi^{\prime}, w^{\prime}}\left(f_{O}\right)\right)
\end{aligned}
$$

with

$$
f_{O}=\left(\alpha^{\prime} k \alpha^{\prime} j\right):\left(C^{\prime}\right)_{r}=C_{r}^{\prime \oplus \alpha^{\prime} C_{r-1}^{\prime} \longrightarrow a^{\prime} D_{r-1}^{\prime} ~ . ~}
$$

Define an untwisted pseudo chain complex over $\mathbb{Z}[\pi]$

$$
D=\left(D^{\prime}, 0\right),
$$

and note that j, k define a pseudo chain map

$$
y=(j, k): \eta \rightarrow \infty
$$

As D is untwisted the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain complex $\left(\operatorname{Hom}_{\Pi}\left(D^{*}, w\right.\right.$ is the algebraic mapping cone of the $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module chain map $1-t:\left(\operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(\alpha^{\prime} D^{\prime *},^{\prime}, \alpha^{\prime} D^{\prime}\right), T_{-1}\right) \longrightarrow\left(\operatorname{Hom}_{\mathbb{Z}\left[\pi^{\prime}\right]}\left(D^{\prime *}, \beta, D^{\prime}\right.\right.$ and I induces a natural transformation of exact sequences of abelian groups

Define the antiquadratic kernel of $(f, b):(M, N) \longrightarrow(X, Y)$ to the formally $(n-2)$-dimensional (β, t)-quadratic complex over

$$
\begin{array}{r}
\sigma_{\star}^{\prime}(f, b)=\left(D^{\prime}, J_{q}^{\prime}\left(\delta \psi^{\prime},\left(\psi^{\prime}, x^{\prime}\right)\right) \in Q_{n-2}^{\pi^{\prime}, \beta}\left(D^{\prime}, t\right)\right) \\
\left(D^{\prime}=\alpha^{\prime} \Omega C\left(h^{\prime}\right)\right) .
\end{array}
$$

Proposition 7.8.12 Given data

$$
\left(I I: \mathbb{Z} \longrightarrow \pi^{\prime} \xrightarrow{\mathrm{P}} \pi \longrightarrow\{1\}, \omega: \pi \longrightarrow \mathbb{Z}_{2}\right)
$$

and an orientation map $w: \pi \longrightarrow \mathbb{Z}_{2}$ there are defined natur isomorphisms of abelian groups

$$
\begin{aligned}
& L N_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right) \xrightarrow{\sim} L_{n-2}\left(2 Z\left[\pi^{\prime}\right]^{\beta}, t\right) ; \\
& \left(\sigma_{\star}^{P}(g, c), \sigma_{\star}(h, d)\right) \longmapsto \sigma_{\star}^{\prime}(f, b) \\
& \left.\Gamma N_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right) \xrightarrow{\sim} \Gamma_{n-2}\left(p: \mathbb{Z}\left[\pi^{\prime}\right]^{\beta} \longrightarrow \mathbb{Z} \mid \pi^{w^{\xi}}\right], t\right) \\
& \left(\sigma_{\star}^{p}(g, c), \sigma_{\star}(h, d)\right) \longmapsto \sigma_{\star}^{\prime}(f, b)
\end{aligned}
$$

$$
\begin{aligned}
&\left(C^{\prime}, \psi^{\prime} \in Q_{n-1}^{\pi \prime}, w^{\prime}\left(C^{\prime}\right)\right) \longmapsto\left(\alpha^{\prime} \Omega C^{\prime}, \bar{s}^{-1}(1-t) \psi^{\prime} \in Q_{n-3}^{\pi^{\prime}, \beta}\left(\alpha^{\prime} \Omega\right.\right. \\
&\left(H_{\star}\left(\mathbb{Z}[\pi] \alpha_{\mathbb{Z}}\left[\pi^{\prime}\right]^{\prime}\right)=0\right)
\end{aligned}
$$

which fit together to define a natural isomorphism of exact sequences

Proof: Given an ($n-2$)-dimensional (B, t)-quadratic
$\left\{\begin{array}{l}\text { Poincaré } \\ \mathbb{Z}[\pi\} \text {-Poincaré }\end{array}\right.$ complex over $\mathbb{Z}\left[\pi^{\prime}\right] \quad\left(D^{\prime}, \psi^{\prime} \in Q_{n^{\prime}-2^{\prime}}^{\beta^{\prime}}\left(D^{\prime}, t\right)\right)$
define an $(n-2)$-dimensional pseudoquadratic complex over $\mathbb{Z}\left[\Pi^{w^{\xi}}\right]$ $\left(D=\left(D^{\prime}, 0\right),\left(\psi^{\prime}, 0\right) \in Q_{n}^{\Pi, w^{\xi}}(D)\right)$ with projection $\mathbb{Z}[\pi] \mathbb{X}_{\mathbb{Z}}\left[\pi^{\prime}\right]^{\left(D^{\prime}, \psi^{\prime}\right)=(D, \psi), ~(D)}$
and define also an n-dimensional quadratic $\left\{\begin{array}{l}\text { Poincaré } \\ \mathbb{Z}[\pi] \text {-Poincaré }\end{array}\right.$ pair over $\mathbb{Z}\left[\pi^{\prime \prime} w^{\prime}\right]\left(f_{O}: D^{\prime} \longrightarrow \alpha^{\prime} S D^{\prime},\left(O, \psi^{\prime}\right) \in Q_{n}^{\pi^{\prime}, w^{\prime}}\left(f_{0}\right)\right)$ with
such that $\binom{i}{p, f_{0}}: \mathbb{Z}[\pi] \mathbb{Q}_{\mathbb{Z}\left[\pi^{\prime}\right]^{D^{\prime}}} \longrightarrow D \oplus \mathbb{Z}[\pi] \mathbb{Q}_{\mathbb{Z}\left[\pi^{\prime}\right]^{\alpha}}{ }^{\prime} D^{\prime}$ is a simple $\mathbb{Z}|\pi|$-module chain equivalence (the identity in fact). The corresponding abelian group morphisms
are the isomorphisms inverse to the morphisms defined above.
Given a $\mathbb{Z}[\pi]$-acyclic ($n-2$)-dimensional (β, t)-quadratic Poincaré complex over $\mathbb{Z}\left[\pi^{\prime}\right]\left\{D^{\prime}, \psi^{\prime} \in Q_{n-2}^{\pi^{\prime}, B}\left(D^{\prime}, t\right)\right)$ we have that the $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain map $1-t: \alpha^{\prime} D^{\prime} \longrightarrow D^{\prime}$ is a chain equivalence, by Proposition 7.8.7 iii), so that there is induced an isomorphism

$$
1-t: Q_{n-2}^{\pi^{\prime}, w^{\prime}}\left(\alpha^{\prime} D^{\prime},-1\right) \longrightarrow Q_{n-2}^{\pi^{\prime}, \beta}\left(D^{\prime}, t\right)
$$

and $\left(\alpha^{\prime} S D^{\prime}, \bar{S}(1-t)^{-1} \psi^{\prime} \in Q_{n}^{\pi^{\prime \prime}, w^{\prime}}\left(\alpha^{\prime} S D^{\prime}\right)\right)$ is a $\mathbb{Z}[\pi]-a c y c l i c$ n-dimensional quadratic Poincaré complex over $\pi\left[\pi^{\prime}{ }^{\prime \prime}\right]$.

The corresponding abelian group morphisms

$$
\Gamma_{n-1}\left(\theta^{B}, t\right) \longrightarrow \Gamma_{n+1}\left(0^{w^{\prime}}\right) ;\left(D^{\prime}, \psi^{\prime}\right) \longrightarrow \longrightarrow\left(\alpha^{\prime} S D^{\prime}, \bar{S}(1-t)^{-1} \psi^{\prime}\right)
$$

are the isomorphisms inverse to the morphisms defined above.

$$
\text { If }(X, Y) \text { is a }\left\{\begin{array}{l}
- \\
\text { weak }
\end{array}(n, n-2)\right. \text {-dimensional geometric Poincaré }
$$

pair (such that $\left.\pi_{1}(X)=\pi_{1}(Y)=\pi_{1}, \pi_{1}(S(\xi))=\pi_{1}(Z)=\pi^{\prime}, w(X)=w\right)$ and $(f, b):(M, N) \longrightarrow(X, Y)$ is an $(n, n-2)$-dimensional topological normal map such that $(f, b): M \longrightarrow X$ is an s-triangulation of X the antiquadratic kernel $\sigma_{\star}^{\prime}(f, b)$ is an ($n-2$)-dimensional $\left(B^{\xi}, t\right)$-quadratic $\left\{\begin{array}{l}\text { Poincaré } \\ \mathbb{Z}[\pi] \text {-Poincaré }\end{array}\right.$ complex over $\mathbb{Z}\left[\pi^{\prime}\right]$. Proposition 7.8.13 The $\left\{\begin{array}{l}- \\ \text { weak }\end{array}\right.$ splitting obstruction of f along $Y \subset X$ is given by

$$
\left\{\begin{aligned}
& s(f, Y)=\sigma_{\star}^{\prime}(f, b) \in L N_{n-2}\left(\pi^{\prime}\right.\longrightarrow \pi, w)=L_{n-2}\left(\mathbb{Z}\left[\pi^{\prime}\right]^{\beta}, t\right) \\
& w s(f, Y)=\sigma_{\star}^{\prime}(f, b) \in \Gamma N_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right) \\
&=\Gamma_{n-2}\left(p: \mathbb{Z} \mid \pi^{\prime}\right]^{\beta} \longrightarrow \mathbb{Z}\left[\pi^{w^{\xi}} 1, t\right) .
\end{aligned}\right.
$$

Proof: Immediate from Proposition 7.8.12.

Matsumoto [1] and Freedman [1] (independently) analyzed

 ambient surgery on codimension 2 submanifolds in terms of a geometrically defined t-quadratic form analogous to the self-intersection form of wall $[4, \$ 5]$ and the equivariant self-intersection form needed for codimension 1 surgery (cf. \$7.6). The antiquadratic kernel $\sigma_{\star}^{\prime}(f, b)$ is nvidently a homological version of this t-quadratic form.If (M, \ddot{u}) is an n-dimensional manifold with boundary an $U \subset \partial M$ is a codimension O submanifold (which may be empty) of the boundary such that (M, U) is an $(n-2)-d i m e n s i o n a l$ geometri Poincaré pair, and such that there is given a codimension 2 spine $K \subset U$, then the obstruction $\sigma_{*}(M, K) \in P_{n-2}(\pi, w)$ obtained by Matsumoto [1] (in the oriented case $\omega=w=+1$) for the existence of a codimension 2 spine $(N, K) \subset(M, U)$ is the relo weak splitting obstruction along the zero section $M \subset E(\xi)$ of an $s^{\pi[\pi]}$-triangulation (defined as in Proposition 7.5.4)

$$
(f, b):(M ; U, X ; \ni U) \longrightarrow\left(E(\varepsilon) ; E\left(\left.\varepsilon\right|_{U}\right), S(\varepsilon) ; S\left(\varepsilon,\left.\right|_{U}\right)\right) \quad(X=\overline{\partial M}
$$ topologically transverse at the zero section $(M, U) \subset(E(\xi), E(\xi$ with $\mathrm{f}^{-1}(\mathrm{U})=\mathrm{KCU}$

$$
\sigma_{*}(M, K)=W S_{\partial}(f, M)=\sigma_{*}^{\prime}(f, b)
$$

$$
\epsilon P_{n-2}(\Pi, w)=\Gamma_{n-2}\left(\pi^{\prime} \longrightarrow \pi, w\right)=\Gamma_{n-2}\left(p: \mathbb{Z}\left[\pi^{\prime}\right]^{\beta} \longrightarrow \mathbb{Z}\left[\pi^{w^{\xi}}\right]\right.
$$

with $\xi: M \longrightarrow B G(2)$ an s^{l}-fibration over M extending $v_{K} \subset U: K \longrightarrow B G(2), \pi=\pi_{1}(M), \pi^{\prime}=\pi_{1}(S(\xi)), w=w(M, \partial M)$. The obstruction to the existence of a codimension 2 spine obtained by Cappell and Shaneson [2] is the relative $\left(\mathbb{Z}\left[\pi^{\prime}\right], \mathbb{Z}[\pi]\right)$-homology surgery obstruction of the n-dimensiona topological normal map of triads

$$
\begin{aligned}
(h, d)=(f, b) \mid & :(P ; S(v), X ; \lambda U) \\
& \left(S(\xi) \times I ; S(\xi) \times 0, S(\xi) \times 1 ; S\left(\left.\xi\right|_{U}\right) \times I\right)
\end{aligned}
$$

with $v=v_{N} \subset M: N=f^{-1}(M) \longrightarrow B G(2), P=\overline{M \backslash E(V)}$, which is the image $\sigma_{\star}(h, d) E \Gamma_{n}\left(\theta^{w^{\prime}}\right)$ under the canonical map of $w S_{j}(f, M) \in \Gamma N_{n-2}\left(\pi^{\prime} \longrightarrow \ldots \pi, w\right)$. By Proposition 7.7.3 ii) this
obstruction is the reld quadratic signature of the $s^{\mathbb{Z}[\pi]}$-triangulation

$$
\left(a_{+} f, a_{+} b\right)=(f, b) \mid:(x, \partial U) \longrightarrow\left(S(\xi), S\left(\left.\xi\right|_{U}\right)\right)
$$

that is

$$
\sigma_{\star}(h, d)=\sigma_{\star}\left(\partial_{+} f, \hat{o}_{+} b\right) \in \Gamma_{n}\left(\theta^{w^{\prime}}\right) .
$$

We shall now consider the codimension 2 surgery obstru theor" in the case when the normal S^{l}-fibration admits a sec e.a. if it is trivial (the situation arising in knot theory) We shall develop non-simply-connected analogues of various k invariants, which will be related to their origins in knot t in 57.9 below. For example, the above expression for $\sigma_{*}(h, d)$ a generalization of the expression of the knot cobordism cla of a (high-dimensional) knot in terms of the Blanchfield pairing in the homology groups of the knot complement.

Let then (X, Y) be a codimension 2 CW pair such that $\xi=\omega \oplus \varepsilon: Y \longrightarrow B G(2)$
for some line bundle $w: Y \longrightarrow B G(1)$, and such that

$$
\pi_{1}(X)=\pi_{1}(Y)=\pi,
$$

ONLY

in which case $\pi_{1}(Z)=\pi_{1}(S(\xi))=\pi^{\prime}$ is the semidirect produc of π and \mathbb{Z} determined by the orientation map $\omega: \pi \longrightarrow$ Aut (\mathbb{Z})

with $\pi^{\prime}=\left\{g t^{j} \mid g \in \pi, j \in \mathbb{Z}\right\}$ as a set and

$$
\left(q t^{j}\right)\left(h t^{k}\right)=(g h) t^{\omega(h) j+k} \in \pi^{\prime} \quad(g, h \in \pi, j, k \in \mathbb{Z})
$$

$$
p\left(q t^{j}\right)=q \in \pi
$$

(If ω is trivial $\pi^{\prime}=\pi \times \mathbb{Z}$). Denote the orientation map of X

$$
\mathrm{w}(\mathrm{x})=\mathrm{w}: \pi \longrightarrow \mathbb{Z}_{2},
$$

so that

$$
\begin{aligned}
& w(Y)=w^{\xi}: \pi \longrightarrow \mathbb{Z}_{2} ; g \longmapsto w(g) w(g) \\
& w(Z)=w^{\prime}: \pi \longrightarrow \longrightarrow \mathbb{Z}_{2} ; g t^{j} \longmapsto w(g) .
\end{aligned}
$$

A mild generalization of the splitting theorem of Shaneson [1] (the trivial case $\omega=+1$) identifies

$$
L_{n}\left(\mathbb{Z}\left[\pi^{\prime} w^{\prime}\right]\right)=L_{n}\left(\mathbb{Z}\left[\pi^{w}\right]\right) \oplus L_{n-1}^{h}\left(\mathbb{Z}\left[\pi^{w}\right]\right),
$$

so that the transfer map in quadratic L-theory associated to (X, Y)

$$
\left.\left.\xi^{!}: L_{n}\left(\mathbb{Z} \mid \pi^{w^{\xi}}\right]\right) \longrightarrow L_{n+2}\left(p: \mathbb{Z}\left[\pi^{\prime} w^{\prime}\right] \longrightarrow \mathbb{Z}\left[\pi^{w}\right]\right)=L_{n}^{h}\left(\mathbb{Z} \mid \pi^{w^{\xi}}\right]\right)
$$

is just the forgetful map appearing in the Rothenberg exact sequence. The resulting identification

$$
\mathrm{LN}_{n}\left(\pi^{\prime} \longrightarrow \pi, w\right)=\hat{\mathrm{H}}^{\mathrm{n}+1}\left(\mathbb{Z}_{2} ; \operatorname{Wh}(\pi)^{w^{\xi}}\right)
$$

was first obtained by Wall [4, Prop.13A.10] (for $\omega=+1$).
It now follows from the exact sequence given by proposition 7.8.1 i)

$$
\begin{aligned}
& \cdots \longrightarrow \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; W h(\pi)^{w^{\xi}}\right) \longrightarrow \Gamma N_{n}\left(\pi^{\prime} \longrightarrow \pi, w\right)
\end{aligned}
$$

that $\Gamma N_{n}\left(\pi^{\prime} \longrightarrow \pi, w\right)$ can be identified with the cobordism group of $\mathbb{Z}|\pi|$-acyclic $(n+1)$-dimensional quadratic Poincaré complexes over $\mathbb{Z}\left[\pi^{\prime} w^{\prime}\right](C, \psi)$ such that C is based, $\tau\left(Z Z[\pi] \otimes_{\mathbb{Z}}\left[\pi^{\prime}\right]^{C}\right)=0 \in \operatorname{Wh}(\pi), \tau\left((1+T) \psi_{O}: C^{n+1-*, W^{\prime}} \longrightarrow C\right)=0 \in \operatorname{Wh}\left(\pi{ }^{\prime}\right)$, and such that an invariant in the second whitehead group $\mathrm{Wh}_{2}(\pi)$ is 0 . We shall use this expression for $\left[N_{\star}\right.$ in $\$ 7.9$ below in the special case $\pi=\{1\}$ (when all the whitehead groups are 0) to describe the high-dimensional knot cobordism groups C_{\star} as the cobordism groups of \mathbb{Z}-acyclic alqebraic Poincaré complexes over $\mathbb{Z}[\mathbb{Z}]$,
generalizing Blanchfield duality. In $\$ 7.9$ there will also be given a description of C_{*} as the cobordism groups of "ultraquadratic" Poincaré complexes over \mathbb{Z}, generalizing the Seifert form, which motivates the following expression for $\Gamma N_{\star}(\pi \times \mathbb{Z} \longrightarrow \pi, w)$.

Let A be a ring with involution, and let C be a finite-dimensional A-module chain complex. The case $p=1$ of Proposition 1.1.3 gives the exact sequence

$$
\ldots \longrightarrow Q^{n+2}(S C, \varepsilon) \rightarrow H_{n}\left(\operatorname{Hom}_{A}(C *, C)\right) \xrightarrow{1+T{ }^{*}} Q^{n}(C, \varepsilon) \xrightarrow{S} Q^{n+1}(S C, \varepsilon) \longrightarrow \ldots
$$

with $\in \in A$ a central unit such that $\bar{\varepsilon}=\varepsilon^{-1} \in A$ and

$$
\begin{aligned}
1+T_{\epsilon} & : H_{n}\left(\operatorname{Hom}_{A}\left(C^{*}, C\right)\right) \longrightarrow Q^{n}(C, \varepsilon) ; \\
& \hat{\psi}
\end{aligned}
$$

The $\mathbb{Z}\left[\mathbb{Z}_{2}\right]$-module defined by the abelian group $H_{n}\left(\operatorname{Hom}_{A}\left(C^{*}, C\right)\right)$ with $T \in \mathbb{Z}_{2}$ acting by the ε-duality involution $T_{\varepsilon}: \hat{\psi} \longrightarrow(-) P_{\varepsilon} \hat{\psi}^{*}$ $\left(\hat{\psi} \in \operatorname{Hom}_{A}\left(C^{p}, C_{q}\right)\right)$ is denoted by $\hat{Q}_{n}(C, \epsilon)$. An element

$$
\hat{\psi} \in \hat{Q}_{n}(C, \varepsilon)=H_{n}\left(\operatorname{Hom}_{A}\left(C^{\star}, C\right)\right)
$$

is a chain homotopy class of A-module chain maps

$$
\hat{\psi}: c^{n-\star} \longrightarrow c .
$$

An n-dimensional E-ultraquadratic complex over $A(C, \psi)$ is an n-dimensional A-module chain complex C together with an element $\hat{\psi} \in \hat{Q}_{n}(C, E)$. Such a complex is Poincaré if

$$
\left(1+T_{\epsilon}\right) \hat{\psi}: C^{n-\star} \longrightarrow C
$$

is a chain homotopy class of chain equivalences. Similarly for pairs. Define the n-dimensional ε-ultraquadratic L-group of $A \hat{L}_{n}(A, \varepsilon)(n \geqslant 0)$ to be the cobordism aroup of n-dimensional
ε-ultraquadratic Poincaré complexes over A. The f-ultraquadrati version of the algebraic surgery of $\$ 1.5$ shows that the skew-suspension maps

$$
\bar{S}: \hat{L}_{n}(A, E) \longrightarrow \hat{L}_{n+2}(A,-\varepsilon) ;(C, \hat{\psi}) \longmapsto(S C, S \hat{\psi}) \quad(n \geqslant 0
$$

are isomorphisms, just as for the ε-quadratic L-groups $L_{*}(A, \varepsilon)$. There are defined forgetful maps

$$
\begin{aligned}
\hat{L}_{n}(A, \varepsilon) \longrightarrow & L_{n}(A, \varepsilon) ; \\
& \left(C, \hat{\psi} \in \hat{Q}_{n}(C, \epsilon)\right) \longmapsto\left(C, \psi \in Q_{n}(C, \varepsilon)\right)
\end{aligned}
$$

with $\psi_{O}=\hat{\psi}, \psi_{S}=0(s \geqslant 1)$.
An ε-ultraquadratic form over $A(M, \hat{\psi})$ is a f.g. projectiv A-module M together with an element $\hat{\psi} \in \operatorname{Hom}_{A}\left(M, M^{*}\right)$. Such a form is non-singular if the A-module morphism

is an isomorphism. A morphism (resp. isomorphism) of such forms

$$
\mathbf{f}:(M, \hat{\psi}) \longrightarrow\left(M^{\prime}, \hat{\psi}^{\prime}\right)
$$

is an A-module morphism (resp. isomorphism) fe $\operatorname{Hom}_{A}\left(M_{M} M^{\prime}\right)$ such that

$$
f^{\star} \hat{\psi}^{\prime} f=\hat{\psi} \in \operatorname{Hom}_{A}\left(M, M^{*}\right)
$$

A sublagrangian of an e-ultraquadratic form $(M, \hat{\psi})$ is a direct summand L of M such that the inclusion $j \in \operatorname{Hom}_{A}(L, M)$ defines a morphism

$$
j:(L, O) \longrightarrow(M, \hat{\psi})
$$

and such that $j^{\star}\left(\hat{\psi}+E \hat{\psi}^{\star}\right) \in \operatorname{Hom}_{A}\left(M, L^{\star}\right)$ is onto. A lagrangian is a sublagrangian for which

$$
L_{1}=\operatorname{ker}\left(j *\left(\hat{\psi}+\varepsilon \hat{\psi}^{\star}\right): M \rightarrow \cdots \rightarrow L^{*}\right) .
$$

An ε-ultraquadratic formation over $A(M, \hat{\psi} ; F, G)$ is a non-singula c-ultraquadratic form over A over $A(M, \hat{\psi})$ together with a
lagrangian F and a sublagrangian G. Such a formation is non-sinqular if G is a lagrangian. The ε-ultraquadratic versic of the theory of $\$ 1.6$ identifies the homotopy equivalence clas of $\left\{\begin{array}{l}\text { O-dimensional } \\ \text { connected 1-dimensional }\end{array} \in\right.$-Ultraquadratic (Poincaré) comple over A with the $\left\{\begin{array}{l}\text { isomorphism } \\ \text { stable isomorphism }\end{array}\right.$ classes of (non-singular) ε-ultraquadratic $\left\{\begin{array}{l}\text { forms } \\ \text { formations }\end{array}\right.$ over A, and also identifies

$$
\left\{\begin{array}{l}
\hat{L}_{0}(A, E) \\
\hat{L}_{1}(A, E)
\end{array}=\text { the witt group of non-singular } \varepsilon-u l t r a q u a d r a t i\right.
$$

$$
\left\{\begin{array}{l}
\text { forms } \\
\text { formations }
\end{array}\right. \text { over A. }
$$

The forgetful map $\left\{\begin{array}{l}\hat{\mathrm{L}}_{\mathrm{O}}(A, \varepsilon) \longrightarrow \mathrm{L}_{\mathrm{O}}(A, \varepsilon) \\ \hat{\mathrm{L}}_{1}(A, \varepsilon) \longrightarrow \mathrm{L}_{1}(A, \varepsilon)\end{array}\right.$ is $\left\{\begin{array}{l}\text { onto } \\ \text { one-one }\end{array}\right.$.
By analogy with the the intermediate ε-quadratic L-group $L_{\star}^{X}(A, E) \quad\left(X \subseteq \widetilde{K}_{m}(A), m=0,1\right)$ of $\$ 1.10$ there are defined intermed ε-ultraquadratic $L \rightarrow$ groups $\hat{\mathbf{L}}_{*}^{X}(A, E)$, with an exact sequence

$$
\begin{aligned}
& \ldots \longrightarrow \hat{H}^{n+1}\left(\mathbb{Z}_{2} ; Y / X\right) \longrightarrow \hat{L}_{n}^{X}(A, \varepsilon) \longrightarrow \hat{L}_{n}^{Y}(A, \varepsilon) \longrightarrow \hat{H}^{n}\left(Z_{2} ; Y / X\right) \\
& \longrightarrow \hat{L}_{n-1}^{X}(A, \varepsilon) \longrightarrow
\end{aligned}
$$

for $X \subseteq Y \subseteq \widetilde{K}_{m}(A)$.
For $\varepsilon=1 \in A$ the terminology is contracted in the usual fashion

$$
\begin{aligned}
& \hat{Q}_{n}(C, 1)=\hat{Q}_{n}(C), \hat{I}_{n}(A, l)=\hat{I}_{n}(A) \\
& \text { l-ultraquadratic }=\text { ultraquadratic. }
\end{aligned}
$$

In dealing with the ultraquadratic L -qroups in the topological
 now on $\left.\hat{L}_{\star}(\mathbb{Z} \mid \pi]\right)$ will denote these \hat{L}-groups.

Ultraquadratic complexes arise in topology by applying the unstable spectral quadratic construction of proposition 7.3.2 to a π-map $F: X \longrightarrow \sum Y$, to obtain a natural transformation

$$
\hat{\psi}_{F}: \dot{H}_{n+1}(X / \pi) \longrightarrow Q_{n}^{\{O, O]}(C(f))=\hat{Q}_{n}(C(f)) \quad(n \geqslant 0)
$$

with $C(f)$ the algebraic mapping cone of the induced $\mathbb{Z}[\pi]$-module chain map $f: \Omega \dot{C}(X) \longrightarrow \dot{C}(Y)$. We shall call $\hat{\psi}_{F}$ the ultraquadratic construction on F. If $X=\Sigma x_{O}$ is the suspension of a π-space x_{o} then $\hat{\psi}_{F}$ is the composite

$$
\hat{\psi}_{F}: \dot{H}_{n+1}(X / \pi)=\dot{H}_{n}\left(X_{0} / \pi\right) \xrightarrow{\psi_{F}} \hat{Q}_{n}(\dot{C}(Y)) \xrightarrow{\hat{e}_{q}} \hat{Q}_{n}(C(f))
$$

with ψ_{F} the unstable quadratic construction on $F: \Sigma X_{O} \longrightarrow \Sigma Y$ in the sense of SII. 1 and $e: \dot{C}(Y) \longrightarrow C(f)$ the inclusion.

For connected Y it is possible to construct ψ_{F} by means of the adjoint π-map $\operatorname{adj}(F): X_{0} \longrightarrow \Omega \Sigma Y$ and the approximation theorem

$$
\Omega \Sigma Y=\bigcup_{k \geqslant 1}\left(\prod_{k} Y\right) / \sim
$$

due to James [l], with

$$
\begin{aligned}
& \Psi_{F}: \dot{H}_{n}\left(X_{O} / \pi\right) \xrightarrow{\operatorname{adj}(F)_{*}} \dot{H}_{n}(\Omega \Sigma Y / \pi)=\bigoplus_{k=1}^{\bigoplus_{n}} \dot{H}_{n}\left(\wedge_{K} / \pi\right) \\
& \xrightarrow{\text { projection }} \dot{H}_{n}\left(Y \wedge \wedge_{\pi} Y\right)=\hat{Q}_{n}(\dot{C}(Y)) .
\end{aligned}
$$

Similarly for disconnected Y of the type $\left(Y^{\prime}\right)_{+}$for some space

 version of the James construction.

Let X be an n-dimensional geometric Poincaré complex with $\left(\pi_{l}(x), w(x)\right)=(\pi, w)$, and let $\mathbb{Z}[\pi]$ have the w-twisted involution. Given an $s^{\mathbb{Z}[\pi]}-t r i a n g u l a t i o n$

$$
(\mathrm{g}, \mathrm{c}): \mathrm{w} \longrightarrow \mathrm{X} \times \mathrm{S}^{1}
$$

topologically transverse at $X \times p t . \subset X \times S^{1}$ there is defined an n-dimensional topological normal map

$$
(f, b)=(g, c) \mid: M=g^{-1}(X \times p t .) \longrightarrow X .
$$

We shall call normal maps arising in this way ultranormal. The ultraquadratic kernel of (f, b) is the n-dimensional ultraquadratic Poincaré complex over $\mathbb{Z}|\pi|$

$$
\hat{\sigma}_{*}(f, b)=\left(C\left(f^{!}\right), \hat{\psi} \in \hat{Q}_{n}(C(f))\right)
$$

refining the quadratic kernel $\sigma_{*}(f, b)=\left(C\left(f^{1}\right), \psi \in Q_{n}\left(C\left(f^{\prime}\right)\right)\right)$, which is defined as follows. Let \tilde{x} be the universal cover of x, let \tilde{W} be the pullback of $\tilde{X} \times S^{1}$ along g, and let $\tilde{g}: \tilde{W} \longrightarrow \tilde{x} \times S^{1}$ be a π-equivariant homology equivalence covering g. The embedding $M \times D^{1}=g^{-1}\left(X \times D^{1}\right) \subset W$ lifts to a π-equivariant embedding $\tilde{M} \times D^{1} \subset \tilde{W}$, where $X \times D^{1} \subset X \times S^{1}$ is a normal D^{1}-bundle of $X \times p t . C X \times S^{1}$. Applying the Pontrjagin-Thom construction there is obtained a π-map

$$
H: \widetilde{W}_{+} \xrightarrow{\text { collapse }} \bar{W} / \bar{W}-\bar{M} \times D^{I}=\tilde{M} \times D^{1} / \bar{M} \times S^{0}=\Sigma \widetilde{M}_{+}
$$

inducing the $\mathbb{Z}[\pi]$-module chain map

$$
h=\left(O f^{1}\right): \Omega C(\tilde{W})=\Omega C\left(\tilde{X} \times S^{1}\right)=\Omega C(\tilde{X}) \oplus C(\tilde{X}) \ldots C(\tilde{M})
$$

Define a $\mathbb{Z}[\pi]$-module chain map

$$
e=\left(\begin{array}{ll}
0 & 1
\end{array}\right): C(h)=C(\tilde{x}) \oplus C\left(f^{!}\right) \longrightarrow C\left(f^{!}\right) .
$$

The composite

$$
H_{n+1}(w) \xrightarrow{\hat{\phi}_{H}} \hat{Q}_{n}(C(h)) \xrightarrow{\hat{e}_{8}} \hat{Q}_{n}\left(C\left(f^{!}\right)\right.
$$

sends the fundamental class $[W] \in H_{n+1}(W)$ to the element

$$
\hat{\psi}=e_{q} \hat{\psi}_{H}([W]) \in \hat{Q}_{n}\left(C\left(f^{!}\right)\right)
$$

appearing in $\hat{\sigma}_{\star}(f, b)$. The cobordism class

$$
\hat{\sigma}_{\star}(f, b) \in \hat{L}_{n}(\mathbb{Z}[\pi])
$$

is the ultraquadratic signature of (f,b).

Proposition 7.8.14 Given a (finitely presented) group π there are defined natural isomorphisms of abelian groups

$$
\begin{aligned}
\hat{L}_{n}(\mathbb{Z}[\pi]) \longrightarrow \Gamma_{n}(\pi \times \mathbb{Z} \longrightarrow & \sim \pi)=\Gamma_{n}(\mathbb{Z}[\pi \times \mathbb{Z}] \longrightarrow \mathbb{Z}[\pi], z) ; \\
(C, \hat{\psi}) \longmapsto & \longrightarrow\left(C\left[z, z^{-1}\right], \psi\right) \quad(n \geqslant 0)
\end{aligned}
$$

with $z=(1,1) \in \pi \times \mathbb{Z}, C\left[2, z^{-1}\right]=\mathbb{Z}\{\pi \times \mathbb{Z}\} \mathbb{Q}_{\mathbb{Z}|\pi|}^{C}$ and $\psi_{0}=\hat{\psi}, \psi_{S}=0(s \geqslant 1)$.

Proof: By the theory of Matsumoto [l] every element of $\Gamma N_{n}(\pi \times \pi \longrightarrow \pi)$ (at least for $\left.n \geqslant 5\right)$ is the obstruction $\sigma_{*}(M, K)$ to extending a codimension 2 spine $K \subset U$ to a codimension 2 spin $(N, K) \subset(M, U)$, for some $(n+2)$-dimensional manifold with boundary (M, ∂M) and codimension O submanifold $U \subset 3 M$, such that (M, U) is an n-dimensional geometric Poincaré pair with $\pi_{1}(M)=\pi$ and $H_{n}(M, U) \longrightarrow H_{n}(M, j M)=H^{2}(M) ;[M] \longmapsto$ O. The associated $s^{\mathbb{Z}\lceil\pi \mid}-t r i a n g u l a t i o n ~ o f ~ t r i a d s$

$$
(g, c):(M ; U, X ; J U) \longrightarrow\left(M \times D^{2} ; U \times D^{2}, M \times S^{1} ; U \times S^{1}\right) \quad(X=
$$

restricts to an n-dimensional ultranormal map of pairs

$$
(f, b)=(g, c) \mid:(N, K)=g^{-1}((M, U) \times p t .) \longrightarrow(M, u)
$$

such that $(J f, i h): K \longrightarrow U$ is an $s-t r i a n g u l a t i o n ~ o f ~ U . ~$ The ultraquadratic signature defines the inverse isomorphisms

$$
\begin{aligned}
& l_{n} N_{n}(\pi \times \mathbb{Z} \longrightarrow \pi) \longrightarrow \hat{L}_{n}(\mathbb{Z}[\pi]) ; \\
& \sigma_{\star}(M, K)=W s_{j}(g, M) \longmapsto \longrightarrow \hat{o}_{*}(f, b) \quad .
\end{aligned}
$$

Let $A\left[z, z^{-1}\right]$ be the ring of finite Laurent polynomials $\sum_{j=-\infty}^{\infty} a_{j} z^{j}\left(a_{j} \in A\right)$ in a central invertible indetermin ate z ove ring with involution A, extending the involution by $\bar{z}=z^{\mathbf{1}}$. The projection

$$
A\left[z, z^{-1}\right] \longrightarrow A: \sum_{j=-\infty}^{\infty} a_{j} z^{j} \longmapsto \sum_{j=-\infty}^{\infty} a_{j}
$$

is a morphism of rings with involution. Define the covering o an n-dimensional e-ultraquadratic Poincaré complex over A ($C, \hat{\psi} \in \hat{Q}_{n}(C, E)$) to be the A-acyclic $(n+1)$-dimensional ε-quadra Poincaré complex over $A\left[z, z^{-1}\right]$

$$
B(C, \hat{\psi})=\left(D, \theta \in Q_{n+1}(D, \varepsilon)\right)
$$

given by

$$
\begin{aligned}
& d_{D}=\left(\begin{array}{cc}
d_{C} & (-)^{r-1}\left(1+T_{E z}\right) \hat{\psi} \\
0 & (-)^{r-1} d_{C}^{\star}
\end{array}\right) \\
& : D_{r}=C_{r}\left[z, z^{-1}\right] \oplus C^{n-r+1}\left[z, z^{-1}\right] \\
& \longrightarrow D_{r-1}=C_{r-1}\left[z, z^{-1}\right] \oplus C^{n-r+2}\left\{z, z^{-1}\right\} \\
& \theta_{0}=\left(\begin{array}{cc}
0 & (-)^{r(n-r)} z \\
(-)^{n-r} & 0
\end{array}\right) \\
& : D^{n-r+1}=C^{n-r+1}\left[z, z^{-1}\right] \oplus C_{r}\left[z, z^{-1}\right] \\
& \longrightarrow D_{r}=C_{r}\left[z, z^{-1}\right] \oplus C^{n-r+1}\left(z, z^{-1}\right] \\
& \theta_{s}=0 \quad(s \geqslant 1),
\end{aligned}
$$

where $C\left[z, z^{-1}\right]=A\left[z, z^{-1}\right] \otimes_{A} C$. If $(C, \hat{\psi})$ is projective (resp. f: then $B(C, \hat{\psi})$ is free (resp. simple). If $A=\mathbb{Z}\{\pi]$ then $A\left[z, z^{-1}\right]=\mathbb{Z}[\pi \times \mathbb{Z}]$.

Proposition 7.8.15 Given a (finitely presented) group 11 there are defined natural isomorphisms of abelian groups

$(C, \hat{\psi}) \longmapsto B(C, \hat{\psi}) \quad(n \geqslant 0)$,
where $\hat{L}_{n}^{h}(Z(\pi))$ is the cobordism group of free n-dimensional ultraquadratic Poincaré complexes over $\mathbb{Z}[\pi]$.

Proof: This follows from Proposition 7.8.14 and a 5-lemma argument applied to the natural transformation of exact sequences

[1
In the full account (Ranicki lll) we shall be obliged to obtain the identifications $\Gamma N_{\star}(\pi \times \mathbb{Z} \longrightarrow \pi)=\hat{L}_{\star}(\mathbb{Z}[\pi])$, $\Gamma_{\star+2}(\theta)=\hat{\mathrm{L}}_{\star}^{h}(\mathbb{Z}[\pi])$ of Propositions $7.8 .14,7.8 .15$ algebraically, using an appropriate Higman linearization trick to replace the codimension 1 transversality.

7.9 The algebraic theory of knot cotordism

We shall now illustrate the various approaches of the algebraic theory of surgery to codimension 2 embeddings by giving various L-theoretic interpretations of the high-dimensional knot cobordism groups C_{\star}, as well as defining some isotopy invariants of knots.

We refer to Kervaire and Weber [1] for a survey of high-dimensional knot theory.

Given a (locally flat) topological knot $k: s^{n} \subset s^{n+2}(n \geqslant 1)$ let $U=S^{n} \times D^{2} c S^{n+2}$ be a closed regular neighbourhood of $k\left(s^{n}\right)=s^{n} \times o<s^{n+2}$. The knot complement is the $(n+2)-d i m e n s i o n a l$ manifold with boundary

$$
(x, x)=\left(S^{n+2}-u, s^{n} \times S^{1}\right),
$$

with x a deformation retract of the actual complement $S^{n+2}-k\left(S^{n}\right)$. The generator $1 \in \pi^{1}\left(S^{n+2}-k\left(S^{n}\right)\right)=\mathbb{Z}$ is represented by an $(n+2)$-dimensional topological normal map of pairs

$$
(g, c):(x, \partial x) \longrightarrow\left(D^{n+1} \times s^{1}, s^{n} \times s^{1}\right)
$$

which is a \mathbb{Z}-homology equivalence witt $g \mid=$ id. $: ~ \partial x \longrightarrow S^{n} \times S^{1}$, i.e. an $s_{\partial}^{\mathbb{Z}}$-triangulation of $\left(D^{n+1} \times S^{J}, S^{n} \times S^{1}\right)$.

The Blanchfield complex of a knot $k: s^{n} \subset s^{n+2}$ is the ZZacyclic $(n+2)$-dimensional quadratic Poincaré complex over $\mathbb{Z}\left[z, z^{-1}\right.$

$$
\sigma_{\star}(k)=\sigma_{\star}(g, c)
$$

defined by the quadratic kernel of (g, c). The chain complex involved in $\sigma_{*}(k)=\left(C\left(g^{!}\right), \psi \in Q_{n+2}\left(C\left(g^{!}\right)\right)\right)$is the algebraic mapping cone $C\left(g^{1}\right)$ of the $\mathbb{Z}\left[z, z^{-1}\right]$-module Umkehr chain map

$$
\begin{aligned}
g^{\prime}: C\left(D^{n+1} \times \mathbb{R}\right) \cdot \xrightarrow{\left(\left[D^{n+1} \times s^{1} 1 \cap-\right)^{-1}\right.} C\left(D^{n+1} \times \mathbf{R}, S^{n} \times \mathbb{R}\right)^{n+1-*} \\
\xrightarrow{\tilde{g} *} C(\bar{x}, \widetilde{x})^{n+2-*} \xrightarrow{\left([x] n^{-1}\right.} C(\bar{x})
\end{aligned}
$$

with \ddot{x} the infinite cyclic covering of x. The non-trivial home kernel $\mathbb{Z}\left[2,2^{-1}\right]$-modules of g are the knot modules of k

$$
H_{*}\left(C\left(g^{!}\right)\right)=H_{\star}(\vec{x}) \quad(* \neq O)
$$

Proposition 7.9.1 The homotopy equivalence class of the Blancl complex $\sigma_{*}(k)$ is an isotopy invariant of the knot $k: s^{n} \subset s^{n+2}$

Define a multiplicative subset

$$
P=\left\{\sum_{j=-\infty}^{\infty} p_{j} z^{j} \in \mathbb{Z}\left[z, z^{-1}| | \sum_{j=-\infty}^{\infty} p_{j}=1 \in \mathbb{Z}\right\} \subset \mathbb{Z}\left[z, z^{-1}\right]\right.
$$

Proposition 7.9 .2 i) The following conditions on a finite-dimensional $\mathbb{Z}\left[z, z^{-1}\right]$-module chain complex C are equiva
a) C is \mathbb{Z}-acyclic, i.e. $H_{\star}\left(\mathbb{Z} \mathbb{Z}_{Z Z}\left[z, z^{-1}\right] C\right)=0$,
b) C is P-acyclic, i.e. $\mathrm{pH}_{\star}(\mathrm{C})=O$ for some $\mathrm{p} \in \mathrm{P}$,
c) $1-z: C \longrightarrow C$ is a $\mathbb{Z}\left[z, z^{-1}\right]$-module chain equivalence,
i.e. $1-2: H_{\star}(C) \longrightarrow H_{\star}(C)$ is an automorphism.
ii) If C is a finite-dimensional \mathbb{Z}-acyclic $\mathbb{Z}\left[z, z^{-1}\right]$-module chain complex the e-symmetrization maps in the Q-groups

$$
1+T_{\epsilon}: Q_{\star}(C, \epsilon) \longrightarrow Q^{*}(C, \varepsilon)
$$

are isomorphisms, for any unit $\in \in \mathbb{Z}\left[z, z^{-1}\right]$.
Proof: i) a) $\Leftrightarrow c)$ is immediate from the short exact sequence of \mathbb{Z}-module chain complexes

b) \Rightarrow a) by the factorization of the projection

$$
\left.\mathbb{Z} \mid z, z^{-1}\right] \longrightarrow \mathrm{P}^{-1} \mathbb{Z}\left[z, z^{-1}\right] \rightarrow \mathbb{Z}
$$

c) \Rightarrow b) The homology H_{\star} (C) is a $f . g . ~ Z\left[z, z^{-1}\right]$-module such tha $1-z: H_{\star}(C) \longrightarrow H_{\star}(C)$ is an automorphism. We now uon the argumen of Levine $(5, \operatorname{Cor} .1 .3]$. Let $x_{1}, x_{2}, \ldots, x_{m} \in H_{*}(C)$ be a finite set
lent:
of $\mathbb{Z}\left[z, z^{-1}\right]$-module generators, so that $x_{i}=(1-z) y_{i}$ for some $Y_{i}=\sum_{j=1}^{m} a_{i j} x_{j} \in H_{\star}(C) \quad\left(a_{i j} \in \mathbb{Z}\left(z, z^{-1}\right\}, 1 \leqslant i \leqslant m\right)$. Define an $m \times m$ matrix over $\mathbb{Z}\left[z, z^{-1}\right] B=\left(b_{i j}\right) l \leqslant i, j \leqslant m$ by

$$
b_{i j}= \begin{cases}(z-1) a_{i j} & \text { if } i \neq j \\ 1+(z-1) a_{i i} & \text { if } i=j,\end{cases}
$$

so that $\sum_{j=1}^{\mathrm{m}} b_{i j} x_{j}=0 \in H_{*}(C)(1 \leqslant i \leqslant m)$. Now $p=\operatorname{det}(B) \in P$ an there exists an $m \times m$ matrix over $Z\left[z, z^{-1}\right)_{B^{\prime}}^{\prime}=\left(b_{i j}^{\prime}\right) 1 \leqslant i, j \leqslant$ such that $B^{\prime} B=P I$ (with $B^{-1}=p^{-1} B^{\prime}$ over $P^{-1}\left(\mathbb{Z} \mid z, z^{-1}\right)$), so t

$$
p x_{i}=\sum_{j=1}^{m} b_{i j}\left(\sum_{k=1}^{m} b_{j k} x_{k}\right)=0 \in H_{k}(C) \quad(1 \leqslant i \leqslant m)
$$

and $\mathrm{pH}_{\star}(\mathrm{C})=0$.
(This is the special case $\pi^{\prime}=\mathbb{Z}, \pi=\{1\}$ of the result of Smith [1, Prop.2.3] that if $\pi^{\prime} \longrightarrow \pi$ is a surjection of groul such that

$$
\mathrm{P}=\left\{p \in \mathbb{Z}\left[\pi^{\prime}\right] \mid p-1 \in \operatorname{ker}\left(\mathbb{Z}\left\{\pi^{\prime}\right] \longrightarrow \mathbb{Z}(\pi]\right)\right\} \subset \mathbb{Z}\left\{\pi^{\prime}\right\}
$$

is a multiplicative subset then a finite-dimensional $\mathbb{Z}\left(\pi{ }^{\prime \prime} 1\right.$ chain complex C is $\mathbb{Z}[\pi]$-acyclic if and only if it is P-acyc If the surjection is part of data

$$
\left(\pi: \mathbb{Z} \xrightarrow{\mathbf{i}} \pi^{\prime} \longrightarrow \pi \longrightarrow \mathbb{Z}_{2}\right)
$$

with $\omega=+1$ and $i(1)=2 \in \pi$ then Proposition 7.8.7 iii) s that a finite-dimensional $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex C is $\mathbb{Z}\left\{\pi I\right.$-acyclic if and only if $1-z: H_{\star}(C) \longrightarrow H_{\star}(C)$ is a $\left.\mathbb{Z}[\pi]^{\prime}\right]$. isomorphism. Note however that the result of Smith [1, Cor. ${ }^{3}$ is false: if $\operatorname{ker}\left(\pi^{\prime} \longrightarrow \pi\right)=\mathbb{Z}$ and

$$
\left.P_{o}=\left\{\sum_{j=-\infty}^{\infty} p_{j} z^{j} \mid \sum_{j=-\infty}^{\infty} p_{j}=1, p_{j} \in \mathbb{Z}\right\} \subset p \subset \mathbb{Z} \mid \pi^{\prime}\right]
$$

it is not in qeneral true that a finite-dimensional $\mathbb{Z}[\pi]$-acyclic $\mathbb{Z}\left[\pi^{\prime}\right]$-module chain complex C is P_{o}-acyclic. The error in the proof arises in assuming that if M is a $f . g$. $\mathbb{Z}\left[\pi^{\prime \prime}\right]$-module such that $1-z: M \rightarrow M$ is an automorphism and M_{O} is the $f . g$. $\mathbb{Z}\left[z, z^{-1}\right]$-submodule of M generated by a finite set of $\mathbb{Z}\left[\pi^{\prime}\right]$-module generators then the restriction $1-z: M_{O} \longrightarrow M_{O}$ is also an automorphism).
ii) By proposition 3.2.1 i) an ($\mathrm{n}+1$)-dimensional p-acyclic $\mathbb{Z}\left[z, z^{-1}\right\}$-module chain complex C is the resolution of an n-dimensional $\left(\mathbb{Z}\left(z, z^{-1}\right), P\right)$-module chain complex D, with $H_{\star}(C)=H_{\star}(D)$ and $1-2: D \longrightarrow D$ an automorphism by i). By the exact sequence of Vogel $\{2,2.4\}$ (cf. the discussion in 83.1)

$$
\cdots \longrightarrow \bar{Q}_{n}^{P}(D, \varepsilon) \longrightarrow Q_{n}^{P}(D, \varepsilon) \longrightarrow Q_{n+1}(C,-\varepsilon) \longrightarrow \bar{Q}_{n-1}^{P}(D, \varepsilon) \longrightarrow,
$$

its e-symmetric analogue

$$
\ldots \longrightarrow Q_{P}^{n}(D, \varepsilon) \longrightarrow Q_{p}^{n}(D, \varepsilon) \longrightarrow Q^{n+1}(C,-\varepsilon) \longrightarrow \bar{Q}_{P}^{n-1}(D, \varepsilon) \longrightarrow
$$

and a 5-lemma argument it suffices to show that the e-symmetrization maps in the Q-groups of D

$$
\left\{\begin{aligned}
1+T_{\epsilon}: \bar{Q}_{\star}^{P}(D, \varepsilon) \longrightarrow \bar{Q}_{\stackrel{\rightharpoonup}{*}}^{\star}(D, \varepsilon) \\
1+T_{E}: Q_{\star}^{P}(D, E) \longrightarrow Q_{\underset{P}{\star}}(D, \varepsilon)
\end{aligned}\right.
$$

are isomorphisms. The automorphism

$$
\mathrm{u}=(1-z)^{-1}: \mathrm{D} \longrightarrow \mathrm{D}
$$

is such that $\left\{\begin{array}{l}\phi=u \phi+\phi u^{\wedge} \\ \phi=(1 \otimes u) \phi+(u \otimes 1) \phi\end{array}\right.$ for any $\left\{\begin{array}{l}\phi \in \operatorname{Hom}_{\mathbb{Z}}\left[z, z^{-1}\right]^{\left(D^{\wedge}, D\right)} \\ \phi \in D \otimes_{\mathbb{Z}}\left[z, z^{-1}\right]^{D}\end{array}\right.$,
since $U=(1-z)^{-1} \in \pi\left\{z, z^{-1},(1-z)^{-1}\right\}$ is such that $U+\bar{U}=1$.

Use $u: D \longrightarrow D$ to define isomorphisms inverse to the E-symmetrization maps
(The isomorphism $1+T_{\epsilon}: Q_{\star}(C, \varepsilon) \longrightarrow Q^{\star}(C, \varepsilon)$ is a qeneralization of the result of Levine [5, Prop.12.3] that the symmetric Blanchfield pairing on a knot module admits a quadratic refinement. The use of the automorphism $u=(1-z)^{-1}$ was suggested by Neal Stoltzfus).

The Alexander polynomial $p \in P$ of a finite-dimensional \mathbb{Z}-acyclic $\mathbb{Z}\left[z, z^{-1}\right]$-module chain complex C is the generator (unique up to unit) of the maximal principal ideal contained in the order ideal $\left\{s \in \mathbb{Z}\left[z, z^{-1}\right\} \mid s H_{\star}(C)=0\right\} \triangleleft \mathbb{Z}\left\{z, z^{-1}\right\}$. Thus if $M(\lambda)$ denotes the cyclic $\Phi\left[z, z^{-i}\right]$-module of order $\lambda \in \mathbb{Z}\left[z, z^{-1}\right]$ and $\mathbb{Q} \mathbb{Z}_{\mathbb{Z}^{H}}{ }^{H}(C)=\underset{\lambda}{\oplus} M(\lambda)$ is the decomposition of the
 cyclic modules then $p \in P$ is the lowest common multiple (l.c.m.) of the polynomials $\lambda \in \mathbb{Z}\left[z, z^{-1}\right]$.

The Alexander polynomial $p \in P$ of a knot $k: S^{n} \subset S^{n+2}(n \geqslant 1)$
is the Alexander polynomial of the $(n+2)$-dimensional p-acyclic $\mathbb{Z}\left[z, z^{-1}\right]$-module chain complex $C\left(g^{!}\right)$. For $n=1$ this is just the polynomial originally defined by Alexander [1]. For $n \geqslant 1$ it is the l.c.m. of the knot polynomials defined by Levine [l]. The linking pairing of the Blanchfield complex $\sigma_{\star}(k)=\left(C\left(g^{!}\right), \psi\right)$

$$
\begin{gathered}
(1+T) \psi_{O}^{P}: H^{r}(X) \times H^{n-r+3}(\widetilde{X}) \longrightarrow P^{-1} \mathbb{Z}\left[z, z^{-1}\right] / \mathbb{Z}\left[z, z^{-1}\right] ; \\
(x, y) \longmapsto \frac{1}{p}(1+T) \psi_{O}(x)(w) \\
\left(r \neq O, n+3 x \in C(\widetilde{X})^{r}, y \in C(\widetilde{X})^{n-r+3}, w \in C(\widetilde{X})^{n-r+2}, d \neq w=p y\right)
\end{gathered}
$$ agrees via the Poincaré duality $H^{n+2-\star}(\widetilde{X})=H_{\star}(\widetilde{X}) \quad(* \neq n, n+2)$ with the pairing originally defined by Blanchfield [l]

$$
H_{n+2-r}(\widetilde{X}) \times H_{r-1}(\widetilde{x}) \longrightarrow P^{-1} \mathbb{Z}\left[z, z^{-1}\right] / \mathbb{Z}\left[z, z^{-1}\right]
$$

using geometric linking numbers of homology classes. The knot module parings have been studied more recently by Levine [5].

A Seifert surface for a knot $k: S^{n} \subset S^{n+2}(n \geqslant 1)$ is a codimension 1 framed submanifold $M^{n+1} \subset S^{n+2}$ with boundary $M=k\left(S^{n}\right)$. Given a knot $k: S^{n} \subset s^{n+2}$ make the $s_{a}^{\mathbb{Z}}$-trianqulation $(g, c):(x, d x) \longrightarrow\left(D^{n+1} \times S^{l}, S^{n} \times S^{l}\right)$ topologically transverse at $\left(D^{n+1}, S^{n}\right) \times p t . C\left(D^{n+1}, S^{n}\right) \times S^{1}$, thus obtaining a Seifert surface $M=g^{-1}\left(D^{n+1} \times p t.\right) \subset x \subset S^{n+2}$ (with a collar removed) together with an ($n+1$)-dimensional ultranormal map

$$
(f, b)=(g, c) \mid:(M, i M)=g^{-1}\left(\left(D^{n+1}, s^{n}\right) \times p t .\right) \longrightarrow\left(D^{n+1}, s^{n}\right)
$$

such that $f \mid=i d .: \exists M=k\left(S^{n}\right) \longrightarrow S^{n}$. Conversely, every Seifert surface M determines an ultranormal map $(f, b):(M, M) \longrightarrow\left(D^{n+1}, s^{n}\right)$, by the method recalled in the proof of Proposition 7.9 .3 below. In the original work of

Seifert 2] M was obtained for $k: S^{1} \subset S^{3}$ using the knot project
The Seifert complex $\hat{\sigma}_{\star}(k, M)$ of a pair (k, M) consisting of a knot $k: S^{n} \subset S^{n+2}(n \geqslant 1)$ and a Seifert surface $M^{n+1} \subset s^{n+2}$ for k is the $(n+1)$-dimensional ultraquadratic Poincaré complex over \mathbb{Z}

$$
\hat{\sigma}_{\star}(k, M)=\hat{\sigma}_{\star}(f, b)
$$

defined by the ultraquadratic kernel of the associated ultranormal map $(f, b):(M, \partial M) \longrightarrow\left(D^{n+1}, S^{n}\right)$. The chain complex appearing in $\hat{\sigma}_{*}(f, b)=\left(C\left(f^{!}\right), \hat{\psi} \in \hat{Q}_{n+1}\left(C\left(f^{!}\right)\right)\right)$is the algebraic mapping cone $C(f)$ of the \mathbb{Z}-module Umkehr chain map

$$
\begin{array}{rl}
f^{\prime}: C\left(D^{n+1}\right) \xrightarrow{\left(\left[D^{n+1}\right] n-\right)^{-1}} & C\left(D^{n+1}, S^{n}\right)^{n+1-\star} \\
f^{*} & C(M, \partial M)^{n+1-\star} \xrightarrow{([M] \cap-)} C(M)
\end{array}
$$

so that there is an identification

$$
c\left(f^{!}\right)=\dot{C}(M)
$$

Identifying $\dot{C}(M)=\dot{C}(M)^{n+1-*}$ by the Poincaré-Lefschetz duality of the $(n+2)$-dimensional manifold triad $\left(M^{n+1} ; k\left(D_{+}^{n}\right), k\left(D_{-}^{n}\right) ; k\left(S^{n-}\right.\right.$ and $\dot{C}\left(S^{n+2}-M\right)=\dot{C}(M)$ by Alexander duality, note that the ultraquadratic structure $\hat{\psi} \in \hat{Q}_{n+1}\left(C\left(f^{!}\right)\right)=H_{n+1}\left(\operatorname{Hom}_{\mathcal{Z}}(C(f!) *, C(f\right.$ can be identified with the chain homotopy class of the \mathbb{Z}-modul chain map

$$
\hat{\psi}: C(f!)^{n+1-*}=\dot{C}(M)^{n+1-*}=\dot{C}(M) \xrightarrow{v_{+}} \dot{C}\left(S^{n+2}-M\right)=\dot{C}(M)
$$

induced by the map $v_{+}: M \longrightarrow S^{n+2}-M ;(x, 0) \longrightarrow(x, 1)$ pushing $M=M \times O \subset S^{n+2}$ off itself along the positive normal direction determined by the framing of the normal bundle $v_{M \subset S^{n+2}}$, with $E\left(\nu_{M \subset S^{n+1}}\right)=M \times[-1,1] \subset s^{n+2}$. In particular, for $n=2 i-1$ the pairing

$$
\hat{\psi}: H_{i}(M) / \operatorname{tor} \operatorname{sion} \times H_{i}(M) / \text { torsion } \longrightarrow \mathbb{Z}
$$

is the usual seifert form of $\left(k: s^{2 i-1} c s^{2 i+1}, M^{2 i}\right)$.
The Blanchfield and Seifert complexes of a knot are related by the covering operation of $\$ 7.8$
$\beta:\{(n+1)-d i m e n s i o n a l$ ultraquadratic Poincaré complexes over $Z z\}$
$\longrightarrow(\mathbb{Z}$-acyclic $(n+2)$-dimensional quadratic Poincaré complexes over $\left.\mathbb{Z}\left\{z, z^{-1}\right]\right\}$.

Define $(n+1)$-dimensicnal ultraquadratic Poincaré complexes over $\mathbb{Z}(C, \hat{\psi}),\left(C^{\prime}, \hat{\psi}^{\prime}\right)$ to be S-equivalent if their coverings $\beta(C, \hat{\psi}), \beta\left(C^{\prime}, \hat{\psi}^{\prime}\right)$ are homotopy equivalent. S-equivalence is an equivalence relation such that
homotopy equivalence \Rightarrow S-equivalence \Rightarrow cobordism. We shall relate this notion of S-equivalence with the usual S-equivalence of Seifert matrices further below. Proposition 7.9 .3 Let $k: s^{n} \subset s^{n+2}(n \geqslant 1)$ be a knot, and let $M^{n+1} \subset s^{n+2}$ be a Seifert surface for k. Then
i) $B \hat{\sigma}_{*}(k, M)=\sigma_{*}(k)$, up to homotopy equivalence
ii) the S-equivalence class of the Seifert complex $\hat{\sigma}_{*}(k, M)$ is an isotopy invariant of k, namely the homotopy equivalence class of $\sigma_{*}(k)$.

Proof: There is a standard way of constructing the infinite cyclic covering \widetilde{x} of the knot complement x from a Seifert surface M : cut X along M to obtain an $(n+2)$-dimensional manifold triad $\left(N^{n+2} ; M, z M ; k\left(S^{n}\right)\right)$ involving a copy $z M$ of M, and set

$$
\bar{x}=\bigcup_{j}^{\infty} z{ }^{j}{ }^{j} N
$$

Accordingly, the $(n+2)-$ dimensional topological normal map
$(g, c):(x, i x) \longrightarrow\left(D^{n+1} \times s^{1}, s^{n} \times S^{1}\right)$ used to define $\sigma_{\star}(k)=\sigma_{\star}(q, c)$ may be constructed from the ($n+1$)-dimensional ultranormal map $(f, b):(M, O M) \longrightarrow\left(D^{r i+1}, S^{n}\right)$ used to define $\ddot{a}_{\star}(k, M)=\hat{a}_{\star}(f, b):$ glue together \mathbb{Z} copies of an $(n+2)$-dimensional topological normal map of triads

$$
(G, C):\left(N ; M, z M ; k\left(S^{n}\right)\right) \longrightarrow\left(D^{n+1} \times I ; D^{n+1} \times O, D^{n+1} \times 1 ; S^{n} \times I\right)
$$

and quotient out the free \mathbb{Z}-action to obtain $(G, C) / \mathbb{Z}=(9, c)$. Passing to algebra it follows that $\sigma_{\star}(k)$ may be constructed from $\hat{\sigma}_{\star}(k, M)$ in the same way, using the algebraic glueing operation of $\$ 1.7$, which in this case gives the covering operation $B: \hat{\sigma}_{\star}(k, M) \longrightarrow B \hat{\sigma}_{\star}(k, M)=\sigma_{\star}(k)$.

if $\pi_{r}(X)=\pi_{r}\left(S^{1}\right)$ for $r<i$, that is if the $s_{i}^{\mathbb{Z}}$-triangulation $(g, c):(X, \partial X) \longrightarrow\left(D^{n+1} \times S^{1}, S^{n} \times S^{1}\right)$ is (i-l)-connected.

The Blanchfield complex of a simple knot k is the i-fold skew-suspension

$$
\sigma_{\star}(k)=\bar{s}^{i} \sigma_{i}(k)
$$

of a p-acyclic $\left\{\begin{array}{l}1- \\ 2-\end{array}\right.$ imensional $(-)^{i}$-quadratic Poincaré complex over $\mathbb{Z}\left[z, z^{-1} \mid o_{i}(k)\right.$.

The Blanchfield linking $\left\{\begin{array}{l}\text { form } \\ \text { formation }\end{array}\right.$ of a simple knot
$\left\{\begin{array}{l}k: S^{2 i-1} \subset s_{i}^{2 i+1} \\ k: S^{2 i} \subset s^{2 i+2}\end{array}\right.$ is the non-singular $(-)^{i+1}$-symmetric linking
$\left\{\begin{array}{l}\text { form } \\ \text { formation }\end{array}\right.$ over $\left(\mathbb{Z}\left[z, z^{-1}\right]\right.$, P) associated to $\left(l+T_{(-)} i\right) \sigma_{i}(k)$ by Proposition $\left\{\begin{array}{l}3.4 .1 \\ 3.5 .2\end{array}\right.$. There is no loss of structure in passing from $\sigma_{i}(k)$ to $\left(1+T_{(-)}{ }^{i)} \sigma_{i}(k)\right.$, since it follows from Proposition 7.9 .2 ii) that there are natural identifications of categories

$$
\begin{aligned}
& \text { (e-quadratic linking }\left\{\begin{array}{l}
\text { forms } \\
\text { formations }
\end{array} \text { over }\left(\mathbb{Z}\left[z, z^{-1}\right], P\right)\right) \\
& =\left(\varepsilon - \text { symmetric linking } \left\{\begin{array}{l}
\text { forms } \\
\text { formations }
\end{array} \text { over }\left(\mathbb{Z}\left[z, z^{-1}\right], p\right)\right.\right. \\
& (E= \pm 1) \text {. }
\end{aligned}
$$

As a special case of Proposition 7.9 .1 we have that the $\left\{\begin{array}{l}\text { isomorphism } \\ \text { stable equivalence }\end{array}\right.$ class of the Blanchfield linking $\left\{\begin{array}{l}\text { form } \\ \text { formati }\end{array}\right.$ is an isotopy invariant of a simple knot. (Indeed, the linking formation is only defined up to stable equivalence).

A Seifert surface $\left\{\begin{array}{l}M^{2 i} c S^{2 i+1} \\ M^{2 i+1} \subset S^{2 i+2}\end{array}\right.$ of an $\left\{\begin{array}{l}\text { odd- } \\ \text { even- dimensional }\end{array}\right.$ $k n o t\left\{\begin{array}{l}k: s^{2 i-1} \subset s^{2 i+1} \\ k: s^{2 i} \subset s^{2 i+2}\end{array} \quad(i \geqslant 1)\right.$ is simple if M is (i-1)-connected, that is $\pi_{r}(M)=0$ for $r<i$. A knot is simple if and only if it admits a simple seifert surface. If M is a simple seifert surface the Seifert complex is the i-fold skew-suspension

$$
\hat{\sigma}_{\star}(k, M)=\bar{S}^{i} \hat{\sigma}_{i}(k, M)
$$

of a $\left\{\begin{array}{l}\mathrm{O}- \\ \mathrm{l-} \text { dimensional }(-)^{i}-u l t r a q u a d r a t i c ~ P o i n c a r e ́ ~ c o m p l e x ~ o v e r ~\end{array}\right.$ $\hat{\sigma}_{i}(k, M)$.

The Seifert $\left\{\begin{array}{l}\frac{\text { form }}{\text { formation }}\end{array}\right.$ of a simple (knot, Seifert surfa
pair $\left\{\begin{array}{l}\left(k: s^{2 i-1} c s^{2 i+1}, M^{2 i}\right) \\ \left(k: s^{2 i} \subset s^{2 i+2}, M^{2 i+1}\right)\end{array}(i \geqslant 1)\right.$ is the non-singular $(-)^{i}$-ultraquadratic $\left\{\begin{array}{l}\text { form } \\ \text { formation }\end{array}\right.$ over $\mathbb{Z}\left\{\begin{array}{l}\left(Q, \hat{\psi} \in \operatorname{Hom}_{\mathbb{Z}}\left(Q, Q^{*}\right)\right) \\ (Q, \hat{\psi} ; F, G)\end{array}\right.$ associated to $\hat{\sigma}_{i}(K, M)$, with $\left\{\begin{array}{l}Q=H_{i}(M) \\ G=C_{i+1}(M) \xrightarrow{d} Q / F=C_{i}(M)\end{array}\right.$. This is the Seifert $\left\{\begin{array}{l}\text { form } \\ \text { formation }\end{array}\right.$ used by $\left\{\begin{array}{l}\text { Levine [4] } \\ \text { Kearton [3] }\end{array}\right.$ in the isotopy classification of simple $\left\{\begin{array}{l}\text { odd- } \\ \text { even- }\end{array}\right.$ imensional knots $(i \geqslant$ The Seifert form was originally defined by Seifert [2] for classical knots $k: S^{l} \subset S^{3}$. An " ε-form" $(Q, \hat{\psi} ; F, G ; \phi)$ in the sens of Kearton $\{3 \mid$ is a non-singular ε-ultraquadratic formation over $\mathbb{Z}(Q, \hat{\psi} ; F, G)$ together with an exact sequence of abelian groups

$$
\mathrm{O} \longrightarrow(\mathrm{Q} /(\mathrm{F}+\mathrm{G})) \otimes \mathbb{Z}_{2} \xrightarrow{\mathrm{~g}} \pi \xrightarrow{\mathrm{~h}} \mathrm{~F} \cap \mathrm{G} \longrightarrow \mathrm{O}
$$

and a bilinear pairing $\Phi: \pi \times \pi \longrightarrow \mathbb{Z}_{2}$ such that

$$
\phi(a, g b)=\hat{\psi}(h a, b), \phi(g b, a)=\hat{\psi}(b, h a) \in \mathbb{Z} \quad(a, b \in Q)
$$

The $(-)^{\mathbf{i}}$-form associated to a simple pair $\left(k: S^{2 i} \subset S^{2 i+2}, M^{2 i+1}\right.$ consists of the Seifert formation ($Q, \hat{\psi} ; F, G$) and the homotopy theoretic analogue on $\pi=\pi_{i+1}(M)$ of the Seifert pairing

$$
\phi: \pi_{i+1}(M) \times \pi_{i+1}(M) \xrightarrow{1 \times v_{+}} \pi_{i+1}(M) \times \pi_{i+1}\left(S^{2 i+2}{ }_{-M}\right)=\pi_{i+1}(M) \times n
$$

$$
\xrightarrow{\text { composition }} \pi_{i+1}\left(S^{i}\right)=\mathbb{Z}_{2} \quad(i \geqslant 3)
$$

with $h: \pi=\pi_{i+1}(M) \longrightarrow F \cap G=H_{i+1}(M)$ the Hurewicz map.

For a simple odd-dimensional knot $k: S^{2 i-1} \subset s^{2 i+1}(i \geqslant 1)$ Proposition 7.9 .3 i) reiterates the well-known relationship between the Blanchfield linking form

$$
\begin{aligned}
& \left(1+T_{(-)}\right)^{i)} \sigma_{i}(k) \\
& \quad=\left(H_{i}(\widetilde{X}), \theta: H_{i}(\widetilde{x}) \times H_{i}(\widetilde{X}) \longrightarrow P^{-1} \mathbb{Z}\left[z, z^{-1}\right] / \mathbb{Z}\left[z, z^{-1}\right]\right)
\end{aligned}
$$

and the Seifert form of a simple Seifert surface $M^{2 i} \subset s^{2 i+1}$ for k

$$
\hat{\sigma}_{i}(k, M)=\left(H_{i}(M), \hat{\psi}: H_{i}(M) \times H_{i}(M) \longrightarrow \mathbb{Z}\right)
$$

with
$H_{i}(\widetilde{X})=\operatorname{coker}\left(\hat{\psi}+(-)^{i} z \hat{\psi}^{*}: H_{i}(M)\left[z, z^{-1}\right] \longrightarrow H_{i}(M) *\left[z, z^{-1}\right]\right)$
$\theta: H_{i}(\widetilde{X}) \times H_{i}(\widetilde{X}) \longrightarrow \mathrm{P}^{-1} \mathbb{Z}\left[z, z^{-1}\right] / \mathbb{Z}\left[z, z^{-1}\right] ;$

$$
(x, y) \longmapsto \frac{(1-z)}{p} x(w)
$$

$\left(x, y \in H_{i}(M) \star\left[z, z^{-1}\right], w \in H_{i}(M)\left[z, z^{-1}\right], p \in P\right.$

$$
\left.\left(\hat{\psi}+(-)^{i} z \hat{\psi}^{\star}\right)(w)=p y \in H_{i}(M) *\left[z, z^{-1}\right]\right) .
$$

A Seifert matrix of type $\varepsilon(\varepsilon= \pm 1)$ is a square matrix V with entries in \mathbb{Z} such that $V+\varepsilon V^{\prime}$ is invertible, where V^{\prime} is the $t r a n s p o s e$ of $V\left(v_{i j}=v_{j i}\right)$. There is an evident one-one correspondence between such matrices and non-singular e-ultraquadratic forms over $\mathbb{Z}(Q, \hat{\psi})$ with a choice of base for the $f . g$. free \mathbb{Z}-module Q. Trotter $[1]$ and Murasugi [1] introduced the S-equivalence relation on Seifert matrices of type $\varepsilon=-1$, using congruences and elementary enlargements, corresponding to elementary ambient surgeries on a Seifert surface $M^{2} \subset S^{3}$ of a knot $k: S^{1} \subset S^{3}$. Levine [4] extended this to $\varepsilon=+1$, and used the results of Kervaire [1] on the classification of high-dimensional knots to identify
(isotopy classes of simple odd-dimensional knots $k: s^{2 i-1} \subset s^{2 i+1}$, $=\left(S-e q u i v a l e n c e\right.$ classes of Seifert matrices of type $\left.\varepsilon=(-)^{i}\right)(i \geqslant$ Trotter [2],[3] (algebraically) and Kearton ll] (geometrically) then used the Blanchfield linking form to identify (S-equivalence classes of Seifert matrices of type $\varepsilon=(-)^{i}$) $=$ (isomorphism classes of non-singular ($)^{i+1}$-symmetric linking forms over $\left.\left(\mathbb{Z}\left[z, z^{-1}\right), P\right)\right)$.

Thus our notion of S-equivalence for O-dimensional e-ultraquadratic Poincaré complexes over \mathbb{Z} is the same as the s-equivalence of Seifert matrices of type ε. Kearton [3] used elementary operations to define a T-equivalence relation on f-forms (= Seifert formations with a homotopy pairing) and used the results of

Kervaire [2] and Levine [4] to identify
(isotopy classes of simple even-dimensional knots $k: S^{2 i} \subset s^{2 i+2}$ such that $\pi_{i}(x)$ has no 2-torsion)
$=$ (T-equivalence classes of (-$)^{i}$-forms ($\left.Q, \hat{\psi} ; F, G ; \phi\right)$ such that $Q /(F+G)$ has no 2 -torsion) (iv3).
(See Kearton [4] and Richter [1] for some preliminary results expressing this set in terms of Blanchfield linking formations with a homotopy pairing). In the full account of codimension 1 splitting theorems in Ranicki [ll] there will also be included an ultraquadratic version, in particular expressing the S-equivalence relation on Seifert complexes in terms of elementary operations, and using the covering operation B to identify (S-equivalence classes of n-dimensional ε-ultraquadratic Poincaré complexes over \mathbb{Z})
$=$ (homotopy equivalence classes of \mathbb{Z}-acyclic $(n+1)$-dimensional E-quadratic Poincaré complexes over $\mathbb{Z}\left\{z, z^{-1} \|\right.$

$$
(n \geqslant 0, \varepsilon= \pm 1) .
$$

For $n=1$ this will identify the part of the T-equivalence relation concerning the Seifert formation $(Q, \hat{\psi} ; F, G)$ with the S-equivalence relation defined above. Farber [1], [2] has extended the classification of high-dimensional simple knots in terms of stable homotopy theory to the metastable range, identifying the isotopy classes of knots $k: s^{n} \subset s^{n+2}$ such that $\pi_{r}(X)=\pi_{r}\left(S^{1}\right) \quad\left(x \leqslant \frac{1}{3}(n+1), n \geqslant 5\right)$ with "R-equivalence" classes of homotopy Seifert pairings. As for T-equivalence, the chain level part of R-equivalence is the S-equivalence of ultraquadratic Poincaré complexes over $\not 2$. In particular, farb completed the classification due to kearton [3] of simple even-dimensional knots $k: S^{2 i} \subset s^{2 i+2}(i \geqslant 3)$ in terms of stable algebra, including the case when $\pi_{1}(x)$ has 2 -torsion.

A knot $k: s^{n} \subset s^{n+2} \quad(n \geqslant 1)$ is fibred if the canonical map $g: S^{n+2}-k\left(S^{n}\right) \longrightarrow S^{1}$ is a fibre bundle, in which case the closure of the fibre is a seifert surface $M^{n+1} \subset s^{n+2}$ for k. The corresponding Seifert surface $\hat{\sigma}_{*}(k, M)=\left(\dot{C}(M), \hat{\psi} \in \hat{Q}_{n+1}(\dot{C}(M)\right.$ is such that

$$
\hat{\psi}: \dot{C}(M)^{n+1-\star} \longrightarrow \ldots \dot{C}(M)
$$

is a chain homotopy class of Z-module chain equivalences (the monodromy of k). Simple fibred knots are of interest in the study of algebraic singularities, cf. Milnor [2]. Odd-dimensional simple fibred knots have been classified by Durfee [l] in terms of non-singular Seifert matrices. Kojima [1] has obtained a partial classification of even-dimensional simple fibred knots in terms of Seifert formations with a homotopy pairing (the same as the one of Kearton [3]).

Following the work of Fox and Milnor [ll on C_{1} Kervair defined the cobordism groups $C n$ of knots $k: s^{n} \in s^{n+2}(n \geqslant 1)$. Proposition 7.9.4 The high-dimensional knot cobordism groups $C_{n}(n \geqslant 4)$ have natural identifications

$$
\begin{aligned}
& \text { i) } c_{n}=\hat{L}_{n+1}(\mathbb{Z}) \\
& \text { ii) } c_{n}=\Gamma_{n+3}\binom{\mathbb{Z}\left[z, z^{-1}\right) \longrightarrow \mathbb{Z}\left[z, z^{-1}\right]}{\mathbb{Z}\left[z, z^{-1}\right) \longrightarrow \mathbb{Z}} \\
& \text { iii) } c_{n}=\Gamma_{n+1}\left(\mathbb{Z}\left[z, z^{-1}\right] \longrightarrow \mathbb{Z}, z\right) \\
& \text { iv) } c_{n}=\Gamma_{n+1}(0, z) \\
& \text { v) } c_{n}=\Gamma N_{n+1}(\mathbb{Z} \longrightarrow(1)) \\
& \text { vi) } c_{n}=L_{n+3}\left(\mathbb{Z}\left[z, z^{-1}\right], P\right) \\
& \text { vii) } c_{n}=\&_{n+3}\left(S^{1} ; \mathbb{Z}\right) \text {. }
\end{aligned}
$$

Proof: i) The ultranormal maps $(f, b):(M, \partial M) \longrightarrow\left(D^{n+1}, s^{n}\right)$ associated to the various seifert surfaces $M^{n+1} \subset s^{n+2}$ of a knot $k: s^{n} \subset s^{n+2}$ are ultranormal bordant. More generally, the ultranormal maps associated to Seifert surfaces of cobordant knots are ultranormal bordant. Thus the Seifert complexes of cobordant knots are cobordant, and the ultraguadratic signat defines abelian group morphisms

$$
\hat{o}_{\star}: C_{n} \longrightarrow \hat{L}_{n+1}(\mathbb{Z}) ;\left(k: s^{n} \subset s^{n+2}\right) \longmapsto \hat{o}_{\star}(k, M) \quad(n \geqslant 1
$$

Kervaire [l] showed that $c_{2 i}=0(i \geqslant 2)$. It follows from Proposition l.6.5 iii) that the forgetful maps

$$
\hat{L}_{2 i+1}(A, \varepsilon) \longrightarrow L_{2 i+1}(A, \varepsilon)
$$

are one-one, for any ring with involution A. In particular, $\hat{f}_{2 i+1}(\mathbb{Z}) \subseteq L_{2 i+1}(\mathbb{Z})=0$, so that $\hat{L}_{2 i+1}(\mathbb{Z})=0=C_{2 i}(i \neq 2)$.

The odd-dimensional knot cobordism aroups $C_{2 i-1}(i \geqslant 3)$ were identified by levine [2] with the witt groups of non-singular $(-)^{i}$-ultraquadratic forms over \mathbb{Z} (i.e. Seifert forms), so that $\mathrm{C}_{2 \mathrm{i}-1}=\hat{\mathrm{L}}_{0}\left(\mathbb{Z},(-)^{i}\right)=\hat{\mathrm{L}}_{2 \mathrm{i}}(\mathbb{Z})$ and $\hat{\sigma}_{*}$ is an isomorphism in this case also.
ii) The identification $C_{n}=\Gamma_{n+3}(\theta)$ was first obtained geometrically by Cappell and Shaneson [1], as a special case of their theory of "semi-local knots".
iii) The identification $C_{n}=\Gamma_{n+1}\left(\mathbb{Z}\left[z, z^{-1}\right] \longrightarrow \mathbb{Z}, z\right)$ was obtained by Matsumoto [1], [2],[3] both geometrically and algebraically. The cobordism class of a knot $k: s^{n} \subset s^{n+2}$ is identified with the obstruction to extending the inclusion $k\left(S^{n}\right) \subset U$ of $k\left(S^{n}\right)$ in a closed reqular neighbourhood $u=S^{n} \times D^{2} \subset S^{n+2}$ to a codimension 2 spine $\left(M, k\left(S^{n}\right)\right) \subset\left(D^{n+3}, U\right)$.
iv) Immediate from iii) and the exact sequence $\left.\ldots \longrightarrow L_{n}\left(\mathbb{Z} \mid z, z^{-1}\right], z\right) \longrightarrow \Gamma_{n}\left(\mathbb{Z}\left[z, z^{-1}\right] \longrightarrow \mathbb{Z}, z\right)$ $\left.\longrightarrow \Gamma_{n}(\theta, z) \longrightarrow L_{n-1}\left(\mathbb{Z} \mid z, z^{-1}\right), z\right) \longrightarrow \ldots$,
since $L_{*}\left(\mathbb{Z}\left[z, z^{-1}\right], z\right)=0$.
v) 1 mmediate from iii) and Proposition 7.8.12. The cobordism class of a knot $k: S^{n} \subset s^{n+2}$ is interpreted as the reld obstruction $w s_{-}(h, Y) \in \Gamma N_{n+1}(\mathbb{Z} \longrightarrow\{1))$ to a weak codimension 2 splitting of an $s^{\mathbb{Z}}$-triangulation of the $(n+3)$-dimensional geometric Poincaré triad $\left(D^{n+3}, U\right) \times\left(0^{2}, s^{1}\right)$

$$
h:\left(D^{n+3} ; u, x ; i x\right) \longrightarrow\left(D^{n+3} \times D^{2} ; U \times D^{2} ; D^{n+3} \times S^{1} ; U \times S^{1}\right)
$$

along $(Y, Y Y)=\left(D^{n+3}, U\right) \times p t . C\left(D^{n+3} \times D^{2}, U \times D^{2}\right)$.
vi) The quadratic signature of the Blanchfield complex defines abelian group morphisms

$$
\begin{aligned}
\sigma_{\star}: C_{n} \longrightarrow L_{n+3}\left(\mathbb{Z}\left[z, z^{-1}\right], P\right) & ; \\
& \left(k: S^{n} \subset s^{n+2}\right) \vdash \longrightarrow \sigma_{*}(k) \quad(n \geqslant 1)
\end{aligned}
$$

The expression of the odd-dimensional knot-cobordism groups $C_{2 i-1}(i \geqslant 3)$ as the witt groups of non-singular $(-)^{i+1}$-quadratic linking forms over $\left(\mathbb{Z}\left(z, z^{-1}\right), P\right)$ (i.e. Blanchfield forms) is due to Kearton [2]. The actual identification $C_{n}=L_{n+3}\left(Z\left[z, z^{-1}\right], P\right)$ is due to Pardon [1] and Smith [2]. vii) According to the theory of $\$ 7.7$ for $n \geqslant 3$

$$
S_{n+3}\left(S^{1} ; \mathbb{Z}\right)=S_{\partial}^{T O P}\left(D^{n+1} \times s^{1}, s^{n} \times s^{1} ; \mathbb{Z}\right)
$$

is the set of concordance classes of $s_{3}^{\mathbb{Z}}$-triangulations of $\left(D^{n+1} \times S^{1}, S^{n} \times S^{1}\right)$, which (by definition) are (n+2)-dimensional topological normal maps

$$
(g, c):(x, n x) \longrightarrow\left(D^{n+1} \times s^{1}, s^{n} \times s^{1}\right)
$$

such that $g: X \longrightarrow D^{n+1} \times S^{1}$ is a \mathbb{Z}-homology equivalence and $g \mid: 3 x \longrightarrow s^{n} \times S^{1}$ is a homeomorphism. In particular, the knot complement $(x, \ni x)$ of a knot $k: S^{n} \subset s^{n+2}$ determines such an s_{∂}^{Z}-triangulation, so that there are defined abelian qroup morphisms

$$
c_{n} \longrightarrow l_{n+3}\left(S^{1} ; Z Z\right) ; k \longmapsto(q, c)
$$

The inverse isomorphisms are defined by associating to an s_{3}^{Z}-triangulation (g, c) with $\pi_{1}(X)=\pi_{1}\left(S^{l}\right)$ the cobordism class of the knot

$$
k=s^{n} \times o c s^{n} \times n^{2} \omega_{s}^{n} \times s^{1 x}=s^{n+2}
$$

For any ring with involution A and any multiplicative subset $S \subset A$ define i-equivalence to be the equivalence relatio on $S^{-1} A-n o n-s i n g u l a r\left\{\begin{array}{l}\varepsilon-s y m m e t r i c \\ \varepsilon \text {-quadratic }\end{array}\right.$ forms over A given by $X \sim X^{\prime}$ if there exists an isomorphism $X \oplus Y \longrightarrow X^{\prime} \oplus Y^{\prime}$ for some non-singular forms Y, Y^{\prime}.

Combining Proposition 1.7 .1 with the results on linking forms of $\$ 3.4$ we have that the boundary operation defines a natural one-one correspondence
ה : \{i-equivalence classes of $S^{-1} A-n o n-s i n g u l a r$

$$
\left\{\begin{array}{l}
\varepsilon-\text { symmetric } \\
\varepsilon \text {-quadratic }
\end{array} \text { forms over } A\right\}
$$

$\xrightarrow[\sim]{\sim}$ (isomorphism classes of non-singular $\left\{\begin{array}{l}\text { even } \varepsilon \text {-symmetr } \\ \text { split } \varepsilon \text {-quadr }\end{array}\right.$
linking forms over (A, S) which are null-cobordant
regarded as non-singular $\left\{\begin{array}{l}\text { even }(-\varepsilon) \text {-symmetric } \\ (-\varepsilon) \text {-quadratic }\end{array}\right.$
formations over A\}.
For linking forms over $\left(\mathbb{Z}\left\{z, z^{-1}\right\}, P\right)$
ε-symmetric $=$ even ε-symmetric $=\varepsilon$-quadratic $=$ split ε-quadra by Proposition 7.9.2 ii). A non-singular (-) ${ }^{\text {it1 }} \rightarrow$ symmetric linking form over $\left(\mathbb{Z}\left[z, z^{-1}\right], P\right)(M, \lambda)$ is null-cobordant regarded as a non-singular $\left\{\begin{array}{l}\text { even }(-)^{i+1} \text {-symmetric } \\ (-)^{i+1} \text {-quadratic }\end{array}\right.$ formation over $\mathbb{Z}\left[z, z^{-1}\right]$ if and only if $\left\{\begin{array}{l}\sigma^{*}(M, \lambda)=0 \\ \sigma_{\star}(M, \lambda)=0\end{array}\right.$, where $\left\{\begin{array}{l}\sigma^{*}(M, \lambda) \\ \sigma_{\star}(M, \lambda)\end{array}\right.$ denotes the image of the linking form cobordism class

$$
\begin{aligned}
& \left\{\begin{array}{l}
(M, \lambda) \in L^{O}\left(\mathbb{Z}\left[z, z^{-1}\right], P,(-)^{i+1}\right)=C_{2 i-1} \\
(M, \lambda) \in L_{O}\left(\mathbb{Z}\left[z, z^{-1}\right], P,(-)^{i+1}\right)=C_{2 i-1}
\end{array}\right. \\
& \left\{\begin{array}{l}
L^{-1}\left(\mathbb{Z}\left[z, z^{-1}\right],(-)^{i+1}\right)=L\left\langle v_{O}\right\rangle^{O}\left(\mathbb{Z},(-)^{i}\right) \\
L_{-1}\left(\mathbb{Z}\left[z, z^{-1}\right],(-)^{i+1}\right)=L_{O}\left(\mathbb{Z},(-)^{i}\right)
\end{array}\right. \text { under the map }
\end{aligned}
$$

appearing in the localization exact sequence

$$
\begin{cases}L^{O}\left(P^{-1} \mathbb{Z}\left[z, z^{-1}\right],(-)^{i+1}\right) \longrightarrow L^{O}\left(\mathbb{Z}\left[z, z^{-1}\right], P,(-)^{i+1}\right) \\ \left(=\Gamma^{O}\left(\mathbb{Z}\left[z, z^{-1}\right) \longrightarrow \mathbb{Z},(-)^{i+1}\right)\right) & \\ L_{0}\left(P^{-1} \mathbb{Z}\left[z, z^{-1}\right],(-)^{i+1}\right) \longrightarrow L^{-1}\left(\mathbb{Z}\left[z, z^{-1}\right],\left(-\mathbb{Z}\left[z, z^{-1}\right], P,(-)^{i+1}\right)\right. \\ \left(=\Gamma_{O}\left(\mathbb{Z}\left[z, z^{-1}\right] \longrightarrow \mathbb{Z},(-)^{i+1}\right)\right) & \\ & \longrightarrow L_{-1}\left(\mathbb{Z}\left[z, z^{-1}\right], 1-\right.\end{cases}
$$

If ($N, \hat{\psi}$) is a Seifert form for the Blanchfield linking form (M, λ), that is a non-singular $(-)^{i}$-ultraquadratic form over Z such that $B(N, \hat{\psi})=(M, \lambda)$, then $\left\{\begin{array}{l}\sigma^{*}(M, \lambda) \in L\left\langle v_{O}\right\rangle^{O}\left(\mathbb{Z},(-)^{i}\right) \\ \sigma_{*}(M, \lambda) \in L_{O}\left(\mathbb{Z},(-)^{i}\right)\end{array}\right.$ is $\frac{1}{8}$ (the signature) of $\left(N, \hat{\psi}+\hat{\psi}^{\star}\right)$ if $i \equiv O(\bmod 2)$ and is $\left\{\begin{array}{l}0 \\ \text { the Arf invariant of }(N, \hat{\psi})\end{array}\right.$ if $i \equiv 1(\bmod 2)$. Applying the above special case of Proposition 1.7.1 we have:

Proposition 7.9.5 The boundary operation defines a natural one-one correspondence

J : \{a-equivalence classes of \mathbb{Z}-non-singular

$$
\left\{\begin{array}{l}
(-)^{i+1} \text {-symmetric } \\
(-)^{i+1} \text {-quadratic }
\end{array} \text { forms over } \mathbb{Z}\left\{z, z^{-1}\right]\right\}
$$

$\xrightarrow{\sim}$ \{isomorphism classes of non-sinqular $(-)^{i+1}$-symmetric linking fowms over $\left(\mathbb{Z}\left(z, z^{-1}\right], P\right) \quad(M, \lambda)$ with $\left\{\begin{array}{l}\sigma^{*}(M, \lambda)=1 \\ \sigma_{\star}(M, \lambda)=1\end{array}\right.$

The result that \mathbb{Z}-non-singular ε-quadratic forms over $\left.\mathbb{Z} \mid z, z^{-1}\right\}$ have isomorphic boundary $E-s y m m e t r i c$ linking forms over $\left(\mathbb{Z}\left[z, z^{-1}\right], P\right)$ if and only if they are 3 -equivalent was first obtained by Stoltzfus [2,Prop.5.5], by a generalization of the method of Wall [10].

The computation $\mathrm{C}_{2 i}=0(i \geqslant 2)$ can be used to express the stable equivalence classes of non-singular (-) ${ }^{i+1}$-symmetric $\left(=(-)^{i+1}\right.$-quadratic $)$ linking formations over $\left(\mathbb{Z}\left\{z, z^{-1}\right\}, P\right)$ in terms of $(-)^{i}$-symmetric linking forms over $\left(\mathbb{Z}\left[z, z^{-1}\right), P\right)$, relating non-singular Blanchfield linking formations to singular Blanchfield linking forms as follows.

For any ring with involution A and multiplicative subset SCA define ∂-equivalence to be the equivalence relation on e-symmetric linking forms over $(A, S)(M, \lambda)$ generated by the elementary operations:
i) $(M, \lambda) \longmapsto\left(M^{\prime}, \lambda^{\prime}\right)$ is $\left(M^{\prime}, \lambda^{\prime}\right)$ is isomorphic to (M, λ)
ii) $(M, \lambda) \longmapsto\left(L^{\perp} / L, \lambda^{\perp} / \lambda\right)$ if L is a sublagrangian of (M, λ)
iii) $(M, \lambda) \longmapsto(M, \lambda) \oplus\left(M^{\prime}, \lambda^{\prime}\right)$ if $\left(M^{\prime}, \lambda^{\prime}\right)$ is non-singular. A special case of the S-acyclic analogue of Proposition 1.8.3 shows that the boundary operation defines a natural one-one correspondence
\therefore : (o-equivalence classes of ε-symmetric linking forms over (A, S)
$\xrightarrow{\sim}$ \{stable equivalence classes of null-cobordant non-singular even $(-\varepsilon)$-symmetric linking formations over (A,S)\}
(cf. Proposition 3.5.4). Now $C_{2 i}=L_{1}\left(Z\left[z, z^{-1}\right], p,(-)^{i+1}\right)=0$,
so that every non-singular (-) ${ }^{i+1}$-symmetric linking formation over $\left(\mathbb{Z}\left[z, z^{-1}\right], P\right)$ is null-cobordant, and consequently: Proposition 7.9.6 The boundary operation defines a natural one-one correspondence

$$
\begin{aligned}
& 3:\left\{3 \text {-equivalence classes of }(-)^{\text {i }}\right. \text {-symmetric } \\
&\text { linking forms over } \left.\left(\mathbb{Z}\left\{z, z^{-1}\right\}, P\right)\right\} \\
& \sim\left\{\begin{array}{l}
\text { stable equivalence classes of non-singular } \\
\\
\left.(-)^{i+1} \text {-symmetric linking formations over }\left(\mathbb{Z}\left\{z, z^{-1}\right\}, P\right\}\right) .
\end{array}\right.
\end{aligned}
$$

In conclusion, it should perhaps be pointed out that the various characterizations of the odd-dimensional knot cobordism groups $C_{2 i+1}(i \geqslant 2)$ given by Proposition 7.9 .4 have little computational significance. The actual computations use the "isometric structures" of Milnor [3] - see Levine [3], Kervaire [2] and Stoltzfus [1].

References

		Trans. A.M.S. 30, 275-306 (1928)
D. R.Anderson	[1]	The Whitehead torsion of a fiber-homotopy
		equivalence Mich. Math. J. 21, 171-180 (1)
G.A.Anderson	[1]	Surgery with coefficients
		Springer Lecture Notes 591 (1977)
¢. Arf	(1)	Untersuchungen über quadratische Formen ir
		Körpern der Charakteristik 2 I.
		J. reine angew. Math. 183, 148-167 (1941)
A. Bak	(1)	K-theory of forms
		Ann. of Math. Study 98 (1981)
	[2]	Surgery and k-theory groups of quadratic
		forms over finite groups and orders prepr
and M.Kolster		
	[1]	The computation of odd dimensional projec
		surgery groups of all finite groups
		to appear in Topology
and w. Scharlau		
	[1]	Grothendieck and witt groups of orders an
		finite groups Invent. Math. 23, 207-240
J. Barge, J. Lannes, F. latour and P. Vogel		
	(1)	A-sphères
		Ann. Sc. Éc. Norm. Sup. (4) 4, 463-506
H.Bass	[1]	K-theory and stable algebra
		Publ. Math. IHES 22, 5-60 (1964)
	[2]	Algebraic K-theory Benjamin (1968)

H. Bass (contd.) [3] Unitary algebraic K-theory

Proc. 1972 Battelle Seattle Conference on
Algebraic K-theory, Vol. III., Springer
Lecture Notes 343, 57-265 (1973)

- A.Heller and R.G.Swan
[1] The Whitehead group of a polynomial exten
Publ. Math. IHES 22, 61-80 (1964)
R.C.Blanchfield
W. Browder
[1] Embedding l-connected manifolds
Bull. A.M.S. 72, 225-231 (1966)
[2] Manifolds with $\pi_{1}=\mathbb{Z}$
ibid., 238-244 (1966)
[3] Embedding smooth manifolds
Proc. 1966 ICM, Moscow, 712-719 (1968)
[4] The Kervaire invariant of framed manifolds
and its generalization
Ann. of Math. 90, 157-186 (1969)
[5] Free \mathbb{Z} p-actions on homotopy spheres
Proc. 1969 Georgia Conference on the
Topology of Manifolds, Markham, 217-226
[6] Surgery on simply-connected manifolds
Springer (1972)
[7] Poincaré spaces, their normal fibrations and surgery Invent. Math. 17, 191-202 (19
[8] Cobordism invariants, the Kervaire invariant and fixed point free involutions

Trans. A.M.S. 178, 193-225 (1973)
[9] Complete intersections and the Kervaire invariant Proc. 1978 Århus Conference on Algebraic Topology, Springer Lecture Notes 763, 88-108 (1979)
and J.Levine
[1] Fibering manifolds over a circle Comm. Math. Helv. 40, 153-160 (1966)
and G.R.Livesay
(11) Fixed point free involutions on homotopy spheres Tohoku J. Math. 25, 69-88 (1973) G. Brumfiel and J.Milgram
(1) Normal maps, covering spaces and quadratic functions

Duke Math. J. 44, 663-694 (1977)
G. Brumfiel and J.Morgan
[1] Homotopy-theoretic consequences of N.Levitt's obstruction theory to transversality for spherical fibrations

Pac. J. Math. 67, 1-100 (1976)
S.Cappel1
[1] A splitting theorem for manifolds and surgery
groups Bull. A.M.S. 77, 281-286 (1971)
[2] Mayer-Vietor is sequences in hermitian K-theory
Proc. 1972 Battelle Seattle Conference on
Algebraic K-theory, Vol. III., Springer
Lecture Notes 343, 478-512 (1973)
S.Cappell (contd.)
(3] Splitting obstructions for hermitian forms and manifolds with ${\underset{Z}{2}}_{2} \subset \pi 1$

Bull. AM.S. 79, 909-913 (1973)
[4] Unitary nilpotent groups and hermitian K-theory I
ibid. 80, 1117-1122 (1974)
[5] Manifolds with fundamental group a generalized free product ibid., 1193-1198 (1974)
[6] On connected sums of manifolds
Topology 13, 395-400 (1974)
[7] A splitting theorem for manifolds
Invent. Math. 33, 69-170 (1976)
[8] On homotopy invariance of higher signatures ibid., 171-179 (1976)
[9] Submanifolds of small codimension
Proc. 1978 ICM, Helsinki, 455-462 (1980)
and J.Shaneson
[1] The codimension two placement problem and
homology equivalent manifolds
Ann. of Math. 99, 277-348 (1974)
(2) Totally spineless manifolds

Ill. J. Math. 21, 231-239 (1977)
[3] Pseudo-free group actions I.
Proc. 1978 Århus Conference on Algebraic
Topology, Springer Lecture Notes 763,
395-447 (1979)
[4] A counterexample on the oozing problem for closed manifolds ibid., 627-634 (1979)
G.Carlsson [1] Desuspension in the symmetric L-groups
ibid.. 175-197 (1979)
and J.Milgram
[1] Torsion Witt rings for orders and finite g1 Proc. 1977 Evanston Conference on the Geometric Applications of Homotopy Theory, Vol. I. Springer I,ecture Notes 657, 85-105 (1978)
[2] The structure of odd L-groups
Proc. 1978 Water loo Conference on Algebraic Topology, Springer Lecture Notes 741, 1-72
(3) Some exact sequences in the theory of hermitian forms
J. Pure and App. Alg. 18, 233-252 (1980)
D. Carter
[1] Localization in lower algebraic K-theory
Comm. in Alg. 8, 603-622 (1980)
J.W.S.Cassels [1] Rational quadratic forms Academic Press (19
A.J.Casson
[1] Whitehead groups of free products with amalgamation Proc. 1972 Battelle Seattle Conference on Algebraic K-theory, Vol. II., Springer Lecture Notes 342, 144-154 (1973)
P.F.Conner and E.Y.Miller
[1] Equivariant self-intersection preprint
F. X.Connolly
[1] Iinking forms and surgery Topology 12, 389-409 (1973)
G. deRham
[1] Sur l'analysis situs des varietes à n dimen J. de math. pures $\mathrm{X}, 115-200$ (1931)
oups
(1979)
78)

M.Karoubi

[1] Periodicité de la K-theorié hermitienne
C. Kearton
M.Kervaire Proc. 1972 Battelle Seattle Conference on Algebraic K-theory, Vol. III., Springer Lecture Notes 343, 301-411 (1973)
[2] Localisation de formes quadratiques 1 . Ann. Sci. Éc. Norm. Sup. (4) 7, 359-404 (1974)
[3] Localisation de formes guadratiques II. ibid. 8, 99-155 (1975)
[1] Blanchfield duality and simple knots
Trans. A.M.S. 202, 141-160 (1975)
[2] Cobordism of knots and Blanchfield duality J. Lond. Math. Soc. (2) 10, 406-408 (1975)
[3] An algebraic classification of some even-dimensional knots
Topology 15, 363-373 (1976)
[4] An algebraic classification of certain simple even-dimensional knots preprint
$11]$ Les noeuds de dimensions supérieures Bull. Soc. Math. France 93, 225-271 (1965)
[2] Knot cobordism in codimension two
Proc. 1970 Amsterdam Conference on Manifolds, Springer Lecture Notes 197, 83-105 (1970)
and J.Milnor
[1] Groups of homotopy spheres I. Ann. of Math. 77, 504-537 (1963)
and C .Weber
(1) A survey of multidimensional knots Proc. 1977 Plans Conference on Knots, Springer tecture Notes 685, 6l-134 (1977)
M. Knebusch and W.Scharlau
[1] Quadratische Formen und quadratische
Reziprozitätsgesetze über algebraischen
Zahlkörpern Math. Z. 121, 346-368 (1971)
M. Kneser and D. Puppe
[1] Quadratische Formen und Verschlingungsinvaria
von Knoten Math. Z. 58, 376-384 (1953)

, F.latour and C.Morlet
[1] Geométrie des complexes de Poincaré et
chirurgie IHES notes (1971)
R. Lee $\quad[1]$ Splitting a manifold into two parts

IAS notes (1968)
J. Levine
[1] Polynomial invariants of knots of
codimension two
Ann. of Math. 84, 537-554 (1966)
[2] Knot cobordism in codimension two
Comm. Math. Helv. 44, 229-244 (1969)
[3] Invariants of knot cobordism
Invent. Math. 8, 98-110
(1969)

```
J.Levine (contd.)
```

(4] An algebraic classification of some knots of codimension two

Comm. Math. Helv. 45, 185-198 (1970)
[5] Knot modules I.
Trans. A.M.S. 229, 1-50 (1977)
N. Levitt
[1] Poincaré duality cobordism
Ann. of Math. 96, 211-244 (1972)
and J.Morgan
[1] Transversality structures and PL structures
on spherical fibrations
Bull. A.M.S. 78, 1064-1068 (1978)
and A.A.Ranicki
[1] Intrinsic transversality structures preprint
S. López de Medrano
[1] Involutions on manifolds Springer (1971)
[2] Invariant knots and surgery in codimension: Proc. 1970 ICM, Nice, Vol. 2, 99-112 (1971)
I.Madsen [1] Smooth spherical space forms

Proc. 1977 Evanston Conference on the
Geometric Applications of Homotopy theory, I Springer Lecture Notes 657, 301-352 (1978)
\{2\} Spherical space forms in the period dimensic preprint
B.M.Mann and E.Y.Miller
[1] A formula for the Browder-Livesay invariant of an involution J. Lond. Math. Soc.
Y. Matsumoto
[1] Knot cobordism groups and surgery in codimension two
J. Fac. Sci. Tokyo (TA) 20, 253-317 11973)
[2] Some relative notions in the theory of
hermitian forms
Proc. Jap. Acad. 49, 583-587 (1973)
[3] On the equivalence of algebraic formulations
of knot cobordism
Jap. J. Math. 3, 81-104 (1977)
S.Maumary
J.Milnor
[1] Proper surgery groups and Wall-Novikov groups
Proc. 1972 Battelle Seattle Conference on
Algebraic K-theory, Vol. IIl, Springer
Lecture Notes 343, 526-539 (1973)
(1) A procedure for killing the homotopy groups of differentiable manifolds

Proc. A.M.S. Symp. Pure Math. III, 39-55 (1961)
[21 Singular points of complex hypersurfaces
Ann. of Math. Study 61 (1968)
[3] Isometries of inner product spaces
Invent. Math. 8, 83-97 (1969)
(4) Introduction to algebraic K-theory Ann. of Math. Study 72 (1971)
and D.Husemoller
(1) Symmetric bilinear forms Springer (1972)
A.S.Mishchenko [1] Homotopy invariants of non-simply-connected manifolds III. Higher signatures

Izv. Akad. Nauk SSSR, ser. mat. 35,
1316-1355 (1971)
J.Morgan and D.Sullivan
[1] The transuersality characteristic class and linking cycles in surgery theory

Ann. of Math. 99, 463-544 (1974)
H.J.Munkholm and E.K.Pedersen
[1] Whitehead transfers for S^{1}-bundles:
an algebraic description preprint
K.Murasugi [1] On a certain numerical invariant of link types

Trans. A.M.S. 114, 377-383 (1965)
[1] Introduction to quadratic forms Springer (1962)
[1] The algebraic construction and properties of hermitian analogues of K-theory for rings with involution, from the point of view of the hamiltonian formalism. Some applications to differential topology and the theory of characteristic classes

Izv. Akad. Nauk SSSR, ser. mat. 34,
253-288, 478-500 (1970)
W. Pardon
[1] Local surgery and the theory of quadratic forms
Bull. A.M.S. 82, 131-133 (1976)
[2] The exact sequence of a localization for
Witt groups Proc. 1976 Evanston Conference
on Algebraic K-theory, Springer Lecture
Notes 551, 336-379 (1976)
W. Pardon (contd.)
[3] Local surgery and the exact sequence of a localization for witt groups A.M.S. Memoir $19($
[4] Mod2 semi-characteristics and the converse to a theorem of Milnor Math. 2. 171, 247-268 (1980)
[5] The exact sequence of a localization for Witt groups II. Numerical invariants of odd-dimensional surgery obstructions to appear in Pac. J. Math.
[6] A "Gersten Conjecture" for Witt groups to app Proc. 1980 Oberwolfach Algebraic k-theory Con
[7] The map of the Witt group of a regular local to the witt group of its field of fractions p D.S.Passman and T.Petrie
[1] Surgery with coefficients in a field Ann. of Math. 95, 385-405 (1972)
E.K.Pedersen and A.A.Ranicki
[1] Projective surgery theory
Topology 19, 239-254 (1980)
D.G.Quillen
[1] Higher K-theory for categories with exact sequences Proc. 1972 Oxford Conference
"New Developments in Topology"
LMS Lecture Notes 11, 95-104 (1974)
[2] Higher algebraic K-theory I.
Proc. 1972 Battelle Seattle Conference on Algebraic K-theory, Vol. I., Springer

Lecture Notes 341, 85-147 (1973)
F.Quinn

A.A.Ranicki

[1] A geometric formulation of surgery
Proc. 1969 Georgia Conference on the
Topology of Manifolds, Markham, 500-512 (19
[2] $\underline{B}_{(\underline{T O P})_{n}}^{\sim}$ and the surgery obstruction I.
Bull. A.M.S. 77, 596-600 (1971)
[3] Surgery on Poincaré and normal spaces ibid. 78, 262-267 (1972)
[4] Semifree group actions and surgery on
PL homology manifolds
Proc. 1974 Conference on Geometric Topology,
Park City, Utah, Springer Lecture Notes 438,
395-414 (1975)
[1] Algebraic L-theory I. Foundations
Proc. Lond. Math. Soc. (3) 27, 101-125 (197
[2] II. Laurent extensions
ibid., 126-158 (1973)
[3] III. Twisted Laurent extensions
Proc. 1972 Battelle Seattle Conference on
Algebraic K-theory, Vol. III., Springer
Lecture Notes 343, 412-463 (1973)
[4] IV. Polynomial extension rings
Comm. Math. Helv. 49, 137-167 (1974)
[5] An algebraic formulation of surgery Trinity College fellowship dissertation (197
[6] Localization in quadratic L-theory
Proc. 1978 Water loo Conference on Algebraic Topology, Springer Lecture Notes 741, 102-157 (1979)
A.A.Ranicki (contd.)
[7] The total surgery obstruction Proc. 1978 Århus Conference on Algebraic Topology, Springer Lecture Notes 763, 275-316 (1979)
[8] The surgery obstruction of a disjoint union J. Lond. Math. Soc. 20, 559-566 (1979)
[9] The algebraic theory of surgery I. Foundations Proc. Lond. Math. Soc. (3) 40, 87-192 (1980)
[10] II. Applications to topology
ibid., 193-283 (1980)
[11] Splitting theorems in the algebraic theory of surgery in preparation
[12] Classifying spaces in the algebraic theory of surgery in preparation
W.Richter [1] Simple even-dimensional knots and Blanchfield
C.P.Rourke and B.J.Sanderson
(1) Block bundles I.

Ann. of Math. 87, 1-28 (1968)
[2] On topological neighbourhoods
Comp. Math. 22, 387-424 (1970)
M.G.Scharlemann [1] Transversality theories at dimension 4

Invent. Math. 33, 1-14 (1976)
H.Seifert [l] Verschlingungsinvarianten

Sit. Preuß. Akad. Wiss. 26, 811-823 (1933)
[2] Über das Geschlecht von Knoten
Math. Ann. 110, 571-592 (1934)

J.Shaneson	[1]	Wall's surgery obstruction groups for $G \times \mathbb{Z}$
		Ann. of Math. 90, 296-334 (1969)
R.W.Sharpe	[1]	On the structure of the unitary Steinberg
		group ibid. 96, 444-479 (1972)
	[2]	Surgery on compact manifolds: the bounded
		even-dimensional case ibid. 98, 187-209 (1973)
L.Siebenmann	[1]	A total Whitehead torsion obstruction to
		fibering over the circle
		Comm. Math. Helv. 45, 1-48 (1970)
J.Smith	(1]	Acyclic localizations
		J. Pure and App. ALg. 12, 117-127 (1978)
	[2]	Complements of codimension two submanifolds
		III. Cobordism theory
		to appear in Pac. J. Math.
J.Stallings	[1]	On fibering certain 3-manifolds
		Proc. 1961 Georgia Conference on the Topology of 3-manifolds, Prentice-Hall, 95-100 (1962)
	[2]	Whitehead torsion of free products
		Ann. of Math. 82, 354-363 (1965)
B. Stenström	[1]	Rings of quotients Springer (1975)
N.Stoltzfus	[1]	Unraveling the integral knot concordance group
		A.M.S. Memoir 192 (1977)
	[2]	Equivariant concordance of invariant knots
		Trans. A.M.S. 254, 1-45 (1979)
D. Sullivan	[1]	Trianqulating homotopy equivalences
		Princeton Ph. D. thesis (1965)

D.Sullivan (contd.)
[2] Geometric periodicity and the invariants of manifolds

Proc. 1970 Amsterdam Conference on Manifolds,
Springer Lecture Notes 197, 44-75 (1970)
R.G.Swan
L.R.Taylor
[1] Surgery on paracompact manifolds
Berkeley Ph.D. thesis (1972)
[2] Surgery grolps and inner automorphisms
Proc. 1972 Battelle Seattle Conference on
Algebraic K-theory, Vol. III., Springer
Lecture Notes 343, 471-477 (1973)
and B.Williams
[1] Surgery spaces: formulae and structure Proc. 1978 Waterloo Conference on Algebraic Topology, Springer Lecture Notes 741, 170-195 (1979)
[2] Local surgery: foundations and applications Proc. 1978 Arhus Conference on Algebraic Topology, Springer Lecture Notes 763, 673-695 (1979)
[3] Surgery on closed manifolds preprint
C.B. Thomas
[1] Frobenius reciprocity for hermitian forms 3. Alg. 18, 237-244 (1971)

H.F.Trotter	[1]	Homology of group systems with applications
		to knot theory
		Ann. of Math. 76, 464-498 (1962)
	(2)	On S-equivalence of Seifert matrices
		Invent. Math. 20, 173-207 (1973)
	[3]	Knot modules and Seifert matrices
		Proc. 1977 Plans Conference on Knots,
		Springer Lecture Notes 685, 291-299 (1978)
P. Vogel	[1]	Cobordisme d'immersions
		Ann. Sci. Éc. Norm. Sup. (4) 7, 317-358 (197
	[2]	Localization in algebraic L-theory
		Proc. 1979 Siegen Topology Symposium,
		Springer Lecture Notes 788, 482-495 (1980)
	[3]	On the obstruction group in homology surgery
		preprint
F.Waldhausen	[1]	On irreducible 3-manifolds which are sufficie
		large Ann. of Math. 87, 56-88 (1968)
	[2]	Whitehead groups of generalized free products
		notes (1969)
	[3]	Algebraic K-theory of generalized free produc
		Ann. of Math. 108, 135-256 (1978)
C.T.C.Wall	[1]	Quadratic forms on finite groups and related
		topics Topology 2, 281-298 (1963)
	[2]	Surgery on non-simply-connected manifolds
		Ann. of Math. 84, 217-276 (1966)
	[3]	Poincare complexes I. ibid. 86, 213-245 (197
	[4]	Surgery on compact manifolds
		Academic Press (1970)

C.T.C.Wall (contd.)
[5] On the axiomatic foundations of the theory of Hermitian forms

Proc. Camb. Phil. Soc. 67, 243-250 (1970)
[6] On the classification of hermitian forms
I. Rings of algebraic integers

Comp. Math. 22, 425-451 (1970)
[7] III. Complete semilocal rings
Invent. Math. 19, 59-71 (1973)
[8] V. Global rings ibid. 23, 261-288 (1974)
19] VI. Group rings
Ann. of Math. 103, 1-80 (1976)
[10] Quadratic forms on finite groups II.
Bull. Lond. Math. Soc. 4, 156-160 (1972)
[11] Foundations of algebraic L-theory
Proc. 1972 Battelle Seattle Conference on
Algebraic K-theory, Vol.III., Springer
Lecture Notes 343, 266-300 (1973)
$[12]$ periodicity in algebraic L-theory Proc. 1973 Tokyo Conference on Manifolds, 57-68 (1974)
[13] Formulae for surgery obstructions Topology 15, 189-210 (1976)
H. Weyl [1] The algebraic theory of numbers Ann. of Math. Study 1 (1940)
O.Zariski and P.Samuel
[1] Commutative algebra
Van Nostrand (1958), Springer (1975)

INDEX OF PROPOSITIONS

1.1 .1	11	2.2.6	132	3.6.3	370	7.1 .2	552
1.1 .2	12	2.3.1	134	3.6.4	374	7.1 .3	553
1.1 .3	14	2.3.2	143	3.6.5	376	7.1 .4	556
1.1 .4	16	2.4 .1	145	3.6 .6	377	7.1 .4	(rela)
1.2.1	19	2.4.2	146	3.7.1	385		557
1.2.2	36	2.4 .3	$15 i$	3.7 .2	386	7.1 .4	(xel)
1.2 .3	38	2.4 .4	153	3.7 .3	390		561
1.3 .1	41	2.4 .5	156	4.1 .1	395	7.2 .1	566
1.3.2	44	2.4.6	157	4.1 .2	397	7.2 .2	568
1.3 .3	49	2.4 .7	164	4.1 .3	400	7.2 .3	571
1.4 .1	51	2.5.1	167	4.1 .4	400	7.2 .4	572
1.4 .2	54	2.5.2	168	4.1 .5	405	7.2 .5	577
1.4 .3	55	3.1.1	186	4.2 .1	409	7.2 .6	580
1.5.1	59	3.1.2	189	4.3 .1	419	7.2 .7	582
1.5.2	59	3.1.3	202	4.3 .2	421	7.3.1	589
1.6.1	64	3.2.1	206	4.3.3	424	7.3 .2	591
1.6.2	67	3.2 .2	207	5.1.1	435	7.3.3	594
1.6 .3	70	3.2.3	208	5.1.2	439	7.3 .4	601
1.6 .4	72	3.2 .4	211	5.1.3	442	7.3 .5	605
1.6 .5	75	3.3.1	217	5.1 .4	447	7.3 .6	608
1.6 .6	75	3.3.2	219	5.1 .5	453	7.3 .7	610
1.7 .1	90	3.4 .1	228	5.1 .6	457	7.4 .1	618
1.8.1	92	3.4.2	236	5.1 .7	460	7.4 .2	623
1.8 .2	95	3.4 .3	240	5.2 .1	467	7.4 .3	626
1.8 .3	96	3.4 .4	246	5.2.2	469	7.4 .4	630
1.9 .1	99	3.4 .5	254	6.1 .1	484	7.4 .5	632
1.9 .2	100	3.4 .6	261	6.1 .2	489	7.4 .6	634
1.10 .1	104	3.4 .7	274	6.1 .3	490	7.4 .7	638
1.10 .2	106	3.5 .1	285	6.2 .1	497	7.4 .8	639
2.1 .1	114	3.5.2	292	6.2 .2	500	7.5 .1	644
2.2.1	122	3.5.3	332	6.2 .3	502	7.5.2	649
2.2.2	124	3.5.4	340	6.3 .1	515	7.5 .3	653
2.2.3	126	3.5 .5	361	6.4 .1	531	7.5.4	656
2.2.4	127	3.6 .1	368	6.4 .2	533	$7.6 .1_{\text {A }}$	670
2.2 .5	130	3.6.2	368	7.1 .1	550	7.6.2A	679

$7.6 .1_{B}$	682
7.6 .3	695
7.6 .4	699
7.6 .5	716
7.6 .6	727
7.6 .7	731
7.6 .8	736
7.7 .1	752
7.7 .2	754
7.7 .3	760
7.7 .4	762
7.7 .5	763
7.8 .1	770
7.8 .2	773
7.8 .4	776
7.8 .5	777
7.8 .6	779
7.8 .7	786
7.8 .8	787
7.8 .9	799
7.8 .10	801
7.8 .11	805
7.8 .12	808
7.8 .13	810
7.8 .14	819
7.9 .1	823
7.9 .2	823
7.9 .3	829
7.9 .4	836
7.9 .5	840
7.9 .6	842
7	

[^0]: $?$

