
NOTES ON ENDS OF COMPLEXES

by Andrew Ranicki
(Talks at Princeton, Notre Dame and Aberdeen, March-May, 1996)

These are notes for talks based on material in the book Ends of Complexes by Bruce
Hughes and A.R., published by Cambridge University Press as Cambridge Tract in Math-
ematics 123. The introduction is available on WWW from
http://www.maths.ed.ac.uk/ ãar
The paper of A.R. Finite domination and Novikov rings (Topology 34, 619–632 (1995))
is also relevant. (Offprint available from same source).

At the Princeton 250th anniversary conference in March of this year Milnor recalled
his 1950’s and 1960’s prejudice in favour of compact manifolds and finite CW complexes,
and his reasons for overcoming this prejudice. Milnor mentioned only Chapman’s 1974
proof of the topological invariance of Whitehead torsion, and dynamical systems, but
there are others, most notably Novikov’s 1965 proof of the topological invariance of the
rational Pontrjagin classes. I inherited Milnor’s prejudice from his papers and books, and
I have also become a convert to the wide open spaces of non-compact manifolds. In my
case this was largely due to the development of controlled topology : this is a combination
of algebra and geometry which is particularly suited to the asymptotic topology of non-
compact manifolds.*

The algebraic topology of finite CW complexes suffices for compact PLmanifolds. How-
ever, compact topological manifolds require the algebraic topology of infinite CW com-
plexes. The non-compact manifolds usually arise as universal covers of compact manifolds
(especially aspherical ones) with infinite fundamental group. The traditional algebraic
topology method of studying non-compact spaces uses inverse limits of systems of neigh-
bourhoods. Geometric topology deals with ends of non-compact spaces using methods
of differential geometry, surgery theory and controlled algebra. The homotopy theory of
inverse systems is not well adapted to geometry, so had to invent suitable chain homotopy
theory, halfway between the geometry and algebra.

The complexes of the title of the book refer to CW (or simplicial) complexes in topology
and chain complexes in algebra. An end of a complex is a subcomplex with a particular
type of infinite behaviour, involving non-compactness in topology and infinite generation
in algebra. These are to be regarded as tools in the study of manifolds, both compact
and non-compact. Tameness is a topological growth condition on ends : tame ends arise
fairly naturally in geometry, and are relatively easy to handle in algebra. Tame ends
of manifolds just non-compact enough for finite domination and for K- and L-theory to
decide if they are collared (= look like K×R+). (The main result of the Topology paper is

* Actually, I have not entirely shed my prejudice in favour of compactness/finiteness, but
non-compact spaces/infinite complexes happen to be the most powerful tools for studying
the topological properties of compact manifolds!
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the homological characterization of tameness : an end of an infinite cyclic cover of compact
space is tame if and only if Novikov homology is 0). In section 1. there is a brief survey
of various results from the last 50 years which motivated me. (I cannot vouch for Bruce
Hughes’ motivations, but not for nothing was he a student of Chapman.)

1. Historical background.

1950 Whitehead torsion.
1952 Serre uses path space fibrations for homotopy group computations.
1955 Nash uses a path space model PM for the tangent bundle TM of a compact manifold

M to prove Thom’s result on the topological invariance of the Stiefel-Whitney classes.
(PM = the space of paths ω : [0, 1]−−→M such that ω(t) 6= ω(0) for t 6= 0).

1960 Smale h-cobordism theorem.
1961 Milnor’s disproves the Hauptvermutung for compact polyhedra: combinatorial type

is not topologically invariant.
1962 Stallings proves that for n ≥ 5 a contractible open n-dimensional PL manifold which

is simply connected at infinity is PL homeomorphic to Rn.
1964 Barden-Mazur-Stallings s-cobordism theorem.
1964 Stallings’ open h-cobordism theorem.
1965 Faddell develops path space model for normal bundle of submanifold.
1965 Browder proves that a simply-connected open n-dimensional PL manifold W with

2 ends which are simply connected at infinity is PL homeomorphic to M × R for a
compact (n− 1)-dimensional manifold M .

1965 Wall finiteness obstruction : a finitely dominated CW complex X is homotopy
equivalent to a finite CW complex if and only if an algebraic K-theory invariant
[X] ∈ K̃0(Z[π1(X)]) is 0.

1965 Browder, Levine and Livesay use surgery to prove that for n ≥ 6 a simply-connected
open n-dimensional PL manifold which is simply connected at infinity is interior of
compact n-dimensional PL manifold.

1965 Siebenmann end obstruction : for n ≥ 6 an open n-dimensional manifold with tame
end ε is interior of compact n-dimensional manifold if and only if Wall finiteness
obstruction [ε] ∈ K̃0(Z[π1(ε)]) is 0.

1966 Novikov proves topological invariance of rational Pontrjagin classes.
1969 Casson and Sullivan disprove manifold Hauptvermutung. (Hauptvermutung book to

be published by Kluwer in 1996).
1969 Kirby and Siebenmann structure theory for high-dimensional topological manifolds.
1970 Browder-Novikov-Sullivan-Wall surgery theory for classifying high-dimensional ma-

nifolds is complete.
1970 Siebenmann’s infinite Whitehead torsion, and open s-cobordism theorem.
1974 Chapman uses Hilbert cube manifolds to prove the topological invariance of White-

head torsion
1975 Browder and Quinn propose surgery theory for stratified sets.
1976 West uses Hilbert cube manifolds to prove Borsuk conjecture : every compact ANR

is homotopy equivalent to a finite CW complex.
1978 Chapman, Ferry and Quinn develop controlled topology, the version of B-N-S-W
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compact manifold surgery theory appropriate for non-compact manifolds. (Actually,
controlled surgery theory is still under construction).

1979 Farrell and Hsiang apply controlled topology to prove Novikov conjectures for fun-
damental groups of manifolds with strong curvature conditions.

1985 Quinn develops surgery theory of stratified sets, using controlled surgery and path
space model for the link of one stratum inside another.

1992 Cappell, Shaneson and Weinberger apply controlled surgery to stratified sets.
1993 Bryant, Ferry, Mio and Weinberger apply controlled surgery to construct compact

ANR homology manifolds which cannot be resolved by topological manifolds.
1994 Carlsson and Pedersen apply controlled surgery and equivariant topology to prove

Novikov conjectures for fundamental groups of manifolds with weak curvature con-
ditions.

2. Homology at infinity.

The homology at ∞ is the classical algebraic topology invariant which depends only
on the behaviour at ∞, i.e. away from compact subsets, being the difference between
ordinary and locally finite homology.

Let W be a CW complex, and let Ir be an indexing set for the r-cells. The ordinary
homology of W is the homology of the cellular chain complex

H∗(W ) = H∗(C(W )) , C(W )r =
∑
Ir

Z .

Milnor showed that locally finite homology of a finite-dimensional locally finite W is the
homology of the locally finite cellular chain complex

H lf
∗ (W ) = H∗(Clf (W )) , Clf (W )r =

∏
Ir

Z .

In fact, can use this to define H lf
∗ . Define the homology at ∞ of W

H∞∗ (W ) = H∗+1(C(W )−−→Clf (W ))

to fit into the exact sequence

. . . −−→ H∞r (W ) −−→ Hr(W ) −−→ H lf
r (W ) −−→ H∞r−1(W ) −−→ . . . .

The homology at∞ is a proper homotopy invariant of W which ignores all finite (= com-
pact) subcomplexes V ⊆ W . (Proper means that inverse image of compact is compact).
Here is the algebraic analogue :

Definition 1. Let A be any ring. Given a chain complex of based free A-modules C with
Cr =

∑
Ir

A and such that the differentials d : Cr−−→Cr−1 are proper (i.e. the matrices
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have finite rows and finite columns) define the end complex

e(C) = C(i : C−−→Clf )∗+1 ,

i = inclusion : Cr =
∑
Ir

A −−→ Clfr =
∏
Ir

A ,

e(C)r = Cr ⊕ Clfr+1 =
∑
Ir

A⊕
∏
Ir+1

A , de(C) =
(

dC 0
(−)ri dClf

)
.

Key property: if D ⊆ C is a f.g. free subcomplex then the natural projection C−−→C/D
induces a homology equivalence e(C) ' e(C/D). Thus the homology H∗(e(C)) depends
only on the algebra at ∞ of C, ignoring the f.g. free subcomplexes.

The topology at ∞ of an infinite CW complex W is given on the chain level by the end
complex of the cellular chain complex C(W )

e(C(W )) = C(C(W )−−→Clf (W ))∗+1 .

Example If A = Z, C = C(W ) then

H∗(e(C)) = H∞∗ (W ) .

Example If W = K ×R for a connected finite CW complex K then take A = Z and note
that the standard CW structure on R gives

C(W ) = C(K)⊗ C(1− z : Z[z, z−1]−−→Z[z, z−1]) ' C(K) ,

Clf (W ) = C(K)⊗ C(1− z : Z[[z, z−1]]−−→Z[[z, z−1]]) ' C(K)∗−1 ,

e(C(W )) ' C(K)⊗ C(1− z : Z[[z, z−1]]/Z[z, z−1]−−→Z[[z, z−1]]/Z[z, z−1])

' C(K)⊕ C(K) corresponding to the two ends of W,

so that

H∗(W ) = H∗(K) , H lf
∗ (W ) = H∗−1(K) , H∞∗ (W ) = H∗(K)⊕H∗(K) .

In dealing with the universal cover W̃ of a connected CW complex W with π1(W ) = π

take A = Z[π], C(W̃ )r =
∑
Ir

A and write

Clf,π(W̃ ) = C(W̃ )lf

with Clf,π(W̃ )r =
∏
Ir

A.

3. Ends

The ends of non-compact spaces were first studied in 3-dimensional manifolds, and also
play an important role in the cohomology of infinite groups. Here, mainly interested in
the structure of an individual tame end.
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Definition 2. An end ε of a non-compact space W is an equivalence class of sequences
W ⊃ U1 ⊃ U2 ⊃ . . . of connected open subsets such that each Ui is a component of
W\Ki, for a sequence of compact subsets K1 ⊂ K2 ⊂ . . . ⊂ W , such that

∞
∩
i=1

cl(Ui) = ∅,
subject to

(W ⊃ U1 ⊃ U2 ⊃ . . .) ∼ (W ⊃ V1 ⊃ V2 ⊃ . . .)
if for each Ui there exists j with Ui ⊆ Vj , and for each Vj there exists i with Vj ⊆ Ui.

Example Let K be a connected compact space.
(i) K × R+ has one end ε, with neighbourhoods Ui = K × (i,∞) ⊂ K × R+.
(ii) K × R has two ends ε+, ε−, with neighbourhoods U±i = K × (±i,±∞) ⊂ K ×R.

Example If W is a non-compact space with a proper map f : W−−→[0,∞) such that the
inverse images Wt = f−1[t,∞) (t ≥ 0) are connected then W has one end.

4. Tame ends

Definition 3. A space X is finitely dominated if there exist a finite CW complex K and
maps f : X−−→K, g : K−−→X such that gf ' 1 : X−−→X.

Wall proved that a connected infinite CW complex X is finitely dominated if and only
if π1(X) is finitely presented and the cellular Z[π1(X)]-module chain complex C(X̃) of
the universal cover X̃ is chain equivalent to a finite f.g. projective Z[π1(X)]-module chain
complex P . The reduced projective class

[X] = [P ] =
∞∑
r=0

(−)r[Pr] ∈ K̃0(Z[π1(X)])

is the Wall finiteness obstruction, such that [X] = 0 if and only if X is homotopy equiva-
lent to a finite CW complex.

Definition 4. (Siebenmann) (i) An end ε of an open manifold W is tame if it admits a
sequence W ⊃ U1 ⊃ U2 ⊃ . . . of finitely dominated connected open sets with

∞⋂
i=1

cl(Ui) = ∅ , π1(U1) = π1(U2) = . . . = π1(ε) .

(ii) An end ε of an open n-dimensional manifold W is collared if it has an open neigh-
bourhood of the type U = M × R ⊂W for a closed (n− 1)-dimensional manifold M , i.e.
if ε is the interior of a closed manifold.

5. Wrapping up

The infinite cyclic covers of compact manifolds are the most interesting examples of
manifold ends :
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Theorem 1. (Siebenmann, 1965, Hughes-Ranicki, 1995)
Let W be a connected open n-dimensional manifold with compact boundary ∂W and one
end ε.
(i) The end ε is tame if (and for n ≥ 6 only if) it has an open neighbourhood U ⊂W which
is a finitely dominated infinite cyclic cover U = V of a compact n-dimensional manifold
V (the wrapping up of ε) with π1(ε) = π1(V ) and with a homeomorphism U×S1 ∼= V ×R.
(ii) For a tame ε the Wall finiteness obstruction of V

+

[ε] = [V
+

] ∈ K̃0(Z[π1(ε)])

is such that [ε] = 0 if (and for n ≥ 6 only if) ε can be collared, in which case U = M ×R,
V = M ×S1. The wrapping up is such that ε×S1 is collared, with W ×S1 = W × S1\V
for a compact (n+ 1)-dimensional cobordism (W × S1; ∂W × S1, V ).

6. Forward and reverse tameness.

In the 1980’s Quinn developed a version of the Siebenmann end invariant appropriate
to stratified sets, distinguishing two kinds of tameness for a locally compact Hausdorff
space W :

Definition 5. (i) The space W is reverse tame if for every cocompact subspace U ⊆ W
there exist a cocompact subspace V ⊆W with V ⊆ U such that U is dominated by U\V ,
by a homotopy h : W × I−−→W such that

(a) h0 = idW ,
(b) ht|(W\U) = inclusion : W\U−−→W for every t ∈ I,
(c) h(U × I) ⊆ U ,
(d) h1(W ) ⊆W\V .

(cocompact = closure of complement is compact).
(ii) The space W is reverse collared if for every cocompact subspace U ⊆ W there exists
a cocompact subspace V ⊆ U such that U\V is is a strong deformation retract of U , in
which case there exists a homotopy h : W × I−−→W as in (i).

A reverse tame space admits a push in from infinity.

Definition 6. (i) The space W is forward tame if there exists a closed cocompact subspace
V ⊆W such that the inclusion V ×{1}−−→W extends to a proper map q : V ×(0, 1]−−→W .
(ii) The space W is forward collared if there exists a closed cocompact ANR subspace
V ⊆W with an extension of the identity V ×{1}−−→V to a proper map q : V ×(0, 1]−−→V .

A forward tame space admits a push out to infinity.

Quinn (and H–R) use geometric Poincaré duality to prove a manifold end ε is forward
tame if and only if it is reverse tame, if and only if it is tame in sense of Siebenmann.
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7. End space

The end space e(W ) of a non-compact space W is a space whose homotopy type de-
scribes the algebraic topology of W at infinity, a kind of homotopy theoretic ideal bound-
ary. Here is a typical application. If W is an open n-dimensional manifold then the
one-point compactification W∞ = W ∪ {∞} is not in general a manifold. Is W the inte-
rior of compact n-dimensional manifold with boundary, i.e. can the singularity at ∞ in
W∞ be resolved? If W is (forward or reverse) tame then (W, e(W )) is an n-dimensional
Poincaré pair. End spaces of tame manifold ends are thus a geometric source of Poincaré
duality spaces. Algebraic K- and L-theory can be used to decide if e(W ) is homotopy
equivalent to a closed (n− 1)-dimensional manifold. The book (and talk) deals with the
following questions : what is the end space e(W )?, what does it mean for W to be tame?,
when can tame manifold W be closed? In principle, such questions were already answered
by Siebenmann in 1965, but the answers need to be retooled for modern applications, e.g.
to controlled topology and stratified sets.

Definition 7. (Quinn) The end space of a non-compact space W is the space of paths
ω : ([0,∞], {∞}) −−→ (W∞, {∞}) such that ω−1(∞) = {∞}, with the compact-open
topology.

The end space e(W ) is the homotopy link of {∞} in W∞, with π0(e(W )) the number of
ends of W . An element ω ∈ e(W ) can also be viewed as a path ω : [0,∞)−−→W such that
ω(t) diverges to ∞ as t → ∞, meaning that for every compact subspace K ⊂ W there
exists N > 0 with ω([N,∞)) ⊂W\K.

Proposition (Quinn) W is forward tame if and only if the homotopy commutative square

e(W ) w

u

{∞}

u

W w W∞

is a homotopy pushout.

Thus for a forward tame space W there is an exact sequence

. . . −−→ Hr(e(W )) −−→ Hr(W ) −−→ H̃r(W∞) −−→ Hr−1(e(W )) −−→ . . .

and

H̃∗(W∞) = H lf
∗ (W ) , H∗(e(W )) = H∞∗ (W ) .

Thus if W is a forward tame CW complex

H∗(e(W )) = H∗+1(C(W )−−→Clf (W )) = H∗(e(C(W ))) = H∞∗ (W ) .
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8. Algebraic forward and reverse tameness

Our results are most complete for the tameness and collaring properties of infinite cyclic
covers of finite CW complexes – in view of the wrapping up construction this is not too
serious a restriction.

First a purely algebraic result. Given a ring A and an automorphism α : A−−→A let
Aα[z], Aα[z, z−1] be the α-twisted polynomial extensions, so that

Aα[z, z−1] = {
∞∑

j=−∞
ajz

j | {j ∈ Z|aj 6= 0 ∈ A} finite}

with az = zα(a) (a ∈ A). Define also the power series (Novikov) rings

Aα[[z]] = the (z)-adic completion of Aα[z] = {
∞∑
j=0

ajz
j | aj ∈ A} ,

Aα((z)) = {
∞∑

j=−∞
ajz

j | {j ∈ Z−|aj 6= 0 ∈ A} finite}

and similarly for Aα[z−1], Aα[[z−1]], Aα((z−1)). If C+ is a based f.g. free Aα[z]-module
chain complex then

(C+)lf = Aα[[z]]⊗Aα[z] C
+ .

The localization and completion fit into a cartesian square of rings

Aα[z] w

u

Aα[[z]]

u

Aα[z, z−1] w Aα((z))

Theorem 2. (Ranicki, 1995)
(i) A finite f.g. free Aα[z]-module chain complex C+ is A-finitely dominated if and only
if H∗(Aα((z−1))⊗Aα[z] C

+) = 0.
(ii) A finite f.g. free Aα[z, z−1]-module chain complex C is A-finitely dominated if and
only if H∗(Aα((z))⊗Aα[z,z−1] C) = 0 and H∗(Aα((z−1))⊗Aα[z,z−1] C) = 0. It is possible
to express C as

C = Aα[z, z−1]⊗Aα[z] C
+ = Aα[z, z−1]⊗Aα[z−1] C

−

for Aα[z]-module subcomplex C+ ⊂ C and Aα[z−1]-module subcomplex C− ⊂ C. Let

Clf = Aα[[z, z−1]]⊗Aα[z,z−1] C .

Then C is A-finitely dominated if and only if the A-module chain maps

e(C+) −−→ C , e(C−) −−→ C

8



are chain equivalences, if and only if the connecting maps in the Mayer-Vietoris exact
sequence

. . . −−→ Hr(Aα((z))⊗A[z,z−1] C)⊕Hr(Aα((z−1))⊗A[z,z−1] C)

−−→ Hr(Clf )
∂
−−→ Hr−1(C) −−→ . . .

are isomorphisms

∂ : H∗(Clf ) ∼= H∗−1(C) .

(In particular, it is no accident that H lf
∗ (R) ∼= H∗−1(R) !).

Now the topology. Let X be a connected finite CW complex with

π1(X) = π ×α Z
for some automorphism α : π−−→π of a group π. The projection p : π1(X)−−→Z is realized
by a map p : X−−→S1 classifying a connected infinite cyclic cover X = p∗R of X with two
ends ε+, ε−. By analogy with manifold transversality make p CW transverse at ∗ ∈ S1,
so that

X = X
+ ∪X −

with X
+ ∩X − = p−1(∗) a connected finite subcomplex such that

π1(X
+ ∩X −) = π1(X

−
) = π1(X

+
) = π1(X) = π

and X
±

a closed neighbourhood of ε±.

The following result is purely geometric :

Theorem 3. (i) X
+

is forward tame if and only if X
−

is reverse tame.
(ii) X

+
is forward collared if and only if X

−
is reverse collared.

The property of being forward/reverse tame is detected by homology, with forward/
reverse collaring detected by an algebraic K-theory invariant, as follows.

Identify Z[π1(X)] with the α-twisted Laurent polynomial extension of Z[π]

Z[π1(X)] = Z[π]α[z, z−1]

Let X̃ be the universal cover of X, so that

X̃ = X̃ + ∪ X̃ −

with X̃ +, X̃ − the universal covers of X +, X −. The cellular chain complex C(X̃) is
a finite f.g. free Z[π]α[z, z−1]-module chain complex, and C(X̃ +) is a finite f.g. free
Z[π]α[z]-module chain complex. Define the locally finite cellular Z[π]α[[z]]-module chain
complex of X̃ +

Clf,π(X̃ +) = C(X̃ +)lf = Z[π]α[[z]]⊗Z[π]α[z] C(X̃ +) .
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Theorem 4. The following conditions on a finite CW complex X with π1(X) = π ×α Z
and π finitely presented are equivalent :

(i) X
−

is reverse tame,
(ii) X

−
is finitely dominated,

(iii) C(X̃ −) is Z[π]-module chain equivalent to a finite f.g. projective Z[π]-module chain
complex,

(iv) X
+

is forward tame,
(v) Clf (X̃ +) is Z[π]-module chain equivalent to a finite f.g. projective Z[π]-module chain

complex,
(vi) H∗(X;Z[π]α((z))) = 0.

Theorem 5. If X is a finite CW complex such that the conditions of Theorem 4 are satisfied
then the reduced projective class [X

−
] = [C(X̃ −)] ∈ K̃0(Z[π]) and the reduced locally finite

projective class [X
+

]lf = [Clf (X̃ +)] ∈ K̃0(Z[π]) are such that

[X
+

]lf = −[X
−

] ∈ K̃0(Z[π])

and the following conditions are equivalent :
(i) X

−
is reverse collared,

(ii) X
−

is homotopy equivalent to a finite CW complex,
(iii) [X

−
] = 0 ∈ K̃0(Z[π]),

(iv) X
+

is forward collared,
(v) [X

+
]lf = 0 ∈ K̃0(Z[π]).

Example 3. For any integer s ≥ 2 let X = T (s : S1−−→S1), so that π1(X) = π ×α Z
with π = Z[1/s], α = s. Then X

+
is forward collared but not reverse tame (π1(X

+
) =

π is not finitely presented!), and X
−

is reverse collared but not forward tame, with
H∗(T (s);Z[π]α((z))) = 0 and H∗(T (s);Z[π]α((z−1))) = Z[π]α((z−1)) 6= 0. (In fact, X

− '
S1.)
Theorem 6. (i) X

+
is forward tame if and only if the natural map e(X

+
)−−→X is a

homotopy equivalence, if and only if the Z[π]-module chain map e(C(X̃ +))−−→C(X̃) is a
chain equivalence.
(ii) X is finitely dominated if and only if π is finitely presented and the natural maps

e(X
+

) −−→ X , e(X
−

) −−→ X

are homotopy equivalences, if and only if the Z[π]-module chain maps

e(C(X̃ +)) −−→ C(X̃) , e(C(X̃ −)) −−→ C(X̃)

are chain equivalences, if and only if the connecting maps in the Mayer-Vietoris exact
sequence

. . . −−→ Hr(X;Z[π]α((z)))⊕Hr(X;Z[π]α((z−1))) −−→ H lf,π
r (X̃)

∂
−−→ Hr−1(X̃) −−→ . . .

are isomorphisms ∂ : H lf,π
∗ (X̃) ∼= H∗−1(X̃).
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